OSDN Git Service

/cp
[pf3gnuchains/gcc-fork.git] / gcc / go / gofrontend / gogo-tree.cc
1 // gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
2
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6
7 #include "go-system.h"
8
9 #include <gmp.h>
10
11 #ifndef ENABLE_BUILD_WITH_CXX
12 extern "C"
13 {
14 #endif
15
16 #include "toplev.h"
17 #include "tree.h"
18 #include "gimple.h"
19 #include "tree-iterator.h"
20 #include "cgraph.h"
21 #include "langhooks.h"
22 #include "convert.h"
23 #include "output.h"
24 #include "diagnostic.h"
25
26 #ifndef ENABLE_BUILD_WITH_CXX
27 }
28 #endif
29
30 #include "go-c.h"
31 #include "types.h"
32 #include "expressions.h"
33 #include "statements.h"
34 #include "runtime.h"
35 #include "backend.h"
36 #include "gogo.h"
37
38 // Whether we have seen any errors.
39
40 bool
41 saw_errors()
42 {
43   return errorcount != 0 || sorrycount != 0;
44 }
45
46 // A helper function.
47
48 static inline tree
49 get_identifier_from_string(const std::string& str)
50 {
51   return get_identifier_with_length(str.data(), str.length());
52 }
53
54 // Builtin functions.
55
56 static std::map<std::string, tree> builtin_functions;
57
58 // Define a builtin function.  BCODE is the builtin function code
59 // defined by builtins.def.  NAME is the name of the builtin function.
60 // LIBNAME is the name of the corresponding library function, and is
61 // NULL if there isn't one.  FNTYPE is the type of the function.
62 // CONST_P is true if the function has the const attribute.
63
64 static void
65 define_builtin(built_in_function bcode, const char* name, const char* libname,
66                tree fntype, bool const_p)
67 {
68   tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
69                                    libname, NULL_TREE);
70   if (const_p)
71     TREE_READONLY(decl) = 1;
72   set_builtin_decl(bcode, decl, true);
73   builtin_functions[name] = decl;
74   if (libname != NULL)
75     {
76       decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
77                                   NULL, NULL_TREE);
78       if (const_p)
79         TREE_READONLY(decl) = 1;
80       builtin_functions[libname] = decl;
81     }
82 }
83
84 // Create trees for implicit builtin functions.
85
86 void
87 Gogo::define_builtin_function_trees()
88 {
89   /* We need to define the fetch_and_add functions, since we use them
90      for ++ and --.  */
91   tree t = go_type_for_size(BITS_PER_UNIT, 1);
92   tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
93   define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
94                  build_function_type_list(t, p, t, NULL_TREE), false);
95
96   t = go_type_for_size(BITS_PER_UNIT * 2, 1);
97   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
98   define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
99                   build_function_type_list(t, p, t, NULL_TREE), false);
100
101   t = go_type_for_size(BITS_PER_UNIT * 4, 1);
102   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
103   define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
104                  build_function_type_list(t, p, t, NULL_TREE), false);
105
106   t = go_type_for_size(BITS_PER_UNIT * 8, 1);
107   p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
108   define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
109                  build_function_type_list(t, p, t, NULL_TREE), false);
110
111   // We use __builtin_expect for magic import functions.
112   define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
113                  build_function_type_list(long_integer_type_node,
114                                           long_integer_type_node,
115                                           long_integer_type_node,
116                                           NULL_TREE),
117                  true);
118
119   // We use __builtin_memcmp for struct comparisons.
120   define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
121                  build_function_type_list(integer_type_node,
122                                           const_ptr_type_node,
123                                           const_ptr_type_node,
124                                           size_type_node,
125                                           NULL_TREE),
126                  false);
127
128   // We provide some functions for the math library.
129   tree math_function_type = build_function_type_list(double_type_node,
130                                                      double_type_node,
131                                                      NULL_TREE);
132   tree math_function_type_long =
133     build_function_type_list(long_double_type_node, long_double_type_node,
134                              long_double_type_node, NULL_TREE);
135   tree math_function_type_two = build_function_type_list(double_type_node,
136                                                          double_type_node,
137                                                          double_type_node,
138                                                          NULL_TREE);
139   tree math_function_type_long_two =
140     build_function_type_list(long_double_type_node, long_double_type_node,
141                              long_double_type_node, NULL_TREE);
142   define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos",
143                  math_function_type, true);
144   define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
145                  math_function_type_long, true);
146   define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin",
147                  math_function_type, true);
148   define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl",
149                  math_function_type_long, true);
150   define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan",
151                  math_function_type, true);
152   define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl",
153                  math_function_type_long, true);
154   define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
155                  math_function_type_two, true);
156   define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
157                  math_function_type_long_two, true);
158   define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil",
159                  math_function_type, true);
160   define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill",
161                  math_function_type_long, true);
162   define_builtin(BUILT_IN_COS, "__builtin_cos", "cos",
163                  math_function_type, true);
164   define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl",
165                  math_function_type_long, true);
166   define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp",
167                  math_function_type, true);
168   define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl",
169                  math_function_type_long, true);
170   define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
171                  math_function_type, true);
172   define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
173                  math_function_type_long, true);
174   define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs",
175                  math_function_type, true);
176   define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
177                  math_function_type_long, true);
178   define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor",
179                  math_function_type, true);
180   define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
181                  math_function_type_long, true);
182   define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod",
183                  math_function_type_two, true);
184   define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
185                  math_function_type_long_two, true);
186   define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
187                  build_function_type_list(double_type_node,
188                                           double_type_node,
189                                           integer_type_node,
190                                           NULL_TREE),
191                  true);
192   define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
193                  build_function_type_list(long_double_type_node,
194                                           long_double_type_node,
195                                           integer_type_node,
196                                           NULL_TREE),
197                  true);
198   define_builtin(BUILT_IN_LOG, "__builtin_log", "log",
199                  math_function_type, true);
200   define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl",
201                  math_function_type_long, true);
202   define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
203                  math_function_type, true);
204   define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
205                  math_function_type_long, true);
206   define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10",
207                  math_function_type, true);
208   define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
209                  math_function_type_long, true);
210   define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2",
211                  math_function_type, true);
212   define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
213                  math_function_type_long, true);
214   define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin",
215                  math_function_type, true);
216   define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl",
217                  math_function_type_long, true);
218   define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
219                  math_function_type, true);
220   define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
221                  math_function_type_long, true);
222   define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan",
223                  math_function_type, true);
224   define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl",
225                  math_function_type_long, true);
226   define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
227                  math_function_type, true);
228   define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
229                  math_function_type_long, true);
230
231   // We use __builtin_return_address in the thunk we build for
232   // functions which call recover.
233   define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
234                  build_function_type_list(ptr_type_node,
235                                           unsigned_type_node,
236                                           NULL_TREE),
237                  false);
238
239   // The compiler uses __builtin_trap for some exception handling
240   // cases.
241   define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
242                  build_function_type(void_type_node, void_list_node),
243                  false);
244 }
245
246 // Get the name to use for the import control function.  If there is a
247 // global function or variable, then we know that that name must be
248 // unique in the link, and we use it as the basis for our name.
249
250 const std::string&
251 Gogo::get_init_fn_name()
252 {
253   if (this->init_fn_name_.empty())
254     {
255       go_assert(this->package_ != NULL);
256       if (this->is_main_package())
257         {
258           // Use a name which the runtime knows.
259           this->init_fn_name_ = "__go_init_main";
260         }
261       else
262         {
263           std::string s = this->unique_prefix();
264           s.append(1, '.');
265           s.append(this->package_name());
266           s.append("..import");
267           this->init_fn_name_ = s;
268         }
269     }
270
271   return this->init_fn_name_;
272 }
273
274 // Add statements to INIT_STMT_LIST which run the initialization
275 // functions for imported packages.  This is only used for the "main"
276 // package.
277
278 void
279 Gogo::init_imports(tree* init_stmt_list)
280 {
281   go_assert(this->is_main_package());
282
283   if (this->imported_init_fns_.empty())
284     return;
285
286   tree fntype = build_function_type(void_type_node, void_list_node);
287
288   // We must call them in increasing priority order.
289   std::vector<Import_init> v;
290   for (std::set<Import_init>::const_iterator p =
291          this->imported_init_fns_.begin();
292        p != this->imported_init_fns_.end();
293        ++p)
294     v.push_back(*p);
295   std::sort(v.begin(), v.end());
296
297   for (std::vector<Import_init>::const_iterator p = v.begin();
298        p != v.end();
299        ++p)
300     {
301       std::string user_name = p->package_name() + ".init";
302       tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
303                              get_identifier_from_string(user_name),
304                              fntype);
305       const std::string& init_name(p->init_name());
306       SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
307       TREE_PUBLIC(decl) = 1;
308       DECL_EXTERNAL(decl) = 1;
309       append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
310     }
311 }
312
313 // Register global variables with the garbage collector.  We need to
314 // register all variables which can hold a pointer value.  They become
315 // roots during the mark phase.  We build a struct that is easy to
316 // hook into a list of roots.
317
318 // struct __go_gc_root_list
319 // {
320 //   struct __go_gc_root_list* __next;
321 //   struct __go_gc_root
322 //   {
323 //     void* __decl;
324 //     size_t __size;
325 //   } __roots[];
326 // };
327
328 // The last entry in the roots array has a NULL decl field.
329
330 void
331 Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
332                        tree* init_stmt_list)
333 {
334   if (var_gc.empty())
335     return;
336
337   size_t count = var_gc.size();
338
339   tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
340                                         "__next",
341                                         ptr_type_node,
342                                         "__size",
343                                         sizetype);
344
345   tree index_type = build_index_type(size_int(count));
346   tree array_type = build_array_type(root_type, index_type);
347
348   tree root_list_type = make_node(RECORD_TYPE);
349   root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
350                                         root_list_type, 2,
351                                         "__next",
352                                         build_pointer_type(root_list_type),
353                                         "__roots",
354                                         array_type);
355
356   // Build an initialier for the __roots array.
357
358   VEC(constructor_elt,gc)* roots_init = VEC_alloc(constructor_elt, gc,
359                                                   count + 1);
360
361   size_t i = 0;
362   for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
363        p != var_gc.end();
364        ++p, ++i)
365     {
366       VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
367
368       constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
369       tree field = TYPE_FIELDS(root_type);
370       elt->index = field;
371       Bvariable* bvar = (*p)->get_backend_variable(this, NULL);
372       tree decl = var_to_tree(bvar);
373       go_assert(TREE_CODE(decl) == VAR_DECL);
374       elt->value = build_fold_addr_expr(decl);
375
376       elt = VEC_quick_push(constructor_elt, init, NULL);
377       field = DECL_CHAIN(field);
378       elt->index = field;
379       elt->value = DECL_SIZE_UNIT(decl);
380
381       elt = VEC_quick_push(constructor_elt, roots_init, NULL);
382       elt->index = size_int(i);
383       elt->value = build_constructor(root_type, init);
384     }
385
386   // The list ends with a NULL entry.
387
388   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
389
390   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
391   tree field = TYPE_FIELDS(root_type);
392   elt->index = field;
393   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
394
395   elt = VEC_quick_push(constructor_elt, init, NULL);
396   field = DECL_CHAIN(field);
397   elt->index = field;
398   elt->value = size_zero_node;
399
400   elt = VEC_quick_push(constructor_elt, roots_init, NULL);
401   elt->index = size_int(i);
402   elt->value = build_constructor(root_type, init);
403
404   // Build a constructor for the struct.
405
406   VEC(constructor_elt,gc*) root_list_init = VEC_alloc(constructor_elt, gc, 2);
407
408   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
409   field = TYPE_FIELDS(root_list_type);
410   elt->index = field;
411   elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
412
413   elt = VEC_quick_push(constructor_elt, root_list_init, NULL);
414   field = DECL_CHAIN(field);
415   elt->index = field;
416   elt->value = build_constructor(array_type, roots_init);
417
418   // Build a decl to register.
419
420   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
421                          create_tmp_var_name("gc"), root_list_type);
422   DECL_EXTERNAL(decl) = 0;
423   TREE_PUBLIC(decl) = 0;
424   TREE_STATIC(decl) = 1;
425   DECL_ARTIFICIAL(decl) = 1;
426   DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
427   rest_of_decl_compilation(decl, 1, 0);
428
429   static tree register_gc_fndecl;
430   tree call = Gogo::call_builtin(&register_gc_fndecl,
431                                  Linemap::predeclared_location(),
432                                  "__go_register_gc_roots",
433                                  1,
434                                  void_type_node,
435                                  build_pointer_type(root_list_type),
436                                  build_fold_addr_expr(decl));
437   if (call != error_mark_node)
438     append_to_statement_list(call, init_stmt_list);
439 }
440
441 // Build the decl for the initialization function.
442
443 tree
444 Gogo::initialization_function_decl()
445 {
446   // The tedious details of building your own function.  There doesn't
447   // seem to be a helper function for this.
448   std::string name = this->package_name() + ".init";
449   tree fndecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL,
450                            get_identifier_from_string(name),
451                            build_function_type(void_type_node,
452                                                void_list_node));
453   const std::string& asm_name(this->get_init_fn_name());
454   SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
455
456   tree resdecl = build_decl(BUILTINS_LOCATION, RESULT_DECL, NULL_TREE,
457                             void_type_node);
458   DECL_ARTIFICIAL(resdecl) = 1;
459   DECL_CONTEXT(resdecl) = fndecl;
460   DECL_RESULT(fndecl) = resdecl;
461
462   TREE_STATIC(fndecl) = 1;
463   TREE_USED(fndecl) = 1;
464   DECL_ARTIFICIAL(fndecl) = 1;
465   TREE_PUBLIC(fndecl) = 1;
466
467   DECL_INITIAL(fndecl) = make_node(BLOCK);
468   TREE_USED(DECL_INITIAL(fndecl)) = 1;
469
470   return fndecl;
471 }
472
473 // Create the magic initialization function.  INIT_STMT_LIST is the
474 // code that it needs to run.
475
476 void
477 Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
478 {
479   // Make sure that we thought we needed an initialization function,
480   // as otherwise we will not have reported it in the export data.
481   go_assert(this->is_main_package() || this->need_init_fn_);
482
483   if (fndecl == NULL_TREE)
484     fndecl = this->initialization_function_decl();
485
486   DECL_SAVED_TREE(fndecl) = init_stmt_list;
487
488   current_function_decl = fndecl;
489   if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
490     push_struct_function(fndecl);
491   else
492     push_cfun(DECL_STRUCT_FUNCTION(fndecl));
493   cfun->function_end_locus = BUILTINS_LOCATION;
494
495   gimplify_function_tree(fndecl);
496
497   cgraph_add_new_function(fndecl, false);
498   cgraph_mark_needed_node(cgraph_get_node(fndecl));
499
500   current_function_decl = NULL_TREE;
501   pop_cfun();
502 }
503
504 // Search for references to VAR in any statements or called functions.
505
506 class Find_var : public Traverse
507 {
508  public:
509   // A hash table we use to avoid looping.  The index is the name of a
510   // named object.  We only look through objects defined in this
511   // package.
512   typedef Unordered_set(std::string) Seen_objects;
513
514   Find_var(Named_object* var, Seen_objects* seen_objects)
515     : Traverse(traverse_expressions),
516       var_(var), seen_objects_(seen_objects), found_(false)
517   { }
518
519   // Whether the variable was found.
520   bool
521   found() const
522   { return this->found_; }
523
524   int
525   expression(Expression**);
526
527  private:
528   // The variable we are looking for.
529   Named_object* var_;
530   // Names of objects we have already seen.
531   Seen_objects* seen_objects_;
532   // True if the variable was found.
533   bool found_;
534 };
535
536 // See if EXPR refers to VAR, looking through function calls and
537 // variable initializations.
538
539 int
540 Find_var::expression(Expression** pexpr)
541 {
542   Expression* e = *pexpr;
543
544   Var_expression* ve = e->var_expression();
545   if (ve != NULL)
546     {
547       Named_object* v = ve->named_object();
548       if (v == this->var_)
549         {
550           this->found_ = true;
551           return TRAVERSE_EXIT;
552         }
553
554       if (v->is_variable() && v->package() == NULL)
555         {
556           Expression* init = v->var_value()->init();
557           if (init != NULL)
558             {
559               std::pair<Seen_objects::iterator, bool> ins =
560                 this->seen_objects_->insert(v->name());
561               if (ins.second)
562                 {
563                   // This is the first time we have seen this name.
564                   if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
565                     return TRAVERSE_EXIT;
566                 }
567             }
568         }
569     }
570
571   // We traverse the code of any function we see.  Note that this
572   // means that we will traverse the code of a function whose address
573   // is taken even if it is not called.
574   Func_expression* fe = e->func_expression();
575   if (fe != NULL)
576     {
577       const Named_object* f = fe->named_object();
578       if (f->is_function() && f->package() == NULL)
579         {
580           std::pair<Seen_objects::iterator, bool> ins =
581             this->seen_objects_->insert(f->name());
582           if (ins.second)
583             {
584               // This is the first time we have seen this name.
585               if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
586                 return TRAVERSE_EXIT;
587             }
588         }
589     }
590
591   return TRAVERSE_CONTINUE;
592 }
593
594 // Return true if EXPR refers to VAR.
595
596 static bool
597 expression_requires(Expression* expr, Block* preinit, Named_object* var)
598 {
599   Find_var::Seen_objects seen_objects;
600   Find_var find_var(var, &seen_objects);
601   if (expr != NULL)
602     Expression::traverse(&expr, &find_var);
603   if (preinit != NULL)
604     preinit->traverse(&find_var);
605   
606   return find_var.found();
607 }
608
609 // Sort variable initializations.  If the initialization expression
610 // for variable A refers directly or indirectly to the initialization
611 // expression for variable B, then we must initialize B before A.
612
613 class Var_init
614 {
615  public:
616   Var_init()
617     : var_(NULL), init_(NULL_TREE), waiting_(0)
618   { }
619
620   Var_init(Named_object* var, tree init)
621     : var_(var), init_(init), waiting_(0)
622   { }
623
624   // Return the variable.
625   Named_object*
626   var() const
627   { return this->var_; }
628
629   // Return the initialization expression.
630   tree
631   init() const
632   { return this->init_; }
633
634   // Return the number of variables waiting for this one to be
635   // initialized.
636   size_t
637   waiting() const
638   { return this->waiting_; }
639
640   // Increment the number waiting.
641   void
642   increment_waiting()
643   { ++this->waiting_; }
644
645  private:
646   // The variable being initialized.
647   Named_object* var_;
648   // The initialization expression to run.
649   tree init_;
650   // The number of variables which are waiting for this one.
651   size_t waiting_;
652 };
653
654 typedef std::list<Var_init> Var_inits;
655
656 // Sort the variable initializations.  The rule we follow is that we
657 // emit them in the order they appear in the array, except that if the
658 // initialization expression for a variable V1 depends upon another
659 // variable V2 then we initialize V1 after V2.
660
661 static void
662 sort_var_inits(Var_inits* var_inits)
663 {
664   Var_inits ready;
665   while (!var_inits->empty())
666     {
667       Var_inits::iterator p1 = var_inits->begin();
668       Named_object* var = p1->var();
669       Expression* init = var->var_value()->init();
670       Block* preinit = var->var_value()->preinit();
671
672       // Start walking through the list to see which variables VAR
673       // needs to wait for.  We can skip P1->WAITING variables--that
674       // is the number we've already checked.
675       Var_inits::iterator p2 = p1;
676       ++p2;
677       for (size_t i = p1->waiting(); i > 0; --i)
678         ++p2;
679
680       for (; p2 != var_inits->end(); ++p2)
681         {
682           if (expression_requires(init, preinit, p2->var()))
683             {
684               // Check for cycles.
685               if (expression_requires(p2->var()->var_value()->init(),
686                                       p2->var()->var_value()->preinit(),
687                                       var))
688                 {
689                   error_at(var->location(),
690                            ("initialization expressions for %qs and "
691                             "%qs depend upon each other"),
692                            var->message_name().c_str(),
693                            p2->var()->message_name().c_str());
694                   inform(p2->var()->location(), "%qs defined here",
695                          p2->var()->message_name().c_str());
696                   p2 = var_inits->end();
697                 }
698               else
699                 {
700                   // We can't emit P1 until P2 is emitted.  Move P1.
701                   // Note that the WAITING loop always executes at
702                   // least once, which is what we want.
703                   p2->increment_waiting();
704                   Var_inits::iterator p3 = p2;
705                   for (size_t i = p2->waiting(); i > 0; --i)
706                     ++p3;
707                   var_inits->splice(p3, *var_inits, p1);
708                 }
709               break;
710             }
711         }
712
713       if (p2 == var_inits->end())
714         {
715           // VAR does not depends upon any other initialization expressions.
716
717           // Check for a loop of VAR on itself.  We only do this if
718           // INIT is not NULL; when INIT is NULL, it means that
719           // PREINIT sets VAR, which we will interpret as a loop.
720           if (init != NULL && expression_requires(init, preinit, var))
721             error_at(var->location(),
722                      "initialization expression for %qs depends upon itself",
723                      var->message_name().c_str());
724           ready.splice(ready.end(), *var_inits, p1);
725         }
726     }
727
728   // Now READY is the list in the desired initialization order.
729   var_inits->swap(ready);
730 }
731
732 // Write out the global definitions.
733
734 void
735 Gogo::write_globals()
736 {
737   this->convert_named_types();
738   this->build_interface_method_tables();
739
740   Bindings* bindings = this->current_bindings();
741   size_t count_definitions = bindings->size_definitions();
742   size_t count = count_definitions;
743
744   tree* vec = new tree[count];
745
746   tree init_fndecl = NULL_TREE;
747   tree init_stmt_list = NULL_TREE;
748
749   if (this->is_main_package())
750     this->init_imports(&init_stmt_list);
751
752   // A list of variable initializations.
753   Var_inits var_inits;
754
755   // A list of variables which need to be registered with the garbage
756   // collector.
757   std::vector<Named_object*> var_gc;
758   var_gc.reserve(count);
759
760   tree var_init_stmt_list = NULL_TREE;
761   size_t i = 0;
762   for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
763        p != bindings->end_definitions();
764        ++p, ++i)
765     {
766       Named_object* no = *p;
767
768       go_assert(!no->is_type_declaration() && !no->is_function_declaration());
769       // There is nothing to do for a package.
770       if (no->is_package())
771         {
772           --i;
773           --count;
774           continue;
775         }
776
777       // There is nothing to do for an object which was imported from
778       // a different package into the global scope.
779       if (no->package() != NULL)
780         {
781           --i;
782           --count;
783           continue;
784         }
785
786       // There is nothing useful we can output for constants which
787       // have ideal or non-integeral type.
788       if (no->is_const())
789         {
790           Type* type = no->const_value()->type();
791           if (type == NULL)
792             type = no->const_value()->expr()->type();
793           if (type->is_abstract() || type->integer_type() == NULL)
794             {
795               --i;
796               --count;
797               continue;
798             }
799         }
800
801       if (!no->is_variable())
802         {
803           vec[i] = no->get_tree(this, NULL);
804           if (vec[i] == error_mark_node)
805             {
806               go_assert(saw_errors());
807               --i;
808               --count;
809               continue;
810             }
811         }
812       else
813         {
814           Bvariable* var = no->get_backend_variable(this, NULL);
815           vec[i] = var_to_tree(var);
816           if (vec[i] == error_mark_node)
817             {
818               go_assert(saw_errors());
819               --i;
820               --count;
821               continue;
822             }
823
824           // Check for a sink variable, which may be used to run an
825           // initializer purely for its side effects.
826           bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
827
828           tree var_init_tree = NULL_TREE;
829           if (!no->var_value()->has_pre_init())
830             {
831               tree init = no->var_value()->get_init_tree(this, NULL);
832               if (init == error_mark_node)
833                 go_assert(saw_errors());
834               else if (init == NULL_TREE)
835                 ;
836               else if (TREE_CONSTANT(init))
837                 {
838                   if (expression_requires(no->var_value()->init(), NULL, no))
839                     error_at(no->location(),
840                              "initialization expression for %qs depends "
841                              "upon itself",
842                              no->message_name().c_str());
843                   this->backend()->global_variable_set_init(var,
844                                                             tree_to_expr(init));
845                 }
846               else if (is_sink
847                        || int_size_in_bytes(TREE_TYPE(init)) == 0
848                        || int_size_in_bytes(TREE_TYPE(vec[i])) == 0)
849                 var_init_tree = init;
850               else
851                 var_init_tree = fold_build2_loc(no->location().gcc_location(),
852                                                 MODIFY_EXPR, void_type_node,
853                                                 vec[i], init);
854             }
855           else
856             {
857               // We are going to create temporary variables which
858               // means that we need an fndecl.
859               if (init_fndecl == NULL_TREE)
860                 init_fndecl = this->initialization_function_decl();
861               current_function_decl = init_fndecl;
862               if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
863                 push_struct_function(init_fndecl);
864               else
865                 push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
866
867               tree var_decl = is_sink ? NULL_TREE : vec[i];
868               var_init_tree = no->var_value()->get_init_block(this, NULL,
869                                                               var_decl);
870
871               current_function_decl = NULL_TREE;
872               pop_cfun();
873             }
874
875           if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
876             {
877               if (no->var_value()->init() == NULL
878                   && !no->var_value()->has_pre_init())
879                 append_to_statement_list(var_init_tree, &var_init_stmt_list);
880               else
881                 var_inits.push_back(Var_init(no, var_init_tree));
882             }
883
884           if (!is_sink && no->var_value()->type()->has_pointer())
885             var_gc.push_back(no);
886         }
887     }
888
889   // Register global variables with the garbage collector.
890   this->register_gc_vars(var_gc, &init_stmt_list);
891
892   // Simple variable initializations, after all variables are
893   // registered.
894   append_to_statement_list(var_init_stmt_list, &init_stmt_list);
895
896   // Complex variable initializations, first sorting them into a
897   // workable order.
898   if (!var_inits.empty())
899     {
900       sort_var_inits(&var_inits);
901       for (Var_inits::const_iterator p = var_inits.begin();
902            p != var_inits.end();
903            ++p)
904         append_to_statement_list(p->init(), &init_stmt_list);
905     }
906
907   // After all the variables are initialized, call the "init"
908   // functions if there are any.
909   for (std::vector<Named_object*>::const_iterator p =
910          this->init_functions_.begin();
911        p != this->init_functions_.end();
912        ++p)
913     {
914       tree decl = (*p)->get_tree(this, NULL);
915       tree call = build_call_expr(decl, 0);
916       append_to_statement_list(call, &init_stmt_list);
917     }
918
919   // Set up a magic function to do all the initialization actions.
920   // This will be called if this package is imported.
921   if (init_stmt_list != NULL_TREE
922       || this->need_init_fn_
923       || this->is_main_package())
924     this->write_initialization_function(init_fndecl, init_stmt_list);
925
926   // We should not have seen any new bindings created during the
927   // conversion.
928   go_assert(count_definitions == this->current_bindings()->size_definitions());
929
930   // Pass everything back to the middle-end.
931
932   wrapup_global_declarations(vec, count);
933
934   cgraph_finalize_compilation_unit();
935
936   check_global_declarations(vec, count);
937   emit_debug_global_declarations(vec, count);
938
939   delete[] vec;
940 }
941
942 // Get a tree for the identifier for a named object.
943
944 tree
945 Named_object::get_id(Gogo* gogo)
946 {
947   go_assert(!this->is_variable() && !this->is_result_variable());
948   std::string decl_name;
949   if (this->is_function_declaration()
950       && !this->func_declaration_value()->asm_name().empty())
951     decl_name = this->func_declaration_value()->asm_name();
952   else if (this->is_type()
953            && Linemap::is_predeclared_location(this->type_value()->location()))
954     {
955       // We don't need the package name for builtin types.
956       decl_name = Gogo::unpack_hidden_name(this->name_);
957     }
958   else
959     {
960       std::string package_name;
961       if (this->package_ == NULL)
962         package_name = gogo->package_name();
963       else
964         package_name = this->package_->name();
965
966       decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
967
968       Function_type* fntype;
969       if (this->is_function())
970         fntype = this->func_value()->type();
971       else if (this->is_function_declaration())
972         fntype = this->func_declaration_value()->type();
973       else
974         fntype = NULL;
975       if (fntype != NULL && fntype->is_method())
976         {
977           decl_name.push_back('.');
978           decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
979         }
980     }
981   if (this->is_type())
982     {
983       const Named_object* in_function = this->type_value()->in_function();
984       if (in_function != NULL)
985         decl_name += '$' + in_function->name();
986     }
987   return get_identifier_from_string(decl_name);
988 }
989
990 // Get a tree for a named object.
991
992 tree
993 Named_object::get_tree(Gogo* gogo, Named_object* function)
994 {
995   if (this->tree_ != NULL_TREE)
996     return this->tree_;
997
998   tree name;
999   if (this->classification_ == NAMED_OBJECT_TYPE)
1000     name = NULL_TREE;
1001   else
1002     name = this->get_id(gogo);
1003   tree decl;
1004   switch (this->classification_)
1005     {
1006     case NAMED_OBJECT_CONST:
1007       {
1008         Named_constant* named_constant = this->u_.const_value;
1009         Translate_context subcontext(gogo, function, NULL, NULL);
1010         tree expr_tree = named_constant->expr()->get_tree(&subcontext);
1011         if (expr_tree == error_mark_node)
1012           decl = error_mark_node;
1013         else
1014           {
1015             Type* type = named_constant->type();
1016             if (type != NULL && !type->is_abstract())
1017               {
1018                 if (type->is_error())
1019                   expr_tree = error_mark_node;
1020                 else
1021                   {
1022                     Btype* btype = type->get_backend(gogo);
1023                     expr_tree = fold_convert(type_to_tree(btype), expr_tree);
1024                   }
1025               }
1026             if (expr_tree == error_mark_node)
1027               decl = error_mark_node;
1028             else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
1029               {
1030                 decl = build_decl(named_constant->location().gcc_location(),
1031                                   CONST_DECL, name, TREE_TYPE(expr_tree));
1032                 DECL_INITIAL(decl) = expr_tree;
1033                 TREE_CONSTANT(decl) = 1;
1034                 TREE_READONLY(decl) = 1;
1035               }
1036             else
1037               {
1038                 // A CONST_DECL is only for an enum constant, so we
1039                 // shouldn't use for non-integral types.  Instead we
1040                 // just return the constant itself, rather than a
1041                 // decl.
1042                 decl = expr_tree;
1043               }
1044           }
1045       }
1046       break;
1047
1048     case NAMED_OBJECT_TYPE:
1049       {
1050         Named_type* named_type = this->u_.type_value;
1051         tree type_tree = type_to_tree(named_type->get_backend(gogo));
1052         if (type_tree == error_mark_node)
1053           decl = error_mark_node;
1054         else
1055           {
1056             decl = TYPE_NAME(type_tree);
1057             go_assert(decl != NULL_TREE);
1058
1059             // We need to produce a type descriptor for every named
1060             // type, and for a pointer to every named type, since
1061             // other files or packages might refer to them.  We need
1062             // to do this even for hidden types, because they might
1063             // still be returned by some function.  Simply calling the
1064             // type_descriptor method is enough to create the type
1065             // descriptor, even though we don't do anything with it.
1066             if (this->package_ == NULL)
1067               {
1068                 named_type->
1069                   type_descriptor_pointer(gogo,
1070                                           Linemap::predeclared_location());
1071                 Type* pn = Type::make_pointer_type(named_type);
1072                 pn->type_descriptor_pointer(gogo,
1073                                             Linemap::predeclared_location());
1074               }
1075           }
1076       }
1077       break;
1078
1079     case NAMED_OBJECT_TYPE_DECLARATION:
1080       error("reference to undefined type %qs",
1081             this->message_name().c_str());
1082       return error_mark_node;
1083
1084     case NAMED_OBJECT_VAR:
1085     case NAMED_OBJECT_RESULT_VAR:
1086     case NAMED_OBJECT_SINK:
1087       go_unreachable();
1088
1089     case NAMED_OBJECT_FUNC:
1090       {
1091         Function* func = this->u_.func_value;
1092         decl = func->get_or_make_decl(gogo, this, name);
1093         if (decl != error_mark_node)
1094           {
1095             if (func->block() != NULL)
1096               {
1097                 if (DECL_STRUCT_FUNCTION(decl) == NULL)
1098                   push_struct_function(decl);
1099                 else
1100                   push_cfun(DECL_STRUCT_FUNCTION(decl));
1101
1102                 cfun->function_end_locus =
1103                   func->block()->end_location().gcc_location();
1104
1105                 current_function_decl = decl;
1106
1107                 func->build_tree(gogo, this);
1108
1109                 gimplify_function_tree(decl);
1110
1111                 cgraph_finalize_function(decl, true);
1112
1113                 current_function_decl = NULL_TREE;
1114                 pop_cfun();
1115               }
1116           }
1117       }
1118       break;
1119
1120     case NAMED_OBJECT_ERRONEOUS:
1121       decl = error_mark_node;
1122       break;
1123
1124     default:
1125       go_unreachable();
1126     }
1127
1128   if (TREE_TYPE(decl) == error_mark_node)
1129     decl = error_mark_node;
1130
1131   tree ret = decl;
1132
1133   this->tree_ = ret;
1134
1135   if (ret != error_mark_node)
1136     go_preserve_from_gc(ret);
1137
1138   return ret;
1139 }
1140
1141 // Get the initial value of a variable as a tree.  This does not
1142 // consider whether the variable is in the heap--it returns the
1143 // initial value as though it were always stored in the stack.
1144
1145 tree
1146 Variable::get_init_tree(Gogo* gogo, Named_object* function)
1147 {
1148   go_assert(this->preinit_ == NULL);
1149   if (this->init_ == NULL)
1150     {
1151       go_assert(!this->is_parameter_);
1152       if (this->is_global_ || this->is_in_heap())
1153         return NULL;
1154       Btype* btype = this->type_->get_backend(gogo);
1155       return expr_to_tree(gogo->backend()->zero_expression(btype));
1156     }
1157   else
1158     {
1159       Translate_context context(gogo, function, NULL, NULL);
1160       tree rhs_tree = this->init_->get_tree(&context);
1161       return Expression::convert_for_assignment(&context, this->type(),
1162                                                 this->init_->type(),
1163                                                 rhs_tree, this->location());
1164     }
1165 }
1166
1167 // Get the initial value of a variable when a block is required.
1168 // VAR_DECL is the decl to set; it may be NULL for a sink variable.
1169
1170 tree
1171 Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
1172 {
1173   go_assert(this->preinit_ != NULL);
1174
1175   // We want to add the variable assignment to the end of the preinit
1176   // block.  The preinit block may have a TRY_FINALLY_EXPR and a
1177   // TRY_CATCH_EXPR; if it does, we want to add to the end of the
1178   // regular statements.
1179
1180   Translate_context context(gogo, function, NULL, NULL);
1181   Bblock* bblock = this->preinit_->get_backend(&context);
1182   tree block_tree = block_to_tree(bblock);
1183   if (block_tree == error_mark_node)
1184     return error_mark_node;
1185   go_assert(TREE_CODE(block_tree) == BIND_EXPR);
1186   tree statements = BIND_EXPR_BODY(block_tree);
1187   while (statements != NULL_TREE
1188          && (TREE_CODE(statements) == TRY_FINALLY_EXPR
1189              || TREE_CODE(statements) == TRY_CATCH_EXPR))
1190     statements = TREE_OPERAND(statements, 0);
1191
1192   // It's possible to have pre-init statements without an initializer
1193   // if the pre-init statements set the variable.
1194   if (this->init_ != NULL)
1195     {
1196       tree rhs_tree = this->init_->get_tree(&context);
1197       if (rhs_tree == error_mark_node)
1198         return error_mark_node;
1199       if (var_decl == NULL_TREE)
1200         append_to_statement_list(rhs_tree, &statements);
1201       else
1202         {
1203           tree val = Expression::convert_for_assignment(&context, this->type(),
1204                                                         this->init_->type(),
1205                                                         rhs_tree,
1206                                                         this->location());
1207           if (val == error_mark_node)
1208             return error_mark_node;
1209           tree set = fold_build2_loc(this->location().gcc_location(),
1210                                      MODIFY_EXPR, void_type_node, var_decl,
1211                                      val);
1212           append_to_statement_list(set, &statements);
1213         }
1214     }
1215
1216   return block_tree;
1217 }
1218
1219 // Get a tree for a function decl.
1220
1221 tree
1222 Function::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1223 {
1224   if (this->fndecl_ == NULL_TREE)
1225     {
1226       tree functype = type_to_tree(this->type_->get_backend(gogo));
1227       if (functype == error_mark_node)
1228         this->fndecl_ = error_mark_node;
1229       else
1230         {
1231           // The type of a function comes back as a pointer, but we
1232           // want the real function type for a function declaration.
1233           go_assert(POINTER_TYPE_P(functype));
1234           functype = TREE_TYPE(functype);
1235           tree decl = build_decl(this->location().gcc_location(), FUNCTION_DECL,
1236                                  id, functype);
1237
1238           this->fndecl_ = decl;
1239
1240           if (no->package() != NULL)
1241             ;
1242           else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
1243             ;
1244           else if (Gogo::unpack_hidden_name(no->name()) == "init"
1245                    && !this->type_->is_method())
1246             ;
1247           else if (Gogo::unpack_hidden_name(no->name()) == "main"
1248                    && gogo->is_main_package())
1249             TREE_PUBLIC(decl) = 1;
1250           // Methods have to be public even if they are hidden because
1251           // they can be pulled into type descriptors when using
1252           // anonymous fields.
1253           else if (!Gogo::is_hidden_name(no->name())
1254                    || this->type_->is_method())
1255             {
1256               TREE_PUBLIC(decl) = 1;
1257               std::string asm_name = gogo->unique_prefix();
1258               asm_name.append(1, '.');
1259               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1260               SET_DECL_ASSEMBLER_NAME(decl,
1261                                       get_identifier_from_string(asm_name));
1262             }
1263
1264           // Why do we have to do this in the frontend?
1265           tree restype = TREE_TYPE(functype);
1266           tree resdecl =
1267             build_decl(this->location().gcc_location(), RESULT_DECL, NULL_TREE,
1268                        restype);
1269           DECL_ARTIFICIAL(resdecl) = 1;
1270           DECL_IGNORED_P(resdecl) = 1;
1271           DECL_CONTEXT(resdecl) = decl;
1272           DECL_RESULT(decl) = resdecl;
1273
1274           if (this->enclosing_ != NULL)
1275             DECL_STATIC_CHAIN(decl) = 1;
1276
1277           // If a function calls the predeclared recover function, we
1278           // can't inline it, because recover behaves differently in a
1279           // function passed directly to defer.  If this is a recover
1280           // thunk that we built to test whether a function can be
1281           // recovered, we can't inline it, because that will mess up
1282           // our return address comparison.
1283           if (this->calls_recover_ || this->is_recover_thunk_)
1284             DECL_UNINLINABLE(decl) = 1;
1285
1286           // If this is a thunk created to call a function which calls
1287           // the predeclared recover function, we need to disable
1288           // stack splitting for the thunk.
1289           if (this->is_recover_thunk_)
1290             {
1291               tree attr = get_identifier("__no_split_stack__");
1292               DECL_ATTRIBUTES(decl) = tree_cons(attr, NULL_TREE, NULL_TREE);
1293             }
1294
1295           go_preserve_from_gc(decl);
1296
1297           if (this->closure_var_ != NULL)
1298             {
1299               push_struct_function(decl);
1300
1301               Bvariable* bvar = this->closure_var_->get_backend_variable(gogo,
1302                                                                          no);
1303               tree closure_decl = var_to_tree(bvar);
1304               if (closure_decl == error_mark_node)
1305                 this->fndecl_ = error_mark_node;
1306               else
1307                 {
1308                   DECL_ARTIFICIAL(closure_decl) = 1;
1309                   DECL_IGNORED_P(closure_decl) = 1;
1310                   TREE_USED(closure_decl) = 1;
1311                   DECL_ARG_TYPE(closure_decl) = TREE_TYPE(closure_decl);
1312                   TREE_READONLY(closure_decl) = 1;
1313
1314                   DECL_STRUCT_FUNCTION(decl)->static_chain_decl = closure_decl;
1315                 }
1316
1317               pop_cfun();
1318             }
1319         }
1320     }
1321   return this->fndecl_;
1322 }
1323
1324 // Get a tree for a function declaration.
1325
1326 tree
1327 Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no, tree id)
1328 {
1329   if (this->fndecl_ == NULL_TREE)
1330     {
1331       // Let Go code use an asm declaration to pick up a builtin
1332       // function.
1333       if (!this->asm_name_.empty())
1334         {
1335           std::map<std::string, tree>::const_iterator p =
1336             builtin_functions.find(this->asm_name_);
1337           if (p != builtin_functions.end())
1338             {
1339               this->fndecl_ = p->second;
1340               return this->fndecl_;
1341             }
1342         }
1343
1344       tree functype = type_to_tree(this->fntype_->get_backend(gogo));
1345       tree decl;
1346       if (functype == error_mark_node)
1347         decl = error_mark_node;
1348       else
1349         {
1350           // The type of a function comes back as a pointer, but we
1351           // want the real function type for a function declaration.
1352           go_assert(POINTER_TYPE_P(functype));
1353           functype = TREE_TYPE(functype);
1354           decl = build_decl(this->location().gcc_location(), FUNCTION_DECL, id,
1355                             functype);
1356           TREE_PUBLIC(decl) = 1;
1357           DECL_EXTERNAL(decl) = 1;
1358
1359           if (this->asm_name_.empty())
1360             {
1361               std::string asm_name = (no->package() == NULL
1362                                       ? gogo->unique_prefix()
1363                                       : no->package()->unique_prefix());
1364               asm_name.append(1, '.');
1365               asm_name.append(IDENTIFIER_POINTER(id), IDENTIFIER_LENGTH(id));
1366               SET_DECL_ASSEMBLER_NAME(decl,
1367                                       get_identifier_from_string(asm_name));
1368             }
1369         }
1370       this->fndecl_ = decl;
1371       go_preserve_from_gc(decl);
1372     }
1373   return this->fndecl_;
1374 }
1375
1376 // We always pass the receiver to a method as a pointer.  If the
1377 // receiver is actually declared as a non-pointer type, then we copy
1378 // the value into a local variable, so that it has the right type.  In
1379 // this function we create the real PARM_DECL to use, and set
1380 // DEC_INITIAL of the var_decl to be the value passed in.
1381
1382 tree
1383 Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
1384 {
1385   if (var_decl == error_mark_node)
1386     return error_mark_node;
1387   go_assert(TREE_CODE(var_decl) == VAR_DECL);
1388   tree val_type = TREE_TYPE(var_decl);
1389   bool is_in_heap = no->var_value()->is_in_heap();
1390   if (is_in_heap)
1391     {
1392       go_assert(POINTER_TYPE_P(val_type));
1393       val_type = TREE_TYPE(val_type);
1394     }
1395
1396   source_location loc = DECL_SOURCE_LOCATION(var_decl);
1397   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1398   name += ".pointer";
1399   tree id = get_identifier_from_string(name);
1400   tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
1401   DECL_CONTEXT(parm_decl) = current_function_decl;
1402   DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
1403
1404   go_assert(DECL_INITIAL(var_decl) == NULL_TREE);
1405   tree init = build_fold_indirect_ref_loc(loc, parm_decl);
1406
1407   if (is_in_heap)
1408     {
1409       tree size = TYPE_SIZE_UNIT(val_type);
1410       tree space = gogo->allocate_memory(no->var_value()->type(), size,
1411                                          no->location());
1412       space = save_expr(space);
1413       space = fold_convert(build_pointer_type(val_type), space);
1414       tree spaceref = build_fold_indirect_ref_loc(no->location().gcc_location(),
1415                                                   space);
1416       TREE_THIS_NOTRAP(spaceref) = 1;
1417       tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
1418                                  spaceref, init);
1419       init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space), set, space);
1420     }
1421
1422   DECL_INITIAL(var_decl) = init;
1423
1424   return parm_decl;
1425 }
1426
1427 // If we take the address of a parameter, then we need to copy it into
1428 // the heap.  We will access it as a local variable via an
1429 // indirection.
1430
1431 tree
1432 Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree var_decl)
1433 {
1434   if (var_decl == error_mark_node)
1435     return error_mark_node;
1436   go_assert(TREE_CODE(var_decl) == VAR_DECL);
1437   Location loc(DECL_SOURCE_LOCATION(var_decl));
1438
1439   std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
1440   name += ".param";
1441   tree id = get_identifier_from_string(name);
1442
1443   tree type = TREE_TYPE(var_decl);
1444   go_assert(POINTER_TYPE_P(type));
1445   type = TREE_TYPE(type);
1446
1447   tree parm_decl = build_decl(loc.gcc_location(), PARM_DECL, id, type);
1448   DECL_CONTEXT(parm_decl) = current_function_decl;
1449   DECL_ARG_TYPE(parm_decl) = type;
1450
1451   tree size = TYPE_SIZE_UNIT(type);
1452   tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
1453   space = save_expr(space);
1454   space = fold_convert(TREE_TYPE(var_decl), space);
1455   tree spaceref = build_fold_indirect_ref_loc(loc.gcc_location(), space);
1456   TREE_THIS_NOTRAP(spaceref) = 1;
1457   tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
1458                      build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
1459                      space);
1460   DECL_INITIAL(var_decl) = init;
1461
1462   return parm_decl;
1463 }
1464
1465 // Get a tree for function code.
1466
1467 void
1468 Function::build_tree(Gogo* gogo, Named_object* named_function)
1469 {
1470   tree fndecl = this->fndecl_;
1471   go_assert(fndecl != NULL_TREE);
1472
1473   tree params = NULL_TREE;
1474   tree* pp = &params;
1475
1476   tree declare_vars = NULL_TREE;
1477   for (Bindings::const_definitions_iterator p =
1478          this->block_->bindings()->begin_definitions();
1479        p != this->block_->bindings()->end_definitions();
1480        ++p)
1481     {
1482       if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
1483         {
1484           Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
1485           *pp = var_to_tree(bvar);
1486
1487           // We always pass the receiver to a method as a pointer.  If
1488           // the receiver is declared as a non-pointer type, then we
1489           // copy the value into a local variable.
1490           if ((*p)->var_value()->is_receiver()
1491               && (*p)->var_value()->type()->points_to() == NULL)
1492             {
1493               tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
1494               tree var = *pp;
1495               if (var != error_mark_node)
1496                 {
1497                   go_assert(TREE_CODE(var) == VAR_DECL);
1498                   DECL_CHAIN(var) = declare_vars;
1499                   declare_vars = var;
1500                 }
1501               *pp = parm_decl;
1502             }
1503           else if ((*p)->var_value()->is_in_heap())
1504             {
1505               // If we take the address of a parameter, then we need
1506               // to copy it into the heap.
1507               tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
1508               tree var = *pp;
1509               if (var != error_mark_node)
1510                 {
1511                   go_assert(TREE_CODE(var) == VAR_DECL);
1512                   DECL_CHAIN(var) = declare_vars;
1513                   declare_vars = var;
1514                 }
1515               *pp = parm_decl;
1516             }
1517
1518           if (*pp != error_mark_node)
1519             {
1520               go_assert(TREE_CODE(*pp) == PARM_DECL);
1521               pp = &DECL_CHAIN(*pp);
1522             }
1523         }
1524       else if ((*p)->is_result_variable())
1525         {
1526           Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
1527           tree var_decl = var_to_tree(bvar);
1528
1529           Type* type = (*p)->result_var_value()->type();
1530           tree init;
1531           if (!(*p)->result_var_value()->is_in_heap())
1532             {
1533               Btype* btype = type->get_backend(gogo);
1534               init = expr_to_tree(gogo->backend()->zero_expression(btype));
1535             }
1536           else
1537             {
1538               Location loc = (*p)->location();
1539               tree type_tree = type_to_tree(type->get_backend(gogo));
1540               tree space = gogo->allocate_memory(type,
1541                                                  TYPE_SIZE_UNIT(type_tree),
1542                                                  loc);
1543               tree ptr_type_tree = build_pointer_type(type_tree);
1544               init = fold_convert_loc(loc.gcc_location(), ptr_type_tree, space);
1545             }
1546
1547           if (var_decl != error_mark_node)
1548             {
1549               go_assert(TREE_CODE(var_decl) == VAR_DECL);
1550               DECL_INITIAL(var_decl) = init;
1551               DECL_CHAIN(var_decl) = declare_vars;
1552               declare_vars = var_decl;
1553             }
1554         }
1555     }
1556   *pp = NULL_TREE;
1557
1558   DECL_ARGUMENTS(fndecl) = params;
1559
1560   if (this->block_ != NULL)
1561     {
1562       go_assert(DECL_INITIAL(fndecl) == NULL_TREE);
1563
1564       // Declare variables if necessary.
1565       tree bind = NULL_TREE;
1566       tree defer_init = NULL_TREE;
1567       if (declare_vars != NULL_TREE || this->defer_stack_ != NULL)
1568         {
1569           tree block = make_node(BLOCK);
1570           BLOCK_SUPERCONTEXT(block) = fndecl;
1571           DECL_INITIAL(fndecl) = block;
1572           BLOCK_VARS(block) = declare_vars;
1573           TREE_USED(block) = 1;
1574
1575           bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
1576                         NULL_TREE, block);
1577           TREE_SIDE_EFFECTS(bind) = 1;
1578
1579           if (this->defer_stack_ != NULL)
1580             {
1581               Translate_context dcontext(gogo, named_function, this->block_,
1582                                          tree_to_block(bind));
1583               Bstatement* bdi = this->defer_stack_->get_backend(&dcontext);
1584               defer_init = stat_to_tree(bdi);
1585             }
1586         }
1587
1588       // Build the trees for all the statements in the function.
1589       Translate_context context(gogo, named_function, NULL, NULL);
1590       Bblock* bblock = this->block_->get_backend(&context);
1591       tree code = block_to_tree(bblock);
1592
1593       tree init = NULL_TREE;
1594       tree except = NULL_TREE;
1595       tree fini = NULL_TREE;
1596
1597       // Initialize variables if necessary.
1598       for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
1599         {
1600           tree dv = build1(DECL_EXPR, void_type_node, v);
1601           SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
1602           append_to_statement_list(dv, &init);
1603         }
1604
1605       // If we have a defer stack, initialize it at the start of a
1606       // function.
1607       if (defer_init != NULL_TREE && defer_init != error_mark_node)
1608         {
1609           SET_EXPR_LOCATION(defer_init,
1610                             this->block_->start_location().gcc_location());
1611           append_to_statement_list(defer_init, &init);
1612
1613           // Clean up the defer stack when we leave the function.
1614           this->build_defer_wrapper(gogo, named_function, &except, &fini);
1615         }
1616
1617       if (code != NULL_TREE && code != error_mark_node)
1618         {
1619           if (init != NULL_TREE)
1620             code = build2(COMPOUND_EXPR, void_type_node, init, code);
1621           if (except != NULL_TREE)
1622             code = build2(TRY_CATCH_EXPR, void_type_node, code,
1623                           build2(CATCH_EXPR, void_type_node, NULL, except));
1624           if (fini != NULL_TREE)
1625             code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
1626         }
1627
1628       // Stick the code into the block we built for the receiver, if
1629       // we built on.
1630       if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
1631         {
1632           BIND_EXPR_BODY(bind) = code;
1633           code = bind;
1634         }
1635
1636       DECL_SAVED_TREE(fndecl) = code;
1637     }
1638 }
1639
1640 // Build the wrappers around function code needed if the function has
1641 // any defer statements.  This sets *EXCEPT to an exception handler
1642 // and *FINI to a finally handler.
1643
1644 void
1645 Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
1646                               tree *except, tree *fini)
1647 {
1648   Location end_loc = this->block_->end_location();
1649
1650   // Add an exception handler.  This is used if a panic occurs.  Its
1651   // purpose is to stop the stack unwinding if a deferred function
1652   // calls recover.  There are more details in
1653   // libgo/runtime/go-unwind.c.
1654
1655   tree stmt_list = NULL_TREE;
1656
1657   Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
1658                                         this->defer_stack(end_loc));
1659   Translate_context context(gogo, named_function, NULL, NULL);
1660   tree call_tree = call->get_tree(&context);
1661   if (call_tree != error_mark_node)
1662     append_to_statement_list(call_tree, &stmt_list);
1663
1664   tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
1665   tree set;
1666   if (retval == NULL_TREE)
1667     set = NULL_TREE;
1668   else
1669     set = fold_build2_loc(end_loc.gcc_location(), MODIFY_EXPR, void_type_node,
1670                           DECL_RESULT(this->fndecl_), retval);
1671   tree ret_stmt = fold_build1_loc(end_loc.gcc_location(), RETURN_EXPR,
1672                                   void_type_node, set);
1673   append_to_statement_list(ret_stmt, &stmt_list);
1674
1675   go_assert(*except == NULL_TREE);
1676   *except = stmt_list;
1677
1678   // Add some finally code to run the defer functions.  This is used
1679   // both in the normal case, when no panic occurs, and also if a
1680   // panic occurs to run any further defer functions.  Of course, it
1681   // is possible for a defer function to call panic which should be
1682   // caught by another defer function.  To handle that we use a loop.
1683   //  finish:
1684   //   try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
1685   //   if (return values are named) return named_vals;
1686
1687   stmt_list = NULL;
1688
1689   tree label = create_artificial_label(end_loc.gcc_location());
1690   tree define_label = fold_build1_loc(end_loc.gcc_location(), LABEL_EXPR,
1691                                       void_type_node, label);
1692   append_to_statement_list(define_label, &stmt_list);
1693
1694   call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
1695                             this->defer_stack(end_loc));
1696   tree undefer = call->get_tree(&context);
1697
1698   call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
1699                             this->defer_stack(end_loc));
1700   tree defer = call->get_tree(&context);
1701
1702   if (undefer == error_mark_node || defer == error_mark_node)
1703     return;
1704
1705   tree jump = fold_build1_loc(end_loc.gcc_location(), GOTO_EXPR, void_type_node,
1706                               label);
1707   tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
1708   catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
1709   tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
1710
1711   append_to_statement_list(try_catch, &stmt_list);
1712
1713   if (this->type_->results() != NULL
1714       && !this->type_->results()->empty()
1715       && !this->type_->results()->front().name().empty())
1716     {
1717       // If the result variables are named, and we are returning from
1718       // this function rather than panicing through it, we need to
1719       // return them again, because they might have been changed by a
1720       // defer function.  The runtime routines set the defer_stack
1721       // variable to true if we are returning from this function.
1722       retval = this->return_value(gogo, named_function, end_loc,
1723                                   &stmt_list);
1724       set = fold_build2_loc(end_loc.gcc_location(), MODIFY_EXPR, void_type_node,
1725                             DECL_RESULT(this->fndecl_), retval);
1726       ret_stmt = fold_build1_loc(end_loc.gcc_location(), RETURN_EXPR,
1727                                  void_type_node, set);
1728
1729       Expression* ref =
1730         Expression::make_temporary_reference(this->defer_stack_, end_loc);
1731       tree tref = ref->get_tree(&context);
1732       tree s = build3_loc(end_loc.gcc_location(), COND_EXPR, void_type_node,
1733                           tref, ret_stmt, NULL_TREE);
1734
1735       append_to_statement_list(s, &stmt_list);
1736
1737     }
1738   
1739   go_assert(*fini == NULL_TREE);
1740   *fini = stmt_list;
1741 }
1742
1743 // Return the value to assign to DECL_RESULT(this->fndecl_).  This may
1744 // also add statements to STMT_LIST, which need to be executed before
1745 // the assignment.  This is used for a return statement with no
1746 // explicit values.
1747
1748 tree
1749 Function::return_value(Gogo* gogo, Named_object* named_function,
1750                        Location location, tree* stmt_list) const
1751 {
1752   const Typed_identifier_list* results = this->type_->results();
1753   if (results == NULL || results->empty())
1754     return NULL_TREE;
1755
1756   go_assert(this->results_ != NULL);
1757   if (this->results_->size() != results->size())
1758     {
1759       go_assert(saw_errors());
1760       return error_mark_node;
1761     }
1762
1763   tree retval;
1764   if (results->size() == 1)
1765     {
1766       Bvariable* bvar =
1767         this->results_->front()->get_backend_variable(gogo,
1768                                                       named_function);
1769       tree ret = var_to_tree(bvar);
1770       if (this->results_->front()->result_var_value()->is_in_heap())
1771         ret = build_fold_indirect_ref_loc(location.gcc_location(), ret);
1772       return ret;
1773     }
1774   else
1775     {
1776       tree rettype = TREE_TYPE(DECL_RESULT(this->fndecl_));
1777       retval = create_tmp_var(rettype, "RESULT");
1778       tree field = TYPE_FIELDS(rettype);
1779       int index = 0;
1780       for (Typed_identifier_list::const_iterator pr = results->begin();
1781            pr != results->end();
1782            ++pr, ++index, field = DECL_CHAIN(field))
1783         {
1784           go_assert(field != NULL);
1785           Named_object* no = (*this->results_)[index];
1786           Bvariable* bvar = no->get_backend_variable(gogo, named_function);
1787           tree val = var_to_tree(bvar);
1788           if (no->result_var_value()->is_in_heap())
1789             val = build_fold_indirect_ref_loc(location.gcc_location(), val);
1790           tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
1791                                      void_type_node,
1792                                      build3(COMPONENT_REF, TREE_TYPE(field),
1793                                             retval, field, NULL_TREE),
1794                                      val);
1795           append_to_statement_list(set, stmt_list);
1796         }
1797       return retval;
1798     }
1799 }
1800
1801 // Return the integer type to use for a size.
1802
1803 GO_EXTERN_C
1804 tree
1805 go_type_for_size(unsigned int bits, int unsignedp)
1806 {
1807   const char* name;
1808   switch (bits)
1809     {
1810     case 8:
1811       name = unsignedp ? "uint8" : "int8";
1812       break;
1813     case 16:
1814       name = unsignedp ? "uint16" : "int16";
1815       break;
1816     case 32:
1817       name = unsignedp ? "uint32" : "int32";
1818       break;
1819     case 64:
1820       name = unsignedp ? "uint64" : "int64";
1821       break;
1822     default:
1823       if (bits == POINTER_SIZE && unsignedp)
1824         name = "uintptr";
1825       else
1826         return NULL_TREE;
1827     }
1828   Type* type = Type::lookup_integer_type(name);
1829   return type_to_tree(type->get_backend(go_get_gogo()));
1830 }
1831
1832 // Return the type to use for a mode.
1833
1834 GO_EXTERN_C
1835 tree
1836 go_type_for_mode(enum machine_mode mode, int unsignedp)
1837 {
1838   // FIXME: This static_cast should be in machmode.h.
1839   enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
1840   if (mc == MODE_INT)
1841     return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
1842   else if (mc == MODE_FLOAT)
1843     {
1844       Type* type;
1845       switch (GET_MODE_BITSIZE (mode))
1846         {
1847         case 32:
1848           type = Type::lookup_float_type("float32");
1849           break;
1850         case 64:
1851           type = Type::lookup_float_type("float64");
1852           break;
1853         default:
1854           // We have to check for long double in order to support
1855           // i386 excess precision.
1856           if (mode == TYPE_MODE(long_double_type_node))
1857             return long_double_type_node;
1858           return NULL_TREE;
1859         }
1860       return type_to_tree(type->get_backend(go_get_gogo()));
1861     }
1862   else if (mc == MODE_COMPLEX_FLOAT)
1863     {
1864       Type *type;
1865       switch (GET_MODE_BITSIZE (mode))
1866         {
1867         case 64:
1868           type = Type::lookup_complex_type("complex64");
1869           break;
1870         case 128:
1871           type = Type::lookup_complex_type("complex128");
1872           break;
1873         default:
1874           // We have to check for long double in order to support
1875           // i386 excess precision.
1876           if (mode == TYPE_MODE(complex_long_double_type_node))
1877             return complex_long_double_type_node;
1878           return NULL_TREE;
1879         }
1880       return type_to_tree(type->get_backend(go_get_gogo()));
1881     }
1882   else
1883     return NULL_TREE;
1884 }
1885
1886 // Return a tree which allocates SIZE bytes which will holds value of
1887 // type TYPE.
1888
1889 tree
1890 Gogo::allocate_memory(Type* type, tree size, Location location)
1891 {
1892   // If the package imports unsafe, then it may play games with
1893   // pointers that look like integers.
1894   if (this->imported_unsafe_ || type->has_pointer())
1895     {
1896       static tree new_fndecl;
1897       return Gogo::call_builtin(&new_fndecl,
1898                                 location,
1899                                 "__go_new",
1900                                 1,
1901                                 ptr_type_node,
1902                                 sizetype,
1903                                 size);
1904     }
1905   else
1906     {
1907       static tree new_nopointers_fndecl;
1908       return Gogo::call_builtin(&new_nopointers_fndecl,
1909                                 location,
1910                                 "__go_new_nopointers",
1911                                 1,
1912                                 ptr_type_node,
1913                                 sizetype,
1914                                 size);
1915     }
1916 }
1917
1918 // Build a builtin struct with a list of fields.  The name is
1919 // STRUCT_NAME.  STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
1920 // node; this exists so that the struct can have fields which point to
1921 // itself.  If PTYPE is not NULL, store the result in *PTYPE.  There
1922 // are NFIELDS fields.  Each field is a name (a const char*) followed
1923 // by a type (a tree).
1924
1925 tree
1926 Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
1927                      int nfields, ...)
1928 {
1929   if (ptype != NULL && *ptype != NULL_TREE)
1930     return *ptype;
1931
1932   va_list ap;
1933   va_start(ap, nfields);
1934
1935   tree fields = NULL_TREE;
1936   for (int i = 0; i < nfields; ++i)
1937     {
1938       const char* field_name = va_arg(ap, const char*);
1939       tree type = va_arg(ap, tree);
1940       if (type == error_mark_node)
1941         {
1942           if (ptype != NULL)
1943             *ptype = error_mark_node;
1944           return error_mark_node;
1945         }
1946       tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
1947                               get_identifier(field_name), type);
1948       DECL_CHAIN(field) = fields;
1949       fields = field;
1950     }
1951
1952   va_end(ap);
1953
1954   if (struct_type == NULL_TREE)
1955     struct_type = make_node(RECORD_TYPE);
1956   finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
1957
1958   if (ptype != NULL)
1959     {
1960       go_preserve_from_gc(struct_type);
1961       *ptype = struct_type;
1962     }
1963
1964   return struct_type;
1965 }
1966
1967 // Return a type to use for pointer to const char for a string.
1968
1969 tree
1970 Gogo::const_char_pointer_type_tree()
1971 {
1972   static tree type;
1973   if (type == NULL_TREE)
1974     {
1975       tree const_char_type = build_qualified_type(unsigned_char_type_node,
1976                                                   TYPE_QUAL_CONST);
1977       type = build_pointer_type(const_char_type);
1978       go_preserve_from_gc(type);
1979     }
1980   return type;
1981 }
1982
1983 // Return a tree for a string constant.
1984
1985 tree
1986 Gogo::string_constant_tree(const std::string& val)
1987 {
1988   tree index_type = build_index_type(size_int(val.length()));
1989   tree const_char_type = build_qualified_type(unsigned_char_type_node,
1990                                               TYPE_QUAL_CONST);
1991   tree string_type = build_array_type(const_char_type, index_type);
1992   string_type = build_variant_type_copy(string_type);
1993   TYPE_STRING_FLAG(string_type) = 1;
1994   tree string_val = build_string(val.length(), val.data());
1995   TREE_TYPE(string_val) = string_type;
1996   return string_val;
1997 }
1998
1999 // Return a tree for a Go string constant.
2000
2001 tree
2002 Gogo::go_string_constant_tree(const std::string& val)
2003 {
2004   tree string_type = type_to_tree(Type::make_string_type()->get_backend(this));
2005
2006   VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
2007
2008   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2009   tree field = TYPE_FIELDS(string_type);
2010   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
2011   elt->index = field;
2012   tree str = Gogo::string_constant_tree(val);
2013   elt->value = fold_convert(TREE_TYPE(field),
2014                             build_fold_addr_expr(str));
2015
2016   elt = VEC_quick_push(constructor_elt, init, NULL);
2017   field = DECL_CHAIN(field);
2018   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
2019   elt->index = field;
2020   elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
2021
2022   tree constructor = build_constructor(string_type, init);
2023   TREE_READONLY(constructor) = 1;
2024   TREE_CONSTANT(constructor) = 1;
2025
2026   return constructor;
2027 }
2028
2029 // Return a tree for a pointer to a Go string constant.  This is only
2030 // used for type descriptors, so we return a pointer to a constant
2031 // decl.
2032
2033 tree
2034 Gogo::ptr_go_string_constant_tree(const std::string& val)
2035 {
2036   tree pval = this->go_string_constant_tree(val);
2037
2038   tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
2039                          create_tmp_var_name("SP"), TREE_TYPE(pval));
2040   DECL_EXTERNAL(decl) = 0;
2041   TREE_PUBLIC(decl) = 0;
2042   TREE_USED(decl) = 1;
2043   TREE_READONLY(decl) = 1;
2044   TREE_CONSTANT(decl) = 1;
2045   TREE_STATIC(decl) = 1;
2046   DECL_ARTIFICIAL(decl) = 1;
2047   DECL_INITIAL(decl) = pval;
2048   rest_of_decl_compilation(decl, 1, 0);
2049
2050   return build_fold_addr_expr(decl);
2051 }
2052
2053 // Build a constructor for a slice.  SLICE_TYPE_TREE is the type of
2054 // the slice.  VALUES is the value pointer and COUNT is the number of
2055 // entries.  If CAPACITY is not NULL, it is the capacity; otherwise
2056 // the capacity and the count are the same.
2057
2058 tree
2059 Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
2060                         tree capacity)
2061 {
2062   go_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
2063
2064   VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
2065
2066   tree field = TYPE_FIELDS(slice_type_tree);
2067   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
2068   constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
2069   elt->index = field;
2070   go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
2071              == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
2072   elt->value = values;
2073
2074   count = fold_convert(sizetype, count);
2075   if (capacity == NULL_TREE)
2076     {
2077       count = save_expr(count);
2078       capacity = count;
2079     }
2080
2081   field = DECL_CHAIN(field);
2082   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
2083   elt = VEC_quick_push(constructor_elt, init, NULL);
2084   elt->index = field;
2085   elt->value = fold_convert(TREE_TYPE(field), count);
2086
2087   field = DECL_CHAIN(field);
2088   go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
2089   elt = VEC_quick_push(constructor_elt, init, NULL);
2090   elt->index = field;
2091   elt->value = fold_convert(TREE_TYPE(field), capacity);
2092
2093   return build_constructor(slice_type_tree, init);
2094 }
2095
2096 // Build an interface method table for a type: a list of function
2097 // pointers, one for each interface method.  This is used for
2098 // interfaces.
2099
2100 tree
2101 Gogo::interface_method_table_for_type(const Interface_type* interface,
2102                                       Named_type* type,
2103                                       bool is_pointer)
2104 {
2105   const Typed_identifier_list* interface_methods = interface->methods();
2106   go_assert(!interface_methods->empty());
2107
2108   std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
2109                               + interface->mangled_name(this)
2110                               + "__"
2111                               + type->mangled_name(this));
2112
2113   tree id = get_identifier_from_string(mangled_name);
2114
2115   // See whether this interface has any hidden methods.
2116   bool has_hidden_methods = false;
2117   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2118        p != interface_methods->end();
2119        ++p)
2120     {
2121       if (Gogo::is_hidden_name(p->name()))
2122         {
2123           has_hidden_methods = true;
2124           break;
2125         }
2126     }
2127
2128   // We already know that the named type is convertible to the
2129   // interface.  If the interface has hidden methods, and the named
2130   // type is defined in a different package, then the interface
2131   // conversion table will be defined by that other package.
2132   if (has_hidden_methods && type->named_object()->package() != NULL)
2133     {
2134       tree array_type = build_array_type(const_ptr_type_node, NULL);
2135       tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2136       TREE_READONLY(decl) = 1;
2137       TREE_CONSTANT(decl) = 1;
2138       TREE_PUBLIC(decl) = 1;
2139       DECL_EXTERNAL(decl) = 1;
2140       go_preserve_from_gc(decl);
2141       return decl;
2142     }
2143
2144   size_t count = interface_methods->size();
2145   VEC(constructor_elt, gc)* pointers = VEC_alloc(constructor_elt, gc,
2146                                                  count + 1);
2147
2148   // The first element is the type descriptor.
2149   constructor_elt* elt = VEC_quick_push(constructor_elt, pointers, NULL);
2150   elt->index = size_zero_node;
2151   Type* td_type;
2152   if (!is_pointer)
2153     td_type = type;
2154   else
2155     td_type = Type::make_pointer_type(type);
2156   tree tdp = td_type->type_descriptor_pointer(this,
2157                                               Linemap::predeclared_location());
2158   elt->value = fold_convert(const_ptr_type_node, tdp);
2159
2160   size_t i = 1;
2161   for (Typed_identifier_list::const_iterator p = interface_methods->begin();
2162        p != interface_methods->end();
2163        ++p, ++i)
2164     {
2165       bool is_ambiguous;
2166       Method* m = type->method_function(p->name(), &is_ambiguous);
2167       go_assert(m != NULL);
2168
2169       Named_object* no = m->named_object();
2170
2171       tree fnid = no->get_id(this);
2172
2173       tree fndecl;
2174       if (no->is_function())
2175         fndecl = no->func_value()->get_or_make_decl(this, no, fnid);
2176       else if (no->is_function_declaration())
2177         fndecl = no->func_declaration_value()->get_or_make_decl(this, no,
2178                                                                 fnid);
2179       else
2180         go_unreachable();
2181       fndecl = build_fold_addr_expr(fndecl);
2182
2183       elt = VEC_quick_push(constructor_elt, pointers, NULL);
2184       elt->index = size_int(i);
2185       elt->value = fold_convert(const_ptr_type_node, fndecl);
2186     }
2187   go_assert(i == count + 1);
2188
2189   tree array_type = build_array_type(const_ptr_type_node,
2190                                      build_index_type(size_int(count)));
2191   tree constructor = build_constructor(array_type, pointers);
2192
2193   tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
2194   TREE_STATIC(decl) = 1;
2195   TREE_USED(decl) = 1;
2196   TREE_READONLY(decl) = 1;
2197   TREE_CONSTANT(decl) = 1;
2198   DECL_INITIAL(decl) = constructor;
2199
2200   // If the interface type has hidden methods, then this is the only
2201   // definition of the table.  Otherwise it is a comdat table which
2202   // may be defined in multiple packages.
2203   if (has_hidden_methods)
2204     TREE_PUBLIC(decl) = 1;
2205   else
2206     {
2207       make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
2208       resolve_unique_section(decl, 1, 0);
2209     }
2210
2211   rest_of_decl_compilation(decl, 1, 0);
2212
2213   go_preserve_from_gc(decl);
2214
2215   return decl;
2216 }
2217
2218 // Mark a function as a builtin library function.
2219
2220 void
2221 Gogo::mark_fndecl_as_builtin_library(tree fndecl)
2222 {
2223   DECL_EXTERNAL(fndecl) = 1;
2224   TREE_PUBLIC(fndecl) = 1;
2225   DECL_ARTIFICIAL(fndecl) = 1;
2226   TREE_NOTHROW(fndecl) = 1;
2227   DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
2228   DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
2229 }
2230
2231 // Build a call to a builtin function.
2232
2233 tree
2234 Gogo::call_builtin(tree* pdecl, Location location, const char* name,
2235                    int nargs, tree rettype, ...)
2236 {
2237   if (rettype == error_mark_node)
2238     return error_mark_node;
2239
2240   tree* types = new tree[nargs];
2241   tree* args = new tree[nargs];
2242
2243   va_list ap;
2244   va_start(ap, rettype);
2245   for (int i = 0; i < nargs; ++i)
2246     {
2247       types[i] = va_arg(ap, tree);
2248       args[i] = va_arg(ap, tree);
2249       if (types[i] == error_mark_node || args[i] == error_mark_node)
2250         {
2251           delete[] types;
2252           delete[] args;
2253           return error_mark_node;
2254         }
2255     }
2256   va_end(ap);
2257
2258   if (*pdecl == NULL_TREE)
2259     {
2260       tree fnid = get_identifier(name);
2261
2262       tree argtypes = NULL_TREE;
2263       tree* pp = &argtypes;
2264       for (int i = 0; i < nargs; ++i)
2265         {
2266           *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
2267           pp = &TREE_CHAIN(*pp);
2268         }
2269       *pp = void_list_node;
2270
2271       tree fntype = build_function_type(rettype, argtypes);
2272
2273       *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
2274       Gogo::mark_fndecl_as_builtin_library(*pdecl);
2275       go_preserve_from_gc(*pdecl);
2276     }
2277
2278   tree fnptr = build_fold_addr_expr(*pdecl);
2279   if (CAN_HAVE_LOCATION_P(fnptr))
2280     SET_EXPR_LOCATION(fnptr, location.gcc_location());
2281
2282   tree ret = build_call_array(rettype, fnptr, nargs, args);
2283   SET_EXPR_LOCATION(ret, location.gcc_location());
2284
2285   delete[] types;
2286   delete[] args;
2287
2288   return ret;
2289 }
2290
2291 // Build a call to the runtime error function.
2292
2293 tree
2294 Gogo::runtime_error(int code, Location location)
2295 {
2296   static tree runtime_error_fndecl;
2297   tree ret = Gogo::call_builtin(&runtime_error_fndecl,
2298                                 location,
2299                                 "__go_runtime_error",
2300                                 1,
2301                                 void_type_node,
2302                                 integer_type_node,
2303                                 build_int_cst(integer_type_node, code));
2304   if (ret == error_mark_node)
2305     return error_mark_node;
2306   // The runtime error function panics and does not return.
2307   TREE_NOTHROW(runtime_error_fndecl) = 0;
2308   TREE_THIS_VOLATILE(runtime_error_fndecl) = 1;
2309   return ret;
2310 }
2311
2312 // Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
2313 // TYPE_DESCRIPTOR_TREE is the channel's type descriptor.  This does a
2314 // blocking receive and returns the value read from the channel.
2315
2316 tree
2317 Gogo::receive_from_channel(tree type_tree, tree type_descriptor_tree,
2318                            tree channel, Location location)
2319 {
2320   if (type_tree == error_mark_node || channel == error_mark_node)
2321     return error_mark_node;
2322
2323   if (int_size_in_bytes(type_tree) <= 8
2324       && !AGGREGATE_TYPE_P(type_tree)
2325       && !FLOAT_TYPE_P(type_tree))
2326     {
2327       static tree receive_small_fndecl;
2328       tree call = Gogo::call_builtin(&receive_small_fndecl,
2329                                      location,
2330                                      "__go_receive_small",
2331                                      2,
2332                                      uint64_type_node,
2333                                      TREE_TYPE(type_descriptor_tree),
2334                                      type_descriptor_tree,
2335                                      ptr_type_node,
2336                                      channel);
2337       if (call == error_mark_node)
2338         return error_mark_node;
2339       // This can panic if there are too many operations on a closed
2340       // channel.
2341       TREE_NOTHROW(receive_small_fndecl) = 0;
2342       int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
2343       tree int_type_tree = go_type_for_size(bitsize, 1);
2344       return fold_convert_loc(location.gcc_location(), type_tree,
2345                               fold_convert_loc(location.gcc_location(),
2346                                                int_type_tree, call));
2347     }
2348   else
2349     {
2350       tree tmp = create_tmp_var(type_tree, get_name(type_tree));
2351       DECL_IGNORED_P(tmp) = 0;
2352       TREE_ADDRESSABLE(tmp) = 1;
2353       tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
2354       SET_EXPR_LOCATION(make_tmp, location.gcc_location());
2355       tree tmpaddr = build_fold_addr_expr(tmp);
2356       tmpaddr = fold_convert(ptr_type_node, tmpaddr);
2357       static tree receive_big_fndecl;
2358       tree call = Gogo::call_builtin(&receive_big_fndecl,
2359                                      location,
2360                                      "__go_receive_big",
2361                                      3,
2362                                      void_type_node,
2363                                      TREE_TYPE(type_descriptor_tree),
2364                                      type_descriptor_tree,
2365                                      ptr_type_node,
2366                                      channel,
2367                                      ptr_type_node,
2368                                      tmpaddr);
2369       if (call == error_mark_node)
2370         return error_mark_node;
2371       // This can panic if there are too many operations on a closed
2372       // channel.
2373       TREE_NOTHROW(receive_big_fndecl) = 0;
2374       return build2(COMPOUND_EXPR, type_tree, make_tmp,
2375                     build2(COMPOUND_EXPR, type_tree, call, tmp));
2376     }
2377 }
2378
2379 // Return the type of a function trampoline.  This is like
2380 // get_trampoline_type in tree-nested.c.
2381
2382 tree
2383 Gogo::trampoline_type_tree()
2384 {
2385   static tree type_tree;
2386   if (type_tree == NULL_TREE)
2387     {
2388       unsigned int size;
2389       unsigned int align;
2390       go_trampoline_info(&size, &align);
2391       tree t = build_index_type(build_int_cst(integer_type_node, size - 1));
2392       t = build_array_type(char_type_node, t);
2393
2394       type_tree = Gogo::builtin_struct(NULL, "__go_trampoline", NULL_TREE, 1,
2395                                        "__data", t);
2396       t = TYPE_FIELDS(type_tree);
2397       DECL_ALIGN(t) = align;
2398       DECL_USER_ALIGN(t) = 1;
2399
2400       go_preserve_from_gc(type_tree);
2401     }
2402   return type_tree;
2403 }
2404
2405 // Make a trampoline which calls FNADDR passing CLOSURE.
2406
2407 tree
2408 Gogo::make_trampoline(tree fnaddr, tree closure, Location location)
2409 {
2410   tree trampoline_type = Gogo::trampoline_type_tree();
2411   tree trampoline_size = TYPE_SIZE_UNIT(trampoline_type);
2412
2413   closure = save_expr(closure);
2414
2415   // We allocate the trampoline using a special function which will
2416   // mark it as executable.
2417   static tree trampoline_fndecl;
2418   tree x = Gogo::call_builtin(&trampoline_fndecl,
2419                               location,
2420                               "__go_allocate_trampoline",
2421                               2,
2422                               ptr_type_node,
2423                               size_type_node,
2424                               trampoline_size,
2425                               ptr_type_node,
2426                               fold_convert_loc(location.gcc_location(),
2427                                                ptr_type_node, closure));
2428   if (x == error_mark_node)
2429     return error_mark_node;
2430
2431   x = save_expr(x);
2432
2433   // Initialize the trampoline.
2434   tree calldecl = builtin_decl_implicit(BUILT_IN_INIT_HEAP_TRAMPOLINE);
2435   tree ini = build_call_expr(calldecl, 3, x, fnaddr, closure);
2436
2437   // On some targets the trampoline address needs to be adjusted.  For
2438   // example, when compiling in Thumb mode on the ARM, the address
2439   // needs to have the low bit set.
2440   x = build_call_expr(builtin_decl_explicit(BUILT_IN_ADJUST_TRAMPOLINE), 1, x);
2441   x = fold_convert(TREE_TYPE(fnaddr), x);
2442
2443   return build2(COMPOUND_EXPR, TREE_TYPE(x), ini, x);
2444 }