OSDN Git Service

libgo: Update to weekly.2011-12-14.
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "runtime.h"
35 #include "backend.h"
36 #include "gogo.h"
37
38 // Whether we have seen any errors.
39
40 bool
41 saw_errors()
42 {
43   return errorcount != 0 || sorrycount != 0;
44 }
45
46 // A helper function.
47
48 static inline tree
49 get_identifier_from_string(const std::string& str)
50 {
51   return get_identifier_with_length(str.data(), str.length());
52 }
53
54 // Builtin functions.
55
56 static std::map<std::string, tree> builtin_functions;
57
58 // Define a builtin function.  BCODE is the builtin function code
59 // defined by builtins.def.  NAME is the name of the builtin function.
60 // LIBNAME is the name of the corresponding library function, and is
61 // NULL if there isn't one.  FNTYPE is the type of the function.
62 // CONST_P is true if the function has the const attribute.
63
64 static void
65 define_builtin(built_in_function bcode, const char* name, const char* libname,
66                tree fntype, bool const_p)
67 {
68   tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
69                                    libname, NULL_TREE);
70   if (const_p)
71     TREE_READONLY(decl) = 1;
72   set_builtin_decl(bcode, decl, true);
73   builtin_functions[name] = decl;
74   if (libname != NULL)
75     {
76       decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
77                                   NULL, NULL_TREE);
78       if (const_p)
79         TREE_READONLY(decl) = 1;
80       builtin_functions[libname] = decl;
81     }
82 }
83
84 // Create trees for implicit builtin functions.
85
86 void
87 Gogo::define_builtin_function_trees()
88 {
89   /* We need to define the fetch_and_add functions, since we use them
90      for ++ and --.  */
91   tree t = go_type_for_size(BITS_PER_UNIT, 1);
92   tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
93   define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
94                  build_function_type_list(t, p, t, NULL_TREE), false);
95
96   t = go_type_for_size(BITS_PER_UNIT * 2, 1);
97   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
98   define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
99                   build_function_type_list(t, p, t, NULL_TREE), false);
100
101   t = go_type_for_size(BITS_PER_UNIT * 4, 1);
102   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
103   define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
104                  build_function_type_list(t, p, t, NULL_TREE), false);
105
106   t = go_type_for_size(BITS_PER_UNIT * 8, 1);
107   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
108   define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
109                  build_function_type_list(t, p, t, NULL_TREE), false);
110
111   // We use __builtin_expect for magic import functions.
112   define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
113                  build_function_type_list(long_integer_type_node,
114                                           long_integer_type_node,
115                                           long_integer_type_node,
116                                           NULL_TREE),
117                  true);
118
119   // We use __builtin_memcmp for struct comparisons.
120   define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
121                  build_function_type_list(integer_type_node,
122                                           const_ptr_type_node,
123                                           const_ptr_type_node,
124                                           size_type_node,
125                                           NULL_TREE),
126                  false);
127
128   // We provide some functions for the math library.
129   tree math_function_type = build_function_type_list(double_type_node,
130                                                      double_type_node,
131                                                      NULL_TREE);
132   tree math_function_type_long =
133     build_function_type_list(long_double_type_node, long_double_type_node,
134                              long_double_type_node, NULL_TREE);
135   tree math_function_type_two = build_function_type_list(double_type_node,
136                                                          double_type_node,
137                                                          double_type_node,
138                                                          NULL_TREE);
139   tree math_function_type_long_two =
140     build_function_type_list(long_double_type_node, long_double_type_node,
141                              long_double_type_node, NULL_TREE);
142   define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos",
143                  math_function_type, true);
144   define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
145                  math_function_type_long, true);
146   define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin",
147                  math_function_type, true);
148   define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl",
149                  math_function_type_long, true);
150   define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan",
151                  math_function_type, true);
152   define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl",
153                  math_function_type_long, true);
154   define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
155                  math_function_type_two, true);
156   define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
157                  math_function_type_long_two, true);
158   define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil",
159                  math_function_type, true);
160   define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill",
161                  math_function_type_long, true);
162   define_builtin(BUILT_IN_COS, "__builtin_cos", "cos",
163                  math_function_type, true);
164   define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl",
165                  math_function_type_long, true);
166   define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp",
167                  math_function_type, true);
168   define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl",
169                  math_function_type_long, true);
170   define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
171                  math_function_type, true);
172   define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
173                  math_function_type_long, true);
174   define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs",
175                  math_function_type, true);
176   define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
177                  math_function_type_long, true);
178   define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor",
179                  math_function_type, true);
180   define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
181                  math_function_type_long, true);
182   define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod",
183                  math_function_type_two, true);
184   define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
185                  math_function_type_long_two, true);
186   define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
187                  build_function_type_list(double_type_node,
188                                           double_type_node,
189                                           integer_type_node,
190                                           NULL_TREE),
191                  true);
192   define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
193                  build_function_type_list(long_double_type_node,
194                                           long_double_type_node,
195                                           integer_type_node,
196                                           NULL_TREE),
197                  true);
198   define_builtin(BUILT_IN_LOG, "__builtin_log", "log",
199                  math_function_type, true);
200   define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl",
201                  math_function_type_long, true);
202   define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
203                  math_function_type, true);
204   define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
205                  math_function_type_long, true);
206   define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10",
207                  math_function_type, true);
208   define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
209                  math_function_type_long, true);
210   define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2",
211                  math_function_type, true);
212   define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
213                  math_function_type_long, true);
214   define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin",
215                  math_function_type, true);
216   define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl",
217                  math_function_type_long, true);
218   define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
219                  math_function_type, true);
220   define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
221                  math_function_type_long, true);
222   define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan",
223                  math_function_type, true);
224   define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl",
225                  math_function_type_long, true);
226   define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
227                  math_function_type, true);
228   define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
229                  math_function_type_long, true);
230
231   // We use __builtin_return_address in the thunk we build for
232   // functions which call recover.
233   define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
234                  build_function_type_list(ptr_type_node,
235                                           unsigned_type_node,
236                                           NULL_TREE),
237                  false);
238
239   // The compiler uses __builtin_trap for some exception handling
240   // cases.
241   define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
242                  build_function_type(void_type_node, void_list_node),
243                  false);
244 }
245
246 // Get the name to use for the import control function.  If there is a
247 // global function or variable, then we know that that name must be
248 // unique in the link, and we use it as the basis for our name.
249
250 const std::string&
251 Gogo::get_init_fn_name()
252 {
253   if (this->init_fn_name_.empty())
254     {
255       go_assert(this->package_ != NULL);
256       if (this->is_main_package())
257         {
258           // Use a name which the runtime knows.
259           this->init_fn_name_ = "__go_init_main";
260         }
261       else
262         {
263           std::string s = this->unique_prefix();
264           s.append(1, '.');
265           s.append(this->package_name());
266           s.append("..import");
267           this->init_fn_name_ = s;
268         }
269     }
270
271   return this->init_fn_name_;
272 }
273
274 // Add statements to INIT_STMT_LIST which run the initialization
275 // functions for imported packages.  This is only used for the "main"
276 // package.
277
278 void
279 Gogo::init_imports(tree* init_stmt_list)
280 {
281   go_assert(this->is_main_package());
282
283   if (this->imported_init_fns_.empty())
284     return;
285
286   tree fntype = build_function_type(void_type_node, void_list_node);
287
288   // We must call them in increasing priority order.
289   std::vector<Import_init> v;
290   for (std::set<Import_init>::const_iterator p =
291          this->imported_init_fns_.begin();
292        p != this->imported_init_fns_.end();
293        ++p)
294     v.push_back(*p);
295   std::sort(v.begin(), v.end());
296
297   for (std::vector<Import_init>::const_iterator p = v.begin();
298        p != v.end();
299        ++p)
300     {
301       std::string user_name = p->package_name() + ".init";
302       tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
303                              get_identifier_from_string(user_name),
304                              fntype);
305       const std::string& init_name(p->init_name());
306       SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
307       TREE_PUBLIC(decl) = 1;
308       DECL_EXTERNAL(decl) = 1;
309       append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
310     }
311 }
312
313 // Register global variables with the garbage collector.  We need to
314 // register all variables which can hold a pointer value.  They become
315 // roots during the mark phase.  We build a struct that is easy to
316 // hook into a list of roots.
317
318 // struct __go_gc_root_list
319 // {
320 //   struct __go_gc_root_list* __next;
321 //   struct __go_gc_root
322 //   {
323 //     void* __decl;
324 //     size_t __size;
325 //   } __roots[];
326 // };
327
328 // The last entry in the roots array has a NULL decl field.
329
330 void
331 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
332                        tree* init_stmt_list)
333 {
334   if (var_gc.empty())
335     return;
336
337   size_t count = var_gc.size();
338
339   tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
340                                         "__next",
341                                         ptr_type_node,
342                                         "__size",
343                                         sizetype);
344
345   tree index_type = build_index_type(size_int(count));
346   tree array_type = build_array_type(root_type, index_type);
347
348   tree root_list_type = make_node(RECORD_TYPE);
349   root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
350                                         root_list_type, 2,
351                                         "__next",
352                                         build_pointer_type(root_list_type),
353                                         "__roots",
354                                         array_type);
355
356   // Build an initialier for the __roots array.
357
358   VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
359                                                   count + 1);
360
361   size_t i = 0;
362   for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
363        p != var_gc.end();
364        ++p, ++i)
365     {
366       VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
367
368       constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
369       tree field = TYPE_FIELDS(root_type);
370       elt->index = field;
371       Bvariable* bvar = (*p)->get_backend_variable(this, NULL);
372       tree decl = var_to_tree(bvar);
373       go_assert(TREE_CODE(decl) == VAR_DECL);
374       elt->value = build_fold_addr_expr(decl);
375
376       elt = VEC_quick_push(constructor_elt, init, NULL);
377       field = DECL_CHAIN(field);
378       elt->index = field;
379       elt->value = DECL_SIZE_UNIT(decl);
380
381       elt = VEC_quick_push(constructor_elt, roots_init, NULL);
382       elt->index = size_int(i);
383       elt->value = build_constructor(root_type, init);
384     }
385
386   // The list ends with a NULL entry.
387
388   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
389
390   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
391   tree field = TYPE_FIELDS(root_type);
392   elt->index = field;
393   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
394
395   elt = VEC_quick_push(constructor_elt, init, NULL);
396   field = DECL_CHAIN(field);
397   elt->index = field;
398   elt->value = size_zero_node;
399
400   elt = VEC_quick_push(constructor_elt, roots_init, NULL);
401   elt->index = size_int(i);
402   elt->value = build_constructor(root_type, init);
403
404   // Build a constructor for the struct.
405
406   VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
407
408   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
409   field = TYPE_FIELDS(root_list_type);
410   elt->index = field;
411   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
412
413   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
414   field = DECL_CHAIN(field);
415   elt->index = field;
416   elt->value = build_constructor(array_type, roots_init);
417
418   // Build a decl to register.
419
420   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
421                          create_tmp_var_name("gc"), root_list_type);
422   DECL_EXTERNAL(decl) = 0;
423   TREE_PUBLIC(decl) = 0;
424   TREE_STATIC(decl) = 1;
425   DECL_ARTIFICIAL(decl) = 1;
426   DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
427   rest_of_decl_compilation(decl, 1, 0);
428
429   static tree register_gc_fndecl;
430   tree call = Gogo::call_builtin(&register_gc_fndecl,
431                                  Linemap::predeclared_location(),
432                                  "__go_register_gc_roots",
433                                  1,
434                                  void_type_node,
435                                  build_pointer_type(root_list_type),
436                                  build_fold_addr_expr(decl));
437   if (call != error_mark_node)
438     append_to_statement_list(call, init_stmt_list);
439 }
440
441 // Build the decl for the initialization function.
442
443 tree
444 Gogo::initialization_function_decl()
445 {
446   // The tedious details of building your own function.  There doesn't
447   // seem to be a helper function for this.
448   std::string name = this->package_name() + ".init";
449   tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
450                            get_identifier_from_string(name),
451                            build_function_type(void_type_node,
452                                                void_list_node));
453   const std::string& asm_name(this->get_init_fn_name());
454   SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
455
456   tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
457                             void_type_node);
458   DECL_ARTIFICIAL(resdecl) = 1;
459   DECL_CONTEXT(resdecl) = fndecl;
460   DECL_RESULT(fndecl) = resdecl;
461
462   TREE_STATIC(fndecl) = 1;
463   TREE_USED(fndecl) = 1;
464   DECL_ARTIFICIAL(fndecl) = 1;
465   TREE_PUBLIC(fndecl) = 1;
466
467   DECL_INITIAL(fndecl) = make_node(BLOCK);
468   TREE_USED(DECL_INITIAL(fndecl)) = 1;
469
470   return fndecl;
471 }
472
473 // Create the magic initialization function.  INIT_STMT_LIST is the
474 // code that it needs to run.
475
476 void
477 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
478 {
479   // Make sure that we thought we needed an initialization function,
480   // as otherwise we will not have reported it in the export data.
481   go_assert(this->is_main_package() || this->need_init_fn_);
482
483   if (fndecl == NULL_TREE)
484     fndecl = this->initialization_function_decl();
485
486   DECL_SAVED_TREE(fndecl) = init_stmt_list;
487
488   current_function_decl = fndecl;
489   if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
490     push_struct_function(fndecl);
491   else
492     push_cfun(DECL_STRUCT_FUNCTION(fndecl));
493   cfun->function_end_locus = BUILTINS_LOCATION;
494
495   gimplify_function_tree(fndecl);
496
497   cgraph_add_new_function(fndecl, false);
498   cgraph_mark_needed_node(cgraph_get_node(fndecl));
499
500   current_function_decl = NULL_TREE;
501   pop_cfun();
502 }
503
504 // Search for references to VAR in any statements or called functions.
505
506 class Find_var : public Traverse
507 {
508  public:
509   // A hash table we use to avoid looping.  The index is the name of a
510   // named object.  We only look through objects defined in this
511   // package.
512   typedef Unordered_set(std::string) Seen_objects;
513
514   Find_var(Named_object* var, Seen_objects* seen_objects)
515     : Traverse(traverse_expressions),
516       var_(var), seen_objects_(seen_objects), found_(false)
517   { }
518
519   // Whether the variable was found.
520   bool
521   found() const
522   { return this->found_; }
523
524   int
525   expression(Expression**);
526
527  private:
528   // The variable we are looking for.
529   Named_object* var_;
530   // Names of objects we have already seen.
531   Seen_objects* seen_objects_;
532   // True if the variable was found.
533   bool found_;
534 };
535
536 // See if EXPR refers to VAR, looking through function calls and
537 // variable initializations.
538
539 int
540 Find_var::expression(Expression** pexpr)
541 {
542   Expression* e = *pexpr;
543
544   Var_expression* ve = e->var_expression();
545   if (ve != NULL)
546     {
547       Named_object* v = ve->named_object();
548       if (v == this->var_)
549         {
550           this->found_ = true;
551           return TRAVERSE_EXIT;
552         }
553
554       if (v->is_variable() && v->package() == NULL)
555         {
556           Expression* init = v->var_value()->init();
557           if (init != NULL)
558             {
559               std::pair<Seen_objects::iterator, bool> ins =
560                 this->seen_objects_->insert(v->name());
561               if (ins.second)
562                 {
563                   // This is the first time we have seen this name.
564                   if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
565                     return TRAVERSE_EXIT;
566                 }
567             }
568         }
569     }
570
571   // We traverse the code of any function we see.  Note that this
572   // means that we will traverse the code of a function whose address
573   // is taken even if it is not called.
574   Func_expression* fe = e->func_expression();
575   if (fe != NULL)
576     {
577       const Named_object* f = fe->named_object();
578       if (f->is_function() && f->package() == NULL)
579         {
580           std::pair<Seen_objects::iterator, bool> ins =
581             this->seen_objects_->insert(f->name());
582           if (ins.second)
583             {
584               // This is the first time we have seen this name.
585               if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
586                 return TRAVERSE_EXIT;
587             }
588         }
589     }
590
591   return TRAVERSE_CONTINUE;
592 }
593
594 // Return true if EXPR refers to VAR.
595
596 static bool
597 expression_requires(Expression* expr, Block* preinit, Named_object* var)
598 {
599   Find_var::Seen_objects seen_objects;
600   Find_var find_var(var, &seen_objects);
601   if (expr != NULL)
602     Expression::traverse(&expr, &find_var);
603   if (preinit != NULL)
604     preinit->traverse(&find_var);
605   
606   return find_var.found();
607 }
608
609 // Sort variable initializations.  If the initialization expression
610 // for variable A refers directly or indirectly to the initialization
611 // expression for variable B, then we must initialize B before A.
612
613 class Var_init
614 {
615  public:
616   Var_init()
617     : var_(NULL), init_(NULL_TREE), waiting_(0)
618   { }
619
620   Var_init(Named_object* var, tree init)
621     : var_(var), init_(init), waiting_(0)
622   { }
623
624   // Return the variable.
625   Named_object*
626   var() const
627   { return this->var_; }
628
629   // Return the initialization expression.
630   tree
631   init() const
632   { return this->init_; }
633
634   // Return the number of variables waiting for this one to be
635   // initialized.
636   size_t
637   waiting() const
638   { return this->waiting_; }
639
640   // Increment the number waiting.
641   void
642   increment_waiting()
643   { ++this->waiting_; }
644
645  private:
646   // The variable being initialized.
647   Named_object* var_;
648   // The initialization expression to run.
649   tree init_;
650   // The number of variables which are waiting for this one.
651   size_t waiting_;
652 };
653
654 typedef std::list<Var_init> Var_inits;
655
656 // Sort the variable initializations.  The rule we follow is that we
657 // emit them in the order they appear in the array, except that if the
658 // initialization expression for a variable V1 depends upon another
659 // variable V2 then we initialize V1 after V2.
660
661 static void
662 sort_var_inits(Var_inits* var_inits)
663 {
664   Var_inits ready;
665   while (!var_inits->empty())
666     {
667       Var_inits::iterator p1 = var_inits->begin();
668       Named_object* var = p1->var();
669       Expression* init = var->var_value()->init();
670       Block* preinit = var->var_value()->preinit();
671
672       // Start walking through the list to see which variables VAR
673       // needs to wait for.  We can skip P1->WAITING variables--that
674       // is the number we've already checked.
675       Var_inits::iterator p2 = p1;
676       ++p2;
677       for (size_t i = p1->waiting(); i > 0; --i)
678         ++p2;
679
680       for (; p2 != var_inits->end(); ++p2)
681         {
682           if (expression_requires(init, preinit, p2->var()))
683             {
684               // Check for cycles.
685               if (expression_requires(p2->var()->var_value()->init(),
686                                       p2->var()->var_value()->preinit(),
687                                       var))
688                 {
689                   error_at(var->location(),
690                            ("initialization expressions for %qs and "
691                             "%qs depend upon each other"),
692                            var->message_name().c_str(),
693                            p2->var()->message_name().c_str());
694                   inform(p2->var()->location(), "%qs defined here",
695                          p2->var()->message_name().c_str());
696                   p2 = var_inits->end();
697                 }
698               else
699                 {
700                   // We can't emit P1 until P2 is emitted.  Move P1.
701                   // Note that the WAITING loop always executes at
702                   // least once, which is what we want.
703                   p2->increment_waiting();
704                   Var_inits::iterator p3 = p2;
705                   for (size_t i = p2->waiting(); i > 0; --i)
706                     ++p3;
707                   var_inits->splice(p3, *var_inits, p1);
708                 }
709               break;
710             }
711         }
712
713       if (p2 == var_inits->end())
714         {
715           // VAR does not depends upon any other initialization expressions.
716
717           // Check for a loop of VAR on itself.  We only do this if
718           // INIT is not NULL; when INIT is NULL, it means that
719           // PREINIT sets VAR, which we will interpret as a loop.
720           if (init != NULL && expression_requires(init, preinit, var))
721             error_at(var->location(),
722                      "initialization expression for %qs depends upon itself",
723                      var->message_name().c_str());
724           ready.splice(ready.end(), *var_inits, p1);
725         }
726     }
727
728   // Now READY is the list in the desired initialization order.
729   var_inits->swap(ready);
730 }
731
732 // Write out the global definitions.
733
734 void
735 Gogo::write_globals()
736 {
737   this->convert_named_types();
738   this->build_interface_method_tables();
739
740   Bindings* bindings = this->current_bindings();
741   size_t count_definitions = bindings->size_definitions();
742   size_t count = count_definitions;
743
744   tree* vec = new tree[count];
745
746   tree init_fndecl = NULL_TREE;
747   tree init_stmt_list = NULL_TREE;
748
749   if (this->is_main_package())
750     this->init_imports(&init_stmt_list);
751
752   // A list of variable initializations.
753   Var_inits var_inits;
754
755   // A list of variables which need to be registered with the garbage
756   // collector.
757   std::vector<Named_object*> var_gc;
758   var_gc.reserve(count);
759
760   tree var_init_stmt_list = NULL_TREE;
761   size_t i = 0;
762   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
763        p != bindings->end_definitions();
764        ++p, ++i)
765     {
766       Named_object* no = *p;
767
768       go_assert(!no->is_type_declaration() && !no->is_function_declaration());
769       // There is nothing to do for a package.
770       if (no->is_package())
771         {
772           --i;
773           --count;
774           continue;
775         }
776
777       // There is nothing to do for an object which was imported from
778       // a different package into the global scope.
779       if (no->package() != NULL)
780         {
781           --i;
782           --count;
783           continue;
784         }
785
786       // There is nothing useful we can output for constants which
787       // have ideal or non-integeral type.
788       if (no->is_const())
789         {
790           Type* type = no->const_value()->type();
791           if (type == NULL)
792             type = no->const_value()->expr()->type();
793           if (type->is_abstract() || type->integer_type() == NULL)
794             {
795               --i;
796               --count;
797               continue;
798             }
799         }
800
801       if (!no->is_variable())
802         {
803           vec[i] = no->get_tree(this, NULL);
804           if (vec[i] == error_mark_node)
805             {
806               go_assert(saw_errors());
807               --i;
808               --count;
809               continue;
810             }
811         }
812       else
813         {
814           Bvariable* var = no->get_backend_variable(this, NULL);
815           vec[i] = var_to_tree(var);
816           if (vec[i] == error_mark_node)
817             {
818               go_assert(saw_errors());
819               --i;
820               --count;
821               continue;
822             }
823
824           // Check for a sink variable, which may be used to run an
825           // initializer purely for its side effects.
826           bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
827
828           tree var_init_tree = NULL_TREE;
829           if (!no->var_value()->has_pre_init())
830             {
831               tree init = no->var_value()->get_init_tree(this, NULL);
832               if (init == error_mark_node)
833                 go_assert(saw_errors());
834               else if (init == NULL_TREE)
835                 ;
836               else if (TREE_CONSTANT(init))
837                 this->backend()->global_variable_set_init(var,
838                                                           tree_to_expr(init));
839               else if (is_sink)
840                 var_init_tree = init;
841               else
842                 var_init_tree = fold_build2_loc(no->location().gcc_location(),
843                                                 MODIFY_EXPR, void_type_node,
844                                                 vec[i], init);
845             }
846           else
847             {
848               // We are going to create temporary variables which
849               // means that we need an fndecl.
850               if (init_fndecl == NULL_TREE)
851                 init_fndecl = this->initialization_function_decl();
852               current_function_decl = init_fndecl;
853               if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
854                 push_struct_function(init_fndecl);
855               else
856                 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
857
858               tree var_decl = is_sink ? NULL_TREE : vec[i];
859               var_init_tree = no->var_value()->get_init_block(this, NULL,
860                                                               var_decl);
861
862               current_function_decl = NULL_TREE;
863               pop_cfun();
864             }
865
866           if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
867             {
868               if (no->var_value()->init() == NULL
869                   && !no->var_value()->has_pre_init())
870                 append_to_statement_list(var_init_tree, &var_init_stmt_list);
871               else
872                 var_inits.push_back(Var_init(no, var_init_tree));
873             }
874
875           if (!is_sink && no->var_value()->type()->has_pointer())
876             var_gc.push_back(no);
877         }
878     }
879
880   // Register global variables with the garbage collector.
881   this->register_gc_vars(var_gc, &init_stmt_list);
882
883   // Simple variable initializations, after all variables are
884   // registered.
885   append_to_statement_list(var_init_stmt_list, &init_stmt_list);
886
887   // Complex variable initializations, first sorting them into a
888   // workable order.
889   if (!var_inits.empty())
890     {
891       sort_var_inits(&var_inits);
892       for (Var_inits::const_iterator p = var_inits.begin();
893            p != var_inits.end();
894            ++p)
895         append_to_statement_list(p->init(), &init_stmt_list);
896     }
897
898   // After all the variables are initialized, call the "init"
899   // functions if there are any.
900   for (std::vector<Named_object*>::const_iterator p =
901          this->init_functions_.begin();
902        p != this->init_functions_.end();
903        ++p)
904     {
905       tree decl = (*p)->get_tree(this, NULL);
906       tree call = build_call_expr(decl, 0);
907       append_to_statement_list(call, &init_stmt_list);
908     }
909
910   // Set up a magic function to do all the initialization actions.
911   // This will be called if this package is imported.
912   if (init_stmt_list != NULL_TREE
913       || this->need_init_fn_
914       || this->is_main_package())
915     this->write_initialization_function(init_fndecl, init_stmt_list);
916
917   // We should not have seen any new bindings created during the
918   // conversion.
919   go_assert(count_definitions == this->current_bindings()->size_definitions());
920
921   // Pass everything back to the middle-end.
922
923   wrapup_global_declarations(vec, count);
924
925   cgraph_finalize_compilation_unit();
926
927   check_global_declarations(vec, count);
928   emit_debug_global_declarations(vec, count);
929
930   delete[] vec;
931 }
932
933 // Get a tree for the identifier for a named object.
934
935 tree
936 Named_object::get_id(Gogo* gogo)
937 {
938   go_assert(!this->is_variable() && !this->is_result_variable());
939   std::string decl_name;
940   if (this->is_function_declaration()
941       && !this->func_declaration_value()->asm_name().empty())
942     decl_name = this->func_declaration_value()->asm_name();
943   else if (this->is_type()
944            && Linemap::is_predeclared_location(this->type_value()->location()))
945     {
946       // We don't need the package name for builtin types.
947       decl_name = Gogo::unpack_hidden_name(this->name_);
948     }
949   else
950     {
951       std::string package_name;
952       if (this->package_ == NULL)
953         package_name = gogo->package_name();
954       else
955         package_name = this->package_->name();
956
957       decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
958
959       Function_type* fntype;
960       if (this->is_function())
961         fntype = this->func_value()->type();
962       else if (this->is_function_declaration())
963         fntype = this->func_declaration_value()->type();
964       else
965         fntype = NULL;
966       if (fntype != NULL && fntype->is_method())
967         {
968           decl_name.push_back('.');
969           decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
970         }
971     }
972   if (this->is_type())
973     {
974       const Named_object* in_function = this->type_value()->in_function();
975       if (in_function != NULL)
976         decl_name += '$' + in_function->name();
977     }
978   return get_identifier_from_string(decl_name);
979 }
980
981 // Get a tree for a named object.
982
983 tree
984 Named_object::get_tree(Gogo* gogo, Named_object* function)
985 {
986   if (this->tree_ != NULL_TREE)
987     return this->tree_;
988
989   tree name;
990   if (this->classification_ == NAMED_OBJECT_TYPE)
991     name = NULL_TREE;
992   else
993     name = this->get_id(gogo);
994   tree decl;
995   switch (this->classification_)
996     {
997     case NAMED_OBJECT_CONST:
998       {
999         Named_constant* named_constant = this->u_.const_value;
1000         Translate_context subcontext(gogo, function, NULL, NULL);
1001         tree expr_tree = named_constant->expr()->get_tree(&subcontext);
1002         if (expr_tree == error_mark_node)
1003           decl = error_mark_node;
1004         else
1005           {
1006             Type* type = named_constant->type();
1007             if (type != NULL && !type->is_abstract())
1008               {
1009                 if (type->is_error())
1010                   expr_tree = error_mark_node;
1011                 else
1012                   {
1013                     Btype* btype = type->get_backend(gogo);
1014                     expr_tree = fold_convert(type_to_tree(btype), expr_tree);
1015                   }
1016               }
1017             if (expr_tree == error_mark_node)
1018               decl = error_mark_node;
1019             else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
1020               {
1021                 decl = build_decl(named_constant->location().gcc_location(),
1022                                   CONST_DECL, name, TREE_TYPE(expr_tree));
1023                 DECL_INITIAL(decl) = expr_tree;
1024                 TREE_CONSTANT(decl) = 1;
1025                 TREE_READONLY(decl) = 1;
1026               }
1027             else
1028               {
1029                 // A CONST_DECL is only for an enum constant, so we
1030                 // shouldn't use for non-integral types.  Instead we
1031                 // just return the constant itself, rather than a
1032                 // decl.
1033                 decl = expr_tree;
1034               }
1035           }
1036       }
1037       break;
1038
1039     case NAMED_OBJECT_TYPE:
1040       {
1041         Named_type* named_type = this->u_.type_value;
1042         tree type_tree = type_to_tree(named_type->get_backend(gogo));
1043         if (type_tree == error_mark_node)
1044           decl = error_mark_node;
1045         else
1046           {
1047             decl = TYPE_NAME(type_tree);
1048             go_assert(decl != NULL_TREE);
1049
1050             // We need to produce a type descriptor for every named
1051             // type, and for a pointer to every named type, since
1052             // other files or packages might refer to them.  We need
1053             // to do this even for hidden types, because they might
1054             // still be returned by some function.  Simply calling the
1055             // type_descriptor method is enough to create the type
1056             // descriptor, even though we don't do anything with it.
1057             if (this->package_ == NULL)
1058               {
1059                 named_type->
1060                   type_descriptor_pointer(gogo,
1061                                           Linemap::predeclared_location());
1062                 Type* pn = Type::make_pointer_type(named_type);
1063                 pn->type_descriptor_pointer(gogo,
1064                                             Linemap::predeclared_location());
1065               }
1066           }
1067       }
1068       break;
1069
1070     case NAMED_OBJECT_TYPE_DECLARATION:
1071       error("reference to undefined type %qs",
1072             this->message_name().c_str());
1073       return error_mark_node;
1074
1075     case NAMED_OBJECT_VAR:
1076     case NAMED_OBJECT_RESULT_VAR:
1077     case NAMED_OBJECT_SINK:
1078       go_unreachable();
1079
1080     case NAMED_OBJECT_FUNC:
1081       {
1082         Function* func = this->u_.func_value;
1083         decl = func->get_or_make_decl(gogo, this, name);
1084         if (decl != error_mark_node)
1085           {
1086             if (func->block() != NULL)
1087               {
1088                 if (DECL_STRUCT_FUNCTION(decl) == NULL)
1089                   push_struct_function(decl);
1090                 else
1091                   push_cfun(DECL_STRUCT_FUNCTION(decl));
1092
1093                 cfun->function_end_locus =
1094                   func->block()->end_location().gcc_location();
1095
1096                 current_function_decl = decl;
1097
1098                 func->build_tree(gogo, this);
1099
1100                 gimplify_function_tree(decl);
1101
1102                 cgraph_finalize_function(decl, true);
1103
1104                 current_function_decl = NULL_TREE;
1105                 pop_cfun();
1106               }
1107           }
1108       }
1109       break;
1110
1111     default:
1112       go_unreachable();
1113     }
1114
1115   if (TREE_TYPE(decl) == error_mark_node)
1116     decl = error_mark_node;
1117
1118   tree ret = decl;
1119
1120   this->tree_ = ret;
1121
1122   if (ret != error_mark_node)
1123     go_preserve_from_gc(ret);
1124
1125   return ret;
1126 }
1127
1128 // Get the initial value of a variable as a tree.  This does not
1129 // consider whether the variable is in the heap--it returns the
1130 // initial value as though it were always stored in the stack.
1131
1132 tree
1133 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1134 {
1135   go_assert(this->preinit_ == NULL);
1136   if (this->init_ == NULL)
1137     {
1138       go_assert(!this->is_parameter_);
1139       if (this->is_global_ || this->is_in_heap())
1140         return NULL;
1141       Btype* btype = this->type_->get_backend(gogo);
1142       return expr_to_tree(gogo->backend()->zero_expression(btype));
1143     }
1144   else
1145     {
1146       Translate_context context(gogo, function, NULL, NULL);
1147       tree rhs_tree = this->init_->get_tree(&context);
1148       return Expression::convert_for_assignment(&context, this->type(),
1149                                                 this->init_->type(),
1150                                                 rhs_tree, this->location());
1151     }
1152 }
1153
1154 // Get the initial value of a variable when a block is required.
1155 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1156
1157 tree
1158 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1159 {
1160   go_assert(this->preinit_ != NULL);
1161
1162   // We want to add the variable assignment to the end of the preinit
1163   // block.  The preinit block may have a TRY_FINALLY_EXPR and a
1164   // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1165   // regular statements.
1166
1167   Translate_context context(gogo, function, NULL, NULL);
1168   Bblock* bblock = this->preinit_->get_backend(&context);
1169   tree block_tree = block_to_tree(bblock);
1170   if (block_tree == error_mark_node)
1171     return error_mark_node;
1172   go_assert(TREE_CODE(block_tree) == BIND_EXPR);
1173   tree statements = BIND_EXPR_BODY(block_tree);
1174   while (statements != NULL_TREE
1175          && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1176              || TREE_CODE(statements) == TRY_CATCH_EXPR))
1177     statements = TREE_OPERAND(statements, 0);
1178
1179   // It's possible to have pre-init statements without an initializer
1180   // if the pre-init statements set the variable.
1181   if (this->init_ != NULL)
1182     {
1183       tree rhs_tree = this->init_->get_tree(&context);
1184       if (rhs_tree == error_mark_node)
1185         return error_mark_node;
1186       if (var_decl == NULL_TREE)
1187         append_to_statement_list(rhs_tree, &statements);
1188       else
1189         {
1190           tree val = Expression::convert_for_assignment(&context, this->type(),
1191                                                         this->init_->type(),
1192                                                         rhs_tree,
1193                                                         this->location());
1194           if (val == error_mark_node)
1195             return error_mark_node;
1196           tree set = fold_build2_loc(this->location().gcc_location(),
1197                                      MODIFY_EXPR, void_type_node, var_decl,
1198                                      val);
1199           append_to_statement_list(set, &statements);
1200         }
1201     }
1202
1203   return block_tree;
1204 }
1205
1206 // Get a tree for a function decl.
1207
1208 tree
1209 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1210 {
1211   if (this->fndecl_ == NULL_TREE)
1212     {
1213       tree functype = type_to_tree(this->type_->get_backend(gogo));
1214       if (functype == error_mark_node)
1215         this->fndecl_ = error_mark_node;
1216       else
1217         {
1218           // The type of a function comes back as a pointer, but we
1219           // want the real function type for a function declaration.
1220           go_assert(POINTER_TYPE_P(functype));
1221           functype = TREE_TYPE(functype);
1222           tree decl = build_decl(this->location().gcc_location(), FUNCTION_DECL,
1223                                  id, functype);
1224
1225           this->fndecl_ = decl;
1226
1227           if (no->package() != NULL)
1228             ;
1229           else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1230             ;
1231           else if (Gogo::unpack_hidden_name(no->name()) == "init"
1232                    && !this->type_->is_method())
1233             ;
1234           else if (Gogo::unpack_hidden_name(no->name()) == "main"
1235                    && gogo->is_main_package())
1236             TREE_PUBLIC(decl) = 1;
1237           // Methods have to be public even if they are hidden because
1238           // they can be pulled into type descriptors when using
1239           // anonymous fields.
1240           else if (!Gogo::is_hidden_name(no->name())
1241                    || this->type_->is_method())
1242             {
1243               TREE_PUBLIC(decl) = 1;
1244               std::string asm_name = gogo->unique_prefix();
1245               asm_name.append(1, '.');
1246               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1247               SET_DECL_ASSEMBLER_NAME(decl,
1248                                       get_identifier_from_string(asm_name));
1249             }
1250
1251           // Why do we have to do this in the frontend?
1252           tree restype = TREE_TYPE(functype);
1253           tree resdecl =
1254             build_decl(this->location().gcc_location(), RESULT_DECL, NULL_TREE,
1255                        restype);
1256           DECL_ARTIFICIAL(resdecl) = 1;
1257           DECL_IGNORED_P(resdecl) = 1;
1258           DECL_CONTEXT(resdecl) = decl;
1259           DECL_RESULT(decl) = resdecl;
1260
1261           if (this->enclosing_ != NULL)
1262             DECL_STATIC_CHAIN(decl) = 1;
1263
1264           // If a function calls the predeclared recover function, we
1265           // can't inline it, because recover behaves differently in a
1266           // function passed directly to defer.  If this is a recover
1267           // thunk that we built to test whether a function can be
1268           // recovered, we can't inline it, because that will mess up
1269           // our return address comparison.
1270           if (this->calls_recover_ || this->is_recover_thunk_)
1271             DECL_UNINLINABLE(decl) = 1;
1272
1273           // If this is a thunk created to call a function which calls
1274           // the predeclared recover function, we need to disable
1275           // stack splitting for the thunk.
1276           if (this->is_recover_thunk_)
1277             {
1278               tree attr = get_identifier("__no_split_stack__");
1279               DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1280             }
1281
1282           go_preserve_from_gc(decl);
1283
1284           if (this->closure_var_ != NULL)
1285             {
1286               push_struct_function(decl);
1287
1288               Bvariable* bvar = this->closure_var_->get_backend_variable(gogo,
1289                                                                          no);
1290               tree closure_decl = var_to_tree(bvar);
1291               if (closure_decl == error_mark_node)
1292                 this->fndecl_ = error_mark_node;
1293               else
1294                 {
1295                   DECL_ARTIFICIAL(closure_decl) = 1;
1296                   DECL_IGNORED_P(closure_decl) = 1;
1297                   TREE_USED(closure_decl) = 1;
1298                   DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1299                   TREE_READONLY(closure_decl) = 1;
1300
1301                   DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1302                 }
1303
1304               pop_cfun();
1305             }
1306         }
1307     }
1308   return this->fndecl_;
1309 }
1310
1311 // Get a tree for a function declaration.
1312
1313 tree
1314 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1315 {
1316   if (this->fndecl_ == NULL_TREE)
1317     {
1318       // Let Go code use an asm declaration to pick up a builtin
1319       // function.
1320       if (!this->asm_name_.empty())
1321         {
1322           std::map<std::string, tree>::const_iterator p =
1323             builtin_functions.find(this->asm_name_);
1324           if (p != builtin_functions.end())
1325             {
1326               this->fndecl_ = p->second;
1327               return this->fndecl_;
1328             }
1329         }
1330
1331       tree functype = type_to_tree(this->fntype_->get_backend(gogo));
1332       tree decl;
1333       if (functype == error_mark_node)
1334         decl = error_mark_node;
1335       else
1336         {
1337           // The type of a function comes back as a pointer, but we
1338           // want the real function type for a function declaration.
1339           go_assert(POINTER_TYPE_P(functype));
1340           functype = TREE_TYPE(functype);
1341           decl = build_decl(this->location().gcc_location(), FUNCTION_DECL, id,
1342                             functype);
1343           TREE_PUBLIC(decl) = 1;
1344           DECL_EXTERNAL(decl) = 1;
1345
1346           if (this->asm_name_.empty())
1347             {
1348               std::string asm_name = (no->package() == NULL
1349                                       ? gogo->unique_prefix()
1350                                       : no->package()->unique_prefix());
1351               asm_name.append(1, '.');
1352               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1353               SET_DECL_ASSEMBLER_NAME(decl,
1354                                       get_identifier_from_string(asm_name));
1355             }
1356         }
1357       this->fndecl_ = decl;
1358       go_preserve_from_gc(decl);
1359     }
1360   return this->fndecl_;
1361 }
1362
1363 // We always pass the receiver to a method as a pointer.  If the
1364 // receiver is actually declared as a non-pointer type, then we copy
1365 // the value into a local variable, so that it has the right type.  In
1366 // this function we create the real PARM_DECL to use, and set
1367 // DEC_INITIAL of the var_decl to be the value passed in.
1368
1369 tree
1370 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1371 {
1372   if (var_decl == error_mark_node)
1373     return error_mark_node;
1374   go_assert(TREE_CODE(var_decl) == VAR_DECL);
1375   tree val_type = TREE_TYPE(var_decl);
1376   bool is_in_heap = no->var_value()->is_in_heap();
1377   if (is_in_heap)
1378     {
1379       go_assert(POINTER_TYPE_P(val_type));
1380       val_type = TREE_TYPE(val_type);
1381     }
1382
1383   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1384   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1385   name += ".pointer";
1386   tree id = get_identifier_from_string(name);
1387   tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1388   DECL_CONTEXT(parm_decl) = current_function_decl;
1389   DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1390
1391   go_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1392   tree init = build_fold_indirect_ref_loc(loc, parm_decl);
1393
1394   if (is_in_heap)
1395     {
1396       tree size = TYPE_SIZE_UNIT(val_type);
1397       tree space = gogo->allocate_memory(no->var_value()->type(), size,
1398                                          no->location());
1399       space = save_expr(space);
1400       space = fold_convert(build_pointer_type(val_type), space);
1401       tree spaceref = build_fold_indirect_ref_loc(no->location().gcc_location(),
1402                                                   space);
1403       TREE_THIS_NOTRAP(spaceref) = 1;
1404       tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1405                                  spaceref, init);
1406       init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space), set, space);
1407     }
1408
1409   DECL_INITIAL(var_decl) = init;
1410
1411   return parm_decl;
1412 }
1413
1414 // If we take the address of a parameter, then we need to copy it into
1415 // the heap.  We will access it as a local variable via an
1416 // indirection.
1417
1418 tree
1419 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree var_decl)
1420 {
1421   if (var_decl == error_mark_node)
1422     return error_mark_node;
1423   go_assert(TREE_CODE(var_decl) == VAR_DECL);
1424   Location loc(DECL_SOURCE_LOCATION(var_decl));
1425
1426   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1427   name += ".param";
1428   tree id = get_identifier_from_string(name);
1429
1430   tree type = TREE_TYPE(var_decl);
1431   go_assert(POINTER_TYPE_P(type));
1432   type = TREE_TYPE(type);
1433
1434   tree parm_decl = build_decl(loc.gcc_location(), PARM_DECL, id, type);
1435   DECL_CONTEXT(parm_decl) = current_function_decl;
1436   DECL_ARG_TYPE(parm_decl) = type;
1437
1438   tree size = TYPE_SIZE_UNIT(type);
1439   tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1440   space = save_expr(space);
1441   space = fold_convert(TREE_TYPE(var_decl), space);
1442   tree spaceref = build_fold_indirect_ref_loc(loc.gcc_location(), space);
1443   TREE_THIS_NOTRAP(spaceref) = 1;
1444   tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1445                      build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1446                      space);
1447   DECL_INITIAL(var_decl) = init;
1448
1449   return parm_decl;
1450 }
1451
1452 // Get a tree for function code.
1453
1454 void
1455 Function::build_tree(Gogo* gogo, Named_object* named_function)
1456 {
1457   tree fndecl = this->fndecl_;
1458   go_assert(fndecl != NULL_TREE);
1459
1460   tree params = NULL_TREE;
1461   tree* pp = &params;
1462
1463   tree declare_vars = NULL_TREE;
1464   for (Bindings::const_definitions_iterator p =
1465          this->block_->bindings()->begin_definitions();
1466        p != this->block_->bindings()->end_definitions();
1467        ++p)
1468     {
1469       if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1470         {
1471           Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
1472           *pp = var_to_tree(bvar);
1473
1474           // We always pass the receiver to a method as a pointer.  If
1475           // the receiver is declared as a non-pointer type, then we
1476           // copy the value into a local variable.
1477           if ((*p)->var_value()->is_receiver()
1478               && (*p)->var_value()->type()->points_to() == NULL)
1479             {
1480               tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1481               tree var = *pp;
1482               if (var != error_mark_node)
1483                 {
1484                   go_assert(TREE_CODE(var) == VAR_DECL);
1485                   DECL_CHAIN(var) = declare_vars;
1486                   declare_vars = var;
1487                 }
1488               *pp = parm_decl;
1489             }
1490           else if ((*p)->var_value()->is_in_heap())
1491             {
1492               // If we take the address of a parameter, then we need
1493               // to copy it into the heap.
1494               tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1495               tree var = *pp;
1496               if (var != error_mark_node)
1497                 {
1498                   go_assert(TREE_CODE(var) == VAR_DECL);
1499                   DECL_CHAIN(var) = declare_vars;
1500                   declare_vars = var;
1501                 }
1502               *pp = parm_decl;
1503             }
1504
1505           if (*pp != error_mark_node)
1506             {
1507               go_assert(TREE_CODE(*pp) == PARM_DECL);
1508               pp = &DECL_CHAIN(*pp);
1509             }
1510         }
1511       else if ((*p)->is_result_variable())
1512         {
1513           Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
1514           tree var_decl = var_to_tree(bvar);
1515
1516           Type* type = (*p)->result_var_value()->type();
1517           tree init;
1518           if (!(*p)->result_var_value()->is_in_heap())
1519             {
1520               Btype* btype = type->get_backend(gogo);
1521               init = expr_to_tree(gogo->backend()->zero_expression(btype));
1522             }
1523           else
1524             {
1525               Location loc = (*p)->location();
1526               tree type_tree = type_to_tree(type->get_backend(gogo));
1527               tree space = gogo->allocate_memory(type,
1528                                                  TYPE_SIZE_UNIT(type_tree),
1529                                                  loc);
1530               tree ptr_type_tree = build_pointer_type(type_tree);
1531               init = fold_convert_loc(loc.gcc_location(), ptr_type_tree, space);
1532             }
1533
1534           if (var_decl != error_mark_node)
1535             {
1536               go_assert(TREE_CODE(var_decl) == VAR_DECL);
1537               DECL_INITIAL(var_decl) = init;
1538               DECL_CHAIN(var_decl) = declare_vars;
1539               declare_vars = var_decl;
1540             }
1541         }
1542     }
1543   *pp = NULL_TREE;
1544
1545   DECL_ARGUMENTS(fndecl) = params;
1546
1547   if (this->block_ != NULL)
1548     {
1549       go_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1550
1551       // Declare variables if necessary.
1552       tree bind = NULL_TREE;
1553       tree defer_init = NULL_TREE;
1554       if (declare_vars != NULL_TREE || this->defer_stack_ != NULL)
1555         {
1556           tree block = make_node(BLOCK);
1557           BLOCK_SUPERCONTEXT(block) = fndecl;
1558           DECL_INITIAL(fndecl) = block;
1559           BLOCK_VARS(block) = declare_vars;
1560           TREE_USED(block) = 1;
1561
1562           bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1563                         NULL_TREE, block);
1564           TREE_SIDE_EFFECTS(bind) = 1;
1565
1566           if (this->defer_stack_ != NULL)
1567             {
1568               Translate_context dcontext(gogo, named_function, this->block_,
1569                                          tree_to_block(bind));
1570               Bstatement* bdi = this->defer_stack_->get_backend(&dcontext);
1571               defer_init = stat_to_tree(bdi);
1572             }
1573         }
1574
1575       // Build the trees for all the statements in the function.
1576       Translate_context context(gogo, named_function, NULL, NULL);
1577       Bblock* bblock = this->block_->get_backend(&context);
1578       tree code = block_to_tree(bblock);
1579
1580       tree init = NULL_TREE;
1581       tree except = NULL_TREE;
1582       tree fini = NULL_TREE;
1583
1584       // Initialize variables if necessary.
1585       for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1586         {
1587           tree dv = build1(DECL_EXPR, void_type_node, v);
1588           SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1589           append_to_statement_list(dv, &init);
1590         }
1591
1592       // If we have a defer stack, initialize it at the start of a
1593       // function.
1594       if (defer_init != NULL_TREE && defer_init != error_mark_node)
1595         {
1596           SET_EXPR_LOCATION(defer_init,
1597                             this->block_->start_location().gcc_location());
1598           append_to_statement_list(defer_init, &init);
1599
1600           // Clean up the defer stack when we leave the function.
1601           this->build_defer_wrapper(gogo, named_function, &except, &fini);
1602         }
1603
1604       if (code != NULL_TREE && code != error_mark_node)
1605         {
1606           if (init != NULL_TREE)
1607             code = build2(COMPOUND_EXPR, void_type_node, init, code);
1608           if (except != NULL_TREE)
1609             code = build2(TRY_CATCH_EXPR, void_type_node, code,
1610                           build2(CATCH_EXPR, void_type_node, NULL, except));
1611           if (fini != NULL_TREE)
1612             code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1613         }
1614
1615       // Stick the code into the block we built for the receiver, if
1616       // we built on.
1617       if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1618         {
1619           BIND_EXPR_BODY(bind) = code;
1620           code = bind;
1621         }
1622
1623       DECL_SAVED_TREE(fndecl) = code;
1624     }
1625 }
1626
1627 // Build the wrappers around function code needed if the function has
1628 // any defer statements.  This sets *EXCEPT to an exception handler
1629 // and *FINI to a finally handler.
1630
1631 void
1632 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1633                               tree *except, tree *fini)
1634 {
1635   Location end_loc = this->block_->end_location();
1636
1637   // Add an exception handler.  This is used if a panic occurs.  Its
1638   // purpose is to stop the stack unwinding if a deferred function
1639   // calls recover.  There are more details in
1640   // libgo/runtime/go-unwind.c.
1641
1642   tree stmt_list = NULL_TREE;
1643
1644   Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
1645                                         this->defer_stack(end_loc));
1646   Translate_context context(gogo, named_function, NULL, NULL);
1647   tree call_tree = call->get_tree(&context);
1648   if (call_tree != error_mark_node)
1649     append_to_statement_list(call_tree, &stmt_list);
1650
1651   tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1652   tree set;
1653   if (retval == NULL_TREE)
1654     set = NULL_TREE;
1655   else
1656     set = fold_build2_loc(end_loc.gcc_location(), MODIFY_EXPR, void_type_node,
1657                           DECL_RESULT(this->fndecl_), retval);
1658   tree ret_stmt = fold_build1_loc(end_loc.gcc_location(), RETURN_EXPR,
1659                                   void_type_node, set);
1660   append_to_statement_list(ret_stmt, &stmt_list);
1661
1662   go_assert(*except == NULL_TREE);
1663   *except = stmt_list;
1664
1665   // Add some finally code to run the defer functions.  This is used
1666   // both in the normal case, when no panic occurs, and also if a
1667   // panic occurs to run any further defer functions.  Of course, it
1668   // is possible for a defer function to call panic which should be
1669   // caught by another defer function.  To handle that we use a loop.
1670   //  finish:
1671   //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1672   //   if (return values are named) return named_vals;
1673
1674   stmt_list = NULL;
1675
1676   tree label = create_artificial_label(end_loc.gcc_location());
1677   tree define_label = fold_build1_loc(end_loc.gcc_location(), LABEL_EXPR,
1678                                       void_type_node, label);
1679   append_to_statement_list(define_label, &stmt_list);
1680
1681   call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
1682                             this->defer_stack(end_loc));
1683   tree undefer = call->get_tree(&context);
1684
1685   call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
1686                             this->defer_stack(end_loc));
1687   tree defer = call->get_tree(&context);
1688
1689   if (undefer == error_mark_node || defer == error_mark_node)
1690     return;
1691
1692   tree jump = fold_build1_loc(end_loc.gcc_location(), GOTO_EXPR, void_type_node,
1693                               label);
1694   tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1695   catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1696   tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1697
1698   append_to_statement_list(try_catch, &stmt_list);
1699
1700   if (this->type_->results() != NULL
1701       && !this->type_->results()->empty()
1702       && !this->type_->results()->front().name().empty())
1703     {
1704       // If the result variables are named, and we are returning from
1705       // this function rather than panicing through it, we need to
1706       // return them again, because they might have been changed by a
1707       // defer function.  The runtime routines set the defer_stack
1708       // variable to true if we are returning from this function.
1709       retval = this->return_value(gogo, named_function, end_loc,
1710                                   &stmt_list);
1711       set = fold_build2_loc(end_loc.gcc_location(), MODIFY_EXPR, void_type_node,
1712                             DECL_RESULT(this->fndecl_), retval);
1713       ret_stmt = fold_build1_loc(end_loc.gcc_location(), RETURN_EXPR,
1714                                  void_type_node, set);
1715
1716       Expression* ref =
1717         Expression::make_temporary_reference(this->defer_stack_, end_loc);
1718       tree tref = ref->get_tree(&context);
1719       tree s = build3_loc(end_loc.gcc_location(), COND_EXPR, void_type_node,
1720                           tref, ret_stmt, NULL_TREE);
1721
1722       append_to_statement_list(s, &stmt_list);
1723
1724     }
1725   
1726   go_assert(*fini == NULL_TREE);
1727   *fini = stmt_list;
1728 }
1729
1730 // Return the value to assign to DECL_RESULT(this->fndecl_).  This may
1731 // also add statements to STMT_LIST, which need to be executed before
1732 // the assignment.  This is used for a return statement with no
1733 // explicit values.
1734
1735 tree
1736 Function::return_value(Gogo* gogo, Named_object* named_function,
1737                        Location location, tree* stmt_list) const
1738 {
1739   const Typed_identifier_list* results = this->type_->results();
1740   if (results == NULL || results->empty())
1741     return NULL_TREE;
1742
1743   go_assert(this->results_ != NULL);
1744   if (this->results_->size() != results->size())
1745     {
1746       go_assert(saw_errors());
1747       return error_mark_node;
1748     }
1749
1750   tree retval;
1751   if (results->size() == 1)
1752     {
1753       Bvariable* bvar =
1754         this->results_->front()->get_backend_variable(gogo,
1755                                                       named_function);
1756       tree ret = var_to_tree(bvar);
1757       if (this->results_->front()->result_var_value()->is_in_heap())
1758         ret = build_fold_indirect_ref_loc(location.gcc_location(), ret);
1759       return ret;
1760     }
1761   else
1762     {
1763       tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1764       retval = create_tmp_var(rettype, "RESULT");
1765       tree field = TYPE_FIELDS(rettype);
1766       int index = 0;
1767       for (Typed_identifier_list::const_iterator pr = results->begin();
1768            pr != results->end();
1769            ++pr, ++index, field = DECL_CHAIN(field))
1770         {
1771           go_assert(field != NULL);
1772           Named_object* no = (*this->results_)[index];
1773           Bvariable* bvar = no->get_backend_variable(gogo, named_function);
1774           tree val = var_to_tree(bvar);
1775           if (no->result_var_value()->is_in_heap())
1776             val = build_fold_indirect_ref_loc(location.gcc_location(), val);
1777           tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
1778                                      void_type_node,
1779                                      build3(COMPONENT_REF, TREE_TYPE(field),
1780                                             retval, field, NULL_TREE),
1781                                      val);
1782           append_to_statement_list(set, stmt_list);
1783         }
1784       return retval;
1785     }
1786 }
1787
1788 // Return the integer type to use for a size.
1789
1790 GO_EXTERN_C
1791 tree
1792 go_type_for_size(unsigned int bits, int unsignedp)
1793 {
1794   const char* name;
1795   switch (bits)
1796     {
1797     case 8:
1798       name = unsignedp ? "uint8" : "int8";
1799       break;
1800     case 16:
1801       name = unsignedp ? "uint16" : "int16";
1802       break;
1803     case 32:
1804       name = unsignedp ? "uint32" : "int32";
1805       break;
1806     case 64:
1807       name = unsignedp ? "uint64" : "int64";
1808       break;
1809     default:
1810       if (bits == POINTER_SIZE && unsignedp)
1811         name = "uintptr";
1812       else
1813         return NULL_TREE;
1814     }
1815   Type* type = Type::lookup_integer_type(name);
1816   return type_to_tree(type->get_backend(go_get_gogo()));
1817 }
1818
1819 // Return the type to use for a mode.
1820
1821 GO_EXTERN_C
1822 tree
1823 go_type_for_mode(enum machine_mode mode, int unsignedp)
1824 {
1825   // FIXME: This static_cast should be in machmode.h.
1826   enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
1827   if (mc == MODE_INT)
1828     return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
1829   else if (mc == MODE_FLOAT)
1830     {
1831       Type* type;
1832       switch (GET_MODE_BITSIZE (mode))
1833         {
1834         case 32:
1835           type = Type::lookup_float_type("float32");
1836           break;
1837         case 64:
1838           type = Type::lookup_float_type("float64");
1839           break;
1840         default:
1841           // We have to check for long double in order to support
1842           // i386 excess precision.
1843           if (mode == TYPE_MODE(long_double_type_node))
1844             return long_double_type_node;
1845           return NULL_TREE;
1846         }
1847       return type_to_tree(type->get_backend(go_get_gogo()));
1848     }
1849   else if (mc == MODE_COMPLEX_FLOAT)
1850     {
1851       Type *type;
1852       switch (GET_MODE_BITSIZE (mode))
1853         {
1854         case 64:
1855           type = Type::lookup_complex_type("complex64");
1856           break;
1857         case 128:
1858           type = Type::lookup_complex_type("complex128");
1859           break;
1860         default:
1861           // We have to check for long double in order to support
1862           // i386 excess precision.
1863           if (mode == TYPE_MODE(complex_long_double_type_node))
1864             return complex_long_double_type_node;
1865           return NULL_TREE;
1866         }
1867       return type_to_tree(type->get_backend(go_get_gogo()));
1868     }
1869   else
1870     return NULL_TREE;
1871 }
1872
1873 // Return a tree which allocates SIZE bytes which will holds value of
1874 // type TYPE.
1875
1876 tree
1877 Gogo::allocate_memory(Type* type, tree size, Location location)
1878 {
1879   // If the package imports unsafe, then it may play games with
1880   // pointers that look like integers.
1881   if (this->imported_unsafe_ || type->has_pointer())
1882     {
1883       static tree new_fndecl;
1884       return Gogo::call_builtin(&new_fndecl,
1885                                 location,
1886                                 "__go_new",
1887                                 1,
1888                                 ptr_type_node,
1889                                 sizetype,
1890                                 size);
1891     }
1892   else
1893     {
1894       static tree new_nopointers_fndecl;
1895       return Gogo::call_builtin(&new_nopointers_fndecl,
1896                                 location,
1897                                 "__go_new_nopointers",
1898                                 1,
1899                                 ptr_type_node,
1900                                 sizetype,
1901                                 size);
1902     }
1903 }
1904
1905 // Build a builtin struct with a list of fields.  The name is
1906 // STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
1907 // node; this exists so that the struct can have fields which point to
1908 // itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
1909 // are NFIELDS fields.  Each field is a name (a const char*) followed
1910 // by a type (a tree).
1911
1912 tree
1913 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
1914                      int nfields, ...)
1915 {
1916   if (ptype != NULL && *ptype != NULL_TREE)
1917     return *ptype;
1918
1919   va_list ap;
1920   va_start(ap, nfields);
1921
1922   tree fields = NULL_TREE;
1923   for (int i = 0; i < nfields; ++i)
1924     {
1925       const char* field_name = va_arg(ap, const char*);
1926       tree type = va_arg(ap, tree);
1927       if (type == error_mark_node)
1928         {
1929           if (ptype != NULL)
1930             *ptype = error_mark_node;
1931           return error_mark_node;
1932         }
1933       tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
1934                               get_identifier(field_name), type);
1935       DECL_CHAIN(field) = fields;
1936       fields = field;
1937     }
1938
1939   va_end(ap);
1940
1941   if (struct_type == NULL_TREE)
1942     struct_type = make_node(RECORD_TYPE);
1943   finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
1944
1945   if (ptype != NULL)
1946     {
1947       go_preserve_from_gc(struct_type);
1948       *ptype = struct_type;
1949     }
1950
1951   return struct_type;
1952 }
1953
1954 // Return a type to use for pointer to const char for a string.
1955
1956 tree
1957 Gogo::const_char_pointer_type_tree()
1958 {
1959   static tree type;
1960   if (type == NULL_TREE)
1961     {
1962       tree const_char_type = build_qualified_type(unsigned_char_type_node,
1963                                                   TYPE_QUAL_CONST);
1964       type = build_pointer_type(const_char_type);
1965       go_preserve_from_gc(type);
1966     }
1967   return type;
1968 }
1969
1970 // Return a tree for a string constant.
1971
1972 tree
1973 Gogo::string_constant_tree(const std::string& val)
1974 {
1975   tree index_type = build_index_type(size_int(val.length()));
1976   tree const_char_type = build_qualified_type(unsigned_char_type_node,
1977                                               TYPE_QUAL_CONST);
1978   tree string_type = build_array_type(const_char_type, index_type);
1979   string_type = build_variant_type_copy(string_type);
1980   TYPE_STRING_FLAG(string_type) = 1;
1981   tree string_val = build_string(val.length(), val.data());
1982   TREE_TYPE(string_val) = string_type;
1983   return string_val;
1984 }
1985
1986 // Return a tree for a Go string constant.
1987
1988 tree
1989 Gogo::go_string_constant_tree(const std::string& val)
1990 {
1991   tree string_type = type_to_tree(Type::make_string_type()->get_backend(this));
1992
1993   VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
1994
1995   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
1996   tree field = TYPE_FIELDS(string_type);
1997   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
1998   elt->index = field;
1999   tree str = Gogo::string_constant_tree(val);
2000   elt->value = fold_convert(TREE_TYPE(field),
2001                             build_fold_addr_expr(str));
2002
2003   elt = VEC_quick_push(constructor_elt, init, NULL);
2004   field = DECL_CHAIN(field);
2005   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
2006   elt->index = field;
2007   elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
2008
2009   tree constructor = build_constructor(string_type, init);
2010   TREE_READONLY(constructor) = 1;
2011   TREE_CONSTANT(constructor) = 1;
2012
2013   return constructor;
2014 }
2015
2016 // Return a tree for a pointer to a Go string constant.  This is only
2017 // used for type descriptors, so we return a pointer to a constant
2018 // decl.
2019
2020 tree
2021 Gogo::ptr_go_string_constant_tree(const std::string& val)
2022 {
2023   tree pval = this->go_string_constant_tree(val);
2024
2025   tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
2026                          create_tmp_var_name("SP"), TREE_TYPE(pval));
2027   DECL_EXTERNAL(decl) = 0;
2028   TREE_PUBLIC(decl) = 0;
2029   TREE_USED(decl) = 1;
2030   TREE_READONLY(decl) = 1;
2031   TREE_CONSTANT(decl) = 1;
2032   TREE_STATIC(decl) = 1;
2033   DECL_ARTIFICIAL(decl) = 1;
2034   DECL_INITIAL(decl) = pval;
2035   rest_of_decl_compilation(decl, 1, 0);
2036
2037   return build_fold_addr_expr(decl);
2038 }
2039
2040 // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
2041 // the slice.  VALUES is the value pointer and COUNT is the number of
2042 // entries.  If CAPACITY is not NULL, it is the capacity; otherwise
2043 // the capacity and the count are the same.
2044
2045 tree
2046 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
2047                         tree capacity)
2048 {
2049   go_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
2050
2051   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
2052
2053   tree field = TYPE_FIELDS(slice_type_tree);
2054   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
2055   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2056   elt->index = field;
2057   go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
2058              == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
2059   elt->value = values;
2060
2061   count = fold_convert(sizetype, count);
2062   if (capacity == NULL_TREE)
2063     {
2064       count = save_expr(count);
2065       capacity = count;
2066     }
2067
2068   field = DECL_CHAIN(field);
2069   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
2070   elt = VEC_quick_push(constructor_elt, init, NULL);
2071   elt->index = field;
2072   elt->value = fold_convert(TREE_TYPE(field), count);
2073
2074   field = DECL_CHAIN(field);
2075   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
2076   elt = VEC_quick_push(constructor_elt, init, NULL);
2077   elt->index = field;
2078   elt->value = fold_convert(TREE_TYPE(field), capacity);
2079
2080   return build_constructor(slice_type_tree, init);
2081 }
2082
2083 // Build an interface method table for a type: a list of function
2084 // pointers, one for each interface method.  This is used for
2085 // interfaces.
2086
2087 tree
2088 Gogo::interface_method_table_for_type(const Interface_type* interface,
2089                                       Named_type* type,
2090                                       bool is_pointer)
2091 {
2092   const Typed_identifier_list* interface_methods = interface->methods();
2093   go_assert(!interface_methods->empty());
2094
2095   std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2096                               + interface->mangled_name(this)
2097                               + "__"
2098                               + type->mangled_name(this));
2099
2100   tree id = get_identifier_from_string(mangled_name);
2101
2102   // See whether this interface has any hidden methods.
2103   bool has_hidden_methods = false;
2104   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2105        p != interface_methods->end();
2106        ++p)
2107     {
2108       if (Gogo::is_hidden_name(p->name()))
2109         {
2110           has_hidden_methods = true;
2111           break;
2112         }
2113     }
2114
2115   // We already know that the named type is convertible to the
2116   // interface.  If the interface has hidden methods, and the named
2117   // type is defined in a different package, then the interface
2118   // conversion table will be defined by that other package.
2119   if (has_hidden_methods && type->named_object()->package() != NULL)
2120     {
2121       tree array_type = build_array_type(const_ptr_type_node, NULL);
2122       tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2123       TREE_READONLY(decl) = 1;
2124       TREE_CONSTANT(decl) = 1;
2125       TREE_PUBLIC(decl) = 1;
2126       DECL_EXTERNAL(decl) = 1;
2127       go_preserve_from_gc(decl);
2128       return decl;
2129     }
2130
2131   size_t count = interface_methods->size();
2132   VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2133                                                  count + 1);
2134
2135   // The first element is the type descriptor.
2136   constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2137   elt->index = size_zero_node;
2138   Type* td_type;
2139   if (!is_pointer)
2140     td_type = type;
2141   else
2142     td_type = Type::make_pointer_type(type);
2143   tree tdp = td_type->type_descriptor_pointer(this,
2144                                               Linemap::predeclared_location());
2145   elt->value = fold_convert(const_ptr_type_node, tdp);
2146
2147   size_t i = 1;
2148   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2149        p != interface_methods->end();
2150        ++p, ++i)
2151     {
2152       bool is_ambiguous;
2153       Method* m = type->method_function(p->name(), &is_ambiguous);
2154       go_assert(m != NULL);
2155
2156       Named_object* no = m->named_object();
2157
2158       tree fnid = no->get_id(this);
2159
2160       tree fndecl;
2161       if (no->is_function())
2162         fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2163       else if (no->is_function_declaration())
2164         fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2165                                                                 fnid);
2166       else
2167         go_unreachable();
2168       fndecl = build_fold_addr_expr(fndecl);
2169
2170       elt = VEC_quick_push(constructor_elt, pointers, NULL);
2171       elt->index = size_int(i);
2172       elt->value = fold_convert(const_ptr_type_node, fndecl);
2173     }
2174   go_assert(i == count + 1);
2175
2176   tree array_type = build_array_type(const_ptr_type_node,
2177                                      build_index_type(size_int(count)));
2178   tree constructor = build_constructor(array_type, pointers);
2179
2180   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2181   TREE_STATIC(decl) = 1;
2182   TREE_USED(decl) = 1;
2183   TREE_READONLY(decl) = 1;
2184   TREE_CONSTANT(decl) = 1;
2185   DECL_INITIAL(decl) = constructor;
2186
2187   // If the interface type has hidden methods, then this is the only
2188   // definition of the table.  Otherwise it is a comdat table which
2189   // may be defined in multiple packages.
2190   if (has_hidden_methods)
2191     TREE_PUBLIC(decl) = 1;
2192   else
2193     {
2194       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2195       resolve_unique_section(decl, 1, 0);
2196     }
2197
2198   rest_of_decl_compilation(decl, 1, 0);
2199
2200   go_preserve_from_gc(decl);
2201
2202   return decl;
2203 }
2204
2205 // Mark a function as a builtin library function.
2206
2207 void
2208 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2209 {
2210   DECL_EXTERNAL(fndecl) = 1;
2211   TREE_PUBLIC(fndecl) = 1;
2212   DECL_ARTIFICIAL(fndecl) = 1;
2213   TREE_NOTHROW(fndecl) = 1;
2214   DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2215   DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2216 }
2217
2218 // Build a call to a builtin function.
2219
2220 tree
2221 Gogo::call_builtin(tree* pdecl, Location location, const char* name,
2222                    int nargs, tree rettype, ...)
2223 {
2224   if (rettype == error_mark_node)
2225     return error_mark_node;
2226
2227   tree* types = new tree[nargs];
2228   tree* args = new tree[nargs];
2229
2230   va_list ap;
2231   va_start(ap, rettype);
2232   for (int i = 0; i < nargs; ++i)
2233     {
2234       types[i] = va_arg(ap, tree);
2235       args[i] = va_arg(ap, tree);
2236       if (types[i] == error_mark_node || args[i] == error_mark_node)
2237         {
2238           delete[] types;
2239           delete[] args;
2240           return error_mark_node;
2241         }
2242     }
2243   va_end(ap);
2244
2245   if (*pdecl == NULL_TREE)
2246     {
2247       tree fnid = get_identifier(name);
2248
2249       tree argtypes = NULL_TREE;
2250       tree* pp = &argtypes;
2251       for (int i = 0; i < nargs; ++i)
2252         {
2253           *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2254           pp = &TREE_CHAIN(*pp);
2255         }
2256       *pp = void_list_node;
2257
2258       tree fntype = build_function_type(rettype, argtypes);
2259
2260       *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2261       Gogo::mark_fndecl_as_builtin_library(*pdecl);
2262       go_preserve_from_gc(*pdecl);
2263     }
2264
2265   tree fnptr = build_fold_addr_expr(*pdecl);
2266   if (CAN_HAVE_LOCATION_P(fnptr))
2267     SET_EXPR_LOCATION(fnptr, location.gcc_location());
2268
2269   tree ret = build_call_array(rettype, fnptr, nargs, args);
2270   SET_EXPR_LOCATION(ret, location.gcc_location());
2271
2272   delete[] types;
2273   delete[] args;
2274
2275   return ret;
2276 }
2277
2278 // Build a call to the runtime error function.
2279
2280 tree
2281 Gogo::runtime_error(int code, Location location)
2282 {
2283   static tree runtime_error_fndecl;
2284   tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2285                                 location,
2286                                 "__go_runtime_error",
2287                                 1,
2288                                 void_type_node,
2289                                 integer_type_node,
2290                                 build_int_cst(integer_type_node, code));
2291   if (ret == error_mark_node)
2292     return error_mark_node;
2293   // The runtime error function panics and does not return.
2294   TREE_NOTHROW(runtime_error_fndecl) = 0;
2295   TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2296   return ret;
2297 }
2298
2299 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
2300 // TYPE_DESCRIPTOR_TREE is the channel's type descriptor.  This does a
2301 // blocking receive and returns the value read from the channel.
2302
2303 tree
2304 Gogo::receive_from_channel(tree type_tree, tree type_descriptor_tree,
2305                            tree channel, Location location)
2306 {
2307   if (type_tree == error_mark_node || channel == error_mark_node)
2308     return error_mark_node;
2309
2310   if (int_size_in_bytes(type_tree) <= 8
2311       && !AGGREGATE_TYPE_P(type_tree)
2312       && !FLOAT_TYPE_P(type_tree))
2313     {
2314       static tree receive_small_fndecl;
2315       tree call = Gogo::call_builtin(&receive_small_fndecl,
2316                                      location,
2317                                      "__go_receive_small",
2318                                      2,
2319                                      uint64_type_node,
2320                                      TREE_TYPE(type_descriptor_tree),
2321                                      type_descriptor_tree,
2322                                      ptr_type_node,
2323                                      channel);
2324       if (call == error_mark_node)
2325         return error_mark_node;
2326       // This can panic if there are too many operations on a closed
2327       // channel.
2328       TREE_NOTHROW(receive_small_fndecl) = 0;
2329       int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
2330       tree int_type_tree = go_type_for_size(bitsize, 1);
2331       return fold_convert_loc(location.gcc_location(), type_tree,
2332                               fold_convert_loc(location.gcc_location(),
2333                                                int_type_tree, call));
2334     }
2335   else
2336     {
2337       tree tmp = create_tmp_var(type_tree, get_name(type_tree));
2338       DECL_IGNORED_P(tmp) = 0;
2339       TREE_ADDRESSABLE(tmp) = 1;
2340       tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2341       SET_EXPR_LOCATION(make_tmp, location.gcc_location());
2342       tree tmpaddr = build_fold_addr_expr(tmp);
2343       tmpaddr = fold_convert(ptr_type_node, tmpaddr);
2344       static tree receive_big_fndecl;
2345       tree call = Gogo::call_builtin(&receive_big_fndecl,
2346                                      location,
2347                                      "__go_receive_big",
2348                                      3,
2349                                      void_type_node,
2350                                      TREE_TYPE(type_descriptor_tree),
2351                                      type_descriptor_tree,
2352                                      ptr_type_node,
2353                                      channel,
2354                                      ptr_type_node,
2355                                      tmpaddr);
2356       if (call == error_mark_node)
2357         return error_mark_node;
2358       // This can panic if there are too many operations on a closed
2359       // channel.
2360       TREE_NOTHROW(receive_big_fndecl) = 0;
2361       return build2(COMPOUND_EXPR, type_tree, make_tmp,
2362                     build2(COMPOUND_EXPR, type_tree, call, tmp));
2363     }
2364 }
2365
2366 // Return the type of a function trampoline.  This is like
2367 // get_trampoline_type in tree-nested.c.
2368
2369 tree
2370 Gogo::trampoline_type_tree()
2371 {
2372   static tree type_tree;
2373   if (type_tree == NULL_TREE)
2374     {
2375       unsigned int size;
2376       unsigned int align;
2377       go_trampoline_info(&size, &align);
2378       tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
2379       t = build_array_type(char_type_node, t);
2380
2381       type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
2382                                        "__data", t);
2383       t = TYPE_FIELDS(type_tree);
2384       DECL_ALIGN(t) = align;
2385       DECL_USER_ALIGN(t) = 1;
2386
2387       go_preserve_from_gc(type_tree);
2388     }
2389   return type_tree;
2390 }
2391
2392 // Make a trampoline which calls FNADDR passing CLOSURE.
2393
2394 tree
2395 Gogo::make_trampoline(tree fnaddr, tree closure, Location location)
2396 {
2397   tree trampoline_type = Gogo::trampoline_type_tree();
2398   tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
2399
2400   closure = save_expr(closure);
2401
2402   // We allocate the trampoline using a special function which will
2403   // mark it as executable.
2404   static tree trampoline_fndecl;
2405   tree x = Gogo::call_builtin(&trampoline_fndecl,
2406                               location,
2407                               "__go_allocate_trampoline",
2408                               2,
2409                               ptr_type_node,
2410                               size_type_node,
2411                               trampoline_size,
2412                               ptr_type_node,
2413                               fold_convert_loc(location.gcc_location(),
2414                                                ptr_type_node, closure));
2415   if (x == error_mark_node)
2416     return error_mark_node;
2417
2418   x = save_expr(x);
2419
2420   // Initialize the trampoline.
2421   tree ini = build_call_expr(builtin_decl_implicit(BUILT_IN_INIT_TRAMPOLINE),
2422                              3, x, fnaddr, closure);
2423
2424   // On some targets the trampoline address needs to be adjusted.  For
2425   // example, when compiling in Thumb mode on the ARM, the address
2426   // needs to have the low bit set.
2427   x = build_call_expr(builtin_decl_explicit(BUILT_IN_ADJUST_TRAMPOLINE), 1, x);
2428   x = fold_convert(TREE_TYPE(fnaddr), x);
2429
2430   return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
2431 }