1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30 - ability to realloc sbitmap vectors would allow one initial computation
31 of reg_set_in_block with only subsequent additions, rather than
32 recomputing it for each pass
36 /* References searched while implementing this.
38 Compilers Principles, Techniques and Tools
42 Global Optimization by Suppression of Partial Redundancies
44 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Stanford Ph.D. thesis, Dec. 1983
50 A Fast Algorithm for Code Movement Optimization
52 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54 A Solution to a Problem with Morel and Renvoise's
55 Global Optimization by Suppression of Partial Redundancies
56 K-H Drechsler, M.P. Stadel
57 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59 Practical Adaptation of the Global Optimization
60 Algorithm of Morel and Renvoise
62 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64 Efficiently Computing Static Single Assignment Form and the Control
66 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
67 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 J. Knoop, O. Ruthing, B. Steffen
71 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
74 Time for Reducible Flow Control
76 ACM Letters on Programming Languages and Systems,
77 Vol. 2, Num. 1-4, Mar-Dec 1993
79 An Efficient Representation for Sparse Sets
80 Preston Briggs, Linda Torczon
81 ACM Letters on Programming Languages and Systems,
82 Vol. 2, Num. 1-4, Mar-Dec 1993
84 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
85 K-H Drechsler, M.P. Stadel
86 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88 Partial Dead Code Elimination
89 J. Knoop, O. Ruthing, B. Steffen
90 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92 Effective Partial Redundancy Elimination
93 P. Briggs, K.D. Cooper
94 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96 The Program Structure Tree: Computing Control Regions in Linear Time
97 R. Johnson, D. Pearson, K. Pingali
98 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100 Optimal Code Motion: Theory and Practice
101 J. Knoop, O. Ruthing, B. Steffen
102 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104 The power of assignment motion
105 J. Knoop, O. Ruthing, B. Steffen
106 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108 Global code motion / global value numbering
110 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112 Value Driven Redundancy Elimination
114 Rice University Ph.D. thesis, Apr. 1996
118 Massively Scalar Compiler Project, Rice University, Sep. 1996
120 High Performance Compilers for Parallel Computing
124 Advanced Compiler Design and Implementation
126 Morgan Kaufmann, 1997
128 Building an Optimizing Compiler
132 People wishing to speed up the code here should read:
133 Elimination Algorithms for Data Flow Analysis
134 B.G. Ryder, M.C. Paull
135 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137 How to Analyze Large Programs Efficiently and Informatively
138 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
139 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141 People wishing to do something different can find various possibilities
142 in the above papers and elsewhere.
147 #include "coretypes.h"
155 #include "hard-reg-set.h"
158 #include "insn-config.h"
160 #include "basic-block.h"
162 #include "function.h"
171 #include "tree-pass.h"
176 /* Propagate flow information through back edges and thus enable PRE's
177 moving loop invariant calculations out of loops.
179 Originally this tended to create worse overall code, but several
180 improvements during the development of PRE seem to have made following
181 back edges generally a win.
183 Note much of the loop invariant code motion done here would normally
184 be done by loop.c, which has more heuristics for when to move invariants
185 out of loops. At some point we might need to move some of those
186 heuristics into gcse.c. */
188 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
189 are a superset of those done by GCSE.
191 We perform the following steps:
193 1) Compute basic block information.
195 2) Compute table of places where registers are set.
197 3) Perform copy/constant propagation.
199 4) Perform global cse using lazy code motion if not optimizing
200 for size, or code hoisting if we are.
202 5) Perform another pass of copy/constant propagation.
204 Two passes of copy/constant propagation are done because the first one
205 enables more GCSE and the second one helps to clean up the copies that
206 GCSE creates. This is needed more for PRE than for Classic because Classic
207 GCSE will try to use an existing register containing the common
208 subexpression rather than create a new one. This is harder to do for PRE
209 because of the code motion (which Classic GCSE doesn't do).
211 Expressions we are interested in GCSE-ing are of the form
212 (set (pseudo-reg) (expression)).
213 Function want_to_gcse_p says what these are.
215 PRE handles moving invariant expressions out of loops (by treating them as
216 partially redundant).
218 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
219 assignment) based GVN (global value numbering). L. T. Simpson's paper
220 (Rice University) on value numbering is a useful reference for this.
222 **********************
224 We used to support multiple passes but there are diminishing returns in
225 doing so. The first pass usually makes 90% of the changes that are doable.
226 A second pass can make a few more changes made possible by the first pass.
227 Experiments show any further passes don't make enough changes to justify
230 A study of spec92 using an unlimited number of passes:
231 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
232 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
233 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
235 It was found doing copy propagation between each pass enables further
238 PRE is quite expensive in complicated functions because the DFA can take
239 a while to converge. Hence we only perform one pass. The parameter
240 max-gcse-passes can be modified if one wants to experiment.
242 **********************
244 The steps for PRE are:
246 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
248 2) Perform the data flow analysis for PRE.
250 3) Delete the redundant instructions
252 4) Insert the required copies [if any] that make the partially
253 redundant instructions fully redundant.
255 5) For other reaching expressions, insert an instruction to copy the value
256 to a newly created pseudo that will reach the redundant instruction.
258 The deletion is done first so that when we do insertions we
259 know which pseudo reg to use.
261 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
262 argue it is not. The number of iterations for the algorithm to converge
263 is typically 2-4 so I don't view it as that expensive (relatively speaking).
265 PRE GCSE depends heavily on the second CSE pass to clean up the copies
266 we create. To make an expression reach the place where it's redundant,
267 the result of the expression is copied to a new register, and the redundant
268 expression is deleted by replacing it with this new register. Classic GCSE
269 doesn't have this problem as much as it computes the reaching defs of
270 each register in each block and thus can try to use an existing
273 /* GCSE global vars. */
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
283 /* An obstack for our working variables. */
284 static struct obstack gcse_obstack;
286 struct reg_use {rtx reg_rtx; };
288 /* Hash table of expressions. */
292 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
294 /* Index in the available expression bitmaps. */
296 /* Next entry with the same hash. */
297 struct expr *next_same_hash;
298 /* List of anticipatable occurrences in basic blocks in the function.
299 An "anticipatable occurrence" is one that is the first occurrence in the
300 basic block, the operands are not modified in the basic block prior
301 to the occurrence and the output is not used between the start of
302 the block and the occurrence. */
303 struct occr *antic_occr;
304 /* List of available occurrence in basic blocks in the function.
305 An "available occurrence" is one that is the last occurrence in the
306 basic block and the operands are not modified by following statements in
307 the basic block [including this insn]. */
308 struct occr *avail_occr;
309 /* Non-null if the computation is PRE redundant.
310 The value is the newly created pseudo-reg to record a copy of the
311 expression in all the places that reach the redundant copy. */
315 /* Occurrence of an expression.
316 There is one per basic block. If a pattern appears more than once the
317 last appearance is used [or first for anticipatable expressions]. */
321 /* Next occurrence of this expression. */
323 /* The insn that computes the expression. */
325 /* Nonzero if this [anticipatable] occurrence has been deleted. */
327 /* Nonzero if this [available] occurrence has been copied to
329 /* ??? This is mutually exclusive with deleted_p, so they could share
334 /* Expression and copy propagation hash tables.
335 Each hash table is an array of buckets.
336 ??? It is known that if it were an array of entries, structure elements
337 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
338 not clear whether in the final analysis a sufficient amount of memory would
339 be saved as the size of the available expression bitmaps would be larger
340 [one could build a mapping table without holes afterwards though].
341 Someday I'll perform the computation and figure it out. */
346 This is an array of `expr_hash_table_size' elements. */
349 /* Size of the hash table, in elements. */
352 /* Number of hash table elements. */
353 unsigned int n_elems;
355 /* Whether the table is expression of copy propagation one. */
359 /* Expression hash table. */
360 static struct hash_table expr_hash_table;
362 /* Copy propagation hash table. */
363 static struct hash_table set_hash_table;
365 /* Mapping of uids to cuids.
366 Only real insns get cuids. */
367 static int *uid_cuid;
369 /* Highest UID in UID_CUID. */
372 /* Get the cuid of an insn. */
373 #ifdef ENABLE_CHECKING
374 #define INSN_CUID(INSN) \
375 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
377 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
380 /* Number of cuids. */
383 /* Mapping of cuids to insns. */
384 static rtx *cuid_insn;
386 /* Get insn from cuid. */
387 #define CUID_INSN(CUID) (cuid_insn[CUID])
389 /* Maximum register number in function prior to doing gcse + 1.
390 Registers created during this pass have regno >= max_gcse_regno.
391 This is named with "gcse" to not collide with global of same name. */
392 static unsigned int max_gcse_regno;
394 /* Table of registers that are modified.
396 For each register, each element is a list of places where the pseudo-reg
399 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
400 requires knowledge of which blocks kill which regs [and thus could use
401 a bitmap instead of the lists `reg_set_table' uses].
403 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
404 num-regs) [however perhaps it may be useful to keep the data as is]. One
405 advantage of recording things this way is that `reg_set_table' is fairly
406 sparse with respect to pseudo regs but for hard regs could be fairly dense
407 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
408 up functions like compute_transp since in the case of pseudo-regs we only
409 need to iterate over the number of times a pseudo-reg is set, not over the
410 number of basic blocks [clearly there is a bit of a slow down in the cases
411 where a pseudo is set more than once in a block, however it is believed
412 that the net effect is to speed things up]. This isn't done for hard-regs
413 because recording call-clobbered hard-regs in `reg_set_table' at each
414 function call can consume a fair bit of memory, and iterating over
415 hard-regs stored this way in compute_transp will be more expensive. */
417 typedef struct reg_set
419 /* The next setting of this register. */
420 struct reg_set *next;
421 /* The index of the block where it was set. */
425 static reg_set **reg_set_table;
427 /* Size of `reg_set_table'.
428 The table starts out at max_gcse_regno + slop, and is enlarged as
430 static int reg_set_table_size;
432 /* Amount to grow `reg_set_table' by when it's full. */
433 #define REG_SET_TABLE_SLOP 100
435 /* This is a list of expressions which are MEMs and will be used by load
437 Load motion tracks MEMs which aren't killed by
438 anything except itself. (i.e., loads and stores to a single location).
439 We can then allow movement of these MEM refs with a little special
440 allowance. (all stores copy the same value to the reaching reg used
441 for the loads). This means all values used to store into memory must have
442 no side effects so we can re-issue the setter value.
443 Store Motion uses this structure as an expression table to track stores
444 which look interesting, and might be moveable towards the exit block. */
448 struct expr * expr; /* Gcse expression reference for LM. */
449 rtx pattern; /* Pattern of this mem. */
450 rtx pattern_regs; /* List of registers mentioned by the mem. */
451 rtx loads; /* INSN list of loads seen. */
452 rtx stores; /* INSN list of stores seen. */
453 struct ls_expr * next; /* Next in the list. */
454 int invalid; /* Invalid for some reason. */
455 int index; /* If it maps to a bitmap index. */
456 unsigned int hash_index; /* Index when in a hash table. */
457 rtx reaching_reg; /* Register to use when re-writing. */
460 /* Array of implicit set patterns indexed by basic block index. */
461 static rtx *implicit_sets;
463 /* Head of the list of load/store memory refs. */
464 static struct ls_expr * pre_ldst_mems = NULL;
466 /* Hashtable for the load/store memory refs. */
467 static htab_t pre_ldst_table = NULL;
469 /* Bitmap containing one bit for each register in the program.
470 Used when performing GCSE to track which registers have been set since
471 the start of the basic block. */
472 static regset reg_set_bitmap;
474 /* For each block, a bitmap of registers set in the block.
475 This is used by compute_transp.
476 It is computed during hash table computation and not by compute_sets
477 as it includes registers added since the last pass (or between cprop and
478 gcse) and it's currently not easy to realloc sbitmap vectors. */
479 static sbitmap *reg_set_in_block;
481 /* Array, indexed by basic block number for a list of insns which modify
482 memory within that block. */
483 static rtx * modify_mem_list;
484 static bitmap modify_mem_list_set;
486 /* This array parallels modify_mem_list, but is kept canonicalized. */
487 static rtx * canon_modify_mem_list;
489 /* Bitmap indexed by block numbers to record which blocks contain
491 static bitmap blocks_with_calls;
493 /* Various variables for statistics gathering. */
495 /* Memory used in a pass.
496 This isn't intended to be absolutely precise. Its intent is only
497 to keep an eye on memory usage. */
498 static int bytes_used;
500 /* GCSE substitutions made. */
501 static int gcse_subst_count;
502 /* Number of copy instructions created. */
503 static int gcse_create_count;
504 /* Number of local constants propagated. */
505 static int local_const_prop_count;
506 /* Number of local copies propagated. */
507 static int local_copy_prop_count;
508 /* Number of global constants propagated. */
509 static int global_const_prop_count;
510 /* Number of global copies propagated. */
511 static int global_copy_prop_count;
513 /* For available exprs */
514 static sbitmap *ae_kill, *ae_gen;
516 static void compute_can_copy (void);
517 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
518 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
519 static void *grealloc (void *, size_t);
520 static void *gcse_alloc (unsigned long);
521 static void alloc_gcse_mem (void);
522 static void free_gcse_mem (void);
523 static void alloc_reg_set_mem (int);
524 static void free_reg_set_mem (void);
525 static void record_one_set (int, rtx);
526 static void record_set_info (rtx, const_rtx, void *);
527 static void compute_sets (void);
528 static void hash_scan_insn (rtx, struct hash_table *, int);
529 static void hash_scan_set (rtx, rtx, struct hash_table *);
530 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
531 static void hash_scan_call (rtx, rtx, struct hash_table *);
532 static int want_to_gcse_p (rtx);
533 static bool can_assign_to_reg_p (rtx);
534 static bool gcse_constant_p (const_rtx);
535 static int oprs_unchanged_p (const_rtx, const_rtx, int);
536 static int oprs_anticipatable_p (const_rtx, const_rtx);
537 static int oprs_available_p (const_rtx, const_rtx);
538 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
539 struct hash_table *);
540 static void insert_set_in_table (rtx, rtx, struct hash_table *);
541 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
542 static unsigned int hash_set (int, int);
543 static int expr_equiv_p (const_rtx, const_rtx);
544 static void record_last_reg_set_info (rtx, int);
545 static void record_last_mem_set_info (rtx);
546 static void record_last_set_info (rtx, const_rtx, void *);
547 static void compute_hash_table (struct hash_table *);
548 static void alloc_hash_table (int, struct hash_table *, int);
549 static void free_hash_table (struct hash_table *);
550 static void compute_hash_table_work (struct hash_table *);
551 static void dump_hash_table (FILE *, const char *, struct hash_table *);
552 static struct expr *lookup_set (unsigned int, struct hash_table *);
553 static struct expr *next_set (unsigned int, struct expr *);
554 static void reset_opr_set_tables (void);
555 static int oprs_not_set_p (const_rtx, const_rtx);
556 static void mark_call (rtx);
557 static void mark_set (rtx, rtx);
558 static void mark_clobber (rtx, rtx);
559 static void mark_oprs_set (rtx);
560 static void alloc_cprop_mem (int, int);
561 static void free_cprop_mem (void);
562 static void compute_transp (const_rtx, int, sbitmap *, int);
563 static void compute_transpout (void);
564 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
565 struct hash_table *);
566 static void compute_cprop_data (void);
567 static void find_used_regs (rtx *, void *);
568 static int try_replace_reg (rtx, rtx, rtx);
569 static struct expr *find_avail_set (int, rtx);
570 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
571 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
572 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
573 static void canon_list_insert (rtx, const_rtx, void *);
574 static int cprop_insn (rtx, int);
575 static int cprop (int);
576 static void find_implicit_sets (void);
577 static int one_cprop_pass (int, bool, bool);
578 static bool constprop_register (rtx, rtx, rtx, bool);
579 static struct expr *find_bypass_set (int, int);
580 static bool reg_killed_on_edge (const_rtx, const_edge);
581 static int bypass_block (basic_block, rtx, rtx);
582 static int bypass_conditional_jumps (void);
583 static void alloc_pre_mem (int, int);
584 static void free_pre_mem (void);
585 static void compute_pre_data (void);
586 static int pre_expr_reaches_here_p (basic_block, struct expr *,
588 static void insert_insn_end_basic_block (struct expr *, basic_block, int);
589 static void pre_insert_copy_insn (struct expr *, rtx);
590 static void pre_insert_copies (void);
591 static int pre_delete (void);
592 static int pre_gcse (void);
593 static int one_pre_gcse_pass (int);
594 static void add_label_notes (rtx, rtx);
595 static void alloc_code_hoist_mem (int, int);
596 static void free_code_hoist_mem (void);
597 static void compute_code_hoist_vbeinout (void);
598 static void compute_code_hoist_data (void);
599 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
600 static void hoist_code (void);
601 static int one_code_hoisting_pass (void);
602 static rtx process_insert_insn (struct expr *);
603 static int pre_edge_insert (struct edge_list *, struct expr **);
604 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
605 basic_block, char *);
606 static struct ls_expr * ldst_entry (rtx);
607 static void free_ldst_entry (struct ls_expr *);
608 static void free_ldst_mems (void);
609 static void print_ldst_list (FILE *);
610 static struct ls_expr * find_rtx_in_ldst (rtx);
611 static int enumerate_ldsts (void);
612 static inline struct ls_expr * first_ls_expr (void);
613 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
614 static int simple_mem (const_rtx);
615 static void invalidate_any_buried_refs (rtx);
616 static void compute_ld_motion_mems (void);
617 static void trim_ld_motion_mems (void);
618 static void update_ld_motion_stores (struct expr *);
619 static void reg_set_info (rtx, const_rtx, void *);
620 static void reg_clear_last_set (rtx, const_rtx, void *);
621 static bool store_ops_ok (const_rtx, int *);
622 static rtx extract_mentioned_regs (rtx);
623 static rtx extract_mentioned_regs_helper (rtx, rtx);
624 static void find_moveable_store (rtx, int *, int *);
625 static int compute_store_table (void);
626 static bool load_kills_store (const_rtx, const_rtx, int);
627 static bool find_loads (const_rtx, const_rtx, int);
628 static bool store_killed_in_insn (const_rtx, const_rtx, const_rtx, int);
629 static bool store_killed_after (const_rtx, const_rtx, const_rtx, const_basic_block, int *, rtx *);
630 static bool store_killed_before (const_rtx, const_rtx, const_rtx, const_basic_block, int *);
631 static void build_store_vectors (void);
632 static void insert_insn_start_basic_block (rtx, basic_block);
633 static int insert_store (struct ls_expr *, edge);
634 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
635 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
636 static void delete_store (struct ls_expr *, basic_block);
637 static void free_store_memory (void);
638 static void store_motion (void);
639 static void free_insn_expr_list_list (rtx *);
640 static void clear_modify_mem_tables (void);
641 static void free_modify_mem_tables (void);
642 static rtx gcse_emit_move_after (rtx, rtx, rtx);
643 static void local_cprop_find_used_regs (rtx *, void *);
644 static bool do_local_cprop (rtx, rtx, bool, rtx*);
645 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
646 static void local_cprop_pass (bool);
647 static bool is_too_expensive (const char *);
650 /* Entry point for global common subexpression elimination.
651 F is the first instruction in the function. Return nonzero if a
655 gcse_main (rtx f ATTRIBUTE_UNUSED)
658 /* Bytes used at start of pass. */
659 int initial_bytes_used;
660 /* Maximum number of bytes used by a pass. */
662 /* Point to release obstack data from for each pass. */
663 char *gcse_obstack_bottom;
665 /* We do not construct an accurate cfg in functions which call
666 setjmp, so just punt to be safe. */
667 if (current_function_calls_setjmp)
670 /* Assume that we do not need to run jump optimizations after gcse. */
671 run_jump_opt_after_gcse = 0;
673 /* Identify the basic block information for this function, including
674 successors and predecessors. */
675 max_gcse_regno = max_reg_num ();
677 df_note_add_problem ();
681 dump_flow_info (dump_file, dump_flags);
683 /* Return if there's nothing to do, or it is too expensive. */
684 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
685 || is_too_expensive (_("GCSE disabled")))
688 gcc_obstack_init (&gcse_obstack);
692 init_alias_analysis ();
693 /* Record where pseudo-registers are set. This data is kept accurate
694 during each pass. ??? We could also record hard-reg information here
695 [since it's unchanging], however it is currently done during hash table
698 It may be tempting to compute MEM set information here too, but MEM sets
699 will be subject to code motion one day and thus we need to compute
700 information about memory sets when we build the hash tables. */
702 alloc_reg_set_mem (max_gcse_regno);
706 initial_bytes_used = bytes_used;
708 gcse_obstack_bottom = gcse_alloc (1);
710 while (changed && pass < MAX_GCSE_PASSES)
714 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
716 /* Initialize bytes_used to the space for the pred/succ lists,
717 and the reg_set_table data. */
718 bytes_used = initial_bytes_used;
720 /* Each pass may create new registers, so recalculate each time. */
721 max_gcse_regno = max_reg_num ();
725 /* Don't allow constant propagation to modify jumps
727 timevar_push (TV_CPROP1);
728 changed = one_cprop_pass (pass + 1, false, false);
729 timevar_pop (TV_CPROP1);
735 timevar_push (TV_PRE);
736 changed |= one_pre_gcse_pass (pass + 1);
737 /* We may have just created new basic blocks. Release and
738 recompute various things which are sized on the number of
742 free_modify_mem_tables ();
743 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
744 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
747 alloc_reg_set_mem (max_reg_num ());
749 run_jump_opt_after_gcse = 1;
750 timevar_pop (TV_PRE);
753 if (max_pass_bytes < bytes_used)
754 max_pass_bytes = bytes_used;
756 /* Free up memory, then reallocate for code hoisting. We can
757 not re-use the existing allocated memory because the tables
758 will not have info for the insns or registers created by
759 partial redundancy elimination. */
762 /* It does not make sense to run code hoisting unless we are optimizing
763 for code size -- it rarely makes programs faster, and can make
764 them bigger if we did partial redundancy elimination (when optimizing
765 for space, we don't run the partial redundancy algorithms). */
768 timevar_push (TV_HOIST);
769 max_gcse_regno = max_reg_num ();
771 changed |= one_code_hoisting_pass ();
774 if (max_pass_bytes < bytes_used)
775 max_pass_bytes = bytes_used;
776 timevar_pop (TV_HOIST);
781 fprintf (dump_file, "\n");
785 obstack_free (&gcse_obstack, gcse_obstack_bottom);
789 /* Do one last pass of copy propagation, including cprop into
790 conditional jumps. */
792 max_gcse_regno = max_reg_num ();
794 /* This time, go ahead and allow cprop to alter jumps. */
795 timevar_push (TV_CPROP2);
796 one_cprop_pass (pass + 1, true, true);
797 timevar_pop (TV_CPROP2);
802 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
803 current_function_name (), n_basic_blocks);
804 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
805 pass, pass > 1 ? "es" : "", max_pass_bytes);
808 obstack_free (&gcse_obstack, NULL);
811 /* We are finished with alias. */
812 end_alias_analysis ();
814 if (!optimize_size && flag_gcse_sm)
816 timevar_push (TV_LSM);
818 timevar_pop (TV_LSM);
821 /* Record where pseudo-registers are set. */
822 return run_jump_opt_after_gcse;
825 /* Misc. utilities. */
827 /* Nonzero for each mode that supports (set (reg) (reg)).
828 This is trivially true for integer and floating point values.
829 It may or may not be true for condition codes. */
830 static char can_copy[(int) NUM_MACHINE_MODES];
832 /* Compute which modes support reg/reg copy operations. */
835 compute_can_copy (void)
838 #ifndef AVOID_CCMODE_COPIES
841 memset (can_copy, 0, NUM_MACHINE_MODES);
844 for (i = 0; i < NUM_MACHINE_MODES; i++)
845 if (GET_MODE_CLASS (i) == MODE_CC)
847 #ifdef AVOID_CCMODE_COPIES
850 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
851 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
852 if (recog (PATTERN (insn), insn, NULL) >= 0)
862 /* Returns whether the mode supports reg/reg copy operations. */
865 can_copy_p (enum machine_mode mode)
867 static bool can_copy_init_p = false;
869 if (! can_copy_init_p)
872 can_copy_init_p = true;
875 return can_copy[mode] != 0;
878 /* Cover function to xmalloc to record bytes allocated. */
881 gmalloc (size_t size)
884 return xmalloc (size);
887 /* Cover function to xcalloc to record bytes allocated. */
890 gcalloc (size_t nelem, size_t elsize)
892 bytes_used += nelem * elsize;
893 return xcalloc (nelem, elsize);
896 /* Cover function to xrealloc.
897 We don't record the additional size since we don't know it.
898 It won't affect memory usage stats much anyway. */
901 grealloc (void *ptr, size_t size)
903 return xrealloc (ptr, size);
906 /* Cover function to obstack_alloc. */
909 gcse_alloc (unsigned long size)
912 return obstack_alloc (&gcse_obstack, size);
915 /* Allocate memory for the cuid mapping array,
916 and reg/memory set tracking tables.
918 This is called at the start of each pass. */
921 alloc_gcse_mem (void)
927 /* Find the largest UID and create a mapping from UIDs to CUIDs.
928 CUIDs are like UIDs except they increase monotonically, have no gaps,
929 and only apply to real insns.
930 (Actually, there are gaps, for insn that are not inside a basic block.
931 but we should never see those anyway, so this is OK.) */
933 max_uid = get_max_uid ();
934 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
937 FOR_BB_INSNS (bb, insn)
940 uid_cuid[INSN_UID (insn)] = i++;
942 uid_cuid[INSN_UID (insn)] = i;
945 /* Create a table mapping cuids to insns. */
948 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
951 FOR_BB_INSNS (bb, insn)
953 CUID_INSN (i++) = insn;
955 /* Allocate vars to track sets of regs. */
956 reg_set_bitmap = BITMAP_ALLOC (NULL);
958 /* Allocate vars to track sets of regs, memory per block. */
959 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
960 /* Allocate array to keep a list of insns which modify memory in each
962 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
963 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
964 modify_mem_list_set = BITMAP_ALLOC (NULL);
965 blocks_with_calls = BITMAP_ALLOC (NULL);
968 /* Free memory allocated by alloc_gcse_mem. */
976 BITMAP_FREE (reg_set_bitmap);
978 sbitmap_vector_free (reg_set_in_block);
979 free_modify_mem_tables ();
980 BITMAP_FREE (modify_mem_list_set);
981 BITMAP_FREE (blocks_with_calls);
984 /* Compute the local properties of each recorded expression.
986 Local properties are those that are defined by the block, irrespective of
989 An expression is transparent in a block if its operands are not modified
992 An expression is computed (locally available) in a block if it is computed
993 at least once and expression would contain the same value if the
994 computation was moved to the end of the block.
996 An expression is locally anticipatable in a block if it is computed at
997 least once and expression would contain the same value if the computation
998 was moved to the beginning of the block.
1000 We call this routine for cprop, pre and code hoisting. They all compute
1001 basically the same information and thus can easily share this code.
1003 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1004 properties. If NULL, then it is not necessary to compute or record that
1005 particular property.
1007 TABLE controls which hash table to look at. If it is set hash table,
1008 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1012 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1013 struct hash_table *table)
1017 /* Initialize any bitmaps that were passed in. */
1021 sbitmap_vector_zero (transp, last_basic_block);
1023 sbitmap_vector_ones (transp, last_basic_block);
1027 sbitmap_vector_zero (comp, last_basic_block);
1029 sbitmap_vector_zero (antloc, last_basic_block);
1031 for (i = 0; i < table->size; i++)
1035 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1037 int indx = expr->bitmap_index;
1040 /* The expression is transparent in this block if it is not killed.
1041 We start by assuming all are transparent [none are killed], and
1042 then reset the bits for those that are. */
1044 compute_transp (expr->expr, indx, transp, table->set_p);
1046 /* The occurrences recorded in antic_occr are exactly those that
1047 we want to set to nonzero in ANTLOC. */
1049 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1051 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1053 /* While we're scanning the table, this is a good place to
1055 occr->deleted_p = 0;
1058 /* The occurrences recorded in avail_occr are exactly those that
1059 we want to set to nonzero in COMP. */
1061 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1063 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1065 /* While we're scanning the table, this is a good place to
1070 /* While we're scanning the table, this is a good place to
1072 expr->reaching_reg = 0;
1077 /* Register set information.
1079 `reg_set_table' records where each register is set or otherwise
1082 static struct obstack reg_set_obstack;
1085 alloc_reg_set_mem (int n_regs)
1087 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1088 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1090 gcc_obstack_init (®_set_obstack);
1094 free_reg_set_mem (void)
1096 free (reg_set_table);
1097 obstack_free (®_set_obstack, NULL);
1100 /* Record REGNO in the reg_set table. */
1103 record_one_set (int regno, rtx insn)
1105 /* Allocate a new reg_set element and link it onto the list. */
1106 struct reg_set *new_reg_info;
1108 /* If the table isn't big enough, enlarge it. */
1109 if (regno >= reg_set_table_size)
1111 int new_size = regno + REG_SET_TABLE_SLOP;
1113 reg_set_table = grealloc (reg_set_table,
1114 new_size * sizeof (struct reg_set *));
1115 memset (reg_set_table + reg_set_table_size, 0,
1116 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1117 reg_set_table_size = new_size;
1120 new_reg_info = obstack_alloc (®_set_obstack, sizeof (struct reg_set));
1121 bytes_used += sizeof (struct reg_set);
1122 new_reg_info->bb_index = BLOCK_NUM (insn);
1123 new_reg_info->next = reg_set_table[regno];
1124 reg_set_table[regno] = new_reg_info;
1127 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1128 an insn. The DATA is really the instruction in which the SET is
1132 record_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1134 rtx record_set_insn = (rtx) data;
1136 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1137 record_one_set (REGNO (dest), record_set_insn);
1140 /* Scan the function and record each set of each pseudo-register.
1142 This is called once, at the start of the gcse pass. See the comments for
1143 `reg_set_table' for further documentation. */
1152 FOR_BB_INSNS (bb, insn)
1154 note_stores (PATTERN (insn), record_set_info, insn);
1157 /* Hash table support. */
1159 struct reg_avail_info
1161 basic_block last_bb;
1166 static struct reg_avail_info *reg_avail_info;
1167 static basic_block current_bb;
1170 /* See whether X, the source of a set, is something we want to consider for
1174 want_to_gcse_p (rtx x)
1177 /* On register stack architectures, don't GCSE constants from the
1178 constant pool, as the benefits are often swamped by the overhead
1179 of shuffling the register stack between basic blocks. */
1180 if (IS_STACK_MODE (GET_MODE (x)))
1181 x = avoid_constant_pool_reference (x);
1184 switch (GET_CODE (x))
1196 return can_assign_to_reg_p (x);
1200 /* Used internally by can_assign_to_reg_p. */
1202 static GTY(()) rtx test_insn;
1204 /* Return true if we can assign X to a pseudo register. */
1207 can_assign_to_reg_p (rtx x)
1209 int num_clobbers = 0;
1212 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1213 if (general_operand (x, GET_MODE (x)))
1215 else if (GET_MODE (x) == VOIDmode)
1218 /* Otherwise, check if we can make a valid insn from it. First initialize
1219 our test insn if we haven't already. */
1223 = make_insn_raw (gen_rtx_SET (VOIDmode,
1224 gen_rtx_REG (word_mode,
1225 FIRST_PSEUDO_REGISTER * 2),
1227 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1230 /* Now make an insn like the one we would make when GCSE'ing and see if
1232 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1233 SET_SRC (PATTERN (test_insn)) = x;
1234 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1235 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1238 /* Return nonzero if the operands of expression X are unchanged from the
1239 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1240 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1243 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
1252 code = GET_CODE (x);
1257 struct reg_avail_info *info = ®_avail_info[REGNO (x)];
1259 if (info->last_bb != current_bb)
1262 return info->last_set < INSN_CUID (insn);
1264 return info->first_set >= INSN_CUID (insn);
1268 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1272 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1299 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1303 /* If we are about to do the last recursive call needed at this
1304 level, change it into iteration. This function is called enough
1307 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1309 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1312 else if (fmt[i] == 'E')
1313 for (j = 0; j < XVECLEN (x, i); j++)
1314 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1323 conflict between two memory references. */
1324 static int gcse_mems_conflict_p;
1326 /* Used for communication between mems_conflict_for_gcse_p and
1327 load_killed_in_block_p. A memory reference for a load instruction,
1328 mems_conflict_for_gcse_p will see if a memory store conflicts with
1329 this memory load. */
1330 static const_rtx gcse_mem_operand;
1332 /* DEST is the output of an instruction. If it is a memory reference, and
1333 possibly conflicts with the load found in gcse_mem_operand, then set
1334 gcse_mems_conflict_p to a nonzero value. */
1337 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1338 void *data ATTRIBUTE_UNUSED)
1340 while (GET_CODE (dest) == SUBREG
1341 || GET_CODE (dest) == ZERO_EXTRACT
1342 || GET_CODE (dest) == STRICT_LOW_PART)
1343 dest = XEXP (dest, 0);
1345 /* If DEST is not a MEM, then it will not conflict with the load. Note
1346 that function calls are assumed to clobber memory, but are handled
1351 /* If we are setting a MEM in our list of specially recognized MEMs,
1352 don't mark as killed this time. */
1354 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1356 if (!find_rtx_in_ldst (dest))
1357 gcse_mems_conflict_p = 1;
1361 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1363 gcse_mems_conflict_p = 1;
1366 /* Return nonzero if the expression in X (a memory reference) is killed
1367 in block BB before or after the insn with the CUID in UID_LIMIT.
1368 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1371 To check the entire block, set UID_LIMIT to max_uid + 1 and
1375 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
1377 rtx list_entry = modify_mem_list[bb->index];
1379 /* If this is a readonly then we aren't going to be changing it. */
1380 if (MEM_READONLY_P (x))
1386 /* Ignore entries in the list that do not apply. */
1388 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1390 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1392 list_entry = XEXP (list_entry, 1);
1396 setter = XEXP (list_entry, 0);
1398 /* If SETTER is a call everything is clobbered. Note that calls
1399 to pure functions are never put on the list, so we need not
1400 worry about them. */
1401 if (CALL_P (setter))
1404 /* SETTER must be an INSN of some kind that sets memory. Call
1405 note_stores to examine each hunk of memory that is modified.
1407 The note_stores interface is pretty limited, so we have to
1408 communicate via global variables. Yuk. */
1409 gcse_mem_operand = x;
1410 gcse_mems_conflict_p = 0;
1411 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1412 if (gcse_mems_conflict_p)
1414 list_entry = XEXP (list_entry, 1);
1419 /* Return nonzero if the operands of expression X are unchanged from
1420 the start of INSN's basic block up to but not including INSN. */
1423 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1425 return oprs_unchanged_p (x, insn, 0);
1428 /* Return nonzero if the operands of expression X are unchanged from
1429 INSN to the end of INSN's basic block. */
1432 oprs_available_p (const_rtx x, const_rtx insn)
1434 return oprs_unchanged_p (x, insn, 1);
1437 /* Hash expression X.
1439 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1440 indicating if a volatile operand is found or if the expression contains
1441 something we don't want to insert in the table. HASH_TABLE_SIZE is
1442 the current size of the hash table to be probed. */
1445 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1446 int hash_table_size)
1450 *do_not_record_p = 0;
1452 hash = hash_rtx (x, mode, do_not_record_p,
1453 NULL, /*have_reg_qty=*/false);
1454 return hash % hash_table_size;
1457 /* Hash a set of register REGNO.
1459 Sets are hashed on the register that is set. This simplifies the PRE copy
1462 ??? May need to make things more elaborate. Later, as necessary. */
1465 hash_set (int regno, int hash_table_size)
1470 return hash % hash_table_size;
1473 /* Return nonzero if exp1 is equivalent to exp2. */
1476 expr_equiv_p (const_rtx x, const_rtx y)
1478 return exp_equiv_p (x, y, 0, true);
1481 /* Insert expression X in INSN in the hash TABLE.
1482 If it is already present, record it as the last occurrence in INSN's
1485 MODE is the mode of the value X is being stored into.
1486 It is only used if X is a CONST_INT.
1488 ANTIC_P is nonzero if X is an anticipatable expression.
1489 AVAIL_P is nonzero if X is an available expression. */
1492 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1493 int avail_p, struct hash_table *table)
1495 int found, do_not_record_p;
1497 struct expr *cur_expr, *last_expr = NULL;
1498 struct occr *antic_occr, *avail_occr;
1500 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1502 /* Do not insert expression in table if it contains volatile operands,
1503 or if hash_expr determines the expression is something we don't want
1504 to or can't handle. */
1505 if (do_not_record_p)
1508 cur_expr = table->table[hash];
1511 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1513 /* If the expression isn't found, save a pointer to the end of
1515 last_expr = cur_expr;
1516 cur_expr = cur_expr->next_same_hash;
1521 cur_expr = gcse_alloc (sizeof (struct expr));
1522 bytes_used += sizeof (struct expr);
1523 if (table->table[hash] == NULL)
1524 /* This is the first pattern that hashed to this index. */
1525 table->table[hash] = cur_expr;
1527 /* Add EXPR to end of this hash chain. */
1528 last_expr->next_same_hash = cur_expr;
1530 /* Set the fields of the expr element. */
1532 cur_expr->bitmap_index = table->n_elems++;
1533 cur_expr->next_same_hash = NULL;
1534 cur_expr->antic_occr = NULL;
1535 cur_expr->avail_occr = NULL;
1538 /* Now record the occurrence(s). */
1541 antic_occr = cur_expr->antic_occr;
1543 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1547 /* Found another instance of the expression in the same basic block.
1548 Prefer the currently recorded one. We want the first one in the
1549 block and the block is scanned from start to end. */
1550 ; /* nothing to do */
1553 /* First occurrence of this expression in this basic block. */
1554 antic_occr = gcse_alloc (sizeof (struct occr));
1555 bytes_used += sizeof (struct occr);
1556 antic_occr->insn = insn;
1557 antic_occr->next = cur_expr->antic_occr;
1558 antic_occr->deleted_p = 0;
1559 cur_expr->antic_occr = antic_occr;
1565 avail_occr = cur_expr->avail_occr;
1567 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1569 /* Found another instance of the expression in the same basic block.
1570 Prefer this occurrence to the currently recorded one. We want
1571 the last one in the block and the block is scanned from start
1573 avail_occr->insn = insn;
1577 /* First occurrence of this expression in this basic block. */
1578 avail_occr = gcse_alloc (sizeof (struct occr));
1579 bytes_used += sizeof (struct occr);
1580 avail_occr->insn = insn;
1581 avail_occr->next = cur_expr->avail_occr;
1582 avail_occr->deleted_p = 0;
1583 cur_expr->avail_occr = avail_occr;
1588 /* Insert pattern X in INSN in the hash table.
1589 X is a SET of a reg to either another reg or a constant.
1590 If it is already present, record it as the last occurrence in INSN's
1594 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1598 struct expr *cur_expr, *last_expr = NULL;
1599 struct occr *cur_occr;
1601 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1603 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1605 cur_expr = table->table[hash];
1608 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1610 /* If the expression isn't found, save a pointer to the end of
1612 last_expr = cur_expr;
1613 cur_expr = cur_expr->next_same_hash;
1618 cur_expr = gcse_alloc (sizeof (struct expr));
1619 bytes_used += sizeof (struct expr);
1620 if (table->table[hash] == NULL)
1621 /* This is the first pattern that hashed to this index. */
1622 table->table[hash] = cur_expr;
1624 /* Add EXPR to end of this hash chain. */
1625 last_expr->next_same_hash = cur_expr;
1627 /* Set the fields of the expr element.
1628 We must copy X because it can be modified when copy propagation is
1629 performed on its operands. */
1630 cur_expr->expr = copy_rtx (x);
1631 cur_expr->bitmap_index = table->n_elems++;
1632 cur_expr->next_same_hash = NULL;
1633 cur_expr->antic_occr = NULL;
1634 cur_expr->avail_occr = NULL;
1637 /* Now record the occurrence. */
1638 cur_occr = cur_expr->avail_occr;
1640 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1642 /* Found another instance of the expression in the same basic block.
1643 Prefer this occurrence to the currently recorded one. We want
1644 the last one in the block and the block is scanned from start
1646 cur_occr->insn = insn;
1650 /* First occurrence of this expression in this basic block. */
1651 cur_occr = gcse_alloc (sizeof (struct occr));
1652 bytes_used += sizeof (struct occr);
1654 cur_occr->insn = insn;
1655 cur_occr->next = cur_expr->avail_occr;
1656 cur_occr->deleted_p = 0;
1657 cur_expr->avail_occr = cur_occr;
1661 /* Determine whether the rtx X should be treated as a constant for
1662 the purposes of GCSE's constant propagation. */
1665 gcse_constant_p (const_rtx x)
1667 /* Consider a COMPARE of two integers constant. */
1668 if (GET_CODE (x) == COMPARE
1669 && GET_CODE (XEXP (x, 0)) == CONST_INT
1670 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1673 /* Consider a COMPARE of the same registers is a constant
1674 if they are not floating point registers. */
1675 if (GET_CODE(x) == COMPARE
1676 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1677 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1678 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1679 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1682 return CONSTANT_P (x);
1685 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1689 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1691 rtx src = SET_SRC (pat);
1692 rtx dest = SET_DEST (pat);
1695 if (GET_CODE (src) == CALL)
1696 hash_scan_call (src, insn, table);
1698 else if (REG_P (dest))
1700 unsigned int regno = REGNO (dest);
1703 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1704 This allows us to do a single GCSE pass and still eliminate
1705 redundant constants, addresses or other expressions that are
1706 constructed with multiple instructions. */
1707 note = find_reg_equal_equiv_note (insn);
1710 ? gcse_constant_p (XEXP (note, 0))
1711 : want_to_gcse_p (XEXP (note, 0))))
1712 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1714 /* Only record sets of pseudo-regs in the hash table. */
1716 && regno >= FIRST_PSEUDO_REGISTER
1717 /* Don't GCSE something if we can't do a reg/reg copy. */
1718 && can_copy_p (GET_MODE (dest))
1719 /* GCSE commonly inserts instruction after the insn. We can't
1720 do that easily for EH_REGION notes so disable GCSE on these
1722 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1723 /* Is SET_SRC something we want to gcse? */
1724 && want_to_gcse_p (src)
1725 /* Don't CSE a nop. */
1726 && ! set_noop_p (pat)
1727 /* Don't GCSE if it has attached REG_EQUIV note.
1728 At this point this only function parameters should have
1729 REG_EQUIV notes and if the argument slot is used somewhere
1730 explicitly, it means address of parameter has been taken,
1731 so we should not extend the lifetime of the pseudo. */
1732 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1734 /* An expression is not anticipatable if its operands are
1735 modified before this insn or if this is not the only SET in
1736 this insn. The latter condition does not have to mean that
1737 SRC itself is not anticipatable, but we just will not be
1738 able to handle code motion of insns with multiple sets. */
1739 int antic_p = oprs_anticipatable_p (src, insn)
1740 && !multiple_sets (insn);
1741 /* An expression is not available if its operands are
1742 subsequently modified, including this insn. It's also not
1743 available if this is a branch, because we can't insert
1744 a set after the branch. */
1745 int avail_p = (oprs_available_p (src, insn)
1746 && ! JUMP_P (insn));
1748 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1751 /* Record sets for constant/copy propagation. */
1752 else if (table->set_p
1753 && regno >= FIRST_PSEUDO_REGISTER
1755 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1756 && can_copy_p (GET_MODE (dest))
1757 && REGNO (src) != regno)
1758 || gcse_constant_p (src))
1759 /* A copy is not available if its src or dest is subsequently
1760 modified. Here we want to search from INSN+1 on, but
1761 oprs_available_p searches from INSN on. */
1762 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1763 || (tmp = next_nonnote_insn (insn)) == NULL_RTX
1764 || oprs_available_p (pat, tmp)))
1765 insert_set_in_table (pat, insn, table);
1767 /* In case of store we want to consider the memory value as available in
1768 the REG stored in that memory. This makes it possible to remove
1769 redundant loads from due to stores to the same location. */
1770 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1772 unsigned int regno = REGNO (src);
1774 /* Do not do this for constant/copy propagation. */
1776 /* Only record sets of pseudo-regs in the hash table. */
1777 && regno >= FIRST_PSEUDO_REGISTER
1778 /* Don't GCSE something if we can't do a reg/reg copy. */
1779 && can_copy_p (GET_MODE (src))
1780 /* GCSE commonly inserts instruction after the insn. We can't
1781 do that easily for EH_REGION notes so disable GCSE on these
1783 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1784 /* Is SET_DEST something we want to gcse? */
1785 && want_to_gcse_p (dest)
1786 /* Don't CSE a nop. */
1787 && ! set_noop_p (pat)
1788 /* Don't GCSE if it has attached REG_EQUIV note.
1789 At this point this only function parameters should have
1790 REG_EQUIV notes and if the argument slot is used somewhere
1791 explicitly, it means address of parameter has been taken,
1792 so we should not extend the lifetime of the pseudo. */
1793 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1794 || ! MEM_P (XEXP (note, 0))))
1796 /* Stores are never anticipatable. */
1798 /* An expression is not available if its operands are
1799 subsequently modified, including this insn. It's also not
1800 available if this is a branch, because we can't insert
1801 a set after the branch. */
1802 int avail_p = oprs_available_p (dest, insn)
1805 /* Record the memory expression (DEST) in the hash table. */
1806 insert_expr_in_table (dest, GET_MODE (dest), insn,
1807 antic_p, avail_p, table);
1813 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1814 struct hash_table *table ATTRIBUTE_UNUSED)
1816 /* Currently nothing to do. */
1820 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1821 struct hash_table *table ATTRIBUTE_UNUSED)
1823 /* Currently nothing to do. */
1826 /* Process INSN and add hash table entries as appropriate.
1828 Only available expressions that set a single pseudo-reg are recorded.
1830 Single sets in a PARALLEL could be handled, but it's an extra complication
1831 that isn't dealt with right now. The trick is handling the CLOBBERs that
1832 are also in the PARALLEL. Later.
1834 If SET_P is nonzero, this is for the assignment hash table,
1835 otherwise it is for the expression hash table.
1836 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1837 not record any expressions. */
1840 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1842 rtx pat = PATTERN (insn);
1845 if (in_libcall_block)
1848 /* Pick out the sets of INSN and for other forms of instructions record
1849 what's been modified. */
1851 if (GET_CODE (pat) == SET)
1852 hash_scan_set (pat, insn, table);
1853 else if (GET_CODE (pat) == PARALLEL)
1854 for (i = 0; i < XVECLEN (pat, 0); i++)
1856 rtx x = XVECEXP (pat, 0, i);
1858 if (GET_CODE (x) == SET)
1859 hash_scan_set (x, insn, table);
1860 else if (GET_CODE (x) == CLOBBER)
1861 hash_scan_clobber (x, insn, table);
1862 else if (GET_CODE (x) == CALL)
1863 hash_scan_call (x, insn, table);
1866 else if (GET_CODE (pat) == CLOBBER)
1867 hash_scan_clobber (pat, insn, table);
1868 else if (GET_CODE (pat) == CALL)
1869 hash_scan_call (pat, insn, table);
1873 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1876 /* Flattened out table, so it's printed in proper order. */
1877 struct expr **flat_table;
1878 unsigned int *hash_val;
1881 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1882 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1884 for (i = 0; i < (int) table->size; i++)
1885 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1887 flat_table[expr->bitmap_index] = expr;
1888 hash_val[expr->bitmap_index] = i;
1891 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1892 name, table->size, table->n_elems);
1894 for (i = 0; i < (int) table->n_elems; i++)
1895 if (flat_table[i] != 0)
1897 expr = flat_table[i];
1898 fprintf (file, "Index %d (hash value %d)\n ",
1899 expr->bitmap_index, hash_val[i]);
1900 print_rtl (file, expr->expr);
1901 fprintf (file, "\n");
1904 fprintf (file, "\n");
1910 /* Record register first/last/block set information for REGNO in INSN.
1912 first_set records the first place in the block where the register
1913 is set and is used to compute "anticipatability".
1915 last_set records the last place in the block where the register
1916 is set and is used to compute "availability".
1918 last_bb records the block for which first_set and last_set are
1919 valid, as a quick test to invalidate them.
1921 reg_set_in_block records whether the register is set in the block
1922 and is used to compute "transparency". */
1925 record_last_reg_set_info (rtx insn, int regno)
1927 struct reg_avail_info *info = ®_avail_info[regno];
1928 int cuid = INSN_CUID (insn);
1930 info->last_set = cuid;
1931 if (info->last_bb != current_bb)
1933 info->last_bb = current_bb;
1934 info->first_set = cuid;
1935 SET_BIT (reg_set_in_block[current_bb->index], regno);
1940 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1941 Note we store a pair of elements in the list, so they have to be
1942 taken off pairwise. */
1945 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1948 rtx dest_addr, insn;
1951 while (GET_CODE (dest) == SUBREG
1952 || GET_CODE (dest) == ZERO_EXTRACT
1953 || GET_CODE (dest) == STRICT_LOW_PART)
1954 dest = XEXP (dest, 0);
1956 /* If DEST is not a MEM, then it will not conflict with a load. Note
1957 that function calls are assumed to clobber memory, but are handled
1963 dest_addr = get_addr (XEXP (dest, 0));
1964 dest_addr = canon_rtx (dest_addr);
1965 insn = (rtx) v_insn;
1966 bb = BLOCK_NUM (insn);
1968 canon_modify_mem_list[bb] =
1969 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1970 canon_modify_mem_list[bb] =
1971 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1974 /* Record memory modification information for INSN. We do not actually care
1975 about the memory location(s) that are set, or even how they are set (consider
1976 a CALL_INSN). We merely need to record which insns modify memory. */
1979 record_last_mem_set_info (rtx insn)
1981 int bb = BLOCK_NUM (insn);
1983 /* load_killed_in_block_p will handle the case of calls clobbering
1985 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1986 bitmap_set_bit (modify_mem_list_set, bb);
1990 /* Note that traversals of this loop (other than for free-ing)
1991 will break after encountering a CALL_INSN. So, there's no
1992 need to insert a pair of items, as canon_list_insert does. */
1993 canon_modify_mem_list[bb] =
1994 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1995 bitmap_set_bit (blocks_with_calls, bb);
1998 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2001 /* Called from compute_hash_table via note_stores to handle one
2002 SET or CLOBBER in an insn. DATA is really the instruction in which
2003 the SET is taking place. */
2006 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
2008 rtx last_set_insn = (rtx) data;
2010 if (GET_CODE (dest) == SUBREG)
2011 dest = SUBREG_REG (dest);
2014 record_last_reg_set_info (last_set_insn, REGNO (dest));
2015 else if (MEM_P (dest)
2016 /* Ignore pushes, they clobber nothing. */
2017 && ! push_operand (dest, GET_MODE (dest)))
2018 record_last_mem_set_info (last_set_insn);
2021 /* Top level function to create an expression or assignment hash table.
2023 Expression entries are placed in the hash table if
2024 - they are of the form (set (pseudo-reg) src),
2025 - src is something we want to perform GCSE on,
2026 - none of the operands are subsequently modified in the block
2028 Assignment entries are placed in the hash table if
2029 - they are of the form (set (pseudo-reg) src),
2030 - src is something we want to perform const/copy propagation on,
2031 - none of the operands or target are subsequently modified in the block
2033 Currently src must be a pseudo-reg or a const_int.
2035 TABLE is the table computed. */
2038 compute_hash_table_work (struct hash_table *table)
2042 /* While we compute the hash table we also compute a bit array of which
2043 registers are set in which blocks.
2044 ??? This isn't needed during const/copy propagation, but it's cheap to
2046 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2048 /* re-Cache any INSN_LIST nodes we have allocated. */
2049 clear_modify_mem_tables ();
2050 /* Some working arrays used to track first and last set in each block. */
2051 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2053 for (i = 0; i < max_gcse_regno; ++i)
2054 reg_avail_info[i].last_bb = NULL;
2056 FOR_EACH_BB (current_bb)
2060 int in_libcall_block;
2062 /* First pass over the instructions records information used to
2063 determine when registers and memory are first and last set.
2064 ??? hard-reg reg_set_in_block computation
2065 could be moved to compute_sets since they currently don't change. */
2067 FOR_BB_INSNS (current_bb, insn)
2069 if (! INSN_P (insn))
2074 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2075 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2076 record_last_reg_set_info (insn, regno);
2081 note_stores (PATTERN (insn), record_last_set_info, insn);
2084 /* Insert implicit sets in the hash table. */
2086 && implicit_sets[current_bb->index] != NULL_RTX)
2087 hash_scan_set (implicit_sets[current_bb->index],
2088 BB_HEAD (current_bb), table);
2090 /* The next pass builds the hash table. */
2091 in_libcall_block = 0;
2092 FOR_BB_INSNS (current_bb, insn)
2095 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2096 in_libcall_block = 1;
2097 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2098 in_libcall_block = 0;
2099 hash_scan_insn (insn, table, in_libcall_block);
2100 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2101 in_libcall_block = 0;
2105 free (reg_avail_info);
2106 reg_avail_info = NULL;
2109 /* Allocate space for the set/expr hash TABLE.
2110 N_INSNS is the number of instructions in the function.
2111 It is used to determine the number of buckets to use.
2112 SET_P determines whether set or expression table will
2116 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2120 table->size = n_insns / 4;
2121 if (table->size < 11)
2124 /* Attempt to maintain efficient use of hash table.
2125 Making it an odd number is simplest for now.
2126 ??? Later take some measurements. */
2128 n = table->size * sizeof (struct expr *);
2129 table->table = gmalloc (n);
2130 table->set_p = set_p;
2133 /* Free things allocated by alloc_hash_table. */
2136 free_hash_table (struct hash_table *table)
2138 free (table->table);
2141 /* Compute the hash TABLE for doing copy/const propagation or
2142 expression hash table. */
2145 compute_hash_table (struct hash_table *table)
2147 /* Initialize count of number of entries in hash table. */
2149 memset (table->table, 0, table->size * sizeof (struct expr *));
2151 compute_hash_table_work (table);
2154 /* Expression tracking support. */
2156 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2157 table entry, or NULL if not found. */
2159 static struct expr *
2160 lookup_set (unsigned int regno, struct hash_table *table)
2162 unsigned int hash = hash_set (regno, table->size);
2165 expr = table->table[hash];
2167 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2168 expr = expr->next_same_hash;
2173 /* Return the next entry for REGNO in list EXPR. */
2175 static struct expr *
2176 next_set (unsigned int regno, struct expr *expr)
2179 expr = expr->next_same_hash;
2180 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2185 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2186 types may be mixed. */
2189 free_insn_expr_list_list (rtx *listp)
2193 for (list = *listp; list ; list = next)
2195 next = XEXP (list, 1);
2196 if (GET_CODE (list) == EXPR_LIST)
2197 free_EXPR_LIST_node (list);
2199 free_INSN_LIST_node (list);
2205 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2207 clear_modify_mem_tables (void)
2212 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2214 free_INSN_LIST_list (modify_mem_list + i);
2215 free_insn_expr_list_list (canon_modify_mem_list + i);
2217 bitmap_clear (modify_mem_list_set);
2218 bitmap_clear (blocks_with_calls);
2221 /* Release memory used by modify_mem_list_set. */
2224 free_modify_mem_tables (void)
2226 clear_modify_mem_tables ();
2227 free (modify_mem_list);
2228 free (canon_modify_mem_list);
2229 modify_mem_list = 0;
2230 canon_modify_mem_list = 0;
2233 /* Reset tables used to keep track of what's still available [since the
2234 start of the block]. */
2237 reset_opr_set_tables (void)
2239 /* Maintain a bitmap of which regs have been set since beginning of
2241 CLEAR_REG_SET (reg_set_bitmap);
2243 /* Also keep a record of the last instruction to modify memory.
2244 For now this is very trivial, we only record whether any memory
2245 location has been modified. */
2246 clear_modify_mem_tables ();
2249 /* Return nonzero if the operands of X are not set before INSN in
2250 INSN's basic block. */
2253 oprs_not_set_p (const_rtx x, const_rtx insn)
2262 code = GET_CODE (x);
2279 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2280 INSN_CUID (insn), x, 0))
2283 return oprs_not_set_p (XEXP (x, 0), insn);
2286 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2292 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2296 /* If we are about to do the last recursive call
2297 needed at this level, change it into iteration.
2298 This function is called enough to be worth it. */
2300 return oprs_not_set_p (XEXP (x, i), insn);
2302 if (! oprs_not_set_p (XEXP (x, i), insn))
2305 else if (fmt[i] == 'E')
2306 for (j = 0; j < XVECLEN (x, i); j++)
2307 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2314 /* Mark things set by a CALL. */
2317 mark_call (rtx insn)
2319 if (! CONST_OR_PURE_CALL_P (insn))
2320 record_last_mem_set_info (insn);
2323 /* Mark things set by a SET. */
2326 mark_set (rtx pat, rtx insn)
2328 rtx dest = SET_DEST (pat);
2330 while (GET_CODE (dest) == SUBREG
2331 || GET_CODE (dest) == ZERO_EXTRACT
2332 || GET_CODE (dest) == STRICT_LOW_PART)
2333 dest = XEXP (dest, 0);
2336 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2337 else if (MEM_P (dest))
2338 record_last_mem_set_info (insn);
2340 if (GET_CODE (SET_SRC (pat)) == CALL)
2344 /* Record things set by a CLOBBER. */
2347 mark_clobber (rtx pat, rtx insn)
2349 rtx clob = XEXP (pat, 0);
2351 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2352 clob = XEXP (clob, 0);
2355 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2357 record_last_mem_set_info (insn);
2360 /* Record things set by INSN.
2361 This data is used by oprs_not_set_p. */
2364 mark_oprs_set (rtx insn)
2366 rtx pat = PATTERN (insn);
2369 if (GET_CODE (pat) == SET)
2370 mark_set (pat, insn);
2371 else if (GET_CODE (pat) == PARALLEL)
2372 for (i = 0; i < XVECLEN (pat, 0); i++)
2374 rtx x = XVECEXP (pat, 0, i);
2376 if (GET_CODE (x) == SET)
2378 else if (GET_CODE (x) == CLOBBER)
2379 mark_clobber (x, insn);
2380 else if (GET_CODE (x) == CALL)
2384 else if (GET_CODE (pat) == CLOBBER)
2385 mark_clobber (pat, insn);
2386 else if (GET_CODE (pat) == CALL)
2391 /* Compute copy/constant propagation working variables. */
2393 /* Local properties of assignments. */
2394 static sbitmap *cprop_pavloc;
2395 static sbitmap *cprop_absaltered;
2397 /* Global properties of assignments (computed from the local properties). */
2398 static sbitmap *cprop_avin;
2399 static sbitmap *cprop_avout;
2401 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2402 basic blocks. N_SETS is the number of sets. */
2405 alloc_cprop_mem (int n_blocks, int n_sets)
2407 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2408 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2410 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2411 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2414 /* Free vars used by copy/const propagation. */
2417 free_cprop_mem (void)
2419 sbitmap_vector_free (cprop_pavloc);
2420 sbitmap_vector_free (cprop_absaltered);
2421 sbitmap_vector_free (cprop_avin);
2422 sbitmap_vector_free (cprop_avout);
2425 /* For each block, compute whether X is transparent. X is either an
2426 expression or an assignment [though we don't care which, for this context
2427 an assignment is treated as an expression]. For each block where an
2428 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2432 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2440 /* repeat is used to turn tail-recursion into iteration since GCC
2441 can't do it when there's no return value. */
2447 code = GET_CODE (x);
2453 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2456 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2457 SET_BIT (bmap[bb->index], indx);
2461 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2462 SET_BIT (bmap[r->bb_index], indx);
2467 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2470 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2471 RESET_BIT (bmap[bb->index], indx);
2475 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2476 RESET_BIT (bmap[r->bb_index], indx);
2483 if (! MEM_READONLY_P (x))
2488 /* First handle all the blocks with calls. We don't need to
2489 do any list walking for them. */
2490 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2493 SET_BIT (bmap[bb_index], indx);
2495 RESET_BIT (bmap[bb_index], indx);
2498 /* Now iterate over the blocks which have memory modifications
2499 but which do not have any calls. */
2500 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2504 rtx list_entry = canon_modify_mem_list[bb_index];
2508 rtx dest, dest_addr;
2510 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2511 Examine each hunk of memory that is modified. */
2513 dest = XEXP (list_entry, 0);
2514 list_entry = XEXP (list_entry, 1);
2515 dest_addr = XEXP (list_entry, 0);
2517 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2518 x, rtx_addr_varies_p))
2521 SET_BIT (bmap[bb_index], indx);
2523 RESET_BIT (bmap[bb_index], indx);
2526 list_entry = XEXP (list_entry, 1);
2551 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2555 /* If we are about to do the last recursive call
2556 needed at this level, change it into iteration.
2557 This function is called enough to be worth it. */
2564 compute_transp (XEXP (x, i), indx, bmap, set_p);
2566 else if (fmt[i] == 'E')
2567 for (j = 0; j < XVECLEN (x, i); j++)
2568 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2572 /* Top level routine to do the dataflow analysis needed by copy/const
2576 compute_cprop_data (void)
2578 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2579 compute_available (cprop_pavloc, cprop_absaltered,
2580 cprop_avout, cprop_avin);
2583 /* Copy/constant propagation. */
2585 /* Maximum number of register uses in an insn that we handle. */
2588 /* Table of uses found in an insn.
2589 Allocated statically to avoid alloc/free complexity and overhead. */
2590 static struct reg_use reg_use_table[MAX_USES];
2592 /* Index into `reg_use_table' while building it. */
2593 static int reg_use_count;
2595 /* Set up a list of register numbers used in INSN. The found uses are stored
2596 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2597 and contains the number of uses in the table upon exit.
2599 ??? If a register appears multiple times we will record it multiple times.
2600 This doesn't hurt anything but it will slow things down. */
2603 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2610 /* repeat is used to turn tail-recursion into iteration since GCC
2611 can't do it when there's no return value. */
2616 code = GET_CODE (x);
2619 if (reg_use_count == MAX_USES)
2622 reg_use_table[reg_use_count].reg_rtx = x;
2626 /* Recursively scan the operands of this expression. */
2628 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2632 /* If we are about to do the last recursive call
2633 needed at this level, change it into iteration.
2634 This function is called enough to be worth it. */
2641 find_used_regs (&XEXP (x, i), data);
2643 else if (fmt[i] == 'E')
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 find_used_regs (&XVECEXP (x, i, j), data);
2649 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2650 Returns nonzero is successful. */
2653 try_replace_reg (rtx from, rtx to, rtx insn)
2655 rtx note = find_reg_equal_equiv_note (insn);
2658 rtx set = single_set (insn);
2660 /* Usually we substitute easy stuff, so we won't copy everything.
2661 We however need to take care to not duplicate non-trivial CONST
2665 validate_replace_src_group (from, to, insn);
2666 if (num_changes_pending () && apply_change_group ())
2669 /* Try to simplify SET_SRC if we have substituted a constant. */
2670 if (success && set && CONSTANT_P (to))
2672 src = simplify_rtx (SET_SRC (set));
2675 validate_change (insn, &SET_SRC (set), src, 0);
2678 /* If there is already a REG_EQUAL note, update the expression in it
2679 with our replacement. */
2680 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2681 set_unique_reg_note (insn, REG_EQUAL,
2682 simplify_replace_rtx (XEXP (note, 0), from, to));
2683 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2685 /* If above failed and this is a single set, try to simplify the source of
2686 the set given our substitution. We could perhaps try this for multiple
2687 SETs, but it probably won't buy us anything. */
2688 src = simplify_replace_rtx (SET_SRC (set), from, to);
2690 if (!rtx_equal_p (src, SET_SRC (set))
2691 && validate_change (insn, &SET_SRC (set), src, 0))
2694 /* If we've failed to do replacement, have a single SET, don't already
2695 have a note, and have no special SET, add a REG_EQUAL note to not
2696 lose information. */
2697 if (!success && note == 0 && set != 0
2698 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2699 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2700 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2703 /* REG_EQUAL may get simplified into register.
2704 We don't allow that. Remove that note. This code ought
2705 not to happen, because previous code ought to synthesize
2706 reg-reg move, but be on the safe side. */
2707 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2708 remove_note (insn, note);
2713 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2714 NULL no such set is found. */
2716 static struct expr *
2717 find_avail_set (int regno, rtx insn)
2719 /* SET1 contains the last set found that can be returned to the caller for
2720 use in a substitution. */
2721 struct expr *set1 = 0;
2723 /* Loops are not possible here. To get a loop we would need two sets
2724 available at the start of the block containing INSN. i.e. we would
2725 need two sets like this available at the start of the block:
2727 (set (reg X) (reg Y))
2728 (set (reg Y) (reg X))
2730 This can not happen since the set of (reg Y) would have killed the
2731 set of (reg X) making it unavailable at the start of this block. */
2735 struct expr *set = lookup_set (regno, &set_hash_table);
2737 /* Find a set that is available at the start of the block
2738 which contains INSN. */
2741 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2743 set = next_set (regno, set);
2746 /* If no available set was found we've reached the end of the
2747 (possibly empty) copy chain. */
2751 gcc_assert (GET_CODE (set->expr) == SET);
2753 src = SET_SRC (set->expr);
2755 /* We know the set is available.
2756 Now check that SRC is ANTLOC (i.e. none of the source operands
2757 have changed since the start of the block).
2759 If the source operand changed, we may still use it for the next
2760 iteration of this loop, but we may not use it for substitutions. */
2762 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2765 /* If the source of the set is anything except a register, then
2766 we have reached the end of the copy chain. */
2770 /* Follow the copy chain, i.e. start another iteration of the loop
2771 and see if we have an available copy into SRC. */
2772 regno = REGNO (src);
2775 /* SET1 holds the last set that was available and anticipatable at
2780 /* Subroutine of cprop_insn that tries to propagate constants into
2781 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2782 it is the instruction that immediately precedes JUMP, and must be a
2783 single SET of a register. FROM is what we will try to replace,
2784 SRC is the constant we will try to substitute for it. Returns nonzero
2785 if a change was made. */
2788 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2790 rtx new, set_src, note_src;
2791 rtx set = pc_set (jump);
2792 rtx note = find_reg_equal_equiv_note (jump);
2796 note_src = XEXP (note, 0);
2797 if (GET_CODE (note_src) == EXPR_LIST)
2798 note_src = NULL_RTX;
2800 else note_src = NULL_RTX;
2802 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2803 set_src = note_src ? note_src : SET_SRC (set);
2805 /* First substitute the SETCC condition into the JUMP instruction,
2806 then substitute that given values into this expanded JUMP. */
2807 if (setcc != NULL_RTX
2808 && !modified_between_p (from, setcc, jump)
2809 && !modified_between_p (src, setcc, jump))
2812 rtx setcc_set = single_set (setcc);
2813 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2814 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2815 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2816 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2822 new = simplify_replace_rtx (set_src, from, src);
2824 /* If no simplification can be made, then try the next register. */
2825 if (rtx_equal_p (new, SET_SRC (set)))
2828 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2833 /* Ensure the value computed inside the jump insn to be equivalent
2834 to one computed by setcc. */
2835 if (setcc && modified_in_p (new, setcc))
2837 if (! validate_change (jump, &SET_SRC (set), new, 0))
2839 /* When (some) constants are not valid in a comparison, and there
2840 are two registers to be replaced by constants before the entire
2841 comparison can be folded into a constant, we need to keep
2842 intermediate information in REG_EQUAL notes. For targets with
2843 separate compare insns, such notes are added by try_replace_reg.
2844 When we have a combined compare-and-branch instruction, however,
2845 we need to attach a note to the branch itself to make this
2846 optimization work. */
2848 if (!rtx_equal_p (new, note_src))
2849 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2853 /* Remove REG_EQUAL note after simplification. */
2855 remove_note (jump, note);
2859 /* Delete the cc0 setter. */
2860 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2861 delete_insn (setcc);
2864 run_jump_opt_after_gcse = 1;
2866 global_const_prop_count++;
2867 if (dump_file != NULL)
2870 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2871 REGNO (from), INSN_UID (jump));
2872 print_rtl (dump_file, src);
2873 fprintf (dump_file, "\n");
2875 purge_dead_edges (bb);
2881 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2885 /* Check for reg or cc0 setting instructions followed by
2886 conditional branch instructions first. */
2888 && (sset = single_set (insn)) != NULL
2890 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2892 rtx dest = SET_DEST (sset);
2893 if ((REG_P (dest) || CC0_P (dest))
2894 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2898 /* Handle normal insns next. */
2899 if (NONJUMP_INSN_P (insn)
2900 && try_replace_reg (from, to, insn))
2903 /* Try to propagate a CONST_INT into a conditional jump.
2904 We're pretty specific about what we will handle in this
2905 code, we can extend this as necessary over time.
2907 Right now the insn in question must look like
2908 (set (pc) (if_then_else ...)) */
2909 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2910 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2914 /* Perform constant and copy propagation on INSN.
2915 The result is nonzero if a change was made. */
2918 cprop_insn (rtx insn, int alter_jumps)
2920 struct reg_use *reg_used;
2928 note_uses (&PATTERN (insn), find_used_regs, NULL);
2930 note = find_reg_equal_equiv_note (insn);
2932 /* We may win even when propagating constants into notes. */
2934 find_used_regs (&XEXP (note, 0), NULL);
2936 for (reg_used = ®_use_table[0]; reg_use_count > 0;
2937 reg_used++, reg_use_count--)
2939 unsigned int regno = REGNO (reg_used->reg_rtx);
2943 /* Ignore registers created by GCSE.
2944 We do this because ... */
2945 if (regno >= max_gcse_regno)
2948 /* If the register has already been set in this block, there's
2949 nothing we can do. */
2950 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2953 /* Find an assignment that sets reg_used and is available
2954 at the start of the block. */
2955 set = find_avail_set (regno, insn);
2960 /* ??? We might be able to handle PARALLELs. Later. */
2961 gcc_assert (GET_CODE (pat) == SET);
2963 src = SET_SRC (pat);
2965 /* Constant propagation. */
2966 if (gcse_constant_p (src))
2968 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2971 global_const_prop_count++;
2972 if (dump_file != NULL)
2974 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2975 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2976 print_rtl (dump_file, src);
2977 fprintf (dump_file, "\n");
2979 if (INSN_DELETED_P (insn))
2983 else if (REG_P (src)
2984 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2985 && REGNO (src) != regno)
2987 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2990 global_copy_prop_count++;
2991 if (dump_file != NULL)
2993 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2994 regno, INSN_UID (insn));
2995 fprintf (dump_file, " with reg %d\n", REGNO (src));
2998 /* The original insn setting reg_used may or may not now be
2999 deletable. We leave the deletion to flow. */
3000 /* FIXME: If it turns out that the insn isn't deletable,
3001 then we may have unnecessarily extended register lifetimes
3002 and made things worse. */
3010 /* Like find_used_regs, but avoid recording uses that appear in
3011 input-output contexts such as zero_extract or pre_dec. This
3012 restricts the cases we consider to those for which local cprop
3013 can legitimately make replacements. */
3016 local_cprop_find_used_regs (rtx *xptr, void *data)
3023 switch (GET_CODE (x))
3027 case STRICT_LOW_PART:
3036 /* Can only legitimately appear this early in the context of
3037 stack pushes for function arguments, but handle all of the
3038 codes nonetheless. */
3042 /* Setting a subreg of a register larger than word_mode leaves
3043 the non-written words unchanged. */
3044 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3052 find_used_regs (xptr, data);
3055 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3056 their REG_EQUAL notes need updating. */
3059 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3061 rtx newreg = NULL, newcnst = NULL;
3063 /* Rule out USE instructions and ASM statements as we don't want to
3064 change the hard registers mentioned. */
3066 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3067 || (GET_CODE (PATTERN (insn)) != USE
3068 && asm_noperands (PATTERN (insn)) < 0)))
3070 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3071 struct elt_loc_list *l;
3075 for (l = val->locs; l; l = l->next)
3077 rtx this_rtx = l->loc;
3080 /* Don't CSE non-constant values out of libcall blocks. */
3081 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3084 if (gcse_constant_p (this_rtx))
3086 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3087 /* Don't copy propagate if it has attached REG_EQUIV note.
3088 At this point this only function parameters should have
3089 REG_EQUIV notes and if the argument slot is used somewhere
3090 explicitly, it means address of parameter has been taken,
3091 so we should not extend the lifetime of the pseudo. */
3092 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3093 || ! MEM_P (XEXP (note, 0))))
3096 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3098 /* If we find a case where we can't fix the retval REG_EQUAL notes
3099 match the new register, we either have to abandon this replacement
3100 or fix delete_trivially_dead_insns to preserve the setting insn,
3101 or make it delete the REG_EQUAL note, and fix up all passes that
3102 require the REG_EQUAL note there. */
3105 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3106 gcc_assert (adjusted);
3108 if (dump_file != NULL)
3110 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3112 fprintf (dump_file, "insn %d with constant ",
3114 print_rtl (dump_file, newcnst);
3115 fprintf (dump_file, "\n");
3117 local_const_prop_count++;
3120 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3122 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3123 if (dump_file != NULL)
3126 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3127 REGNO (x), INSN_UID (insn));
3128 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3130 local_copy_prop_count++;
3137 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3138 their REG_EQUAL notes need updating to reflect that OLDREG has been
3139 replaced with NEWVAL in INSN. Return true if all substitutions could
3142 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3146 while ((end = *libcall_sp++))
3148 rtx note = find_reg_equal_equiv_note (end);
3155 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3159 note = find_reg_equal_equiv_note (end);
3162 if (reg_mentioned_p (newval, XEXP (note, 0)))
3165 while ((end = *libcall_sp++));
3169 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3170 df_notes_rescan (end);
3176 #define MAX_NESTED_LIBCALLS 9
3178 /* Do local const/copy propagation (i.e. within each basic block).
3179 If ALTER_JUMPS is true, allow propagating into jump insns, which
3180 could modify the CFG. */
3183 local_cprop_pass (bool alter_jumps)
3187 struct reg_use *reg_used;
3188 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3189 bool changed = false;
3191 cselib_init (false);
3192 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3196 FOR_BB_INSNS (bb, insn)
3200 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3204 gcc_assert (libcall_sp != libcall_stack);
3205 *--libcall_sp = XEXP (note, 0);
3207 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3210 note = find_reg_equal_equiv_note (insn);
3214 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3217 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3219 for (reg_used = ®_use_table[0]; reg_use_count > 0;
3220 reg_used++, reg_use_count--)
3222 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3229 if (INSN_DELETED_P (insn))
3232 while (reg_use_count);
3234 cselib_process_insn (insn);
3237 /* Forget everything at the end of a basic block. Make sure we are
3238 not inside a libcall, they should never cross basic blocks. */
3239 cselib_clear_table ();
3240 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3245 /* Global analysis may get into infinite loops for unreachable blocks. */
3246 if (changed && alter_jumps)
3248 delete_unreachable_blocks ();
3249 free_reg_set_mem ();
3250 alloc_reg_set_mem (max_reg_num ());
3255 /* Forward propagate copies. This includes copies and constants. Return
3256 nonzero if a change was made. */
3259 cprop (int alter_jumps)
3265 /* Note we start at block 1. */
3266 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3268 if (dump_file != NULL)
3269 fprintf (dump_file, "\n");
3274 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3276 /* Reset tables used to keep track of what's still valid [since the
3277 start of the block]. */
3278 reset_opr_set_tables ();
3280 FOR_BB_INSNS (bb, insn)
3283 changed |= cprop_insn (insn, alter_jumps);
3285 /* Keep track of everything modified by this insn. */
3286 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3287 call mark_oprs_set if we turned the insn into a NOTE. */
3288 if (! NOTE_P (insn))
3289 mark_oprs_set (insn);
3293 if (dump_file != NULL)
3294 fprintf (dump_file, "\n");
3299 /* Similar to get_condition, only the resulting condition must be
3300 valid at JUMP, instead of at EARLIEST.
3302 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3303 settle for the condition variable in the jump instruction being integral.
3304 We prefer to be able to record the value of a user variable, rather than
3305 the value of a temporary used in a condition. This could be solved by
3306 recording the value of *every* register scanned by canonicalize_condition,
3307 but this would require some code reorganization. */
3310 fis_get_condition (rtx jump)
3312 return get_condition (jump, NULL, false, true);
3315 /* Check the comparison COND to see if we can safely form an implicit set from
3316 it. COND is either an EQ or NE comparison. */
3319 implicit_set_cond_p (const_rtx cond)
3321 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3322 const_rtx cst = XEXP (cond, 1);
3324 /* We can't perform this optimization if either operand might be or might
3325 contain a signed zero. */
3326 if (HONOR_SIGNED_ZEROS (mode))
3328 /* It is sufficient to check if CST is or contains a zero. We must
3329 handle float, complex, and vector. If any subpart is a zero, then
3330 the optimization can't be performed. */
3331 /* ??? The complex and vector checks are not implemented yet. We just
3332 always return zero for them. */
3333 if (GET_CODE (cst) == CONST_DOUBLE)
3336 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3337 if (REAL_VALUES_EQUAL (d, dconst0))
3344 return gcse_constant_p (cst);
3347 /* Find the implicit sets of a function. An "implicit set" is a constraint
3348 on the value of a variable, implied by a conditional jump. For example,
3349 following "if (x == 2)", the then branch may be optimized as though the
3350 conditional performed an "explicit set", in this example, "x = 2". This
3351 function records the set patterns that are implicit at the start of each
3355 find_implicit_sets (void)
3357 basic_block bb, dest;
3363 /* Check for more than one successor. */
3364 if (EDGE_COUNT (bb->succs) > 1)
3366 cond = fis_get_condition (BB_END (bb));
3369 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3370 && REG_P (XEXP (cond, 0))
3371 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3372 && implicit_set_cond_p (cond))
3374 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3375 : FALLTHRU_EDGE (bb)->dest;
3377 if (dest && single_pred_p (dest)
3378 && dest != EXIT_BLOCK_PTR)
3380 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3382 implicit_sets[dest->index] = new;
3385 fprintf(dump_file, "Implicit set of reg %d in ",
3386 REGNO (XEXP (cond, 0)));
3387 fprintf(dump_file, "basic block %d\n", dest->index);
3395 fprintf (dump_file, "Found %d implicit sets\n", count);
3398 /* Perform one copy/constant propagation pass.
3399 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3400 propagation into conditional jumps. If BYPASS_JUMPS is true,
3401 perform conditional jump bypassing optimizations. */
3404 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3408 global_const_prop_count = local_const_prop_count = 0;
3409 global_copy_prop_count = local_copy_prop_count = 0;
3412 local_cprop_pass (cprop_jumps);
3414 /* Determine implicit sets. */
3415 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3416 find_implicit_sets ();
3418 alloc_hash_table (max_cuid, &set_hash_table, 1);
3419 compute_hash_table (&set_hash_table);
3421 /* Free implicit_sets before peak usage. */
3422 free (implicit_sets);
3423 implicit_sets = NULL;
3426 dump_hash_table (dump_file, "SET", &set_hash_table);
3427 if (set_hash_table.n_elems > 0)
3429 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3430 compute_cprop_data ();
3431 changed = cprop (cprop_jumps);
3433 changed |= bypass_conditional_jumps ();
3437 free_hash_table (&set_hash_table);
3441 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3442 current_function_name (), pass, bytes_used);
3443 fprintf (dump_file, "%d local const props, %d local copy props, ",
3444 local_const_prop_count, local_copy_prop_count);
3445 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3446 global_const_prop_count, global_copy_prop_count);
3448 /* Global analysis may get into infinite loops for unreachable blocks. */
3449 if (changed && cprop_jumps)
3450 delete_unreachable_blocks ();
3455 /* Bypass conditional jumps. */
3457 /* The value of last_basic_block at the beginning of the jump_bypass
3458 pass. The use of redirect_edge_and_branch_force may introduce new
3459 basic blocks, but the data flow analysis is only valid for basic
3460 block indices less than bypass_last_basic_block. */
3462 static int bypass_last_basic_block;
3464 /* Find a set of REGNO to a constant that is available at the end of basic
3465 block BB. Returns NULL if no such set is found. Based heavily upon
3468 static struct expr *
3469 find_bypass_set (int regno, int bb)
3471 struct expr *result = 0;
3476 struct expr *set = lookup_set (regno, &set_hash_table);
3480 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3482 set = next_set (regno, set);
3488 gcc_assert (GET_CODE (set->expr) == SET);
3490 src = SET_SRC (set->expr);
3491 if (gcse_constant_p (src))
3497 regno = REGNO (src);
3503 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3504 any of the instructions inserted on an edge. Jump bypassing places
3505 condition code setters on CFG edges using insert_insn_on_edge. This
3506 function is required to check that our data flow analysis is still
3507 valid prior to commit_edge_insertions. */
3510 reg_killed_on_edge (const_rtx reg, const_edge e)
3514 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3515 if (INSN_P (insn) && reg_set_p (reg, insn))
3521 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3522 basic block BB which has more than one predecessor. If not NULL, SETCC
3523 is the first instruction of BB, which is immediately followed by JUMP_INSN
3524 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3525 Returns nonzero if a change was made.
3527 During the jump bypassing pass, we may place copies of SETCC instructions
3528 on CFG edges. The following routine must be careful to pay attention to
3529 these inserted insns when performing its transformations. */
3532 bypass_block (basic_block bb, rtx setcc, rtx jump)
3537 int may_be_loop_header;
3541 insn = (setcc != NULL) ? setcc : jump;
3543 /* Determine set of register uses in INSN. */
3545 note_uses (&PATTERN (insn), find_used_regs, NULL);
3546 note = find_reg_equal_equiv_note (insn);
3548 find_used_regs (&XEXP (note, 0), NULL);
3550 may_be_loop_header = false;
3551 FOR_EACH_EDGE (e, ei, bb->preds)
3552 if (e->flags & EDGE_DFS_BACK)
3554 may_be_loop_header = true;
3559 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3563 if (e->flags & EDGE_COMPLEX)
3569 /* We can't redirect edges from new basic blocks. */
3570 if (e->src->index >= bypass_last_basic_block)
3576 /* The irreducible loops created by redirecting of edges entering the
3577 loop from outside would decrease effectiveness of some of the following
3578 optimizations, so prevent this. */
3579 if (may_be_loop_header
3580 && !(e->flags & EDGE_DFS_BACK))
3586 for (i = 0; i < reg_use_count; i++)
3588 struct reg_use *reg_used = ®_use_table[i];
3589 unsigned int regno = REGNO (reg_used->reg_rtx);
3590 basic_block dest, old_dest;
3594 if (regno >= max_gcse_regno)
3597 set = find_bypass_set (regno, e->src->index);
3602 /* Check the data flow is valid after edge insertions. */
3603 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3606 src = SET_SRC (pc_set (jump));
3609 src = simplify_replace_rtx (src,
3610 SET_DEST (PATTERN (setcc)),
3611 SET_SRC (PATTERN (setcc)));
3613 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3614 SET_SRC (set->expr));
3616 /* Jump bypassing may have already placed instructions on
3617 edges of the CFG. We can't bypass an outgoing edge that
3618 has instructions associated with it, as these insns won't
3619 get executed if the incoming edge is redirected. */
3623 edest = FALLTHRU_EDGE (bb);
3624 dest = edest->insns.r ? NULL : edest->dest;
3626 else if (GET_CODE (new) == LABEL_REF)
3628 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3629 /* Don't bypass edges containing instructions. */
3630 edest = find_edge (bb, dest);
3631 if (edest && edest->insns.r)
3637 /* Avoid unification of the edge with other edges from original
3638 branch. We would end up emitting the instruction on "both"
3641 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3642 && find_edge (e->src, dest))
3648 && dest != EXIT_BLOCK_PTR)