1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
38 #include "coretypes.h"
40 #include "rtl-error.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
53 #include "basic-block.h"
57 #include "integrate.h"
58 #include "langhooks.h"
60 #include "common/common-target.h"
61 #include "cfglayout.h"
63 #include "tree-pass.h"
69 #include "bb-reorder.h"
71 /* So we can assign to cfun in this file. */
74 #ifndef STACK_ALIGNMENT_NEEDED
75 #define STACK_ALIGNMENT_NEEDED 1
78 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
85 #define NAME__MAIN "__main"
88 /* Round a value to the lowest integer less than it that is a multiple of
89 the required alignment. Avoid using division in case the value is
90 negative. Assume the alignment is a power of two. */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93 /* Similar, but round to the next highest integer that meets the
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97 /* Nonzero if function being compiled doesn't contain any calls
98 (ignoring the prologue and epilogue). This is set prior to
99 local register allocation and is valid for the remaining
101 int current_function_is_leaf;
103 /* Nonzero if function being compiled doesn't modify the stack pointer
104 (ignoring the prologue and epilogue). This is only valid after
105 pass_stack_ptr_mod has run. */
106 int current_function_sp_is_unchanging;
108 /* Nonzero if the function being compiled is a leaf function which only
109 uses leaf registers. This is valid after reload (specifically after
110 sched2) and is useful only if the port defines LEAF_REGISTERS. */
111 int current_function_uses_only_leaf_regs;
113 /* Nonzero once virtual register instantiation has been done.
114 assign_stack_local uses frame_pointer_rtx when this is nonzero.
115 calls.c:emit_library_call_value_1 uses it to set up
116 post-instantiation libcalls. */
117 int virtuals_instantiated;
119 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
120 static GTY(()) int funcdef_no;
122 /* These variables hold pointers to functions to create and destroy
123 target specific, per-function data structures. */
124 struct machine_function * (*init_machine_status) (void);
126 /* The currently compiled function. */
127 struct function *cfun = 0;
129 /* These hashes record the prologue and epilogue insns. */
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t prologue_insn_hash;
132 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
133 htab_t epilogue_insn_hash;
136 htab_t types_used_by_vars_hash = NULL;
137 VEC(tree,gc) *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static struct temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, enum machine_mode, tree);
144 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
151 static bool contains (const_rtx, htab_t);
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
170 push_function_context (void)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
199 free_after_parsing (struct function *f)
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 free (crtl->emit.regno_pointer_align);
216 memset (crtl, 0, sizeof (struct rtl_data));
221 regno_reg_rtx = NULL;
222 insn_locators_free ();
225 /* Return size needed for stack frame based on slots so far allocated.
226 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
227 the caller may have to do that. */
230 get_frame_size (void)
232 if (FRAME_GROWS_DOWNWARD)
233 return -frame_offset;
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239 the signed target pointer arithmetics for function FUNC. Otherwise
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
245 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
247 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248 /* Leave room for the fixed part of the frame. */
249 - 64 * UNITS_PER_WORD)
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects too large");
259 /* Return stack slot alignment in bits for TYPE and MODE. */
262 get_stack_local_alignment (tree type, enum machine_mode mode)
264 unsigned int alignment;
267 alignment = BIGGEST_ALIGNMENT;
269 alignment = GET_MODE_ALIGNMENT (mode);
271 /* Allow the frond-end to (possibly) increase the alignment of this
274 type = lang_hooks.types.type_for_mode (mode, 0);
276 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 /* Determine whether it is possible to fit a stack slot of size SIZE and
280 alignment ALIGNMENT into an area in the stack frame that starts at
281 frame offset START and has a length of LENGTH. If so, store the frame
282 offset to be used for the stack slot in *POFFSET and return true;
283 return false otherwise. This function will extend the frame size when
284 given a start/length pair that lies at the end of the frame. */
287 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
288 HOST_WIDE_INT size, unsigned int alignment,
289 HOST_WIDE_INT *poffset)
291 HOST_WIDE_INT this_frame_offset;
292 int frame_off, frame_alignment, frame_phase;
294 /* Calculate how many bytes the start of local variables is off from
296 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
297 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
298 frame_phase = frame_off ? frame_alignment - frame_off : 0;
300 /* Round the frame offset to the specified alignment. */
302 /* We must be careful here, since FRAME_OFFSET might be negative and
303 division with a negative dividend isn't as well defined as we might
304 like. So we instead assume that ALIGNMENT is a power of two and
305 use logical operations which are unambiguous. */
306 if (FRAME_GROWS_DOWNWARD)
308 = (FLOOR_ROUND (start + length - size - frame_phase,
309 (unsigned HOST_WIDE_INT) alignment)
313 = (CEIL_ROUND (start - frame_phase,
314 (unsigned HOST_WIDE_INT) alignment)
317 /* See if it fits. If this space is at the edge of the frame,
318 consider extending the frame to make it fit. Our caller relies on
319 this when allocating a new slot. */
320 if (frame_offset == start && this_frame_offset < frame_offset)
321 frame_offset = this_frame_offset;
322 else if (this_frame_offset < start)
324 else if (start + length == frame_offset
325 && this_frame_offset + size > start + length)
326 frame_offset = this_frame_offset + size;
327 else if (this_frame_offset + size > start + length)
330 *poffset = this_frame_offset;
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
339 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
341 struct frame_space *space = ggc_alloc_frame_space ();
342 space->next = crtl->frame_space_list;
343 crtl->frame_space_list = space;
344 space->start = start;
345 space->length = end - start;
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
363 We do not round to stack_boundary here. */
366 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
370 int bigend_correction = 0;
371 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
372 unsigned int alignment, alignment_in_bits;
376 alignment = get_stack_local_alignment (NULL, mode);
377 alignment /= BITS_PER_UNIT;
379 else if (align == -1)
381 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
382 size = CEIL_ROUND (size, alignment);
384 else if (align == -2)
385 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
387 alignment = align / BITS_PER_UNIT;
389 alignment_in_bits = alignment * BITS_PER_UNIT;
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
394 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
395 alignment = alignment_in_bits / BITS_PER_UNIT;
398 if (SUPPORTS_STACK_ALIGNMENT)
400 if (crtl->stack_alignment_estimated < alignment_in_bits)
402 if (!crtl->stack_realign_processed)
403 crtl->stack_alignment_estimated = alignment_in_bits;
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
411 gcc_assert (!crtl->stack_realign_finalized);
412 if (!crtl->stack_realign_needed)
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
419 || (crtl->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode)));
421 alignment_in_bits = crtl->stack_alignment_estimated;
422 alignment = alignment_in_bits / BITS_PER_UNIT;
428 if (crtl->stack_alignment_needed < alignment_in_bits)
429 crtl->stack_alignment_needed = alignment_in_bits;
430 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
431 crtl->max_used_stack_slot_alignment = alignment_in_bits;
433 if (mode != BLKmode || size != 0)
435 if (kind & ASLK_RECORD_PAD)
437 struct frame_space **psp;
439 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
441 struct frame_space *space = *psp;
442 if (!try_fit_stack_local (space->start, space->length, size,
443 alignment, &slot_offset))
446 if (slot_offset > space->start)
447 add_frame_space (space->start, slot_offset);
448 if (slot_offset + size < space->start + space->length)
449 add_frame_space (slot_offset + size,
450 space->start + space->length);
455 else if (!STACK_ALIGNMENT_NEEDED)
457 slot_offset = frame_offset;
461 old_frame_offset = frame_offset;
463 if (FRAME_GROWS_DOWNWARD)
465 frame_offset -= size;
466 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
468 if (kind & ASLK_RECORD_PAD)
470 if (slot_offset > frame_offset)
471 add_frame_space (frame_offset, slot_offset);
472 if (slot_offset + size < old_frame_offset)
473 add_frame_space (slot_offset + size, old_frame_offset);
478 frame_offset += size;
479 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
481 if (kind & ASLK_RECORD_PAD)
483 if (slot_offset > old_frame_offset)
484 add_frame_space (old_frame_offset, slot_offset);
485 if (slot_offset + size < frame_offset)
486 add_frame_space (slot_offset + size, frame_offset);
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
493 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
494 bigend_correction = size - GET_MODE_SIZE (mode);
496 /* If we have already instantiated virtual registers, return the actual
497 address relative to the frame pointer. */
498 if (virtuals_instantiated)
499 addr = plus_constant (frame_pointer_rtx,
501 (slot_offset + bigend_correction
502 + STARTING_FRAME_OFFSET, Pmode));
504 addr = plus_constant (virtual_stack_vars_rtx,
506 (slot_offset + bigend_correction,
509 x = gen_rtx_MEM (mode, addr);
510 set_mem_align (x, alignment_in_bits);
511 MEM_NOTRAP_P (x) = 1;
514 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
516 if (frame_offset_overflow (frame_offset, current_function_decl))
522 /* Wrap up assign_stack_local_1 with last parameter as false. */
525 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
527 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
531 /* In order to evaluate some expressions, such as function calls returning
532 structures in memory, we need to temporarily allocate stack locations.
533 We record each allocated temporary in the following structure.
535 Associated with each temporary slot is a nesting level. When we pop up
536 one level, all temporaries associated with the previous level are freed.
537 Normally, all temporaries are freed after the execution of the statement
538 in which they were created. However, if we are inside a ({...}) grouping,
539 the result may be in a temporary and hence must be preserved. If the
540 result could be in a temporary, we preserve it if we can determine which
541 one it is in. If we cannot determine which temporary may contain the
542 result, all temporaries are preserved. A temporary is preserved by
543 pretending it was allocated at the previous nesting level.
545 Automatic variables are also assigned temporary slots, at the nesting
546 level where they are defined. They are marked a "kept" so that
547 free_temp_slots will not free them. */
549 struct GTY(()) temp_slot {
550 /* Points to next temporary slot. */
551 struct temp_slot *next;
552 /* Points to previous temporary slot. */
553 struct temp_slot *prev;
554 /* The rtx to used to reference the slot. */
556 /* The size, in units, of the slot. */
558 /* The type of the object in the slot, or zero if it doesn't correspond
559 to a type. We use this to determine whether a slot can be reused.
560 It can be reused if objects of the type of the new slot will always
561 conflict with objects of the type of the old slot. */
563 /* The alignment (in bits) of the slot. */
565 /* Nonzero if this temporary is currently in use. */
567 /* Nonzero if this temporary has its address taken. */
569 /* Nesting level at which this slot is being used. */
571 /* Nonzero if this should survive a call to free_temp_slots. */
573 /* The offset of the slot from the frame_pointer, including extra space
574 for alignment. This info is for combine_temp_slots. */
575 HOST_WIDE_INT base_offset;
576 /* The size of the slot, including extra space for alignment. This
577 info is for combine_temp_slots. */
578 HOST_WIDE_INT full_size;
581 /* A table of addresses that represent a stack slot. The table is a mapping
582 from address RTXen to a temp slot. */
583 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
585 /* Entry for the above hash table. */
586 struct GTY(()) temp_slot_address_entry {
589 struct temp_slot *temp_slot;
592 /* Removes temporary slot TEMP from LIST. */
595 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
598 temp->next->prev = temp->prev;
600 temp->prev->next = temp->next;
604 temp->prev = temp->next = NULL;
607 /* Inserts temporary slot TEMP to LIST. */
610 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
614 (*list)->prev = temp;
619 /* Returns the list of used temp slots at LEVEL. */
621 static struct temp_slot **
622 temp_slots_at_level (int level)
624 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
625 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
627 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
630 /* Returns the maximal temporary slot level. */
633 max_slot_level (void)
635 if (!used_temp_slots)
638 return VEC_length (temp_slot_p, used_temp_slots) - 1;
641 /* Moves temporary slot TEMP to LEVEL. */
644 move_slot_to_level (struct temp_slot *temp, int level)
646 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
647 insert_slot_to_list (temp, temp_slots_at_level (level));
651 /* Make temporary slot TEMP available. */
654 make_slot_available (struct temp_slot *temp)
656 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
657 insert_slot_to_list (temp, &avail_temp_slots);
662 /* Compute the hash value for an address -> temp slot mapping.
663 The value is cached on the mapping entry. */
665 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
667 int do_not_record = 0;
668 return hash_rtx (t->address, GET_MODE (t->address),
669 &do_not_record, NULL, false);
672 /* Return the hash value for an address -> temp slot mapping. */
674 temp_slot_address_hash (const void *p)
676 const struct temp_slot_address_entry *t;
677 t = (const struct temp_slot_address_entry *) p;
681 /* Compare two address -> temp slot mapping entries. */
683 temp_slot_address_eq (const void *p1, const void *p2)
685 const struct temp_slot_address_entry *t1, *t2;
686 t1 = (const struct temp_slot_address_entry *) p1;
687 t2 = (const struct temp_slot_address_entry *) p2;
688 return exp_equiv_p (t1->address, t2->address, 0, true);
691 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
693 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
696 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
697 t->address = address;
698 t->temp_slot = temp_slot;
699 t->hash = temp_slot_address_compute_hash (t);
700 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
704 /* Remove an address -> temp slot mapping entry if the temp slot is
705 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
707 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
709 const struct temp_slot_address_entry *t;
710 t = (const struct temp_slot_address_entry *) *slot;
711 if (! t->temp_slot->in_use)
716 /* Remove all mappings of addresses to unused temp slots. */
718 remove_unused_temp_slot_addresses (void)
720 htab_traverse (temp_slot_address_table,
721 remove_unused_temp_slot_addresses_1,
725 /* Find the temp slot corresponding to the object at address X. */
727 static struct temp_slot *
728 find_temp_slot_from_address (rtx x)
731 struct temp_slot_address_entry tmp, *t;
733 /* First try the easy way:
734 See if X exists in the address -> temp slot mapping. */
736 tmp.temp_slot = NULL;
737 tmp.hash = temp_slot_address_compute_hash (&tmp);
738 t = (struct temp_slot_address_entry *)
739 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
743 /* If we have a sum involving a register, see if it points to a temp
745 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
746 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
748 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
749 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
752 /* Last resort: Address is a virtual stack var address. */
753 if (GET_CODE (x) == PLUS
754 && XEXP (x, 0) == virtual_stack_vars_rtx
755 && CONST_INT_P (XEXP (x, 1)))
758 for (i = max_slot_level (); i >= 0; i--)
759 for (p = *temp_slots_at_level (i); p; p = p->next)
761 if (INTVAL (XEXP (x, 1)) >= p->base_offset
762 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
770 /* Allocate a temporary stack slot and record it for possible later
773 MODE is the machine mode to be given to the returned rtx.
775 SIZE is the size in units of the space required. We do no rounding here
776 since assign_stack_local will do any required rounding.
778 KEEP is 1 if this slot is to be retained after a call to
779 free_temp_slots. Automatic variables for a block are allocated
780 with this flag. KEEP values of 2 or 3 were needed respectively
781 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
782 or for SAVE_EXPRs, but they are now unused.
784 TYPE is the type that will be used for the stack slot. */
787 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
791 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
794 /* If SIZE is -1 it means that somebody tried to allocate a temporary
795 of a variable size. */
796 gcc_assert (size != -1);
798 /* These are now unused. */
799 gcc_assert (keep <= 1);
801 align = get_stack_local_alignment (type, mode);
803 /* Try to find an available, already-allocated temporary of the proper
804 mode which meets the size and alignment requirements. Choose the
805 smallest one with the closest alignment.
807 If assign_stack_temp is called outside of the tree->rtl expansion,
808 we cannot reuse the stack slots (that may still refer to
809 VIRTUAL_STACK_VARS_REGNUM). */
810 if (!virtuals_instantiated)
812 for (p = avail_temp_slots; p; p = p->next)
814 if (p->align >= align && p->size >= size
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0 || best_p->size > p->size
818 || (best_p->size == p->size && best_p->align > p->align)))
820 if (p->align == align && p->size == size)
823 cut_slot_from_list (selected, &avail_temp_slots);
832 /* Make our best, if any, the one to use. */
836 cut_slot_from_list (selected, &avail_temp_slots);
838 /* If there are enough aligned bytes left over, make them into a new
839 temp_slot so that the extra bytes don't get wasted. Do this only
840 for BLKmode slots, so that we can be sure of the alignment. */
841 if (GET_MODE (best_p->slot) == BLKmode)
843 int alignment = best_p->align / BITS_PER_UNIT;
844 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
846 if (best_p->size - rounded_size >= alignment)
848 p = ggc_alloc_temp_slot ();
849 p->in_use = p->addr_taken = 0;
850 p->size = best_p->size - rounded_size;
851 p->base_offset = best_p->base_offset + rounded_size;
852 p->full_size = best_p->full_size - rounded_size;
853 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
854 p->align = best_p->align;
855 p->type = best_p->type;
856 insert_slot_to_list (p, &avail_temp_slots);
858 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
861 best_p->size = rounded_size;
862 best_p->full_size = rounded_size;
867 /* If we still didn't find one, make a new temporary. */
870 HOST_WIDE_INT frame_offset_old = frame_offset;
872 p = ggc_alloc_temp_slot ();
874 /* We are passing an explicit alignment request to assign_stack_local.
875 One side effect of that is assign_stack_local will not round SIZE
876 to ensure the frame offset remains suitably aligned.
878 So for requests which depended on the rounding of SIZE, we go ahead
879 and round it now. We also make sure ALIGNMENT is at least
880 BIGGEST_ALIGNMENT. */
881 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
882 p->slot = assign_stack_local_1 (mode,
892 /* The following slot size computation is necessary because we don't
893 know the actual size of the temporary slot until assign_stack_local
894 has performed all the frame alignment and size rounding for the
895 requested temporary. Note that extra space added for alignment
896 can be either above or below this stack slot depending on which
897 way the frame grows. We include the extra space if and only if it
898 is above this slot. */
899 if (FRAME_GROWS_DOWNWARD)
900 p->size = frame_offset_old - frame_offset;
904 /* Now define the fields used by combine_temp_slots. */
905 if (FRAME_GROWS_DOWNWARD)
907 p->base_offset = frame_offset;
908 p->full_size = frame_offset_old - frame_offset;
912 p->base_offset = frame_offset_old;
913 p->full_size = frame_offset - frame_offset_old;
923 p->level = temp_slot_level;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
943 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
944 gcc_checking_assert (!MEM_SCALAR_P (slot) && !MEM_IN_STRUCT_P (slot));
945 if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
946 MEM_IN_STRUCT_P (slot) = 1;
948 MEM_SCALAR_P (slot) = 1;
950 MEM_NOTRAP_P (slot) = 1;
955 /* Allocate a temporary stack slot and record it for possible later
956 reuse. First three arguments are same as in preceding function. */
959 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
961 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
964 /* Assign a temporary.
965 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
966 and so that should be used in error messages. In either case, we
967 allocate of the given type.
968 KEEP is as for assign_stack_temp.
969 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
970 it is 0 if a register is OK.
971 DONT_PROMOTE is 1 if we should not promote values in register
975 assign_temp (tree type_or_decl, int keep, int memory_required,
976 int dont_promote ATTRIBUTE_UNUSED)
979 enum machine_mode mode;
984 if (DECL_P (type_or_decl))
985 decl = type_or_decl, type = TREE_TYPE (decl);
987 decl = NULL, type = type_or_decl;
989 mode = TYPE_MODE (type);
991 unsignedp = TYPE_UNSIGNED (type);
994 if (mode == BLKmode || memory_required)
996 HOST_WIDE_INT size = int_size_in_bytes (type);
999 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
1000 problems with allocating the stack space. */
1004 /* Unfortunately, we don't yet know how to allocate variable-sized
1005 temporaries. However, sometimes we can find a fixed upper limit on
1006 the size, so try that instead. */
1007 else if (size == -1)
1008 size = max_int_size_in_bytes (type);
1010 /* The size of the temporary may be too large to fit into an integer. */
1011 /* ??? Not sure this should happen except for user silliness, so limit
1012 this to things that aren't compiler-generated temporaries. The
1013 rest of the time we'll die in assign_stack_temp_for_type. */
1014 if (decl && size == -1
1015 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1017 error ("size of variable %q+D is too large", decl);
1021 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1027 mode = promote_mode (type, mode, &unsignedp);
1030 return gen_reg_rtx (mode);
1033 /* Combine temporary stack slots which are adjacent on the stack.
1035 This allows for better use of already allocated stack space. This is only
1036 done for BLKmode slots because we can be sure that we won't have alignment
1037 problems in this case. */
1040 combine_temp_slots (void)
1042 struct temp_slot *p, *q, *next, *next_q;
1045 /* We can't combine slots, because the information about which slot
1046 is in which alias set will be lost. */
1047 if (flag_strict_aliasing)
1050 /* If there are a lot of temp slots, don't do anything unless
1051 high levels of optimization. */
1052 if (! flag_expensive_optimizations)
1053 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1054 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1057 for (p = avail_temp_slots; p; p = next)
1063 if (GET_MODE (p->slot) != BLKmode)
1066 for (q = p->next; q; q = next_q)
1072 if (GET_MODE (q->slot) != BLKmode)
1075 if (p->base_offset + p->full_size == q->base_offset)
1077 /* Q comes after P; combine Q into P. */
1079 p->full_size += q->full_size;
1082 else if (q->base_offset + q->full_size == p->base_offset)
1084 /* P comes after Q; combine P into Q. */
1086 q->full_size += p->full_size;
1091 cut_slot_from_list (q, &avail_temp_slots);
1094 /* Either delete P or advance past it. */
1096 cut_slot_from_list (p, &avail_temp_slots);
1100 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1101 slot that previously was known by OLD_RTX. */
1104 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1106 struct temp_slot *p;
1108 if (rtx_equal_p (old_rtx, new_rtx))
1111 p = find_temp_slot_from_address (old_rtx);
1113 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1114 NEW_RTX is a register, see if one operand of the PLUS is a
1115 temporary location. If so, NEW_RTX points into it. Otherwise,
1116 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1117 in common between them. If so, try a recursive call on those
1121 if (GET_CODE (old_rtx) != PLUS)
1124 if (REG_P (new_rtx))
1126 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1127 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1130 else if (GET_CODE (new_rtx) != PLUS)
1133 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1134 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1135 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1136 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1137 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1138 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1139 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1140 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1145 /* Otherwise add an alias for the temp's address. */
1146 insert_temp_slot_address (new_rtx, p);
1149 /* If X could be a reference to a temporary slot, mark the fact that its
1150 address was taken. */
1153 mark_temp_addr_taken (rtx x)
1155 struct temp_slot *p;
1160 /* If X is not in memory or is at a constant address, it cannot be in
1161 a temporary slot. */
1162 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1165 p = find_temp_slot_from_address (XEXP (x, 0));
1170 /* If X could be a reference to a temporary slot, mark that slot as
1171 belonging to the to one level higher than the current level. If X
1172 matched one of our slots, just mark that one. Otherwise, we can't
1173 easily predict which it is, so upgrade all of them. Kept slots
1174 need not be touched.
1176 This is called when an ({...}) construct occurs and a statement
1177 returns a value in memory. */
1180 preserve_temp_slots (rtx x)
1182 struct temp_slot *p = 0, *next;
1184 /* If there is no result, we still might have some objects whose address
1185 were taken, so we need to make sure they stay around. */
1188 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1193 move_slot_to_level (p, temp_slot_level - 1);
1199 /* If X is a register that is being used as a pointer, see if we have
1200 a temporary slot we know it points to. To be consistent with
1201 the code below, we really should preserve all non-kept slots
1202 if we can't find a match, but that seems to be much too costly. */
1203 if (REG_P (x) && REG_POINTER (x))
1204 p = find_temp_slot_from_address (x);
1206 /* If X is not in memory or is at a constant address, it cannot be in
1207 a temporary slot, but it can contain something whose address was
1209 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1211 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1216 move_slot_to_level (p, temp_slot_level - 1);
1222 /* First see if we can find a match. */
1224 p = find_temp_slot_from_address (XEXP (x, 0));
1228 /* Move everything at our level whose address was taken to our new
1229 level in case we used its address. */
1230 struct temp_slot *q;
1232 if (p->level == temp_slot_level)
1234 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1238 if (p != q && q->addr_taken)
1239 move_slot_to_level (q, temp_slot_level - 1);
1242 move_slot_to_level (p, temp_slot_level - 1);
1248 /* Otherwise, preserve all non-kept slots at this level. */
1249 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1254 move_slot_to_level (p, temp_slot_level - 1);
1258 /* Free all temporaries used so far. This is normally called at the
1259 end of generating code for a statement. */
1262 free_temp_slots (void)
1264 struct temp_slot *p, *next;
1265 bool some_available = false;
1267 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1273 make_slot_available (p);
1274 some_available = true;
1280 remove_unused_temp_slot_addresses ();
1281 combine_temp_slots ();
1285 /* Push deeper into the nesting level for stack temporaries. */
1288 push_temp_slots (void)
1293 /* Pop a temporary nesting level. All slots in use in the current level
1297 pop_temp_slots (void)
1299 struct temp_slot *p, *next;
1300 bool some_available = false;
1302 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1305 make_slot_available (p);
1306 some_available = true;
1311 remove_unused_temp_slot_addresses ();
1312 combine_temp_slots ();
1318 /* Initialize temporary slots. */
1321 init_temp_slots (void)
1323 /* We have not allocated any temporaries yet. */
1324 avail_temp_slots = 0;
1325 used_temp_slots = 0;
1326 temp_slot_level = 0;
1328 /* Set up the table to map addresses to temp slots. */
1329 if (! temp_slot_address_table)
1330 temp_slot_address_table = htab_create_ggc (32,
1331 temp_slot_address_hash,
1332 temp_slot_address_eq,
1335 htab_empty (temp_slot_address_table);
1338 /* These routines are responsible for converting virtual register references
1339 to the actual hard register references once RTL generation is complete.
1341 The following four variables are used for communication between the
1342 routines. They contain the offsets of the virtual registers from their
1343 respective hard registers. */
1345 static int in_arg_offset;
1346 static int var_offset;
1347 static int dynamic_offset;
1348 static int out_arg_offset;
1349 static int cfa_offset;
1351 /* In most machines, the stack pointer register is equivalent to the bottom
1354 #ifndef STACK_POINTER_OFFSET
1355 #define STACK_POINTER_OFFSET 0
1358 /* If not defined, pick an appropriate default for the offset of dynamically
1359 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1360 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1362 #ifndef STACK_DYNAMIC_OFFSET
1364 /* The bottom of the stack points to the actual arguments. If
1365 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1366 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1367 stack space for register parameters is not pushed by the caller, but
1368 rather part of the fixed stack areas and hence not included in
1369 `crtl->outgoing_args_size'. Nevertheless, we must allow
1370 for it when allocating stack dynamic objects. */
1372 #if defined(REG_PARM_STACK_SPACE)
1373 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1374 ((ACCUMULATE_OUTGOING_ARGS \
1375 ? (crtl->outgoing_args_size \
1376 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1377 : REG_PARM_STACK_SPACE (FNDECL))) \
1378 : 0) + (STACK_POINTER_OFFSET))
1380 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1381 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1382 + (STACK_POINTER_OFFSET))
1387 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1388 is a virtual register, return the equivalent hard register and set the
1389 offset indirectly through the pointer. Otherwise, return 0. */
1392 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1395 HOST_WIDE_INT offset;
1397 if (x == virtual_incoming_args_rtx)
1399 if (stack_realign_drap)
1401 /* Replace virtual_incoming_args_rtx with internal arg
1402 pointer if DRAP is used to realign stack. */
1403 new_rtx = crtl->args.internal_arg_pointer;
1407 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1409 else if (x == virtual_stack_vars_rtx)
1410 new_rtx = frame_pointer_rtx, offset = var_offset;
1411 else if (x == virtual_stack_dynamic_rtx)
1412 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1413 else if (x == virtual_outgoing_args_rtx)
1414 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1415 else if (x == virtual_cfa_rtx)
1417 #ifdef FRAME_POINTER_CFA_OFFSET
1418 new_rtx = frame_pointer_rtx;
1420 new_rtx = arg_pointer_rtx;
1422 offset = cfa_offset;
1424 else if (x == virtual_preferred_stack_boundary_rtx)
1426 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1436 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1437 Instantiate any virtual registers present inside of *LOC. The expression
1438 is simplified, as much as possible, but is not to be considered "valid"
1439 in any sense implied by the target. If any change is made, set CHANGED
1443 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1445 HOST_WIDE_INT offset;
1446 bool *changed = (bool *) data;
1453 switch (GET_CODE (x))
1456 new_rtx = instantiate_new_reg (x, &offset);
1459 *loc = plus_constant (new_rtx, offset);
1466 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1469 new_rtx = plus_constant (new_rtx, offset);
1470 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1476 /* FIXME -- from old code */
1477 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1478 we can commute the PLUS and SUBREG because pointers into the
1479 frame are well-behaved. */
1489 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1490 matches the predicate for insn CODE operand OPERAND. */
1493 safe_insn_predicate (int code, int operand, rtx x)
1495 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1498 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1499 registers present inside of insn. The result will be a valid insn. */
1502 instantiate_virtual_regs_in_insn (rtx insn)
1504 HOST_WIDE_INT offset;
1506 bool any_change = false;
1507 rtx set, new_rtx, x, seq;
1509 /* There are some special cases to be handled first. */
1510 set = single_set (insn);
1513 /* We're allowed to assign to a virtual register. This is interpreted
1514 to mean that the underlying register gets assigned the inverse
1515 transformation. This is used, for example, in the handling of
1517 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1522 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1523 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1525 x = force_operand (x, new_rtx);
1527 emit_move_insn (new_rtx, x);
1532 emit_insn_before (seq, insn);
1537 /* Handle a straight copy from a virtual register by generating a
1538 new add insn. The difference between this and falling through
1539 to the generic case is avoiding a new pseudo and eliminating a
1540 move insn in the initial rtl stream. */
1541 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1542 if (new_rtx && offset != 0
1543 && REG_P (SET_DEST (set))
1544 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1548 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1549 new_rtx, GEN_INT (offset), SET_DEST (set),
1550 1, OPTAB_LIB_WIDEN);
1551 if (x != SET_DEST (set))
1552 emit_move_insn (SET_DEST (set), x);
1557 emit_insn_before (seq, insn);
1562 extract_insn (insn);
1563 insn_code = INSN_CODE (insn);
1565 /* Handle a plus involving a virtual register by determining if the
1566 operands remain valid if they're modified in place. */
1567 if (GET_CODE (SET_SRC (set)) == PLUS
1568 && recog_data.n_operands >= 3
1569 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1570 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1571 && CONST_INT_P (recog_data.operand[2])
1572 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1574 offset += INTVAL (recog_data.operand[2]);
1576 /* If the sum is zero, then replace with a plain move. */
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1582 emit_move_insn (SET_DEST (set), new_rtx);
1586 emit_insn_before (seq, insn);
1591 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1593 /* Using validate_change and apply_change_group here leaves
1594 recog_data in an invalid state. Since we know exactly what
1595 we want to check, do those two by hand. */
1596 if (safe_insn_predicate (insn_code, 1, new_rtx)
1597 && safe_insn_predicate (insn_code, 2, x))
1599 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1600 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1603 /* Fall through into the regular operand fixup loop in
1604 order to take care of operands other than 1 and 2. */
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1614 /* In the general case, we expect virtual registers to appear only in
1615 operands, and then only as either bare registers or inside memories. */
1616 for (i = 0; i < recog_data.n_operands; ++i)
1618 x = recog_data.operand[i];
1619 switch (GET_CODE (x))
1623 rtx addr = XEXP (x, 0);
1624 bool changed = false;
1626 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1631 x = replace_equiv_address (x, addr);
1632 /* It may happen that the address with the virtual reg
1633 was valid (e.g. based on the virtual stack reg, which might
1634 be acceptable to the predicates with all offsets), whereas
1635 the address now isn't anymore, for instance when the address
1636 is still offsetted, but the base reg isn't virtual-stack-reg
1637 anymore. Below we would do a force_reg on the whole operand,
1638 but this insn might actually only accept memory. Hence,
1639 before doing that last resort, try to reload the address into
1640 a register, so this operand stays a MEM. */
1641 if (!safe_insn_predicate (insn_code, i, x))
1643 addr = force_reg (GET_MODE (addr), addr);
1644 x = replace_equiv_address (x, addr);
1649 emit_insn_before (seq, insn);
1654 new_rtx = instantiate_new_reg (x, &offset);
1655 if (new_rtx == NULL)
1663 /* Careful, special mode predicates may have stuff in
1664 insn_data[insn_code].operand[i].mode that isn't useful
1665 to us for computing a new value. */
1666 /* ??? Recognize address_operand and/or "p" constraints
1667 to see if (plus new offset) is a valid before we put
1668 this through expand_simple_binop. */
1669 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1670 GEN_INT (offset), NULL_RTX,
1671 1, OPTAB_LIB_WIDEN);
1674 emit_insn_before (seq, insn);
1679 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1680 if (new_rtx == NULL)
1685 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1686 GEN_INT (offset), NULL_RTX,
1687 1, OPTAB_LIB_WIDEN);
1690 emit_insn_before (seq, insn);
1692 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1693 GET_MODE (new_rtx), SUBREG_BYTE (x));
1701 /* At this point, X contains the new value for the operand.
1702 Validate the new value vs the insn predicate. Note that
1703 asm insns will have insn_code -1 here. */
1704 if (!safe_insn_predicate (insn_code, i, x))
1709 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1710 x = copy_to_reg (x);
1713 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1717 emit_insn_before (seq, insn);
1720 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1726 /* Propagate operand changes into the duplicates. */
1727 for (i = 0; i < recog_data.n_dups; ++i)
1728 *recog_data.dup_loc[i]
1729 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1731 /* Force re-recognition of the instruction for validation. */
1732 INSN_CODE (insn) = -1;
1735 if (asm_noperands (PATTERN (insn)) >= 0)
1737 if (!check_asm_operands (PATTERN (insn)))
1739 error_for_asm (insn, "impossible constraint in %<asm%>");
1745 if (recog_memoized (insn) < 0)
1746 fatal_insn_not_found (insn);
1750 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1751 do any instantiation required. */
1754 instantiate_decl_rtl (rtx x)
1761 /* If this is a CONCAT, recurse for the pieces. */
1762 if (GET_CODE (x) == CONCAT)
1764 instantiate_decl_rtl (XEXP (x, 0));
1765 instantiate_decl_rtl (XEXP (x, 1));
1769 /* If this is not a MEM, no need to do anything. Similarly if the
1770 address is a constant or a register that is not a virtual register. */
1775 if (CONSTANT_P (addr)
1777 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1778 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1781 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1784 /* Helper for instantiate_decls called via walk_tree: Process all decls
1785 in the given DECL_VALUE_EXPR. */
1788 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1796 if (DECL_RTL_SET_P (t))
1797 instantiate_decl_rtl (DECL_RTL (t));
1798 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1799 && DECL_INCOMING_RTL (t))
1800 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1801 if ((TREE_CODE (t) == VAR_DECL
1802 || TREE_CODE (t) == RESULT_DECL)
1803 && DECL_HAS_VALUE_EXPR_P (t))
1805 tree v = DECL_VALUE_EXPR (t);
1806 walk_tree (&v, instantiate_expr, NULL, NULL);
1813 /* Subroutine of instantiate_decls: Process all decls in the given
1814 BLOCK node and all its subblocks. */
1817 instantiate_decls_1 (tree let)
1821 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1823 if (DECL_RTL_SET_P (t))
1824 instantiate_decl_rtl (DECL_RTL (t));
1825 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1827 tree v = DECL_VALUE_EXPR (t);
1828 walk_tree (&v, instantiate_expr, NULL, NULL);
1832 /* Process all subblocks. */
1833 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1834 instantiate_decls_1 (t);
1837 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1838 all virtual registers in their DECL_RTL's. */
1841 instantiate_decls (tree fndecl)
1846 /* Process all parameters of the function. */
1847 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1849 instantiate_decl_rtl (DECL_RTL (decl));
1850 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1851 if (DECL_HAS_VALUE_EXPR_P (decl))
1853 tree v = DECL_VALUE_EXPR (decl);
1854 walk_tree (&v, instantiate_expr, NULL, NULL);
1858 if ((decl = DECL_RESULT (fndecl))
1859 && TREE_CODE (decl) == RESULT_DECL)
1861 if (DECL_RTL_SET_P (decl))
1862 instantiate_decl_rtl (DECL_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 /* Now process all variables defined in the function or its subblocks. */
1871 instantiate_decls_1 (DECL_INITIAL (fndecl));
1873 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1874 if (DECL_RTL_SET_P (decl))
1875 instantiate_decl_rtl (DECL_RTL (decl));
1876 VEC_free (tree, gc, cfun->local_decls);
1879 /* Pass through the INSNS of function FNDECL and convert virtual register
1880 references to hard register references. */
1883 instantiate_virtual_regs (void)
1887 /* Compute the offsets to use for this function. */
1888 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1889 var_offset = STARTING_FRAME_OFFSET;
1890 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1891 out_arg_offset = STACK_POINTER_OFFSET;
1892 #ifdef FRAME_POINTER_CFA_OFFSET
1893 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1895 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1898 /* Initialize recognition, indicating that volatile is OK. */
1901 /* Scan through all the insns, instantiating every virtual register still
1903 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1906 /* These patterns in the instruction stream can never be recognized.
1907 Fortunately, they shouldn't contain virtual registers either. */
1908 if (GET_CODE (PATTERN (insn)) == USE
1909 || GET_CODE (PATTERN (insn)) == CLOBBER
1910 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1911 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1912 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1914 else if (DEBUG_INSN_P (insn))
1915 for_each_rtx (&INSN_VAR_LOCATION (insn),
1916 instantiate_virtual_regs_in_rtx, NULL);
1918 instantiate_virtual_regs_in_insn (insn);
1920 if (INSN_DELETED_P (insn))
1923 for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1925 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1927 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1928 instantiate_virtual_regs_in_rtx, NULL);
1931 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1932 instantiate_decls (current_function_decl);
1934 targetm.instantiate_decls ();
1936 /* Indicate that, from now on, assign_stack_local should use
1937 frame_pointer_rtx. */
1938 virtuals_instantiated = 1;
1943 struct rtl_opt_pass pass_instantiate_virtual_regs =
1949 instantiate_virtual_regs, /* execute */
1952 0, /* static_pass_number */
1953 TV_NONE, /* tv_id */
1954 0, /* properties_required */
1955 0, /* properties_provided */
1956 0, /* properties_destroyed */
1957 0, /* todo_flags_start */
1958 0 /* todo_flags_finish */
1963 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1964 This means a type for which function calls must pass an address to the
1965 function or get an address back from the function.
1966 EXP may be a type node or an expression (whose type is tested). */
1969 aggregate_value_p (const_tree exp, const_tree fntype)
1971 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1972 int i, regno, nregs;
1976 switch (TREE_CODE (fntype))
1980 tree fndecl = get_callee_fndecl (fntype);
1982 ? TREE_TYPE (fndecl)
1983 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1987 fntype = TREE_TYPE (fntype);
1992 case IDENTIFIER_NODE:
1996 /* We don't expect other tree types here. */
2000 if (VOID_TYPE_P (type))
2003 /* If a record should be passed the same as its first (and only) member
2004 don't pass it as an aggregate. */
2005 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2006 return aggregate_value_p (first_field (type), fntype);
2008 /* If the front end has decided that this needs to be passed by
2009 reference, do so. */
2010 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2011 && DECL_BY_REFERENCE (exp))
2014 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2015 if (fntype && TREE_ADDRESSABLE (fntype))
2018 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2019 and thus can't be returned in registers. */
2020 if (TREE_ADDRESSABLE (type))
2023 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2026 if (targetm.calls.return_in_memory (type, fntype))
2029 /* Make sure we have suitable call-clobbered regs to return
2030 the value in; if not, we must return it in memory. */
2031 reg = hard_function_value (type, 0, fntype, 0);
2033 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2038 regno = REGNO (reg);
2039 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2040 for (i = 0; i < nregs; i++)
2041 if (! call_used_regs[regno + i])
2047 /* Return true if we should assign DECL a pseudo register; false if it
2048 should live on the local stack. */
2051 use_register_for_decl (const_tree decl)
2053 if (!targetm.calls.allocate_stack_slots_for_args())
2056 /* Honor volatile. */
2057 if (TREE_SIDE_EFFECTS (decl))
2060 /* Honor addressability. */
2061 if (TREE_ADDRESSABLE (decl))
2064 /* Only register-like things go in registers. */
2065 if (DECL_MODE (decl) == BLKmode)
2068 /* If -ffloat-store specified, don't put explicit float variables
2070 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2071 propagates values across these stores, and it probably shouldn't. */
2072 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2075 /* If we're not interested in tracking debugging information for
2076 this decl, then we can certainly put it in a register. */
2077 if (DECL_IGNORED_P (decl))
2083 if (!DECL_REGISTER (decl))
2086 switch (TREE_CODE (TREE_TYPE (decl)))
2090 case QUAL_UNION_TYPE:
2091 /* When not optimizing, disregard register keyword for variables with
2092 types containing methods, otherwise the methods won't be callable
2093 from the debugger. */
2094 if (TYPE_METHODS (TREE_TYPE (decl)))
2104 /* Return true if TYPE should be passed by invisible reference. */
2107 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2108 tree type, bool named_arg)
2112 /* If this type contains non-trivial constructors, then it is
2113 forbidden for the middle-end to create any new copies. */
2114 if (TREE_ADDRESSABLE (type))
2117 /* GCC post 3.4 passes *all* variable sized types by reference. */
2118 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2121 /* If a record type should be passed the same as its first (and only)
2122 member, use the type and mode of that member. */
2123 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2125 type = TREE_TYPE (first_field (type));
2126 mode = TYPE_MODE (type);
2130 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2134 /* Return true if TYPE, which is passed by reference, should be callee
2135 copied instead of caller copied. */
2138 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2139 tree type, bool named_arg)
2141 if (type && TREE_ADDRESSABLE (type))
2143 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2147 /* Structures to communicate between the subroutines of assign_parms.
2148 The first holds data persistent across all parameters, the second
2149 is cleared out for each parameter. */
2151 struct assign_parm_data_all
2153 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2154 should become a job of the target or otherwise encapsulated. */
2155 CUMULATIVE_ARGS args_so_far_v;
2156 cumulative_args_t args_so_far;
2157 struct args_size stack_args_size;
2158 tree function_result_decl;
2160 rtx first_conversion_insn;
2161 rtx last_conversion_insn;
2162 HOST_WIDE_INT pretend_args_size;
2163 HOST_WIDE_INT extra_pretend_bytes;
2164 int reg_parm_stack_space;
2167 struct assign_parm_data_one
2173 enum machine_mode nominal_mode;
2174 enum machine_mode passed_mode;
2175 enum machine_mode promoted_mode;
2176 struct locate_and_pad_arg_data locate;
2178 BOOL_BITFIELD named_arg : 1;
2179 BOOL_BITFIELD passed_pointer : 1;
2180 BOOL_BITFIELD on_stack : 1;
2181 BOOL_BITFIELD loaded_in_reg : 1;
2184 /* A subroutine of assign_parms. Initialize ALL. */
2187 assign_parms_initialize_all (struct assign_parm_data_all *all)
2189 tree fntype ATTRIBUTE_UNUSED;
2191 memset (all, 0, sizeof (*all));
2193 fntype = TREE_TYPE (current_function_decl);
2195 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2196 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2198 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2199 current_function_decl, -1);
2201 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2203 #ifdef REG_PARM_STACK_SPACE
2204 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2208 /* If ARGS contains entries with complex types, split the entry into two
2209 entries of the component type. Return a new list of substitutions are
2210 needed, else the old list. */
2213 split_complex_args (VEC(tree, heap) **args)
2218 FOR_EACH_VEC_ELT (tree, *args, i, p)
2220 tree type = TREE_TYPE (p);
2221 if (TREE_CODE (type) == COMPLEX_TYPE
2222 && targetm.calls.split_complex_arg (type))
2225 tree subtype = TREE_TYPE (type);
2226 bool addressable = TREE_ADDRESSABLE (p);
2228 /* Rewrite the PARM_DECL's type with its component. */
2230 TREE_TYPE (p) = subtype;
2231 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2232 DECL_MODE (p) = VOIDmode;
2233 DECL_SIZE (p) = NULL;
2234 DECL_SIZE_UNIT (p) = NULL;
2235 /* If this arg must go in memory, put it in a pseudo here.
2236 We can't allow it to go in memory as per normal parms,
2237 because the usual place might not have the imag part
2238 adjacent to the real part. */
2239 DECL_ARTIFICIAL (p) = addressable;
2240 DECL_IGNORED_P (p) = addressable;
2241 TREE_ADDRESSABLE (p) = 0;
2243 VEC_replace (tree, *args, i, p);
2245 /* Build a second synthetic decl. */
2246 decl = build_decl (EXPR_LOCATION (p),
2247 PARM_DECL, NULL_TREE, subtype);
2248 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2249 DECL_ARTIFICIAL (decl) = addressable;
2250 DECL_IGNORED_P (decl) = addressable;
2251 layout_decl (decl, 0);
2252 VEC_safe_insert (tree, heap, *args, ++i, decl);
2257 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2258 the hidden struct return argument, and (abi willing) complex args.
2259 Return the new parameter list. */
2261 static VEC(tree, heap) *
2262 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2264 tree fndecl = current_function_decl;
2265 tree fntype = TREE_TYPE (fndecl);
2266 VEC(tree, heap) *fnargs = NULL;
2269 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2270 VEC_safe_push (tree, heap, fnargs, arg);
2272 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2274 /* If struct value address is treated as the first argument, make it so. */
2275 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2276 && ! cfun->returns_pcc_struct
2277 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2279 tree type = build_pointer_type (TREE_TYPE (fntype));
2282 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2283 PARM_DECL, get_identifier (".result_ptr"), type);
2284 DECL_ARG_TYPE (decl) = type;
2285 DECL_ARTIFICIAL (decl) = 1;
2286 DECL_NAMELESS (decl) = 1;
2287 TREE_CONSTANT (decl) = 1;
2289 DECL_CHAIN (decl) = all->orig_fnargs;
2290 all->orig_fnargs = decl;
2291 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2293 all->function_result_decl = decl;
2296 /* If the target wants to split complex arguments into scalars, do so. */
2297 if (targetm.calls.split_complex_arg)
2298 split_complex_args (&fnargs);
2303 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2304 data for the parameter. Incorporate ABI specifics such as pass-by-
2305 reference and type promotion. */
2308 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2309 struct assign_parm_data_one *data)
2311 tree nominal_type, passed_type;
2312 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2315 memset (data, 0, sizeof (*data));
2317 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2319 data->named_arg = 1; /* No variadic parms. */
2320 else if (DECL_CHAIN (parm))
2321 data->named_arg = 1; /* Not the last non-variadic parm. */
2322 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2323 data->named_arg = 1; /* Only variadic ones are unnamed. */
2325 data->named_arg = 0; /* Treat as variadic. */
2327 nominal_type = TREE_TYPE (parm);
2328 passed_type = DECL_ARG_TYPE (parm);
2330 /* Look out for errors propagating this far. Also, if the parameter's
2331 type is void then its value doesn't matter. */
2332 if (TREE_TYPE (parm) == error_mark_node
2333 /* This can happen after weird syntax errors
2334 or if an enum type is defined among the parms. */
2335 || TREE_CODE (parm) != PARM_DECL
2336 || passed_type == NULL
2337 || VOID_TYPE_P (nominal_type))
2339 nominal_type = passed_type = void_type_node;
2340 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2344 /* Find mode of arg as it is passed, and mode of arg as it should be
2345 during execution of this function. */
2346 passed_mode = TYPE_MODE (passed_type);
2347 nominal_mode = TYPE_MODE (nominal_type);
2349 /* If the parm is to be passed as a transparent union or record, use the
2350 type of the first field for the tests below. We have already verified
2351 that the modes are the same. */
2352 if ((TREE_CODE (passed_type) == UNION_TYPE
2353 || TREE_CODE (passed_type) == RECORD_TYPE)
2354 && TYPE_TRANSPARENT_AGGR (passed_type))
2355 passed_type = TREE_TYPE (first_field (passed_type));
2357 /* See if this arg was passed by invisible reference. */
2358 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2359 passed_type, data->named_arg))
2361 passed_type = nominal_type = build_pointer_type (passed_type);
2362 data->passed_pointer = true;
2363 passed_mode = nominal_mode = Pmode;
2366 /* Find mode as it is passed by the ABI. */
2367 unsignedp = TYPE_UNSIGNED (passed_type);
2368 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2369 TREE_TYPE (current_function_decl), 0);
2372 data->nominal_type = nominal_type;
2373 data->passed_type = passed_type;
2374 data->nominal_mode = nominal_mode;
2375 data->passed_mode = passed_mode;
2376 data->promoted_mode = promoted_mode;
2379 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2382 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2383 struct assign_parm_data_one *data, bool no_rtl)
2385 int varargs_pretend_bytes = 0;
2387 targetm.calls.setup_incoming_varargs (all->args_so_far,
2388 data->promoted_mode,
2390 &varargs_pretend_bytes, no_rtl);
2392 /* If the back-end has requested extra stack space, record how much is
2393 needed. Do not change pretend_args_size otherwise since it may be
2394 nonzero from an earlier partial argument. */
2395 if (varargs_pretend_bytes > 0)
2396 all->pretend_args_size = varargs_pretend_bytes;
2399 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2400 the incoming location of the current parameter. */
2403 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2404 struct assign_parm_data_one *data)
2406 HOST_WIDE_INT pretend_bytes = 0;
2410 if (data->promoted_mode == VOIDmode)
2412 data->entry_parm = data->stack_parm = const0_rtx;
2416 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2417 data->promoted_mode,
2421 if (entry_parm == 0)
2422 data->promoted_mode = data->passed_mode;
2424 /* Determine parm's home in the stack, in case it arrives in the stack
2425 or we should pretend it did. Compute the stack position and rtx where
2426 the argument arrives and its size.
2428 There is one complexity here: If this was a parameter that would
2429 have been passed in registers, but wasn't only because it is
2430 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2431 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2432 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2433 as it was the previous time. */
2434 in_regs = entry_parm != 0;
2435 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2438 if (!in_regs && !data->named_arg)
2440 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2443 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2444 data->promoted_mode,
2445 data->passed_type, true);
2446 in_regs = tem != NULL;
2450 /* If this parameter was passed both in registers and in the stack, use
2451 the copy on the stack. */
2452 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2460 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2461 data->promoted_mode,
2464 data->partial = partial;
2466 /* The caller might already have allocated stack space for the
2467 register parameters. */
2468 if (partial != 0 && all->reg_parm_stack_space == 0)
2470 /* Part of this argument is passed in registers and part
2471 is passed on the stack. Ask the prologue code to extend
2472 the stack part so that we can recreate the full value.
2474 PRETEND_BYTES is the size of the registers we need to store.
2475 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2476 stack space that the prologue should allocate.
2478 Internally, gcc assumes that the argument pointer is aligned
2479 to STACK_BOUNDARY bits. This is used both for alignment
2480 optimizations (see init_emit) and to locate arguments that are
2481 aligned to more than PARM_BOUNDARY bits. We must preserve this
2482 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2483 a stack boundary. */
2485 /* We assume at most one partial arg, and it must be the first
2486 argument on the stack. */
2487 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2489 pretend_bytes = partial;
2490 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2492 /* We want to align relative to the actual stack pointer, so
2493 don't include this in the stack size until later. */
2494 all->extra_pretend_bytes = all->pretend_args_size;
2498 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2499 entry_parm ? data->partial : 0, current_function_decl,
2500 &all->stack_args_size, &data->locate);
2502 /* Update parm_stack_boundary if this parameter is passed in the
2504 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2505 crtl->parm_stack_boundary = data->locate.boundary;
2507 /* Adjust offsets to include the pretend args. */
2508 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2509 data->locate.slot_offset.constant += pretend_bytes;
2510 data->locate.offset.constant += pretend_bytes;
2512 data->entry_parm = entry_parm;
2515 /* A subroutine of assign_parms. If there is actually space on the stack
2516 for this parm, count it in stack_args_size and return true. */
2519 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2520 struct assign_parm_data_one *data)
2522 /* Trivially true if we've no incoming register. */
2523 if (data->entry_parm == NULL)
2525 /* Also true if we're partially in registers and partially not,
2526 since we've arranged to drop the entire argument on the stack. */
2527 else if (data->partial != 0)
2529 /* Also true if the target says that it's passed in both registers
2530 and on the stack. */
2531 else if (GET_CODE (data->entry_parm) == PARALLEL
2532 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2534 /* Also true if the target says that there's stack allocated for
2535 all register parameters. */
2536 else if (all->reg_parm_stack_space > 0)
2538 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2542 all->stack_args_size.constant += data->locate.size.constant;
2543 if (data->locate.size.var)
2544 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2549 /* A subroutine of assign_parms. Given that this parameter is allocated
2550 stack space by the ABI, find it. */
2553 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2555 rtx offset_rtx, stack_parm;
2556 unsigned int align, boundary;
2558 /* If we're passing this arg using a reg, make its stack home the
2559 aligned stack slot. */
2560 if (data->entry_parm)
2561 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2563 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2565 stack_parm = crtl->args.internal_arg_pointer;
2566 if (offset_rtx != const0_rtx)
2567 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2568 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2570 if (!data->passed_pointer)
2572 set_mem_attributes (stack_parm, parm, 1);
2573 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2574 while promoted mode's size is needed. */
2575 if (data->promoted_mode != BLKmode
2576 && data->promoted_mode != DECL_MODE (parm))
2578 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2579 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2581 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2582 data->promoted_mode);
2584 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2589 boundary = data->locate.boundary;
2590 align = BITS_PER_UNIT;
2592 /* If we're padding upward, we know that the alignment of the slot
2593 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2594 intentionally forcing upward padding. Otherwise we have to come
2595 up with a guess at the alignment based on OFFSET_RTX. */
2596 if (data->locate.where_pad != downward || data->entry_parm)
2598 else if (CONST_INT_P (offset_rtx))
2600 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2601 align = align & -align;
2603 set_mem_align (stack_parm, align);
2605 if (data->entry_parm)
2606 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2608 data->stack_parm = stack_parm;
2611 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2612 always valid and contiguous. */
2615 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2617 rtx entry_parm = data->entry_parm;
2618 rtx stack_parm = data->stack_parm;
2620 /* If this parm was passed part in regs and part in memory, pretend it
2621 arrived entirely in memory by pushing the register-part onto the stack.
2622 In the special case of a DImode or DFmode that is split, we could put
2623 it together in a pseudoreg directly, but for now that's not worth
2625 if (data->partial != 0)
2627 /* Handle calls that pass values in multiple non-contiguous
2628 locations. The Irix 6 ABI has examples of this. */
2629 if (GET_CODE (entry_parm) == PARALLEL)
2630 emit_group_store (validize_mem (stack_parm), entry_parm,
2632 int_size_in_bytes (data->passed_type));
2635 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2636 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2637 data->partial / UNITS_PER_WORD);
2640 entry_parm = stack_parm;
2643 /* If we didn't decide this parm came in a register, by default it came
2645 else if (entry_parm == NULL)
2646 entry_parm = stack_parm;
2648 /* When an argument is passed in multiple locations, we can't make use
2649 of this information, but we can save some copying if the whole argument
2650 is passed in a single register. */
2651 else if (GET_CODE (entry_parm) == PARALLEL
2652 && data->nominal_mode != BLKmode
2653 && data->passed_mode != BLKmode)
2655 size_t i, len = XVECLEN (entry_parm, 0);
2657 for (i = 0; i < len; i++)
2658 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2659 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2660 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2661 == data->passed_mode)
2662 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2664 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2669 data->entry_parm = entry_parm;
2672 /* A subroutine of assign_parms. Reconstitute any values which were
2673 passed in multiple registers and would fit in a single register. */
2676 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2678 rtx entry_parm = data->entry_parm;
2680 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2681 This can be done with register operations rather than on the
2682 stack, even if we will store the reconstituted parameter on the
2684 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2686 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2687 emit_group_store (parmreg, entry_parm, data->passed_type,
2688 GET_MODE_SIZE (GET_MODE (entry_parm)));
2689 entry_parm = parmreg;
2692 data->entry_parm = entry_parm;
2695 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2696 always valid and properly aligned. */
2699 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2701 rtx stack_parm = data->stack_parm;
2703 /* If we can't trust the parm stack slot to be aligned enough for its
2704 ultimate type, don't use that slot after entry. We'll make another
2705 stack slot, if we need one. */
2707 && ((STRICT_ALIGNMENT
2708 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2709 || (data->nominal_type
2710 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2711 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2714 /* If parm was passed in memory, and we need to convert it on entry,
2715 don't store it back in that same slot. */
2716 else if (data->entry_parm == stack_parm
2717 && data->nominal_mode != BLKmode
2718 && data->nominal_mode != data->passed_mode)
2721 /* If stack protection is in effect for this function, don't leave any
2722 pointers in their passed stack slots. */
2723 else if (crtl->stack_protect_guard
2724 && (flag_stack_protect == 2
2725 || data->passed_pointer
2726 || POINTER_TYPE_P (data->nominal_type)))
2729 data->stack_parm = stack_parm;
2732 /* A subroutine of assign_parms. Return true if the current parameter
2733 should be stored as a BLKmode in the current frame. */
2736 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2738 if (data->nominal_mode == BLKmode)
2740 if (GET_MODE (data->entry_parm) == BLKmode)
2743 #ifdef BLOCK_REG_PADDING
2744 /* Only assign_parm_setup_block knows how to deal with register arguments
2745 that are padded at the least significant end. */
2746 if (REG_P (data->entry_parm)
2747 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2748 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2749 == (BYTES_BIG_ENDIAN ? upward : downward)))
2756 /* A subroutine of assign_parms. Arrange for the parameter to be
2757 present and valid in DATA->STACK_RTL. */
2760 assign_parm_setup_block (struct assign_parm_data_all *all,
2761 tree parm, struct assign_parm_data_one *data)
2763 rtx entry_parm = data->entry_parm;
2764 rtx stack_parm = data->stack_parm;
2766 HOST_WIDE_INT size_stored;
2768 if (GET_CODE (entry_parm) == PARALLEL)
2769 entry_parm = emit_group_move_into_temps (entry_parm);
2771 size = int_size_in_bytes (data->passed_type);
2772 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2773 if (stack_parm == 0)
2775 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2776 stack_parm = assign_stack_local (BLKmode, size_stored,
2778 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2779 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2780 set_mem_attributes (stack_parm, parm, 1);
2783 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2784 calls that pass values in multiple non-contiguous locations. */
2785 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2789 /* Note that we will be storing an integral number of words.
2790 So we have to be careful to ensure that we allocate an
2791 integral number of words. We do this above when we call
2792 assign_stack_local if space was not allocated in the argument
2793 list. If it was, this will not work if PARM_BOUNDARY is not
2794 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2795 if it becomes a problem. Exception is when BLKmode arrives
2796 with arguments not conforming to word_mode. */
2798 if (data->stack_parm == 0)
2800 else if (GET_CODE (entry_parm) == PARALLEL)
2803 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2805 mem = validize_mem (stack_parm);
2807 /* Handle values in multiple non-contiguous locations. */
2808 if (GET_CODE (entry_parm) == PARALLEL)
2810 push_to_sequence2 (all->first_conversion_insn,
2811 all->last_conversion_insn);
2812 emit_group_store (mem, entry_parm, data->passed_type, size);
2813 all->first_conversion_insn = get_insns ();
2814 all->last_conversion_insn = get_last_insn ();
2821 /* If SIZE is that of a mode no bigger than a word, just use
2822 that mode's store operation. */
2823 else if (size <= UNITS_PER_WORD)
2825 enum machine_mode mode
2826 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2829 #ifdef BLOCK_REG_PADDING
2830 && (size == UNITS_PER_WORD
2831 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2832 != (BYTES_BIG_ENDIAN ? upward : downward)))
2838 /* We are really truncating a word_mode value containing
2839 SIZE bytes into a value of mode MODE. If such an
2840 operation requires no actual instructions, we can refer
2841 to the value directly in mode MODE, otherwise we must
2842 start with the register in word_mode and explicitly
2844 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2845 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2848 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2849 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2851 emit_move_insn (change_address (mem, mode, 0), reg);
2854 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2855 machine must be aligned to the left before storing
2856 to memory. Note that the previous test doesn't
2857 handle all cases (e.g. SIZE == 3). */
2858 else if (size != UNITS_PER_WORD
2859 #ifdef BLOCK_REG_PADDING
2860 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2868 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2869 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2871 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2872 tem = change_address (mem, word_mode, 0);
2873 emit_move_insn (tem, x);
2876 move_block_from_reg (REGNO (entry_parm), mem,
2877 size_stored / UNITS_PER_WORD);
2880 move_block_from_reg (REGNO (entry_parm), mem,
2881 size_stored / UNITS_PER_WORD);
2883 else if (data->stack_parm == 0)
2885 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2886 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2888 all->first_conversion_insn = get_insns ();
2889 all->last_conversion_insn = get_last_insn ();
2893 data->stack_parm = stack_parm;
2894 SET_DECL_RTL (parm, stack_parm);
2897 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2898 parameter. Get it there. Perform all ABI specified conversions. */
2901 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2902 struct assign_parm_data_one *data)
2904 rtx parmreg, validated_mem;
2905 rtx equiv_stack_parm;
2906 enum machine_mode promoted_nominal_mode;
2907 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2908 bool did_conversion = false;
2909 bool need_conversion, moved;
2911 /* Store the parm in a pseudoregister during the function, but we may
2912 need to do it in a wider mode. Using 2 here makes the result
2913 consistent with promote_decl_mode and thus expand_expr_real_1. */
2914 promoted_nominal_mode
2915 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2916 TREE_TYPE (current_function_decl), 2);
2918 parmreg = gen_reg_rtx (promoted_nominal_mode);
2920 if (!DECL_ARTIFICIAL (parm))
2921 mark_user_reg (parmreg);
2923 /* If this was an item that we received a pointer to,
2924 set DECL_RTL appropriately. */
2925 if (data->passed_pointer)
2927 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2928 set_mem_attributes (x, parm, 1);
2929 SET_DECL_RTL (parm, x);
2932 SET_DECL_RTL (parm, parmreg);
2934 assign_parm_remove_parallels (data);
2936 /* Copy the value into the register, thus bridging between
2937 assign_parm_find_data_types and expand_expr_real_1. */
2939 equiv_stack_parm = data->stack_parm;
2940 validated_mem = validize_mem (data->entry_parm);
2942 need_conversion = (data->nominal_mode != data->passed_mode
2943 || promoted_nominal_mode != data->promoted_mode);
2947 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2948 && data->nominal_mode == data->passed_mode
2949 && data->nominal_mode == GET_MODE (data->entry_parm))
2951 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2952 mode, by the caller. We now have to convert it to
2953 NOMINAL_MODE, if different. However, PARMREG may be in
2954 a different mode than NOMINAL_MODE if it is being stored
2957 If ENTRY_PARM is a hard register, it might be in a register
2958 not valid for operating in its mode (e.g., an odd-numbered
2959 register for a DFmode). In that case, moves are the only
2960 thing valid, so we can't do a convert from there. This
2961 occurs when the calling sequence allow such misaligned
2964 In addition, the conversion may involve a call, which could
2965 clobber parameters which haven't been copied to pseudo
2968 First, we try to emit an insn which performs the necessary
2969 conversion. We verify that this insn does not clobber any
2972 enum insn_code icode;
2975 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2979 op1 = validated_mem;
2980 if (icode != CODE_FOR_nothing
2981 && insn_operand_matches (icode, 0, op0)
2982 && insn_operand_matches (icode, 1, op1))
2984 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2986 HARD_REG_SET hardregs;
2989 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2990 data->passed_mode, unsignedp);
2992 insns = get_insns ();
2995 CLEAR_HARD_REG_SET (hardregs);
2996 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
2999 note_stores (PATTERN (insn), record_hard_reg_sets,
3001 if (!hard_reg_set_empty_p (hardregs))
3010 if (equiv_stack_parm != NULL_RTX)
3011 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3018 /* Nothing to do. */
3020 else if (need_conversion)
3022 /* We did not have an insn to convert directly, or the sequence
3023 generated appeared unsafe. We must first copy the parm to a
3024 pseudo reg, and save the conversion until after all
3025 parameters have been moved. */
3028 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3030 emit_move_insn (tempreg, validated_mem);
3032 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3033 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3035 if (GET_CODE (tempreg) == SUBREG
3036 && GET_MODE (tempreg) == data->nominal_mode
3037 && REG_P (SUBREG_REG (tempreg))
3038 && data->nominal_mode == data->passed_mode
3039 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3040 && GET_MODE_SIZE (GET_MODE (tempreg))
3041 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3043 /* The argument is already sign/zero extended, so note it
3045 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3046 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3049 /* TREE_USED gets set erroneously during expand_assignment. */
3050 save_tree_used = TREE_USED (parm);
3051 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3052 TREE_USED (parm) = save_tree_used;
3053 all->first_conversion_insn = get_insns ();
3054 all->last_conversion_insn = get_last_insn ();
3057 did_conversion = true;
3060 emit_move_insn (parmreg, validated_mem);
3062 /* If we were passed a pointer but the actual value can safely live
3063 in a register, put it in one. */
3064 if (data->passed_pointer
3065 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3066 /* If by-reference argument was promoted, demote it. */
3067 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3068 || use_register_for_decl (parm)))
3070 /* We can't use nominal_mode, because it will have been set to
3071 Pmode above. We must use the actual mode of the parm. */
3072 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3073 mark_user_reg (parmreg);
3075 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3077 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3078 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3080 push_to_sequence2 (all->first_conversion_insn,
3081 all->last_conversion_insn);
3082 emit_move_insn (tempreg, DECL_RTL (parm));
3083 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3084 emit_move_insn (parmreg, tempreg);
3085 all->first_conversion_insn = get_insns ();
3086 all->last_conversion_insn = get_last_insn ();
3089 did_conversion = true;
3092 emit_move_insn (parmreg, DECL_RTL (parm));
3094 SET_DECL_RTL (parm, parmreg);
3096 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3098 data->stack_parm = NULL;
3101 /* Mark the register as eliminable if we did no conversion and it was
3102 copied from memory at a fixed offset, and the arg pointer was not
3103 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3104 offset formed an invalid address, such memory-equivalences as we
3105 make here would screw up life analysis for it. */
3106 if (data->nominal_mode == data->passed_mode
3108 && data->stack_parm != 0
3109 && MEM_P (data->stack_parm)
3110 && data->locate.offset.var == 0
3111 && reg_mentioned_p (virtual_incoming_args_rtx,
3112 XEXP (data->stack_parm, 0)))
3114 rtx linsn = get_last_insn ();
3117 /* Mark complex types separately. */
3118 if (GET_CODE (parmreg) == CONCAT)
3120 enum machine_mode submode
3121 = GET_MODE_INNER (GET_MODE (parmreg));
3122 int regnor = REGNO (XEXP (parmreg, 0));
3123 int regnoi = REGNO (XEXP (parmreg, 1));
3124 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3125 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3126 GET_MODE_SIZE (submode));
3128 /* Scan backwards for the set of the real and
3130 for (sinsn = linsn; sinsn != 0;
3131 sinsn = prev_nonnote_insn (sinsn))
3133 set = single_set (sinsn);
3137 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3138 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3139 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3140 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3143 else if ((set = single_set (linsn)) != 0
3144 && SET_DEST (set) == parmreg)
3145 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3148 /* For pointer data type, suggest pointer register. */
3149 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3150 mark_reg_pointer (parmreg,
3151 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3154 /* A subroutine of assign_parms. Allocate stack space to hold the current
3155 parameter. Get it there. Perform all ABI specified conversions. */
3158 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3159 struct assign_parm_data_one *data)
3161 /* Value must be stored in the stack slot STACK_PARM during function
3163 bool to_conversion = false;
3165 assign_parm_remove_parallels (data);
3167 if (data->promoted_mode != data->nominal_mode)
3169 /* Conversion is required. */
3170 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3172 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3174 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3175 to_conversion = true;
3177 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3178 TYPE_UNSIGNED (TREE_TYPE (parm)));
3180 if (data->stack_parm)
3182 int offset = subreg_lowpart_offset (data->nominal_mode,
3183 GET_MODE (data->stack_parm));
3184 /* ??? This may need a big-endian conversion on sparc64. */
3186 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3187 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3188 set_mem_offset (data->stack_parm,
3189 MEM_OFFSET (data->stack_parm) + offset);
3193 if (data->entry_parm != data->stack_parm)
3197 if (data->stack_parm == 0)
3199 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3200 GET_MODE (data->entry_parm),
3201 TYPE_ALIGN (data->passed_type));
3203 = assign_stack_local (GET_MODE (data->entry_parm),
3204 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3206 set_mem_attributes (data->stack_parm, parm, 1);
3209 dest = validize_mem (data->stack_parm);
3210 src = validize_mem (data->entry_parm);
3214 /* Use a block move to handle potentially misaligned entry_parm. */
3216 push_to_sequence2 (all->first_conversion_insn,
3217 all->last_conversion_insn);
3218 to_conversion = true;
3220 emit_block_move (dest, src,
3221 GEN_INT (int_size_in_bytes (data->passed_type)),
3225 emit_move_insn (dest, src);
3230 all->first_conversion_insn = get_insns ();
3231 all->last_conversion_insn = get_last_insn ();
3235 SET_DECL_RTL (parm, data->stack_parm);
3238 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3239 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3242 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3243 VEC(tree, heap) *fnargs)
3246 tree orig_fnargs = all->orig_fnargs;
3249 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3251 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3252 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3254 rtx tmp, real, imag;
3255 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3257 real = DECL_RTL (VEC_index (tree, fnargs, i));
3258 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3259 if (inner != GET_MODE (real))
3261 real = gen_lowpart_SUBREG (inner, real);
3262 imag = gen_lowpart_SUBREG (inner, imag);
3265 if (TREE_ADDRESSABLE (parm))
3268 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3269 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3271 TYPE_ALIGN (TREE_TYPE (parm)));
3273 /* split_complex_arg put the real and imag parts in
3274 pseudos. Move them to memory. */
3275 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3276 set_mem_attributes (tmp, parm, 1);
3277 rmem = adjust_address_nv (tmp, inner, 0);
3278 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3279 push_to_sequence2 (all->first_conversion_insn,
3280 all->last_conversion_insn);
3281 emit_move_insn (rmem, real);
3282 emit_move_insn (imem, imag);
3283 all->first_conversion_insn = get_insns ();
3284 all->last_conversion_insn = get_last_insn ();
3288 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3289 SET_DECL_RTL (parm, tmp);
3291 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3292 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3293 if (inner != GET_MODE (real))
3295 real = gen_lowpart_SUBREG (inner, real);
3296 imag = gen_lowpart_SUBREG (inner, imag);
3298 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3299 set_decl_incoming_rtl (parm, tmp, false);
3305 /* Assign RTL expressions to the function's parameters. This may involve
3306 copying them into registers and using those registers as the DECL_RTL. */
3309 assign_parms (tree fndecl)
3311 struct assign_parm_data_all all;
3313 VEC(tree, heap) *fnargs;
3316 crtl->args.internal_arg_pointer
3317 = targetm.calls.internal_arg_pointer ();
3319 assign_parms_initialize_all (&all);
3320 fnargs = assign_parms_augmented_arg_list (&all);
3322 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3324 struct assign_parm_data_one data;
3326 /* Extract the type of PARM; adjust it according to ABI. */
3327 assign_parm_find_data_types (&all, parm, &data);
3329 /* Early out for errors and void parameters. */
3330 if (data.passed_mode == VOIDmode)
3332 SET_DECL_RTL (parm, const0_rtx);
3333 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3337 /* Estimate stack alignment from parameter alignment. */
3338 if (SUPPORTS_STACK_ALIGNMENT)
3341 = targetm.calls.function_arg_boundary (data.promoted_mode,
3343 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3345 if (TYPE_ALIGN (data.nominal_type) > align)
3346 align = MINIMUM_ALIGNMENT (data.nominal_type,
3347 TYPE_MODE (data.nominal_type),
3348 TYPE_ALIGN (data.nominal_type));
3349 if (crtl->stack_alignment_estimated < align)
3351 gcc_assert (!crtl->stack_realign_processed);
3352 crtl->stack_alignment_estimated = align;
3356 if (cfun->stdarg && !DECL_CHAIN (parm))
3357 assign_parms_setup_varargs (&all, &data, false);
3359 /* Find out where the parameter arrives in this function. */
3360 assign_parm_find_entry_rtl (&all, &data);
3362 /* Find out where stack space for this parameter might be. */
3363 if (assign_parm_is_stack_parm (&all, &data))
3365 assign_parm_find_stack_rtl (parm, &data);
3366 assign_parm_adjust_entry_rtl (&data);
3369 /* Record permanently how this parm was passed. */
3370 if (data.passed_pointer)
3373 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3375 set_decl_incoming_rtl (parm, incoming_rtl, true);
3378 set_decl_incoming_rtl (parm, data.entry_parm, false);
3380 /* Update info on where next arg arrives in registers. */
3381 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3382 data.passed_type, data.named_arg);
3384 assign_parm_adjust_stack_rtl (&data);
3386 if (assign_parm_setup_block_p (&data))
3387 assign_parm_setup_block (&all, parm, &data);
3388 else if (data.passed_pointer || use_register_for_decl (parm))
3389 assign_parm_setup_reg (&all, parm, &data);
3391 assign_parm_setup_stack (&all, parm, &data);
3394 if (targetm.calls.split_complex_arg)
3395 assign_parms_unsplit_complex (&all, fnargs);
3397 VEC_free (tree, heap, fnargs);
3399 /* Output all parameter conversion instructions (possibly including calls)
3400 now that all parameters have been copied out of hard registers. */
3401 emit_insn (all.first_conversion_insn);
3403 /* Estimate reload stack alignment from scalar return mode. */
3404 if (SUPPORTS_STACK_ALIGNMENT)
3406 if (DECL_RESULT (fndecl))
3408 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3409 enum machine_mode mode = TYPE_MODE (type);
3413 && !AGGREGATE_TYPE_P (type))
3415 unsigned int align = GET_MODE_ALIGNMENT (mode);
3416 if (crtl->stack_alignment_estimated < align)
3418 gcc_assert (!crtl->stack_realign_processed);
3419 crtl->stack_alignment_estimated = align;
3425 /* If we are receiving a struct value address as the first argument, set up
3426 the RTL for the function result. As this might require code to convert
3427 the transmitted address to Pmode, we do this here to ensure that possible
3428 preliminary conversions of the address have been emitted already. */
3429 if (all.function_result_decl)
3431 tree result = DECL_RESULT (current_function_decl);
3432 rtx addr = DECL_RTL (all.function_result_decl);
3435 if (DECL_BY_REFERENCE (result))
3437 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3442 SET_DECL_VALUE_EXPR (result,
3443 build1 (INDIRECT_REF, TREE_TYPE (result),
3444 all.function_result_decl));
3445 addr = convert_memory_address (Pmode, addr);
3446 x = gen_rtx_MEM (DECL_MODE (result), addr);
3447 set_mem_attributes (x, result, 1);
3450 DECL_HAS_VALUE_EXPR_P (result) = 1;
3452 SET_DECL_RTL (result, x);
3455 /* We have aligned all the args, so add space for the pretend args. */
3456 crtl->args.pretend_args_size = all.pretend_args_size;
3457 all.stack_args_size.constant += all.extra_pretend_bytes;
3458 crtl->args.size = all.stack_args_size.constant;
3460 /* Adjust function incoming argument size for alignment and
3463 #ifdef REG_PARM_STACK_SPACE
3464 crtl->args.size = MAX (crtl->args.size,
3465 REG_PARM_STACK_SPACE (fndecl));
3468 crtl->args.size = CEIL_ROUND (crtl->args.size,
3469 PARM_BOUNDARY / BITS_PER_UNIT);
3471 #ifdef ARGS_GROW_DOWNWARD
3472 crtl->args.arg_offset_rtx
3473 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3474 : expand_expr (size_diffop (all.stack_args_size.var,
3475 size_int (-all.stack_args_size.constant)),
3476 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3478 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3481 /* See how many bytes, if any, of its args a function should try to pop
3484 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3488 /* For stdarg.h function, save info about
3489 regs and stack space used by the named args. */
3491 crtl->args.info = all.args_so_far_v;
3493 /* Set the rtx used for the function return value. Put this in its
3494 own variable so any optimizers that need this information don't have
3495 to include tree.h. Do this here so it gets done when an inlined
3496 function gets output. */
3499 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3500 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3502 /* If scalar return value was computed in a pseudo-reg, or was a named
3503 return value that got dumped to the stack, copy that to the hard
3505 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3507 tree decl_result = DECL_RESULT (fndecl);
3508 rtx decl_rtl = DECL_RTL (decl_result);
3510 if (REG_P (decl_rtl)
3511 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3512 : DECL_REGISTER (decl_result))
3516 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3518 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3519 /* The delay slot scheduler assumes that crtl->return_rtx