OSDN Git Service

Use backend types for all type conversions.
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "runtime.h"
35 #include "backend.h"
36 #include "gogo.h"
37
38 // Whether we have seen any errors.
39
40 bool
41 saw_errors()
42 {
43   return errorcount != 0 || sorrycount != 0;
44 }
45
46 // A helper function.
47
48 static inline tree
49 get_identifier_from_string(const std::string& str)
50 {
51   return get_identifier_with_length(str.data(), str.length());
52 }
53
54 // Builtin functions.
55
56 static std::map<std::string, tree> builtin_functions;
57
58 // Define a builtin function.  BCODE is the builtin function code
59 // defined by builtins.def.  NAME is the name of the builtin function.
60 // LIBNAME is the name of the corresponding library function, and is
61 // NULL if there isn't one.  FNTYPE is the type of the function.
62 // CONST_P is true if the function has the const attribute.
63
64 static void
65 define_builtin(built_in_function bcode, const char* name, const char* libname,
66                tree fntype, bool const_p)
67 {
68   tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
69                                    libname, NULL_TREE);
70   if (const_p)
71     TREE_READONLY(decl) = 1;
72   built_in_decls[bcode] = decl;
73   implicit_built_in_decls[bcode] = decl;
74   builtin_functions[name] = decl;
75   if (libname != NULL)
76     {
77       decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
78                                   NULL, NULL_TREE);
79       if (const_p)
80         TREE_READONLY(decl) = 1;
81       builtin_functions[libname] = decl;
82     }
83 }
84
85 // Create trees for implicit builtin functions.
86
87 void
88 Gogo::define_builtin_function_trees()
89 {
90   /* We need to define the fetch_and_add functions, since we use them
91      for ++ and --.  */
92   tree t = go_type_for_size(BITS_PER_UNIT, 1);
93   tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
94   define_builtin(BUILT_IN_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
95                  build_function_type_list(t, p, t, NULL_TREE), false);
96
97   t = go_type_for_size(BITS_PER_UNIT * 2, 1);
98   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
99   define_builtin (BUILT_IN_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
100                   build_function_type_list(t, p, t, NULL_TREE), false);
101
102   t = go_type_for_size(BITS_PER_UNIT * 4, 1);
103   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
104   define_builtin(BUILT_IN_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
105                  build_function_type_list(t, p, t, NULL_TREE), false);
106
107   t = go_type_for_size(BITS_PER_UNIT * 8, 1);
108   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
109   define_builtin(BUILT_IN_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
110                  build_function_type_list(t, p, t, NULL_TREE), false);
111
112   // We use __builtin_expect for magic import functions.
113   define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
114                  build_function_type_list(long_integer_type_node,
115                                           long_integer_type_node,
116                                           long_integer_type_node,
117                                           NULL_TREE),
118                  true);
119
120   // We use __builtin_memmove for the predeclared copy function.
121   define_builtin(BUILT_IN_MEMMOVE, "__builtin_memmove", "memmove",
122                  build_function_type_list(ptr_type_node,
123                                           ptr_type_node,
124                                           const_ptr_type_node,
125                                           size_type_node,
126                                           NULL_TREE),
127                  false);
128
129   // We provide sqrt for the math library.
130   define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
131                  build_function_type_list(double_type_node,
132                                           double_type_node,
133                                           NULL_TREE),
134                  true);
135   define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
136                  build_function_type_list(long_double_type_node,
137                                           long_double_type_node,
138                                           NULL_TREE),
139                  true);
140
141   // We use __builtin_return_address in the thunk we build for
142   // functions which call recover.
143   define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
144                  build_function_type_list(ptr_type_node,
145                                           unsigned_type_node,
146                                           NULL_TREE),
147                  false);
148
149   // The compiler uses __builtin_trap for some exception handling
150   // cases.
151   define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
152                  build_function_type(void_type_node, void_list_node),
153                  false);
154 }
155
156 // Get the name to use for the import control function.  If there is a
157 // global function or variable, then we know that that name must be
158 // unique in the link, and we use it as the basis for our name.
159
160 const std::string&
161 Gogo::get_init_fn_name()
162 {
163   if (this->init_fn_name_.empty())
164     {
165       go_assert(this->package_ != NULL);
166       if (this->is_main_package())
167         {
168           // Use a name which the runtime knows.
169           this->init_fn_name_ = "__go_init_main";
170         }
171       else
172         {
173           std::string s = this->unique_prefix();
174           s.append(1, '.');
175           s.append(this->package_name());
176           s.append("..import");
177           this->init_fn_name_ = s;
178         }
179     }
180
181   return this->init_fn_name_;
182 }
183
184 // Add statements to INIT_STMT_LIST which run the initialization
185 // functions for imported packages.  This is only used for the "main"
186 // package.
187
188 void
189 Gogo::init_imports(tree* init_stmt_list)
190 {
191   go_assert(this->is_main_package());
192
193   if (this->imported_init_fns_.empty())
194     return;
195
196   tree fntype = build_function_type(void_type_node, void_list_node);
197
198   // We must call them in increasing priority order.
199   std::vector<Import_init> v;
200   for (std::set<Import_init>::const_iterator p =
201          this->imported_init_fns_.begin();
202        p != this->imported_init_fns_.end();
203        ++p)
204     v.push_back(*p);
205   std::sort(v.begin(), v.end());
206
207   for (std::vector<Import_init>::const_iterator p = v.begin();
208        p != v.end();
209        ++p)
210     {
211       std::string user_name = p->package_name() + ".init";
212       tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
213                              get_identifier_from_string(user_name),
214                              fntype);
215       const std::string& init_name(p->init_name());
216       SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
217       TREE_PUBLIC(decl) = 1;
218       DECL_EXTERNAL(decl) = 1;
219       append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
220     }
221 }
222
223 // Register global variables with the garbage collector.  We need to
224 // register all variables which can hold a pointer value.  They become
225 // roots during the mark phase.  We build a struct that is easy to
226 // hook into a list of roots.
227
228 // struct __go_gc_root_list
229 // {
230 //   struct __go_gc_root_list* __next;
231 //   struct __go_gc_root
232 //   {
233 //     void* __decl;
234 //     size_t __size;
235 //   } __roots[];
236 // };
237
238 // The last entry in the roots array has a NULL decl field.
239
240 void
241 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
242                        tree* init_stmt_list)
243 {
244   if (var_gc.empty())
245     return;
246
247   size_t count = var_gc.size();
248
249   tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
250                                         "__next",
251                                         ptr_type_node,
252                                         "__size",
253                                         sizetype);
254
255   tree index_type = build_index_type(size_int(count));
256   tree array_type = build_array_type(root_type, index_type);
257
258   tree root_list_type = make_node(RECORD_TYPE);
259   root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
260                                         root_list_type, 2,
261                                         "__next",
262                                         build_pointer_type(root_list_type),
263                                         "__roots",
264                                         array_type);
265
266   // Build an initialier for the __roots array.
267
268   VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
269                                                   count + 1);
270
271   size_t i = 0;
272   for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
273        p != var_gc.end();
274        ++p, ++i)
275     {
276       VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
277
278       constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
279       tree field = TYPE_FIELDS(root_type);
280       elt->index = field;
281       Bvariable* bvar = (*p)->get_backend_variable(this, NULL);
282       tree decl = var_to_tree(bvar);
283       go_assert(TREE_CODE(decl) == VAR_DECL);
284       elt->value = build_fold_addr_expr(decl);
285
286       elt = VEC_quick_push(constructor_elt, init, NULL);
287       field = DECL_CHAIN(field);
288       elt->index = field;
289       elt->value = DECL_SIZE_UNIT(decl);
290
291       elt = VEC_quick_push(constructor_elt, roots_init, NULL);
292       elt->index = size_int(i);
293       elt->value = build_constructor(root_type, init);
294     }
295
296   // The list ends with a NULL entry.
297
298   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
299
300   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
301   tree field = TYPE_FIELDS(root_type);
302   elt->index = field;
303   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
304
305   elt = VEC_quick_push(constructor_elt, init, NULL);
306   field = DECL_CHAIN(field);
307   elt->index = field;
308   elt->value = size_zero_node;
309
310   elt = VEC_quick_push(constructor_elt, roots_init, NULL);
311   elt->index = size_int(i);
312   elt->value = build_constructor(root_type, init);
313
314   // Build a constructor for the struct.
315
316   VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
317
318   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
319   field = TYPE_FIELDS(root_list_type);
320   elt->index = field;
321   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
322
323   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
324   field = DECL_CHAIN(field);
325   elt->index = field;
326   elt->value = build_constructor(array_type, roots_init);
327
328   // Build a decl to register.
329
330   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
331                          create_tmp_var_name("gc"), root_list_type);
332   DECL_EXTERNAL(decl) = 0;
333   TREE_PUBLIC(decl) = 0;
334   TREE_STATIC(decl) = 1;
335   DECL_ARTIFICIAL(decl) = 1;
336   DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
337   rest_of_decl_compilation(decl, 1, 0);
338
339   static tree register_gc_fndecl;
340   tree call = Gogo::call_builtin(&register_gc_fndecl, BUILTINS_LOCATION,
341                                  "__go_register_gc_roots",
342                                  1,
343                                  void_type_node,
344                                  build_pointer_type(root_list_type),
345                                  build_fold_addr_expr(decl));
346   if (call != error_mark_node)
347     append_to_statement_list(call, init_stmt_list);
348 }
349
350 // Build the decl for the initialization function.
351
352 tree
353 Gogo::initialization_function_decl()
354 {
355   // The tedious details of building your own function.  There doesn't
356   // seem to be a helper function for this.
357   std::string name = this->package_name() + ".init";
358   tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
359                            get_identifier_from_string(name),
360                            build_function_type(void_type_node,
361                                                void_list_node));
362   const std::string& asm_name(this->get_init_fn_name());
363   SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
364
365   tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
366                             void_type_node);
367   DECL_ARTIFICIAL(resdecl) = 1;
368   DECL_CONTEXT(resdecl) = fndecl;
369   DECL_RESULT(fndecl) = resdecl;
370
371   TREE_STATIC(fndecl) = 1;
372   TREE_USED(fndecl) = 1;
373   DECL_ARTIFICIAL(fndecl) = 1;
374   TREE_PUBLIC(fndecl) = 1;
375
376   DECL_INITIAL(fndecl) = make_node(BLOCK);
377   TREE_USED(DECL_INITIAL(fndecl)) = 1;
378
379   return fndecl;
380 }
381
382 // Create the magic initialization function.  INIT_STMT_LIST is the
383 // code that it needs to run.
384
385 void
386 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
387 {
388   // Make sure that we thought we needed an initialization function,
389   // as otherwise we will not have reported it in the export data.
390   go_assert(this->is_main_package() || this->need_init_fn_);
391
392   if (fndecl == NULL_TREE)
393     fndecl = this->initialization_function_decl();
394
395   DECL_SAVED_TREE(fndecl) = init_stmt_list;
396
397   current_function_decl = fndecl;
398   if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
399     push_struct_function(fndecl);
400   else
401     push_cfun(DECL_STRUCT_FUNCTION(fndecl));
402   cfun->function_end_locus = BUILTINS_LOCATION;
403
404   gimplify_function_tree(fndecl);
405
406   cgraph_add_new_function(fndecl, false);
407   cgraph_mark_needed_node(cgraph_get_node(fndecl));
408
409   current_function_decl = NULL_TREE;
410   pop_cfun();
411 }
412
413 // Search for references to VAR in any statements or called functions.
414
415 class Find_var : public Traverse
416 {
417  public:
418   // A hash table we use to avoid looping.  The index is the name of a
419   // named object.  We only look through objects defined in this
420   // package.
421   typedef Unordered_set(std::string) Seen_objects;
422
423   Find_var(Named_object* var, Seen_objects* seen_objects)
424     : Traverse(traverse_expressions),
425       var_(var), seen_objects_(seen_objects), found_(false)
426   { }
427
428   // Whether the variable was found.
429   bool
430   found() const
431   { return this->found_; }
432
433   int
434   expression(Expression**);
435
436  private:
437   // The variable we are looking for.
438   Named_object* var_;
439   // Names of objects we have already seen.
440   Seen_objects* seen_objects_;
441   // True if the variable was found.
442   bool found_;
443 };
444
445 // See if EXPR refers to VAR, looking through function calls and
446 // variable initializations.
447
448 int
449 Find_var::expression(Expression** pexpr)
450 {
451   Expression* e = *pexpr;
452
453   Var_expression* ve = e->var_expression();
454   if (ve != NULL)
455     {
456       Named_object* v = ve->named_object();
457       if (v == this->var_)
458         {
459           this->found_ = true;
460           return TRAVERSE_EXIT;
461         }
462
463       if (v->is_variable() && v->package() == NULL)
464         {
465           Expression* init = v->var_value()->init();
466           if (init != NULL)
467             {
468               std::pair<Seen_objects::iterator, bool> ins =
469                 this->seen_objects_->insert(v->name());
470               if (ins.second)
471                 {
472                   // This is the first time we have seen this name.
473                   if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
474                     return TRAVERSE_EXIT;
475                 }
476             }
477         }
478     }
479
480   // We traverse the code of any function we see.  Note that this
481   // means that we will traverse the code of a function whose address
482   // is taken even if it is not called.
483   Func_expression* fe = e->func_expression();
484   if (fe != NULL)
485     {
486       const Named_object* f = fe->named_object();
487       if (f->is_function() && f->package() == NULL)
488         {
489           std::pair<Seen_objects::iterator, bool> ins =
490             this->seen_objects_->insert(f->name());
491           if (ins.second)
492             {
493               // This is the first time we have seen this name.
494               if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
495                 return TRAVERSE_EXIT;
496             }
497         }
498     }
499
500   return TRAVERSE_CONTINUE;
501 }
502
503 // Return true if EXPR refers to VAR.
504
505 static bool
506 expression_requires(Expression* expr, Block* preinit, Named_object* var)
507 {
508   Find_var::Seen_objects seen_objects;
509   Find_var find_var(var, &seen_objects);
510   if (expr != NULL)
511     Expression::traverse(&expr, &find_var);
512   if (preinit != NULL)
513     preinit->traverse(&find_var);
514   
515   return find_var.found();
516 }
517
518 // Sort variable initializations.  If the initialization expression
519 // for variable A refers directly or indirectly to the initialization
520 // expression for variable B, then we must initialize B before A.
521
522 class Var_init
523 {
524  public:
525   Var_init()
526     : var_(NULL), init_(NULL_TREE), waiting_(0)
527   { }
528
529   Var_init(Named_object* var, tree init)
530     : var_(var), init_(init), waiting_(0)
531   { }
532
533   // Return the variable.
534   Named_object*
535   var() const
536   { return this->var_; }
537
538   // Return the initialization expression.
539   tree
540   init() const
541   { return this->init_; }
542
543   // Return the number of variables waiting for this one to be
544   // initialized.
545   size_t
546   waiting() const
547   { return this->waiting_; }
548
549   // Increment the number waiting.
550   void
551   increment_waiting()
552   { ++this->waiting_; }
553
554  private:
555   // The variable being initialized.
556   Named_object* var_;
557   // The initialization expression to run.
558   tree init_;
559   // The number of variables which are waiting for this one.
560   size_t waiting_;
561 };
562
563 typedef std::list<Var_init> Var_inits;
564
565 // Sort the variable initializations.  The rule we follow is that we
566 // emit them in the order they appear in the array, except that if the
567 // initialization expression for a variable V1 depends upon another
568 // variable V2 then we initialize V1 after V2.
569
570 static void
571 sort_var_inits(Var_inits* var_inits)
572 {
573   Var_inits ready;
574   while (!var_inits->empty())
575     {
576       Var_inits::iterator p1 = var_inits->begin();
577       Named_object* var = p1->var();
578       Expression* init = var->var_value()->init();
579       Block* preinit = var->var_value()->preinit();
580
581       // Start walking through the list to see which variables VAR
582       // needs to wait for.  We can skip P1->WAITING variables--that
583       // is the number we've already checked.
584       Var_inits::iterator p2 = p1;
585       ++p2;
586       for (size_t i = p1->waiting(); i > 0; --i)
587         ++p2;
588
589       for (; p2 != var_inits->end(); ++p2)
590         {
591           if (expression_requires(init, preinit, p2->var()))
592             {
593               // Check for cycles.
594               if (expression_requires(p2->var()->var_value()->init(),
595                                       p2->var()->var_value()->preinit(),
596                                       var))
597                 {
598                   error_at(var->location(),
599                            ("initialization expressions for %qs and "
600                             "%qs depend upon each other"),
601                            var->message_name().c_str(),
602                            p2->var()->message_name().c_str());
603                   inform(p2->var()->location(), "%qs defined here",
604                          p2->var()->message_name().c_str());
605                   p2 = var_inits->end();
606                 }
607               else
608                 {
609                   // We can't emit P1 until P2 is emitted.  Move P1.
610                   // Note that the WAITING loop always executes at
611                   // least once, which is what we want.
612                   p2->increment_waiting();
613                   Var_inits::iterator p3 = p2;
614                   for (size_t i = p2->waiting(); i > 0; --i)
615                     ++p3;
616                   var_inits->splice(p3, *var_inits, p1);
617                 }
618               break;
619             }
620         }
621
622       if (p2 == var_inits->end())
623         {
624           // VAR does not depends upon any other initialization expressions.
625
626           // Check for a loop of VAR on itself.  We only do this if
627           // INIT is not NULL; when INIT is NULL, it means that
628           // PREINIT sets VAR, which we will interpret as a loop.
629           if (init != NULL && expression_requires(init, preinit, var))
630             error_at(var->location(),
631                      "initialization expression for %qs depends upon itself",
632                      var->message_name().c_str());
633           ready.splice(ready.end(), *var_inits, p1);
634         }
635     }
636
637   // Now READY is the list in the desired initialization order.
638   var_inits->swap(ready);
639 }
640
641 // Write out the global definitions.
642
643 void
644 Gogo::write_globals()
645 {
646   this->convert_named_types();
647   this->build_interface_method_tables();
648
649   Bindings* bindings = this->current_bindings();
650   size_t count = bindings->size_definitions();
651
652   tree* vec = new tree[count];
653
654   tree init_fndecl = NULL_TREE;
655   tree init_stmt_list = NULL_TREE;
656
657   if (this->is_main_package())
658     this->init_imports(&init_stmt_list);
659
660   // A list of variable initializations.
661   Var_inits var_inits;
662
663   // A list of variables which need to be registered with the garbage
664   // collector.
665   std::vector<Named_object*> var_gc;
666   var_gc.reserve(count);
667
668   tree var_init_stmt_list = NULL_TREE;
669   size_t i = 0;
670   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
671        p != bindings->end_definitions();
672        ++p, ++i)
673     {
674       Named_object* no = *p;
675
676       go_assert(!no->is_type_declaration() && !no->is_function_declaration());
677       // There is nothing to do for a package.
678       if (no->is_package())
679         {
680           --i;
681           --count;
682           continue;
683         }
684
685       // There is nothing to do for an object which was imported from
686       // a different package into the global scope.
687       if (no->package() != NULL)
688         {
689           --i;
690           --count;
691           continue;
692         }
693
694       // There is nothing useful we can output for constants which
695       // have ideal or non-integeral type.
696       if (no->is_const())
697         {
698           Type* type = no->const_value()->type();
699           if (type == NULL)
700             type = no->const_value()->expr()->type();
701           if (type->is_abstract() || type->integer_type() == NULL)
702             {
703               --i;
704               --count;
705               continue;
706             }
707         }
708
709       if (!no->is_variable())
710         {
711           vec[i] = no->get_tree(this, NULL);
712           if (vec[i] == error_mark_node)
713             {
714               go_assert(saw_errors());
715               --i;
716               --count;
717               continue;
718             }
719         }
720       else
721         {
722           Bvariable* var = no->get_backend_variable(this, NULL);
723           vec[i] = var_to_tree(var);
724           if (vec[i] == error_mark_node)
725             {
726               go_assert(saw_errors());
727               --i;
728               --count;
729               continue;
730             }
731
732           // Check for a sink variable, which may be used to run an
733           // initializer purely for its side effects.
734           bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
735
736           tree var_init_tree = NULL_TREE;
737           if (!no->var_value()->has_pre_init())
738             {
739               tree init = no->var_value()->get_init_tree(this, NULL);
740               if (init == error_mark_node)
741                 go_assert(saw_errors());
742               else if (init == NULL_TREE)
743                 ;
744               else if (TREE_CONSTANT(init))
745                 this->backend()->global_variable_set_init(var,
746                                                           tree_to_expr(init));
747               else if (is_sink)
748                 var_init_tree = init;
749               else
750                 var_init_tree = fold_build2_loc(no->location(), MODIFY_EXPR,
751                                                 void_type_node, vec[i], init);
752             }
753           else
754             {
755               // We are going to create temporary variables which
756               // means that we need an fndecl.
757               if (init_fndecl == NULL_TREE)
758                 init_fndecl = this->initialization_function_decl();
759               current_function_decl = init_fndecl;
760               if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
761                 push_struct_function(init_fndecl);
762               else
763                 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
764
765               tree var_decl = is_sink ? NULL_TREE : vec[i];
766               var_init_tree = no->var_value()->get_init_block(this, NULL,
767                                                               var_decl);
768
769               current_function_decl = NULL_TREE;
770               pop_cfun();
771             }
772
773           if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
774             {
775               if (no->var_value()->init() == NULL
776                   && !no->var_value()->has_pre_init())
777                 append_to_statement_list(var_init_tree, &var_init_stmt_list);
778               else
779                 var_inits.push_back(Var_init(no, var_init_tree));
780             }
781
782           if (!is_sink && no->var_value()->type()->has_pointer())
783             var_gc.push_back(no);
784         }
785     }
786
787   // Register global variables with the garbage collector.
788   this->register_gc_vars(var_gc, &init_stmt_list);
789
790   // Simple variable initializations, after all variables are
791   // registered.
792   append_to_statement_list(var_init_stmt_list, &init_stmt_list);
793
794   // Complex variable initializations, first sorting them into a
795   // workable order.
796   if (!var_inits.empty())
797     {
798       sort_var_inits(&var_inits);
799       for (Var_inits::const_iterator p = var_inits.begin();
800            p != var_inits.end();
801            ++p)
802         append_to_statement_list(p->init(), &init_stmt_list);
803     }
804
805   // After all the variables are initialized, call the "init"
806   // functions if there are any.
807   for (std::vector<Named_object*>::const_iterator p =
808          this->init_functions_.begin();
809        p != this->init_functions_.end();
810        ++p)
811     {
812       tree decl = (*p)->get_tree(this, NULL);
813       tree call = build_call_expr(decl, 0);
814       append_to_statement_list(call, &init_stmt_list);
815     }
816
817   // Set up a magic function to do all the initialization actions.
818   // This will be called if this package is imported.
819   if (init_stmt_list != NULL_TREE
820       || this->need_init_fn_
821       || this->is_main_package())
822     this->write_initialization_function(init_fndecl, init_stmt_list);
823
824   // Pass everything back to the middle-end.
825
826   wrapup_global_declarations(vec, count);
827
828   cgraph_finalize_compilation_unit();
829
830   check_global_declarations(vec, count);
831   emit_debug_global_declarations(vec, count);
832
833   delete[] vec;
834 }
835
836 // Get a tree for the identifier for a named object.
837
838 tree
839 Named_object::get_id(Gogo* gogo)
840 {
841   go_assert(!this->is_variable() && !this->is_result_variable());
842   std::string decl_name;
843   if (this->is_function_declaration()
844       && !this->func_declaration_value()->asm_name().empty())
845     decl_name = this->func_declaration_value()->asm_name();
846   else if (this->is_type()
847            && this->type_value()->location() == BUILTINS_LOCATION)
848     {
849       // We don't need the package name for builtin types.
850       decl_name = Gogo::unpack_hidden_name(this->name_);
851     }
852   else
853     {
854       std::string package_name;
855       if (this->package_ == NULL)
856         package_name = gogo->package_name();
857       else
858         package_name = this->package_->name();
859
860       decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
861
862       Function_type* fntype;
863       if (this->is_function())
864         fntype = this->func_value()->type();
865       else if (this->is_function_declaration())
866         fntype = this->func_declaration_value()->type();
867       else
868         fntype = NULL;
869       if (fntype != NULL && fntype->is_method())
870         {
871           decl_name.push_back('.');
872           decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
873         }
874     }
875   if (this->is_type())
876     {
877       const Named_object* in_function = this->type_value()->in_function();
878       if (in_function != NULL)
879         decl_name += '$' + in_function->name();
880     }
881   return get_identifier_from_string(decl_name);
882 }
883
884 // Get a tree for a named object.
885
886 tree
887 Named_object::get_tree(Gogo* gogo, Named_object* function)
888 {
889   if (this->tree_ != NULL_TREE)
890     return this->tree_;
891
892   tree name;
893   if (this->classification_ == NAMED_OBJECT_TYPE)
894     name = NULL_TREE;
895   else
896     name = this->get_id(gogo);
897   tree decl;
898   switch (this->classification_)
899     {
900     case NAMED_OBJECT_CONST:
901       {
902         Named_constant* named_constant = this->u_.const_value;
903         Translate_context subcontext(gogo, function, NULL, NULL);
904         tree expr_tree = named_constant->expr()->get_tree(&subcontext);
905         if (expr_tree == error_mark_node)
906           decl = error_mark_node;
907         else
908           {
909             Type* type = named_constant->type();
910             if (type != NULL && !type->is_abstract())
911               {
912                 if (type->is_error())
913                   expr_tree = error_mark_node;
914                 else
915                   {
916                     Btype* btype = type->get_backend(gogo);
917                     expr_tree = fold_convert(type_to_tree(btype), expr_tree);
918                   }
919               }
920             if (expr_tree == error_mark_node)
921               decl = error_mark_node;
922             else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
923               {
924                 decl = build_decl(named_constant->location(), CONST_DECL,
925                                   name, TREE_TYPE(expr_tree));
926                 DECL_INITIAL(decl) = expr_tree;
927                 TREE_CONSTANT(decl) = 1;
928                 TREE_READONLY(decl) = 1;
929               }
930             else
931               {
932                 // A CONST_DECL is only for an enum constant, so we
933                 // shouldn't use for non-integral types.  Instead we
934                 // just return the constant itself, rather than a
935                 // decl.
936                 decl = expr_tree;
937               }
938           }
939       }
940       break;
941
942     case NAMED_OBJECT_TYPE:
943       {
944         Named_type* named_type = this->u_.type_value;
945         tree type_tree = type_to_tree(named_type->get_backend(gogo));
946         if (type_tree == error_mark_node)
947           decl = error_mark_node;
948         else
949           {
950             decl = TYPE_NAME(type_tree);
951             go_assert(decl != NULL_TREE);
952
953             // We need to produce a type descriptor for every named
954             // type, and for a pointer to every named type, since
955             // other files or packages might refer to them.  We need
956             // to do this even for hidden types, because they might
957             // still be returned by some function.  Simply calling the
958             // type_descriptor method is enough to create the type
959             // descriptor, even though we don't do anything with it.
960             if (this->package_ == NULL)
961               {
962                 named_type->type_descriptor_pointer(gogo);
963                 Type* pn = Type::make_pointer_type(named_type);
964                 pn->type_descriptor_pointer(gogo);
965               }
966           }
967       }
968       break;
969
970     case NAMED_OBJECT_TYPE_DECLARATION:
971       error("reference to undefined type %qs",
972             this->message_name().c_str());
973       return error_mark_node;
974
975     case NAMED_OBJECT_VAR:
976     case NAMED_OBJECT_RESULT_VAR:
977     case NAMED_OBJECT_SINK:
978       go_unreachable();
979
980     case NAMED_OBJECT_FUNC:
981       {
982         Function* func = this->u_.func_value;
983         decl = func->get_or_make_decl(gogo, this, name);
984         if (decl != error_mark_node)
985           {
986             if (func->block() != NULL)
987               {
988                 if (DECL_STRUCT_FUNCTION(decl) == NULL)
989                   push_struct_function(decl);
990                 else
991                   push_cfun(DECL_STRUCT_FUNCTION(decl));
992
993                 cfun->function_end_locus = func->block()->end_location();
994
995                 current_function_decl = decl;
996
997                 func->build_tree(gogo, this);
998
999                 gimplify_function_tree(decl);
1000
1001                 cgraph_finalize_function(decl, true);
1002
1003                 current_function_decl = NULL_TREE;
1004                 pop_cfun();
1005               }
1006           }
1007       }
1008       break;
1009
1010     default:
1011       go_unreachable();
1012     }
1013
1014   if (TREE_TYPE(decl) == error_mark_node)
1015     decl = error_mark_node;
1016
1017   tree ret = decl;
1018
1019   this->tree_ = ret;
1020
1021   if (ret != error_mark_node)
1022     go_preserve_from_gc(ret);
1023
1024   return ret;
1025 }
1026
1027 // Get the initial value of a variable as a tree.  This does not
1028 // consider whether the variable is in the heap--it returns the
1029 // initial value as though it were always stored in the stack.
1030
1031 tree
1032 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1033 {
1034   go_assert(this->preinit_ == NULL);
1035   if (this->init_ == NULL)
1036     {
1037       go_assert(!this->is_parameter_);
1038       return this->type_->get_init_tree(gogo,
1039                                         (this->is_global_
1040                                          || this->is_in_heap()));
1041     }
1042   else
1043     {
1044       Translate_context context(gogo, function, NULL, NULL);
1045       tree rhs_tree = this->init_->get_tree(&context);
1046       return Expression::convert_for_assignment(&context, this->type(),
1047                                                 this->init_->type(),
1048                                                 rhs_tree, this->location());
1049     }
1050 }
1051
1052 // Get the initial value of a variable when a block is required.
1053 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1054
1055 tree
1056 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1057 {
1058   go_assert(this->preinit_ != NULL);
1059
1060   // We want to add the variable assignment to the end of the preinit
1061   // block.  The preinit block may have a TRY_FINALLY_EXPR and a
1062   // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1063   // regular statements.
1064
1065   Translate_context context(gogo, function, NULL, NULL);
1066   Bblock* bblock = this->preinit_->get_backend(&context);
1067   tree block_tree = block_to_tree(bblock);
1068   if (block_tree == error_mark_node)
1069     return error_mark_node;
1070   go_assert(TREE_CODE(block_tree) == BIND_EXPR);
1071   tree statements = BIND_EXPR_BODY(block_tree);
1072   while (statements != NULL_TREE
1073          && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1074              || TREE_CODE(statements) == TRY_CATCH_EXPR))
1075     statements = TREE_OPERAND(statements, 0);
1076
1077   // It's possible to have pre-init statements without an initializer
1078   // if the pre-init statements set the variable.
1079   if (this->init_ != NULL)
1080     {
1081       tree rhs_tree = this->init_->get_tree(&context);
1082       if (rhs_tree == error_mark_node)
1083         return error_mark_node;
1084       if (var_decl == NULL_TREE)
1085         append_to_statement_list(rhs_tree, &statements);
1086       else
1087         {
1088           tree val = Expression::convert_for_assignment(&context, this->type(),
1089                                                         this->init_->type(),
1090                                                         rhs_tree,
1091                                                         this->location());
1092           if (val == error_mark_node)
1093             return error_mark_node;
1094           tree set = fold_build2_loc(this->location(), MODIFY_EXPR,
1095                                      void_type_node, var_decl, val);
1096           append_to_statement_list(set, &statements);
1097         }
1098     }
1099
1100   return block_tree;
1101 }
1102
1103 // Get a tree for a function decl.
1104
1105 tree
1106 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1107 {
1108   if (this->fndecl_ == NULL_TREE)
1109     {
1110       tree functype = type_to_tree(this->type_->get_backend(gogo));
1111       if (functype == error_mark_node)
1112         this->fndecl_ = error_mark_node;
1113       else
1114         {
1115           // The type of a function comes back as a pointer, but we
1116           // want the real function type for a function declaration.
1117           go_assert(POINTER_TYPE_P(functype));
1118           functype = TREE_TYPE(functype);
1119           tree decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1120
1121           this->fndecl_ = decl;
1122
1123           if (no->package() != NULL)
1124             ;
1125           else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1126             ;
1127           else if (Gogo::unpack_hidden_name(no->name()) == "init"
1128                    && !this->type_->is_method())
1129             ;
1130           else if (Gogo::unpack_hidden_name(no->name()) == "main"
1131                    && gogo->is_main_package())
1132             TREE_PUBLIC(decl) = 1;
1133           // Methods have to be public even if they are hidden because
1134           // they can be pulled into type descriptors when using
1135           // anonymous fields.
1136           else if (!Gogo::is_hidden_name(no->name())
1137                    || this->type_->is_method())
1138             {
1139               TREE_PUBLIC(decl) = 1;
1140               std::string asm_name = gogo->unique_prefix();
1141               asm_name.append(1, '.');
1142               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1143               SET_DECL_ASSEMBLER_NAME(decl,
1144                                       get_identifier_from_string(asm_name));
1145             }
1146
1147           // Why do we have to do this in the frontend?
1148           tree restype = TREE_TYPE(functype);
1149           tree resdecl = build_decl(this->location(), RESULT_DECL, NULL_TREE,
1150                                     restype);
1151           DECL_ARTIFICIAL(resdecl) = 1;
1152           DECL_IGNORED_P(resdecl) = 1;
1153           DECL_CONTEXT(resdecl) = decl;
1154           DECL_RESULT(decl) = resdecl;
1155
1156           if (this->enclosing_ != NULL)
1157             DECL_STATIC_CHAIN(decl) = 1;
1158
1159           // If a function calls the predeclared recover function, we
1160           // can't inline it, because recover behaves differently in a
1161           // function passed directly to defer.
1162           if (this->calls_recover_ && !this->is_recover_thunk_)
1163             DECL_UNINLINABLE(decl) = 1;
1164
1165           // If this is a thunk created to call a function which calls
1166           // the predeclared recover function, we need to disable
1167           // stack splitting for the thunk.
1168           if (this->is_recover_thunk_)
1169             {
1170               tree attr = get_identifier("__no_split_stack__");
1171               DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1172             }
1173
1174           go_preserve_from_gc(decl);
1175
1176           if (this->closure_var_ != NULL)
1177             {
1178               push_struct_function(decl);
1179
1180               Bvariable* bvar = this->closure_var_->get_backend_variable(gogo,
1181                                                                          no);
1182               tree closure_decl = var_to_tree(bvar);
1183               if (closure_decl == error_mark_node)
1184                 this->fndecl_ = error_mark_node;
1185               else
1186                 {
1187                   DECL_ARTIFICIAL(closure_decl) = 1;
1188                   DECL_IGNORED_P(closure_decl) = 1;
1189                   TREE_USED(closure_decl) = 1;
1190                   DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1191                   TREE_READONLY(closure_decl) = 1;
1192
1193                   DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1194                 }
1195
1196               pop_cfun();
1197             }
1198         }
1199     }
1200   return this->fndecl_;
1201 }
1202
1203 // Get a tree for a function declaration.
1204
1205 tree
1206 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1207 {
1208   if (this->fndecl_ == NULL_TREE)
1209     {
1210       // Let Go code use an asm declaration to pick up a builtin
1211       // function.
1212       if (!this->asm_name_.empty())
1213         {
1214           std::map<std::string, tree>::const_iterator p =
1215             builtin_functions.find(this->asm_name_);
1216           if (p != builtin_functions.end())
1217             {
1218               this->fndecl_ = p->second;
1219               return this->fndecl_;
1220             }
1221         }
1222
1223       tree functype = type_to_tree(this->fntype_->get_backend(gogo));
1224       tree decl;
1225       if (functype == error_mark_node)
1226         decl = error_mark_node;
1227       else
1228         {
1229           // The type of a function comes back as a pointer, but we
1230           // want the real function type for a function declaration.
1231           go_assert(POINTER_TYPE_P(functype));
1232           functype = TREE_TYPE(functype);
1233           decl = build_decl(this->location(), FUNCTION_DECL, id, functype);
1234           TREE_PUBLIC(decl) = 1;
1235           DECL_EXTERNAL(decl) = 1;
1236
1237           if (this->asm_name_.empty())
1238             {
1239               std::string asm_name = (no->package() == NULL
1240                                       ? gogo->unique_prefix()
1241                                       : no->package()->unique_prefix());
1242               asm_name.append(1, '.');
1243               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1244               SET_DECL_ASSEMBLER_NAME(decl,
1245                                       get_identifier_from_string(asm_name));
1246             }
1247         }
1248       this->fndecl_ = decl;
1249       go_preserve_from_gc(decl);
1250     }
1251   return this->fndecl_;
1252 }
1253
1254 // We always pass the receiver to a method as a pointer.  If the
1255 // receiver is actually declared as a non-pointer type, then we copy
1256 // the value into a local variable, so that it has the right type.  In
1257 // this function we create the real PARM_DECL to use, and set
1258 // DEC_INITIAL of the var_decl to be the value passed in.
1259
1260 tree
1261 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1262 {
1263   if (var_decl == error_mark_node)
1264     return error_mark_node;
1265   go_assert(TREE_CODE(var_decl) == VAR_DECL);
1266   tree val_type = TREE_TYPE(var_decl);
1267   bool is_in_heap = no->var_value()->is_in_heap();
1268   if (is_in_heap)
1269     {
1270       go_assert(POINTER_TYPE_P(val_type));
1271       val_type = TREE_TYPE(val_type);
1272     }
1273
1274   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1275   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1276   name += ".pointer";
1277   tree id = get_identifier_from_string(name);
1278   tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1279   DECL_CONTEXT(parm_decl) = current_function_decl;
1280   DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1281
1282   go_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1283   // The receiver might be passed as a null pointer.
1284   tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node, parm_decl,
1285                                fold_convert_loc(loc, TREE_TYPE(parm_decl),
1286                                                 null_pointer_node));
1287   tree ind = build_fold_indirect_ref_loc(loc, parm_decl);
1288   TREE_THIS_NOTRAP(ind) = 1;
1289   tree zero_init = no->var_value()->type()->get_init_tree(gogo, false);
1290   tree init = fold_build3_loc(loc, COND_EXPR, TREE_TYPE(ind),
1291                               check, ind, zero_init);
1292
1293   if (is_in_heap)
1294     {
1295       tree size = TYPE_SIZE_UNIT(val_type);
1296       tree space = gogo->allocate_memory(no->var_value()->type(), size,
1297                                          no->location());
1298       space = save_expr(space);
1299       space = fold_convert(build_pointer_type(val_type), space);
1300       tree spaceref = build_fold_indirect_ref_loc(no->location(), space);
1301       TREE_THIS_NOTRAP(spaceref) = 1;
1302       tree check = fold_build2_loc(loc, NE_EXPR, boolean_type_node,
1303                                    parm_decl,
1304                                    fold_convert_loc(loc, TREE_TYPE(parm_decl),
1305                                                     null_pointer_node));
1306       tree parmref = build_fold_indirect_ref_loc(no->location(), parm_decl);
1307       TREE_THIS_NOTRAP(parmref) = 1;
1308       tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1309                                  spaceref, parmref);
1310       init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1311                              build3(COND_EXPR, void_type_node,
1312                                     check, set, NULL_TREE),
1313                              space);
1314     }
1315
1316   DECL_INITIAL(var_decl) = init;
1317
1318   return parm_decl;
1319 }
1320
1321 // If we take the address of a parameter, then we need to copy it into
1322 // the heap.  We will access it as a local variable via an
1323 // indirection.
1324
1325 tree
1326 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree var_decl)
1327 {
1328   if (var_decl == error_mark_node)
1329     return error_mark_node;
1330   go_assert(TREE_CODE(var_decl) == VAR_DECL);
1331   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1332
1333   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1334   name += ".param";
1335   tree id = get_identifier_from_string(name);
1336
1337   tree type = TREE_TYPE(var_decl);
1338   go_assert(POINTER_TYPE_P(type));
1339   type = TREE_TYPE(type);
1340
1341   tree parm_decl = build_decl(loc, PARM_DECL, id, type);
1342   DECL_CONTEXT(parm_decl) = current_function_decl;
1343   DECL_ARG_TYPE(parm_decl) = type;
1344
1345   tree size = TYPE_SIZE_UNIT(type);
1346   tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1347   space = save_expr(space);
1348   space = fold_convert(TREE_TYPE(var_decl), space);
1349   tree spaceref = build_fold_indirect_ref_loc(loc, space);
1350   TREE_THIS_NOTRAP(spaceref) = 1;
1351   tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1352                      build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1353                      space);
1354   DECL_INITIAL(var_decl) = init;
1355
1356   return parm_decl;
1357 }
1358
1359 // Get a tree for function code.
1360
1361 void
1362 Function::build_tree(Gogo* gogo, Named_object* named_function)
1363 {
1364   tree fndecl = this->fndecl_;
1365   go_assert(fndecl != NULL_TREE);
1366
1367   tree params = NULL_TREE;
1368   tree* pp = &params;
1369
1370   tree declare_vars = NULL_TREE;
1371   for (Bindings::const_definitions_iterator p =
1372          this->block_->bindings()->begin_definitions();
1373        p != this->block_->bindings()->end_definitions();
1374        ++p)
1375     {
1376       if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1377         {
1378           Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
1379           *pp = var_to_tree(bvar);
1380
1381           // We always pass the receiver to a method as a pointer.  If
1382           // the receiver is declared as a non-pointer type, then we
1383           // copy the value into a local variable.
1384           if ((*p)->var_value()->is_receiver()
1385               && (*p)->var_value()->type()->points_to() == NULL)
1386             {
1387               tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1388               tree var = *pp;
1389               if (var != error_mark_node)
1390                 {
1391                   go_assert(TREE_CODE(var) == VAR_DECL);
1392                   DECL_CHAIN(var) = declare_vars;
1393                   declare_vars = var;
1394                 }
1395               *pp = parm_decl;
1396             }
1397           else if ((*p)->var_value()->is_in_heap())
1398             {
1399               // If we take the address of a parameter, then we need
1400               // to copy it into the heap.
1401               tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1402               tree var = *pp;
1403               if (var != error_mark_node)
1404                 {
1405                   go_assert(TREE_CODE(var) == VAR_DECL);
1406                   DECL_CHAIN(var) = declare_vars;
1407                   declare_vars = var;
1408                 }
1409               *pp = parm_decl;
1410             }
1411
1412           if (*pp != error_mark_node)
1413             {
1414               go_assert(TREE_CODE(*pp) == PARM_DECL);
1415               pp = &DECL_CHAIN(*pp);
1416             }
1417         }
1418       else if ((*p)->is_result_variable())
1419         {
1420           Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
1421           tree var_decl = var_to_tree(bvar);
1422
1423           Type* type = (*p)->result_var_value()->type();
1424           tree init;
1425           if (!(*p)->result_var_value()->is_in_heap())
1426             init = type->get_init_tree(gogo, false);
1427           else
1428             {
1429               source_location loc = (*p)->location();
1430               tree type_tree = type_to_tree(type->get_backend(gogo));
1431               tree space = gogo->allocate_memory(type,
1432                                                  TYPE_SIZE_UNIT(type_tree),
1433                                                  loc);
1434               tree ptr_type_tree = build_pointer_type(type_tree);
1435               tree subinit = type->get_init_tree(gogo, true);
1436               if (subinit == NULL_TREE)
1437                 init = fold_convert_loc(loc, ptr_type_tree, space);
1438               else
1439                 {
1440                   space = save_expr(space);
1441                   space = fold_convert_loc(loc, ptr_type_tree, space);
1442                   tree spaceref = build_fold_indirect_ref_loc(loc, space);
1443                   TREE_THIS_NOTRAP(spaceref) = 1;
1444                   tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1445                                              spaceref, subinit);
1446                   init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space),
1447                                          set, space);
1448                 }
1449             }
1450
1451           if (var_decl != error_mark_node)
1452             {
1453               go_assert(TREE_CODE(var_decl) == VAR_DECL);
1454               DECL_INITIAL(var_decl) = init;
1455               DECL_CHAIN(var_decl) = declare_vars;
1456               declare_vars = var_decl;
1457             }
1458         }
1459     }
1460   *pp = NULL_TREE;
1461
1462   DECL_ARGUMENTS(fndecl) = params;
1463
1464   if (this->block_ != NULL)
1465     {
1466       go_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1467
1468       // Declare variables if necessary.
1469       tree bind = NULL_TREE;
1470       tree defer_init = NULL_TREE;
1471       if (declare_vars != NULL_TREE || this->defer_stack_ != NULL)
1472         {
1473           tree block = make_node(BLOCK);
1474           BLOCK_SUPERCONTEXT(block) = fndecl;
1475           DECL_INITIAL(fndecl) = block;
1476           BLOCK_VARS(block) = declare_vars;
1477           TREE_USED(block) = 1;
1478
1479           bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1480                         NULL_TREE, block);
1481           TREE_SIDE_EFFECTS(bind) = 1;
1482
1483           if (this->defer_stack_ != NULL)
1484             {
1485               Translate_context dcontext(gogo, named_function, this->block_,
1486                                          tree_to_block(bind));
1487               Bstatement* bdi = this->defer_stack_->get_backend(&dcontext);
1488               defer_init = stat_to_tree(bdi);
1489             }
1490         }
1491
1492       // Build the trees for all the statements in the function.
1493       Translate_context context(gogo, named_function, NULL, NULL);
1494       Bblock* bblock = this->block_->get_backend(&context);
1495       tree code = block_to_tree(bblock);
1496
1497       tree init = NULL_TREE;
1498       tree except = NULL_TREE;
1499       tree fini = NULL_TREE;
1500
1501       // Initialize variables if necessary.
1502       for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1503         {
1504           tree dv = build1(DECL_EXPR, void_type_node, v);
1505           SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1506           append_to_statement_list(dv, &init);
1507         }
1508
1509       // If we have a defer stack, initialize it at the start of a
1510       // function.
1511       if (defer_init != NULL_TREE && defer_init != error_mark_node)
1512         {
1513           SET_EXPR_LOCATION(defer_init, this->block_->start_location());
1514           append_to_statement_list(defer_init, &init);
1515
1516           // Clean up the defer stack when we leave the function.
1517           this->build_defer_wrapper(gogo, named_function, &except, &fini);
1518         }
1519
1520       if (code != NULL_TREE && code != error_mark_node)
1521         {
1522           if (init != NULL_TREE)
1523             code = build2(COMPOUND_EXPR, void_type_node, init, code);
1524           if (except != NULL_TREE)
1525             code = build2(TRY_CATCH_EXPR, void_type_node, code,
1526                           build2(CATCH_EXPR, void_type_node, NULL, except));
1527           if (fini != NULL_TREE)
1528             code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1529         }
1530
1531       // Stick the code into the block we built for the receiver, if
1532       // we built on.
1533       if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1534         {
1535           BIND_EXPR_BODY(bind) = code;
1536           code = bind;
1537         }
1538
1539       DECL_SAVED_TREE(fndecl) = code;
1540     }
1541 }
1542
1543 // Build the wrappers around function code needed if the function has
1544 // any defer statements.  This sets *EXCEPT to an exception handler
1545 // and *FINI to a finally handler.
1546
1547 void
1548 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1549                               tree *except, tree *fini)
1550 {
1551   source_location end_loc = this->block_->end_location();
1552
1553   // Add an exception handler.  This is used if a panic occurs.  Its
1554   // purpose is to stop the stack unwinding if a deferred function
1555   // calls recover.  There are more details in
1556   // libgo/runtime/go-unwind.c.
1557
1558   tree stmt_list = NULL_TREE;
1559
1560   Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
1561                                         this->defer_stack(end_loc));
1562   Translate_context context(gogo, named_function, NULL, NULL);
1563   tree call_tree = call->get_tree(&context);
1564   if (call_tree != error_mark_node)
1565     append_to_statement_list(call_tree, &stmt_list);
1566
1567   tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1568   tree set;
1569   if (retval == NULL_TREE)
1570     set = NULL_TREE;
1571   else
1572     set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1573                           DECL_RESULT(this->fndecl_), retval);
1574   tree ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1575   append_to_statement_list(ret_stmt, &stmt_list);
1576
1577   go_assert(*except == NULL_TREE);
1578   *except = stmt_list;
1579
1580   // Add some finally code to run the defer functions.  This is used
1581   // both in the normal case, when no panic occurs, and also if a
1582   // panic occurs to run any further defer functions.  Of course, it
1583   // is possible for a defer function to call panic which should be
1584   // caught by another defer function.  To handle that we use a loop.
1585   //  finish:
1586   //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1587   //   if (return values are named) return named_vals;
1588
1589   stmt_list = NULL;
1590
1591   tree label = create_artificial_label(end_loc);
1592   tree define_label = fold_build1_loc(end_loc, LABEL_EXPR, void_type_node,
1593                                       label);
1594   append_to_statement_list(define_label, &stmt_list);
1595
1596   call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
1597                             this->defer_stack(end_loc));
1598   tree undefer = call->get_tree(&context);
1599
1600   call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
1601                             this->defer_stack(end_loc));
1602   tree defer = call->get_tree(&context);
1603
1604   if (undefer == error_mark_node || defer == error_mark_node)
1605     return;
1606
1607   tree jump = fold_build1_loc(end_loc, GOTO_EXPR, void_type_node, label);
1608   tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1609   catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1610   tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1611
1612   append_to_statement_list(try_catch, &stmt_list);
1613
1614   if (this->type_->results() != NULL
1615       && !this->type_->results()->empty()
1616       && !this->type_->results()->front().name().empty())
1617     {
1618       // If the result variables are named, we need to return them
1619       // again, because they might have been changed by a defer
1620       // function.
1621       retval = this->return_value(gogo, named_function, end_loc,
1622                                   &stmt_list);
1623       set = fold_build2_loc(end_loc, MODIFY_EXPR, void_type_node,
1624                             DECL_RESULT(this->fndecl_), retval);
1625       ret_stmt = fold_build1_loc(end_loc, RETURN_EXPR, void_type_node, set);
1626       append_to_statement_list(ret_stmt, &stmt_list);
1627     }
1628   
1629   go_assert(*fini == NULL_TREE);
1630   *fini = stmt_list;
1631 }
1632
1633 // Return the value to assign to DECL_RESULT(this->fndecl_).  This may
1634 // also add statements to STMT_LIST, which need to be executed before
1635 // the assignment.  This is used for a return statement with no
1636 // explicit values.
1637
1638 tree
1639 Function::return_value(Gogo* gogo, Named_object* named_function,
1640                        source_location location, tree* stmt_list) const
1641 {
1642   const Typed_identifier_list* results = this->type_->results();
1643   if (results == NULL || results->empty())
1644     return NULL_TREE;
1645
1646   go_assert(this->results_ != NULL);
1647   if (this->results_->size() != results->size())
1648     {
1649       go_assert(saw_errors());
1650       return error_mark_node;
1651     }
1652
1653   tree retval;
1654   if (results->size() == 1)
1655     {
1656       Bvariable* bvar =
1657         this->results_->front()->get_backend_variable(gogo,
1658                                                       named_function);
1659       tree ret = var_to_tree(bvar);
1660       if (this->results_->front()->result_var_value()->is_in_heap())
1661         ret = build_fold_indirect_ref_loc(location, ret);
1662       return ret;
1663     }
1664   else
1665     {
1666       tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1667       retval = create_tmp_var(rettype, "RESULT");
1668       tree field = TYPE_FIELDS(rettype);
1669       int index = 0;
1670       for (Typed_identifier_list::const_iterator pr = results->begin();
1671            pr != results->end();
1672            ++pr, ++index, field = DECL_CHAIN(field))
1673         {
1674           go_assert(field != NULL);
1675           Named_object* no = (*this->results_)[index];
1676           Bvariable* bvar = no->get_backend_variable(gogo, named_function);
1677           tree val = var_to_tree(bvar);
1678           if (no->result_var_value()->is_in_heap())
1679             val = build_fold_indirect_ref_loc(location, val);
1680           tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
1681                                      build3(COMPONENT_REF, TREE_TYPE(field),
1682                                             retval, field, NULL_TREE),
1683                                      val);
1684           append_to_statement_list(set, stmt_list);
1685         }
1686       return retval;
1687     }
1688 }
1689
1690 // Return the integer type to use for a size.
1691
1692 GO_EXTERN_C
1693 tree
1694 go_type_for_size(unsigned int bits, int unsignedp)
1695 {
1696   const char* name;
1697   switch (bits)
1698     {
1699     case 8:
1700       name = unsignedp ? "uint8" : "int8";
1701       break;
1702     case 16:
1703       name = unsignedp ? "uint16" : "int16";
1704       break;
1705     case 32:
1706       name = unsignedp ? "uint32" : "int32";
1707       break;
1708     case 64:
1709       name = unsignedp ? "uint64" : "int64";
1710       break;
1711     default:
1712       if (bits == POINTER_SIZE && unsignedp)
1713         name = "uintptr";
1714       else
1715         return NULL_TREE;
1716     }
1717   Type* type = Type::lookup_integer_type(name);
1718   return type_to_tree(type->get_backend(go_get_gogo()));
1719 }
1720
1721 // Return the type to use for a mode.
1722
1723 GO_EXTERN_C
1724 tree
1725 go_type_for_mode(enum machine_mode mode, int unsignedp)
1726 {
1727   // FIXME: This static_cast should be in machmode.h.
1728   enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
1729   if (mc == MODE_INT)
1730     return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
1731   else if (mc == MODE_FLOAT)
1732     {
1733       Type* type;
1734       switch (GET_MODE_BITSIZE (mode))
1735         {
1736         case 32:
1737           type = Type::lookup_float_type("float32");
1738           break;
1739         case 64:
1740           type = Type::lookup_float_type("float64");
1741           break;
1742         default:
1743           // We have to check for long double in order to support
1744           // i386 excess precision.
1745           if (mode == TYPE_MODE(long_double_type_node))
1746             return long_double_type_node;
1747           return NULL_TREE;
1748         }
1749       return type_to_tree(type->get_backend(go_get_gogo()));
1750     }
1751   else if (mc == MODE_COMPLEX_FLOAT)
1752     {
1753       Type *type;
1754       switch (GET_MODE_BITSIZE (mode))
1755         {
1756         case 64:
1757           type = Type::lookup_complex_type("complex64");
1758           break;
1759         case 128:
1760           type = Type::lookup_complex_type("complex128");
1761           break;
1762         default:
1763           // We have to check for long double in order to support
1764           // i386 excess precision.
1765           if (mode == TYPE_MODE(complex_long_double_type_node))
1766             return complex_long_double_type_node;
1767           return NULL_TREE;
1768         }
1769       return type_to_tree(type->get_backend(go_get_gogo()));
1770     }
1771   else
1772     return NULL_TREE;
1773 }
1774
1775 // Return a tree which allocates SIZE bytes which will holds value of
1776 // type TYPE.
1777
1778 tree
1779 Gogo::allocate_memory(Type* type, tree size, source_location location)
1780 {
1781   // If the package imports unsafe, then it may play games with
1782   // pointers that look like integers.
1783   if (this->imported_unsafe_ || type->has_pointer())
1784     {
1785       static tree new_fndecl;
1786       return Gogo::call_builtin(&new_fndecl,
1787                                 location,
1788                                 "__go_new",
1789                                 1,
1790                                 ptr_type_node,
1791                                 sizetype,
1792                                 size);
1793     }
1794   else
1795     {
1796       static tree new_nopointers_fndecl;
1797       return Gogo::call_builtin(&new_nopointers_fndecl,
1798                                 location,
1799                                 "__go_new_nopointers",
1800                                 1,
1801                                 ptr_type_node,
1802                                 sizetype,
1803                                 size);
1804     }
1805 }
1806
1807 // Build a builtin struct with a list of fields.  The name is
1808 // STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
1809 // node; this exists so that the struct can have fields which point to
1810 // itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
1811 // are NFIELDS fields.  Each field is a name (a const char*) followed
1812 // by a type (a tree).
1813
1814 tree
1815 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
1816                      int nfields, ...)
1817 {
1818   if (ptype != NULL && *ptype != NULL_TREE)
1819     return *ptype;
1820
1821   va_list ap;
1822   va_start(ap, nfields);
1823
1824   tree fields = NULL_TREE;
1825   for (int i = 0; i < nfields; ++i)
1826     {
1827       const char* field_name = va_arg(ap, const char*);
1828       tree type = va_arg(ap, tree);
1829       if (type == error_mark_node)
1830         {
1831           if (ptype != NULL)
1832             *ptype = error_mark_node;
1833           return error_mark_node;
1834         }
1835       tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
1836                               get_identifier(field_name), type);
1837       DECL_CHAIN(field) = fields;
1838       fields = field;
1839     }
1840
1841   va_end(ap);
1842
1843   if (struct_type == NULL_TREE)
1844     struct_type = make_node(RECORD_TYPE);
1845   finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
1846
1847   if (ptype != NULL)
1848     {
1849       go_preserve_from_gc(struct_type);
1850       *ptype = struct_type;
1851     }
1852
1853   return struct_type;
1854 }
1855
1856 // Return a type to use for pointer to const char for a string.
1857
1858 tree
1859 Gogo::const_char_pointer_type_tree()
1860 {
1861   static tree type;
1862   if (type == NULL_TREE)
1863     {
1864       tree const_char_type = build_qualified_type(unsigned_char_type_node,
1865                                                   TYPE_QUAL_CONST);
1866       type = build_pointer_type(const_char_type);
1867       go_preserve_from_gc(type);
1868     }
1869   return type;
1870 }
1871
1872 // Return a tree for a string constant.
1873
1874 tree
1875 Gogo::string_constant_tree(const std::string& val)
1876 {
1877   tree index_type = build_index_type(size_int(val.length()));
1878   tree const_char_type = build_qualified_type(unsigned_char_type_node,
1879                                               TYPE_QUAL_CONST);
1880   tree string_type = build_array_type(const_char_type, index_type);
1881   string_type = build_variant_type_copy(string_type);
1882   TYPE_STRING_FLAG(string_type) = 1;
1883   tree string_val = build_string(val.length(), val.data());
1884   TREE_TYPE(string_val) = string_type;
1885   return string_val;
1886 }
1887
1888 // Return a tree for a Go string constant.
1889
1890 tree
1891 Gogo::go_string_constant_tree(const std::string& val)
1892 {
1893   tree string_type = type_to_tree(Type::make_string_type()->get_backend(this));
1894
1895   VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
1896
1897   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
1898   tree field = TYPE_FIELDS(string_type);
1899   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
1900   elt->index = field;
1901   tree str = Gogo::string_constant_tree(val);
1902   elt->value = fold_convert(TREE_TYPE(field),
1903                             build_fold_addr_expr(str));
1904
1905   elt = VEC_quick_push(constructor_elt, init, NULL);
1906   field = DECL_CHAIN(field);
1907   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
1908   elt->index = field;
1909   elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
1910
1911   tree constructor = build_constructor(string_type, init);
1912   TREE_READONLY(constructor) = 1;
1913   TREE_CONSTANT(constructor) = 1;
1914
1915   return constructor;
1916 }
1917
1918 // Return a tree for a pointer to a Go string constant.  This is only
1919 // used for type descriptors, so we return a pointer to a constant
1920 // decl.
1921
1922 tree
1923 Gogo::ptr_go_string_constant_tree(const std::string& val)
1924 {
1925   tree pval = this->go_string_constant_tree(val);
1926
1927   tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
1928                          create_tmp_var_name("SP"), TREE_TYPE(pval));
1929   DECL_EXTERNAL(decl) = 0;
1930   TREE_PUBLIC(decl) = 0;
1931   TREE_USED(decl) = 1;
1932   TREE_READONLY(decl) = 1;
1933   TREE_CONSTANT(decl) = 1;
1934   TREE_STATIC(decl) = 1;
1935   DECL_ARTIFICIAL(decl) = 1;
1936   DECL_INITIAL(decl) = pval;
1937   rest_of_decl_compilation(decl, 1, 0);
1938
1939   return build_fold_addr_expr(decl);
1940 }
1941
1942 // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
1943 // the slice.  VALUES is the value pointer and COUNT is the number of
1944 // entries.  If CAPACITY is not NULL, it is the capacity; otherwise
1945 // the capacity and the count are the same.
1946
1947 tree
1948 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
1949                         tree capacity)
1950 {
1951   go_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
1952
1953   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
1954
1955   tree field = TYPE_FIELDS(slice_type_tree);
1956   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
1957   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
1958   elt->index = field;
1959   go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
1960              == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
1961   elt->value = values;
1962
1963   count = fold_convert(sizetype, count);
1964   if (capacity == NULL_TREE)
1965     {
1966       count = save_expr(count);
1967       capacity = count;
1968     }
1969
1970   field = DECL_CHAIN(field);
1971   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
1972   elt = VEC_quick_push(constructor_elt, init, NULL);
1973   elt->index = field;
1974   elt->value = fold_convert(TREE_TYPE(field), count);
1975
1976   field = DECL_CHAIN(field);
1977   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
1978   elt = VEC_quick_push(constructor_elt, init, NULL);
1979   elt->index = field;
1980   elt->value = fold_convert(TREE_TYPE(field), capacity);
1981
1982   return build_constructor(slice_type_tree, init);
1983 }
1984
1985 // Build a map descriptor for a map of type MAPTYPE.
1986
1987 tree
1988 Gogo::map_descriptor(Map_type* maptype)
1989 {
1990   if (this->map_descriptors_ == NULL)
1991     this->map_descriptors_ = new Map_descriptors(10);
1992
1993   std::pair<const Map_type*, tree> val(maptype, NULL);
1994   std::pair<Map_descriptors::iterator, bool> ins =
1995     this->map_descriptors_->insert(val);
1996   Map_descriptors::iterator p = ins.first;
1997   if (!ins.second)
1998     {
1999       if (p->second == error_mark_node)
2000         return error_mark_node;
2001       go_assert(p->second != NULL_TREE && DECL_P(p->second));
2002       return build_fold_addr_expr(p->second);
2003     }
2004
2005   Type* keytype = maptype->key_type();
2006   Type* valtype = maptype->val_type();
2007
2008   std::string mangled_name = ("__go_map_" + maptype->mangled_name(this));
2009
2010   tree id = get_identifier_from_string(mangled_name);
2011
2012   // Get the type of the map descriptor.  This is __go_map_descriptor
2013   // in libgo/map.h.
2014
2015   tree struct_type = this->map_descriptor_type();
2016
2017   // The map entry type is a struct with three fields.  This struct is
2018   // specific to MAPTYPE.  Build it.
2019
2020   tree map_entry_type = make_node(RECORD_TYPE);
2021
2022   Btype* bkey_type = keytype->get_backend(this);
2023   Btype* bval_type = valtype->get_backend(this);
2024   map_entry_type = Gogo::builtin_struct(NULL, "__map", map_entry_type, 3,
2025                                         "__next",
2026                                         build_pointer_type(map_entry_type),
2027                                         "__key",
2028                                         type_to_tree(bkey_type),
2029                                         "__val",
2030                                         type_to_tree(bval_type));
2031   if (map_entry_type == error_mark_node)
2032     {
2033       p->second = error_mark_node;
2034       return error_mark_node;
2035     }
2036
2037   tree map_entry_key_field = DECL_CHAIN(TYPE_FIELDS(map_entry_type));
2038   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_key_field)),
2039                     "__key") == 0);
2040
2041   tree map_entry_val_field = DECL_CHAIN(map_entry_key_field);
2042   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_entry_val_field)),
2043                     "__val") == 0);
2044
2045   // Initialize the entries.
2046
2047   tree map_descriptor_field = TYPE_FIELDS(struct_type);
2048   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(map_descriptor_field)),
2049                     "__map_descriptor") == 0);
2050   tree entry_size_field = DECL_CHAIN(map_descriptor_field);
2051   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(entry_size_field)),
2052                     "__entry_size") == 0);
2053   tree key_offset_field = DECL_CHAIN(entry_size_field);
2054   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(key_offset_field)),
2055                     "__key_offset") == 0);
2056   tree val_offset_field = DECL_CHAIN(key_offset_field);
2057   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(val_offset_field)),
2058                     "__val_offset") == 0);
2059
2060   VEC(constructor_elt, gc)* descriptor = VEC_alloc(constructor_elt, gc, 6);
2061
2062   constructor_elt* elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2063   elt->index = map_descriptor_field;
2064   elt->value = maptype->type_descriptor_pointer(this);
2065
2066   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2067   elt->index = entry_size_field;
2068   elt->value = TYPE_SIZE_UNIT(map_entry_type);
2069
2070   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2071   elt->index = key_offset_field;
2072   elt->value = byte_position(map_entry_key_field);
2073
2074   elt = VEC_quick_push(constructor_elt, descriptor, NULL);
2075   elt->index = val_offset_field;
2076   elt->value = byte_position(map_entry_val_field);
2077
2078   tree constructor = build_constructor(struct_type, descriptor);
2079
2080   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, struct_type);
2081   TREE_STATIC(decl) = 1;
2082   TREE_USED(decl) = 1;
2083   TREE_READONLY(decl) = 1;
2084   TREE_CONSTANT(decl) = 1;
2085   DECL_INITIAL(decl) = constructor;
2086   make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2087   resolve_unique_section(decl, 1, 0);
2088
2089   rest_of_decl_compilation(decl, 1, 0);
2090
2091   go_preserve_from_gc(decl);
2092   p->second = decl;
2093
2094   return build_fold_addr_expr(decl);
2095 }
2096
2097 // Return a tree for the type of a map descriptor.  This is struct
2098 // __go_map_descriptor in libgo/runtime/map.h.  This is the same for
2099 // all map types.
2100
2101 tree
2102 Gogo::map_descriptor_type()
2103 {
2104   static tree struct_type;
2105   Type* tdt = Type::make_type_descriptor_type();
2106   tree dtype = type_to_tree(tdt->get_backend(this));
2107   dtype = build_qualified_type(dtype, TYPE_QUAL_CONST);
2108   return Gogo::builtin_struct(&struct_type, "__go_map_descriptor", NULL_TREE,
2109                               4,
2110                               "__map_descriptor",
2111                               build_pointer_type(dtype),
2112                               "__entry_size",
2113                               sizetype,
2114                               "__key_offset",
2115                               sizetype,
2116                               "__val_offset",
2117                               sizetype);
2118 }
2119
2120 // Return the name to use for a type descriptor decl for TYPE.  This
2121 // is used when TYPE does not have a name.
2122
2123 std::string
2124 Gogo::unnamed_type_descriptor_decl_name(const Type* type)
2125 {
2126   return "__go_td_" + type->mangled_name(this);
2127 }
2128
2129 // Return the name to use for a type descriptor decl for a type named
2130 // NAME, defined in the function IN_FUNCTION.  IN_FUNCTION will
2131 // normally be NULL.
2132
2133 std::string
2134 Gogo::type_descriptor_decl_name(const Named_object* no,
2135                                 const Named_object* in_function)
2136 {
2137   std::string ret = "__go_tdn_";
2138   if (no->type_value()->is_builtin())
2139     go_assert(in_function == NULL);
2140   else
2141     {
2142       const std::string& unique_prefix(no->package() == NULL
2143                                        ? this->unique_prefix()
2144                                        : no->package()->unique_prefix());
2145       const std::string& package_name(no->package() == NULL
2146                                       ? this->package_name()
2147                                       : no->package()->name());
2148       ret.append(unique_prefix);
2149       ret.append(1, '.');
2150       ret.append(package_name);
2151       ret.append(1, '.');
2152       if (in_function != NULL)
2153         {
2154           ret.append(Gogo::unpack_hidden_name(in_function->name()));
2155           ret.append(1, '.');
2156         }
2157     }
2158   ret.append(no->name());
2159   return ret;
2160 }
2161
2162 // Where a type descriptor decl should be defined.
2163
2164 Gogo::Type_descriptor_location
2165 Gogo::type_descriptor_location(const Type* type)
2166 {
2167   const Named_type* name = type->named_type();
2168   if (name != NULL)
2169     {
2170       if (name->named_object()->package() != NULL)
2171         {
2172           // This is a named type defined in a different package.  The
2173           // descriptor should be defined in that package.
2174           return TYPE_DESCRIPTOR_UNDEFINED;
2175         }
2176       else if (name->is_builtin())
2177         {
2178           // We create the descriptor for a builtin type whenever we
2179           // need it.
2180           return TYPE_DESCRIPTOR_COMMON;
2181         }
2182       else
2183         {
2184           // This is a named type defined in this package.  The
2185           // descriptor should be defined here.
2186           return TYPE_DESCRIPTOR_DEFINED;
2187         }
2188     }
2189   else
2190     {
2191       if (type->points_to() != NULL
2192           && type->points_to()->named_type() != NULL
2193           && type->points_to()->named_type()->named_object()->package() != NULL)
2194         {
2195           // This is an unnamed pointer to a named type defined in a
2196           // different package.  The descriptor should be defined in
2197           // that package.
2198           return TYPE_DESCRIPTOR_UNDEFINED;
2199         }
2200       else
2201         {
2202           // This is an unnamed type.  The descriptor could be defined
2203           // in any package where it is needed, and the linker will
2204           // pick one descriptor to keep.
2205           return TYPE_DESCRIPTOR_COMMON;
2206         }
2207     }
2208 }
2209
2210 // Build a type descriptor decl for TYPE.  INITIALIZER is a struct
2211 // composite literal which initializers the type descriptor.
2212
2213 void
2214 Gogo::build_type_descriptor_decl(const Type* type, Expression* initializer,
2215                                  tree* pdecl)
2216 {
2217   const Named_type* name = type->named_type();
2218
2219   // We can have multiple instances of unnamed types, but we only want
2220   // to emit the type descriptor once.  We use a hash table to handle
2221   // this.  This is not necessary for named types, as they are unique,
2222   // and we store the type descriptor decl in the type itself.
2223   tree* phash = NULL;
2224   if (name == NULL)
2225     {
2226       if (this->type_descriptor_decls_ == NULL)
2227         this->type_descriptor_decls_ = new Type_descriptor_decls(10);
2228
2229       std::pair<Type_descriptor_decls::iterator, bool> ins =
2230         this->type_descriptor_decls_->insert(std::make_pair(type, NULL_TREE));
2231       if (!ins.second)
2232         {
2233           // We've already built a type descriptor for this type.
2234           *pdecl = ins.first->second;
2235           return;
2236         }
2237       phash = &ins.first->second;
2238     }
2239
2240   std::string decl_name;
2241   if (name == NULL)
2242     decl_name = this->unnamed_type_descriptor_decl_name(type);
2243   else
2244     decl_name = this->type_descriptor_decl_name(name->named_object(),
2245                                                 name->in_function());
2246   tree id = get_identifier_from_string(decl_name);
2247   Type* init_type = initializer->type();
2248   tree descriptor_type_tree = type_to_tree(init_type->get_backend(this));
2249   if (descriptor_type_tree == error_mark_node)
2250     {
2251       *pdecl = error_mark_node;
2252       return;
2253     }
2254   tree decl = build_decl(name == NULL ? BUILTINS_LOCATION : name->location(),
2255                          VAR_DECL, id,
2256                          build_qualified_type(descriptor_type_tree,
2257                                               TYPE_QUAL_CONST));
2258   TREE_READONLY(decl) = 1;
2259   TREE_CONSTANT(decl) = 1;
2260   DECL_ARTIFICIAL(decl) = 1;
2261
2262   go_preserve_from_gc(decl);
2263   if (phash != NULL)
2264     *phash = decl;
2265
2266   // We store the new DECL now because we may need to refer to it when
2267   // expanding INITIALIZER.
2268   *pdecl = decl;
2269
2270   // If appropriate, just refer to the exported type identifier.
2271   Gogo::Type_descriptor_location type_descriptor_location =
2272     this->type_descriptor_location(type);
2273   if (type_descriptor_location == TYPE_DESCRIPTOR_UNDEFINED)
2274     {
2275       TREE_PUBLIC(decl) = 1;
2276       DECL_EXTERNAL(decl) = 1;
2277       return;
2278     }
2279
2280   TREE_STATIC(decl) = 1;
2281   TREE_USED(decl) = 1;
2282
2283   Translate_context context(this, NULL, NULL, NULL);
2284   context.set_is_const();
2285   tree constructor = initializer->get_tree(&context);
2286
2287   if (constructor == error_mark_node)
2288     go_assert(saw_errors());
2289
2290   DECL_INITIAL(decl) = constructor;
2291
2292   if (type_descriptor_location == TYPE_DESCRIPTOR_DEFINED)
2293     TREE_PUBLIC(decl) = 1;
2294   else
2295     {
2296       go_assert(type_descriptor_location == TYPE_DESCRIPTOR_COMMON);
2297       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2298       resolve_unique_section(decl, 1, 0);
2299     }
2300
2301   rest_of_decl_compilation(decl, 1, 0);
2302 }
2303
2304 // Build an interface method table for a type: a list of function
2305 // pointers, one for each interface method.  This is used for
2306 // interfaces.
2307
2308 tree
2309 Gogo::interface_method_table_for_type(const Interface_type* interface,
2310                                       Named_type* type,
2311                                       bool is_pointer)
2312 {
2313   const Typed_identifier_list* interface_methods = interface->methods();
2314   go_assert(!interface_methods->empty());
2315
2316   std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2317                               + interface->mangled_name(this)
2318                               + "__"
2319                               + type->mangled_name(this));
2320
2321   tree id = get_identifier_from_string(mangled_name);
2322
2323   // See whether this interface has any hidden methods.
2324   bool has_hidden_methods = false;
2325   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2326        p != interface_methods->end();
2327        ++p)
2328     {
2329       if (Gogo::is_hidden_name(p->name()))
2330         {
2331           has_hidden_methods = true;
2332           break;
2333         }
2334     }
2335
2336   // We already know that the named type is convertible to the
2337   // interface.  If the interface has hidden methods, and the named
2338   // type is defined in a different package, then the interface
2339   // conversion table will be defined by that other package.
2340   if (has_hidden_methods && type->named_object()->package() != NULL)
2341     {
2342       tree array_type = build_array_type(const_ptr_type_node, NULL);
2343       tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2344       TREE_READONLY(decl) = 1;
2345       TREE_CONSTANT(decl) = 1;
2346       TREE_PUBLIC(decl) = 1;
2347       DECL_EXTERNAL(decl) = 1;
2348       go_preserve_from_gc(decl);
2349       return decl;
2350     }
2351
2352   size_t count = interface_methods->size();
2353   VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2354                                                  count + 1);
2355
2356   // The first element is the type descriptor.
2357   constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2358   elt->index = size_zero_node;
2359   Type* td_type;
2360   if (!is_pointer)
2361     td_type = type;
2362   else
2363     td_type = Type::make_pointer_type(type);
2364   elt->value = fold_convert(const_ptr_type_node,
2365                             td_type->type_descriptor_pointer(this));
2366
2367   size_t i = 1;
2368   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2369        p != interface_methods->end();
2370        ++p, ++i)
2371     {
2372       bool is_ambiguous;
2373       Method* m = type->method_function(p->name(), &is_ambiguous);
2374       go_assert(m != NULL);
2375
2376       Named_object* no = m->named_object();
2377
2378       tree fnid = no->get_id(this);
2379
2380       tree fndecl;
2381       if (no->is_function())
2382         fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2383       else if (no->is_function_declaration())
2384         fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2385                                                                 fnid);
2386       else
2387         go_unreachable();
2388       fndecl = build_fold_addr_expr(fndecl);
2389
2390       elt = VEC_quick_push(constructor_elt, pointers, NULL);
2391       elt->index = size_int(i);
2392       elt->value = fold_convert(const_ptr_type_node, fndecl);
2393     }
2394   go_assert(i == count + 1);
2395
2396   tree array_type = build_array_type(const_ptr_type_node,
2397                                      build_index_type(size_int(count)));
2398   tree constructor = build_constructor(array_type, pointers);
2399
2400   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2401   TREE_STATIC(decl) = 1;
2402   TREE_USED(decl) = 1;
2403   TREE_READONLY(decl) = 1;
2404   TREE_CONSTANT(decl) = 1;
2405   DECL_INITIAL(decl) = constructor;
2406
2407   // If the interface type has hidden methods, then this is the only
2408   // definition of the table.  Otherwise it is a comdat table which
2409   // may be defined in multiple packages.
2410   if (has_hidden_methods)
2411     TREE_PUBLIC(decl) = 1;
2412   else
2413     {
2414       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2415       resolve_unique_section(decl, 1, 0);
2416     }
2417
2418   rest_of_decl_compilation(decl, 1, 0);
2419
2420   go_preserve_from_gc(decl);
2421
2422   return decl;
2423 }
2424
2425 // Mark a function as a builtin library function.
2426
2427 void
2428 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2429 {
2430   DECL_EXTERNAL(fndecl) = 1;
2431   TREE_PUBLIC(fndecl) = 1;
2432   DECL_ARTIFICIAL(fndecl) = 1;
2433   TREE_NOTHROW(fndecl) = 1;
2434   DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2435   DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2436 }
2437
2438 // Build a call to a builtin function.
2439
2440 tree
2441 Gogo::call_builtin(tree* pdecl, source_location location, const char* name,
2442                    int nargs, tree rettype, ...)
2443 {
2444   if (rettype == error_mark_node)
2445     return error_mark_node;
2446
2447   tree* types = new tree[nargs];
2448   tree* args = new tree[nargs];
2449
2450   va_list ap;
2451   va_start(ap, rettype);
2452   for (int i = 0; i < nargs; ++i)
2453     {
2454       types[i] = va_arg(ap, tree);
2455       args[i] = va_arg(ap, tree);
2456       if (types[i] == error_mark_node || args[i] == error_mark_node)
2457         {
2458           delete[] types;
2459           delete[] args;
2460           return error_mark_node;
2461         }
2462     }
2463   va_end(ap);
2464
2465   if (*pdecl == NULL_TREE)
2466     {
2467       tree fnid = get_identifier(name);
2468
2469       tree argtypes = NULL_TREE;
2470       tree* pp = &argtypes;
2471       for (int i = 0; i < nargs; ++i)
2472         {
2473           *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2474           pp = &TREE_CHAIN(*pp);
2475         }
2476       *pp = void_list_node;
2477
2478       tree fntype = build_function_type(rettype, argtypes);
2479
2480       *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2481       Gogo::mark_fndecl_as_builtin_library(*pdecl);
2482       go_preserve_from_gc(*pdecl);
2483     }
2484
2485   tree fnptr = build_fold_addr_expr(*pdecl);
2486   if (CAN_HAVE_LOCATION_P(fnptr))
2487     SET_EXPR_LOCATION(fnptr, location);
2488
2489   tree ret = build_call_array(rettype, fnptr, nargs, args);
2490   SET_EXPR_LOCATION(ret, location);
2491
2492   delete[] types;
2493   delete[] args;
2494
2495   return ret;
2496 }
2497
2498 // Build a call to the runtime error function.
2499
2500 tree
2501 Gogo::runtime_error(int code, source_location location)
2502 {
2503   static tree runtime_error_fndecl;
2504   tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2505                                 location,
2506                                 "__go_runtime_error",
2507                                 1,
2508                                 void_type_node,
2509                                 integer_type_node,
2510                                 build_int_cst(integer_type_node, code));
2511   if (ret == error_mark_node)
2512     return error_mark_node;
2513   // The runtime error function panics and does not return.
2514   TREE_NOTHROW(runtime_error_fndecl) = 0;
2515   TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2516   return ret;
2517 }
2518
2519 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
2520 // This does a blocking receive and returns the value read from the
2521 // channel.  If FOR_SELECT is true, this is being done because it was
2522 // chosen in a select statement.
2523
2524 tree
2525 Gogo::receive_from_channel(tree type_tree, tree channel, bool for_select,
2526                            source_location location)
2527 {
2528   if (type_tree == error_mark_node || channel == error_mark_node)
2529     return error_mark_node;
2530
2531   if (int_size_in_bytes(type_tree) <= 8
2532       && !AGGREGATE_TYPE_P(type_tree)
2533       && !FLOAT_TYPE_P(type_tree))
2534     {
2535       static tree receive_small_fndecl;
2536       tree call = Gogo::call_builtin(&receive_small_fndecl,
2537                                      location,
2538                                      "__go_receive_small",
2539                                      2,
2540                                      uint64_type_node,
2541                                      ptr_type_node,
2542                                      channel,
2543                                      boolean_type_node,
2544                                      (for_select
2545                                       ? boolean_true_node
2546                                       : boolean_false_node));
2547       if (call == error_mark_node)
2548         return error_mark_node;
2549       // This can panic if there are too many operations on a closed
2550       // channel.
2551       TREE_NOTHROW(receive_small_fndecl) = 0;
2552       int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
2553       tree int_type_tree = go_type_for_size(bitsize, 1);
2554       return fold_convert_loc(location, type_tree,
2555                               fold_convert_loc(location, int_type_tree,
2556                                                call));
2557     }
2558   else
2559     {
2560       tree tmp = create_tmp_var(type_tree, get_name(type_tree));
2561       DECL_IGNORED_P(tmp) = 0;
2562       TREE_ADDRESSABLE(tmp) = 1;
2563       tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2564       SET_EXPR_LOCATION(make_tmp, location);
2565       tree tmpaddr = build_fold_addr_expr(tmp);
2566       tmpaddr = fold_convert(ptr_type_node, tmpaddr);
2567       static tree receive_big_fndecl;
2568       tree call = Gogo::call_builtin(&receive_big_fndecl,
2569                                      location,
2570                                      "__go_receive_big",
2571                                      3,
2572                                      boolean_type_node,
2573                                      ptr_type_node,
2574                                      channel,
2575                                      ptr_type_node,
2576                                      tmpaddr,
2577                                      boolean_type_node,
2578                                      (for_select
2579                                       ? boolean_true_node
2580                                       : boolean_false_node));
2581       if (call == error_mark_node)
2582         return error_mark_node;
2583       // This can panic if there are too many operations on a closed
2584       // channel.
2585       TREE_NOTHROW(receive_big_fndecl) = 0;
2586       return build2(COMPOUND_EXPR, type_tree, make_tmp,
2587                     build2(COMPOUND_EXPR, type_tree, call, tmp));
2588     }
2589 }
2590
2591 // Return the type of a function trampoline.  This is like
2592 // get_trampoline_type in tree-nested.c.
2593
2594 tree
2595 Gogo::trampoline_type_tree()
2596 {
2597   static tree type_tree;
2598   if (type_tree == NULL_TREE)
2599     {
2600       unsigned int size;
2601       unsigned int align;
2602       go_trampoline_info(&size, &align);
2603       tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
2604       t = build_array_type(char_type_node, t);
2605
2606       type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
2607                                        "__data", t);
2608       t = TYPE_FIELDS(type_tree);
2609       DECL_ALIGN(t) = align;
2610       DECL_USER_ALIGN(t) = 1;
2611
2612       go_preserve_from_gc(type_tree);
2613     }
2614   return type_tree;
2615 }
2616
2617 // Make a trampoline which calls FNADDR passing CLOSURE.
2618
2619 tree
2620 Gogo::make_trampoline(tree fnaddr, tree closure, source_location location)
2621 {
2622   tree trampoline_type = Gogo::trampoline_type_tree();
2623   tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
2624
2625   closure = save_expr(closure);
2626
2627   // We allocate the trampoline using a special function which will
2628   // mark it as executable.
2629   static tree trampoline_fndecl;
2630   tree x = Gogo::call_builtin(&trampoline_fndecl,
2631                               location,
2632                               "__go_allocate_trampoline",
2633                               2,
2634                               ptr_type_node,
2635                               size_type_node,
2636                               trampoline_size,
2637                               ptr_type_node,
2638                               fold_convert_loc(location, ptr_type_node,
2639                                                closure));
2640   if (x == error_mark_node)
2641     return error_mark_node;
2642
2643   x = save_expr(x);
2644
2645   // Initialize the trampoline.
2646   tree ini = build_call_expr(implicit_built_in_decls[BUILT_IN_INIT_TRAMPOLINE],
2647                              3, x, fnaddr, closure);
2648
2649   // On some targets the trampoline address needs to be adjusted.  For
2650   // example, when compiling in Thumb mode on the ARM, the address
2651   // needs to have the low bit set.
2652   x = build_call_expr(implicit_built_in_decls[BUILT_IN_ADJUST_TRAMPOLINE],
2653                       1, x);
2654   x = fold_convert(TREE_TYPE(fnaddr), x);
2655
2656   return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
2657 }