1 // gogo.cc -- Go frontend parsed representation.
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
13 #include "statements.h"
14 #include "expressions.h"
24 Gogo::Gogo(Backend* backend, Linemap* linemap, int int_type_size,
30 globals_(new Bindings(NULL)),
32 imported_unsafe_(false),
39 unique_prefix_specified_(false),
42 specific_type_functions_(),
43 specific_type_functions_are_written_(false),
44 named_types_are_converted_(false)
46 const Location loc = Linemap::predeclared_location();
48 Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
49 RUNTIME_TYPE_KIND_UINT8);
50 this->add_named_type(uint8_type);
51 this->add_named_type(Type::make_integer_type("uint16", true, 16,
52 RUNTIME_TYPE_KIND_UINT16));
53 this->add_named_type(Type::make_integer_type("uint32", true, 32,
54 RUNTIME_TYPE_KIND_UINT32));
55 this->add_named_type(Type::make_integer_type("uint64", true, 64,
56 RUNTIME_TYPE_KIND_UINT64));
58 this->add_named_type(Type::make_integer_type("int8", false, 8,
59 RUNTIME_TYPE_KIND_INT8));
60 this->add_named_type(Type::make_integer_type("int16", false, 16,
61 RUNTIME_TYPE_KIND_INT16));
62 Named_type* int32_type = Type::make_integer_type("int32", false, 32,
63 RUNTIME_TYPE_KIND_INT32);
64 this->add_named_type(int32_type);
65 this->add_named_type(Type::make_integer_type("int64", false, 64,
66 RUNTIME_TYPE_KIND_INT64));
68 this->add_named_type(Type::make_float_type("float32", 32,
69 RUNTIME_TYPE_KIND_FLOAT32));
70 this->add_named_type(Type::make_float_type("float64", 64,
71 RUNTIME_TYPE_KIND_FLOAT64));
73 this->add_named_type(Type::make_complex_type("complex64", 64,
74 RUNTIME_TYPE_KIND_COMPLEX64));
75 this->add_named_type(Type::make_complex_type("complex128", 128,
76 RUNTIME_TYPE_KIND_COMPLEX128));
78 if (int_type_size < 32)
80 this->add_named_type(Type::make_integer_type("uint", true,
82 RUNTIME_TYPE_KIND_UINT));
83 Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
84 RUNTIME_TYPE_KIND_INT);
85 this->add_named_type(int_type);
87 this->add_named_type(Type::make_integer_type("uintptr", true,
89 RUNTIME_TYPE_KIND_UINTPTR));
91 // "byte" is an alias for "uint8".
92 uint8_type->integer_type()->set_is_byte();
93 Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
95 this->add_named_type(byte_type->type_value());
97 // "rune" is an alias for "int32".
98 int32_type->integer_type()->set_is_rune();
99 Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
101 this->add_named_type(rune_type->type_value());
103 this->add_named_type(Type::make_named_bool_type());
105 this->add_named_type(Type::make_named_string_type());
107 // "error" is interface { Error() string }.
109 Typed_identifier_list *methods = new Typed_identifier_list;
110 Typed_identifier_list *results = new Typed_identifier_list;
111 results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
112 Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
113 methods->push_back(Typed_identifier("Error", method_type, loc));
114 Interface_type *error_iface = Type::make_interface_type(methods, loc);
115 error_iface->finalize_methods();
116 Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
117 this->add_named_type(error_type);
120 this->globals_->add_constant(Typed_identifier("true",
121 Type::make_boolean_type(),
124 Expression::make_boolean(true, loc),
126 this->globals_->add_constant(Typed_identifier("false",
127 Type::make_boolean_type(),
130 Expression::make_boolean(false, loc),
133 this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
136 Expression::make_nil(loc),
139 Type* abstract_int_type = Type::make_abstract_integer_type();
140 this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
143 Expression::make_iota(),
146 Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
147 new_type->set_is_varargs();
148 new_type->set_is_builtin();
149 this->globals_->add_function_declaration("new", NULL, new_type, loc);
151 Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
152 make_type->set_is_varargs();
153 make_type->set_is_builtin();
154 this->globals_->add_function_declaration("make", NULL, make_type, loc);
156 Typed_identifier_list* len_result = new Typed_identifier_list();
157 len_result->push_back(Typed_identifier("", int_type, loc));
158 Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
160 len_type->set_is_builtin();
161 this->globals_->add_function_declaration("len", NULL, len_type, loc);
163 Typed_identifier_list* cap_result = new Typed_identifier_list();
164 cap_result->push_back(Typed_identifier("", int_type, loc));
165 Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
167 cap_type->set_is_builtin();
168 this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
170 Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
171 print_type->set_is_varargs();
172 print_type->set_is_builtin();
173 this->globals_->add_function_declaration("print", NULL, print_type, loc);
175 print_type = Type::make_function_type(NULL, NULL, NULL, loc);
176 print_type->set_is_varargs();
177 print_type->set_is_builtin();
178 this->globals_->add_function_declaration("println", NULL, print_type, loc);
180 Type *empty = Type::make_empty_interface_type(loc);
181 Typed_identifier_list* panic_parms = new Typed_identifier_list();
182 panic_parms->push_back(Typed_identifier("e", empty, loc));
183 Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
185 panic_type->set_is_builtin();
186 this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
188 Typed_identifier_list* recover_result = new Typed_identifier_list();
189 recover_result->push_back(Typed_identifier("", empty, loc));
190 Function_type* recover_type = Type::make_function_type(NULL, NULL,
193 recover_type->set_is_builtin();
194 this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
196 Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
197 close_type->set_is_varargs();
198 close_type->set_is_builtin();
199 this->globals_->add_function_declaration("close", NULL, close_type, loc);
201 Typed_identifier_list* copy_result = new Typed_identifier_list();
202 copy_result->push_back(Typed_identifier("", int_type, loc));
203 Function_type* copy_type = Type::make_function_type(NULL, NULL,
205 copy_type->set_is_varargs();
206 copy_type->set_is_builtin();
207 this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
209 Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
210 append_type->set_is_varargs();
211 append_type->set_is_builtin();
212 this->globals_->add_function_declaration("append", NULL, append_type, loc);
214 Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
215 complex_type->set_is_varargs();
216 complex_type->set_is_builtin();
217 this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
219 Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
220 real_type->set_is_varargs();
221 real_type->set_is_builtin();
222 this->globals_->add_function_declaration("real", NULL, real_type, loc);
224 Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
225 imag_type->set_is_varargs();
226 imag_type->set_is_builtin();
227 this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
229 Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
230 delete_type->set_is_varargs();
231 delete_type->set_is_builtin();
232 this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
235 // Munge name for use in an error message.
238 Gogo::message_name(const std::string& name)
240 return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
243 // Get the package name.
246 Gogo::package_name() const
248 go_assert(this->package_ != NULL);
249 return this->package_->name();
252 // Set the package name.
255 Gogo::set_package_name(const std::string& package_name,
258 if (this->package_ != NULL && this->package_->name() != package_name)
260 error_at(location, "expected package %<%s%>",
261 Gogo::message_name(this->package_->name()).c_str());
265 // If the user did not specify a unique prefix, we always use "go".
266 // This in effect requires that the package name be unique.
267 if (this->unique_prefix_.empty())
268 this->unique_prefix_ = "go";
270 this->package_ = this->register_package(package_name, this->unique_prefix_,
273 // We used to permit people to qualify symbols with the current
274 // package name (e.g., P.x), but we no longer do.
275 // this->globals_->add_package(package_name, this->package_);
277 if (this->is_main_package())
279 // Declare "main" as a function which takes no parameters and
281 Location uloc = Linemap::unknown_location();
282 this->declare_function("main",
283 Type::make_function_type (NULL, NULL, NULL, uloc),
288 // Return whether this is the "main" package. This is not true if
289 // -fgo-prefix was used.
292 Gogo::is_main_package() const
294 return this->package_name() == "main" && !this->unique_prefix_specified_;
300 Gogo::import_package(const std::string& filename,
301 const std::string& local_name,
302 bool is_local_name_exported,
305 if (filename == "unsafe")
307 this->import_unsafe(local_name, is_local_name_exported, location);
311 Imports::const_iterator p = this->imports_.find(filename);
312 if (p != this->imports_.end())
314 Package* package = p->second;
315 package->set_location(location);
316 package->set_is_imported();
317 std::string ln = local_name;
318 bool is_ln_exported = is_local_name_exported;
321 ln = package->name();
322 is_ln_exported = Lex::is_exported_name(ln);
326 Bindings* bindings = package->bindings();
327 for (Bindings::const_declarations_iterator p =
328 bindings->begin_declarations();
329 p != bindings->end_declarations();
331 this->add_named_object(p->second);
334 package->set_uses_sink_alias();
337 ln = this->pack_hidden_name(ln, is_ln_exported);
338 this->package_->bindings()->add_package(ln, package);
343 Import::Stream* stream = Import::open_package(filename, location);
346 error_at(location, "import file %qs not found", filename.c_str());
350 Import imp(stream, location);
351 imp.register_builtin_types(this);
352 Package* package = imp.import(this, local_name, is_local_name_exported);
355 if (package->name() == this->package_name()
356 && package->unique_prefix() == this->unique_prefix())
358 ("imported package uses same package name and prefix "
359 "as package being compiled (see -fgo-prefix option)"));
361 this->imports_.insert(std::make_pair(filename, package));
362 package->set_is_imported();
368 // Add an import control function for an imported package to the list.
371 Gogo::add_import_init_fn(const std::string& package_name,
372 const std::string& init_name, int prio)
374 for (std::set<Import_init>::const_iterator p =
375 this->imported_init_fns_.begin();
376 p != this->imported_init_fns_.end();
379 if (p->init_name() == init_name
380 && (p->package_name() != package_name || p->priority() != prio))
382 error("duplicate package initialization name %qs",
383 Gogo::message_name(init_name).c_str());
384 inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
385 Gogo::message_name(p->package_name()).c_str(),
387 inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
388 Gogo::message_name(package_name).c_str(), prio);
393 this->imported_init_fns_.insert(Import_init(package_name, init_name,
397 // Return whether we are at the global binding level.
400 Gogo::in_global_scope() const
402 return this->functions_.empty();
405 // Return the current binding contour.
408 Gogo::current_bindings()
410 if (!this->functions_.empty())
411 return this->functions_.back().blocks.back()->bindings();
412 else if (this->package_ != NULL)
413 return this->package_->bindings();
415 return this->globals_;
419 Gogo::current_bindings() const
421 if (!this->functions_.empty())
422 return this->functions_.back().blocks.back()->bindings();
423 else if (this->package_ != NULL)
424 return this->package_->bindings();
426 return this->globals_;
429 // Return the current block.
432 Gogo::current_block()
434 if (this->functions_.empty())
437 return this->functions_.back().blocks.back();
440 // Look up a name in the current binding contour. If PFUNCTION is not
441 // NULL, set it to the function in which the name is defined, or NULL
442 // if the name is defined in global scope.
445 Gogo::lookup(const std::string& name, Named_object** pfunction) const
447 if (pfunction != NULL)
450 if (Gogo::is_sink_name(name))
451 return Named_object::make_sink();
453 for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
454 p != this->functions_.rend();
457 Named_object* ret = p->blocks.back()->bindings()->lookup(name);
460 if (pfunction != NULL)
461 *pfunction = p->function;
466 if (this->package_ != NULL)
468 Named_object* ret = this->package_->bindings()->lookup(name);
471 if (ret->package() != NULL)
472 ret->package()->set_used();
477 // We do not look in the global namespace. If we did, the global
478 // namespace would effectively hide names which were defined in
479 // package scope which we have not yet seen. Instead,
480 // define_global_names is called after parsing is over to connect
481 // undefined names at package scope with names defined at global
487 // Look up a name in the current block, without searching enclosing
491 Gogo::lookup_in_block(const std::string& name) const
493 go_assert(!this->functions_.empty());
494 go_assert(!this->functions_.back().blocks.empty());
495 return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
498 // Look up a name in the global namespace.
501 Gogo::lookup_global(const char* name) const
503 return this->globals_->lookup(name);
506 // Add an imported package.
509 Gogo::add_imported_package(const std::string& real_name,
510 const std::string& alias_arg,
511 bool is_alias_exported,
512 const std::string& unique_prefix,
514 bool* padd_to_globals)
516 // FIXME: Now that we compile packages as a whole, should we permit
517 // importing the current package?
518 if (this->package_name() == real_name
519 && this->unique_prefix() == unique_prefix)
521 *padd_to_globals = false;
522 if (!alias_arg.empty() && alias_arg != ".")
524 std::string alias = this->pack_hidden_name(alias_arg,
526 this->package_->bindings()->add_package(alias, this->package_);
528 return this->package_;
530 else if (alias_arg == ".")
532 *padd_to_globals = true;
533 return this->register_package(real_name, unique_prefix, location);
535 else if (alias_arg == "_")
537 Package* ret = this->register_package(real_name, unique_prefix, location);
538 ret->set_uses_sink_alias();
543 *padd_to_globals = false;
544 std::string alias = alias_arg;
548 is_alias_exported = Lex::is_exported_name(alias);
550 alias = this->pack_hidden_name(alias, is_alias_exported);
551 Named_object* no = this->add_package(real_name, alias, unique_prefix,
553 if (!no->is_package())
555 return no->package_value();
562 Gogo::add_package(const std::string& real_name, const std::string& alias,
563 const std::string& unique_prefix, Location location)
565 go_assert(this->in_global_scope());
567 // Register the package. Note that we might have already seen it in
568 // an earlier import.
569 Package* package = this->register_package(real_name, unique_prefix, location);
571 return this->package_->bindings()->add_package(alias, package);
574 // Register a package. This package may or may not be imported. This
575 // returns the Package structure for the package, creating if it
579 Gogo::register_package(const std::string& package_name,
580 const std::string& unique_prefix,
583 go_assert(!unique_prefix.empty() && !package_name.empty());
584 std::string name = unique_prefix + '.' + package_name;
585 Package* package = NULL;
586 std::pair<Packages::iterator, bool> ins =
587 this->packages_.insert(std::make_pair(name, package));
590 // We have seen this package name before.
591 package = ins.first->second;
592 go_assert(package != NULL);
593 go_assert(package->name() == package_name
594 && package->unique_prefix() == unique_prefix);
595 if (Linemap::is_unknown_location(package->location()))
596 package->set_location(location);
600 // First time we have seen this package name.
601 package = new Package(package_name, unique_prefix, location);
602 go_assert(ins.first->second == NULL);
603 ins.first->second = package;
609 // Start compiling a function.
612 Gogo::start_function(const std::string& name, Function_type* type,
613 bool add_method_to_type, Location location)
615 bool at_top_level = this->functions_.empty();
617 Block* block = new Block(NULL, location);
619 Function* enclosing = (at_top_level
621 : this->functions_.back().function->func_value());
623 Function* function = new Function(type, enclosing, block, location);
625 if (type->is_method())
627 const Typed_identifier* receiver = type->receiver();
628 Variable* this_param = new Variable(receiver->type(), NULL, false,
629 true, true, location);
630 std::string rname = receiver->name();
631 if (rname.empty() || Gogo::is_sink_name(rname))
633 // We need to give receivers a name since they wind up in
634 // DECL_ARGUMENTS. FIXME.
635 static unsigned int count;
637 snprintf(buf, sizeof buf, "r.%u", count);
641 block->bindings()->add_variable(rname, NULL, this_param);
644 const Typed_identifier_list* parameters = type->parameters();
645 bool is_varargs = type->is_varargs();
646 if (parameters != NULL)
648 for (Typed_identifier_list::const_iterator p = parameters->begin();
649 p != parameters->end();
652 Variable* param = new Variable(p->type(), NULL, false, true, false,
654 if (is_varargs && p + 1 == parameters->end())
655 param->set_is_varargs_parameter();
657 std::string pname = p->name();
658 if (pname.empty() || Gogo::is_sink_name(pname))
660 // We need to give parameters a name since they wind up
661 // in DECL_ARGUMENTS. FIXME.
662 static unsigned int count;
664 snprintf(buf, sizeof buf, "p.%u", count);
668 block->bindings()->add_variable(pname, NULL, param);
672 function->create_result_variables(this);
674 const std::string* pname;
675 std::string nested_name;
676 bool is_init = false;
677 if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
679 if ((type->parameters() != NULL && !type->parameters()->empty())
680 || (type->results() != NULL && !type->results()->empty()))
682 "func init must have no arguments and no return values");
683 // There can be multiple "init" functions, so give them each a
685 static int init_count;
687 snprintf(buf, sizeof buf, ".$init%d", init_count);
690 pname = &nested_name;
693 else if (!name.empty())
697 // Invent a name for a nested function.
698 static int nested_count;
700 snprintf(buf, sizeof buf, ".$nested%d", nested_count);
703 pname = &nested_name;
707 if (Gogo::is_sink_name(*pname))
709 static int sink_count;
711 snprintf(buf, sizeof buf, ".$sink%d", sink_count);
713 ret = Named_object::make_function(buf, NULL, function);
715 else if (!type->is_method())
717 ret = this->package_->bindings()->add_function(*pname, NULL, function);
718 if (!ret->is_function() || ret->func_value() != function)
720 // Redefinition error. Invent a name to avoid knockon
722 static int redefinition_count;
724 snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
725 ++redefinition_count;
726 ret = this->package_->bindings()->add_function(buf, NULL, function);
731 if (!add_method_to_type)
732 ret = Named_object::make_function(name, NULL, function);
735 go_assert(at_top_level);
736 Type* rtype = type->receiver()->type();
738 // We want to look through the pointer created by the
739 // parser, without getting an error if the type is not yet
741 if (rtype->classification() == Type::TYPE_POINTER)
742 rtype = rtype->points_to();
744 if (rtype->is_error_type())
745 ret = Named_object::make_function(name, NULL, function);
746 else if (rtype->named_type() != NULL)
748 ret = rtype->named_type()->add_method(name, function);
749 if (!ret->is_function())
751 // Redefinition error.
752 ret = Named_object::make_function(name, NULL, function);
755 else if (rtype->forward_declaration_type() != NULL)
757 Named_object* type_no =
758 rtype->forward_declaration_type()->named_object();
759 if (type_no->is_unknown())
761 // If we are seeing methods it really must be a
762 // type. Declare it as such. An alternative would
763 // be to support lists of methods for unknown
764 // expressions. Either way the error messages if
765 // this is not a type are going to get confusing.
766 Named_object* declared =
767 this->declare_package_type(type_no->name(),
768 type_no->location());
770 == type_no->unknown_value()->real_named_object());
772 ret = rtype->forward_declaration_type()->add_method(name,
778 this->package_->bindings()->add_method(ret);
781 this->functions_.resize(this->functions_.size() + 1);
782 Open_function& of(this->functions_.back());
784 of.blocks.push_back(block);
788 this->init_functions_.push_back(ret);
789 this->need_init_fn_ = true;
795 // Finish compiling a function.
798 Gogo::finish_function(Location location)
800 this->finish_block(location);
801 go_assert(this->functions_.back().blocks.empty());
802 this->functions_.pop_back();
805 // Return the current function.
808 Gogo::current_function() const
810 go_assert(!this->functions_.empty());
811 return this->functions_.back().function;
814 // Start a new block.
817 Gogo::start_block(Location location)
819 go_assert(!this->functions_.empty());
820 Block* block = new Block(this->current_block(), location);
821 this->functions_.back().blocks.push_back(block);
827 Gogo::finish_block(Location location)
829 go_assert(!this->functions_.empty());
830 go_assert(!this->functions_.back().blocks.empty());
831 Block* block = this->functions_.back().blocks.back();
832 this->functions_.back().blocks.pop_back();
833 block->set_end_location(location);
837 // Add an erroneous name.
840 Gogo::add_erroneous_name(const std::string& name)
842 return this->package_->bindings()->add_erroneous_name(name);
845 // Add an unknown name.
848 Gogo::add_unknown_name(const std::string& name, Location location)
850 return this->package_->bindings()->add_unknown_name(name, location);
853 // Declare a function.
856 Gogo::declare_function(const std::string& name, Function_type* type,
859 if (!type->is_method())
860 return this->current_bindings()->add_function_declaration(name, NULL, type,
864 // We don't bother to add this to the list of global
866 Type* rtype = type->receiver()->type();
868 // We want to look through the pointer created by the
869 // parser, without getting an error if the type is not yet
871 if (rtype->classification() == Type::TYPE_POINTER)
872 rtype = rtype->points_to();
874 if (rtype->is_error_type())
876 else if (rtype->named_type() != NULL)
877 return rtype->named_type()->add_method_declaration(name, NULL, type,
879 else if (rtype->forward_declaration_type() != NULL)
881 Forward_declaration_type* ftype = rtype->forward_declaration_type();
882 return ftype->add_method_declaration(name, NULL, type, location);
889 // Add a label definition.
892 Gogo::add_label_definition(const std::string& label_name,
895 go_assert(!this->functions_.empty());
896 Function* func = this->functions_.back().function->func_value();
897 Label* label = func->add_label_definition(this, label_name, location);
898 this->add_statement(Statement::make_label_statement(label, location));
902 // Add a label reference.
905 Gogo::add_label_reference(const std::string& label_name,
906 Location location, bool issue_goto_errors)
908 go_assert(!this->functions_.empty());
909 Function* func = this->functions_.back().function->func_value();
910 return func->add_label_reference(this, label_name, location,
914 // Return the current binding state.
917 Gogo::bindings_snapshot(Location location)
919 return new Bindings_snapshot(this->current_block(), location);
925 Gogo::add_statement(Statement* statement)
927 go_assert(!this->functions_.empty()
928 && !this->functions_.back().blocks.empty());
929 this->functions_.back().blocks.back()->add_statement(statement);
935 Gogo::add_block(Block* block, Location location)
937 go_assert(!this->functions_.empty()
938 && !this->functions_.back().blocks.empty());
939 Statement* statement = Statement::make_block_statement(block, location);
940 this->functions_.back().blocks.back()->add_statement(statement);
946 Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
949 return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
955 Gogo::add_type(const std::string& name, Type* type, Location location)
957 Named_object* no = this->current_bindings()->add_type(name, NULL, type,
959 if (!this->in_global_scope() && no->is_type())
960 no->type_value()->set_in_function(this->functions_.back().function);
966 Gogo::add_named_type(Named_type* type)
968 go_assert(this->in_global_scope());
969 this->current_bindings()->add_named_type(type);
975 Gogo::declare_type(const std::string& name, Location location)
977 Bindings* bindings = this->current_bindings();
978 Named_object* no = bindings->add_type_declaration(name, NULL, location);
979 if (!this->in_global_scope() && no->is_type_declaration())
981 Named_object* f = this->functions_.back().function;
982 no->type_declaration_value()->set_in_function(f);
987 // Declare a type at the package level.
990 Gogo::declare_package_type(const std::string& name, Location location)
992 return this->package_->bindings()->add_type_declaration(name, NULL, location);
995 // Declare a function at the package level.
998 Gogo::declare_package_function(const std::string& name, Function_type* type,
1001 return this->package_->bindings()->add_function_declaration(name, NULL, type,
1005 // Define a type which was already declared.
1008 Gogo::define_type(Named_object* no, Named_type* type)
1010 this->current_bindings()->define_type(no, type);
1016 Gogo::add_variable(const std::string& name, Variable* variable)
1018 Named_object* no = this->current_bindings()->add_variable(name, NULL,
1021 // In a function the middle-end wants to see a DECL_EXPR node.
1023 && no->is_variable()
1024 && !no->var_value()->is_parameter()
1025 && !this->functions_.empty())
1026 this->add_statement(Statement::make_variable_declaration(no));
1031 // Add a sink--a reference to the blank identifier _.
1036 return Named_object::make_sink();
1039 // Add a named object.
1042 Gogo::add_named_object(Named_object* no)
1044 this->current_bindings()->add_named_object(no);
1047 // Mark all local variables used. This is used when some types of
1048 // parse error occur.
1051 Gogo::mark_locals_used()
1053 for (Open_functions::iterator pf = this->functions_.begin();
1054 pf != this->functions_.end();
1057 for (std::vector<Block*>::iterator pb = pf->blocks.begin();
1058 pb != pf->blocks.end();
1060 (*pb)->bindings()->mark_locals_used();
1064 // Record that we've seen an interface type.
1067 Gogo::record_interface_type(Interface_type* itype)
1069 this->interface_types_.push_back(itype);
1072 // Return a name for a thunk object.
1077 static int thunk_count;
1078 char thunk_name[50];
1079 snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
1084 // Return whether a function is a thunk.
1087 Gogo::is_thunk(const Named_object* no)
1089 return no->name().compare(0, 6, "$thunk") == 0;
1092 // Define the global names. We do this only after parsing all the
1093 // input files, because the program might define the global names
1097 Gogo::define_global_names()
1099 for (Bindings::const_declarations_iterator p =
1100 this->globals_->begin_declarations();
1101 p != this->globals_->end_declarations();
1104 Named_object* global_no = p->second;
1105 std::string name(Gogo::pack_hidden_name(global_no->name(), false));
1106 Named_object* no = this->package_->bindings()->lookup(name);
1110 if (no->is_type_declaration())
1112 if (global_no->is_type())
1114 if (no->type_declaration_value()->has_methods())
1115 error_at(no->location(),
1116 "may not define methods for global type");
1117 no->set_type_value(global_no->type_value());
1121 error_at(no->location(), "expected type");
1122 Type* errtype = Type::make_error_type();
1124 Named_object::make_type("erroneous_type", NULL, errtype,
1125 Linemap::predeclared_location());
1126 no->set_type_value(err->type_value());
1129 else if (no->is_unknown())
1130 no->unknown_value()->set_real_named_object(global_no);
1134 // Clear out names in file scope.
1137 Gogo::clear_file_scope()
1139 this->package_->bindings()->clear_file_scope();
1141 // Warn about packages which were imported but not used.
1142 for (Packages::iterator p = this->packages_.begin();
1143 p != this->packages_.end();
1146 Package* package = p->second;
1147 if (package != this->package_
1148 && package->is_imported()
1150 && !package->uses_sink_alias()
1152 error_at(package->location(), "imported and not used: %s",
1153 Gogo::message_name(package->name()).c_str());
1154 package->clear_is_imported();
1155 package->clear_uses_sink_alias();
1156 package->clear_used();
1160 // Queue up a type specific function for later writing. These are
1161 // written out in write_specific_type_functions, called after the
1162 // parse tree is lowered.
1165 Gogo::queue_specific_type_function(Type* type, Named_type* name,
1166 const std::string& hash_name,
1167 Function_type* hash_fntype,
1168 const std::string& equal_name,
1169 Function_type* equal_fntype)
1171 go_assert(!this->specific_type_functions_are_written_);
1172 go_assert(!this->in_global_scope());
1173 Specific_type_function* tsf = new Specific_type_function(type, name,
1178 this->specific_type_functions_.push_back(tsf);
1181 // Look for types which need specific hash or equality functions.
1183 class Specific_type_functions : public Traverse
1186 Specific_type_functions(Gogo* gogo)
1187 : Traverse(traverse_types),
1199 Specific_type_functions::type(Type* t)
1201 Named_object* hash_fn;
1202 Named_object* equal_fn;
1203 switch (t->classification())
1205 case Type::TYPE_NAMED:
1207 Named_type* nt = t->named_type();
1208 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
1209 t->type_functions(this->gogo_, nt, NULL, NULL, &hash_fn, &equal_fn);
1211 // If this is a struct type, we don't want to make functions
1212 // for the unnamed struct.
1213 Type* rt = nt->real_type();
1214 if (rt->struct_type() == NULL)
1216 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
1217 return TRAVERSE_EXIT;
1221 // If this type is defined in another package, then we don't
1222 // need to worry about the unexported fields.
1223 bool is_defined_elsewhere = nt->named_object()->package() != NULL;
1224 const Struct_field_list* fields = rt->struct_type()->fields();
1225 for (Struct_field_list::const_iterator p = fields->begin();
1229 if (is_defined_elsewhere
1230 && Gogo::is_hidden_name(p->field_name()))
1232 if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
1233 return TRAVERSE_EXIT;
1237 return TRAVERSE_SKIP_COMPONENTS;
1240 case Type::TYPE_STRUCT:
1241 case Type::TYPE_ARRAY:
1242 if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
1243 t->type_functions(this->gogo_, NULL, NULL, NULL, &hash_fn, &equal_fn);
1250 return TRAVERSE_CONTINUE;
1253 // Write out type specific functions.
1256 Gogo::write_specific_type_functions()
1258 Specific_type_functions stf(this);
1259 this->traverse(&stf);
1261 while (!this->specific_type_functions_.empty())
1263 Specific_type_function* tsf = this->specific_type_functions_.back();
1264 this->specific_type_functions_.pop_back();
1265 tsf->type->write_specific_type_functions(this, tsf->name,
1272 this->specific_type_functions_are_written_ = true;
1275 // Traverse the tree.
1278 Gogo::traverse(Traverse* traverse)
1280 // Traverse the current package first for consistency. The other
1281 // packages will only contain imported types, constants, and
1283 if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1285 for (Packages::const_iterator p = this->packages_.begin();
1286 p != this->packages_.end();
1289 if (p->second != this->package_)
1291 if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
1297 // Add a type to verify. This is used for types of sink variables, in
1298 // order to give appropriate error messages.
1301 Gogo::add_type_to_verify(Type* type)
1303 this->verify_types_.push_back(type);
1306 // Traversal class used to verify types.
1308 class Verify_types : public Traverse
1312 : Traverse(traverse_types)
1319 // Verify that a type is correct.
1322 Verify_types::type(Type* t)
1325 return TRAVERSE_SKIP_COMPONENTS;
1326 return TRAVERSE_CONTINUE;
1329 // Verify that all types are correct.
1332 Gogo::verify_types()
1334 Verify_types traverse;
1335 this->traverse(&traverse);
1337 for (std::vector<Type*>::iterator p = this->verify_types_.begin();
1338 p != this->verify_types_.end();
1341 this->verify_types_.clear();
1344 // Traversal class used to lower parse tree.
1346 class Lower_parse_tree : public Traverse
1349 Lower_parse_tree(Gogo* gogo, Named_object* function)
1350 : Traverse(traverse_variables
1351 | traverse_constants
1352 | traverse_functions
1353 | traverse_statements
1354 | traverse_expressions),
1355 gogo_(gogo), function_(function), iota_value_(-1), inserter_()
1359 set_inserter(const Statement_inserter* inserter)
1360 { this->inserter_ = *inserter; }
1363 variable(Named_object*);
1366 constant(Named_object*, bool);
1369 function(Named_object*);
1372 statement(Block*, size_t* pindex, Statement*);
1375 expression(Expression**);
1380 // The function we are traversing.
1381 Named_object* function_;
1382 // Value to use for the predeclared constant iota.
1384 // Current statement inserter for use by expressions.
1385 Statement_inserter inserter_;
1391 Lower_parse_tree::variable(Named_object* no)
1393 if (!no->is_variable())
1394 return TRAVERSE_CONTINUE;
1396 if (no->is_variable() && no->var_value()->is_global())
1398 // Global variables can have loops in their initialization
1399 // expressions. This is handled in lower_init_expression.
1400 no->var_value()->lower_init_expression(this->gogo_, this->function_,
1402 return TRAVERSE_CONTINUE;
1405 // This is a local variable. We are going to return
1406 // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
1407 // initialization expression when we reach the variable declaration
1408 // statement. However, that means that we need to traverse the type
1410 if (no->var_value()->has_type())
1412 Type* type = no->var_value()->type();
1415 if (Type::traverse(type, this) == TRAVERSE_EXIT)
1416 return TRAVERSE_EXIT;
1419 go_assert(!no->var_value()->has_pre_init());
1421 return TRAVERSE_SKIP_COMPONENTS;
1424 // Lower constants. We handle constants specially so that we can set
1425 // the right value for the predeclared constant iota. This works in
1426 // conjunction with the way we lower Const_expression objects.
1429 Lower_parse_tree::constant(Named_object* no, bool)
1431 Named_constant* nc = no->const_value();
1433 // Don't get into trouble if the constant's initializer expression
1434 // refers to the constant itself.
1436 return TRAVERSE_CONTINUE;
1439 go_assert(this->iota_value_ == -1);
1440 this->iota_value_ = nc->iota_value();
1441 nc->traverse_expression(this);
1442 this->iota_value_ = -1;
1444 nc->clear_lowering();
1446 // We will traverse the expression a second time, but that will be
1449 return TRAVERSE_CONTINUE;
1452 // Lower function closure types. Record the function while lowering
1453 // it, so that we can pass it down when lowering an expression.
1456 Lower_parse_tree::function(Named_object* no)
1458 no->func_value()->set_closure_type();
1460 go_assert(this->function_ == NULL);
1461 this->function_ = no;
1462 int t = no->func_value()->traverse(this);
1463 this->function_ = NULL;
1465 if (t == TRAVERSE_EXIT)
1467 return TRAVERSE_SKIP_COMPONENTS;
1470 // Lower statement parse trees.
1473 Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
1475 // Because we explicitly traverse the statement's contents
1476 // ourselves, we want to skip block statements here. There is
1477 // nothing to lower in a block statement.
1478 if (sorig->is_block_statement())
1479 return TRAVERSE_CONTINUE;
1481 Statement_inserter hold_inserter(this->inserter_);
1482 this->inserter_ = Statement_inserter(block, pindex);
1484 // Lower the expressions first.
1485 int t = sorig->traverse_contents(this);
1486 if (t == TRAVERSE_EXIT)
1488 this->inserter_ = hold_inserter;
1492 // Keep lowering until nothing changes.
1493 Statement* s = sorig;
1496 Statement* snew = s->lower(this->gogo_, this->function_, block,
1501 t = s->traverse_contents(this);
1502 if (t == TRAVERSE_EXIT)
1504 this->inserter_ = hold_inserter;
1510 block->replace_statement(*pindex, s);
1512 this->inserter_ = hold_inserter;
1513 return TRAVERSE_SKIP_COMPONENTS;
1516 // Lower expression parse trees.
1519 Lower_parse_tree::expression(Expression** pexpr)
1521 // We have to lower all subexpressions first, so that we can get
1522 // their type if necessary. This is awkward, because we don't have
1523 // a postorder traversal pass.
1524 if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
1525 return TRAVERSE_EXIT;
1526 // Keep lowering until nothing changes.
1529 Expression* e = *pexpr;
1530 Expression* enew = e->lower(this->gogo_, this->function_,
1531 &this->inserter_, this->iota_value_);
1534 if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
1535 return TRAVERSE_EXIT;
1538 return TRAVERSE_SKIP_COMPONENTS;
1541 // Lower the parse tree. This is called after the parse is complete,
1542 // when all names should be resolved.
1545 Gogo::lower_parse_tree()
1547 Lower_parse_tree lower_parse_tree(this, NULL);
1548 this->traverse(&lower_parse_tree);
1554 Gogo::lower_block(Named_object* function, Block* block)
1556 Lower_parse_tree lower_parse_tree(this, function);
1557 block->traverse(&lower_parse_tree);
1560 // Lower an expression. INSERTER may be NULL, in which case the
1561 // expression had better not need to create any temporaries.
1564 Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
1567 Lower_parse_tree lower_parse_tree(this, function);
1568 if (inserter != NULL)
1569 lower_parse_tree.set_inserter(inserter);
1570 lower_parse_tree.expression(pexpr);
1573 // Lower a constant. This is called when lowering a reference to a
1574 // constant. We have to make sure that the constant has already been
1578 Gogo::lower_constant(Named_object* no)
1580 go_assert(no->is_const());
1581 Lower_parse_tree lower(this, NULL);
1582 lower.constant(no, false);
1585 // Look for interface types to finalize methods of inherited
1588 class Finalize_methods : public Traverse
1591 Finalize_methods(Gogo* gogo)
1592 : Traverse(traverse_types),
1603 // Finalize the methods of an interface type.
1606 Finalize_methods::type(Type* t)
1608 // Check the classification so that we don't finalize the methods
1609 // twice for a named interface type.
1610 switch (t->classification())
1612 case Type::TYPE_INTERFACE:
1613 t->interface_type()->finalize_methods();
1616 case Type::TYPE_NAMED:
1618 // We have to finalize the methods of the real type first.
1619 // But if the real type is a struct type, then we only want to
1620 // finalize the methods of the field types, not of the struct
1621 // type itself. We don't want to add methods to the struct,
1622 // since it has a name.
1623 Named_type* nt = t->named_type();
1624 Type* rt = nt->real_type();
1625 if (rt->classification() != Type::TYPE_STRUCT)
1627 if (Type::traverse(rt, this) == TRAVERSE_EXIT)
1628 return TRAVERSE_EXIT;
1632 if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
1633 return TRAVERSE_EXIT;
1636 nt->finalize_methods(this->gogo_);
1638 // If this type is defined in a different package, then finalize the
1639 // types of all the methods, since we won't see them otherwise.
1640 if (nt->named_object()->package() != NULL && nt->has_any_methods())
1642 const Methods* methods = nt->methods();
1643 for (Methods::const_iterator p = methods->begin();
1644 p != methods->end();
1647 if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
1648 return TRAVERSE_EXIT;
1652 return TRAVERSE_SKIP_COMPONENTS;
1655 case Type::TYPE_STRUCT:
1656 t->struct_type()->finalize_methods(this->gogo_);
1663 return TRAVERSE_CONTINUE;
1666 // Finalize method lists and build stub methods for types.
1669 Gogo::finalize_methods()
1671 Finalize_methods finalize(this);
1672 this->traverse(&finalize);
1675 // Set types for unspecified variables and constants.
1678 Gogo::determine_types()
1680 Bindings* bindings = this->current_bindings();
1681 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
1682 p != bindings->end_definitions();
1685 if ((*p)->is_function())
1686 (*p)->func_value()->determine_types();
1687 else if ((*p)->is_variable())
1688 (*p)->var_value()->determine_type();
1689 else if ((*p)->is_const())
1690 (*p)->const_value()->determine_type();
1692 // See if a variable requires us to build an initialization
1693 // function. We know that we will see all global variables
1695 if (!this->need_init_fn_ && (*p)->is_variable())
1697 Variable* variable = (*p)->var_value();
1699 // If this is a global variable which requires runtime
1700 // initialization, we need an initialization function.
1701 if (!variable->is_global())
1703 else if (variable->init() == NULL)
1705 else if (variable->type()->interface_type() != NULL)
1706 this->need_init_fn_ = true;
1707 else if (variable->init()->is_constant())
1709 else if (!variable->init()->is_composite_literal())
1710 this->need_init_fn_ = true;
1711 else if (variable->init()->is_nonconstant_composite_literal())
1712 this->need_init_fn_ = true;
1714 // If this is a global variable which holds a pointer value,
1715 // then we need an initialization function to register it as a
1717 if (variable->is_global() && variable->type()->has_pointer())
1718 this->need_init_fn_ = true;
1722 // Determine the types of constants in packages.
1723 for (Packages::const_iterator p = this->packages_.begin();
1724 p != this->packages_.end();
1726 p->second->determine_types();
1729 // Traversal class used for type checking.
1731 class Check_types_traverse : public Traverse
1734 Check_types_traverse(Gogo* gogo)
1735 : Traverse(traverse_variables
1736 | traverse_constants
1737 | traverse_functions
1738 | traverse_statements
1739 | traverse_expressions),
1744 variable(Named_object*);
1747 constant(Named_object*, bool);
1750 function(Named_object*);
1753 statement(Block*, size_t* pindex, Statement*);
1756 expression(Expression**);
1763 // Check that a variable initializer has the right type.
1766 Check_types_traverse::variable(Named_object* named_object)
1768 if (named_object->is_variable())
1770 Variable* var = named_object->var_value();
1772 // Give error if variable type is not defined.
1773 var->type()->base();
1775 Expression* init = var->init();
1778 && !Type::are_assignable(var->type(), init->type(), &reason))
1781 error_at(var->location(), "incompatible type in initialization");
1783 error_at(var->location(),
1784 "incompatible type in initialization (%s)",
1788 else if (!var->is_used()
1789 && !var->is_global()
1790 && !var->is_parameter()
1791 && !var->is_receiver()
1792 && !var->type()->is_error()
1793 && (init == NULL || !init->is_error_expression())
1794 && !Lex::is_invalid_identifier(named_object->name()))
1795 error_at(var->location(), "%qs declared and not used",
1796 named_object->message_name().c_str());
1798 return TRAVERSE_CONTINUE;
1801 // Check that a constant initializer has the right type.
1804 Check_types_traverse::constant(Named_object* named_object, bool)
1806 Named_constant* constant = named_object->const_value();
1807 Type* ctype = constant->type();
1808 if (ctype->integer_type() == NULL
1809 && ctype->float_type() == NULL
1810 && ctype->complex_type() == NULL
1811 && !ctype->is_boolean_type()
1812 && !ctype->is_string_type())
1814 if (ctype->is_nil_type())
1815 error_at(constant->location(), "const initializer cannot be nil");
1816 else if (!ctype->is_error())
1817 error_at(constant->location(), "invalid constant type");
1818 constant->set_error();
1820 else if (!constant->expr()->is_constant())
1822 error_at(constant->expr()->location(), "expression is not constant");
1823 constant->set_error();
1825 else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
1828 error_at(constant->location(),
1829 "initialization expression has wrong type");
1830 constant->set_error();
1832 return TRAVERSE_CONTINUE;
1835 // There are no types to check in a function, but this is where we
1836 // issue warnings about labels which are defined but not referenced.
1839 Check_types_traverse::function(Named_object* no)
1841 no->func_value()->check_labels();
1842 return TRAVERSE_CONTINUE;
1845 // Check that types are valid in a statement.
1848 Check_types_traverse::statement(Block*, size_t*, Statement* s)
1850 s->check_types(this->gogo_);
1851 return TRAVERSE_CONTINUE;
1854 // Check that types are valid in an expression.
1857 Check_types_traverse::expression(Expression** expr)
1859 (*expr)->check_types(this->gogo_);
1860 return TRAVERSE_CONTINUE;
1863 // Check that types are valid.
1868 Check_types_traverse traverse(this);
1869 this->traverse(&traverse);
1872 // Check the types in a single block.
1875 Gogo::check_types_in_block(Block* block)
1877 Check_types_traverse traverse(this);
1878 block->traverse(&traverse);
1881 // A traversal class used to find a single shortcut operator within an
1884 class Find_shortcut : public Traverse
1888 : Traverse(traverse_blocks
1889 | traverse_statements
1890 | traverse_expressions),
1894 // A pointer to the expression which was found, or NULL if none was
1898 { return this->found_; }
1903 { return TRAVERSE_SKIP_COMPONENTS; }
1906 statement(Block*, size_t*, Statement*)
1907 { return TRAVERSE_SKIP_COMPONENTS; }
1910 expression(Expression**);
1913 Expression** found_;
1916 // Find a shortcut expression.
1919 Find_shortcut::expression(Expression** pexpr)
1921 Expression* expr = *pexpr;
1922 Binary_expression* be = expr->binary_expression();
1924 return TRAVERSE_CONTINUE;
1925 Operator op = be->op();
1926 if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
1927 return TRAVERSE_CONTINUE;
1928 go_assert(this->found_ == NULL);
1929 this->found_ = pexpr;
1930 return TRAVERSE_EXIT;
1933 // A traversal class used to turn shortcut operators into explicit if
1936 class Shortcuts : public Traverse
1939 Shortcuts(Gogo* gogo)
1940 : Traverse(traverse_variables
1941 | traverse_statements),
1947 variable(Named_object*);
1950 statement(Block*, size_t*, Statement*);
1953 // Convert a shortcut operator.
1955 convert_shortcut(Block* enclosing, Expression** pshortcut);
1961 // Remove shortcut operators in a single statement.
1964 Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
1966 // FIXME: This approach doesn't work for switch statements, because
1967 // we add the new statements before the whole switch when we need to
1968 // instead add them just before the switch expression. The right
1969 // fix is probably to lower switch statements with nonconstant cases
1970 // to a series of conditionals.
1971 if (s->switch_statement() != NULL)
1972 return TRAVERSE_CONTINUE;
1976 Find_shortcut find_shortcut;
1978 // If S is a variable declaration, then ordinary traversal won't
1979 // do anything. We want to explicitly traverse the
1980 // initialization expression if there is one.
1981 Variable_declaration_statement* vds = s->variable_declaration_statement();
1982 Expression* init = NULL;
1984 s->traverse_contents(&find_shortcut);
1987 init = vds->var()->var_value()->init();
1989 return TRAVERSE_CONTINUE;
1990 init->traverse(&init, &find_shortcut);
1992 Expression** pshortcut = find_shortcut.found();
1993 if (pshortcut == NULL)
1994 return TRAVERSE_CONTINUE;
1996 Statement* snew = this->convert_shortcut(block, pshortcut);
1997 block->insert_statement_before(*pindex, snew);
2000 if (pshortcut == &init)
2001 vds->var()->var_value()->set_init(init);
2005 // Remove shortcut operators in the initializer of a global variable.
2008 Shortcuts::variable(Named_object* no)
2010 if (no->is_result_variable())
2011 return TRAVERSE_CONTINUE;
2012 Variable* var = no->var_value();
2013 Expression* init = var->init();
2014 if (!var->is_global() || init == NULL)
2015 return TRAVERSE_CONTINUE;
2019 Find_shortcut find_shortcut;
2020 init->traverse(&init, &find_shortcut);
2021 Expression** pshortcut = find_shortcut.found();
2022 if (pshortcut == NULL)
2023 return TRAVERSE_CONTINUE;
2025 Statement* snew = this->convert_shortcut(NULL, pshortcut);
2026 var->add_preinit_statement(this->gogo_, snew);
2027 if (pshortcut == &init)
2028 var->set_init(init);
2032 // Given an expression which uses a shortcut operator, return a
2033 // statement which implements it, and update *PSHORTCUT accordingly.
2036 Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
2038 Binary_expression* shortcut = (*pshortcut)->binary_expression();
2039 Expression* left = shortcut->left();
2040 Expression* right = shortcut->right();
2041 Location loc = shortcut->location();
2043 Block* retblock = new Block(enclosing, loc);
2044 retblock->set_end_location(loc);
2046 Temporary_statement* ts = Statement::make_temporary(Type::lookup_bool_type(),
2048 retblock->add_statement(ts);
2050 Block* block = new Block(retblock, loc);
2051 block->set_end_location(loc);
2052 Expression* tmpref = Expression::make_temporary_reference(ts, loc);
2053 Statement* assign = Statement::make_assignment(tmpref, right, loc);
2054 block->add_statement(assign);
2056 Expression* cond = Expression::make_temporary_reference(ts, loc);
2057 if (shortcut->binary_expression()->op() == OPERATOR_OROR)
2058 cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
2060 Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
2062 retblock->add_statement(if_statement);
2064 *pshortcut = Expression::make_temporary_reference(ts, loc);
2068 // Now convert any shortcut operators in LEFT and RIGHT.
2069 Shortcuts shortcuts(this->gogo_);
2070 retblock->traverse(&shortcuts);
2072 return Statement::make_block_statement(retblock, loc);
2075 // Turn shortcut operators into explicit if statements. Doing this
2076 // considerably simplifies the order of evaluation rules.
2079 Gogo::remove_shortcuts()
2081 Shortcuts shortcuts(this);
2082 this->traverse(&shortcuts);
2085 // A traversal class which finds all the expressions which must be
2086 // evaluated in order within a statement or larger expression. This
2087 // is used to implement the rules about order of evaluation.
2089 class Find_eval_ordering : public Traverse
2092 typedef std::vector<Expression**> Expression_pointers;
2095 Find_eval_ordering()
2096 : Traverse(traverse_blocks
2097 | traverse_statements
2098 | traverse_expressions),
2104 { return this->exprs_.size(); }
2106 typedef Expression_pointers::const_iterator const_iterator;
2110 { return this->exprs_.begin(); }
2114 { return this->exprs_.end(); }
2119 { return TRAVERSE_SKIP_COMPONENTS; }
2122 statement(Block*, size_t*, Statement*)
2123 { return TRAVERSE_SKIP_COMPONENTS; }
2126 expression(Expression**);
2129 // A list of pointers to expressions with side-effects.
2130 Expression_pointers exprs_;
2133 // If an expression must be evaluated in order, put it on the list.
2136 Find_eval_ordering::expression(Expression** expression_pointer)
2138 // We have to look at subexpressions before this one.
2139 if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
2140 return TRAVERSE_EXIT;
2141 if ((*expression_pointer)->must_eval_in_order())
2142 this->exprs_.push_back(expression_pointer);
2143 return TRAVERSE_SKIP_COMPONENTS;
2146 // A traversal class for ordering evaluations.
2148 class Order_eval : public Traverse
2151 Order_eval(Gogo* gogo)
2152 : Traverse(traverse_variables
2153 | traverse_statements),
2158 variable(Named_object*);
2161 statement(Block*, size_t*, Statement*);
2168 // Implement the order of evaluation rules for a statement.
2171 Order_eval::statement(Block* block, size_t* pindex, Statement* s)
2173 // FIXME: This approach doesn't work for switch statements, because
2174 // we add the new statements before the whole switch when we need to
2175 // instead add them just before the switch expression. The right
2176 // fix is probably to lower switch statements with nonconstant cases
2177 // to a series of conditionals.
2178 if (s->switch_statement() != NULL)
2179 return TRAVERSE_CONTINUE;
2181 Find_eval_ordering find_eval_ordering;
2183 // If S is a variable declaration, then ordinary traversal won't do
2184 // anything. We want to explicitly traverse the initialization
2185 // expression if there is one.
2186 Variable_declaration_statement* vds = s->variable_declaration_statement();
2187 Expression* init = NULL;
2188 Expression* orig_init = NULL;
2190 s->traverse_contents(&find_eval_ordering);
2193 init = vds->var()->var_value()->init();
2195 return TRAVERSE_CONTINUE;
2198 // It might seem that this could be
2199 // init->traverse_subexpressions. Unfortunately that can fail
2202 // newvar, err := call(arg())
2203 // Here newvar will have an init of call result 0 of
2204 // call(arg()). If we only traverse subexpressions, we will
2205 // only find arg(), and we won't bother to move anything out.
2206 // Then we get to the assignment to err, we will traverse the
2207 // whole statement, and this time we will find both call() and
2208 // arg(), and so we will move them out. This will cause them to
2209 // be put into temporary variables before the assignment to err
2210 // but after the declaration of newvar. To avoid that problem,
2211 // we traverse the entire expression here.
2212 Expression::traverse(&init, &find_eval_ordering);
2215 if (find_eval_ordering.size() <= 1)
2217 // If there is only one expression with a side-effect, we can
2218 // leave it in place.
2219 return TRAVERSE_CONTINUE;
2222 bool is_thunk = s->thunk_statement() != NULL;
2223 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
2224 p != find_eval_ordering.end();
2227 Expression** pexpr = *p;
2229 // The last expression in a thunk will be the call passed to go
2230 // or defer, which we must not evaluate early.
2231 if (is_thunk && p + 1 == find_eval_ordering.end())
2234 Location loc = (*pexpr)->location();
2236 if ((*pexpr)->call_expression() == NULL
2237 || (*pexpr)->call_expression()->result_count() < 2)
2239 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
2242 *pexpr = Expression::make_temporary_reference(ts, loc);
2246 // A call expression which returns multiple results needs to
2247 // be handled specially. We can't create a temporary
2248 // because there is no type to give it. Any actual uses of
2249 // the values will be done via Call_result_expressions.
2250 s = Statement::make_statement(*pexpr, true);
2253 block->insert_statement_before(*pindex, s);
2257 if (init != orig_init)
2258 vds->var()->var_value()->set_init(init);
2260 return TRAVERSE_CONTINUE;
2263 // Implement the order of evaluation rules for the initializer of a
2267 Order_eval::variable(Named_object* no)
2269 if (no->is_result_variable())
2270 return TRAVERSE_CONTINUE;
2271 Variable* var = no->var_value();
2272 Expression* init = var->init();
2273 if (!var->is_global() || init == NULL)
2274 return TRAVERSE_CONTINUE;
2276 Find_eval_ordering find_eval_ordering;
2277 Expression::traverse(&init, &find_eval_ordering);
2279 if (find_eval_ordering.size() <= 1)
2281 // If there is only one expression with a side-effect, we can
2282 // leave it in place.
2283 return TRAVERSE_SKIP_COMPONENTS;
2286 Expression* orig_init = init;
2288 for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
2289 p != find_eval_ordering.end();
2292 Expression** pexpr = *p;
2293 Location loc = (*pexpr)->location();
2295 if ((*pexpr)->call_expression() == NULL
2296 || (*pexpr)->call_expression()->result_count() < 2)
2298 Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
2301 *pexpr = Expression::make_temporary_reference(ts, loc);
2305 // A call expression which returns multiple results needs to
2306 // be handled specially.
2307 s = Statement::make_statement(*pexpr, true);
2309 var->add_preinit_statement(this->gogo_, s);
2312 if (init != orig_init)
2313 var->set_init(init);
2315 return TRAVERSE_SKIP_COMPONENTS;
2318 // Use temporary variables to implement the order of evaluation rules.
2321 Gogo::order_evaluations()
2323 Order_eval order_eval(this);
2324 this->traverse(&order_eval);
2327 // Traversal to convert calls to the predeclared recover function to
2328 // pass in an argument indicating whether it can recover from a panic
2331 class Convert_recover : public Traverse
2334 Convert_recover(Named_object* arg)
2335 : Traverse(traverse_expressions),
2341 expression(Expression**);
2344 // The argument to pass to the function.
2348 // Convert calls to recover.
2351 Convert_recover::expression(Expression** pp)
2353 Call_expression* ce = (*pp)->call_expression();
2354 if (ce != NULL && ce->is_recover_call())
2355 ce->set_recover_arg(Expression::make_var_reference(this->arg_,
2357 return TRAVERSE_CONTINUE;
2360 // Traversal for build_recover_thunks.
2362 class Build_recover_thunks : public Traverse
2365 Build_recover_thunks(Gogo* gogo)
2366 : Traverse(traverse_functions),
2371 function(Named_object*);
2375 can_recover_arg(Location);
2381 // If this function calls recover, turn it into a thunk.
2384 Build_recover_thunks::function(Named_object* orig_no)
2386 Function* orig_func = orig_no->func_value();
2387 if (!orig_func->calls_recover()
2388 || orig_func->is_recover_thunk()
2389 || orig_func->has_recover_thunk())
2390 return TRAVERSE_CONTINUE;
2392 Gogo* gogo = this->gogo_;
2393 Location location = orig_func->location();
2398 Function_type* orig_fntype = orig_func->type();
2399 Typed_identifier_list* new_params = new Typed_identifier_list();
2400 std::string receiver_name;
2401 if (orig_fntype->is_method())
2403 const Typed_identifier* receiver = orig_fntype->receiver();
2404 snprintf(buf, sizeof buf, "rt.%u", count);
2406 receiver_name = buf;
2407 new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
2408 receiver->location()));
2410 const Typed_identifier_list* orig_params = orig_fntype->parameters();
2411 if (orig_params != NULL && !orig_params->empty())
2413 for (Typed_identifier_list::const_iterator p = orig_params->begin();
2414 p != orig_params->end();
2417 snprintf(buf, sizeof buf, "pt.%u", count);
2419 new_params->push_back(Typed_identifier(buf, p->type(),
2423 snprintf(buf, sizeof buf, "pr.%u", count);
2425 std::string can_recover_name = buf;
2426 new_params->push_back(Typed_identifier(can_recover_name,
2427 Type::lookup_bool_type(),
2428 orig_fntype->location()));
2430 const Typed_identifier_list* orig_results = orig_fntype->results();
2431 Typed_identifier_list* new_results;
2432 if (orig_results == NULL || orig_results->empty())
2436 new_results = new Typed_identifier_list();
2437 for (Typed_identifier_list::const_iterator p = orig_results->begin();
2438 p != orig_results->end();
2440 new_results->push_back(Typed_identifier("", p->type(), p->location()));
2443 Function_type *new_fntype = Type::make_function_type(NULL, new_params,
2445 orig_fntype->location());
2446 if (orig_fntype->is_varargs())
2447 new_fntype->set_is_varargs();
2449 std::string name = orig_no->name() + "$recover";
2450 Named_object *new_no = gogo->start_function(name, new_fntype, false,
2452 Function *new_func = new_no->func_value();
2453 if (orig_func->enclosing() != NULL)
2454 new_func->set_enclosing(orig_func->enclosing());
2456 // We build the code for the original function attached to the new
2457 // function, and then swap the original and new function bodies.
2458 // This means that existing references to the original function will
2459 // then refer to the new function. That makes this code a little
2460 // confusing, in that the reference to NEW_NO really refers to the
2461 // other function, not the one we are building.
2463 Expression* closure = NULL;
2464 if (orig_func->needs_closure())
2466 Named_object* orig_closure_no = orig_func->closure_var();
2467 Variable* orig_closure_var = orig_closure_no->var_value();
2468 Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
2469 true, false, location);
2470 snprintf(buf, sizeof buf, "closure.%u", count);
2472 Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
2474 new_func->set_closure_var(new_closure_no);
2475 closure = Expression::make_var_reference(new_closure_no, location);
2478 Expression* fn = Expression::make_func_reference(new_no, closure, location);
2480 Expression_list* args = new Expression_list();
2481 if (new_params != NULL)
2483 // Note that we skip the last parameter, which is the boolean
2484 // indicating whether recover can succed.
2485 for (Typed_identifier_list::const_iterator p = new_params->begin();
2486 p + 1 != new_params->end();
2489 Named_object* p_no = gogo->lookup(p->name(), NULL);
2490 go_assert(p_no != NULL
2491 && p_no->is_variable()
2492 && p_no->var_value()->is_parameter());
2493 args->push_back(Expression::make_var_reference(p_no, location));
2496 args->push_back(this->can_recover_arg(location));
2498 gogo->start_block(location);
2500 Call_expression* call = Expression::make_call(fn, args, false, location);
2502 // Any varargs call has already been lowered.
2503 call->set_varargs_are_lowered();
2506 if (orig_fntype->results() == NULL || orig_fntype->results()->empty())
2507 s = Statement::make_statement(call, true);
2510 Expression_list* vals = new Expression_list();
2511 size_t rc = orig_fntype->results()->size();
2513 vals->push_back(call);
2516 for (size_t i = 0; i < rc; ++i)
2517 vals->push_back(Expression::make_call_result(call, i));
2519 s = Statement::make_return_statement(vals, location);
2521 s->determine_types();
2522 gogo->add_statement(s);
2524 Block* b = gogo->finish_block(location);
2526 gogo->add_block(b, location);
2528 // Lower the call in case it returns multiple results.
2529 gogo->lower_block(new_no, b);
2531 gogo->finish_function(location);
2533 // Swap the function bodies and types.
2534 new_func->swap_for_recover(orig_func);
2535 orig_func->set_is_recover_thunk();
2536 new_func->set_calls_recover();
2537 new_func->set_has_recover_thunk();
2539 Bindings* orig_bindings = orig_func->block()->bindings();
2540 Bindings* new_bindings = new_func->block()->bindings();
2541 if (orig_fntype->is_method())
2543 // We changed the receiver to be a regular parameter. We have
2544 // to update the binding accordingly in both functions.
2545 Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
2546 go_assert(orig_rec_no != NULL
2547 && orig_rec_no->is_variable()
2548 && !orig_rec_no->var_value()->is_receiver());
2549 orig_rec_no->var_value()->set_is_receiver();
2551 const std::string& new_receiver_name(orig_fntype->receiver()->name());
2552 Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
2553 if (new_rec_no == NULL)
2554 go_assert(saw_errors());
2557 go_assert(new_rec_no->is_variable()
2558 && new_rec_no->var_value()->is_receiver());
2559 new_rec_no->var_value()->set_is_not_receiver();
2563 // Because we flipped blocks but not types, the can_recover
2564 // parameter appears in the (now) old bindings as a parameter.
2565 // Change it to a local variable, whereupon it will be discarded.
2566 Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
2567 go_assert(can_recover_no != NULL
2568 && can_recover_no->is_variable()
2569 && can_recover_no->var_value()->is_parameter());
2570 orig_bindings->remove_binding(can_recover_no);
2572 // Add the can_recover argument to the (now) new bindings, and
2573 // attach it to any recover statements.
2574 Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
2575 false, true, false, location);
2576 can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
2578 Convert_recover convert_recover(can_recover_no);
2579 new_func->traverse(&convert_recover);
2581 // Update the function pointers in any named results.
2582 new_func->update_result_variables();
2583 orig_func->update_result_variables();
2585 return TRAVERSE_CONTINUE;
2588 // Return the expression to pass for the .can_recover parameter to the
2589 // new function. This indicates whether a call to recover may return
2590 // non-nil. The expression is
2591 // __go_can_recover(__builtin_return_address()).
2594 Build_recover_thunks::can_recover_arg(Location location)
2596 static Named_object* builtin_return_address;
2597 if (builtin_return_address == NULL)
2599 const Location bloc = Linemap::predeclared_location();
2601 Typed_identifier_list* param_types = new Typed_identifier_list();
2602 Type* uint_type = Type::lookup_integer_type("uint");
2603 param_types->push_back(Typed_identifier("l", uint_type, bloc));
2605 Typed_identifier_list* return_types = new Typed_identifier_list();
2606 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2607 return_types->push_back(Typed_identifier("", voidptr_type, bloc));
2609 Function_type* fntype = Type::make_function_type(NULL, param_types,
2610 return_types, bloc);
2611 builtin_return_address =
2612 Named_object::make_function_declaration("__builtin_return_address",
2613 NULL, fntype, bloc);
2614 const char* n = "__builtin_return_address";
2615 builtin_return_address->func_declaration_value()->set_asm_name(n);
2618 static Named_object* can_recover;
2619 if (can_recover == NULL)
2621 const Location bloc = Linemap::predeclared_location();
2622 Typed_identifier_list* param_types = new Typed_identifier_list();
2623 Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
2624 param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
2625 Type* boolean_type = Type::lookup_bool_type();
2626 Typed_identifier_list* results = new Typed_identifier_list();
2627 results->push_back(Typed_identifier("", boolean_type, bloc));
2628 Function_type* fntype = Type::make_function_type(NULL, param_types,
2630 can_recover = Named_object::make_function_declaration("__go_can_recover",
2633 can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
2636 Expression* fn = Expression::make_func_reference(builtin_return_address,
2640 mpz_init_set_ui(zval, 0UL);
2641 Expression* zexpr = Expression::make_integer(&zval, NULL, location);
2643 Expression_list *args = new Expression_list();
2644 args->push_back(zexpr);
2646 Expression* call = Expression::make_call(fn, args, false, location);
2648 args = new Expression_list();
2649 args->push_back(call);
2651 fn = Expression::make_func_reference(can_recover, NULL, location);
2652 return Expression::make_call(fn, args, false, location);
2655 // Build thunks for functions which call recover. We build a new
2656 // function with an extra parameter, which is whether a call to
2657 // recover can succeed. We then move the body of this function to
2658 // that one. We then turn this function into a thunk which calls the
2659 // new one, passing the value of
2660 // __go_can_recover(__builtin_return_address()). The function will be
2661 // marked as not splitting the stack. This will cooperate with the
2662 // implementation of defer to make recover do the right thing.
2665 Gogo::build_recover_thunks()
2667 Build_recover_thunks build_recover_thunks(this);
2668 this->traverse(&build_recover_thunks);
2671 // Look for named types to see whether we need to create an interface
2674 class Build_method_tables : public Traverse
2677 Build_method_tables(Gogo* gogo,
2678 const std::vector<Interface_type*>& interfaces)
2679 : Traverse(traverse_types),
2680 gogo_(gogo), interfaces_(interfaces)
2689 // A list of locally defined interfaces which have hidden methods.
2690 const std::vector<Interface_type*>& interfaces_;
2693 // Build all required interface method tables for types. We need to
2694 // ensure that we have an interface method table for every interface
2695 // which has a hidden method, for every named type which implements
2696 // that interface. Normally we can just build interface method tables
2697 // as we need them. However, in some cases we can require an
2698 // interface method table for an interface defined in a different
2699 // package for a type defined in that package. If that interface and
2700 // type both use a hidden method, that is OK. However, we will not be
2701 // able to build that interface method table when we need it, because
2702 // the type's hidden method will be static. So we have to build it
2703 // here, and just refer it from other packages as needed.
2706 Gogo::build_interface_method_tables()
2711 std::vector<Interface_type*> hidden_interfaces;
2712 hidden_interfaces.reserve(this->interface_types_.size());
2713 for (std::vector<Interface_type*>::const_iterator pi =
2714 this->interface_types_.begin();
2715 pi != this->interface_types_.end();
2718 const Typed_identifier_list* methods = (*pi)->methods();
2719 if (methods == NULL)
2721 for (Typed_identifier_list::const_iterator pm = methods->begin();
2722 pm != methods->end();
2725 if (Gogo::is_hidden_name(pm->name()))
2727 hidden_interfaces.push_back(*pi);
2733 if (!hidden_interfaces.empty())
2735 // Now traverse the tree looking for all named types.
2736 Build_method_tables bmt(this, hidden_interfaces);
2737 this->traverse(&bmt);
2740 // We no longer need the list of interfaces.
2742 this->interface_types_.clear();
2745 // This is called for each type. For a named type, for each of the
2746 // interfaces with hidden methods that it implements, create the
2750 Build_method_tables::type(Type* type)
2752 Named_type* nt = type->named_type();
2755 for (std::vector<Interface_type*>::const_iterator p =
2756 this->interfaces_.begin();
2757 p != this->interfaces_.end();
2760 // We ask whether a pointer to the named type implements the
2761 // interface, because a pointer can implement more methods
2763 if ((*p)->implements_interface(Type::make_pointer_type(nt), NULL))
2765 nt->interface_method_table(this->gogo_, *p, false);
2766 nt->interface_method_table(this->gogo_, *p, true);
2770 return TRAVERSE_CONTINUE;
2773 // Traversal class used to check for return statements.
2775 class Check_return_statements_traverse : public Traverse
2778 Check_return_statements_traverse()
2779 : Traverse(traverse_functions)
2783 function(Named_object*);
2786 // Check that a function has a return statement if it needs one.
2789 Check_return_statements_traverse::function(Named_object* no)
2791 Function* func = no->func_value();
2792 const Function_type* fntype = func->type();
2793 const Typed_identifier_list* results = fntype->results();
2795 // We only need a return statement if there is a return value.
2796 if (results == NULL || results->empty())
2797 return TRAVERSE_CONTINUE;
2799 if (func->block()->may_fall_through())
2800 error_at(func->location(), "control reaches end of non-void function");
2802 return TRAVERSE_CONTINUE;
2805 // Check return statements.
2808 Gogo::check_return_statements()
2810 Check_return_statements_traverse traverse;
2811 this->traverse(&traverse);
2814 // Get the unique prefix to use before all exported symbols. This
2815 // must be unique across the entire link.
2818 Gogo::unique_prefix() const
2820 go_assert(!this->unique_prefix_.empty());
2821 return this->unique_prefix_;
2824 // Set the unique prefix to use before all exported symbols. This
2825 // comes from the command line option -fgo-prefix=XXX.
2828 Gogo::set_unique_prefix(const std::string& arg)
2830 go_assert(this->unique_prefix_.empty());
2831 this->unique_prefix_ = arg;
2832 this->unique_prefix_specified_ = true;
2835 // Work out the package priority. It is one more than the maximum
2836 // priority of an imported package.
2839 Gogo::package_priority() const
2842 for (Packages::const_iterator p = this->packages_.begin();
2843 p != this->packages_.end();
2845 if (p->second->priority() > priority)
2846 priority = p->second->priority();
2847 return priority + 1;
2850 // Export identifiers as requested.
2855 // For now we always stream to a section. Later we may want to
2856 // support streaming to a separate file.
2857 Stream_to_section stream;
2859 Export exp(&stream);
2860 exp.register_builtin_types(this);
2861 exp.export_globals(this->package_name(),
2862 this->unique_prefix(),
2863 this->package_priority(),
2865 (this->need_init_fn_ && !this->is_main_package()
2866 ? this->get_init_fn_name()
2868 this->imported_init_fns_,
2869 this->package_->bindings());
2872 // Find the blocks in order to convert named types defined in blocks.
2874 class Convert_named_types : public Traverse
2877 Convert_named_types(Gogo* gogo)
2878 : Traverse(traverse_blocks),
2884 block(Block* block);
2891 Convert_named_types::block(Block* block)
2893 this->gogo_->convert_named_types_in_bindings(block->bindings());
2894 return TRAVERSE_CONTINUE;
2897 // Convert all named types to the backend representation. Since named
2898 // types can refer to other types, this needs to be done in the right
2899 // sequence, which is handled by Named_type::convert. Here we arrange
2900 // to call that for each named type.
2903 Gogo::convert_named_types()
2905 this->convert_named_types_in_bindings(this->globals_);
2906 for (Packages::iterator p = this->packages_.begin();
2907 p != this->packages_.end();
2910 Package* package = p->second;
2911 this->convert_named_types_in_bindings(package->bindings());
2914 Convert_named_types cnt(this);
2915 this->traverse(&cnt);
2917 // Make all the builtin named types used for type descriptors, and
2918 // then convert them. They will only be written out if they are
2920 Type::make_type_descriptor_type();
2921 Type::make_type_descriptor_ptr_type();
2922 Function_type::make_function_type_descriptor_type();
2923 Pointer_type::make_pointer_type_descriptor_type();
2924 Struct_type::make_struct_type_descriptor_type();
2925 Array_type::make_array_type_descriptor_type();
2926 Array_type::make_slice_type_descriptor_type();
2927 Map_type::make_map_type_descriptor_type();
2928 Map_type::make_map_descriptor_type();
2929 Channel_type::make_chan_type_descriptor_type();
2930 Interface_type::make_interface_type_descriptor_type();
2931 Type::convert_builtin_named_types(this);
2933 Runtime::convert_types(this);
2935 this->named_types_are_converted_ = true;
2938 // Convert all names types in a set of bindings.
2941 Gogo::convert_named_types_in_bindings(Bindings* bindings)
2943 for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
2944 p != bindings->end_definitions();
2947 if ((*p)->is_type())
2948 (*p)->type_value()->convert(this);
2954 Function::Function(Function_type* type, Function* enclosing, Block* block,
2956 : type_(type), enclosing_(enclosing), results_(NULL),
2957 closure_var_(NULL), block_(block), location_(location), fndecl_(NULL),
2958 defer_stack_(NULL), results_are_named_(false), calls_recover_(false),
2959 is_recover_thunk_(false), has_recover_thunk_(false)
2963 // Create the named result variables.
2966 Function::create_result_variables(Gogo* gogo)
2968 const Typed_identifier_list* results = this->type_->results();
2969 if (results == NULL || results->empty())
2972 if (!results->front().name().empty())
2973 this->results_are_named_ = true;
2975 this->results_ = new Results();
2976 this->results_->reserve(results->size());
2978 Block* block = this->block_;
2980 for (Typed_identifier_list::const_iterator p = results->begin();
2981 p != results->end();
2984 std::string name = p->name();
2985 if (name.empty() || Gogo::is_sink_name(name))
2987 static int result_counter;
2989 snprintf(buf, sizeof buf, "$ret%d", result_counter);
2991 name = gogo->pack_hidden_name(buf, false);
2993 Result_variable* result = new Result_variable(p->type(), this, index,
2995 Named_object* no = block->bindings()->add_result_variable(name, result);
2996 if (no->is_result_variable())
2997 this->results_->push_back(no);
3000 static int dummy_result_count;
3002 snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
3003 ++dummy_result_count;
3004 name = gogo->pack_hidden_name(buf, false);
3005 no = block->bindings()->add_result_variable(name, result);
3006 go_assert(no->is_result_variable());
3007 this->results_->push_back(no);
3012 // Update the named result variables when cloning a function which
3016 Function::update_result_variables()
3018 if (this->results_ == NULL)
3021 for (Results::iterator p = this->results_->begin();
3022 p != this->results_->end();
3024 (*p)->result_var_value()->set_function(this);
3027 // Return the closure variable, creating it if necessary.
3030 Function::closure_var()
3032 if (this->closure_var_ == NULL)
3034 // We don't know the type of the variable yet. We add fields as
3036 Location loc = this->type_->location();
3037 Struct_field_list* sfl = new Struct_field_list;
3038 Type* struct_type = Type::make_struct_type(sfl, loc);
3039 Variable* var = new Variable(Type::make_pointer_type(struct_type),
3040 NULL, false, true, false, loc);
3042 this->closure_var_ = Named_object::make_variable("closure", NULL, var);
3043 // Note that the new variable is not in any binding contour.
3045 return this->closure_var_;
3048 // Set the type of the closure variable.
3051 Function::set_closure_type()
3053 if (this->closure_var_ == NULL)
3055 Named_object* closure = this->closure_var_;
3056 Struct_type* st = closure->var_value()->type()->deref()->struct_type();
3057 unsigned int index = 0;
3058 for (Closure_fields::const_iterator p = this->closure_fields_.begin();
3059 p != this->closure_fields_.end();
3062 Named_object* no = p->first;
3064 snprintf(buf, sizeof buf, "%u", index);
3065 std::string n = no->name() + buf;
3067 if (no->is_variable())
3068 var_type = no->var_value()->type();
3070 var_type = no->result_var_value()->type();
3071 Type* field_type = Type::make_pointer_type(var_type);
3072 st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
3076 // Return whether this function is a method.
3079 Function::is_method() const
3081 return this->type_->is_method();
3084 // Add a label definition.
3087 Function::add_label_definition(Gogo* gogo, const std::string& label_name,
3090 Label* lnull = NULL;
3091 std::pair<Labels::iterator, bool> ins =
3092 this->labels_.insert(std::make_pair(label_name, lnull));
3096 // This is a new label.
3097 label = new Label(label_name);
3098 ins.first->second = label;
3102 // The label was already in the hash table.
3103 label = ins.first->second;
3104 if (label->is_defined())
3106 error_at(location, "label %qs already defined",
3107 Gogo::message_name(label_name).c_str());
3108 inform(label->location(), "previous definition of %qs was here",
3109 Gogo::message_name(label_name).c_str());
3110 return new Label(label_name);
3114 label->define(location, gogo->bindings_snapshot(location));
3116 // Issue any errors appropriate for any previous goto's to this
3118 const std::vector<Bindings_snapshot*>& refs(label->refs());
3119 for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
3122 (*p)->check_goto_to(gogo->current_block());
3123 label->clear_refs();
3128 // Add a reference to a label.
3131 Function::add_label_reference(Gogo* gogo, const std::string& label_name,
3132 Location location, bool issue_goto_errors)
3134 Label* lnull = NULL;
3135 std::pair<Labels::iterator, bool> ins =
3136 this->labels_.insert(std::make_pair(label_name, lnull));
3140 // The label was already in the hash table.
3141 label = ins.first->second;
3145 go_assert(ins.first->second == NULL);
3146 label = new Label(label_name);
3147 ins.first->second = label;
3150 label->set_is_used();
3152 if (issue_goto_errors)
3154 Bindings_snapshot* snapshot = label->snapshot();
3155 if (snapshot != NULL)
3156 snapshot->check_goto_from(gogo->current_block(), location);
3158 label->add_snapshot_ref(gogo->bindings_snapshot(location));
3164 // Warn about labels that are defined but not used.
3167 Function::check_labels() const
3169 for (Labels::const_iterator p = this->labels_.begin();
3170 p != this->labels_.end();
3173 Label* label = p->second;
3174 if (!label->is_used())
3175 error_at(label->location(), "label %qs defined and not used",
3176 Gogo::message_name(label->name()).c_str());
3180 // Swap one function with another. This is used when building the
3181 // thunk we use to call a function which calls recover. It may not
3182 // work for any other case.
3185 Function::swap_for_recover(Function *x)
3187 go_assert(this->enclosing_ == x->enclosing_);
3188 std::swap(this->results_, x->results_);
3189 std::swap(this->closure_var_, x->closure_var_);
3190 std::swap(this->block_, x->block_);
3191 go_assert(this->location_ == x->location_);
3192 go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
3193 go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
3196 // Traverse the tree.
3199 Function::traverse(Traverse* traverse)
3201 unsigned int traverse_mask = traverse->traverse_mask();
3204 & (Traverse::traverse_types | Traverse::traverse_expressions))
3207 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
3208 return TRAVERSE_EXIT;
3211 // FIXME: We should check traverse_functions here if nested
3212 // functions are stored in block bindings.
3213 if (this->block_ != NULL
3215 & (Traverse::traverse_variables
3216 | Traverse::traverse_constants
3217 | Traverse::traverse_blocks
3218 | Traverse::traverse_statements
3219 | Traverse::traverse_expressions
3220 | Traverse::traverse_types)) != 0)
3222 if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
3223 return TRAVERSE_EXIT;
3226 return TRAVERSE_CONTINUE;
3229 // Work out types for unspecified variables and constants.
3232 Function::determine_types()
3234 if (this->block_ != NULL)
3235 this->block_->determine_types();
3238 // Get a pointer to the variable representing the defer stack for this
3239 // function, making it if necessary. The value of the variable is set
3240 // by the runtime routines to true if the function is returning,
3241 // rather than panicing through. A pointer to this variable is used
3242 // as a marker for the functions on the defer stack associated with
3243 // this function. A function-specific variable permits inlining a
3244 // function which uses defer.
3247 Function::defer_stack(Location location)
3249 if (this->defer_stack_ == NULL)
3251 Type* t = Type::lookup_bool_type();
3252 Expression* n = Expression::make_boolean(false, location);
3253 this->defer_stack_ = Statement::make_temporary(t, n, location);
3254 this->defer_stack_->set_is_address_taken();
3256 Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
3258 return Expression::make_unary(OPERATOR_AND, ref, location);
3261 // Export the function.
3264 Function::export_func(Export* exp, const std::string& name) const
3266 Function::export_func_with_type(exp, name, this->type_);
3269 // Export a function with a type.
3272 Function::export_func_with_type(Export* exp, const std::string& name,
3273 const Function_type* fntype)
3275 exp->write_c_string("func ");
3277 if (fntype->is_method())
3279 exp->write_c_string("(");
3280 const Typed_identifier* receiver = fntype->receiver();
3281 exp->write_name(receiver->name());
3282 exp->write_c_string(" ");
3283 exp->write_type(receiver->type());
3284 exp->write_c_string(") ");
3287 exp->write_string(name);
3289 exp->write_c_string(" (");
3290 const Typed_identifier_list* parameters = fntype->parameters();
3291 if (parameters != NULL)
3293 bool is_varargs = fntype->is_varargs();
3295 for (Typed_identifier_list::const_iterator p = parameters->begin();
3296 p != parameters->end();
3302 exp->write_c_string(", ");
3303 exp->write_name(p->name());
3304 exp->write_c_string(" ");
3305 if (!is_varargs || p + 1 != parameters->end())
3306 exp->write_type(p->type());
3309 exp->write_c_string("...");
3310 exp->write_type(p->type()->array_type()->element_type());
3314 exp->write_c_string(")");
3316 const Typed_identifier_list* results = fntype->results();
3317 if (results != NULL)
3319 if (results->size() == 1 && results->begin()->name().empty())
3321 exp->write_c_string(" ");
3322 exp->write_type(results->begin()->type());
3326 exp->write_c_string(" (");
3328 for (Typed_identifier_list::const_iterator p = results->begin();
3329 p != results->end();
3335 exp->write_c_string(", ");
3336 exp->write_name(p->name());
3337 exp->write_c_string(" ");
3338 exp->write_type(p->type());
3340 exp->write_c_string(")");
3343 exp->write_c_string(";\n");
3346 // Import a function.
3349 Function::import_func(Import* imp, std::string* pname,
3350 Typed_identifier** preceiver,
3351 Typed_identifier_list** pparameters,
3352 Typed_identifier_list** presults,
3355 imp->require_c_string("func ");
3358 if (imp->peek_char() == '(')
3360 imp->require_c_string("(");
3361 std::string name = imp->read_name();
3362 imp->require_c_string(" ");
3363 Type* rtype = imp->read_type();
3364 *preceiver = new Typed_identifier(name, rtype, imp->location());
3365 imp->require_c_string(") ");
3368 *pname = imp->read_identifier();
3370 Typed_identifier_list* parameters;
3371 *is_varargs = false;
3372 imp->require_c_string(" (");
3373 if (imp->peek_char() == ')')
3377 parameters = new Typed_identifier_list();
3380 std::string name = imp->read_name();
3381 imp->require_c_string(" ");
3383 if (imp->match_c_string("..."))
3389 Type* ptype = imp->read_type();
3391 ptype = Type::make_array_type(ptype, NULL);
3392 parameters->push_back(Typed_identifier(name, ptype,
3394 if (imp->peek_char() != ',')
3396 go_assert(!*is_varargs);
3397 imp->require_c_string(", ");
3400 imp->require_c_string(")");
3401 *pparameters = parameters;
3403 Typed_identifier_list* results;
3404 if (imp->peek_char() != ' ')
3408 results = new Typed_identifier_list();
3409 imp->require_c_string(" ");
3410 if (imp->peek_char() != '(')
3412 Type* rtype = imp->read_type();
3413 results->push_back(Typed_identifier("", rtype, imp->location()));
3417 imp->require_c_string("(");
3420 std::string name = imp->read_name();
3421 imp->require_c_string(" ");
3422 Type* rtype = imp->read_type();
3423 results->push_back(Typed_identifier(name, rtype,
3425 if (imp->peek_char() != ',')
3427 imp->require_c_string(", ");
3429 imp->require_c_string(")");
3432 imp->require_c_string(";\n");
3433 *presults = results;
3438 Block::Block(Block* enclosing, Location location)
3439 : enclosing_(enclosing), statements_(),
3440 bindings_(new Bindings(enclosing == NULL
3442 : enclosing->bindings())),
3443 start_location_(location),
3444 end_location_(UNKNOWN_LOCATION)
3448 // Add a statement to a block.
3451 Block::add_statement(Statement* statement)
3453 this->statements_.push_back(statement);
3456 // Add a statement to the front of a block. This is slow but is only
3457 // used for reference counts of parameters.
3460 Block::add_statement_at_front(Statement* statement)
3462 this->statements_.insert(this->statements_.begin(), statement);
3465 // Replace a statement in a block.
3468 Block::replace_statement(size_t index, Statement* s)
3470 go_assert(index < this->statements_.size());
3471 this->statements_[index] = s;
3474 // Add a statement before another statement.
3477 Block::insert_statement_before(size_t index, Statement* s)
3479 go_assert(index < this->statements_.size());
3480 this->statements_.insert(this->statements_.begin() + index, s);
3483 // Add a statement after another statement.
3486 Block::insert_statement_after(size_t index, Statement* s)
3488 go_assert(index < this->statements_.size());
3489 this->statements_.insert(this->statements_.begin() + index + 1, s);
3492 // Traverse the tree.
3495 Block::traverse(Traverse* traverse)
3497 unsigned int traverse_mask = traverse->traverse_mask();
3499 if ((traverse_mask & Traverse::traverse_blocks) != 0)
3501 int t = traverse->block(this);
3502 if (t == TRAVERSE_EXIT)
3503 return TRAVERSE_EXIT;
3504 else if (t == TRAVERSE_SKIP_COMPONENTS)
3505 return TRAVERSE_CONTINUE;
3509 & (Traverse::traverse_variables
3510 | Traverse::traverse_constants
3511 | Traverse::traverse_expressions
3512 | Traverse::traverse_types)) != 0)
3514 const unsigned int e_or_t = (Traverse::traverse_expressions
3515 | Traverse::traverse_types);
3516 const unsigned int e_or_t_or_s = (e_or_t
3517 | Traverse::traverse_statements);
3518 for (Bindings::const_definitions_iterator pb =
3519 this->bindings_->begin_definitions();
3520 pb != this->bindings_->end_definitions();
3523 int t = TRAVERSE_CONTINUE;
3524 switch ((*pb)->classification())
3526 case Named_object::NAMED_OBJECT_CONST:
3527 if ((traverse_mask & Traverse::traverse_constants) != 0)
3528 t = traverse->constant(*pb, false);
3529 if (t == TRAVERSE_CONTINUE
3530 && (traverse_mask & e_or_t) != 0)
3532 Type* tc = (*pb)->const_value()->type();
3534 && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
3535 return TRAVERSE_EXIT;
3536 t = (*pb)->const_value()->traverse_expression(traverse);
3540 case Named_object::NAMED_OBJECT_VAR:
3541 case Named_object::NAMED_OBJECT_RESULT_VAR:
3542 if ((traverse_mask & Traverse::traverse_variables) != 0)
3543 t = traverse->variable(*pb);
3544 if (t == TRAVERSE_CONTINUE
3545 && (traverse_mask & e_or_t) != 0)
3547 if ((*pb)->is_result_variable()
3548 || (*pb)->var_value()->has_type())
3550 Type* tv = ((*pb)->is_variable()
3551 ? (*pb)->var_value()->type()
3552 : (*pb)->result_var_value()->type());
3554 && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
3555 return TRAVERSE_EXIT;
3558 if (t == TRAVERSE_CONTINUE
3559 && (traverse_mask & e_or_t_or_s) != 0
3560 && (*pb)->is_variable())
3561 t = (*pb)->var_value()->traverse_expression(traverse,
3565 case Named_object::NAMED_OBJECT_FUNC:
3566 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
3569 case Named_object::NAMED_OBJECT_TYPE:
3570 if ((traverse_mask & e_or_t) != 0)
3571 t = Type::traverse((*pb)->type_value(), traverse);
3574 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
3575 case Named_object::NAMED_OBJECT_UNKNOWN:
3576 case Named_object::NAMED_OBJECT_ERRONEOUS:
3579 case Named_object::NAMED_OBJECT_PACKAGE:
3580 case Named_object::NAMED_OBJECT_SINK:
3587 if (t == TRAVERSE_EXIT)
3588 return TRAVERSE_EXIT;
3592 // No point in checking traverse_mask here--if we got here we always
3593 // want to walk the statements. The traversal can insert new
3594 // statements before or after the current statement. Inserting
3595 // statements before the current statement requires updating I via
3596 // the pointer; those statements will not be traversed. Any new
3597 // statements inserted after the current statement will be traversed
3599 for (size_t i = 0; i < this->statements_.size(); ++i)
3601 if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
3602 return TRAVERSE_EXIT;
3605 return TRAVERSE_CONTINUE;
3608 // Work out types for unspecified variables and constants.
3611 Block::determine_types()
3613 for (Bindings::const_definitions_iterator pb =
3614 this->bindings_->begin_definitions();
3615 pb != this->bindings_->end_definitions();
3618 if ((*pb)->is_variable())
3619 (*pb)->var_value()->determine_type();
3620 else if ((*pb)->is_const())
3621 (*pb)->const_value()->determine_type();
3624 for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
3625 ps != this->statements_.end();
3627 (*ps)->determine_types();
3630 // Return true if the statements in this block may fall through.
3633 Block::may_fall_through() const
3635 if (this->statements_.empty())
3637 return this->statements_.back()->may_fall_through();
3640 // Convert a block to the backend representation.
3643 Block::get_backend(Translate_context* context)
3645 Gogo* gogo = context->gogo();
3646 Named_object* function = context->function();
3647 std::vector<Bvariable*> vars;
3648 vars.reserve(this->bindings_->size_definitions());
3649 for (Bindings::const_definitions_iterator pv =
3650 this->bindings_->begin_definitions();
3651 pv != this->bindings_->end_definitions();
3654 if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
3655 vars.push_back((*pv)->get_backend_variable(gogo, function));
3658 // FIXME: Permitting FUNCTION to be NULL here is a temporary measure
3659 // until we have a proper representation of the init function.
3660 Bfunction* bfunction;
3661 if (function == NULL)
3664 bfunction = tree_to_function(function->func_value()->get_decl());
3665 Bblock* ret = context->backend()->block(bfunction, context->bblock(),
3666 vars, this->start_location_,
3667 this->end_location_);
3669 Translate_context subcontext(gogo, function, this, ret);
3670 std::vector<Bstatement*> bstatements;
3671 bstatements.reserve(this->statements_.size());
3672 for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
3673 p != this->statements_.end();
3675 bstatements.push_back((*p)->get_backend(&subcontext));
3677 context->backend()->block_add_statements(ret, bstatements);
3682 // Class Bindings_snapshot.
3684 Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
3685 : block_(b), counts_(), location_(location)
3689 this->counts_.push_back(b->bindings()->size_definitions());
3694 // Report errors appropriate for a goto from B to this.
3697 Bindings_snapshot::check_goto_from(const Block* b, Location loc)
3700 if (!this->check_goto_block(loc, b, this->block_, &dummy))
3702 this->check_goto_defs(loc, this->block_,
3703 this->block_->bindings()->size_definitions(),
3707 // Report errors appropriate for a goto from this to B.
3710 Bindings_snapshot::check_goto_to(const Block* b)
3713 if (!this->check_goto_block(this->location_, this->block_, b, &index))
3715 this->check_goto_defs(this->location_, b, this->counts_[index],
3716 b->bindings()->size_definitions());
3719 // Report errors appropriate for a goto at LOC from BFROM to BTO.
3720 // Return true if all is well, false if we reported an error. If this
3721 // returns true, it sets *PINDEX to the number of blocks BTO is above
3725 Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
3726 const Block* bto, size_t* pindex)
3728 // It is an error if BTO is not either BFROM or above BFROM.
3730 for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
3734 error_at(loc, "goto jumps into block");
3735 inform(bto->start_location(), "goto target block starts here");
3743 // Report errors appropriate for a goto at LOC ending at BLOCK, where
3744 // CFROM is the number of names defined at the point of the goto and
3745 // CTO is the number of names defined at the point of the label.
3748 Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
3749 size_t cfrom, size_t cto)
3753 Bindings::const_definitions_iterator p =
3754 block->bindings()->begin_definitions();
3755 for (size_t i = 0; i < cfrom; ++i)
3757 go_assert(p != block->bindings()->end_definitions());
3760 go_assert(p != block->bindings()->end_definitions());
3762 std::string n = (*p)->message_name();
3763 error_at(loc, "goto jumps over declaration of %qs", n.c_str());
3764 inform((*p)->location(), "%qs defined here", n.c_str());
3770 Variable::Variable(Type* type, Expression* init, bool is_global,
3771 bool is_parameter, bool is_receiver,
3773 : type_(type), init_(init), preinit_(NULL), location_(location),
3774 backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
3775 is_receiver_(is_receiver), is_varargs_parameter_(false), is_used_(false),
3776 is_address_taken_(false), is_non_escaping_address_taken_(false),
3777 seen_(false), init_is_lowered_(false), type_from_init_tuple_(false),
3778 type_from_range_index_(false), type_from_range_value_(false),
3779 type_from_chan_element_(false), is_type_switch_var_(false),
3780 determined_type_(false)
3782 go_assert(type != NULL || init != NULL);
3783 go_assert(!is_parameter || init == NULL);
3786 // Traverse the initializer expression.
3789 Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
3791 if (this->preinit_ != NULL)
3793 if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
3794 return TRAVERSE_EXIT;
3796 if (this->init_ != NULL
3798 & (Traverse::traverse_expressions | Traverse::traverse_types))
3801 if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
3802 return TRAVERSE_EXIT;
3804 return TRAVERSE_CONTINUE;
3807 // Lower the initialization expression after parsing is complete.
3810 Variable::lower_init_expression(Gogo* gogo, Named_object* function,
3811 Statement_inserter* inserter)
3813 if (this->init_ != NULL && !this->init_is_lowered_)
3817 // We will give an error elsewhere, this is just to prevent
3818 // an infinite loop.
3823 Statement_inserter global_inserter;
3824 if (this->is_global_)
3826 global_inserter = Statement_inserter(gogo, this);
3827 inserter = &global_inserter;
3830 gogo->lower_expression(function, inserter, &this->init_);
3832 this->seen_ = false;
3834 this->init_is_lowered_ = true;
3838 // Get the preinit block.
3841 Variable::preinit_block(Gogo* gogo)
3843 go_assert(this->is_global_);
3844 if (this->preinit_ == NULL)
3845 this->preinit_ = new Block(NULL, this->location());
3847 // If a global variable has a preinitialization statement, then we
3848 // need to have an initialization function.
3849 gogo->set_need_init_fn();
3851 return this->preinit_;
3854 // Add a statement to be run before the initialization expression.
3857 Variable::add_preinit_statement(Gogo* gogo, Statement* s)
3859 Block* b = this->preinit_block(gogo);
3860 b->add_statement(s);
3861 b->set_end_location(s->location());
3864 // Whether this variable has a type.
3867 Variable::has_type() const
3869 if (this->type_ == NULL)
3872 // A variable created in a type switch case nil does not actually
3873 // have a type yet. It will be changed to use the initializer's
3874 // type in determine_type.
3875 if (this->is_type_switch_var_
3876 && this->type_->is_nil_constant_as_type())
3882 // In an assignment which sets a variable to a tuple of EXPR, return
3883 // the type of the first element of the tuple.
3886 Variable::type_from_tuple(Expression* expr, bool report_error) const
3888 if (expr->map_index_expression() != NULL)
3890 Map_type* mt = expr->map_index_expression()->get_map_type();
3892 return Type::make_error_type();
3893 return mt->val_type();
3895 else if (expr->receive_expression() != NULL)
3897 Expression* channel = expr->receive_expression()->channel();
3898 Type* channel_type = channel->type();
3899 if (channel_type->channel_type() == NULL)
3900 return Type::make_error_type();
3901 return channel_type->channel_type()->element_type();
3906 error_at(this->location(), "invalid tuple definition");
3907 return Type::make_error_type();
3911 // Given EXPR used in a range clause, return either the index type or
3912 // the value type of the range, depending upon GET_INDEX_TYPE.
3915 Variable::type_from_range(Expression* expr, bool get_index_type,
3916 bool report_error) const
3918 Type* t = expr->type();
3919 if (t->array_type() != NULL
3920 || (t->points_to() != NULL
3921 && t->points_to()->array_type() != NULL
3922 && !t->points_to()->is_slice_type()))
3925 return Type::lookup_integer_type("int");
3927 return t->deref()->array_type()->element_type();
3929 else if (t->is_string_type())
3932 return Type::lookup_integer_type("int");
3934 return Type::lookup_integer_type("int32");
3936 else if (t->map_type() != NULL)
3939 return t->map_type()->key_type();
3941 return t->map_type()->val_type();
3943 else if (t->channel_type() != NULL)
3946 return t->channel_type()->element_type();
3950 error_at(this->location(),
3951 "invalid definition of value variable for channel range");
3952 return Type::make_error_type();
3958 error_at(this->location(), "invalid type for range clause");
3959 return Type::make_error_type();
3963 // EXPR should be a channel. Return the channel's element type.
3966 Variable::type_from_chan_element(Expression* expr, bool report_error) const
3968 Type* t = expr->type();
3969 if (t->channel_type() != NULL)
3970 return t->channel_type()->element_type();
3974 error_at(this->location(), "expected channel");
3975 return Type::make_error_type();
3979 // Return the type of the Variable. This may be called before
3980 // Variable::determine_type is called, which means that we may need to
3981 // get the type from the initializer. FIXME: If we combine lowering
3982 // with type determination, then this should be unnecessary.
3987 // A variable in a type switch with a nil case will have the wrong
3988 // type here. This gets fixed up in determine_type, below.
3989 Type* type = this->type_;
3990 Expression* init = this->init_;
3991 if (this->is_type_switch_var_
3992 && this->type_->is_nil_constant_as_type())
3994 Type_guard_expression* tge = this->init_->type_guard_expression();
3995 go_assert(tge != NULL);
4002 if (this->type_ == NULL || !this->type_->is_error_type())
4004 error_at(this->location_, "variable initializer refers to itself");
4005 this->type_ = Type::make_error_type();
4014 else if (this->type_from_init_tuple_)
4015 type = this->type_from_tuple(init, false);
4016 else if (this->type_from_range_index_ || this->type_from_range_value_)
4017 type = this->type_from_range(init, this->type_from_range_index_, false);
4018 else if (this->type_from_chan_element_)
4019 type = this->type_from_chan_element(init, false);
4022 go_assert(init != NULL);
4023 type = init->type();
4024 go_assert(type != NULL);
4026 // Variables should not have abstract types.
4027 if (type->is_abstract())
4028 type = type->make_non_abstract_type();
4030 if (type->is_void_type())
4031 type = Type::make_error_type();
4034 this->seen_ = false;
4039 // Fetch the type from a const pointer, in which case it should have
4040 // been set already.
4043 Variable::type() const
4045 go_assert(this->type_ != NULL);
4049 // Set the type if necessary.
4052 Variable::determine_type()
4054 if (this->determined_type_)
4056 this->determined_type_ = true;
4058 if (this->preinit_ != NULL)
4059 this->preinit_->determine_types();
4061 // A variable in a type switch with a nil case will have the wrong
4062 // type here. It will have an initializer which is a type guard.
4063 // We want to initialize it to the value without the type guard, and
4064 // use the type of that value as well.
4065 if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
4067 Type_guard_expression* tge = this->init_->type_guard_expression();
4068 go_assert(tge != NULL);
4070 this->init_ = tge->expr();
4073 if (this->init_ == NULL)
4074 go_assert(this->type_ != NULL && !this->type_->is_abstract());
4075 else if (this->type_from_init_tuple_)
4077 Expression *init = this->init_;
4078 init->determine_type_no_context();
4079 this->type_ = this->type_from_tuple(init, true);
4082 else if (this->type_from_range_index_ || this->type_from_range_value_)
4084 Expression* init = this->init_;
4085 init->determine_type_no_context();
4086 this->type_ = this->type_from_range(init, this->type_from_range_index_,
4090 else if (this->type_from_chan_element_)
4092 Expression* init = this->init_;
4093 init->determine_type_no_context();
4094 this->type_ = this->type_from_chan_element(init, true);
4099 Type_context context(this->type_, false);
4100 this->init_->determine_type(&context);
4101 if (this->type_ == NULL)
4103 Type* type = this->init_->type();
4104 go_assert(type != NULL);
4105 if (type->is_abstract())
4106 type = type->make_non_abstract_type();
4108 if (type->is_void_type())
4110 error_at(this->location_, "variable has no type");
4111 type = Type::make_error_type();
4113 else if (type->is_nil_type())
4115 error_at(this->location_, "variable defined to nil type");
4116 type = Type::make_error_type();
4118 else if (type->is_call_multiple_result_type())
4120 error_at(this->location_,
4121 "single variable set to multiple value function call");
4122 type = Type::make_error_type();
4130 // Export the variable
4133 Variable::export_var(Export* exp, const std::string& name) const
4135 go_assert(this->is_global_);
4136 exp->write_c_string("var ");
4137 exp->write_string(name);
4138 exp->write_c_string(" ");
4139 exp->write_type(this->type());
4140 exp->write_c_string(";\n");
4143 // Import a variable.
4146 Variable::import_var(Import* imp, std::string* pname, Type** ptype)
4148 imp->require_c_string("var ");
4149 *pname = imp->read_identifier();
4150 imp->require_c_string(" ");
4151 *ptype = imp->read_type();
4152 imp->require_c_string(";\n");
4155 // Convert a variable to the backend representation.
4158 Variable::get_backend_variable(Gogo* gogo, Named_object* function,
4159 const Package* package, const std::string& name)