1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
38 #include "coretypes.h"
40 #include "rtl-error.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
53 #include "basic-block.h"
57 #include "integrate.h"
58 #include "langhooks.h"
60 #include "common/common-target.h"
61 #include "cfglayout.h"
63 #include "tree-pass.h"
69 /* So we can assign to cfun in this file. */
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
83 #define NAME__MAIN "__main"
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 VEC(tree,gc) *types_used_by_cur_var_decl;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 static void prepare_function_start (void);
151 static void do_clobber_return_reg (rtx, void *);
152 static void do_use_return_reg (rtx, void *);
153 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
155 /* Stack of nested functions. */
156 /* Keep track of the cfun stack. */
158 typedef struct function *function_p;
160 DEF_VEC_P(function_p);
161 DEF_VEC_ALLOC_P(function_p,heap);
162 static VEC(function_p,heap) *function_context_stack;
164 /* Save the current context for compilation of a nested function.
165 This is called from language-specific code. */
168 push_function_context (void)
171 allocate_struct_function (NULL, false);
173 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 /* Restore the last saved context, at the end of a nested function.
178 This function is called from language-specific code. */
181 pop_function_context (void)
183 struct function *p = VEC_pop (function_p, function_context_stack);
185 current_function_decl = p->decl;
187 /* Reset variables that have known state during rtx generation. */
188 virtuals_instantiated = 0;
189 generating_concat_p = 1;
192 /* Clear out all parts of the state in F that can safely be discarded
193 after the function has been parsed, but not compiled, to let
194 garbage collection reclaim the memory. */
197 free_after_parsing (struct function *f)
202 /* Clear out all parts of the state in F that can safely be discarded
203 after the function has been compiled, to let garbage collection
204 reclaim the memory. */
207 free_after_compilation (struct function *f)
209 prologue_insn_hash = NULL;
210 epilogue_insn_hash = NULL;
212 free (crtl->emit.regno_pointer_align);
214 memset (crtl, 0, sizeof (struct rtl_data));
219 regno_reg_rtx = NULL;
220 insn_locators_free ();
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
228 get_frame_size (void)
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
257 /* Return stack slot alignment in bits for TYPE and MODE. */
260 get_stack_local_alignment (tree type, enum machine_mode mode)
262 unsigned int alignment;
265 alignment = BIGGEST_ALIGNMENT;
267 alignment = GET_MODE_ALIGNMENT (mode);
269 /* Allow the frond-end to (possibly) increase the alignment of this
272 type = lang_hooks.types.type_for_mode (mode, 0);
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
277 /* Determine whether it is possible to fit a stack slot of size SIZE and
278 alignment ALIGNMENT into an area in the stack frame that starts at
279 frame offset START and has a length of LENGTH. If so, store the frame
280 offset to be used for the stack slot in *POFFSET and return true;
281 return false otherwise. This function will extend the frame size when
282 given a start/length pair that lies at the end of the frame. */
285 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
286 HOST_WIDE_INT size, unsigned int alignment,
287 HOST_WIDE_INT *poffset)
289 HOST_WIDE_INT this_frame_offset;
290 int frame_off, frame_alignment, frame_phase;
292 /* Calculate how many bytes the start of local variables is off from
294 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
295 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
296 frame_phase = frame_off ? frame_alignment - frame_off : 0;
298 /* Round the frame offset to the specified alignment. */
300 /* We must be careful here, since FRAME_OFFSET might be negative and
301 division with a negative dividend isn't as well defined as we might
302 like. So we instead assume that ALIGNMENT is a power of two and
303 use logical operations which are unambiguous. */
304 if (FRAME_GROWS_DOWNWARD)
306 = (FLOOR_ROUND (start + length - size - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
311 = (CEIL_ROUND (start - frame_phase,
312 (unsigned HOST_WIDE_INT) alignment)
315 /* See if it fits. If this space is at the edge of the frame,
316 consider extending the frame to make it fit. Our caller relies on
317 this when allocating a new slot. */
318 if (frame_offset == start && this_frame_offset < frame_offset)
319 frame_offset = this_frame_offset;
320 else if (this_frame_offset < start)
322 else if (start + length == frame_offset
323 && this_frame_offset + size > start + length)
324 frame_offset = this_frame_offset + size;
325 else if (this_frame_offset + size > start + length)
328 *poffset = this_frame_offset;
332 /* Create a new frame_space structure describing free space in the stack
333 frame beginning at START and ending at END, and chain it into the
334 function's frame_space_list. */
337 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
339 struct frame_space *space = ggc_alloc_frame_space ();
340 space->next = crtl->frame_space_list;
341 crtl->frame_space_list = space;
342 space->start = start;
343 space->length = end - start;
346 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
347 with machine mode MODE.
349 ALIGN controls the amount of alignment for the address of the slot:
350 0 means according to MODE,
351 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
352 -2 means use BITS_PER_UNIT,
353 positive specifies alignment boundary in bits.
355 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
356 alignment and ASLK_RECORD_PAD bit set if we should remember
357 extra space we allocated for alignment purposes. When we are
358 called from assign_stack_temp_for_type, it is not set so we don't
359 track the same stack slot in two independent lists.
361 We do not round to stack_boundary here. */
364 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
377 else if (align == -1)
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
385 alignment = align / BITS_PER_UNIT;
387 alignment_in_bits = alignment * BITS_PER_UNIT;
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (SUPPORTS_STACK_ALIGNMENT)
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431 if (mode != BLKmode || size != 0)
433 if (kind & ASLK_RECORD_PAD)
435 struct frame_space **psp;
437 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
439 struct frame_space *space = *psp;
440 if (!try_fit_stack_local (space->start, space->length, size,
441 alignment, &slot_offset))
444 if (slot_offset > space->start)
445 add_frame_space (space->start, slot_offset);
446 if (slot_offset + size < space->start + space->length)
447 add_frame_space (slot_offset + size,
448 space->start + space->length);
453 else if (!STACK_ALIGNMENT_NEEDED)
455 slot_offset = frame_offset;
459 old_frame_offset = frame_offset;
461 if (FRAME_GROWS_DOWNWARD)
463 frame_offset -= size;
464 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
466 if (kind & ASLK_RECORD_PAD)
468 if (slot_offset > frame_offset)
469 add_frame_space (frame_offset, slot_offset);
470 if (slot_offset + size < old_frame_offset)
471 add_frame_space (slot_offset + size, old_frame_offset);
476 frame_offset += size;
477 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
479 if (kind & ASLK_RECORD_PAD)
481 if (slot_offset > old_frame_offset)
482 add_frame_space (old_frame_offset, slot_offset);
483 if (slot_offset + size < frame_offset)
484 add_frame_space (slot_offset + size, frame_offset);
489 /* On a big-endian machine, if we are allocating more space than we will use,
490 use the least significant bytes of those that are allocated. */
491 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
492 bigend_correction = size - GET_MODE_SIZE (mode);
494 /* If we have already instantiated virtual registers, return the actual
495 address relative to the frame pointer. */
496 if (virtuals_instantiated)
497 addr = plus_constant (frame_pointer_rtx,
499 (slot_offset + bigend_correction
500 + STARTING_FRAME_OFFSET, Pmode));
502 addr = plus_constant (virtual_stack_vars_rtx,
504 (slot_offset + bigend_correction,
507 x = gen_rtx_MEM (mode, addr);
508 set_mem_align (x, alignment_in_bits);
509 MEM_NOTRAP_P (x) = 1;
512 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
514 if (frame_offset_overflow (frame_offset, current_function_decl))
520 /* Wrap up assign_stack_local_1 with last parameter as false. */
523 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
525 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
529 /* In order to evaluate some expressions, such as function calls returning
530 structures in memory, we need to temporarily allocate stack locations.
531 We record each allocated temporary in the following structure.
533 Associated with each temporary slot is a nesting level. When we pop up
534 one level, all temporaries associated with the previous level are freed.
535 Normally, all temporaries are freed after the execution of the statement
536 in which they were created. However, if we are inside a ({...}) grouping,
537 the result may be in a temporary and hence must be preserved. If the
538 result could be in a temporary, we preserve it if we can determine which
539 one it is in. If we cannot determine which temporary may contain the
540 result, all temporaries are preserved. A temporary is preserved by
541 pretending it was allocated at the previous nesting level.
543 Automatic variables are also assigned temporary slots, at the nesting
544 level where they are defined. They are marked a "kept" so that
545 free_temp_slots will not free them. */
547 struct GTY(()) temp_slot {
548 /* Points to next temporary slot. */
549 struct temp_slot *next;
550 /* Points to previous temporary slot. */
551 struct temp_slot *prev;
552 /* The rtx to used to reference the slot. */
554 /* The size, in units, of the slot. */
556 /* The type of the object in the slot, or zero if it doesn't correspond
557 to a type. We use this to determine whether a slot can be reused.
558 It can be reused if objects of the type of the new slot will always
559 conflict with objects of the type of the old slot. */
561 /* The alignment (in bits) of the slot. */
563 /* Nonzero if this temporary is currently in use. */
565 /* Nonzero if this temporary has its address taken. */
567 /* Nesting level at which this slot is being used. */
569 /* Nonzero if this should survive a call to free_temp_slots. */
571 /* The offset of the slot from the frame_pointer, including extra space
572 for alignment. This info is for combine_temp_slots. */
573 HOST_WIDE_INT base_offset;
574 /* The size of the slot, including extra space for alignment. This
575 info is for combine_temp_slots. */
576 HOST_WIDE_INT full_size;
579 /* A table of addresses that represent a stack slot. The table is a mapping
580 from address RTXen to a temp slot. */
581 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
583 /* Entry for the above hash table. */
584 struct GTY(()) temp_slot_address_entry {
587 struct temp_slot *temp_slot;
590 /* Removes temporary slot TEMP from LIST. */
593 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
596 temp->next->prev = temp->prev;
598 temp->prev->next = temp->next;
602 temp->prev = temp->next = NULL;
605 /* Inserts temporary slot TEMP to LIST. */
608 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
612 (*list)->prev = temp;
617 /* Returns the list of used temp slots at LEVEL. */
619 static struct temp_slot **
620 temp_slots_at_level (int level)
622 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
623 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
625 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
628 /* Returns the maximal temporary slot level. */
631 max_slot_level (void)
633 if (!used_temp_slots)
636 return VEC_length (temp_slot_p, used_temp_slots) - 1;
639 /* Moves temporary slot TEMP to LEVEL. */
642 move_slot_to_level (struct temp_slot *temp, int level)
644 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
645 insert_slot_to_list (temp, temp_slots_at_level (level));
649 /* Make temporary slot TEMP available. */
652 make_slot_available (struct temp_slot *temp)
654 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
655 insert_slot_to_list (temp, &avail_temp_slots);
660 /* Compute the hash value for an address -> temp slot mapping.
661 The value is cached on the mapping entry. */
663 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
665 int do_not_record = 0;
666 return hash_rtx (t->address, GET_MODE (t->address),
667 &do_not_record, NULL, false);
670 /* Return the hash value for an address -> temp slot mapping. */
672 temp_slot_address_hash (const void *p)
674 const struct temp_slot_address_entry *t;
675 t = (const struct temp_slot_address_entry *) p;
679 /* Compare two address -> temp slot mapping entries. */
681 temp_slot_address_eq (const void *p1, const void *p2)
683 const struct temp_slot_address_entry *t1, *t2;
684 t1 = (const struct temp_slot_address_entry *) p1;
685 t2 = (const struct temp_slot_address_entry *) p2;
686 return exp_equiv_p (t1->address, t2->address, 0, true);
689 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
691 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
694 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
695 t->address = address;
696 t->temp_slot = temp_slot;
697 t->hash = temp_slot_address_compute_hash (t);
698 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
702 /* Remove an address -> temp slot mapping entry if the temp slot is
703 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
705 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
707 const struct temp_slot_address_entry *t;
708 t = (const struct temp_slot_address_entry *) *slot;
709 if (! t->temp_slot->in_use)
714 /* Remove all mappings of addresses to unused temp slots. */
716 remove_unused_temp_slot_addresses (void)
718 htab_traverse (temp_slot_address_table,
719 remove_unused_temp_slot_addresses_1,
723 /* Find the temp slot corresponding to the object at address X. */
725 static struct temp_slot *
726 find_temp_slot_from_address (rtx x)
729 struct temp_slot_address_entry tmp, *t;
731 /* First try the easy way:
732 See if X exists in the address -> temp slot mapping. */
734 tmp.temp_slot = NULL;
735 tmp.hash = temp_slot_address_compute_hash (&tmp);
736 t = (struct temp_slot_address_entry *)
737 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
741 /* If we have a sum involving a register, see if it points to a temp
743 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
744 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
746 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
747 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
750 /* Last resort: Address is a virtual stack var address. */
751 if (GET_CODE (x) == PLUS
752 && XEXP (x, 0) == virtual_stack_vars_rtx
753 && CONST_INT_P (XEXP (x, 1)))
756 for (i = max_slot_level (); i >= 0; i--)
757 for (p = *temp_slots_at_level (i); p; p = p->next)
759 if (INTVAL (XEXP (x, 1)) >= p->base_offset
760 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
768 /* Allocate a temporary stack slot and record it for possible later
771 MODE is the machine mode to be given to the returned rtx.
773 SIZE is the size in units of the space required. We do no rounding here
774 since assign_stack_local will do any required rounding.
776 KEEP is 1 if this slot is to be retained after a call to
777 free_temp_slots. Automatic variables for a block are allocated
778 with this flag. KEEP values of 2 or 3 were needed respectively
779 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
780 or for SAVE_EXPRs, but they are now unused.
782 TYPE is the type that will be used for the stack slot. */
785 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
789 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
792 /* If SIZE is -1 it means that somebody tried to allocate a temporary
793 of a variable size. */
794 gcc_assert (size != -1);
796 /* These are now unused. */
797 gcc_assert (keep <= 1);
799 align = get_stack_local_alignment (type, mode);
801 /* Try to find an available, already-allocated temporary of the proper
802 mode which meets the size and alignment requirements. Choose the
803 smallest one with the closest alignment.
805 If assign_stack_temp is called outside of the tree->rtl expansion,
806 we cannot reuse the stack slots (that may still refer to
807 VIRTUAL_STACK_VARS_REGNUM). */
808 if (!virtuals_instantiated)
810 for (p = avail_temp_slots; p; p = p->next)
812 if (p->align >= align && p->size >= size
813 && GET_MODE (p->slot) == mode
814 && objects_must_conflict_p (p->type, type)
815 && (best_p == 0 || best_p->size > p->size
816 || (best_p->size == p->size && best_p->align > p->align)))
818 if (p->align == align && p->size == size)
821 cut_slot_from_list (selected, &avail_temp_slots);
830 /* Make our best, if any, the one to use. */
834 cut_slot_from_list (selected, &avail_temp_slots);
836 /* If there are enough aligned bytes left over, make them into a new
837 temp_slot so that the extra bytes don't get wasted. Do this only
838 for BLKmode slots, so that we can be sure of the alignment. */
839 if (GET_MODE (best_p->slot) == BLKmode)
841 int alignment = best_p->align / BITS_PER_UNIT;
842 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
844 if (best_p->size - rounded_size >= alignment)
846 p = ggc_alloc_temp_slot ();
847 p->in_use = p->addr_taken = 0;
848 p->size = best_p->size - rounded_size;
849 p->base_offset = best_p->base_offset + rounded_size;
850 p->full_size = best_p->full_size - rounded_size;
851 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
852 p->align = best_p->align;
853 p->type = best_p->type;
854 insert_slot_to_list (p, &avail_temp_slots);
856 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
859 best_p->size = rounded_size;
860 best_p->full_size = rounded_size;
865 /* If we still didn't find one, make a new temporary. */
868 HOST_WIDE_INT frame_offset_old = frame_offset;
870 p = ggc_alloc_temp_slot ();
872 /* We are passing an explicit alignment request to assign_stack_local.
873 One side effect of that is assign_stack_local will not round SIZE
874 to ensure the frame offset remains suitably aligned.
876 So for requests which depended on the rounding of SIZE, we go ahead
877 and round it now. We also make sure ALIGNMENT is at least
878 BIGGEST_ALIGNMENT. */
879 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
880 p->slot = assign_stack_local_1 (mode,
890 /* The following slot size computation is necessary because we don't
891 know the actual size of the temporary slot until assign_stack_local
892 has performed all the frame alignment and size rounding for the
893 requested temporary. Note that extra space added for alignment
894 can be either above or below this stack slot depending on which
895 way the frame grows. We include the extra space if and only if it
896 is above this slot. */
897 if (FRAME_GROWS_DOWNWARD)
898 p->size = frame_offset_old - frame_offset;
902 /* Now define the fields used by combine_temp_slots. */
903 if (FRAME_GROWS_DOWNWARD)
905 p->base_offset = frame_offset;
906 p->full_size = frame_offset_old - frame_offset;
910 p->base_offset = frame_offset_old;
911 p->full_size = frame_offset - frame_offset_old;
921 p->level = temp_slot_level;
924 pp = temp_slots_at_level (p->level);
925 insert_slot_to_list (p, pp);
926 insert_temp_slot_address (XEXP (p->slot, 0), p);
928 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
929 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
930 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
932 /* If we know the alias set for the memory that will be used, use
933 it. If there's no TYPE, then we don't know anything about the
934 alias set for the memory. */
935 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
936 set_mem_align (slot, align);
938 /* If a type is specified, set the relevant flags. */
941 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
942 gcc_checking_assert (!MEM_SCALAR_P (slot) && !MEM_IN_STRUCT_P (slot));
943 if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
944 MEM_IN_STRUCT_P (slot) = 1;
946 MEM_SCALAR_P (slot) = 1;
948 MEM_NOTRAP_P (slot) = 1;
953 /* Allocate a temporary stack slot and record it for possible later
954 reuse. First three arguments are same as in preceding function. */
957 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
959 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
962 /* Assign a temporary.
963 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
964 and so that should be used in error messages. In either case, we
965 allocate of the given type.
966 KEEP is as for assign_stack_temp.
967 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
968 it is 0 if a register is OK.
969 DONT_PROMOTE is 1 if we should not promote values in register
973 assign_temp (tree type_or_decl, int keep, int memory_required,
974 int dont_promote ATTRIBUTE_UNUSED)
977 enum machine_mode mode;
982 if (DECL_P (type_or_decl))
983 decl = type_or_decl, type = TREE_TYPE (decl);
985 decl = NULL, type = type_or_decl;
987 mode = TYPE_MODE (type);
989 unsignedp = TYPE_UNSIGNED (type);
992 if (mode == BLKmode || memory_required)
994 HOST_WIDE_INT size = int_size_in_bytes (type);
997 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
998 problems with allocating the stack space. */
1002 /* Unfortunately, we don't yet know how to allocate variable-sized
1003 temporaries. However, sometimes we can find a fixed upper limit on
1004 the size, so try that instead. */
1005 else if (size == -1)
1006 size = max_int_size_in_bytes (type);
1008 /* The size of the temporary may be too large to fit into an integer. */
1009 /* ??? Not sure this should happen except for user silliness, so limit
1010 this to things that aren't compiler-generated temporaries. The
1011 rest of the time we'll die in assign_stack_temp_for_type. */
1012 if (decl && size == -1
1013 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1015 error ("size of variable %q+D is too large", decl);
1019 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1025 mode = promote_mode (type, mode, &unsignedp);
1028 return gen_reg_rtx (mode);
1031 /* Combine temporary stack slots which are adjacent on the stack.
1033 This allows for better use of already allocated stack space. This is only
1034 done for BLKmode slots because we can be sure that we won't have alignment
1035 problems in this case. */
1038 combine_temp_slots (void)
1040 struct temp_slot *p, *q, *next, *next_q;
1043 /* We can't combine slots, because the information about which slot
1044 is in which alias set will be lost. */
1045 if (flag_strict_aliasing)
1048 /* If there are a lot of temp slots, don't do anything unless
1049 high levels of optimization. */
1050 if (! flag_expensive_optimizations)
1051 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1052 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1055 for (p = avail_temp_slots; p; p = next)
1061 if (GET_MODE (p->slot) != BLKmode)
1064 for (q = p->next; q; q = next_q)
1070 if (GET_MODE (q->slot) != BLKmode)
1073 if (p->base_offset + p->full_size == q->base_offset)
1075 /* Q comes after P; combine Q into P. */
1077 p->full_size += q->full_size;
1080 else if (q->base_offset + q->full_size == p->base_offset)
1082 /* P comes after Q; combine P into Q. */
1084 q->full_size += p->full_size;
1089 cut_slot_from_list (q, &avail_temp_slots);
1092 /* Either delete P or advance past it. */
1094 cut_slot_from_list (p, &avail_temp_slots);
1098 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1099 slot that previously was known by OLD_RTX. */
1102 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1104 struct temp_slot *p;
1106 if (rtx_equal_p (old_rtx, new_rtx))
1109 p = find_temp_slot_from_address (old_rtx);
1111 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1112 NEW_RTX is a register, see if one operand of the PLUS is a
1113 temporary location. If so, NEW_RTX points into it. Otherwise,
1114 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1115 in common between them. If so, try a recursive call on those
1119 if (GET_CODE (old_rtx) != PLUS)
1122 if (REG_P (new_rtx))
1124 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1125 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1128 else if (GET_CODE (new_rtx) != PLUS)
1131 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1132 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1133 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1134 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1135 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1136 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1137 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1138 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1143 /* Otherwise add an alias for the temp's address. */
1144 insert_temp_slot_address (new_rtx, p);
1147 /* If X could be a reference to a temporary slot, mark the fact that its
1148 address was taken. */
1151 mark_temp_addr_taken (rtx x)
1153 struct temp_slot *p;
1158 /* If X is not in memory or is at a constant address, it cannot be in
1159 a temporary slot. */
1160 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1163 p = find_temp_slot_from_address (XEXP (x, 0));
1168 /* If X could be a reference to a temporary slot, mark that slot as
1169 belonging to the to one level higher than the current level. If X
1170 matched one of our slots, just mark that one. Otherwise, we can't
1171 easily predict which it is, so upgrade all of them. Kept slots
1172 need not be touched.
1174 This is called when an ({...}) construct occurs and a statement
1175 returns a value in memory. */
1178 preserve_temp_slots (rtx x)
1180 struct temp_slot *p = 0, *next;
1182 /* If there is no result, we still might have some objects whose address
1183 were taken, so we need to make sure they stay around. */
1186 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1191 move_slot_to_level (p, temp_slot_level - 1);
1197 /* If X is a register that is being used as a pointer, see if we have
1198 a temporary slot we know it points to. To be consistent with
1199 the code below, we really should preserve all non-kept slots
1200 if we can't find a match, but that seems to be much too costly. */
1201 if (REG_P (x) && REG_POINTER (x))
1202 p = find_temp_slot_from_address (x);
1204 /* If X is not in memory or is at a constant address, it cannot be in
1205 a temporary slot, but it can contain something whose address was
1207 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1209 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1214 move_slot_to_level (p, temp_slot_level - 1);
1220 /* First see if we can find a match. */
1222 p = find_temp_slot_from_address (XEXP (x, 0));
1226 /* Move everything at our level whose address was taken to our new
1227 level in case we used its address. */
1228 struct temp_slot *q;
1230 if (p->level == temp_slot_level)
1232 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1236 if (p != q && q->addr_taken)
1237 move_slot_to_level (q, temp_slot_level - 1);
1240 move_slot_to_level (p, temp_slot_level - 1);
1246 /* Otherwise, preserve all non-kept slots at this level. */
1247 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1252 move_slot_to_level (p, temp_slot_level - 1);
1256 /* Free all temporaries used so far. This is normally called at the
1257 end of generating code for a statement. */
1260 free_temp_slots (void)
1262 struct temp_slot *p, *next;
1263 bool some_available = false;
1265 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1271 make_slot_available (p);
1272 some_available = true;
1278 remove_unused_temp_slot_addresses ();
1279 combine_temp_slots ();
1283 /* Push deeper into the nesting level for stack temporaries. */
1286 push_temp_slots (void)
1291 /* Pop a temporary nesting level. All slots in use in the current level
1295 pop_temp_slots (void)
1297 struct temp_slot *p, *next;
1298 bool some_available = false;
1300 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1303 make_slot_available (p);
1304 some_available = true;
1309 remove_unused_temp_slot_addresses ();
1310 combine_temp_slots ();
1316 /* Initialize temporary slots. */
1319 init_temp_slots (void)
1321 /* We have not allocated any temporaries yet. */
1322 avail_temp_slots = 0;
1323 used_temp_slots = 0;
1324 temp_slot_level = 0;
1326 /* Set up the table to map addresses to temp slots. */
1327 if (! temp_slot_address_table)
1328 temp_slot_address_table = htab_create_ggc (32,
1329 temp_slot_address_hash,
1330 temp_slot_address_eq,
1333 htab_empty (temp_slot_address_table);
1336 /* These routines are responsible for converting virtual register references
1337 to the actual hard register references once RTL generation is complete.
1339 The following four variables are used for communication between the
1340 routines. They contain the offsets of the virtual registers from their
1341 respective hard registers. */
1343 static int in_arg_offset;
1344 static int var_offset;
1345 static int dynamic_offset;
1346 static int out_arg_offset;
1347 static int cfa_offset;
1349 /* In most machines, the stack pointer register is equivalent to the bottom
1352 #ifndef STACK_POINTER_OFFSET
1353 #define STACK_POINTER_OFFSET 0
1356 /* If not defined, pick an appropriate default for the offset of dynamically
1357 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1358 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360 #ifndef STACK_DYNAMIC_OFFSET
1362 /* The bottom of the stack points to the actual arguments. If
1363 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1364 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1365 stack space for register parameters is not pushed by the caller, but
1366 rather part of the fixed stack areas and hence not included in
1367 `crtl->outgoing_args_size'. Nevertheless, we must allow
1368 for it when allocating stack dynamic objects. */
1370 #if defined(REG_PARM_STACK_SPACE)
1371 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1372 ((ACCUMULATE_OUTGOING_ARGS \
1373 ? (crtl->outgoing_args_size \
1374 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1375 : REG_PARM_STACK_SPACE (FNDECL))) \
1376 : 0) + (STACK_POINTER_OFFSET))
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1380 + (STACK_POINTER_OFFSET))
1385 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1386 is a virtual register, return the equivalent hard register and set the
1387 offset indirectly through the pointer. Otherwise, return 0. */
1390 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 HOST_WIDE_INT offset;
1395 if (x == virtual_incoming_args_rtx)
1397 if (stack_realign_drap)
1399 /* Replace virtual_incoming_args_rtx with internal arg
1400 pointer if DRAP is used to realign stack. */
1401 new_rtx = crtl->args.internal_arg_pointer;
1405 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 else if (x == virtual_stack_vars_rtx)
1408 new_rtx = frame_pointer_rtx, offset = var_offset;
1409 else if (x == virtual_stack_dynamic_rtx)
1410 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1411 else if (x == virtual_outgoing_args_rtx)
1412 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1413 else if (x == virtual_cfa_rtx)
1415 #ifdef FRAME_POINTER_CFA_OFFSET
1416 new_rtx = frame_pointer_rtx;
1418 new_rtx = arg_pointer_rtx;
1420 offset = cfa_offset;
1422 else if (x == virtual_preferred_stack_boundary_rtx)
1424 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1434 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1435 Instantiate any virtual registers present inside of *LOC. The expression
1436 is simplified, as much as possible, but is not to be considered "valid"
1437 in any sense implied by the target. If any change is made, set CHANGED
1441 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 HOST_WIDE_INT offset;
1444 bool *changed = (bool *) data;
1451 switch (GET_CODE (x))
1454 new_rtx = instantiate_new_reg (x, &offset);
1457 *loc = plus_constant (new_rtx, offset);
1464 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1467 new_rtx = plus_constant (new_rtx, offset);
1468 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1474 /* FIXME -- from old code */
1475 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1476 we can commute the PLUS and SUBREG because pointers into the
1477 frame are well-behaved. */
1487 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1488 matches the predicate for insn CODE operand OPERAND. */
1491 safe_insn_predicate (int code, int operand, rtx x)
1493 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1496 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1497 registers present inside of insn. The result will be a valid insn. */
1500 instantiate_virtual_regs_in_insn (rtx insn)
1502 HOST_WIDE_INT offset;
1504 bool any_change = false;
1505 rtx set, new_rtx, x, seq;
1507 /* There are some special cases to be handled first. */
1508 set = single_set (insn);
1511 /* We're allowed to assign to a virtual register. This is interpreted
1512 to mean that the underlying register gets assigned the inverse
1513 transformation. This is used, for example, in the handling of
1515 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1520 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1521 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 x = force_operand (x, new_rtx);
1525 emit_move_insn (new_rtx, x);
1530 emit_insn_before (seq, insn);
1535 /* Handle a straight copy from a virtual register by generating a
1536 new add insn. The difference between this and falling through
1537 to the generic case is avoiding a new pseudo and eliminating a
1538 move insn in the initial rtl stream. */
1539 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1540 if (new_rtx && offset != 0
1541 && REG_P (SET_DEST (set))
1542 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1546 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1547 new_rtx, GEN_INT (offset), SET_DEST (set),
1548 1, OPTAB_LIB_WIDEN);
1549 if (x != SET_DEST (set))
1550 emit_move_insn (SET_DEST (set), x);
1555 emit_insn_before (seq, insn);
1560 extract_insn (insn);
1561 insn_code = INSN_CODE (insn);
1563 /* Handle a plus involving a virtual register by determining if the
1564 operands remain valid if they're modified in place. */
1565 if (GET_CODE (SET_SRC (set)) == PLUS
1566 && recog_data.n_operands >= 3
1567 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1568 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1569 && CONST_INT_P (recog_data.operand[2])
1570 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1572 offset += INTVAL (recog_data.operand[2]);
1574 /* If the sum is zero, then replace with a plain move. */
1576 && REG_P (SET_DEST (set))
1577 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 emit_move_insn (SET_DEST (set), new_rtx);
1584 emit_insn_before (seq, insn);
1589 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1591 /* Using validate_change and apply_change_group here leaves
1592 recog_data in an invalid state. Since we know exactly what
1593 we want to check, do those two by hand. */
1594 if (safe_insn_predicate (insn_code, 1, new_rtx)
1595 && safe_insn_predicate (insn_code, 2, x))
1597 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1598 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1601 /* Fall through into the regular operand fixup loop in
1602 order to take care of operands other than 1 and 2. */
1608 extract_insn (insn);
1609 insn_code = INSN_CODE (insn);
1612 /* In the general case, we expect virtual registers to appear only in
1613 operands, and then only as either bare registers or inside memories. */
1614 for (i = 0; i < recog_data.n_operands; ++i)
1616 x = recog_data.operand[i];
1617 switch (GET_CODE (x))
1621 rtx addr = XEXP (x, 0);
1622 bool changed = false;
1624 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1629 x = replace_equiv_address (x, addr);
1630 /* It may happen that the address with the virtual reg
1631 was valid (e.g. based on the virtual stack reg, which might
1632 be acceptable to the predicates with all offsets), whereas
1633 the address now isn't anymore, for instance when the address
1634 is still offsetted, but the base reg isn't virtual-stack-reg
1635 anymore. Below we would do a force_reg on the whole operand,
1636 but this insn might actually only accept memory. Hence,
1637 before doing that last resort, try to reload the address into
1638 a register, so this operand stays a MEM. */
1639 if (!safe_insn_predicate (insn_code, i, x))
1641 addr = force_reg (GET_MODE (addr), addr);
1642 x = replace_equiv_address (x, addr);
1647 emit_insn_before (seq, insn);
1652 new_rtx = instantiate_new_reg (x, &offset);
1653 if (new_rtx == NULL)
1661 /* Careful, special mode predicates may have stuff in
1662 insn_data[insn_code].operand[i].mode that isn't useful
1663 to us for computing a new value. */
1664 /* ??? Recognize address_operand and/or "p" constraints
1665 to see if (plus new offset) is a valid before we put
1666 this through expand_simple_binop. */
1667 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1668 GEN_INT (offset), NULL_RTX,
1669 1, OPTAB_LIB_WIDEN);
1672 emit_insn_before (seq, insn);
1677 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1678 if (new_rtx == NULL)
1683 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1684 GEN_INT (offset), NULL_RTX,
1685 1, OPTAB_LIB_WIDEN);
1688 emit_insn_before (seq, insn);
1690 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1691 GET_MODE (new_rtx), SUBREG_BYTE (x));
1699 /* At this point, X contains the new value for the operand.
1700 Validate the new value vs the insn predicate. Note that
1701 asm insns will have insn_code -1 here. */
1702 if (!safe_insn_predicate (insn_code, i, x))
1707 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1708 x = copy_to_reg (x);
1711 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 emit_insn_before (seq, insn);
1718 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1724 /* Propagate operand changes into the duplicates. */
1725 for (i = 0; i < recog_data.n_dups; ++i)
1726 *recog_data.dup_loc[i]
1727 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1729 /* Force re-recognition of the instruction for validation. */
1730 INSN_CODE (insn) = -1;
1733 if (asm_noperands (PATTERN (insn)) >= 0)
1735 if (!check_asm_operands (PATTERN (insn)))
1737 error_for_asm (insn, "impossible constraint in %<asm%>");
1743 if (recog_memoized (insn) < 0)
1744 fatal_insn_not_found (insn);
1748 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1749 do any instantiation required. */
1752 instantiate_decl_rtl (rtx x)
1759 /* If this is a CONCAT, recurse for the pieces. */
1760 if (GET_CODE (x) == CONCAT)
1762 instantiate_decl_rtl (XEXP (x, 0));
1763 instantiate_decl_rtl (XEXP (x, 1));
1767 /* If this is not a MEM, no need to do anything. Similarly if the
1768 address is a constant or a register that is not a virtual register. */
1773 if (CONSTANT_P (addr)
1775 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1776 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1779 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1782 /* Helper for instantiate_decls called via walk_tree: Process all decls
1783 in the given DECL_VALUE_EXPR. */
1786 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794 if (DECL_RTL_SET_P (t))
1795 instantiate_decl_rtl (DECL_RTL (t));
1796 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1797 && DECL_INCOMING_RTL (t))
1798 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1799 if ((TREE_CODE (t) == VAR_DECL
1800 || TREE_CODE (t) == RESULT_DECL)
1801 && DECL_HAS_VALUE_EXPR_P (t))
1803 tree v = DECL_VALUE_EXPR (t);
1804 walk_tree (&v, instantiate_expr, NULL, NULL);
1811 /* Subroutine of instantiate_decls: Process all decls in the given
1812 BLOCK node and all its subblocks. */
1815 instantiate_decls_1 (tree let)
1819 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1821 if (DECL_RTL_SET_P (t))
1822 instantiate_decl_rtl (DECL_RTL (t));
1823 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1825 tree v = DECL_VALUE_EXPR (t);
1826 walk_tree (&v, instantiate_expr, NULL, NULL);
1830 /* Process all subblocks. */
1831 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1832 instantiate_decls_1 (t);
1835 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1836 all virtual registers in their DECL_RTL's. */
1839 instantiate_decls (tree fndecl)
1844 /* Process all parameters of the function. */
1845 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1847 instantiate_decl_rtl (DECL_RTL (decl));
1848 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1849 if (DECL_HAS_VALUE_EXPR_P (decl))
1851 tree v = DECL_VALUE_EXPR (decl);
1852 walk_tree (&v, instantiate_expr, NULL, NULL);
1856 if ((decl = DECL_RESULT (fndecl))
1857 && TREE_CODE (decl) == RESULT_DECL)
1859 if (DECL_RTL_SET_P (decl))
1860 instantiate_decl_rtl (DECL_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 /* Now process all variables defined in the function or its subblocks. */
1869 instantiate_decls_1 (DECL_INITIAL (fndecl));
1871 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1872 if (DECL_RTL_SET_P (decl))
1873 instantiate_decl_rtl (DECL_RTL (decl));
1874 VEC_free (tree, gc, cfun->local_decls);
1877 /* Pass through the INSNS of function FNDECL and convert virtual register
1878 references to hard register references. */
1881 instantiate_virtual_regs (void)
1885 /* Compute the offsets to use for this function. */
1886 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1887 var_offset = STARTING_FRAME_OFFSET;
1888 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1889 out_arg_offset = STACK_POINTER_OFFSET;
1890 #ifdef FRAME_POINTER_CFA_OFFSET
1891 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1893 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1896 /* Initialize recognition, indicating that volatile is OK. */
1899 /* Scan through all the insns, instantiating every virtual register still
1901 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1904 /* These patterns in the instruction stream can never be recognized.
1905 Fortunately, they shouldn't contain virtual registers either. */
1906 if (GET_CODE (PATTERN (insn)) == USE
1907 || GET_CODE (PATTERN (insn)) == CLOBBER
1908 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1909 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1910 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1912 else if (DEBUG_INSN_P (insn))
1913 for_each_rtx (&INSN_VAR_LOCATION (insn),
1914 instantiate_virtual_regs_in_rtx, NULL);
1916 instantiate_virtual_regs_in_insn (insn);
1918 if (INSN_DELETED_P (insn))
1921 for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1923 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1925 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1926 instantiate_virtual_regs_in_rtx, NULL);
1929 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1930 instantiate_decls (current_function_decl);
1932 targetm.instantiate_decls ();
1934 /* Indicate that, from now on, assign_stack_local should use
1935 frame_pointer_rtx. */
1936 virtuals_instantiated = 1;
1941 struct rtl_opt_pass pass_instantiate_virtual_regs =
1947 instantiate_virtual_regs, /* execute */
1950 0, /* static_pass_number */
1951 TV_NONE, /* tv_id */
1952 0, /* properties_required */
1953 0, /* properties_provided */
1954 0, /* properties_destroyed */
1955 0, /* todo_flags_start */
1956 0 /* todo_flags_finish */
1961 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1962 This means a type for which function calls must pass an address to the
1963 function or get an address back from the function.
1964 EXP may be a type node or an expression (whose type is tested). */
1967 aggregate_value_p (const_tree exp, const_tree fntype)
1969 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1970 int i, regno, nregs;
1974 switch (TREE_CODE (fntype))
1978 tree fndecl = get_callee_fndecl (fntype);
1980 ? TREE_TYPE (fndecl)
1981 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1985 fntype = TREE_TYPE (fntype);
1990 case IDENTIFIER_NODE:
1994 /* We don't expect other tree types here. */
1998 if (VOID_TYPE_P (type))
2001 /* If a record should be passed the same as its first (and only) member
2002 don't pass it as an aggregate. */
2003 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2004 return aggregate_value_p (first_field (type), fntype);
2006 /* If the front end has decided that this needs to be passed by
2007 reference, do so. */
2008 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2009 && DECL_BY_REFERENCE (exp))
2012 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2013 if (fntype && TREE_ADDRESSABLE (fntype))
2016 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2017 and thus can't be returned in registers. */
2018 if (TREE_ADDRESSABLE (type))
2021 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2024 if (targetm.calls.return_in_memory (type, fntype))
2027 /* Make sure we have suitable call-clobbered regs to return
2028 the value in; if not, we must return it in memory. */
2029 reg = hard_function_value (type, 0, fntype, 0);
2031 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2036 regno = REGNO (reg);
2037 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2038 for (i = 0; i < nregs; i++)
2039 if (! call_used_regs[regno + i])
2045 /* Return true if we should assign DECL a pseudo register; false if it
2046 should live on the local stack. */
2049 use_register_for_decl (const_tree decl)
2051 if (!targetm.calls.allocate_stack_slots_for_args())
2054 /* Honor volatile. */
2055 if (TREE_SIDE_EFFECTS (decl))
2058 /* Honor addressability. */
2059 if (TREE_ADDRESSABLE (decl))
2062 /* Only register-like things go in registers. */
2063 if (DECL_MODE (decl) == BLKmode)
2066 /* If -ffloat-store specified, don't put explicit float variables
2068 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2069 propagates values across these stores, and it probably shouldn't. */
2070 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2073 /* If we're not interested in tracking debugging information for
2074 this decl, then we can certainly put it in a register. */
2075 if (DECL_IGNORED_P (decl))
2081 if (!DECL_REGISTER (decl))
2084 switch (TREE_CODE (TREE_TYPE (decl)))
2088 case QUAL_UNION_TYPE:
2089 /* When not optimizing, disregard register keyword for variables with
2090 types containing methods, otherwise the methods won't be callable
2091 from the debugger. */
2092 if (TYPE_METHODS (TREE_TYPE (decl)))
2102 /* Return true if TYPE should be passed by invisible reference. */
2105 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2106 tree type, bool named_arg)
2110 /* If this type contains non-trivial constructors, then it is
2111 forbidden for the middle-end to create any new copies. */
2112 if (TREE_ADDRESSABLE (type))
2115 /* GCC post 3.4 passes *all* variable sized types by reference. */
2116 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2119 /* If a record type should be passed the same as its first (and only)
2120 member, use the type and mode of that member. */
2121 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2123 type = TREE_TYPE (first_field (type));
2124 mode = TYPE_MODE (type);
2128 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2132 /* Return true if TYPE, which is passed by reference, should be callee
2133 copied instead of caller copied. */
2136 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2137 tree type, bool named_arg)
2139 if (type && TREE_ADDRESSABLE (type))
2141 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2145 /* Structures to communicate between the subroutines of assign_parms.
2146 The first holds data persistent across all parameters, the second
2147 is cleared out for each parameter. */
2149 struct assign_parm_data_all
2151 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2152 should become a job of the target or otherwise encapsulated. */
2153 CUMULATIVE_ARGS args_so_far_v;
2154 cumulative_args_t args_so_far;
2155 struct args_size stack_args_size;
2156 tree function_result_decl;
2158 rtx first_conversion_insn;
2159 rtx last_conversion_insn;
2160 HOST_WIDE_INT pretend_args_size;
2161 HOST_WIDE_INT extra_pretend_bytes;
2162 int reg_parm_stack_space;
2165 struct assign_parm_data_one
2171 enum machine_mode nominal_mode;
2172 enum machine_mode passed_mode;
2173 enum machine_mode promoted_mode;
2174 struct locate_and_pad_arg_data locate;
2176 BOOL_BITFIELD named_arg : 1;
2177 BOOL_BITFIELD passed_pointer : 1;
2178 BOOL_BITFIELD on_stack : 1;
2179 BOOL_BITFIELD loaded_in_reg : 1;
2182 /* A subroutine of assign_parms. Initialize ALL. */
2185 assign_parms_initialize_all (struct assign_parm_data_all *all)
2187 tree fntype ATTRIBUTE_UNUSED;
2189 memset (all, 0, sizeof (*all));
2191 fntype = TREE_TYPE (current_function_decl);
2193 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2194 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2196 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2197 current_function_decl, -1);
2199 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2201 #ifdef REG_PARM_STACK_SPACE
2202 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2206 /* If ARGS contains entries with complex types, split the entry into two
2207 entries of the component type. Return a new list of substitutions are
2208 needed, else the old list. */
2211 split_complex_args (VEC(tree, heap) **args)
2216 FOR_EACH_VEC_ELT (tree, *args, i, p)
2218 tree type = TREE_TYPE (p);
2219 if (TREE_CODE (type) == COMPLEX_TYPE
2220 && targetm.calls.split_complex_arg (type))
2223 tree subtype = TREE_TYPE (type);
2224 bool addressable = TREE_ADDRESSABLE (p);
2226 /* Rewrite the PARM_DECL's type with its component. */
2228 TREE_TYPE (p) = subtype;
2229 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2230 DECL_MODE (p) = VOIDmode;
2231 DECL_SIZE (p) = NULL;
2232 DECL_SIZE_UNIT (p) = NULL;
2233 /* If this arg must go in memory, put it in a pseudo here.
2234 We can't allow it to go in memory as per normal parms,
2235 because the usual place might not have the imag part
2236 adjacent to the real part. */
2237 DECL_ARTIFICIAL (p) = addressable;
2238 DECL_IGNORED_P (p) = addressable;
2239 TREE_ADDRESSABLE (p) = 0;
2241 VEC_replace (tree, *args, i, p);
2243 /* Build a second synthetic decl. */
2244 decl = build_decl (EXPR_LOCATION (p),
2245 PARM_DECL, NULL_TREE, subtype);
2246 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2247 DECL_ARTIFICIAL (decl) = addressable;
2248 DECL_IGNORED_P (decl) = addressable;
2249 layout_decl (decl, 0);
2250 VEC_safe_insert (tree, heap, *args, ++i, decl);
2255 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2256 the hidden struct return argument, and (abi willing) complex args.
2257 Return the new parameter list. */
2259 static VEC(tree, heap) *
2260 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2262 tree fndecl = current_function_decl;
2263 tree fntype = TREE_TYPE (fndecl);
2264 VEC(tree, heap) *fnargs = NULL;
2267 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2268 VEC_safe_push (tree, heap, fnargs, arg);
2270 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2272 /* If struct value address is treated as the first argument, make it so. */
2273 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2274 && ! cfun->returns_pcc_struct
2275 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2277 tree type = build_pointer_type (TREE_TYPE (fntype));
2280 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2281 PARM_DECL, get_identifier (".result_ptr"), type);
2282 DECL_ARG_TYPE (decl) = type;
2283 DECL_ARTIFICIAL (decl) = 1;
2284 DECL_NAMELESS (decl) = 1;
2285 TREE_CONSTANT (decl) = 1;
2287 DECL_CHAIN (decl) = all->orig_fnargs;
2288 all->orig_fnargs = decl;
2289 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2291 all->function_result_decl = decl;
2294 /* If the target wants to split complex arguments into scalars, do so. */
2295 if (targetm.calls.split_complex_arg)
2296 split_complex_args (&fnargs);
2301 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2302 data for the parameter. Incorporate ABI specifics such as pass-by-
2303 reference and type promotion. */
2306 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2307 struct assign_parm_data_one *data)
2309 tree nominal_type, passed_type;
2310 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2313 memset (data, 0, sizeof (*data));
2315 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2317 data->named_arg = 1; /* No variadic parms. */
2318 else if (DECL_CHAIN (parm))
2319 data->named_arg = 1; /* Not the last non-variadic parm. */
2320 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2321 data->named_arg = 1; /* Only variadic ones are unnamed. */
2323 data->named_arg = 0; /* Treat as variadic. */
2325 nominal_type = TREE_TYPE (parm);
2326 passed_type = DECL_ARG_TYPE (parm);
2328 /* Look out for errors propagating this far. Also, if the parameter's
2329 type is void then its value doesn't matter. */
2330 if (TREE_TYPE (parm) == error_mark_node
2331 /* This can happen after weird syntax errors
2332 or if an enum type is defined among the parms. */
2333 || TREE_CODE (parm) != PARM_DECL
2334 || passed_type == NULL
2335 || VOID_TYPE_P (nominal_type))
2337 nominal_type = passed_type = void_type_node;
2338 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2342 /* Find mode of arg as it is passed, and mode of arg as it should be
2343 during execution of this function. */
2344 passed_mode = TYPE_MODE (passed_type);
2345 nominal_mode = TYPE_MODE (nominal_type);
2347 /* If the parm is to be passed as a transparent union or record, use the
2348 type of the first field for the tests below. We have already verified
2349 that the modes are the same. */
2350 if ((TREE_CODE (passed_type) == UNION_TYPE
2351 || TREE_CODE (passed_type) == RECORD_TYPE)
2352 && TYPE_TRANSPARENT_AGGR (passed_type))
2353 passed_type = TREE_TYPE (first_field (passed_type));
2355 /* See if this arg was passed by invisible reference. */
2356 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2357 passed_type, data->named_arg))
2359 passed_type = nominal_type = build_pointer_type (passed_type);
2360 data->passed_pointer = true;
2361 passed_mode = nominal_mode = Pmode;
2364 /* Find mode as it is passed by the ABI. */
2365 unsignedp = TYPE_UNSIGNED (passed_type);
2366 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2367 TREE_TYPE (current_function_decl), 0);
2370 data->nominal_type = nominal_type;
2371 data->passed_type = passed_type;
2372 data->nominal_mode = nominal_mode;
2373 data->passed_mode = passed_mode;
2374 data->promoted_mode = promoted_mode;
2377 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2380 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2381 struct assign_parm_data_one *data, bool no_rtl)
2383 int varargs_pretend_bytes = 0;
2385 targetm.calls.setup_incoming_varargs (all->args_so_far,
2386 data->promoted_mode,
2388 &varargs_pretend_bytes, no_rtl);
2390 /* If the back-end has requested extra stack space, record how much is
2391 needed. Do not change pretend_args_size otherwise since it may be
2392 nonzero from an earlier partial argument. */
2393 if (varargs_pretend_bytes > 0)
2394 all->pretend_args_size = varargs_pretend_bytes;
2397 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2398 the incoming location of the current parameter. */
2401 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2402 struct assign_parm_data_one *data)
2404 HOST_WIDE_INT pretend_bytes = 0;
2408 if (data->promoted_mode == VOIDmode)
2410 data->entry_parm = data->stack_parm = const0_rtx;
2414 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2415 data->promoted_mode,
2419 if (entry_parm == 0)
2420 data->promoted_mode = data->passed_mode;
2422 /* Determine parm's home in the stack, in case it arrives in the stack
2423 or we should pretend it did. Compute the stack position and rtx where
2424 the argument arrives and its size.
2426 There is one complexity here: If this was a parameter that would
2427 have been passed in registers, but wasn't only because it is
2428 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2429 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2430 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2431 as it was the previous time. */
2432 in_regs = entry_parm != 0;
2433 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2436 if (!in_regs && !data->named_arg)
2438 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2441 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2442 data->promoted_mode,
2443 data->passed_type, true);
2444 in_regs = tem != NULL;
2448 /* If this parameter was passed both in registers and in the stack, use
2449 the copy on the stack. */
2450 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2458 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2459 data->promoted_mode,
2462 data->partial = partial;
2464 /* The caller might already have allocated stack space for the
2465 register parameters. */
2466 if (partial != 0 && all->reg_parm_stack_space == 0)
2468 /* Part of this argument is passed in registers and part
2469 is passed on the stack. Ask the prologue code to extend
2470 the stack part so that we can recreate the full value.
2472 PRETEND_BYTES is the size of the registers we need to store.
2473 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2474 stack space that the prologue should allocate.
2476 Internally, gcc assumes that the argument pointer is aligned
2477 to STACK_BOUNDARY bits. This is used both for alignment
2478 optimizations (see init_emit) and to locate arguments that are
2479 aligned to more than PARM_BOUNDARY bits. We must preserve this
2480 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2481 a stack boundary. */
2483 /* We assume at most one partial arg, and it must be the first
2484 argument on the stack. */
2485 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2487 pretend_bytes = partial;
2488 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2490 /* We want to align relative to the actual stack pointer, so
2491 don't include this in the stack size until later. */
2492 all->extra_pretend_bytes = all->pretend_args_size;
2496 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2497 entry_parm ? data->partial : 0, current_function_decl,
2498 &all->stack_args_size, &data->locate);
2500 /* Update parm_stack_boundary if this parameter is passed in the
2502 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2503 crtl->parm_stack_boundary = data->locate.boundary;
2505 /* Adjust offsets to include the pretend args. */
2506 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2507 data->locate.slot_offset.constant += pretend_bytes;
2508 data->locate.offset.constant += pretend_bytes;
2510 data->entry_parm = entry_parm;
2513 /* A subroutine of assign_parms. If there is actually space on the stack
2514 for this parm, count it in stack_args_size and return true. */
2517 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2518 struct assign_parm_data_one *data)
2520 /* Trivially true if we've no incoming register. */
2521 if (data->entry_parm == NULL)
2523 /* Also true if we're partially in registers and partially not,
2524 since we've arranged to drop the entire argument on the stack. */
2525 else if (data->partial != 0)
2527 /* Also true if the target says that it's passed in both registers
2528 and on the stack. */
2529 else if (GET_CODE (data->entry_parm) == PARALLEL
2530 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2532 /* Also true if the target says that there's stack allocated for
2533 all register parameters. */
2534 else if (all->reg_parm_stack_space > 0)
2536 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2540 all->stack_args_size.constant += data->locate.size.constant;
2541 if (data->locate.size.var)
2542 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2547 /* A subroutine of assign_parms. Given that this parameter is allocated
2548 stack space by the ABI, find it. */
2551 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2553 rtx offset_rtx, stack_parm;
2554 unsigned int align, boundary;
2556 /* If we're passing this arg using a reg, make its stack home the
2557 aligned stack slot. */
2558 if (data->entry_parm)
2559 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2561 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2563 stack_parm = crtl->args.internal_arg_pointer;
2564 if (offset_rtx != const0_rtx)
2565 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2566 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2568 if (!data->passed_pointer)
2570 set_mem_attributes (stack_parm, parm, 1);
2571 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2572 while promoted mode's size is needed. */
2573 if (data->promoted_mode != BLKmode
2574 && data->promoted_mode != DECL_MODE (parm))
2576 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2577 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2579 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2580 data->promoted_mode);
2582 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2587 boundary = data->locate.boundary;
2588 align = BITS_PER_UNIT;
2590 /* If we're padding upward, we know that the alignment of the slot
2591 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2592 intentionally forcing upward padding. Otherwise we have to come
2593 up with a guess at the alignment based on OFFSET_RTX. */
2594 if (data->locate.where_pad != downward || data->entry_parm)
2596 else if (CONST_INT_P (offset_rtx))
2598 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2599 align = align & -align;
2601 set_mem_align (stack_parm, align);
2603 if (data->entry_parm)
2604 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2606 data->stack_parm = stack_parm;
2609 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2610 always valid and contiguous. */
2613 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2615 rtx entry_parm = data->entry_parm;
2616 rtx stack_parm = data->stack_parm;
2618 /* If this parm was passed part in regs and part in memory, pretend it
2619 arrived entirely in memory by pushing the register-part onto the stack.
2620 In the special case of a DImode or DFmode that is split, we could put
2621 it together in a pseudoreg directly, but for now that's not worth
2623 if (data->partial != 0)
2625 /* Handle calls that pass values in multiple non-contiguous
2626 locations. The Irix 6 ABI has examples of this. */
2627 if (GET_CODE (entry_parm) == PARALLEL)
2628 emit_group_store (validize_mem (stack_parm), entry_parm,
2630 int_size_in_bytes (data->passed_type));
2633 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2634 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2635 data->partial / UNITS_PER_WORD);
2638 entry_parm = stack_parm;
2641 /* If we didn't decide this parm came in a register, by default it came
2643 else if (entry_parm == NULL)
2644 entry_parm = stack_parm;
2646 /* When an argument is passed in multiple locations, we can't make use
2647 of this information, but we can save some copying if the whole argument
2648 is passed in a single register. */
2649 else if (GET_CODE (entry_parm) == PARALLEL
2650 && data->nominal_mode != BLKmode
2651 && data->passed_mode != BLKmode)
2653 size_t i, len = XVECLEN (entry_parm, 0);
2655 for (i = 0; i < len; i++)
2656 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2657 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2658 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2659 == data->passed_mode)
2660 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2662 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2667 data->entry_parm = entry_parm;
2670 /* A subroutine of assign_parms. Reconstitute any values which were
2671 passed in multiple registers and would fit in a single register. */
2674 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2676 rtx entry_parm = data->entry_parm;
2678 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2679 This can be done with register operations rather than on the
2680 stack, even if we will store the reconstituted parameter on the
2682 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2684 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2685 emit_group_store (parmreg, entry_parm, data->passed_type,
2686 GET_MODE_SIZE (GET_MODE (entry_parm)));
2687 entry_parm = parmreg;
2690 data->entry_parm = entry_parm;
2693 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2694 always valid and properly aligned. */
2697 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2699 rtx stack_parm = data->stack_parm;
2701 /* If we can't trust the parm stack slot to be aligned enough for its
2702 ultimate type, don't use that slot after entry. We'll make another
2703 stack slot, if we need one. */
2705 && ((STRICT_ALIGNMENT
2706 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2707 || (data->nominal_type
2708 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2709 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2712 /* If parm was passed in memory, and we need to convert it on entry,
2713 don't store it back in that same slot. */
2714 else if (data->entry_parm == stack_parm
2715 && data->nominal_mode != BLKmode
2716 && data->nominal_mode != data->passed_mode)
2719 /* If stack protection is in effect for this function, don't leave any
2720 pointers in their passed stack slots. */
2721 else if (crtl->stack_protect_guard
2722 && (flag_stack_protect == 2
2723 || data->passed_pointer
2724 || POINTER_TYPE_P (data->nominal_type)))
2727 data->stack_parm = stack_parm;
2730 /* A subroutine of assign_parms. Return true if the current parameter
2731 should be stored as a BLKmode in the current frame. */
2734 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2736 if (data->nominal_mode == BLKmode)
2738 if (GET_MODE (data->entry_parm) == BLKmode)
2741 #ifdef BLOCK_REG_PADDING
2742 /* Only assign_parm_setup_block knows how to deal with register arguments
2743 that are padded at the least significant end. */
2744 if (REG_P (data->entry_parm)
2745 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2746 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2747 == (BYTES_BIG_ENDIAN ? upward : downward)))
2754 /* A subroutine of assign_parms. Arrange for the parameter to be
2755 present and valid in DATA->STACK_RTL. */
2758 assign_parm_setup_block (struct assign_parm_data_all *all,
2759 tree parm, struct assign_parm_data_one *data)
2761 rtx entry_parm = data->entry_parm;
2762 rtx stack_parm = data->stack_parm;
2764 HOST_WIDE_INT size_stored;
2766 if (GET_CODE (entry_parm) == PARALLEL)
2767 entry_parm = emit_group_move_into_temps (entry_parm);
2769 size = int_size_in_bytes (data->passed_type);
2770 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2771 if (stack_parm == 0)
2773 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2774 stack_parm = assign_stack_local (BLKmode, size_stored,
2776 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2777 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2778 set_mem_attributes (stack_parm, parm, 1);
2781 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2782 calls that pass values in multiple non-contiguous locations. */
2783 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2787 /* Note that we will be storing an integral number of words.
2788 So we have to be careful to ensure that we allocate an
2789 integral number of words. We do this above when we call
2790 assign_stack_local if space was not allocated in the argument
2791 list. If it was, this will not work if PARM_BOUNDARY is not
2792 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2793 if it becomes a problem. Exception is when BLKmode arrives
2794 with arguments not conforming to word_mode. */
2796 if (data->stack_parm == 0)
2798 else if (GET_CODE (entry_parm) == PARALLEL)
2801 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2803 mem = validize_mem (stack_parm);
2805 /* Handle values in multiple non-contiguous locations. */
2806 if (GET_CODE (entry_parm) == PARALLEL)
2808 push_to_sequence2 (all->first_conversion_insn,
2809 all->last_conversion_insn);
2810 emit_group_store (mem, entry_parm, data->passed_type, size);
2811 all->first_conversion_insn = get_insns ();
2812 all->last_conversion_insn = get_last_insn ();
2819 /* If SIZE is that of a mode no bigger than a word, just use
2820 that mode's store operation. */
2821 else if (size <= UNITS_PER_WORD)
2823 enum machine_mode mode
2824 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2827 #ifdef BLOCK_REG_PADDING
2828 && (size == UNITS_PER_WORD
2829 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2830 != (BYTES_BIG_ENDIAN ? upward : downward)))
2836 /* We are really truncating a word_mode value containing
2837 SIZE bytes into a value of mode MODE. If such an
2838 operation requires no actual instructions, we can refer
2839 to the value directly in mode MODE, otherwise we must
2840 start with the register in word_mode and explicitly
2842 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2843 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2846 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2847 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2849 emit_move_insn (change_address (mem, mode, 0), reg);
2852 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2853 machine must be aligned to the left before storing
2854 to memory. Note that the previous test doesn't
2855 handle all cases (e.g. SIZE == 3). */
2856 else if (size != UNITS_PER_WORD
2857 #ifdef BLOCK_REG_PADDING
2858 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2866 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2867 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2869 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2870 tem = change_address (mem, word_mode, 0);
2871 emit_move_insn (tem, x);
2874 move_block_from_reg (REGNO (entry_parm), mem,
2875 size_stored / UNITS_PER_WORD);
2878 move_block_from_reg (REGNO (entry_parm), mem,
2879 size_stored / UNITS_PER_WORD);
2881 else if (data->stack_parm == 0)
2883 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2884 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2886 all->first_conversion_insn = get_insns ();
2887 all->last_conversion_insn = get_last_insn ();
2891 data->stack_parm = stack_parm;
2892 SET_DECL_RTL (parm, stack_parm);
2895 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2896 parameter. Get it there. Perform all ABI specified conversions. */
2899 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2900 struct assign_parm_data_one *data)
2902 rtx parmreg, validated_mem;
2903 rtx equiv_stack_parm;
2904 enum machine_mode promoted_nominal_mode;
2905 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2906 bool did_conversion = false;
2907 bool need_conversion, moved;
2909 /* Store the parm in a pseudoregister during the function, but we may
2910 need to do it in a wider mode. Using 2 here makes the result
2911 consistent with promote_decl_mode and thus expand_expr_real_1. */
2912 promoted_nominal_mode
2913 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2914 TREE_TYPE (current_function_decl), 2);
2916 parmreg = gen_reg_rtx (promoted_nominal_mode);
2918 if (!DECL_ARTIFICIAL (parm))
2919 mark_user_reg (parmreg);
2921 /* If this was an item that we received a pointer to,
2922 set DECL_RTL appropriately. */
2923 if (data->passed_pointer)
2925 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2926 set_mem_attributes (x, parm, 1);
2927 SET_DECL_RTL (parm, x);
2930 SET_DECL_RTL (parm, parmreg);
2932 assign_parm_remove_parallels (data);
2934 /* Copy the value into the register, thus bridging between
2935 assign_parm_find_data_types and expand_expr_real_1. */
2937 equiv_stack_parm = data->stack_parm;
2938 validated_mem = validize_mem (data->entry_parm);
2940 need_conversion = (data->nominal_mode != data->passed_mode
2941 || promoted_nominal_mode != data->promoted_mode);
2945 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2946 && data->nominal_mode == data->passed_mode
2947 && data->nominal_mode == GET_MODE (data->entry_parm))
2949 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2950 mode, by the caller. We now have to convert it to
2951 NOMINAL_MODE, if different. However, PARMREG may be in
2952 a different mode than NOMINAL_MODE if it is being stored
2955 If ENTRY_PARM is a hard register, it might be in a register
2956 not valid for operating in its mode (e.g., an odd-numbered
2957 register for a DFmode). In that case, moves are the only
2958 thing valid, so we can't do a convert from there. This
2959 occurs when the calling sequence allow such misaligned
2962 In addition, the conversion may involve a call, which could
2963 clobber parameters which haven't been copied to pseudo
2966 First, we try to emit an insn which performs the necessary
2967 conversion. We verify that this insn does not clobber any
2970 enum insn_code icode;
2973 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2977 op1 = validated_mem;
2978 if (icode != CODE_FOR_nothing
2979 && insn_operand_matches (icode, 0, op0)
2980 && insn_operand_matches (icode, 1, op1))
2982 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2984 HARD_REG_SET hardregs;
2987 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2988 data->passed_mode, unsignedp);
2990 insns = get_insns ();
2993 CLEAR_HARD_REG_SET (hardregs);
2994 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
2997 note_stores (PATTERN (insn), record_hard_reg_sets,
2999 if (!hard_reg_set_empty_p (hardregs))
3008 if (equiv_stack_parm != NULL_RTX)
3009 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3016 /* Nothing to do. */
3018 else if (need_conversion)
3020 /* We did not have an insn to convert directly, or the sequence
3021 generated appeared unsafe. We must first copy the parm to a
3022 pseudo reg, and save the conversion until after all
3023 parameters have been moved. */
3026 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3028 emit_move_insn (tempreg, validated_mem);
3030 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3031 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3033 if (GET_CODE (tempreg) == SUBREG
3034 && GET_MODE (tempreg) == data->nominal_mode
3035 && REG_P (SUBREG_REG (tempreg))
3036 && data->nominal_mode == data->passed_mode
3037 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3038 && GET_MODE_SIZE (GET_MODE (tempreg))
3039 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3041 /* The argument is already sign/zero extended, so note it
3043 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3044 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3047 /* TREE_USED gets set erroneously during expand_assignment. */
3048 save_tree_used = TREE_USED (parm);
3049 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3050 TREE_USED (parm) = save_tree_used;
3051 all->first_conversion_insn = get_insns ();
3052 all->last_conversion_insn = get_last_insn ();
3055 did_conversion = true;
3058 emit_move_insn (parmreg, validated_mem);
3060 /* If we were passed a pointer but the actual value can safely live
3061 in a register, put it in one. */
3062 if (data->passed_pointer
3063 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3064 /* If by-reference argument was promoted, demote it. */
3065 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3066 || use_register_for_decl (parm)))
3068 /* We can't use nominal_mode, because it will have been set to
3069 Pmode above. We must use the actual mode of the parm. */
3070 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3071 mark_user_reg (parmreg);
3073 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3075 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3076 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3078 push_to_sequence2 (all->first_conversion_insn,
3079 all->last_conversion_insn);
3080 emit_move_insn (tempreg, DECL_RTL (parm));
3081 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3082 emit_move_insn (parmreg, tempreg);
3083 all->first_conversion_insn = get_insns ();
3084 all->last_conversion_insn = get_last_insn ();
3087 did_conversion = true;
3090 emit_move_insn (parmreg, DECL_RTL (parm));
3092 SET_DECL_RTL (parm, parmreg);
3094 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3096 data->stack_parm = NULL;
3099 /* Mark the register as eliminable if we did no conversion and it was
3100 copied from memory at a fixed offset, and the arg pointer was not
3101 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3102 offset formed an invalid address, such memory-equivalences as we
3103 make here would screw up life analysis for it. */
3104 if (data->nominal_mode == data->passed_mode
3106 && data->stack_parm != 0
3107 && MEM_P (data->stack_parm)
3108 && data->locate.offset.var == 0
3109 && reg_mentioned_p (virtual_incoming_args_rtx,
3110 XEXP (data->stack_parm, 0)))
3112 rtx linsn = get_last_insn ();
3115 /* Mark complex types separately. */
3116 if (GET_CODE (parmreg) == CONCAT)
3118 enum machine_mode submode
3119 = GET_MODE_INNER (GET_MODE (parmreg));
3120 int regnor = REGNO (XEXP (parmreg, 0));
3121 int regnoi = REGNO (XEXP (parmreg, 1));
3122 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3123 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3124 GET_MODE_SIZE (submode));
3126 /* Scan backwards for the set of the real and
3128 for (sinsn = linsn; sinsn != 0;
3129 sinsn = prev_nonnote_insn (sinsn))
3131 set = single_set (sinsn);
3135 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3136 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3137 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3138 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3141 else if ((set = single_set (linsn)) != 0
3142 && SET_DEST (set) == parmreg)
3143 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3146 /* For pointer data type, suggest pointer register. */
3147 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3148 mark_reg_pointer (parmreg,
3149 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3152 /* A subroutine of assign_parms. Allocate stack space to hold the current
3153 parameter. Get it there. Perform all ABI specified conversions. */
3156 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3157 struct assign_parm_data_one *data)
3159 /* Value must be stored in the stack slot STACK_PARM during function
3161 bool to_conversion = false;
3163 assign_parm_remove_parallels (data);
3165 if (data->promoted_mode != data->nominal_mode)
3167 /* Conversion is required. */
3168 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3170 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3172 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3173 to_conversion = true;
3175 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3176 TYPE_UNSIGNED (TREE_TYPE (parm)));
3178 if (data->stack_parm)
3180 int offset = subreg_lowpart_offset (data->nominal_mode,
3181 GET_MODE (data->stack_parm));
3182 /* ??? This may need a big-endian conversion on sparc64. */
3184 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3185 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3186 set_mem_offset (data->stack_parm,
3187 MEM_OFFSET (data->stack_parm) + offset);
3191 if (data->entry_parm != data->stack_parm)
3195 if (data->stack_parm == 0)
3197 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3198 GET_MODE (data->entry_parm),
3199 TYPE_ALIGN (data->passed_type));
3201 = assign_stack_local (GET_MODE (data->entry_parm),
3202 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3204 set_mem_attributes (data->stack_parm, parm, 1);
3207 dest = validize_mem (data->stack_parm);
3208 src = validize_mem (data->entry_parm);
3212 /* Use a block move to handle potentially misaligned entry_parm. */
3214 push_to_sequence2 (all->first_conversion_insn,
3215 all->last_conversion_insn);
3216 to_conversion = true;
3218 emit_block_move (dest, src,
3219 GEN_INT (int_size_in_bytes (data->passed_type)),
3223 emit_move_insn (dest, src);
3228 all->first_conversion_insn = get_insns ();
3229 all->last_conversion_insn = get_last_insn ();
3233 SET_DECL_RTL (parm, data->stack_parm);
3236 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3237 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3240 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3241 VEC(tree, heap) *fnargs)
3244 tree orig_fnargs = all->orig_fnargs;
3247 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3249 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3250 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3252 rtx tmp, real, imag;
3253 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3255 real = DECL_RTL (VEC_index (tree, fnargs, i));
3256 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3257 if (inner != GET_MODE (real))
3259 real = gen_lowpart_SUBREG (inner, real);
3260 imag = gen_lowpart_SUBREG (inner, imag);
3263 if (TREE_ADDRESSABLE (parm))
3266 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3267 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3269 TYPE_ALIGN (TREE_TYPE (parm)));
3271 /* split_complex_arg put the real and imag parts in
3272 pseudos. Move them to memory. */
3273 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3274 set_mem_attributes (tmp, parm, 1);
3275 rmem = adjust_address_nv (tmp, inner, 0);
3276 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3277 push_to_sequence2 (all->first_conversion_insn,
3278 all->last_conversion_insn);
3279 emit_move_insn (rmem, real);
3280 emit_move_insn (imem, imag);
3281 all->first_conversion_insn = get_insns ();
3282 all->last_conversion_insn = get_last_insn ();
3286 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3287 SET_DECL_RTL (parm, tmp);
3289 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3290 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3291 if (inner != GET_MODE (real))
3293 real = gen_lowpart_SUBREG (inner, real);
3294 imag = gen_lowpart_SUBREG (inner, imag);
3296 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3297 set_decl_incoming_rtl (parm, tmp, false);
3303 /* Assign RTL expressions to the function's parameters. This may involve
3304 copying them into registers and using those registers as the DECL_RTL. */
3307 assign_parms (tree fndecl)
3309 struct assign_parm_data_all all;
3311 VEC(tree, heap) *fnargs;
3314 crtl->args.internal_arg_pointer
3315 = targetm.calls.internal_arg_pointer ();
3317 assign_parms_initialize_all (&all);
3318 fnargs = assign_parms_augmented_arg_list (&all);
3320 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3322 struct assign_parm_data_one data;
3324 /* Extract the type of PARM; adjust it according to ABI. */
3325 assign_parm_find_data_types (&all, parm, &data);
3327 /* Early out for errors and void parameters. */
3328 if (data.passed_mode == VOIDmode)
3330 SET_DECL_RTL (parm, const0_rtx);
3331 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3335 /* Estimate stack alignment from parameter alignment. */
3336 if (SUPPORTS_STACK_ALIGNMENT)
3339 = targetm.calls.function_arg_boundary (data.promoted_mode,
3341 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3343 if (TYPE_ALIGN (data.nominal_type) > align)
3344 align = MINIMUM_ALIGNMENT (data.nominal_type,
3345 TYPE_MODE (data.nominal_type),
3346 TYPE_ALIGN (data.nominal_type));
3347 if (crtl->stack_alignment_estimated < align)
3349 gcc_assert (!crtl->stack_realign_processed);
3350 crtl->stack_alignment_estimated = align;
3354 if (cfun->stdarg && !DECL_CHAIN (parm))
3355 assign_parms_setup_varargs (&all, &data, false);
3357 /* Find out where the parameter arrives in this function. */
3358 assign_parm_find_entry_rtl (&all, &data);
3360 /* Find out where stack space for this parameter might be. */
3361 if (assign_parm_is_stack_parm (&all, &data))
3363 assign_parm_find_stack_rtl (parm, &data);
3364 assign_parm_adjust_entry_rtl (&data);
3367 /* Record permanently how this parm was passed. */
3368 if (data.passed_pointer)
3371 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3373 set_decl_incoming_rtl (parm, incoming_rtl, true);
3376 set_decl_incoming_rtl (parm, data.entry_parm, false);
3378 /* Update info on where next arg arrives in registers. */
3379 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3380 data.passed_type, data.named_arg);
3382 assign_parm_adjust_stack_rtl (&data);
3384 if (assign_parm_setup_block_p (&data))
3385 assign_parm_setup_block (&all, parm, &data);
3386 else if (data.passed_pointer || use_register_for_decl (parm))
3387 assign_parm_setup_reg (&all, parm, &data);
3389 assign_parm_setup_stack (&all, parm, &data);
3392 if (targetm.calls.split_complex_arg)
3393 assign_parms_unsplit_complex (&all, fnargs);
3395 VEC_free (tree, heap, fnargs);
3397 /* Output all parameter conversion instructions (possibly including calls)
3398 now that all parameters have been copied out of hard registers. */
3399 emit_insn (all.first_conversion_insn);
3401 /* Estimate reload stack alignment from scalar return mode. */
3402 if (SUPPORTS_STACK_ALIGNMENT)
3404 if (DECL_RESULT (fndecl))
3406 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3407 enum machine_mode mode = TYPE_MODE (type);
3411 && !AGGREGATE_TYPE_P (type))
3413 unsigned int align = GET_MODE_ALIGNMENT (mode);
3414 if (crtl->stack_alignment_estimated < align)
3416 gcc_assert (!crtl->stack_realign_processed);
3417 crtl->stack_alignment_estimated = align;
3423 /* If we are receiving a struct value address as the first argument, set up
3424 the RTL for the function result. As this might require code to convert
3425 the transmitted address to Pmode, we do this here to ensure that possible
3426 preliminary conversions of the address have been emitted already. */
3427 if (all.function_result_decl)
3429 tree result = DECL_RESULT (current_function_decl);
3430 rtx addr = DECL_RTL (all.function_result_decl);
3433 if (DECL_BY_REFERENCE (result))
3435 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3440 SET_DECL_VALUE_EXPR (result,
3441 build1 (INDIRECT_REF, TREE_TYPE (result),
3442 all.function_result_decl));
3443 addr = convert_memory_address (Pmode, addr);
3444 x = gen_rtx_MEM (DECL_MODE (result), addr);
3445 set_mem_attributes (x, result, 1);
3448 DECL_HAS_VALUE_EXPR_P (result) = 1;
3450 SET_DECL_RTL (result, x);
3453 /* We have aligned all the args, so add space for the pretend args. */
3454 crtl->args.pretend_args_size = all.pretend_args_size;
3455 all.stack_args_size.constant += all.extra_pretend_bytes;
3456 crtl->args.size = all.stack_args_size.constant;
3458 /* Adjust function incoming argument size for alignment and
3461 #ifdef REG_PARM_STACK_SPACE
3462 crtl->args.size = MAX (crtl->args.size,
3463 REG_PARM_STACK_SPACE (fndecl));
3466 crtl->args.size = CEIL_ROUND (crtl->args.size,
3467 PARM_BOUNDARY / BITS_PER_UNIT);
3469 #ifdef ARGS_GROW_DOWNWARD
3470 crtl->args.arg_offset_rtx
3471 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3472 : expand_expr (size_diffop (all.stack_args_size.var,
3473 size_int (-all.stack_args_size.constant)),
3474 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3476 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3479 /* See how many bytes, if any, of its args a function should try to pop
3482 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3486 /* For stdarg.h function, save info about
3487 regs and stack space used by the named args. */
3489 crtl->args.info = all.args_so_far_v;
3491 /* Set the rtx used for the function return value. Put this in its
3492 own variable so any optimizers that need this information don't have
3493 to include tree.h. Do this here so it gets done when an inlined
3494 function gets output. */
3497 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3498 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3500 /* If scalar return value was computed in a pseudo-reg, or was a named
3501 return value that got dumped to the stack, copy that to the hard
3503 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3505 tree decl_result = DECL_RESULT (fndecl);
3506 rtx decl_rtl = DECL_RTL (decl_result);
3508 if (REG_P (decl_rtl)
3509 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3510 : DECL_REGISTER (decl_result))
3514 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3516 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3517 /* The delay slot scheduler assumes that crtl->return_rtx
3518 holds the hard register containing the return value, not a
3519 temporary pseudo. */
3520 crtl->return_rtx = real_decl_rtl;
3525 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3526 For all seen types, gimplify their sizes. */
3529 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3536 if (POINTER_TYPE_P (t))
3538 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3539 && !TYPE_SIZES_GIMPLIFIED (t))
3541 gimplify_type_sizes (t, (gimple_seq *) data);
3549 /* Gimplify the parameter list for current_function_decl. This involves
3550 evaluating SAVE_EXPRs of variable sized parameters and generating code
3551 to implement callee-copies reference parameters. Returns a sequence of
3552 statements to add to the beginning of the function. */
3555 gimplify_parameters (void)
3557 struct assign_parm_data_all all;
3559 gimple_seq stmts = NULL;
3560 VEC(tree, heap) *fnargs;
3563 assign_parms_initialize_all (&all);
3564 fnargs = assign_parms_augmented_arg_list (&all);
3566 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3568 struct assign_parm_data_one data;
3570 /* Extract the type of PARM; adjust it according to ABI. */
3571 assign_parm_find_data_types (&all, parm, &data);
3573 /* Early out for errors and void parameters. */
3574 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3577 /* Update info on where next arg arrives in registers. */
3578 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3579 data.passed_type, data.named_arg);
3581 /* ??? Once upon a time variable_size stuffed parameter list
3582 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3583 turned out to be less than manageable in the gimple world.
3584 Now we have to hunt them down ourselves. */
3585 walk_tree_without_duplicates (&data.passed_type,
3586 gimplify_parm_type, &stmts);
3588 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3590 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3591 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3594 if (data.passed_pointer)
3596 tree type = TREE_TYPE (data.passed_type);
3597 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3598 type, data.named_arg))
3602 /* For constant-sized objects, this is trivial; for
3603 variable-sized objects, we have to play games. */
3604 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3605 && !(flag_stack_check == GENERIC_STACK_CHECK
3606 && compare_tree_int (DECL_SIZE_UNIT (parm),
3607 STACK_CHECK_MAX_VAR_SIZE) > 0))
3609 local = create_tmp_var (type, get_name (parm));
3610 DECL_IGNORED_P (local) = 0;
3611 /* If PARM was addressable, move that flag over
3612 to the local copy, as its address will be taken,
3613 not the PARMs. Keep the parms address taken
3614 as we'll query that flag during gimplification. */
3615 if (TREE_ADDRESSABLE (parm))
3616 TREE_ADDRESSABLE (local) = 1;
3617 else if (TREE_CODE (type) == COMPLEX_TYPE
3618 || TREE_CODE (type) == VECTOR_TYPE)
3619 DECL_GIMPLE_REG_P (local) = 1;
3623 tree ptr_type, addr;
3625 ptr_type = build_pointer_type (type);
3626 addr = create_tmp_reg (ptr_type, get_name (parm));
3627 DECL_IGNORED_P (addr) = 0;
3628 local = build_fold_indirect_ref (addr);
3630 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3631 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3632 size_int (DECL_ALIGN (parm)));
3634 /* The call has been built for a variable-sized object. */
3635 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3636 t = fold_convert (ptr_type, t);
3637 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3638 gimplify_and_add (t, &stmts);
3641 gimplify_assign (local, parm, &stmts);
3643 SET_DECL_VALUE_EXPR (parm, local);
3644 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3649 VEC_free (tree, heap, fnargs);
3654 /* Compute the size and offset from the start of the stacked arguments for a
3655 parm passed in mode PASSED_MODE and with type TYPE.
3657 INITIAL_OFFSET_PTR points to the current offset into the stacked
3660 The starting offset and size for this parm are returned in
3661 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3662 nonzero, the offset is that of stack slot, which is returned in
3663 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3664 padding required from the initial offset ptr to the stack slot.
3666 IN_REGS is nonzero if the argument will be passed in registers. It will
3667 never be set if REG_PARM_STACK_SPACE is not defined.
3669 FNDECL is the function in which the argument was defined.
3671 There are two types of rounding that are done. The first, controlled by
3672 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3673 argument list to be aligned to the specific boundary (in bits). This
3674 rounding affects the initial and starting offsets, but not the argument
3677 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3678 optionally rounds the size of the parm to PARM_BOUNDARY. The
3679 initial offset is not affected by this rounding, while the size always
3680 is and the starting offset may be. */
3682 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3683 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3684 callers pass in the total size of args so far as
3685 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3688 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3689 int partial, tree fndecl ATTRIBUTE_UNUSED,
3690 struct args_size *initial_offset_ptr,
3691 struct locate_and_pad_arg_data *locate)
3694 enum direction where_pad;
3695 unsigned int boundary, round_boundary;
3696 int reg_parm_stack_space = 0;
3697 int part_size_in_regs;
3699 #ifdef REG_PARM_STACK_SPACE
3700 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3702 /* If we have found a stack parm before we reach the end of the
3703 area reserved for registers, skip that area. */
3706 if (reg_parm_stack_space > 0)
3708 if (initial_offset_ptr->var)
3710 initial_offset_ptr->var
3711 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3712 ssize_int (reg_parm_stack_space));
3713 initial_offset_ptr->constant = 0;
3715 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3716 initial_offset_ptr->constant = reg_parm_stack_space;
3719 #endif /* REG_PARM_STACK_SPACE */
3721 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3724 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3725 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3726 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3727 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3729 locate->where_pad = where_pad;
3731 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3732 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3733 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3735 locate->boundary = boundary;
3737 if (SUPPORTS_STACK_ALIGNMENT)
3739 /* stack_alignment_estimated can't change after stack has been
3741 if (crtl->stack_alignment_estimated < boundary)
3743 if (!crtl->stack_realign_processed)
3744 crtl->stack_alignment_estimated = boundary;
3747 /* If stack is realigned and stack alignment value
3748 hasn't been finalized, it is OK not to increase
3749 stack_alignment_estimated. The bigger alignment
3750 requirement is recorded in stack_alignment_needed
3752 gcc_assert (!crtl->stack_realign_finalized
3753 && crtl->stack_realign_needed);
3758 /* Remember if the outgoing parameter requires extra alignment on the
3759 calling function side. */
3760 if (crtl->stack_alignment_needed < boundary)
3761 crtl->stack_alignment_needed = boundary;
3762 if (crtl->preferred_stack_boundary < boundary)
3763 crtl->preferred_stack_boundary = boundary;
3765 #ifdef ARGS_GROW_DOWNWARD
3766 locate->slot_offset.constant = -initial_offset_ptr->constant;
3767 if (initial_offset_ptr->var)
3768 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3769 initial_offset_ptr->var);
3773 if (where_pad != none
3774 && (!host_integerp (sizetree, 1)
3775 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3776 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3777 SUB_PARM_SIZE (locate->slot_offset, s2);
3780 locate->slot_offset.constant += part_size_in_regs;
3783 #ifdef REG_PARM_STACK_SPACE
3784 || REG_PARM_STACK_SPACE (fndecl) > 0
3787 pad_to_arg_alignment (&locate->slot_offset, boundary,
3788 &locate->alignment_pad);
3790 locate->size.constant = (-initial_offset_ptr->constant
3791 - locate->slot_offset.constant);
3792 if (initial_offset_ptr->var)
3793 locate->size.var = size_binop (MINUS_EXPR,
3794 size_binop (MINUS_EXPR,
3796 initial_offset_ptr->var),
3797 locate->slot_offset.var);
3799 /* Pad_below needs the pre-rounded size to know how much to pad
3801 locate->offset = locate->slot_offset;
3802 if (where_pad == downward)
3803 pad_below (&locate->offset, passed_mode, sizetree);
3805 #else /* !ARGS_GROW_DOWNWARD */
3807 #ifdef REG_PARM_STACK_SPACE
3808 || REG_PARM_STACK_SPACE (fndecl) > 0
3811 pad_to_arg_alignment (initial_offset_ptr, boundary,
3812 &locate->alignment_pad);
3813 locate->slot_offset = *initial_offset_ptr;
3815 #ifdef PUSH_ROUNDING
3816 if (passed_mode != BLKmode)
3817 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3820 /* Pad_below needs the pre-rounded size to know how much to pad below
3821 so this must be done before rounding up. */
3822 locate->offset = locate->slot_offset;
3823 if (where_pad == downward)
3824 pad_below (&locate->offset, passed_mode, sizetree);
3826 if (where_pad != none
3827 && (!host_integerp (sizetree, 1)
3828 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3829 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3831 ADD_PARM_SIZE (locate->size, sizetree);
3833 locate->size.constant -= part_size_in_regs;
3834 #endif /* ARGS_GROW_DOWNWARD */
3836 #ifdef FUNCTION_ARG_OFFSET
3837 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3841 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3842 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3845 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3846 struct args_size *alignment_pad)
3848 tree save_var = NULL_TREE;
3849 HOST_WIDE_INT save_constant = 0;
3850 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3851 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3853 #ifdef SPARC_STACK_BOUNDARY_HACK
3854 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3855 the real alignment of %sp. However, when it does this, the
3856 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3857 if (SPARC_STACK_BOUNDARY_HACK)
3861 if (boundary > PARM_BOUNDARY)
3863 save_var = offset_ptr->var;
3864 save_constant = offset_ptr->constant;
3867 alignment_pad->var = NULL_TREE;
3868 alignment_pad->constant = 0;
3870 if (boundary > BITS_PER_UNIT)
3872 if (offset_ptr->var)
3874 tree sp_offset_tree = ssize_int (sp_offset);
3875 tree offset = size_binop (PLUS_EXPR,
3876 ARGS_SIZE_TREE (*offset_ptr),
3878 #ifdef ARGS_GROW_DOWNWARD
3879 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3881 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3884 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3885 /* ARGS_SIZE_TREE includes constant term. */
3886 offset_ptr->constant = 0;
3887 if (boundary > PARM_BOUNDARY)
3888 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3893 offset_ptr->constant = -sp_offset +
3894 #ifdef ARGS_GROW_DOWNWARD
3895 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3897 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3899 if (boundary > PARM_BOUNDARY)
3900 alignment_pad->constant = offset_ptr->constant - save_constant;
3906 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3908 if (passed_mode != BLKmode)
3910 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3911 offset_ptr->constant
3912 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3913 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3914 - GET_MODE_SIZE (passed_mode));
3918 if (TREE_CODE (sizetree) != INTEGER_CST
3919 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3921 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3922 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3924 ADD_PARM_SIZE (*offset_ptr, s2);
3925 SUB_PARM_SIZE (*offset_ptr, sizetree);
3931 /* True if register REGNO was alive at a place where `setjmp' was
3932 called and was set more than once or is an argument. Such regs may
3933 be clobbered by `longjmp'. */
3936 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3938 /* There appear to be cases where some local vars never reach the
3939 backend but have bogus regnos. */
3940 if (regno >= max_reg_num ())
3943 return ((REG_N_SETS (regno) > 1
3944 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3945 && REGNO_REG_SET_P (setjmp_crosses, regno));
3948 /* Walk the tree of blocks describing the binding levels within a
3949 function and warn about variables the might be killed by setjmp or
3950 vfork. This is done after calling flow_analysis before register
3951 allocation since that will clobber the pseudo-regs to hard
3955 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3959 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3961 if (TREE_CODE (decl) == VAR_DECL
3962 && DECL_RTL_SET_P (decl)
3963 && REG_P (DECL_RTL (decl))
3964 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3965 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3966 " %<longjmp%> or %<vfork%>", decl);
3969 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3970 setjmp_vars_warning (setjmp_crosses, sub);
3973 /* Do the appropriate part of setjmp_vars_warning
3974 but for arguments instead of local variables. */
3977 setjmp_args_warning (bitmap setjmp_crosses)
3980 for (decl = DECL_ARGUMENTS (current_function_decl);
3981 decl; decl = DECL_CHAIN (decl))
3982 if (DECL_RTL (decl) != 0
3983 && REG_P (DECL_RTL (decl))
3984 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3985 warning (OPT_Wclobbered,
3986 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3990 /* Generate warning messages for variables live across setjmp. */
3993 generate_setjmp_warnings (void)
3995 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3997 if (n_basic_blocks == NUM_FIXED_BLOCKS
3998 || bitmap_empty_p (setjmp_crosses))
4001 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4002 setjmp_args_warning (setjmp_crosses);
4006 /* Reverse the order of elements in the fragment chain T of blocks,
4007 and return the new head of the chain (old last element). */
4010 block_fragments_nreverse (tree t)
4012 tree prev = 0, block, next;
4013 for (block = t; block; block = next)
4015 next = BLOCK_FRAGMENT_CHAIN (block);
4016 BLOCK_FRAGMENT_CHAIN (block) = prev;
4022 /* Reverse the order of elements in the chain T of blocks,
4023 and return the new head of the chain (old last element).
4024 Also do the same on subblocks and reverse the order of elements
4025 in BLOCK_FRAGMENT_CHAIN as well. */
4028 blocks_nreverse_all (tree t)
4030 tree prev = 0, block, next;
4031 for (block = t; block; block = next)
4033 next = BLOCK_CHAIN (block);
4034 BLOCK_CHAIN (block) = prev;
4035 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4036 if (BLOCK_FRAGMENT_CHAIN (block)
4037 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4038 BLOCK_FRAGMENT_CHAIN (block)
4039 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4046 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4047 and create duplicate blocks. */
4048 /* ??? Need an option to either create block fragments or to create
4049 abstract origin duplicates of a source block. It really depends
4050 on what optimization has been performed. */
4053 reorder_blocks (void)
4055 tree block = DECL_INITIAL (current_function_decl);
4056 VEC(tree,heap) *block_stack;
4058 if (block == NULL_TREE)
4061 block_stack = VEC_alloc (tree, heap, 10);
4063 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4064 clear_block_marks (block);
4066 /* Prune the old trees away, so that they don't get in the way. */
4067 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4068 BLOCK_CHAIN (block) = NULL_TREE;
4070 /* Recreate the block tree from the note nesting. */
4071 reorder_blocks_1 (get_insns (), block, &block_stack);
4072 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4074 VEC_free (tree, heap, block_stack);
4077 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4080 clear_block_marks (tree block)
4084 TREE_ASM_WRITTEN (block) = 0;
4085 clear_block_marks (BLOCK_SUBBLOCKS (block));
4086 block = BLOCK_CHAIN (block);
4091 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4095 for (insn = insns; insn; insn = NEXT_INSN (insn))
4099 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4101 tree block = NOTE_BLOCK (insn);
4104 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4107 /* If we have seen this block before, that means it now
4108 spans multiple address regions. Create a new fragment. */
4109 if (TREE_ASM_WRITTEN (block))
4111 tree new_block = copy_node (block);
4113 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4114 BLOCK_FRAGMENT_CHAIN (new_block)
4115 = BLOCK_FRAGMENT_CHAIN (origin);
4116 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4118 NOTE_BLOCK (insn) = new_block;
4122 BLOCK_SUBBLOCKS (block) = 0;
4123 TREE_ASM_WRITTEN (block) = 1;
4124 /* When there's only one block for the entire function,
4125 current_block == block and we mustn't do this, it
4126 will cause infinite recursion. */
4127 if (block != current_block)
4129 if (block != origin)
4130 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);