1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
50 #include "coretypes.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
63 #include "hard-reg-set.h"
70 #include "basic-block.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
89 #ifdef DBX_DEBUGGING_INFO
93 #ifdef SDB_DEBUGGING_INFO
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
117 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
118 #define HAVE_READONLY_DATA_SECTION 1
120 #define HAVE_READONLY_DATA_SECTION 0
123 /* Bitflags used by final_scan_insn. */
126 #define SEEN_EMITTED 4
128 /* Last insn processed by final_scan_insn. */
129 static rtx debug_insn;
130 rtx current_output_insn;
132 /* Line number of last NOTE. */
133 static int last_linenum;
135 /* Highest line number in current block. */
136 static int high_block_linenum;
138 /* Likewise for function. */
139 static int high_function_linenum;
141 /* Filename of last NOTE. */
142 static const char *last_filename;
144 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
146 /* Nonzero while outputting an `asm' with operands.
147 This means that inconsistencies are the user's fault, so don't die.
148 The precise value is the insn being output, to pass to error_for_asm. */
149 rtx this_is_asm_operands;
151 /* Number of operands of this insn, for an `asm' with operands. */
152 static unsigned int insn_noperands;
154 /* Compare optimization flag. */
156 static rtx last_ignored_compare = 0;
158 /* Assign a unique number to each insn that is output.
159 This can be used to generate unique local labels. */
161 static int insn_counter = 0;
164 /* This variable contains machine-dependent flags (defined in tm.h)
165 set and examined by output routines
166 that describe how to interpret the condition codes properly. */
170 /* During output of an insn, this contains a copy of cc_status
171 from before the insn. */
173 CC_STATUS cc_prev_status;
176 /* Indexed by hardware reg number, is 1 if that register is ever
177 used in the current function.
179 In life_analysis, or in stupid_life_analysis, this is set
180 up to record the hard regs used explicitly. Reload adds
181 in the hard regs used for holding pseudo regs. Final uses
182 it to generate the code in the function prologue and epilogue
183 to save and restore registers as needed. */
185 char regs_ever_live[FIRST_PSEUDO_REGISTER];
187 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
188 Unlike regs_ever_live, elements of this array corresponding to
189 eliminable regs like the frame pointer are set if an asm sets them. */
191 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
193 /* Nonzero means current function must be given a frame pointer.
194 Initialized in function.c to 0. Set only in reload1.c as per
195 the needs of the function. */
197 int frame_pointer_needed;
199 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
201 static int block_depth;
203 /* Nonzero if have enabled APP processing of our assembler output. */
207 /* If we are outputting an insn sequence, this contains the sequence rtx.
212 #ifdef ASSEMBLER_DIALECT
214 /* Number of the assembler dialect to use, starting at 0. */
215 static int dialect_number;
218 #ifdef HAVE_conditional_execution
219 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
220 rtx current_insn_predicate;
223 #ifdef HAVE_ATTR_length
224 static int asm_insn_count (rtx);
226 static void profile_function (FILE *);
227 static void profile_after_prologue (FILE *);
228 static bool notice_source_line (rtx);
229 static rtx walk_alter_subreg (rtx *);
230 static void output_asm_name (void);
231 static void output_alternate_entry_point (FILE *, rtx);
232 static tree get_mem_expr_from_op (rtx, int *);
233 static void output_asm_operand_names (rtx *, int *, int);
234 static void output_operand (rtx, int);
235 #ifdef LEAF_REGISTERS
236 static void leaf_renumber_regs (rtx);
239 static int alter_cond (rtx);
241 #ifndef ADDR_VEC_ALIGN
242 static int final_addr_vec_align (rtx);
244 #ifdef HAVE_ATTR_length
245 static int align_fuzz (rtx, rtx, int, unsigned);
248 /* Initialize data in final at the beginning of a compilation. */
251 init_final (const char *filename ATTRIBUTE_UNUSED)
256 #ifdef ASSEMBLER_DIALECT
257 dialect_number = ASSEMBLER_DIALECT;
261 /* Default target function prologue and epilogue assembler output.
263 If not overridden for epilogue code, then the function body itself
264 contains return instructions wherever needed. */
266 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
267 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
271 /* Default target hook that outputs nothing to a stream. */
273 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
277 /* Enable APP processing of subsequent output.
278 Used before the output from an `asm' statement. */
285 fputs (ASM_APP_ON, asm_out_file);
290 /* Disable APP processing of subsequent output.
291 Called from varasm.c before most kinds of output. */
298 fputs (ASM_APP_OFF, asm_out_file);
303 /* Return the number of slots filled in the current
304 delayed branch sequence (we don't count the insn needing the
305 delay slot). Zero if not in a delayed branch sequence. */
309 dbr_sequence_length (void)
311 if (final_sequence != 0)
312 return XVECLEN (final_sequence, 0) - 1;
318 /* The next two pages contain routines used to compute the length of an insn
319 and to shorten branches. */
321 /* Arrays for insn lengths, and addresses. The latter is referenced by
322 `insn_current_length'. */
324 static int *insn_lengths;
326 varray_type insn_addresses_;
328 /* Max uid for which the above arrays are valid. */
329 static int insn_lengths_max_uid;
331 /* Address of insn being processed. Used by `insn_current_length'. */
332 int insn_current_address;
334 /* Address of insn being processed in previous iteration. */
335 int insn_last_address;
337 /* known invariant alignment of insn being processed. */
338 int insn_current_align;
340 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
341 gives the next following alignment insn that increases the known
342 alignment, or NULL_RTX if there is no such insn.
343 For any alignment obtained this way, we can again index uid_align with
344 its uid to obtain the next following align that in turn increases the
345 alignment, till we reach NULL_RTX; the sequence obtained this way
346 for each insn we'll call the alignment chain of this insn in the following
349 struct label_alignment
355 static rtx *uid_align;
356 static int *uid_shuid;
357 static struct label_alignment *label_align;
359 /* Indicate that branch shortening hasn't yet been done. */
362 init_insn_lengths (void)
373 insn_lengths_max_uid = 0;
375 #ifdef HAVE_ATTR_length
376 INSN_ADDRESSES_FREE ();
385 /* Obtain the current length of an insn. If branch shortening has been done,
386 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
389 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
390 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
392 #ifdef HAVE_ATTR_length
397 if (insn_lengths_max_uid > INSN_UID (insn))
398 return insn_lengths[INSN_UID (insn)];
400 switch (GET_CODE (insn))
408 length = fallback_fn (insn);
412 body = PATTERN (insn);
413 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
415 /* Alignment is machine-dependent and should be handled by
419 length = fallback_fn (insn);
423 body = PATTERN (insn);
424 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
427 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
428 length = asm_insn_count (body) * fallback_fn (insn);
429 else if (GET_CODE (body) == SEQUENCE)
430 for (i = 0; i < XVECLEN (body, 0); i++)
431 length += get_attr_length (XVECEXP (body, 0, i));
433 length = fallback_fn (insn);
440 #ifdef ADJUST_INSN_LENGTH
441 ADJUST_INSN_LENGTH (insn, length);
444 #else /* not HAVE_ATTR_length */
446 #define insn_default_length 0
447 #define insn_min_length 0
448 #endif /* not HAVE_ATTR_length */
451 /* Obtain the current length of an insn. If branch shortening has been done,
452 get its actual length. Otherwise, get its maximum length. */
454 get_attr_length (rtx insn)
456 return get_attr_length_1 (insn, insn_default_length);
459 /* Obtain the current length of an insn. If branch shortening has been done,
460 get its actual length. Otherwise, get its minimum length. */
462 get_attr_min_length (rtx insn)
464 return get_attr_length_1 (insn, insn_min_length);
467 /* Code to handle alignment inside shorten_branches. */
469 /* Here is an explanation how the algorithm in align_fuzz can give
472 Call a sequence of instructions beginning with alignment point X
473 and continuing until the next alignment point `block X'. When `X'
474 is used in an expression, it means the alignment value of the
477 Call the distance between the start of the first insn of block X, and
478 the end of the last insn of block X `IX', for the `inner size of X'.
479 This is clearly the sum of the instruction lengths.
481 Likewise with the next alignment-delimited block following X, which we
484 Call the distance between the start of the first insn of block X, and
485 the start of the first insn of block Y `OX', for the `outer size of X'.
487 The estimated padding is then OX - IX.
489 OX can be safely estimated as
494 OX = round_up(IX, X) + Y - X
496 Clearly est(IX) >= real(IX), because that only depends on the
497 instruction lengths, and those being overestimated is a given.
499 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
500 we needn't worry about that when thinking about OX.
502 When X >= Y, the alignment provided by Y adds no uncertainty factor
503 for branch ranges starting before X, so we can just round what we have.
504 But when X < Y, we don't know anything about the, so to speak,
505 `middle bits', so we have to assume the worst when aligning up from an
506 address mod X to one mod Y, which is Y - X. */
509 #define LABEL_ALIGN(LABEL) align_labels_log
512 #ifndef LABEL_ALIGN_MAX_SKIP
513 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
517 #define LOOP_ALIGN(LABEL) align_loops_log
520 #ifndef LOOP_ALIGN_MAX_SKIP
521 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
524 #ifndef LABEL_ALIGN_AFTER_BARRIER
525 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
528 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
529 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
533 #define JUMP_ALIGN(LABEL) align_jumps_log
536 #ifndef JUMP_ALIGN_MAX_SKIP
537 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
540 #ifndef ADDR_VEC_ALIGN
542 final_addr_vec_align (rtx addr_vec)
544 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
546 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
547 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
548 return exact_log2 (align);
552 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
555 #ifndef INSN_LENGTH_ALIGNMENT
556 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
559 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
561 static int min_labelno, max_labelno;
563 #define LABEL_TO_ALIGNMENT(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
566 #define LABEL_TO_MAX_SKIP(LABEL) \
567 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
569 /* For the benefit of port specific code do this also as a function. */
572 label_to_alignment (rtx label)
574 return LABEL_TO_ALIGNMENT (label);
577 #ifdef HAVE_ATTR_length
578 /* The differences in addresses
579 between a branch and its target might grow or shrink depending on
580 the alignment the start insn of the range (the branch for a forward
581 branch or the label for a backward branch) starts out on; if these
582 differences are used naively, they can even oscillate infinitely.
583 We therefore want to compute a 'worst case' address difference that
584 is independent of the alignment the start insn of the range end
585 up on, and that is at least as large as the actual difference.
586 The function align_fuzz calculates the amount we have to add to the
587 naively computed difference, by traversing the part of the alignment
588 chain of the start insn of the range that is in front of the end insn
589 of the range, and considering for each alignment the maximum amount
590 that it might contribute to a size increase.
592 For casesi tables, we also want to know worst case minimum amounts of
593 address difference, in case a machine description wants to introduce
594 some common offset that is added to all offsets in a table.
595 For this purpose, align_fuzz with a growth argument of 0 computes the
596 appropriate adjustment. */
598 /* Compute the maximum delta by which the difference of the addresses of
599 START and END might grow / shrink due to a different address for start
600 which changes the size of alignment insns between START and END.
601 KNOWN_ALIGN_LOG is the alignment known for START.
602 GROWTH should be ~0 if the objective is to compute potential code size
603 increase, and 0 if the objective is to compute potential shrink.
604 The return value is undefined for any other value of GROWTH. */
607 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
609 int uid = INSN_UID (start);
611 int known_align = 1 << known_align_log;
612 int end_shuid = INSN_SHUID (end);
615 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
617 int align_addr, new_align;
619 uid = INSN_UID (align_label);
620 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
621 if (uid_shuid[uid] > end_shuid)
623 known_align_log = LABEL_TO_ALIGNMENT (align_label);
624 new_align = 1 << known_align_log;
625 if (new_align < known_align)
627 fuzz += (-align_addr ^ growth) & (new_align - known_align);
628 known_align = new_align;
633 /* Compute a worst-case reference address of a branch so that it
634 can be safely used in the presence of aligned labels. Since the
635 size of the branch itself is unknown, the size of the branch is
636 not included in the range. I.e. for a forward branch, the reference
637 address is the end address of the branch as known from the previous
638 branch shortening pass, minus a value to account for possible size
639 increase due to alignment. For a backward branch, it is the start
640 address of the branch as known from the current pass, plus a value
641 to account for possible size increase due to alignment.
642 NB.: Therefore, the maximum offset allowed for backward branches needs
643 to exclude the branch size. */
646 insn_current_reference_address (rtx branch)
651 if (! INSN_ADDRESSES_SET_P ())
654 seq = NEXT_INSN (PREV_INSN (branch));
655 seq_uid = INSN_UID (seq);
656 if (!JUMP_P (branch))
657 /* This can happen for example on the PA; the objective is to know the
658 offset to address something in front of the start of the function.
659 Thus, we can treat it like a backward branch.
660 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
661 any alignment we'd encounter, so we skip the call to align_fuzz. */
662 return insn_current_address;
663 dest = JUMP_LABEL (branch);
665 /* BRANCH has no proper alignment chain set, so use SEQ.
666 BRANCH also has no INSN_SHUID. */
667 if (INSN_SHUID (seq) < INSN_SHUID (dest))
669 /* Forward branch. */
670 return (insn_last_address + insn_lengths[seq_uid]
671 - align_fuzz (seq, dest, length_unit_log, ~0));
675 /* Backward branch. */
676 return (insn_current_address
677 + align_fuzz (dest, seq, length_unit_log, ~0));
680 #endif /* HAVE_ATTR_length */
683 compute_alignments (void)
685 int log, max_skip, max_log;
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
696 label_align = xcalloc (max_labelno - min_labelno + 1,
697 sizeof (struct label_alignment));
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
711 || probably_never_executed_bb_p (bb))
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
716 FOR_EACH_EDGE (e, ei, bb->preds)
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
721 branch_frequency += EDGE_FREQUENCY (e);
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
740 log = JUMP_ALIGN (label);
744 max_skip = JUMP_ALIGN_MAX_SKIP;
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
754 log = LOOP_ALIGN (label);
758 max_skip = LOOP_ALIGN_MAX_SKIP;
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
766 struct tree_opt_pass pass_compute_alignments =
770 compute_alignments, /* execute */
773 0, /* static_pass_number */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
784 /* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
787 /* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with
791 shorten_branches itself into a single pass unless we also want to integrate
792 reorg.c, since the branch splitting exposes new instructions with delay
796 shorten_branches (rtx first ATTRIBUTE_UNUSED)
803 #ifdef HAVE_ATTR_length
804 #define MAX_CODE_ALIGN 16
806 int something_changed = 1;
807 char *varying_length;
810 rtx align_tab[MAX_CODE_ALIGN];
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
817 /* Free uid_shuid before reallocating it. */
820 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
822 if (max_labelno != max_label_num ())
824 int old = max_labelno;
828 max_labelno = max_label_num ();
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to
847 impose on the next CODE_LABEL (or the current one if we are processing
848 the CODE_LABEL itself). */
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
857 INSN_SHUID (insn) = i++;
860 /* reorg might make the first insn of a loop being run once only,
861 and delete the label in front of it. Then we want to apply
862 the loop alignment to the new label created by reorg, which
863 is separated by the former loop start insn from the
864 NOTE_INSN_LOOP_BEG. */
866 else if (LABEL_P (insn))
870 /* Merge in alignments computed by compute_alignments. */
871 log = LABEL_TO_ALIGNMENT (insn);
875 max_skip = LABEL_TO_MAX_SKIP (insn);
878 log = LABEL_ALIGN (insn);
882 max_skip = LABEL_ALIGN_MAX_SKIP;
884 next = next_nonnote_insn (insn);
885 /* ADDR_VECs only take room if read-only data goes into the text
887 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
888 if (next && JUMP_P (next))
890 rtx nextbody = PATTERN (next);
891 if (GET_CODE (nextbody) == ADDR_VEC
892 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
894 log = ADDR_VEC_ALIGN (next);
898 max_skip = LABEL_ALIGN_MAX_SKIP;
902 LABEL_TO_ALIGNMENT (insn) = max_log;
903 LABEL_TO_MAX_SKIP (insn) = max_skip;
907 else if (BARRIER_P (insn))
911 for (label = insn; label && ! INSN_P (label);
912 label = NEXT_INSN (label))
915 log = LABEL_ALIGN_AFTER_BARRIER (insn);
919 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
925 #ifdef HAVE_ATTR_length
927 /* Allocate the rest of the arrays. */
928 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
929 insn_lengths_max_uid = max_uid;
930 /* Syntax errors can lead to labels being outside of the main insn stream.
931 Initialize insn_addresses, so that we get reproducible results. */
932 INSN_ADDRESSES_ALLOC (max_uid);
934 varying_length = xcalloc (max_uid, sizeof (char));
936 /* Initialize uid_align. We scan instructions
937 from end to start, and keep in align_tab[n] the last seen insn
938 that does an alignment of at least n+1, i.e. the successor
939 in the alignment chain for an insn that does / has a known
941 uid_align = xcalloc (max_uid, sizeof *uid_align);
943 for (i = MAX_CODE_ALIGN; --i >= 0;)
944 align_tab[i] = NULL_RTX;
945 seq = get_last_insn ();
946 for (; seq; seq = PREV_INSN (seq))
948 int uid = INSN_UID (seq);
950 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
951 uid_align[uid] = align_tab[0];
954 /* Found an alignment label. */
955 uid_align[uid] = align_tab[log];
956 for (i = log - 1; i >= 0; i--)
960 #ifdef CASE_VECTOR_SHORTEN_MODE
963 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
966 int min_shuid = INSN_SHUID (get_insns ()) - 1;
967 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
970 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
972 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
973 int len, i, min, max, insn_shuid;
975 addr_diff_vec_flags flags;
978 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
980 pat = PATTERN (insn);
981 len = XVECLEN (pat, 1);
982 gcc_assert (len > 0);
983 min_align = MAX_CODE_ALIGN;
984 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
986 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
987 int shuid = INSN_SHUID (lab);
998 if (min_align > LABEL_TO_ALIGNMENT (lab))
999 min_align = LABEL_TO_ALIGNMENT (lab);
1001 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1002 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1003 insn_shuid = INSN_SHUID (insn);
1004 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1005 memset (&flags, 0, sizeof (flags));
1006 flags.min_align = min_align;
1007 flags.base_after_vec = rel > insn_shuid;
1008 flags.min_after_vec = min > insn_shuid;
1009 flags.max_after_vec = max > insn_shuid;
1010 flags.min_after_base = min > rel;
1011 flags.max_after_base = max > rel;
1012 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1015 #endif /* CASE_VECTOR_SHORTEN_MODE */
1017 /* Compute initial lengths, addresses, and varying flags for each insn. */
1018 for (insn_current_address = 0, insn = first;
1020 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1022 uid = INSN_UID (insn);
1024 insn_lengths[uid] = 0;
1028 int log = LABEL_TO_ALIGNMENT (insn);
1031 int align = 1 << log;
1032 int new_address = (insn_current_address + align - 1) & -align;
1033 insn_lengths[uid] = new_address - insn_current_address;
1037 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1039 if (NOTE_P (insn) || BARRIER_P (insn)
1042 if (INSN_DELETED_P (insn))
1045 body = PATTERN (insn);
1046 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1048 /* This only takes room if read-only data goes into the text
1050 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1051 insn_lengths[uid] = (XVECLEN (body,
1052 GET_CODE (body) == ADDR_DIFF_VEC)
1053 * GET_MODE_SIZE (GET_MODE (body)));
1054 /* Alignment is handled by ADDR_VEC_ALIGN. */
1056 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1057 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1058 else if (GET_CODE (body) == SEQUENCE)
1061 int const_delay_slots;
1063 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1065 const_delay_slots = 0;
1067 /* Inside a delay slot sequence, we do not do any branch shortening
1068 if the shortening could change the number of delay slots
1070 for (i = 0; i < XVECLEN (body, 0); i++)
1072 rtx inner_insn = XVECEXP (body, 0, i);
1073 int inner_uid = INSN_UID (inner_insn);
1076 if (GET_CODE (body) == ASM_INPUT
1077 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1078 inner_length = (asm_insn_count (PATTERN (inner_insn))
1079 * insn_default_length (inner_insn));
1081 inner_length = insn_default_length (inner_insn);
1083 insn_lengths[inner_uid] = inner_length;
1084 if (const_delay_slots)
1086 if ((varying_length[inner_uid]
1087 = insn_variable_length_p (inner_insn)) != 0)
1088 varying_length[uid] = 1;
1089 INSN_ADDRESSES (inner_uid) = (insn_current_address
1090 + insn_lengths[uid]);
1093 varying_length[inner_uid] = 0;
1094 insn_lengths[uid] += inner_length;
1097 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1099 insn_lengths[uid] = insn_default_length (insn);
1100 varying_length[uid] = insn_variable_length_p (insn);
1103 /* If needed, do any adjustment. */
1104 #ifdef ADJUST_INSN_LENGTH
1105 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1106 if (insn_lengths[uid] < 0)
1107 fatal_insn ("negative insn length", insn);
1111 /* Now loop over all the insns finding varying length insns. For each,
1112 get the current insn length. If it has changed, reflect the change.
1113 When nothing changes for a full pass, we are done. */
1115 while (something_changed)
1117 something_changed = 0;
1118 insn_current_align = MAX_CODE_ALIGN - 1;
1119 for (insn_current_address = 0, insn = first;
1121 insn = NEXT_INSN (insn))
1124 #ifdef ADJUST_INSN_LENGTH
1129 uid = INSN_UID (insn);
1133 int log = LABEL_TO_ALIGNMENT (insn);
1134 if (log > insn_current_align)
1136 int align = 1 << log;
1137 int new_address= (insn_current_address + align - 1) & -align;
1138 insn_lengths[uid] = new_address - insn_current_address;
1139 insn_current_align = log;
1140 insn_current_address = new_address;
1143 insn_lengths[uid] = 0;
1144 INSN_ADDRESSES (uid) = insn_current_address;
1148 length_align = INSN_LENGTH_ALIGNMENT (insn);
1149 if (length_align < insn_current_align)
1150 insn_current_align = length_align;
1152 insn_last_address = INSN_ADDRESSES (uid);
1153 INSN_ADDRESSES (uid) = insn_current_address;
1155 #ifdef CASE_VECTOR_SHORTEN_MODE
1156 if (optimize && JUMP_P (insn)
1157 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1159 rtx body = PATTERN (insn);
1160 int old_length = insn_lengths[uid];
1161 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1162 rtx min_lab = XEXP (XEXP (body, 2), 0);
1163 rtx max_lab = XEXP (XEXP (body, 3), 0);
1164 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1165 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1166 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1169 addr_diff_vec_flags flags;
1171 /* Avoid automatic aggregate initialization. */
1172 flags = ADDR_DIFF_VEC_FLAGS (body);
1174 /* Try to find a known alignment for rel_lab. */
1175 for (prev = rel_lab;
1177 && ! insn_lengths[INSN_UID (prev)]
1178 && ! (varying_length[INSN_UID (prev)] & 1);
1179 prev = PREV_INSN (prev))
1180 if (varying_length[INSN_UID (prev)] & 2)
1182 rel_align = LABEL_TO_ALIGNMENT (prev);
1186 /* See the comment on addr_diff_vec_flags in rtl.h for the
1187 meaning of the flags values. base: REL_LAB vec: INSN */
1188 /* Anything after INSN has still addresses from the last
1189 pass; adjust these so that they reflect our current
1190 estimate for this pass. */
1191 if (flags.base_after_vec)
1192 rel_addr += insn_current_address - insn_last_address;
1193 if (flags.min_after_vec)
1194 min_addr += insn_current_address - insn_last_address;
1195 if (flags.max_after_vec)
1196 max_addr += insn_current_address - insn_last_address;
1197 /* We want to know the worst case, i.e. lowest possible value
1198 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1199 its offset is positive, and we have to be wary of code shrink;
1200 otherwise, it is negative, and we have to be vary of code
1202 if (flags.min_after_base)
1204 /* If INSN is between REL_LAB and MIN_LAB, the size
1205 changes we are about to make can change the alignment
1206 within the observed offset, therefore we have to break
1207 it up into two parts that are independent. */
1208 if (! flags.base_after_vec && flags.min_after_vec)
1210 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1211 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1214 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1218 if (flags.base_after_vec && ! flags.min_after_vec)
1220 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1221 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1224 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1226 /* Likewise, determine the highest lowest possible value
1227 for the offset of MAX_LAB. */
1228 if (flags.max_after_base)
1230 if (! flags.base_after_vec && flags.max_after_vec)
1232 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1233 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1236 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1240 if (flags.base_after_vec && ! flags.max_after_vec)
1242 max_addr += align_fuzz (max_lab, insn, 0, 0);
1243 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1246 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1248 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1249 max_addr - rel_addr,
1251 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1254 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1255 insn_current_address += insn_lengths[uid];
1256 if (insn_lengths[uid] != old_length)
1257 something_changed = 1;
1262 #endif /* CASE_VECTOR_SHORTEN_MODE */
1264 if (! (varying_length[uid]))
1266 if (NONJUMP_INSN_P (insn)
1267 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1271 body = PATTERN (insn);
1272 for (i = 0; i < XVECLEN (body, 0); i++)
1274 rtx inner_insn = XVECEXP (body, 0, i);
1275 int inner_uid = INSN_UID (inner_insn);
1277 INSN_ADDRESSES (inner_uid) = insn_current_address;
1279 insn_current_address += insn_lengths[inner_uid];
1283 insn_current_address += insn_lengths[uid];
1288 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1292 body = PATTERN (insn);
1294 for (i = 0; i < XVECLEN (body, 0); i++)
1296 rtx inner_insn = XVECEXP (body, 0, i);
1297 int inner_uid = INSN_UID (inner_insn);
1300 INSN_ADDRESSES (inner_uid) = insn_current_address;
1302 /* insn_current_length returns 0 for insns with a
1303 non-varying length. */
1304 if (! varying_length[inner_uid])
1305 inner_length = insn_lengths[inner_uid];
1307 inner_length = insn_current_length (inner_insn);
1309 if (inner_length != insn_lengths[inner_uid])
1311 insn_lengths[inner_uid] = inner_length;
1312 something_changed = 1;
1314 insn_current_address += insn_lengths[inner_uid];
1315 new_length += inner_length;
1320 new_length = insn_current_length (insn);
1321 insn_current_address += new_length;
1324 #ifdef ADJUST_INSN_LENGTH
1325 /* If needed, do any adjustment. */
1326 tmp_length = new_length;
1327 ADJUST_INSN_LENGTH (insn, new_length);
1328 insn_current_address += (new_length - tmp_length);
1331 if (new_length != insn_lengths[uid])
1333 insn_lengths[uid] = new_length;
1334 something_changed = 1;
1337 /* For a non-optimizing compile, do only a single pass. */
1342 free (varying_length);
1344 #endif /* HAVE_ATTR_length */
1347 #ifdef HAVE_ATTR_length
1348 /* Given the body of an INSN known to be generated by an ASM statement, return
1349 the number of machine instructions likely to be generated for this insn.
1350 This is used to compute its length. */
1353 asm_insn_count (rtx body)
1355 const char *template;
1358 if (GET_CODE (body) == ASM_INPUT)
1359 template = XSTR (body, 0);
1361 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1363 for (; *template; template++)
1364 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1371 /* Output assembler code for the start of a function,
1372 and initialize some of the variables in this file
1373 for the new function. The label for the function and associated
1374 assembler pseudo-ops have already been output in `assemble_start_function'.
1376 FIRST is the first insn of the rtl for the function being compiled.
1377 FILE is the file to write assembler code to.
1378 OPTIMIZE is nonzero if we should eliminate redundant
1379 test and compare insns. */
1382 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1383 int optimize ATTRIBUTE_UNUSED)
1387 this_is_asm_operands = 0;
1389 last_filename = locator_file (prologue_locator);
1390 last_linenum = locator_line (prologue_locator);
1392 high_block_linenum = high_function_linenum = last_linenum;
1394 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1396 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1397 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1398 dwarf2out_begin_prologue (0, NULL);
1401 #ifdef LEAF_REG_REMAP
1402 if (current_function_uses_only_leaf_regs)
1403 leaf_renumber_regs (first);
1406 /* The Sun386i and perhaps other machines don't work right
1407 if the profiling code comes after the prologue. */
1408 #ifdef PROFILE_BEFORE_PROLOGUE
1409 if (current_function_profile)
1410 profile_function (file);
1411 #endif /* PROFILE_BEFORE_PROLOGUE */
1413 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1414 if (dwarf2out_do_frame ())
1415 dwarf2out_frame_debug (NULL_RTX, false);
1418 /* If debugging, assign block numbers to all of the blocks in this
1422 remove_unnecessary_notes ();
1423 reemit_insn_block_notes ();
1424 number_blocks (current_function_decl);
1425 /* We never actually put out begin/end notes for the top-level
1426 block in the function. But, conceptually, that block is
1428 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1431 /* First output the function prologue: code to set up the stack frame. */
1432 targetm.asm_out.function_prologue (file, get_frame_size ());
1434 /* If the machine represents the prologue as RTL, the profiling code must
1435 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1436 #ifdef HAVE_prologue
1437 if (! HAVE_prologue)
1439 profile_after_prologue (file);
1443 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1445 #ifndef PROFILE_BEFORE_PROLOGUE
1446 if (current_function_profile)
1447 profile_function (file);
1448 #endif /* not PROFILE_BEFORE_PROLOGUE */
1452 profile_function (FILE *file ATTRIBUTE_UNUSED)
1454 #ifndef NO_PROFILE_COUNTERS
1455 # define NO_PROFILE_COUNTERS 0
1457 #if defined(ASM_OUTPUT_REG_PUSH)
1458 int sval = current_function_returns_struct;
1459 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1460 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1461 int cxt = cfun->static_chain_decl != NULL;
1463 #endif /* ASM_OUTPUT_REG_PUSH */
1465 if (! NO_PROFILE_COUNTERS)
1467 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1469 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1470 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1471 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1474 current_function_section (current_function_decl);
1476 #if defined(ASM_OUTPUT_REG_PUSH)
1477 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1478 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1481 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1485 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1488 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1493 FUNCTION_PROFILER (file, current_function_funcdef_no);
1495 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1497 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1499 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1502 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1507 #if defined(ASM_OUTPUT_REG_PUSH)
1508 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1509 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1513 /* Output assembler code for the end of a function.
1514 For clarity, args are same as those of `final_start_function'
1515 even though not all of them are needed. */
1518 final_end_function (void)
1522 (*debug_hooks->end_function) (high_function_linenum);
1524 /* Finally, output the function epilogue:
1525 code to restore the stack frame and return to the caller. */
1526 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1528 /* And debug output. */
1529 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1531 #if defined (DWARF2_UNWIND_INFO)
1532 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1533 && dwarf2out_do_frame ())
1534 dwarf2out_end_epilogue (last_linenum, last_filename);
1538 /* Output assembler code for some insns: all or part of a function.
1539 For description of args, see `final_start_function', above. */
1542 final (rtx first, FILE *file, int optimize)
1548 last_ignored_compare = 0;
1550 #ifdef SDB_DEBUGGING_INFO
1551 /* When producing SDB debugging info, delete troublesome line number
1552 notes from inlined functions in other files as well as duplicate
1553 line number notes. */
1554 if (write_symbols == SDB_DEBUG)
1557 for (insn = first; insn; insn = NEXT_INSN (insn))
1558 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1561 #ifdef USE_MAPPED_LOCATION
1562 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1564 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1565 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1569 delete_insn (insn); /* Use delete_note. */
1577 for (insn = first; insn; insn = NEXT_INSN (insn))
1579 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1580 max_uid = INSN_UID (insn);
1582 /* If CC tracking across branches is enabled, record the insn which
1583 jumps to each branch only reached from one place. */
1584 if (optimize && JUMP_P (insn))
1586 rtx lab = JUMP_LABEL (insn);
1587 if (lab && LABEL_NUSES (lab) == 1)
1589 LABEL_REFS (lab) = insn;
1599 /* Output the insns. */
1600 for (insn = NEXT_INSN (first); insn;)
1602 #ifdef HAVE_ATTR_length
1603 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1605 /* This can be triggered by bugs elsewhere in the compiler if
1606 new insns are created after init_insn_lengths is called. */
1607 gcc_assert (NOTE_P (insn));
1608 insn_current_address = -1;
1611 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1612 #endif /* HAVE_ATTR_length */
1614 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1619 get_insn_template (int code, rtx insn)
1621 switch (insn_data[code].output_format)
1623 case INSN_OUTPUT_FORMAT_SINGLE:
1624 return insn_data[code].output.single;
1625 case INSN_OUTPUT_FORMAT_MULTI:
1626 return insn_data[code].output.multi[which_alternative];
1627 case INSN_OUTPUT_FORMAT_FUNCTION:
1629 return (*insn_data[code].output.function) (recog_data.operand, insn);
1636 /* Emit the appropriate declaration for an alternate-entry-point
1637 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1638 LABEL_KIND != LABEL_NORMAL.
1640 The case fall-through in this function is intentional. */
1642 output_alternate_entry_point (FILE *file, rtx insn)
1644 const char *name = LABEL_NAME (insn);
1646 switch (LABEL_KIND (insn))
1648 case LABEL_WEAK_ENTRY:
1649 #ifdef ASM_WEAKEN_LABEL
1650 ASM_WEAKEN_LABEL (file, name);
1652 case LABEL_GLOBAL_ENTRY:
1653 targetm.asm_out.globalize_label (file, name);
1654 case LABEL_STATIC_ENTRY:
1655 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1656 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1658 ASM_OUTPUT_LABEL (file, name);
1667 /* The final scan for one insn, INSN.
1668 Args are same as in `final', except that INSN
1669 is the insn being scanned.
1670 Value returned is the next insn to be scanned.
1672 NOPEEPHOLES is the flag to disallow peephole processing (currently
1673 used for within delayed branch sequence output).
1675 SEEN is used to track the end of the prologue, for emitting
1676 debug information. We force the emission of a line note after
1677 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1678 at the beginning of the second basic block, whichever comes
1682 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1683 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1692 /* Ignore deleted insns. These can occur when we split insns (due to a
1693 template of "#") while not optimizing. */
1694 if (INSN_DELETED_P (insn))
1695 return NEXT_INSN (insn);
1697 switch (GET_CODE (insn))
1700 switch (NOTE_LINE_NUMBER (insn))
1702 case NOTE_INSN_DELETED:
1703 case NOTE_INSN_LOOP_BEG:
1704 case NOTE_INSN_LOOP_END:
1705 case NOTE_INSN_FUNCTION_END:
1706 case NOTE_INSN_REPEATED_LINE_NUMBER:
1707 case NOTE_INSN_EXPECTED_VALUE:
1710 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1717 if (last_text_section == in_text)
1719 (*debug_hooks->switch_text_section) ();
1720 unlikely_text_section ();
1724 (*debug_hooks->switch_text_section) ();
1729 case NOTE_INSN_BASIC_BLOCK:
1731 #ifdef TARGET_UNWIND_INFO
1732 targetm.asm_out.unwind_emit (asm_out_file, insn);
1736 fprintf (asm_out_file, "\t%s basic block %d\n",
1737 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1739 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1741 *seen |= SEEN_EMITTED;
1742 last_filename = NULL;
1749 case NOTE_INSN_EH_REGION_BEG:
1750 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1751 NOTE_EH_HANDLER (insn));
1754 case NOTE_INSN_EH_REGION_END:
1755 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1756 NOTE_EH_HANDLER (insn));
1759 case NOTE_INSN_PROLOGUE_END:
1760 targetm.asm_out.function_end_prologue (file);
1761 profile_after_prologue (file);
1763 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1765 *seen |= SEEN_EMITTED;
1766 last_filename = NULL;
1773 case NOTE_INSN_EPILOGUE_BEG:
1774 targetm.asm_out.function_begin_epilogue (file);
1777 case NOTE_INSN_FUNCTION_BEG:
1779 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1781 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1783 *seen |= SEEN_EMITTED;
1784 last_filename = NULL;
1791 case NOTE_INSN_BLOCK_BEG:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1802 high_block_linenum = last_linenum;
1804 /* Output debugging info about the symbol-block beginning. */
1805 (*debug_hooks->begin_block) (last_linenum, n);
1807 /* Mark this block as output. */
1808 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1812 case NOTE_INSN_BLOCK_END:
1813 if (debug_info_level == DINFO_LEVEL_NORMAL
1814 || debug_info_level == DINFO_LEVEL_VERBOSE
1815 || write_symbols == DWARF2_DEBUG
1816 || write_symbols == VMS_AND_DWARF2_DEBUG
1817 || write_symbols == VMS_DEBUG)
1819 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1823 /* End of a symbol-block. */
1825 gcc_assert (block_depth >= 0);
1827 (*debug_hooks->end_block) (high_block_linenum, n);
1831 case NOTE_INSN_DELETED_LABEL:
1832 /* Emit the label. We may have deleted the CODE_LABEL because
1833 the label could be proved to be unreachable, though still
1834 referenced (in the form of having its address taken. */
1835 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1838 case NOTE_INSN_VAR_LOCATION:
1839 (*debug_hooks->var_location) (insn);
1846 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1852 #if defined (DWARF2_UNWIND_INFO)
1853 if (dwarf2out_do_frame ())
1854 dwarf2out_frame_debug (insn, false);
1859 /* The target port might emit labels in the output function for
1860 some insn, e.g. sh.c output_branchy_insn. */
1861 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1863 int align = LABEL_TO_ALIGNMENT (insn);
1864 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1865 int max_skip = LABEL_TO_MAX_SKIP (insn);
1868 if (align && NEXT_INSN (insn))
1870 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1871 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1873 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1874 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1876 ASM_OUTPUT_ALIGN (file, align);
1883 /* If this label is reached from only one place, set the condition
1884 codes from the instruction just before the branch. */
1886 /* Disabled because some insns set cc_status in the C output code
1887 and NOTICE_UPDATE_CC alone can set incorrect status. */
1888 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1890 rtx jump = LABEL_REFS (insn);
1891 rtx barrier = prev_nonnote_insn (insn);
1893 /* If the LABEL_REFS field of this label has been set to point
1894 at a branch, the predecessor of the branch is a regular
1895 insn, and that branch is the only way to reach this label,
1896 set the condition codes based on the branch and its
1898 if (barrier && BARRIER_P (barrier)
1899 && jump && JUMP_P (jump)
1900 && (prev = prev_nonnote_insn (jump))
1901 && NONJUMP_INSN_P (prev))
1903 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1904 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1909 if (LABEL_NAME (insn))
1910 (*debug_hooks->label) (insn);
1914 fputs (ASM_APP_OFF, file);
1918 next = next_nonnote_insn (insn);
1919 if (next != 0 && JUMP_P (next))
1921 rtx nextbody = PATTERN (next);
1923 /* If this label is followed by a jump-table,
1924 make sure we put the label in the read-only section. Also
1925 possibly write the label and jump table together. */
1927 if (GET_CODE (nextbody) == ADDR_VEC
1928 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1930 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1931 /* In this case, the case vector is being moved by the
1932 target, so don't output the label at all. Leave that
1933 to the back end macros. */
1935 if (! JUMP_TABLES_IN_TEXT_SECTION)
1939 targetm.asm_out.function_rodata_section (current_function_decl);
1941 #ifdef ADDR_VEC_ALIGN
1942 log_align = ADDR_VEC_ALIGN (next);
1944 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1946 ASM_OUTPUT_ALIGN (file, log_align);
1949 current_function_section (current_function_decl);
1951 #ifdef ASM_OUTPUT_CASE_LABEL
1952 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1955 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1961 if (LABEL_ALT_ENTRY_P (insn))
1962 output_alternate_entry_point (file, insn);
1964 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1969 rtx body = PATTERN (insn);
1970 int insn_code_number;
1971 const char *template;
1973 /* An INSN, JUMP_INSN or CALL_INSN.
1974 First check for special kinds that recog doesn't recognize. */
1976 if (GET_CODE (body) == USE /* These are just declarations. */
1977 || GET_CODE (body) == CLOBBER)
1982 /* If there is a REG_CC_SETTER note on this insn, it means that
1983 the setting of the condition code was done in the delay slot
1984 of the insn that branched here. So recover the cc status
1985 from the insn that set it. */
1987 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1990 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1991 cc_prev_status = cc_status;
1996 /* Detect insns that are really jump-tables
1997 and output them as such. */
1999 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2001 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2005 if (! JUMP_TABLES_IN_TEXT_SECTION)
2006 targetm.asm_out.function_rodata_section (current_function_decl);
2008 current_function_section (current_function_decl);
2012 fputs (ASM_APP_OFF, file);
2016 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2017 if (GET_CODE (body) == ADDR_VEC)
2019 #ifdef ASM_OUTPUT_ADDR_VEC
2020 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2027 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2028 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2034 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2035 for (idx = 0; idx < vlen; idx++)
2037 if (GET_CODE (body) == ADDR_VEC)
2039 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2040 ASM_OUTPUT_ADDR_VEC_ELT
2041 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2048 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2049 ASM_OUTPUT_ADDR_DIFF_ELT
2052 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2053 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2059 #ifdef ASM_OUTPUT_CASE_END
2060 ASM_OUTPUT_CASE_END (file,
2061 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2066 current_function_section (current_function_decl);
2070 /* Output this line note if it is the first or the last line
2072 if (notice_source_line (insn))
2074 (*debug_hooks->source_line) (last_linenum, last_filename);
2077 if (GET_CODE (body) == ASM_INPUT)
2079 const char *string = XSTR (body, 0);
2081 /* There's no telling what that did to the condition codes. */
2088 fputs (ASM_APP_ON, file);
2091 fprintf (asm_out_file, "\t%s\n", string);
2096 /* Detect `asm' construct with operands. */
2097 if (asm_noperands (body) >= 0)
2099 unsigned int noperands = asm_noperands (body);
2100 rtx *ops = alloca (noperands * sizeof (rtx));
2103 /* There's no telling what that did to the condition codes. */
2106 /* Get out the operand values. */
2107 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2108 /* Inhibit dieing on what would otherwise be compiler bugs. */
2109 insn_noperands = noperands;
2110 this_is_asm_operands = insn;
2112 #ifdef FINAL_PRESCAN_INSN
2113 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2116 /* Output the insn using them. */
2121 fputs (ASM_APP_ON, file);
2124 output_asm_insn (string, ops);
2127 this_is_asm_operands = 0;
2133 fputs (ASM_APP_OFF, file);
2137 if (GET_CODE (body) == SEQUENCE)
2139 /* A delayed-branch sequence */
2142 final_sequence = body;
2144 /* Record the delay slots' frame information before the branch.
2145 This is needed for delayed calls: see execute_cfa_program(). */
2146 #if defined (DWARF2_UNWIND_INFO)
2147 if (dwarf2out_do_frame ())
2148 for (i = 1; i < XVECLEN (body, 0); i++)
2149 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2152 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2153 force the restoration of a comparison that was previously
2154 thought unnecessary. If that happens, cancel this sequence
2155 and cause that insn to be restored. */
2157 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2158 if (next != XVECEXP (body, 0, 1))
2164 for (i = 1; i < XVECLEN (body, 0); i++)
2166 rtx insn = XVECEXP (body, 0, i);
2167 rtx next = NEXT_INSN (insn);
2168 /* We loop in case any instruction in a delay slot gets
2171 insn = final_scan_insn (insn, file, 0, 1, seen);
2172 while (insn != next);
2174 #ifdef DBR_OUTPUT_SEQEND
2175 DBR_OUTPUT_SEQEND (file);
2179 /* If the insn requiring the delay slot was a CALL_INSN, the
2180 insns in the delay slot are actually executed before the
2181 called function. Hence we don't preserve any CC-setting
2182 actions in these insns and the CC must be marked as being
2183 clobbered by the function. */
2184 if (CALL_P (XVECEXP (body, 0, 0)))
2191 /* We have a real machine instruction as rtl. */
2193 body = PATTERN (insn);
2196 set = single_set (insn);
2198 /* Check for redundant test and compare instructions
2199 (when the condition codes are already set up as desired).
2200 This is done only when optimizing; if not optimizing,
2201 it should be possible for the user to alter a variable
2202 with the debugger in between statements
2203 and the next statement should reexamine the variable
2204 to compute the condition codes. */
2209 && GET_CODE (SET_DEST (set)) == CC0
2210 && insn != last_ignored_compare)
2212 if (GET_CODE (SET_SRC (set)) == SUBREG)
2213 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2214 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2216 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2217 XEXP (SET_SRC (set), 0)
2218 = alter_subreg (&XEXP (SET_SRC (set), 0));
2219 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2220 XEXP (SET_SRC (set), 1)
2221 = alter_subreg (&XEXP (SET_SRC (set), 1));
2223 if ((cc_status.value1 != 0
2224 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2225 || (cc_status.value2 != 0
2226 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2228 /* Don't delete insn if it has an addressing side-effect. */
2229 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2230 /* or if anything in it is volatile. */
2231 && ! volatile_refs_p (PATTERN (insn)))
2233 /* We don't really delete the insn; just ignore it. */
2234 last_ignored_compare = insn;
2243 /* If this is a conditional branch, maybe modify it
2244 if the cc's are in a nonstandard state
2245 so that it accomplishes the same thing that it would
2246 do straightforwardly if the cc's were set up normally. */
2248 if (cc_status.flags != 0
2250 && GET_CODE (body) == SET
2251 && SET_DEST (body) == pc_rtx
2252 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2253 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2254 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2256 /* This function may alter the contents of its argument
2257 and clear some of the cc_status.flags bits.
2258 It may also return 1 meaning condition now always true
2259 or -1 meaning condition now always false
2260 or 2 meaning condition nontrivial but altered. */
2261 int result = alter_cond (XEXP (SET_SRC (body), 0));
2262 /* If condition now has fixed value, replace the IF_THEN_ELSE
2263 with its then-operand or its else-operand. */
2265 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2267 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2269 /* The jump is now either unconditional or a no-op.
2270 If it has become a no-op, don't try to output it.
2271 (It would not be recognized.) */
2272 if (SET_SRC (body) == pc_rtx)
2277 else if (GET_CODE (SET_SRC (body)) == RETURN)
2278 /* Replace (set (pc) (return)) with (return). */
2279 PATTERN (insn) = body = SET_SRC (body);
2281 /* Rerecognize the instruction if it has changed. */
2283 INSN_CODE (insn) = -1;
2286 /* Make same adjustments to instructions that examine the
2287 condition codes without jumping and instructions that
2288 handle conditional moves (if this machine has either one). */
2290 if (cc_status.flags != 0
2293 rtx cond_rtx, then_rtx, else_rtx;
2296 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2298 cond_rtx = XEXP (SET_SRC (set), 0);
2299 then_rtx = XEXP (SET_SRC (set), 1);
2300 else_rtx = XEXP (SET_SRC (set), 2);
2304 cond_rtx = SET_SRC (set);
2305 then_rtx = const_true_rtx;
2306 else_rtx = const0_rtx;
2309 switch (GET_CODE (cond_rtx))
2323 if (XEXP (cond_rtx, 0) != cc0_rtx)
2325 result = alter_cond (cond_rtx);
2327 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2328 else if (result == -1)
2329 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2330 else if (result == 2)
2331 INSN_CODE (insn) = -1;
2332 if (SET_DEST (set) == SET_SRC (set))
2344 #ifdef HAVE_peephole
2345 /* Do machine-specific peephole optimizations if desired. */
2347 if (optimize && !flag_no_peephole && !nopeepholes)
2349 rtx next = peephole (insn);
2350 /* When peepholing, if there were notes within the peephole,
2351 emit them before the peephole. */
2352 if (next != 0 && next != NEXT_INSN (insn))
2354 rtx note, prev = PREV_INSN (insn);
2356 for (note = NEXT_INSN (insn); note != next;
2357 note = NEXT_INSN (note))
2358 final_scan_insn (note, file, optimize, nopeepholes, seen);
2360 /* Put the notes in the proper position for a later
2361 rescan. For example, the SH target can do this
2362 when generating a far jump in a delayed branch
2364 note = NEXT_INSN (insn);
2365 PREV_INSN (note) = prev;
2366 NEXT_INSN (prev) = note;
2367 NEXT_INSN (PREV_INSN (next)) = insn;
2368 PREV_INSN (insn) = PREV_INSN (next);
2369 NEXT_INSN (insn) = next;
2370 PREV_INSN (next) = insn;
2373 /* PEEPHOLE might have changed this. */
2374 body = PATTERN (insn);
2378 /* Try to recognize the instruction.
2379 If successful, verify that the operands satisfy the
2380 constraints for the instruction. Crash if they don't,
2381 since `reload' should have changed them so that they do. */
2383 insn_code_number = recog_memoized (insn);
2384 cleanup_subreg_operands (insn);
2386 /* Dump the insn in the assembly for debugging. */
2387 if (flag_dump_rtl_in_asm)
2389 print_rtx_head = ASM_COMMENT_START;
2390 print_rtl_single (asm_out_file, insn);
2391 print_rtx_head = "";
2394 if (! constrain_operands_cached (1))
2395 fatal_insn_not_found (insn);
2397 /* Some target machines need to prescan each insn before
2400 #ifdef FINAL_PRESCAN_INSN
2401 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2404 #ifdef HAVE_conditional_execution
2405 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2406 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2408 current_insn_predicate = NULL_RTX;
2412 cc_prev_status = cc_status;
2414 /* Update `cc_status' for this instruction.
2415 The instruction's output routine may change it further.
2416 If the output routine for a jump insn needs to depend
2417 on the cc status, it should look at cc_prev_status. */
2419 NOTICE_UPDATE_CC (body, insn);
2422 current_output_insn = debug_insn = insn;
2424 #if defined (DWARF2_UNWIND_INFO)
2425 if (CALL_P (insn) && dwarf2out_do_frame ())
2426 dwarf2out_frame_debug (insn, false);
2429 /* Find the proper template for this insn. */
2430 template = get_insn_template (insn_code_number, insn);
2432 /* If the C code returns 0, it means that it is a jump insn
2433 which follows a deleted test insn, and that test insn
2434 needs to be reinserted. */
2439 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2441 /* We have already processed the notes between the setter and
2442 the user. Make sure we don't process them again, this is
2443 particularly important if one of the notes is a block
2444 scope note or an EH note. */
2446 prev != last_ignored_compare;
2447 prev = PREV_INSN (prev))
2450 delete_insn (prev); /* Use delete_note. */
2456 /* If the template is the string "#", it means that this insn must
2458 if (template[0] == '#' && template[1] == '\0')
2460 rtx new = try_split (body, insn, 0);
2462 /* If we didn't split the insn, go away. */
2463 if (new == insn && PATTERN (new) == body)
2464 fatal_insn ("could not split insn", insn);
2466 #ifdef HAVE_ATTR_length
2467 /* This instruction should have been split in shorten_branches,
2468 to ensure that we would have valid length info for the
2476 #ifdef TARGET_UNWIND_INFO
2477 /* ??? This will put the directives in the wrong place if
2478 get_insn_template outputs assembly directly. However calling it
2479 before get_insn_template breaks if the insns is split. */
2480 targetm.asm_out.unwind_emit (asm_out_file, insn);
2483 /* Output assembler code from the template. */
2484 output_asm_insn (template, recog_data.operand);
2486 /* If necessary, report the effect that the instruction has on
2487 the unwind info. We've already done this for delay slots
2488 and call instructions. */
2489 #if defined (DWARF2_UNWIND_INFO)
2490 if (final_sequence == 0
2491 #if !defined (HAVE_prologue)
2492 && !ACCUMULATE_OUTGOING_ARGS
2494 && dwarf2out_do_frame ())
2495 dwarf2out_frame_debug (insn, true);
2498 current_output_insn = debug_insn = 0;
2501 return NEXT_INSN (insn);
2504 /* Output debugging info to the assembler file FILE
2505 based on the NOTE-insn INSN, assumed to be a line number. */
2508 notice_source_line (rtx insn)
2510 const char *filename = insn_file (insn);
2511 int linenum = insn_line (insn);
2513 if (filename && (filename != last_filename || last_linenum != linenum))
2515 last_filename = filename;
2516 last_linenum = linenum;
2517 high_block_linenum = MAX (last_linenum, high_block_linenum);
2518 high_function_linenum = MAX (last_linenum, high_function_linenum);
2524 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2525 directly to the desired hard register. */
2528 cleanup_subreg_operands (rtx insn)
2531 extract_insn_cached (insn);
2532 for (i = 0; i < recog_data.n_operands; i++)
2534 /* The following test cannot use recog_data.operand when testing
2535 for a SUBREG: the underlying object might have been changed
2536 already if we are inside a match_operator expression that
2537 matches the else clause. Instead we test the underlying
2538 expression directly. */
2539 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2540 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2541 else if (GET_CODE (recog_data.operand[i]) == PLUS
2542 || GET_CODE (recog_data.operand[i]) == MULT
2543 || MEM_P (recog_data.operand[i]))
2544 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2547 for (i = 0; i < recog_data.n_dups; i++)
2549 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2550 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2551 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2552 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2553 || MEM_P (*recog_data.dup_loc[i]))
2554 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2558 /* If X is a SUBREG, replace it with a REG or a MEM,
2559 based on the thing it is a subreg of. */
2562 alter_subreg (rtx *xp)
2565 rtx y = SUBREG_REG (x);
2567 /* simplify_subreg does not remove subreg from volatile references.
2568 We are required to. */
2571 int offset = SUBREG_BYTE (x);
2573 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2574 contains 0 instead of the proper offset. See simplify_subreg. */
2576 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2578 int difference = GET_MODE_SIZE (GET_MODE (y))
2579 - GET_MODE_SIZE (GET_MODE (x));
2580 if (WORDS_BIG_ENDIAN)
2581 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2582 if (BYTES_BIG_ENDIAN)
2583 offset += difference % UNITS_PER_WORD;
2586 *xp = adjust_address (y, GET_MODE (x), offset);
2590 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2597 /* Simplify_subreg can't handle some REG cases, but we have to. */
2598 unsigned int regno = subreg_regno (x);
2599 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2606 /* Do alter_subreg on all the SUBREGs contained in X. */
2609 walk_alter_subreg (rtx *xp)
2612 switch (GET_CODE (x))
2617 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2618 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2623 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2627 return alter_subreg (xp);
2638 /* Given BODY, the body of a jump instruction, alter the jump condition
2639 as required by the bits that are set in cc_status.flags.
2640 Not all of the bits there can be handled at this level in all cases.
2642 The value is normally 0.
2643 1 means that the condition has become always true.
2644 -1 means that the condition has become always false.
2645 2 means that COND has been altered. */
2648 alter_cond (rtx cond)
2652 if (cc_status.flags & CC_REVERSED)
2655 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2658 if (cc_status.flags & CC_INVERTED)
2661 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2664 if (cc_status.flags & CC_NOT_POSITIVE)
2665 switch (GET_CODE (cond))
2670 /* Jump becomes unconditional. */
2676 /* Jump becomes no-op. */
2680 PUT_CODE (cond, EQ);
2685 PUT_CODE (cond, NE);
2693 if (cc_status.flags & CC_NOT_NEGATIVE)
2694 switch (GET_CODE (cond))
2698 /* Jump becomes unconditional. */
2703 /* Jump becomes no-op. */
2708 PUT_CODE (cond, EQ);
2714 PUT_CODE (cond, NE);
2722 if (cc_status.flags & CC_NO_OVERFLOW)
2723 switch (GET_CODE (cond))
2726 /* Jump becomes unconditional. */
2730 PUT_CODE (cond, EQ);
2735 PUT_CODE (cond, NE);
2740 /* Jump becomes no-op. */
2747 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2748 switch (GET_CODE (cond))
2754 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2759 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2764 if (cc_status.flags & CC_NOT_SIGNED)
2765 /* The flags are valid if signed condition operators are converted
2767 switch (GET_CODE (cond))
2770 PUT_CODE (cond, LEU);
2775 PUT_CODE (cond, LTU);
2780 PUT_CODE (cond, GTU);
2785 PUT_CODE (cond, GEU);
2797 /* Report inconsistency between the assembler template and the operands.
2798 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2801 output_operand_lossage (const char *cmsgid, ...)
2805 const char *pfx_str;
2808 va_start (ap, cmsgid);
2810 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2811 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2812 vasprintf (&new_message, fmt_string, ap);
2814 if (this_is_asm_operands)
2815 error_for_asm (this_is_asm_operands, "%s", new_message);
2817 internal_error ("%s", new_message);
2824 /* Output of assembler code from a template, and its subroutines. */
2826 /* Annotate the assembly with a comment describing the pattern and
2827 alternative used. */
2830 output_asm_name (void)
2834 int num = INSN_CODE (debug_insn);
2835 fprintf (asm_out_file, "\t%s %d\t%s",
2836 ASM_COMMENT_START, INSN_UID (debug_insn),
2837 insn_data[num].name);
2838 if (insn_data[num].n_alternatives > 1)
2839 fprintf (asm_out_file, "/%d", which_alternative + 1);
2840 #ifdef HAVE_ATTR_length
2841 fprintf (asm_out_file, "\t[length = %d]",
2842 get_attr_length (debug_insn));
2844 /* Clear this so only the first assembler insn
2845 of any rtl insn will get the special comment for -dp. */
2850 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2851 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2852 corresponds to the address of the object and 0 if to the object. */
2855 get_mem_expr_from_op (rtx op, int *paddressp)
2863 return REG_EXPR (op);
2864 else if (!MEM_P (op))
2867 if (MEM_EXPR (op) != 0)
2868 return MEM_EXPR (op);
2870 /* Otherwise we have an address, so indicate it and look at the address. */
2874 /* First check if we have a decl for the address, then look at the right side
2875 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2876 But don't allow the address to itself be indirect. */
2877 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2879 else if (GET_CODE (op) == PLUS
2880 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2883 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2884 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2887 expr = get_mem_expr_from_op (op, &inner_addressp);
2888 return inner_addressp ? 0 : expr;
2891 /* Output operand names for assembler instructions. OPERANDS is the
2892 operand vector, OPORDER is the order to write the operands, and NOPS
2893 is the number of operands to write. */
2896 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2901 for (i = 0; i < nops; i++)
2904 rtx op = operands[oporder[i]];
2905 tree expr = get_mem_expr_from_op (op, &addressp);
2907 fprintf (asm_out_file, "%c%s",
2908 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2912 fprintf (asm_out_file, "%s",
2913 addressp ? "*" : "");
2914 print_mem_expr (asm_out_file, expr);
2917 else if (REG_P (op) && ORIGINAL_REGNO (op)
2918 && ORIGINAL_REGNO (op) != REGNO (op))
2919 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2923 /* Output text from TEMPLATE to the assembler output file,
2924 obeying %-directions to substitute operands taken from
2925 the vector OPERANDS.
2927 %N (for N a digit) means print operand N in usual manner.
2928 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2929 and print the label name with no punctuation.
2930 %cN means require operand N to be a constant
2931 and print the constant expression with no punctuation.
2932 %aN means expect operand N to be a memory address
2933 (not a memory reference!) and print a reference
2935 %nN means expect operand N to be a constant
2936 and print a constant expression for minus the value
2937 of the operand, with no other punctuation. */
2940 output_asm_insn (const char *template, rtx *operands)
2944 #ifdef ASSEMBLER_DIALECT
2947 int oporder[MAX_RECOG_OPERANDS];
2948 char opoutput[MAX_RECOG_OPERANDS];
2951 /* An insn may return a null string template
2952 in a case where no assembler code is needed. */
2956 memset (opoutput, 0, sizeof opoutput);
2958 putc ('\t', asm_out_file);
2960 #ifdef ASM_OUTPUT_OPCODE
2961 ASM_OUTPUT_OPCODE (asm_out_file, p);
2968 if (flag_verbose_asm)
2969 output_asm_operand_names (operands, oporder, ops);
2970 if (flag_print_asm_name)
2974 memset (opoutput, 0, sizeof opoutput);
2976 putc (c, asm_out_file);
2977 #ifdef ASM_OUTPUT_OPCODE
2978 while ((c = *p) == '\t')
2980 putc (c, asm_out_file);
2983 ASM_OUTPUT_OPCODE (asm_out_file, p);
2987 #ifdef ASSEMBLER_DIALECT
2993 output_operand_lossage ("nested assembly dialect alternatives");
2997 /* If we want the first dialect, do nothing. Otherwise, skip
2998 DIALECT_NUMBER of strings ending with '|'. */
2999 for (i = 0; i < dialect_number; i++)
3001 while (*p && *p != '}' && *p++ != '|')
3010 output_operand_lossage ("unterminated assembly dialect alternative");
3017 /* Skip to close brace. */
3022 output_operand_lossage ("unterminated assembly dialect alternative");
3026 while (*p++ != '}');
3030 putc (c, asm_out_file);
3035 putc (c, asm_out_file);
3041 /* %% outputs a single %. */
3045 putc (c, asm_out_file);
3047 /* %= outputs a number which is unique to each insn in the entire
3048 compilation. This is useful for making local labels that are
3049 referred to more than once in a given insn. */
3053 fprintf (asm_out_file, "%d", insn_counter);
3055 /* % followed by a letter and some digits
3056 outputs an operand in a special way depending on the letter.
3057 Letters `acln' are implemented directly.
3058 Other letters are passed to `output_operand' so that
3059 the PRINT_OPERAND macro can define them. */
3060 else if (ISALPHA (*p))
3063 unsigned long opnum;
3066 opnum = strtoul (p, &endptr, 10);
3069 output_operand_lossage ("operand number missing "
3071 else if (this_is_asm_operands && opnum >= insn_noperands)
3072 output_operand_lossage ("operand number out of range");
3073 else if (letter == 'l')
3074 output_asm_label (operands[opnum]);
3075 else if (letter == 'a')
3076 output_address (operands[opnum]);
3077 else if (letter == 'c')
3079 if (CONSTANT_ADDRESS_P (operands[opnum]))
3080 output_addr_const (asm_out_file, operands[opnum]);
3082 output_operand (operands[opnum], 'c');
3084 else if (letter == 'n')
3086 if (GET_CODE (operands[opnum]) == CONST_INT)
3087 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3088 - INTVAL (operands[opnum]));
3091 putc ('-', asm_out_file);
3092 output_addr_const (asm_out_file, operands[opnum]);
3096 output_operand (operands[opnum], letter);
3098 if (!opoutput[opnum])
3099 oporder[ops++] = opnum;
3100 opoutput[opnum] = 1;
3105 /* % followed by a digit outputs an operand the default way. */
3106 else if (ISDIGIT (*p))
3108 unsigned long opnum;
3111 opnum = strtoul (p, &endptr, 10);
3112 if (this_is_asm_operands && opnum >= insn_noperands)
3113 output_operand_lossage ("operand number out of range");
3115 output_operand (operands[opnum], 0);
3117 if (!opoutput[opnum])
3118 oporder[ops++] = opnum;
3119 opoutput[opnum] = 1;
3124 /* % followed by punctuation: output something for that
3125 punctuation character alone, with no operand.
3126 The PRINT_OPERAND macro decides what is actually done. */
3127 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3128 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3129 output_operand (NULL_RTX, *p++);
3132 output_operand_lossage ("invalid %%-code");
3136 putc (c, asm_out_file);
3139 /* Write out the variable names for operands, if we know them. */
3140 if (flag_verbose_asm)
3141 output_asm_operand_names (operands, oporder, ops);
3142 if (flag_print_asm_name)
3145 putc ('\n', asm_out_file);
3148 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3151 output_asm_label (rtx x)
3155 if (GET_CODE (x) == LABEL_REF)
3159 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3160 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3162 output_operand_lossage ("'%%l' operand isn't a label");
3164 assemble_name (asm_out_file, buf);
3167 /* Print operand X using machine-dependent assembler syntax.
3168 The macro PRINT_OPERAND is defined just to control this function.
3169 CODE is a non-digit that preceded the operand-number in the % spec,
3170 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3171 between the % and the digits.
3172 When CODE is a non-letter, X is 0.
3174 The meanings of the letters are machine-dependent and controlled
3175 by PRINT_OPERAND. */
3178 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3180 if (x && GET_CODE (x) == SUBREG)
3181 x = alter_subreg (&x);
3183 /* X must not be a pseudo reg. */
3184 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3186 PRINT_OPERAND (asm_out_file, x, code);
3189 /* Print a memory reference operand for address X
3190 using machine-dependent assembler syntax.
3191 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3194 output_address (rtx x)
3196 walk_alter_subreg (&x);
3197 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3200 /* Print an integer constant expression in assembler syntax.
3201 Addition and subtraction are the only arithmetic
3202 that may appear in these expressions. */
3205 output_addr_const (FILE *file, rtx x)
3210 switch (GET_CODE (x))
3217 if (SYMBOL_REF_DECL (x))
3218 mark_decl_referenced (SYMBOL_REF_DECL (x));
3219 #ifdef ASM_OUTPUT_SYMBOL_REF
3220 ASM_OUTPUT_SYMBOL_REF (file, x);
3222 assemble_name (file, XSTR (x, 0));
3230 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3231 #ifdef ASM_OUTPUT_LABEL_REF
3232 ASM_OUTPUT_LABEL_REF (file, buf);
3234 assemble_name (file, buf);
3239 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3243 /* This used to output parentheses around the expression,
3244 but that does not work on the 386 (either ATT or BSD assembler). */
3245 output_addr_const (file, XEXP (x, 0));
3249 if (GET_MODE (x) == VOIDmode)
3251 /* We can use %d if the number is one word and positive. */
3252 if (CONST_DOUBLE_HIGH (x))
3253 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3254 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3255 else if (CONST_DOUBLE_LOW (x) < 0)
3256 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3258 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3261 /* We can't handle floating point constants;
3262 PRINT_OPERAND must handle them. */
3263 output_operand_lossage ("floating constant misused");
3267 /* Some assemblers need integer constants to appear last (eg masm). */
3268 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3270 output_addr_const (file, XEXP (x, 1));
3271 if (INTVAL (XEXP (x, 0)) >= 0)
3272 fprintf (file, "+");
3273 output_addr_const (file, XEXP (x, 0));
3277 output_addr_const (file, XEXP (x, 0));
3278 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3279 || INTVAL (XEXP (x, 1)) >= 0)
3280 fprintf (file, "+");
3281 output_addr_const (file, XEXP (x, 1));
3286 /* Avoid outputting things like x-x or x+5-x,
3287 since some assemblers can't handle that. */
3288 x = simplify_subtraction (x);
3289 if (GET_CODE (x) != MINUS)
3292 output_addr_const (file, XEXP (x, 0));
3293 fprintf (file, "-");
3294 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3295 || GET_CODE (XEXP (x, 1)) == PC
3296 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3297 output_addr_const (file, XEXP (x, 1));
3300 fputs (targetm.asm_out.open_paren, file);
3301 output_addr_const (file, XEXP (x, 1));
3302 fputs (targetm.asm_out.close_paren, file);
3309 output_addr_const (file, XEXP (x, 0));
3313 #ifdef OUTPUT_ADDR_CONST_EXTRA
3314 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3319 output_operand_lossage ("invalid expression as operand");
3323 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3324 %R prints the value of REGISTER_PREFIX.
3325 %L prints the value of LOCAL_LABEL_PREFIX.
3326 %U prints the value of USER_LABEL_PREFIX.
3327 %I prints the value of IMMEDIATE_PREFIX.
3328 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3329 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3331 We handle alternate assembler dialects here, just like output_asm_insn. */
3334 asm_fprintf (FILE *file, const char *p, ...)
3340 va_start (argptr, p);
3347 #ifdef ASSEMBLER_DIALECT
3352 /* If we want the first dialect, do nothing. Otherwise, skip
3353 DIALECT_NUMBER of strings ending with '|'. */
3354 for (i = 0; i < dialect_number; i++)
3356 while (*p && *p++ != '|')
3366 /* Skip to close brace. */
3367 while (*p && *p++ != '}')
3378 while (strchr ("-+ #0", c))
3383 while (ISDIGIT (c) || c == '.')
3394 case 'd': case 'i': case 'u':
3395 case 'x': case 'X': case 'o':
3399 fprintf (file, buf, va_arg (argptr, int));
3403 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3404 'o' cases, but we do not check for those cases. It
3405 means that the value is a HOST_WIDE_INT, which may be
3406 either `long' or `long long'. */
3407 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3408 q += strlen (HOST_WIDE_INT_PRINT);
3411 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3416 #ifdef HAVE_LONG_LONG
3422 fprintf (file, buf, va_arg (argptr, long long));
3429 fprintf (file, buf, va_arg (argptr, long));
3437 fprintf (file, buf, va_arg (argptr, char *));
3441 #ifdef ASM_OUTPUT_OPCODE
3442 ASM_OUTPUT_OPCODE (asm_out_file, p);
3447 #ifdef REGISTER_PREFIX
3448 fprintf (file, "%s", REGISTER_PREFIX);
3453 #ifdef IMMEDIATE_PREFIX
3454 fprintf (file, "%s", IMMEDIATE_PREFIX);
3459 #ifdef LOCAL_LABEL_PREFIX
3460 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3465 fputs (user_label_prefix, file);
3468 #ifdef ASM_FPRINTF_EXTENSIONS
3469 /* Uppercase letters are reserved for general use by asm_fprintf
3470 and so are not available to target specific code. In order to
3471 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3472 they are defined here. As they get turned into real extensions
3473 to asm_fprintf they should be removed from this list. */
3474 case 'A': case 'B': case 'C': case 'D': case 'E':
3475 case 'F': case 'G': case 'H': case 'J': case 'K':
3476 case 'M': case 'N': case 'P': case 'Q': case 'S':
3477 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3480 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3493 /* Split up a CONST_DOUBLE or integer constant rtx
3494 into two rtx's for single words,
3495 storing in *FIRST the word that comes first in memory in the target
3496 and in *SECOND the other. */
3499 split_double (rtx value, rtx *first, rtx *second)
3501 if (GET_CODE (value) == CONST_INT)
3503 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3505 /* In this case the CONST_INT holds both target words.
3506 Extract the bits from it into two word-sized pieces.
3507 Sign extend each half to HOST_WIDE_INT. */
3508 unsigned HOST_WIDE_INT low, high;
3509 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3511 /* Set sign_bit to the most significant bit of a word. */
3513 sign_bit <<= BITS_PER_WORD - 1;
3515 /* Set mask so that all bits of the word are set. We could
3516 have used 1 << BITS_PER_WORD instead of basing the
3517 calculation on sign_bit. However, on machines where
3518 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3519 compiler warning, even though the code would never be
3521 mask = sign_bit << 1;
3524 /* Set sign_extend as any remaining bits. */
3525 sign_extend = ~mask;
3527 /* Pick the lower word and sign-extend it. */
3528 low = INTVAL (value);
3533 /* Pick the higher word, shifted to the least significant
3534 bits, and sign-extend it. */
3535 high = INTVAL (value);
3536 high >>= BITS_PER_WORD - 1;
3539 if (high & sign_bit)
3540 high |= sign_extend;
3542 /* Store the words in the target machine order. */
3543 if (WORDS_BIG_ENDIAN)
3545 *first = GEN_INT (high);
3546 *second = GEN_INT (low);
3550 *first = GEN_INT (low);
3551 *second = GEN_INT (high);