1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
62 #include "hard-reg-set.h"
69 #include "basic-block.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
93 #ifdef DBX_DEBUGGING_INFO
97 #ifdef SDB_DEBUGGING_INFO
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
121 /* Bitflags used by final_scan_insn. */
124 #define SEEN_EMITTED 4
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
130 /* Line number of last NOTE. */
131 static int last_linenum;
133 /* Highest line number in current block. */
134 static int high_block_linenum;
136 /* Likewise for function. */
137 static int high_function_linenum;
139 /* Filename of last NOTE. */
140 static const char *last_filename;
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare = 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter = 0;
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status;
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth;
185 /* Nonzero if have enabled APP processing of our assembler output. */
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
221 static int alter_cond (rtx);
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
230 /* Initialize data in final at the beginning of a compilation. */
233 init_final (const char *filename ATTRIBUTE_UNUSED)
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
267 fputs (ASM_APP_ON, asm_out_file);
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
280 fputs (ASM_APP_OFF, asm_out_file);
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
306 static int *insn_lengths;
308 VEC(int,heap) *insn_addresses_;
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
331 struct label_alignment
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
341 /* Indicate that branch shortening hasn't yet been done. */
344 init_insn_lengths (void)
355 insn_lengths_max_uid = 0;
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
374 #ifdef HAVE_ATTR_length
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
382 switch (GET_CODE (insn))
390 length = fallback_fn (insn);
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 /* Alignment is machine-dependent and should be handled by
401 length = fallback_fn (insn);
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
415 length = fallback_fn (insn);
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
426 #else /* not HAVE_ATTR_length */
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
436 get_attr_length (rtx insn)
438 return get_attr_length_1 (insn, insn_default_length);
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
444 get_attr_min_length (rtx insn)
446 return get_attr_length_1 (insn, insn_min_length);
449 /* Code to handle alignment inside shorten_branches. */
451 /* Here is an explanation how the algorithm in align_fuzz can give
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
463 Likewise with the next alignment-delimited block following X, which we
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
469 The estimated padding is then OX - IX.
471 OX can be safely estimated as
476 OX = round_up(IX, X) + Y - X
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
491 #define LABEL_ALIGN(LABEL) align_labels_log
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
499 #define LOOP_ALIGN(LABEL) align_loops_log
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
515 #define JUMP_ALIGN(LABEL) align_jumps_log
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
522 #ifndef ADDR_VEC_ALIGN
524 final_addr_vec_align (rtx addr_vec)
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
543 static int min_labelno, max_labelno;
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
551 /* For the benefit of port specific code do this also as a function. */
554 label_to_alignment (rtx label)
556 return LABEL_TO_ALIGNMENT (label);
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
591 int uid = INSN_UID (start);
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
599 int align_addr, new_align;
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
628 insn_current_reference_address (rtx branch)
633 if (! INSN_ADDRESSES_SET_P ())
636 seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
662 #endif /* HAVE_ATTR_length */
664 /* Compute branch alignments based on frequency information in the
668 compute_alignments (void)
670 int log, max_skip, max_log;
673 int freq_threshold = 0;
681 max_labelno = max_label_num ();
682 min_labelno = get_first_label_num ();
683 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
685 /* If not optimizing or optimizing for size, don't assign any alignments. */
686 if (! optimize || optimize_size)
691 dump_flow_info (dump_file, TDF_DETAILS);
692 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
696 if (bb->frequency > freq_max)
697 freq_max = bb->frequency;
698 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
701 fprintf(dump_file, "freq_max: %i\n",freq_max);
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
710 || probably_never_executed_bb_p (bb))
713 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
714 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
717 max_log = LABEL_ALIGN (label);
718 max_skip = LABEL_ALIGN_MAX_SKIP;
720 FOR_EACH_EDGE (e, ei, bb->preds)
722 if (e->flags & EDGE_FALLTHRU)
723 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
725 branch_frequency += EDGE_FREQUENCY (e);
729 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
730 bb->index, bb->frequency, bb->loop_father->num,
732 fallthru_frequency, branch_frequency);
733 if (!bb->loop_father->inner && bb->loop_father->num)
734 fprintf (dump_file, " inner_loop");
735 if (bb->loop_father->header == bb)
736 fprintf (dump_file, " loop_header");
737 fprintf (dump_file, "\n");
740 /* There are two purposes to align block with no fallthru incoming edge:
741 1) to avoid fetch stalls when branch destination is near cache boundary
742 2) to improve cache efficiency in case the previous block is not executed
743 (so it does not need to be in the cache).
745 We to catch first case, we align frequently executed blocks.
746 To catch the second, we align blocks that are executed more frequently
747 than the predecessor and the predecessor is likely to not be executed
748 when function is called. */
751 && (branch_frequency > freq_threshold
752 || (bb->frequency > bb->prev_bb->frequency * 10
753 && (bb->prev_bb->frequency
754 <= ENTRY_BLOCK_PTR->frequency / 2))))
756 log = JUMP_ALIGN (label);
758 fprintf(dump_file, " jump alignment added.\n");
762 max_skip = JUMP_ALIGN_MAX_SKIP;
765 /* In case block is frequent and reached mostly by non-fallthru edge,
766 align it. It is most likely a first block of loop. */
768 && maybe_hot_bb_p (bb)
769 && branch_frequency + fallthru_frequency > freq_threshold
771 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
773 log = LOOP_ALIGN (label);
775 fprintf(dump_file, " internal loop alignment added.\n");
779 max_skip = LOOP_ALIGN_MAX_SKIP;
782 LABEL_TO_ALIGNMENT (label) = max_log;
783 LABEL_TO_MAX_SKIP (label) = max_skip;
787 loop_optimizer_finalize ();
791 struct rtl_opt_pass pass_compute_alignments =
795 "alignments", /* name */
797 compute_alignments, /* execute */
800 0, /* static_pass_number */
802 0, /* properties_required */
803 0, /* properties_provided */
804 0, /* properties_destroyed */
805 0, /* todo_flags_start */
806 TODO_dump_func | TODO_verify_rtl_sharing
807 | TODO_ggc_collect /* todo_flags_finish */
812 /* Make a pass over all insns and compute their actual lengths by shortening
813 any branches of variable length if possible. */
815 /* shorten_branches might be called multiple times: for example, the SH
816 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
817 In order to do this, it needs proper length information, which it obtains
818 by calling shorten_branches. This cannot be collapsed with
819 shorten_branches itself into a single pass unless we also want to integrate
820 reorg.c, since the branch splitting exposes new instructions with delay
824 shorten_branches (rtx first ATTRIBUTE_UNUSED)
831 #ifdef HAVE_ATTR_length
832 #define MAX_CODE_ALIGN 16
834 int something_changed = 1;
835 char *varying_length;
838 rtx align_tab[MAX_CODE_ALIGN];
842 /* Compute maximum UID and allocate label_align / uid_shuid. */
843 max_uid = get_max_uid ();
845 /* Free uid_shuid before reallocating it. */
848 uid_shuid = XNEWVEC (int, max_uid);
850 if (max_labelno != max_label_num ())
852 int old = max_labelno;
856 max_labelno = max_label_num ();
858 n_labels = max_labelno - min_labelno + 1;
859 n_old_labels = old - min_labelno + 1;
861 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
863 /* Range of labels grows monotonically in the function. Failing here
864 means that the initialization of array got lost. */
865 gcc_assert (n_old_labels <= n_labels);
867 memset (label_align + n_old_labels, 0,
868 (n_labels - n_old_labels) * sizeof (struct label_alignment));
871 /* Initialize label_align and set up uid_shuid to be strictly
872 monotonically rising with insn order. */
873 /* We use max_log here to keep track of the maximum alignment we want to
874 impose on the next CODE_LABEL (or the current one if we are processing
875 the CODE_LABEL itself). */
880 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
884 INSN_SHUID (insn) = i++;
892 /* Merge in alignments computed by compute_alignments. */
893 log = LABEL_TO_ALIGNMENT (insn);
897 max_skip = LABEL_TO_MAX_SKIP (insn);
900 log = LABEL_ALIGN (insn);
904 max_skip = LABEL_ALIGN_MAX_SKIP;
906 next = next_nonnote_insn (insn);
907 /* ADDR_VECs only take room if read-only data goes into the text
909 if (JUMP_TABLES_IN_TEXT_SECTION
910 || readonly_data_section == text_section)
911 if (next && JUMP_P (next))
913 rtx nextbody = PATTERN (next);
914 if (GET_CODE (nextbody) == ADDR_VEC
915 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
917 log = ADDR_VEC_ALIGN (next);
921 max_skip = LABEL_ALIGN_MAX_SKIP;
925 LABEL_TO_ALIGNMENT (insn) = max_log;
926 LABEL_TO_MAX_SKIP (insn) = max_skip;
930 else if (BARRIER_P (insn))
934 for (label = insn; label && ! INSN_P (label);
935 label = NEXT_INSN (label))
938 log = LABEL_ALIGN_AFTER_BARRIER (insn);
942 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
948 #ifdef HAVE_ATTR_length
950 /* Allocate the rest of the arrays. */
951 insn_lengths = XNEWVEC (int, max_uid);
952 insn_lengths_max_uid = max_uid;
953 /* Syntax errors can lead to labels being outside of the main insn stream.
954 Initialize insn_addresses, so that we get reproducible results. */
955 INSN_ADDRESSES_ALLOC (max_uid);
957 varying_length = XCNEWVEC (char, max_uid);
959 /* Initialize uid_align. We scan instructions
960 from end to start, and keep in align_tab[n] the last seen insn
961 that does an alignment of at least n+1, i.e. the successor
962 in the alignment chain for an insn that does / has a known
964 uid_align = XCNEWVEC (rtx, max_uid);
966 for (i = MAX_CODE_ALIGN; --i >= 0;)
967 align_tab[i] = NULL_RTX;
968 seq = get_last_insn ();
969 for (; seq; seq = PREV_INSN (seq))
971 int uid = INSN_UID (seq);
973 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
974 uid_align[uid] = align_tab[0];
977 /* Found an alignment label. */
978 uid_align[uid] = align_tab[log];
979 for (i = log - 1; i >= 0; i--)
983 #ifdef CASE_VECTOR_SHORTEN_MODE
986 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
989 int min_shuid = INSN_SHUID (get_insns ()) - 1;
990 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
993 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
995 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
996 int len, i, min, max, insn_shuid;
998 addr_diff_vec_flags flags;
1001 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1003 pat = PATTERN (insn);
1004 len = XVECLEN (pat, 1);
1005 gcc_assert (len > 0);
1006 min_align = MAX_CODE_ALIGN;
1007 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1009 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1010 int shuid = INSN_SHUID (lab);
1021 if (min_align > LABEL_TO_ALIGNMENT (lab))
1022 min_align = LABEL_TO_ALIGNMENT (lab);
1024 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1025 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1026 insn_shuid = INSN_SHUID (insn);
1027 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1028 memset (&flags, 0, sizeof (flags));
1029 flags.min_align = min_align;
1030 flags.base_after_vec = rel > insn_shuid;
1031 flags.min_after_vec = min > insn_shuid;
1032 flags.max_after_vec = max > insn_shuid;
1033 flags.min_after_base = min > rel;
1034 flags.max_after_base = max > rel;
1035 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1038 #endif /* CASE_VECTOR_SHORTEN_MODE */
1040 /* Compute initial lengths, addresses, and varying flags for each insn. */
1041 for (insn_current_address = 0, insn = first;
1043 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1045 uid = INSN_UID (insn);
1047 insn_lengths[uid] = 0;
1051 int log = LABEL_TO_ALIGNMENT (insn);
1054 int align = 1 << log;
1055 int new_address = (insn_current_address + align - 1) & -align;
1056 insn_lengths[uid] = new_address - insn_current_address;
1060 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1062 if (NOTE_P (insn) || BARRIER_P (insn)
1065 if (INSN_DELETED_P (insn))
1068 body = PATTERN (insn);
1069 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1071 /* This only takes room if read-only data goes into the text
1073 if (JUMP_TABLES_IN_TEXT_SECTION
1074 || readonly_data_section == text_section)
1075 insn_lengths[uid] = (XVECLEN (body,
1076 GET_CODE (body) == ADDR_DIFF_VEC)
1077 * GET_MODE_SIZE (GET_MODE (body)));
1078 /* Alignment is handled by ADDR_VEC_ALIGN. */
1080 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1081 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1082 else if (GET_CODE (body) == SEQUENCE)
1085 int const_delay_slots;
1087 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1089 const_delay_slots = 0;
1091 /* Inside a delay slot sequence, we do not do any branch shortening
1092 if the shortening could change the number of delay slots
1094 for (i = 0; i < XVECLEN (body, 0); i++)
1096 rtx inner_insn = XVECEXP (body, 0, i);
1097 int inner_uid = INSN_UID (inner_insn);
1100 if (GET_CODE (body) == ASM_INPUT
1101 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1102 inner_length = (asm_insn_count (PATTERN (inner_insn))
1103 * insn_default_length (inner_insn));
1105 inner_length = insn_default_length (inner_insn);
1107 insn_lengths[inner_uid] = inner_length;
1108 if (const_delay_slots)
1110 if ((varying_length[inner_uid]
1111 = insn_variable_length_p (inner_insn)) != 0)
1112 varying_length[uid] = 1;
1113 INSN_ADDRESSES (inner_uid) = (insn_current_address
1114 + insn_lengths[uid]);
1117 varying_length[inner_uid] = 0;
1118 insn_lengths[uid] += inner_length;
1121 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1123 insn_lengths[uid] = insn_default_length (insn);
1124 varying_length[uid] = insn_variable_length_p (insn);
1127 /* If needed, do any adjustment. */
1128 #ifdef ADJUST_INSN_LENGTH
1129 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1130 if (insn_lengths[uid] < 0)
1131 fatal_insn ("negative insn length", insn);
1135 /* Now loop over all the insns finding varying length insns. For each,
1136 get the current insn length. If it has changed, reflect the change.
1137 When nothing changes for a full pass, we are done. */
1139 while (something_changed)
1141 something_changed = 0;
1142 insn_current_align = MAX_CODE_ALIGN - 1;
1143 for (insn_current_address = 0, insn = first;
1145 insn = NEXT_INSN (insn))
1148 #ifdef ADJUST_INSN_LENGTH
1153 uid = INSN_UID (insn);
1157 int log = LABEL_TO_ALIGNMENT (insn);
1158 if (log > insn_current_align)
1160 int align = 1 << log;
1161 int new_address= (insn_current_address + align - 1) & -align;
1162 insn_lengths[uid] = new_address - insn_current_address;
1163 insn_current_align = log;
1164 insn_current_address = new_address;
1167 insn_lengths[uid] = 0;
1168 INSN_ADDRESSES (uid) = insn_current_address;
1172 length_align = INSN_LENGTH_ALIGNMENT (insn);
1173 if (length_align < insn_current_align)
1174 insn_current_align = length_align;
1176 insn_last_address = INSN_ADDRESSES (uid);
1177 INSN_ADDRESSES (uid) = insn_current_address;
1179 #ifdef CASE_VECTOR_SHORTEN_MODE
1180 if (optimize && JUMP_P (insn)
1181 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1183 rtx body = PATTERN (insn);
1184 int old_length = insn_lengths[uid];
1185 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1186 rtx min_lab = XEXP (XEXP (body, 2), 0);
1187 rtx max_lab = XEXP (XEXP (body, 3), 0);
1188 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1189 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1190 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1193 addr_diff_vec_flags flags;
1195 /* Avoid automatic aggregate initialization. */
1196 flags = ADDR_DIFF_VEC_FLAGS (body);
1198 /* Try to find a known alignment for rel_lab. */
1199 for (prev = rel_lab;
1201 && ! insn_lengths[INSN_UID (prev)]
1202 && ! (varying_length[INSN_UID (prev)] & 1);
1203 prev = PREV_INSN (prev))
1204 if (varying_length[INSN_UID (prev)] & 2)
1206 rel_align = LABEL_TO_ALIGNMENT (prev);
1210 /* See the comment on addr_diff_vec_flags in rtl.h for the
1211 meaning of the flags values. base: REL_LAB vec: INSN */
1212 /* Anything after INSN has still addresses from the last
1213 pass; adjust these so that they reflect our current
1214 estimate for this pass. */
1215 if (flags.base_after_vec)
1216 rel_addr += insn_current_address - insn_last_address;
1217 if (flags.min_after_vec)
1218 min_addr += insn_current_address - insn_last_address;
1219 if (flags.max_after_vec)
1220 max_addr += insn_current_address - insn_last_address;
1221 /* We want to know the worst case, i.e. lowest possible value
1222 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1223 its offset is positive, and we have to be wary of code shrink;
1224 otherwise, it is negative, and we have to be vary of code
1226 if (flags.min_after_base)
1228 /* If INSN is between REL_LAB and MIN_LAB, the size
1229 changes we are about to make can change the alignment
1230 within the observed offset, therefore we have to break
1231 it up into two parts that are independent. */
1232 if (! flags.base_after_vec && flags.min_after_vec)
1234 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1235 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1238 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1242 if (flags.base_after_vec && ! flags.min_after_vec)
1244 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1245 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1248 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1250 /* Likewise, determine the highest lowest possible value
1251 for the offset of MAX_LAB. */
1252 if (flags.max_after_base)
1254 if (! flags.base_after_vec && flags.max_after_vec)
1256 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1257 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1260 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1264 if (flags.base_after_vec && ! flags.max_after_vec)
1266 max_addr += align_fuzz (max_lab, insn, 0, 0);
1267 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1270 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1272 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1273 max_addr - rel_addr,
1275 if (JUMP_TABLES_IN_TEXT_SECTION
1276 || readonly_data_section == text_section)
1279 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1280 insn_current_address += insn_lengths[uid];
1281 if (insn_lengths[uid] != old_length)
1282 something_changed = 1;
1287 #endif /* CASE_VECTOR_SHORTEN_MODE */
1289 if (! (varying_length[uid]))
1291 if (NONJUMP_INSN_P (insn)
1292 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1296 body = PATTERN (insn);
1297 for (i = 0; i < XVECLEN (body, 0); i++)
1299 rtx inner_insn = XVECEXP (body, 0, i);
1300 int inner_uid = INSN_UID (inner_insn);
1302 INSN_ADDRESSES (inner_uid) = insn_current_address;
1304 insn_current_address += insn_lengths[inner_uid];
1308 insn_current_address += insn_lengths[uid];
1313 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1317 body = PATTERN (insn);
1319 for (i = 0; i < XVECLEN (body, 0); i++)
1321 rtx inner_insn = XVECEXP (body, 0, i);
1322 int inner_uid = INSN_UID (inner_insn);
1325 INSN_ADDRESSES (inner_uid) = insn_current_address;
1327 /* insn_current_length returns 0 for insns with a
1328 non-varying length. */
1329 if (! varying_length[inner_uid])
1330 inner_length = insn_lengths[inner_uid];
1332 inner_length = insn_current_length (inner_insn);
1334 if (inner_length != insn_lengths[inner_uid])
1336 insn_lengths[inner_uid] = inner_length;
1337 something_changed = 1;
1339 insn_current_address += insn_lengths[inner_uid];
1340 new_length += inner_length;
1345 new_length = insn_current_length (insn);
1346 insn_current_address += new_length;
1349 #ifdef ADJUST_INSN_LENGTH
1350 /* If needed, do any adjustment. */
1351 tmp_length = new_length;
1352 ADJUST_INSN_LENGTH (insn, new_length);
1353 insn_current_address += (new_length - tmp_length);
1356 if (new_length != insn_lengths[uid])
1358 insn_lengths[uid] = new_length;
1359 something_changed = 1;
1362 /* For a non-optimizing compile, do only a single pass. */
1367 free (varying_length);
1369 #endif /* HAVE_ATTR_length */
1372 #ifdef HAVE_ATTR_length
1373 /* Given the body of an INSN known to be generated by an ASM statement, return
1374 the number of machine instructions likely to be generated for this insn.
1375 This is used to compute its length. */
1378 asm_insn_count (rtx body)
1383 if (GET_CODE (body) == ASM_INPUT)
1384 templ = XSTR (body, 0);
1386 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1391 for (; *templ; templ++)
1392 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1400 /* ??? This is probably the wrong place for these. */
1401 /* Structure recording the mapping from source file and directory
1402 names at compile time to those to be embedded in debug
1404 typedef struct debug_prefix_map
1406 const char *old_prefix;
1407 const char *new_prefix;
1410 struct debug_prefix_map *next;
1413 /* Linked list of such structures. */
1414 debug_prefix_map *debug_prefix_maps;
1417 /* Record a debug file prefix mapping. ARG is the argument to
1418 -fdebug-prefix-map and must be of the form OLD=NEW. */
1421 add_debug_prefix_map (const char *arg)
1423 debug_prefix_map *map;
1426 p = strchr (arg, '=');
1429 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1432 map = XNEW (debug_prefix_map);
1433 map->old_prefix = ggc_alloc_string (arg, p - arg);
1434 map->old_len = p - arg;
1436 map->new_prefix = ggc_strdup (p);
1437 map->new_len = strlen (p);
1438 map->next = debug_prefix_maps;
1439 debug_prefix_maps = map;
1442 /* Perform user-specified mapping of debug filename prefixes. Return
1443 the new name corresponding to FILENAME. */
1446 remap_debug_filename (const char *filename)
1448 debug_prefix_map *map;
1453 for (map = debug_prefix_maps; map; map = map->next)
1454 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1458 name = filename + map->old_len;
1459 name_len = strlen (name) + 1;
1460 s = (char *) alloca (name_len + map->new_len);
1461 memcpy (s, map->new_prefix, map->new_len);
1462 memcpy (s + map->new_len, name, name_len);
1463 return ggc_strdup (s);
1466 /* Output assembler code for the start of a function,
1467 and initialize some of the variables in this file
1468 for the new function. The label for the function and associated
1469 assembler pseudo-ops have already been output in `assemble_start_function'.
1471 FIRST is the first insn of the rtl for the function being compiled.
1472 FILE is the file to write assembler code to.
1473 OPTIMIZE is nonzero if we should eliminate redundant
1474 test and compare insns. */
1477 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1478 int optimize ATTRIBUTE_UNUSED)
1482 this_is_asm_operands = 0;
1484 last_filename = locator_file (prologue_locator);
1485 last_linenum = locator_line (prologue_locator);
1487 high_block_linenum = high_function_linenum = last_linenum;
1489 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1491 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1492 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1493 dwarf2out_begin_prologue (0, NULL);
1496 #ifdef LEAF_REG_REMAP
1497 if (current_function_uses_only_leaf_regs)
1498 leaf_renumber_regs (first);
1501 /* The Sun386i and perhaps other machines don't work right
1502 if the profiling code comes after the prologue. */
1503 #ifdef PROFILE_BEFORE_PROLOGUE
1505 profile_function (file);
1506 #endif /* PROFILE_BEFORE_PROLOGUE */
1508 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1509 if (dwarf2out_do_frame ())
1510 dwarf2out_frame_debug (NULL_RTX, false);
1513 /* If debugging, assign block numbers to all of the blocks in this
1517 reemit_insn_block_notes ();
1518 number_blocks (current_function_decl);
1519 /* We never actually put out begin/end notes for the top-level
1520 block in the function. But, conceptually, that block is
1522 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1525 if (warn_frame_larger_than
1526 && get_frame_size () > frame_larger_than_size)
1528 /* Issue a warning */
1529 warning (OPT_Wframe_larger_than_,
1530 "the frame size of %wd bytes is larger than %wd bytes",
1531 get_frame_size (), frame_larger_than_size);
1534 /* First output the function prologue: code to set up the stack frame. */
1535 targetm.asm_out.function_prologue (file, get_frame_size ());
1537 /* If the machine represents the prologue as RTL, the profiling code must
1538 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1539 #ifdef HAVE_prologue
1540 if (! HAVE_prologue)
1542 profile_after_prologue (file);
1546 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1548 #ifndef PROFILE_BEFORE_PROLOGUE
1550 profile_function (file);
1551 #endif /* not PROFILE_BEFORE_PROLOGUE */
1555 profile_function (FILE *file ATTRIBUTE_UNUSED)
1557 #ifndef NO_PROFILE_COUNTERS
1558 # define NO_PROFILE_COUNTERS 0
1560 #if defined(ASM_OUTPUT_REG_PUSH)
1561 int sval = cfun->returns_struct;
1562 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1563 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1564 int cxt = cfun->static_chain_decl != NULL;
1566 #endif /* ASM_OUTPUT_REG_PUSH */
1568 if (! NO_PROFILE_COUNTERS)
1570 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1571 switch_to_section (data_section);
1572 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1573 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1574 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1577 switch_to_section (current_function_section ());
1579 #if defined(ASM_OUTPUT_REG_PUSH)
1580 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1582 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1586 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1588 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1590 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1593 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1598 FUNCTION_PROFILER (file, current_function_funcdef_no);
1600 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1602 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1604 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1607 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1612 #if defined(ASM_OUTPUT_REG_PUSH)
1613 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1615 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1620 /* Output assembler code for the end of a function.
1621 For clarity, args are same as those of `final_start_function'
1622 even though not all of them are needed. */
1625 final_end_function (void)
1629 (*debug_hooks->end_function) (high_function_linenum);
1631 /* Finally, output the function epilogue:
1632 code to restore the stack frame and return to the caller. */
1633 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1635 /* And debug output. */
1636 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1638 #if defined (DWARF2_UNWIND_INFO)
1639 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1640 && dwarf2out_do_frame ())
1641 dwarf2out_end_epilogue (last_linenum, last_filename);
1645 /* Output assembler code for some insns: all or part of a function.
1646 For description of args, see `final_start_function', above. */
1649 final (rtx first, FILE *file, int optimize)
1655 last_ignored_compare = 0;
1657 for (insn = first; insn; insn = NEXT_INSN (insn))
1659 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1660 max_uid = INSN_UID (insn);
1662 /* If CC tracking across branches is enabled, record the insn which
1663 jumps to each branch only reached from one place. */
1664 if (optimize && JUMP_P (insn))
1666 rtx lab = JUMP_LABEL (insn);
1667 if (lab && LABEL_NUSES (lab) == 1)
1669 LABEL_REFS (lab) = insn;
1679 /* Output the insns. */
1680 for (insn = first; insn;)
1682 #ifdef HAVE_ATTR_length
1683 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1685 /* This can be triggered by bugs elsewhere in the compiler if
1686 new insns are created after init_insn_lengths is called. */
1687 gcc_assert (NOTE_P (insn));
1688 insn_current_address = -1;
1691 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1692 #endif /* HAVE_ATTR_length */
1694 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1699 get_insn_template (int code, rtx insn)
1701 switch (insn_data[code].output_format)
1703 case INSN_OUTPUT_FORMAT_SINGLE:
1704 return insn_data[code].output.single;
1705 case INSN_OUTPUT_FORMAT_MULTI:
1706 return insn_data[code].output.multi[which_alternative];
1707 case INSN_OUTPUT_FORMAT_FUNCTION:
1709 return (*insn_data[code].output.function) (recog_data.operand, insn);
1716 /* Emit the appropriate declaration for an alternate-entry-point
1717 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1718 LABEL_KIND != LABEL_NORMAL.
1720 The case fall-through in this function is intentional. */
1722 output_alternate_entry_point (FILE *file, rtx insn)
1724 const char *name = LABEL_NAME (insn);
1726 switch (LABEL_KIND (insn))
1728 case LABEL_WEAK_ENTRY:
1729 #ifdef ASM_WEAKEN_LABEL
1730 ASM_WEAKEN_LABEL (file, name);
1732 case LABEL_GLOBAL_ENTRY:
1733 targetm.asm_out.globalize_label (file, name);
1734 case LABEL_STATIC_ENTRY:
1735 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1736 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1738 ASM_OUTPUT_LABEL (file, name);
1747 /* Given a CALL_INSN, find and return the nested CALL. */
1749 call_from_call_insn (rtx insn)
1752 gcc_assert (CALL_P (insn));
1755 while (GET_CODE (x) != CALL)
1757 switch (GET_CODE (x))
1762 x = XVECEXP (x, 0, 0);
1772 /* The final scan for one insn, INSN.
1773 Args are same as in `final', except that INSN
1774 is the insn being scanned.
1775 Value returned is the next insn to be scanned.
1777 NOPEEPHOLES is the flag to disallow peephole processing (currently
1778 used for within delayed branch sequence output).
1780 SEEN is used to track the end of the prologue, for emitting
1781 debug information. We force the emission of a line note after
1782 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1783 at the beginning of the second basic block, whichever comes
1787 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1788 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1797 /* Ignore deleted insns. These can occur when we split insns (due to a
1798 template of "#") while not optimizing. */
1799 if (INSN_DELETED_P (insn))
1800 return NEXT_INSN (insn);
1802 switch (GET_CODE (insn))
1805 switch (NOTE_KIND (insn))
1807 case NOTE_INSN_DELETED:
1810 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1811 in_cold_section_p = !in_cold_section_p;
1812 #ifdef DWARF2_UNWIND_INFO
1813 if (dwarf2out_do_frame ())
1814 dwarf2out_switch_text_section ();
1817 (*debug_hooks->switch_text_section) ();
1819 switch_to_section (current_function_section ());
1822 case NOTE_INSN_BASIC_BLOCK:
1823 #ifdef TARGET_UNWIND_INFO
1824 targetm.asm_out.unwind_emit (asm_out_file, insn);
1828 fprintf (asm_out_file, "\t%s basic block %d\n",
1829 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1831 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1833 *seen |= SEEN_EMITTED;
1834 force_source_line = true;
1841 case NOTE_INSN_EH_REGION_BEG:
1842 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1843 NOTE_EH_HANDLER (insn));
1846 case NOTE_INSN_EH_REGION_END:
1847 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1848 NOTE_EH_HANDLER (insn));
1851 case NOTE_INSN_PROLOGUE_END:
1852 targetm.asm_out.function_end_prologue (file);
1853 profile_after_prologue (file);
1855 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1857 *seen |= SEEN_EMITTED;
1858 force_source_line = true;
1865 case NOTE_INSN_EPILOGUE_BEG:
1866 targetm.asm_out.function_begin_epilogue (file);
1869 case NOTE_INSN_FUNCTION_BEG:
1871 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1873 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1875 *seen |= SEEN_EMITTED;
1876 force_source_line = true;
1883 case NOTE_INSN_BLOCK_BEG:
1884 if (debug_info_level == DINFO_LEVEL_NORMAL
1885 || debug_info_level == DINFO_LEVEL_VERBOSE
1886 || write_symbols == DWARF2_DEBUG
1887 || write_symbols == VMS_AND_DWARF2_DEBUG
1888 || write_symbols == VMS_DEBUG)
1890 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1894 high_block_linenum = last_linenum;
1896 /* Output debugging info about the symbol-block beginning. */
1897 (*debug_hooks->begin_block) (last_linenum, n);
1899 /* Mark this block as output. */
1900 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1902 if (write_symbols == DBX_DEBUG
1903 || write_symbols == SDB_DEBUG)
1905 location_t *locus_ptr
1906 = block_nonartificial_location (NOTE_BLOCK (insn));
1908 if (locus_ptr != NULL)
1910 override_filename = LOCATION_FILE (*locus_ptr);
1911 override_linenum = LOCATION_LINE (*locus_ptr);
1916 case NOTE_INSN_BLOCK_END:
1917 if (debug_info_level == DINFO_LEVEL_NORMAL
1918 || debug_info_level == DINFO_LEVEL_VERBOSE
1919 || write_symbols == DWARF2_DEBUG
1920 || write_symbols == VMS_AND_DWARF2_DEBUG
1921 || write_symbols == VMS_DEBUG)
1923 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1927 /* End of a symbol-block. */
1929 gcc_assert (block_depth >= 0);
1931 (*debug_hooks->end_block) (high_block_linenum, n);
1933 if (write_symbols == DBX_DEBUG
1934 || write_symbols == SDB_DEBUG)
1936 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1937 location_t *locus_ptr
1938 = block_nonartificial_location (outer_block);
1940 if (locus_ptr != NULL)
1942 override_filename = LOCATION_FILE (*locus_ptr);
1943 override_linenum = LOCATION_LINE (*locus_ptr);
1947 override_filename = NULL;
1948 override_linenum = 0;
1953 case NOTE_INSN_DELETED_LABEL:
1954 /* Emit the label. We may have deleted the CODE_LABEL because
1955 the label could be proved to be unreachable, though still
1956 referenced (in the form of having its address taken. */
1957 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1960 case NOTE_INSN_VAR_LOCATION:
1961 (*debug_hooks->var_location) (insn);
1971 #if defined (DWARF2_UNWIND_INFO)
1972 if (dwarf2out_do_frame ())
1973 dwarf2out_frame_debug (insn, false);
1978 /* The target port might emit labels in the output function for
1979 some insn, e.g. sh.c output_branchy_insn. */
1980 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1982 int align = LABEL_TO_ALIGNMENT (insn);
1983 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1984 int max_skip = LABEL_TO_MAX_SKIP (insn);
1987 if (align && NEXT_INSN (insn))
1989 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1990 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1992 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1993 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1995 ASM_OUTPUT_ALIGN (file, align);
2004 if (LABEL_NAME (insn))
2005 (*debug_hooks->label) (insn);
2009 fputs (ASM_APP_OFF, file);
2013 next = next_nonnote_insn (insn);
2014 if (next != 0 && JUMP_P (next))
2016 rtx nextbody = PATTERN (next);
2018 /* If this label is followed by a jump-table,
2019 make sure we put the label in the read-only section. Also
2020 possibly write the label and jump table together. */
2022 if (GET_CODE (nextbody) == ADDR_VEC
2023 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2025 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2026 /* In this case, the case vector is being moved by the
2027 target, so don't output the label at all. Leave that
2028 to the back end macros. */
2030 if (! JUMP_TABLES_IN_TEXT_SECTION)
2034 switch_to_section (targetm.asm_out.function_rodata_section
2035 (current_function_decl));
2037 #ifdef ADDR_VEC_ALIGN
2038 log_align = ADDR_VEC_ALIGN (next);
2040 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2042 ASM_OUTPUT_ALIGN (file, log_align);
2045 switch_to_section (current_function_section ());
2047 #ifdef ASM_OUTPUT_CASE_LABEL
2048 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2051 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2057 if (LABEL_ALT_ENTRY_P (insn))
2058 output_alternate_entry_point (file, insn);
2060 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2065 rtx body = PATTERN (insn);
2066 int insn_code_number;
2069 #ifdef HAVE_conditional_execution
2070 /* Reset this early so it is correct for ASM statements. */
2071 current_insn_predicate = NULL_RTX;
2073 /* An INSN, JUMP_INSN or CALL_INSN.
2074 First check for special kinds that recog doesn't recognize. */
2076 if (GET_CODE (body) == USE /* These are just declarations. */
2077 || GET_CODE (body) == CLOBBER)
2082 /* If there is a REG_CC_SETTER note on this insn, it means that
2083 the setting of the condition code was done in the delay slot
2084 of the insn that branched here. So recover the cc status
2085 from the insn that set it. */
2087 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2090 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2091 cc_prev_status = cc_status;
2096 /* Detect insns that are really jump-tables
2097 and output them as such. */
2099 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2101 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2105 if (! JUMP_TABLES_IN_TEXT_SECTION)
2106 switch_to_section (targetm.asm_out.function_rodata_section
2107 (current_function_decl));
2109 switch_to_section (current_function_section ());
2113 fputs (ASM_APP_OFF, file);
2117 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2118 if (GET_CODE (body) == ADDR_VEC)
2120 #ifdef ASM_OUTPUT_ADDR_VEC
2121 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2128 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2129 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2135 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2136 for (idx = 0; idx < vlen; idx++)
2138 if (GET_CODE (body) == ADDR_VEC)
2140 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2141 ASM_OUTPUT_ADDR_VEC_ELT
2142 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2149 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2150 ASM_OUTPUT_ADDR_DIFF_ELT
2153 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2154 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2160 #ifdef ASM_OUTPUT_CASE_END
2161 ASM_OUTPUT_CASE_END (file,
2162 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2167 switch_to_section (current_function_section ());
2171 /* Output this line note if it is the first or the last line
2173 if (notice_source_line (insn))
2175 (*debug_hooks->source_line) (last_linenum, last_filename);
2178 if (GET_CODE (body) == ASM_INPUT)
2180 const char *string = XSTR (body, 0);
2182 /* There's no telling what that did to the condition codes. */
2187 expanded_location loc;
2191 fputs (ASM_APP_ON, file);
2194 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2195 if (*loc.file && loc.line)
2196 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2197 ASM_COMMENT_START, loc.line, loc.file);
2198 fprintf (asm_out_file, "\t%s\n", string);
2199 #if HAVE_AS_LINE_ZERO
2200 if (*loc.file && loc.line)
2201 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2207 /* Detect `asm' construct with operands. */
2208 if (asm_noperands (body) >= 0)
2210 unsigned int noperands = asm_noperands (body);
2211 rtx *ops = XALLOCAVEC (rtx, noperands);
2214 expanded_location expanded;
2216 /* There's no telling what that did to the condition codes. */
2219 /* Get out the operand values. */
2220 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2221 /* Inhibit dying on what would otherwise be compiler bugs. */
2222 insn_noperands = noperands;
2223 this_is_asm_operands = insn;
2224 expanded = expand_location (loc);
2226 #ifdef FINAL_PRESCAN_INSN
2227 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2230 /* Output the insn using them. */
2235 fputs (ASM_APP_ON, file);
2238 if (expanded.file && expanded.line)
2239 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2240 ASM_COMMENT_START, expanded.line, expanded.file);
2241 output_asm_insn (string, ops);
2242 #if HAVE_AS_LINE_ZERO
2243 if (expanded.file && expanded.line)
2244 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2248 this_is_asm_operands = 0;
2254 fputs (ASM_APP_OFF, file);
2258 if (GET_CODE (body) == SEQUENCE)
2260 /* A delayed-branch sequence */
2263 final_sequence = body;
2265 /* Record the delay slots' frame information before the branch.
2266 This is needed for delayed calls: see execute_cfa_program(). */
2267 #if defined (DWARF2_UNWIND_INFO)
2268 if (dwarf2out_do_frame ())
2269 for (i = 1; i < XVECLEN (body, 0); i++)
2270 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2273 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2274 force the restoration of a comparison that was previously
2275 thought unnecessary. If that happens, cancel this sequence
2276 and cause that insn to be restored. */
2278 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2279 if (next != XVECEXP (body, 0, 1))
2285 for (i = 1; i < XVECLEN (body, 0); i++)
2287 rtx insn = XVECEXP (body, 0, i);
2288 rtx next = NEXT_INSN (insn);
2289 /* We loop in case any instruction in a delay slot gets
2292 insn = final_scan_insn (insn, file, 0, 1, seen);
2293 while (insn != next);
2295 #ifdef DBR_OUTPUT_SEQEND
2296 DBR_OUTPUT_SEQEND (file);
2300 /* If the insn requiring the delay slot was a CALL_INSN, the
2301 insns in the delay slot are actually executed before the
2302 called function. Hence we don't preserve any CC-setting
2303 actions in these insns and the CC must be marked as being
2304 clobbered by the function. */
2305 if (CALL_P (XVECEXP (body, 0, 0)))
2312 /* We have a real machine instruction as rtl. */
2314 body = PATTERN (insn);
2317 set = single_set (insn);
2319 /* Check for redundant test and compare instructions
2320 (when the condition codes are already set up as desired).
2321 This is done only when optimizing; if not optimizing,
2322 it should be possible for the user to alter a variable
2323 with the debugger in between statements
2324 and the next statement should reexamine the variable
2325 to compute the condition codes. */
2330 && GET_CODE (SET_DEST (set)) == CC0
2331 && insn != last_ignored_compare)
2333 if (GET_CODE (SET_SRC (set)) == SUBREG)
2334 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2335 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2337 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2338 XEXP (SET_SRC (set), 0)
2339 = alter_subreg (&XEXP (SET_SRC (set), 0));
2340 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2341 XEXP (SET_SRC (set), 1)
2342 = alter_subreg (&XEXP (SET_SRC (set), 1));
2344 if ((cc_status.value1 != 0
2345 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2346 || (cc_status.value2 != 0
2347 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2349 /* Don't delete insn if it has an addressing side-effect. */
2350 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2351 /* or if anything in it is volatile. */
2352 && ! volatile_refs_p (PATTERN (insn)))
2354 /* We don't really delete the insn; just ignore it. */
2355 last_ignored_compare = insn;
2364 /* If this is a conditional branch, maybe modify it
2365 if the cc's are in a nonstandard state
2366 so that it accomplishes the same thing that it would
2367 do straightforwardly if the cc's were set up normally. */
2369 if (cc_status.flags != 0
2371 && GET_CODE (body) == SET
2372 && SET_DEST (body) == pc_rtx
2373 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2374 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2375 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2377 /* This function may alter the contents of its argument
2378 and clear some of the cc_status.flags bits.
2379 It may also return 1 meaning condition now always true
2380 or -1 meaning condition now always false
2381 or 2 meaning condition nontrivial but altered. */
2382 int result = alter_cond (XEXP (SET_SRC (body), 0));
2383 /* If condition now has fixed value, replace the IF_THEN_ELSE
2384 with its then-operand or its else-operand. */
2386 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2388 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2390 /* The jump is now either unconditional or a no-op.
2391 If it has become a no-op, don't try to output it.
2392 (It would not be recognized.) */
2393 if (SET_SRC (body) == pc_rtx)
2398 else if (GET_CODE (SET_SRC (body)) == RETURN)
2399 /* Replace (set (pc) (return)) with (return). */
2400 PATTERN (insn) = body = SET_SRC (body);
2402 /* Rerecognize the instruction if it has changed. */
2404 INSN_CODE (insn) = -1;
2407 /* If this is a conditional trap, maybe modify it if the cc's
2408 are in a nonstandard state so that it accomplishes the same
2409 thing that it would do straightforwardly if the cc's were
2411 if (cc_status.flags != 0
2412 && NONJUMP_INSN_P (insn)
2413 && GET_CODE (body) == TRAP_IF
2414 && COMPARISON_P (TRAP_CONDITION (body))
2415 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2417 /* This function may alter the contents of its argument
2418 and clear some of the cc_status.flags bits.
2419 It may also return 1 meaning condition now always true
2420 or -1 meaning condition now always false
2421 or 2 meaning condition nontrivial but altered. */
2422 int result = alter_cond (TRAP_CONDITION (body));
2424 /* If TRAP_CONDITION has become always false, delete the
2432 /* If TRAP_CONDITION has become always true, replace
2433 TRAP_CONDITION with const_true_rtx. */
2435 TRAP_CONDITION (body) = const_true_rtx;
2437 /* Rerecognize the instruction if it has changed. */
2439 INSN_CODE (insn) = -1;
2442 /* Make same adjustments to instructions that examine the
2443 condition codes without jumping and instructions that
2444 handle conditional moves (if this machine has either one). */
2446 if (cc_status.flags != 0
2449 rtx cond_rtx, then_rtx, else_rtx;
2452 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2454 cond_rtx = XEXP (SET_SRC (set), 0);
2455 then_rtx = XEXP (SET_SRC (set), 1);
2456 else_rtx = XEXP (SET_SRC (set), 2);
2460 cond_rtx = SET_SRC (set);
2461 then_rtx = const_true_rtx;
2462 else_rtx = const0_rtx;
2465 switch (GET_CODE (cond_rtx))
2479 if (XEXP (cond_rtx, 0) != cc0_rtx)
2481 result = alter_cond (cond_rtx);
2483 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2484 else if (result == -1)
2485 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2486 else if (result == 2)
2487 INSN_CODE (insn) = -1;
2488 if (SET_DEST (set) == SET_SRC (set))
2500 #ifdef HAVE_peephole
2501 /* Do machine-specific peephole optimizations if desired. */
2503 if (optimize && !flag_no_peephole && !nopeepholes)
2505 rtx next = peephole (insn);
2506 /* When peepholing, if there were notes within the peephole,
2507 emit them before the peephole. */
2508 if (next != 0 && next != NEXT_INSN (insn))
2510 rtx note, prev = PREV_INSN (insn);
2512 for (note = NEXT_INSN (insn); note != next;
2513 note = NEXT_INSN (note))
2514 final_scan_insn (note, file, optimize, nopeepholes, seen);
2516 /* Put the notes in the proper position for a later
2517 rescan. For example, the SH target can do this
2518 when generating a far jump in a delayed branch
2520 note = NEXT_INSN (insn);
2521 PREV_INSN (note) = prev;
2522 NEXT_INSN (prev) = note;
2523 NEXT_INSN (PREV_INSN (next)) = insn;
2524 PREV_INSN (insn) = PREV_INSN (next);
2525 NEXT_INSN (insn) = next;
2526 PREV_INSN (next) = insn;
2529 /* PEEPHOLE might have changed this. */
2530 body = PATTERN (insn);
2534 /* Try to recognize the instruction.
2535 If successful, verify that the operands satisfy the
2536 constraints for the instruction. Crash if they don't,
2537 since `reload' should have changed them so that they do. */
2539 insn_code_number = recog_memoized (insn);
2540 cleanup_subreg_operands (insn);
2542 /* Dump the insn in the assembly for debugging. */
2543 if (flag_dump_rtl_in_asm)
2545 print_rtx_head = ASM_COMMENT_START;
2546 print_rtl_single (asm_out_file, insn);
2547 print_rtx_head = "";
2550 if (! constrain_operands_cached (1))
2551 fatal_insn_not_found (insn);
2553 /* Some target machines need to prescan each insn before
2556 #ifdef FINAL_PRESCAN_INSN
2557 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2560 #ifdef HAVE_conditional_execution
2561 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2562 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2566 cc_prev_status = cc_status;
2568 /* Update `cc_status' for this instruction.
2569 The instruction's output routine may change it further.
2570 If the output routine for a jump insn needs to depend
2571 on the cc status, it should look at cc_prev_status. */
2573 NOTICE_UPDATE_CC (body, insn);
2576 current_output_insn = debug_insn = insn;
2578 #if defined (DWARF2_UNWIND_INFO)
2579 if (CALL_P (insn) && dwarf2out_do_frame ())
2580 dwarf2out_frame_debug (insn, false);
2583 /* Find the proper template for this insn. */
2584 templ = get_insn_template (insn_code_number, insn);
2586 /* If the C code returns 0, it means that it is a jump insn
2587 which follows a deleted test insn, and that test insn
2588 needs to be reinserted. */
2593 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2595 /* We have already processed the notes between the setter and
2596 the user. Make sure we don't process them again, this is
2597 particularly important if one of the notes is a block
2598 scope note or an EH note. */
2600 prev != last_ignored_compare;
2601 prev = PREV_INSN (prev))
2604 delete_insn (prev); /* Use delete_note. */
2610 /* If the template is the string "#", it means that this insn must
2612 if (templ[0] == '#' && templ[1] == '\0')
2614 rtx new_rtx = try_split (body, insn, 0);
2616 /* If we didn't split the insn, go away. */
2617 if (new_rtx == insn && PATTERN (new_rtx) == body)
2618 fatal_insn ("could not split insn", insn);
2620 #ifdef HAVE_ATTR_length
2621 /* This instruction should have been split in shorten_branches,
2622 to ensure that we would have valid length info for the
2630 #ifdef TARGET_UNWIND_INFO
2631 /* ??? This will put the directives in the wrong place if
2632 get_insn_template outputs assembly directly. However calling it
2633 before get_insn_template breaks if the insns is split. */
2634 targetm.asm_out.unwind_emit (asm_out_file, insn);
2639 rtx x = call_from_call_insn (insn);
2641 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2645 t = SYMBOL_REF_DECL (x);
2647 assemble_external (t);
2651 /* Output assembler code from the template. */
2652 output_asm_insn (templ, recog_data.operand);
2654 /* If necessary, report the effect that the instruction has on
2655 the unwind info. We've already done this for delay slots
2656 and call instructions. */
2657 #if defined (DWARF2_UNWIND_INFO)
2658 if (final_sequence == 0
2659 #if !defined (HAVE_prologue)
2660 && !ACCUMULATE_OUTGOING_ARGS
2662 && dwarf2out_do_frame ())
2663 dwarf2out_frame_debug (insn, true);
2666 current_output_insn = debug_insn = 0;
2669 return NEXT_INSN (insn);
2672 /* Return whether a source line note needs to be emitted before INSN. */
2675 notice_source_line (rtx insn)
2677 const char *filename;
2680 if (override_filename)
2682 filename = override_filename;
2683 linenum = override_linenum;
2687 filename = insn_file (insn);
2688 linenum = insn_line (insn);
2692 && (force_source_line
2693 || filename != last_filename
2694 || last_linenum != linenum))
2696 force_source_line = false;
2697 last_filename = filename;
2698 last_linenum = linenum;
2699 high_block_linenum = MAX (last_linenum, high_block_linenum);
2700 high_function_linenum = MAX (last_linenum, high_function_linenum);
2706 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2707 directly to the desired hard register. */
2710 cleanup_subreg_operands (rtx insn)
2713 bool changed = false;
2714 extract_insn_cached (insn);
2715 for (i = 0; i < recog_data.n_operands; i++)
2717 /* The following test cannot use recog_data.operand when testing
2718 for a SUBREG: the underlying object might have been changed
2719 already if we are inside a match_operator expression that
2720 matches the else clause. Instead we test the underlying
2721 expression directly. */
2722 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2724 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2727 else if (GET_CODE (recog_data.operand[i]) == PLUS
2728 || GET_CODE (recog_data.operand[i]) == MULT
2729 || MEM_P (recog_data.operand[i]))
2730 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2733 for (i = 0; i < recog_data.n_dups; i++)
2735 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2737 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2740 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2741 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2742 || MEM_P (*recog_data.dup_loc[i]))
2743 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2746 df_insn_rescan (insn);
2749 /* If X is a SUBREG, replace it with a REG or a MEM,
2750 based on the thing it is a subreg of. */
2753 alter_subreg (rtx *xp)
2756 rtx y = SUBREG_REG (x);
2758 /* simplify_subreg does not remove subreg from volatile references.
2759 We are required to. */
2762 int offset = SUBREG_BYTE (x);
2764 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2765 contains 0 instead of the proper offset. See simplify_subreg. */
2767 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2769 int difference = GET_MODE_SIZE (GET_MODE (y))
2770 - GET_MODE_SIZE (GET_MODE (x));
2771 if (WORDS_BIG_ENDIAN)
2772 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2773 if (BYTES_BIG_ENDIAN)
2774 offset += difference % UNITS_PER_WORD;
2777 *xp = adjust_address (y, GET_MODE (x), offset);
2781 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2788 /* Simplify_subreg can't handle some REG cases, but we have to. */
2790 HOST_WIDE_INT offset;
2792 regno = subreg_regno (x);
2793 if (subreg_lowpart_p (x))
2794 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2796 offset = SUBREG_BYTE (x);
2797 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2804 /* Do alter_subreg on all the SUBREGs contained in X. */
2807 walk_alter_subreg (rtx *xp, bool *changed)
2810 switch (GET_CODE (x))
2815 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2816 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2821 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2826 return alter_subreg (xp);
2837 /* Given BODY, the body of a jump instruction, alter the jump condition
2838 as required by the bits that are set in cc_status.flags.
2839 Not all of the bits there can be handled at this level in all cases.
2841 The value is normally 0.
2842 1 means that the condition has become always true.
2843 -1 means that the condition has become always false.
2844 2 means that COND has been altered. */
2847 alter_cond (rtx cond)
2851 if (cc_status.flags & CC_REVERSED)
2854 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2857 if (cc_status.flags & CC_INVERTED)
2860 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2863 if (cc_status.flags & CC_NOT_POSITIVE)
2864 switch (GET_CODE (cond))
2869 /* Jump becomes unconditional. */
2875 /* Jump becomes no-op. */
2879 PUT_CODE (cond, EQ);
2884 PUT_CODE (cond, NE);
2892 if (cc_status.flags & CC_NOT_NEGATIVE)
2893 switch (GET_CODE (cond))
2897 /* Jump becomes unconditional. */
2902 /* Jump becomes no-op. */
2907 PUT_CODE (cond, EQ);
2913 PUT_CODE (cond, NE);
2921 if (cc_status.flags & CC_NO_OVERFLOW)
2922 switch (GET_CODE (cond))
2925 /* Jump becomes unconditional. */
2929 PUT_CODE (cond, EQ);
2934 PUT_CODE (cond, NE);
2939 /* Jump becomes no-op. */
2946 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2947 switch (GET_CODE (cond))
2953 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2958 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2963 if (cc_status.flags & CC_NOT_SIGNED)
2964 /* The flags are valid if signed condition operators are converted
2966 switch (GET_CODE (cond))
2969 PUT_CODE (cond, LEU);
2974 PUT_CODE (cond, LTU);
2979 PUT_CODE (cond, GTU);
2984 PUT_CODE (cond, GEU);
2996 /* Report inconsistency between the assembler template and the operands.
2997 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3000 output_operand_lossage (const char *cmsgid, ...)
3004 const char *pfx_str;
3007 va_start (ap, cmsgid);
3009 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3010 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3011 vasprintf (&new_message, fmt_string, ap);
3013 if (this_is_asm_operands)
3014 error_for_asm (this_is_asm_operands, "%s", new_message);
3016 internal_error ("%s", new_message);
3023 /* Output of assembler code from a template, and its subroutines. */
3025 /* Annotate the assembly with a comment describing the pattern and
3026 alternative used. */
3029 output_asm_name (void)
3033 int num = INSN_CODE (debug_insn);
3034 fprintf (asm_out_file, "\t%s %d\t%s",
3035 ASM_COMMENT_START, INSN_UID (debug_insn),
3036 insn_data[num].name);
3037 if (insn_data[num].n_alternatives > 1)
3038 fprintf (asm_out_file, "/%d", which_alternative + 1);
3039 #ifdef HAVE_ATTR_length
3040 fprintf (asm_out_file, "\t[length = %d]",
3041 get_attr_length (debug_insn));
3043 /* Clear this so only the first assembler insn
3044 of any rtl insn will get the special comment for -dp. */
3049 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3050 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3051 corresponds to the address of the object and 0 if to the object. */
3054 get_mem_expr_from_op (rtx op, int *paddressp)
3062 return REG_EXPR (op);
3063 else if (!MEM_P (op))
3066 if (MEM_EXPR (op) != 0)
3067 return MEM_EXPR (op);
3069 /* Otherwise we have an address, so indicate it and look at the address. */
3073 /* First check if we have a decl for the address, then look at the right side
3074 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3075 But don't allow the address to itself be indirect. */
3076 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3078 else if (GET_CODE (op) == PLUS
3079 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3082 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3083 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3086 expr = get_mem_expr_from_op (op, &inner_addressp);
3087 return inner_addressp ? 0 : expr;
3090 /* Output operand names for assembler instructions. OPERANDS is the
3091 operand vector, OPORDER is the order to write the operands, and NOPS
3092 is the number of operands to write. */
3095 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3100 for (i = 0; i < nops; i++)
3103 rtx op = operands[oporder[i]];
3104 tree expr = get_mem_expr_from_op (op, &addressp);
3106 fprintf (asm_out_file, "%c%s",
3107 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3111 fprintf (asm_out_file, "%s",
3112 addressp ? "*" : "");
3113 print_mem_expr (asm_out_file, expr);
3116 else if (REG_P (op) && ORIGINAL_REGNO (op)
3117 && ORIGINAL_REGNO (op) != REGNO (op))
3118 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3122 /* Output text from TEMPLATE to the assembler output file,
3123 obeying %-directions to substitute operands taken from
3124 the vector OPERANDS.
3126 %N (for N a digit) means print operand N in usual manner.
3127 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3128 and print the label name with no punctuation.
3129 %cN means require operand N to be a constant
3130 and print the constant expression with no punctuation.
3131 %aN means expect operand N to be a memory address
3132 (not a memory reference!) and print a reference
3134 %nN means expect operand N to be a constant
3135 and print a constant expression for minus the value
3136 of the operand, with no other punctuation. */
3139 output_asm_insn (const char *templ, rtx *operands)
3143 #ifdef ASSEMBLER_DIALECT
3146 int oporder[MAX_RECOG_OPERANDS];
3147 char opoutput[MAX_RECOG_OPERANDS];
3150 /* An insn may return a null string template
3151 in a case where no assembler code is needed. */
3155 memset (opoutput, 0, sizeof opoutput);
3157 putc ('\t', asm_out_file);
3159 #ifdef ASM_OUTPUT_OPCODE
3160 ASM_OUTPUT_OPCODE (asm_out_file, p);
3167 if (flag_verbose_asm)
3168 output_asm_operand_names (operands, oporder, ops);
3169 if (flag_print_asm_name)
3173 memset (opoutput, 0, sizeof opoutput);
3175 putc (c, asm_out_file);
3176 #ifdef ASM_OUTPUT_OPCODE
3177 while ((c = *p) == '\t')
3179 putc (c, asm_out_file);
3182 ASM_OUTPUT_OPCODE (asm_out_file, p);
3186 #ifdef ASSEMBLER_DIALECT
3192 output_operand_lossage ("nested assembly dialect alternatives");
3196 /* If we want the first dialect, do nothing. Otherwise, skip
3197 DIALECT_NUMBER of strings ending with '|'. */
3198 for (i = 0; i < dialect_number; i++)
3200 while (*p && *p != '}' && *p++ != '|')
3209 output_operand_lossage ("unterminated assembly dialect alternative");
3216 /* Skip to close brace. */
3221 output_operand_lossage ("unterminated assembly dialect alternative");
3225 while (*p++ != '}');
3229 putc (c, asm_out_file);
3234 putc (c, asm_out_file);
3240 /* %% outputs a single %. */
3244 putc (c, asm_out_file);
3246 /* %= outputs a number which is unique to each insn in the entire
3247 compilation. This is useful for making local labels that are
3248 referred to more than once in a given insn. */
3252 fprintf (asm_out_file, "%d", insn_counter);
3254 /* % followed by a letter and some digits
3255 outputs an operand in a special way depending on the letter.
3256 Letters `acln' are implemented directly.
3257 Other letters are passed to `output_operand' so that
3258 the PRINT_OPERAND macro can define them. */
3259 else if (ISALPHA (*p))
3262 unsigned long opnum;
3265 opnum = strtoul (p, &endptr, 10);
3268 output_operand_lossage ("operand number missing "
3270 else if (this_is_asm_operands && opnum >= insn_noperands)
3271 output_operand_lossage ("operand number out of range");
3272 else if (letter == 'l')
3273 output_asm_label (operands[opnum]);
3274 else if (letter == 'a')
3275 output_address (operands[opnum]);
3276 else if (letter == 'c')
3278 if (CONSTANT_ADDRESS_P (operands[opnum]))
3279 output_addr_const (asm_out_file, operands[opnum]);
3281 output_operand (operands[opnum], 'c');
3283 else if (letter == 'n')
3285 if (GET_CODE (operands[opnum]) == CONST_INT)
3286 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3287 - INTVAL (operands[opnum]));
3290 putc ('-', asm_out_file);
3291 output_addr_const (asm_out_file, operands[opnum]);
3295 output_operand (operands[opnum], letter);
3297 if (!opoutput[opnum])
3298 oporder[ops++] = opnum;
3299 opoutput[opnum] = 1;
3304 /* % followed by a digit outputs an operand the default way. */
3305 else if (ISDIGIT (*p))
3307 unsigned long opnum;
3310 opnum = strtoul (p, &endptr, 10);
3311 if (this_is_asm_operands && opnum >= insn_noperands)
3312 output_operand_lossage ("operand number out of range");
3314 output_operand (operands[opnum], 0);
3316 if (!opoutput[opnum])
3317 oporder[ops++] = opnum;
3318 opoutput[opnum] = 1;
3323 /* % followed by punctuation: output something for that
3324 punctuation character alone, with no operand.
3325 The PRINT_OPERAND macro decides what is actually done. */
3326 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3327 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3328 output_operand (NULL_RTX, *p++);
3331 output_operand_lossage ("invalid %%-code");
3335 putc (c, asm_out_file);
3338 /* Write out the variable names for operands, if we know them. */
3339 if (flag_verbose_asm)
3340 output_asm_operand_names (operands, oporder, ops);
3341 if (flag_print_asm_name)
3344 putc ('\n', asm_out_file);
3347 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3350 output_asm_label (rtx x)
3354 if (GET_CODE (x) == LABEL_REF)
3358 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3359 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3361 output_operand_lossage ("'%%l' operand isn't a label");
3363 assemble_name (asm_out_file, buf);
3366 /* Print operand X using machine-dependent assembler syntax.
3367 The macro PRINT_OPERAND is defined just to control this function.
3368 CODE is a non-digit that preceded the operand-number in the % spec,
3369 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3370 between the % and the digits.
3371 When CODE is a non-letter, X is 0.
3373 The meanings of the letters are machine-dependent and controlled
3374 by PRINT_OPERAND. */
3377 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3379 if (x && GET_CODE (x) == SUBREG)
3380 x = alter_subreg (&x);
3382 /* X must not be a pseudo reg. */
3383 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3385 PRINT_OPERAND (asm_out_file, x, code);
3386 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3390 t = SYMBOL_REF_DECL (x);
3392 assemble_external (t);
3396 /* Print a memory reference operand for address X
3397 using machine-dependent assembler syntax.
3398 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3401 output_address (rtx x)
3403 bool changed = false;
3404 walk_alter_subreg (&x, &changed);
3405 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3408 /* Print an integer constant expression in assembler syntax.
3409 Addition and subtraction are the only arithmetic
3410 that may appear in these expressions. */
3413 output_addr_const (FILE *file, rtx x)
3418 switch (GET_CODE (x))
3425 if (SYMBOL_REF_DECL (x))
3426 mark_decl_referenced (SYMBOL_REF_DECL (x));
3427 #ifdef ASM_OUTPUT_SYMBOL_REF
3428 ASM_OUTPUT_SYMBOL_REF (file, x);
3430 assemble_name (file, XSTR (x, 0));
3438 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3439 #ifdef ASM_OUTPUT_LABEL_REF
3440 ASM_OUTPUT_LABEL_REF (file, buf);
3442 assemble_name (file, buf);
3447 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3451 /* This used to output parentheses around the expression,
3452 but that does not work on the 386 (either ATT or BSD assembler). */
3453 output_addr_const (file, XEXP (x, 0));
3457 if (GET_MODE (x) == VOIDmode)
3459 /* We can use %d if the number is one word and positive. */
3460 if (CONST_DOUBLE_HIGH (x))
3461 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3462 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3463 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3464 else if (CONST_DOUBLE_LOW (x) < 0)
3465 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3466 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3468 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3471 /* We can't handle floating point constants;
3472 PRINT_OPERAND must handle them. */
3473 output_operand_lossage ("floating constant misused");
3477 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3478 (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3482 /* Some assemblers need integer constants to appear last (eg masm). */
3483 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3485 output_addr_const (file, XEXP (x, 1));
3486 if (INTVAL (XEXP (x, 0)) >= 0)
3487 fprintf (file, "+");
3488 output_addr_const (file, XEXP (x, 0));
3492 output_addr_const (file, XEXP (x, 0));
3493 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3494 || INTVAL (XEXP (x, 1)) >= 0)
3495 fprintf (file, "+");
3496 output_addr_const (file, XEXP (x, 1));
3501 /* Avoid outputting things like x-x or x+5-x,
3502 since some assemblers can't handle that. */
3503 x = simplify_subtraction (x);
3504 if (GET_CODE (x) != MINUS)
3507 output_addr_const (file, XEXP (x, 0));
3508 fprintf (file, "-");
3509 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3510 || GET_CODE (XEXP (x, 1)) == PC
3511 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3512 output_addr_const (file, XEXP (x, 1));
3515 fputs (targetm.asm_out.open_paren, file);
3516 output_addr_const (file, XEXP (x, 1));
3517 fputs (targetm.asm_out.close_paren, file);
3525 output_addr_const (file, XEXP (x, 0));
3529 #ifdef OUTPUT_ADDR_CONST_EXTRA
3530 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3535 output_operand_lossage ("invalid expression as operand");
3539 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3540 %R prints the value of REGISTER_PREFIX.
3541 %L prints the value of LOCAL_LABEL_PREFIX.
3542 %U prints the value of USER_LABEL_PREFIX.
3543 %I prints the value of IMMEDIATE_PREFIX.
3544 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3545 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3547 We handle alternate assembler dialects here, just like output_asm_insn. */
3550 asm_fprintf (FILE *file, const char *p, ...)
3556 va_start (argptr, p);
3563 #ifdef ASSEMBLER_DIALECT
3568 /* If we want the first dialect, do nothing. Otherwise, skip
3569 DIALECT_NUMBER of strings ending with '|'. */
3570 for (i = 0; i < dialect_number; i++)
3572 while (*p && *p++ != '|')
3582 /* Skip to close brace. */
3583 while (*p && *p++ != '}')
3594 while (strchr ("-+ #0", c))
3599 while (ISDIGIT (c) || c == '.')
3610 case 'd': case 'i': case 'u':
3611 case 'x': case 'X': case 'o':
3615 fprintf (file, buf, va_arg (argptr, int));
3619 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3620 'o' cases, but we do not check for those cases. It
3621 means that the value is a HOST_WIDE_INT, which may be
3622 either `long' or `long long'. */
3623 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3624 q += strlen (HOST_WIDE_INT_PRINT);
3627 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3632 #ifdef HAVE_LONG_LONG
3638 fprintf (file, buf, va_arg (argptr, long long));
3645 fprintf (file, buf, va_arg (argptr, long));
3653 fprintf (file, buf, va_arg (argptr, char *));
3657 #ifdef ASM_OUTPUT_OPCODE
3658 ASM_OUTPUT_OPCODE (asm_out_file, p);
3663 #ifdef REGISTER_PREFIX
3664 fprintf (file, "%s", REGISTER_PREFIX);
3669 #ifdef IMMEDIATE_PREFIX
3670 fprintf (file, "%s", IMMEDIATE_PREFIX);
3675 #ifdef LOCAL_LABEL_PREFIX
3676 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3681 fputs (user_label_prefix, file);
3684 #ifdef ASM_FPRINTF_EXTENSIONS
3685 /* Uppercase letters are reserved for general use by asm_fprintf
3686 and so are not available to target specific code. In order to
3687 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3688 they are defined here. As they get turned into real extensions
3689 to asm_fprintf they should be removed from this list. */
3690 case 'A': case 'B': case 'C': case 'D': case 'E':
3691 case 'F': case 'G': case 'H': case 'J': case 'K':
3692 case 'M': case 'N': case 'P': case 'Q': case 'S':
3693 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3696 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3709 /* Split up a CONST_DOUBLE or integer constant rtx
3710 into two rtx's for single words,
3711 storing in *FIRST the word that comes first in memory in the target
3712 and in *SECOND the other. */
3715 split_double (rtx value, rtx *first, rtx *second)
3717 if (GET_CODE (value) == CONST_INT)
3719 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3721 /* In this case the CONST_INT holds both target words.
3722 Extract the bits from it into two word-sized pieces.
3723 Sign extend each half to HOST_WIDE_INT. */
3724 unsigned HOST_WIDE_INT low, high;
3725 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3727 /* Set sign_bit to the most significant bit of a word. */
3729 sign_bit <<= BITS_PER_WORD - 1;
3731 /* Set mask so that all bits of the word are set. We could
3732 have used 1 << BITS_PER_WORD instead of basing the
3733 calculation on sign_bit. However, on machines where
3734 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3735 compiler warning, even though the code would never be
3737 mask = sign_bit << 1;
3740 /* Set sign_extend as any remaining bits. */
3741 sign_extend = ~mask;
3743 /* Pick the lower word and sign-extend it. */
3744 low = INTVAL (value);
3749 /* Pick the higher word, shifted to the least significant
3750 bits, and sign-extend it. */
3751 high = INTVAL (value);
3752 high >>= BITS_PER_WORD - 1;
3755 if (high & sign_bit)
3756 high |= sign_extend;
3758 /* Store the words in the target machine order. */
3759 if (WORDS_BIG_ENDIAN)
3761 *first = GEN_INT (high);
3762 *second = GEN_INT (low);
3766 *first = GEN_INT (low);
3767 *second = GEN_INT (high);
3772 /* The rule for using CONST_INT for a wider mode
3773 is that we regard the value as signed.
3774 So sign-extend it. */
3775 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3776 if (WORDS_BIG_ENDIAN)
3788 else if (GET_CODE (value) != CONST_DOUBLE)
3790 if (WORDS_BIG_ENDIAN)
3792 *first = const0_rtx;
3798 *second = const0_rtx;
3801 else if (GET_MODE (value) == VOIDmode
3802 /* This is the old way we did CONST_DOUBLE integers. */
3803 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3805 /* In an integer, the words are defined as most and least significant.
3806 So order them by the target's convention. */
3807 if (WORDS_BIG_ENDIAN)
3809 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3810 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3814 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3815 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3822 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3824 /* Note, this converts the REAL_VALUE_TYPE to the target's
3825 format, splits up the floating point double and outputs
3826 exactly 32 bits of it into each of l[0] and l[1] --
3827 not necessarily BITS_PER_WORD bits. */
3828 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3830 /* If 32 bits is an entire word for the target, but not for the host,
3831 then sign-extend on the host so that the number will look the same
3832 way on the host that it would on the target. See for instance
3833 simplify_unary_operation. The #if is needed to avoid compiler
3836 #if HOST_BITS_PER_LONG > 32
3837 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3839 if (l[0] & ((long) 1 << 31))
3840 l[0] |= ((long) (-1) << 32);
3841 if (l[1] & ((long) 1 << 31))
3842 l[1] |= ((long) (-1) << 32);
3846 *first = GEN_INT (l[0]);
3847 *second = GEN_INT (l[1]);
3851 /* Return nonzero if this function has no function calls. */
3854 leaf_function_p (void)
3859 if (crtl->profile || profile_arc_flag)
3862 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3865 && ! SIBLING_CALL_P (insn))
3867 if (NONJUMP_INSN_P (insn)
3868 && GET_CODE (PATTERN (insn)) == SEQUENCE
3869 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3870 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3873 for (link = crtl->epilogue_delay_list;
3875 link = XEXP (link, 1))
3877 insn = XEXP (link, 0);
3880 && ! SIBLING_CALL_P (insn))
3882 if (NONJUMP_INSN_P (insn)
3883 && GET_CODE (PATTERN (insn)) == SEQUENCE
3884 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3885 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3892 /* Return 1 if branch is a forward branch.
3893 Uses insn_shuid array, so it works only in the final pass. May be used by
3894 output templates to customary add branch prediction hints.
3897 final_forward_branch_p (rtx insn)
3899 int insn_id, label_id;
3901 gcc_assert (uid_shuid);
3902 insn_id = INSN_SHUID (insn);
3903 label_id = INSN_SHUID (JUMP_LABEL (insn));
3904 /* We've hit some insns that does not have id information available. */
3905 gcc_assert (insn_id && label_id);
3906 return insn_id < label_id;
3909 /* On some machines, a function with no call insns
3910 can run faster if it doesn't create its own register window.
3911 When output, the leaf function should use only the "output"
3912 registers. Ordinarily, the function would be compiled to use
3913 the "input" registers to find its arguments; it is a candidate
3914 for leaf treatment if it uses only the "input" registers.
3915 Leaf function treatment means renumbering so the function
3916 uses the "output" registers instead. */
3918 #ifdef LEAF_REGISTERS
3920 /* Return 1 if this function uses only the registers that can be
3921 safely renumbered. */
3924 only_leaf_regs_used (void)
3927 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3929 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3930 if ((df_regs_ever_live_p (i) || global_regs[i])
3931 && ! permitted_reg_in_leaf_functions[i])
3934 if (crtl->uses_pic_offset_table
3935 && pic_offset_table_rtx != 0
3936 && REG_P (pic_offset_table_rtx)
3937 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3943 /* Scan all instructions and renumber all registers into those
3944 available in leaf functions. */
3947 leaf_renumber_regs (rtx first)
3951 /* Renumber only the actual patterns.
3952 The reg-notes can contain frame pointer refs,
3953 and renumbering them could crash, and should not be needed. */
3954 for (insn = first; insn; insn = NEXT_INSN (insn))
3956 leaf_renumber_regs_insn (PATTERN (insn));
3957 for (insn = crtl->epilogue_delay_list;
3959 insn = XEXP (insn, 1))
3960 if (INSN_P (XEXP (insn, 0)))
3961 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3964 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3965 available in leaf functions. */
3968 leaf_renumber_regs_insn (rtx in_rtx)
3971 const char *format_ptr;
3976 /* Renumber all input-registers into output-registers.
3977 renumbered_regs would be 1 for an output-register;
3984 /* Don't renumber the same reg twice. */
3988 newreg = REGNO (in_rtx);
3989 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3990 to reach here as part of a REG_NOTE. */
3991 if (newreg >= FIRST_PSEUDO_REGISTER)
3996 newreg = LEAF_REG_REMAP (newreg);
3997 gcc_assert (newreg >= 0);
3998 df_set_regs_ever_live (REGNO (in_rtx), false);
3999 df_set_regs_ever_live (newreg, true);
4000 SET_REGNO (in_rtx, newreg);
4004 if (INSN_P (in_rtx))
4006 /* Inside a SEQUENCE, we find insns.
4007 Renumber just the patterns of these insns,
4008 just as we do for the top-level insns. */
4009 leaf_renumber_regs_insn (PATTERN (in_rtx));
4013 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4015 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4016 switch (*format_ptr++)
4019 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4023 if (NULL != XVEC (in_rtx, i))
4025 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4026 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4046 /* When -gused is used, emit debug info for only used symbols. But in
4047 addition to the standard intercepted debug_hooks there are some direct
4048 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4049 Those routines may also be called from a higher level intercepted routine. So
4050 to prevent recording data for an inner call to one of these for an intercept,
4051 we maintain an intercept nesting counter (debug_nesting). We only save the
4052 intercepted arguments if the nesting is 1. */
4053 int debug_nesting = 0;
4055 static tree *symbol_queue;
4056 int symbol_queue_index = 0;
4057 static int symbol_queue_size = 0;
4059 /* Generate the symbols for any queued up type symbols we encountered
4060 while generating the type info for some originally used symbol.
4061 This might generate additional entries in the queue. Only when
4062 the nesting depth goes to 0 is this routine called. */
4065 debug_flush_symbol_queue (void)
4069 /* Make sure that additionally queued items are not flushed
4074 for (i = 0; i < symbol_queue_index; ++i)
4076 /* If we pushed queued symbols then such symbols must be
4077 output no matter what anyone else says. Specifically,
4078 we need to make sure dbxout_symbol() thinks the symbol was
4079 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4080 which may be set for outside reasons. */
4081 int saved_tree_used = TREE_USED (symbol_queue[i]);
4082 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
4083 TREE_USED (symbol_queue[i]) = 1;
4084 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
4086 #ifdef DBX_DEBUGGING_INFO
4087 dbxout_symbol (symbol_queue[i], 0);
4090 TREE_USED (symbol_queue[i]) = saved_tree_used;
4091 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
4094 symbol_queue_index = 0;
4098 /* Queue a type symbol needed as part of the definition of a decl
4099 symbol. These symbols are generated when debug_flush_symbol_queue()
4103 debug_queue_symbol (tree decl)
4105 if (symbol_queue_index >= symbol_queue_size)
4107 symbol_queue_size += 10;
4108 symbol_queue = XRESIZEVEC (tree, symbol_queue, symbol_queue_size);
4111 symbol_queue[symbol_queue_index++] = decl;
4114 /* Free symbol queue. */
4116 debug_free_queue (void)
4120 free (symbol_queue);
4121 symbol_queue = NULL;
4122 symbol_queue_size = 0;
4126 /* Turn the RTL into assembly. */
4128 rest_of_handle_final (void)
4133 /* Get the function's name, as described by its RTL. This may be
4134 different from the DECL_NAME name used in the source file. */
4136 x = DECL_RTL (current_function_decl);
4137 gcc_assert (MEM_P (x));
4139 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4140 fnname = XSTR (x, 0);
4142 assemble_start_function (current_function_decl, fnname);
4143 final_start_function (get_insns (), asm_out_file, optimize);
4144 final (get_insns (), asm_out_file, optimize);
4145 final_end_function ();
4147 #ifdef TARGET_UNWIND_INFO
4148 /* ??? The IA-64 ".handlerdata" directive must be issued before
4149 the ".endp" directive that closes the procedure descriptor. */
4150 output_function_exception_table (fnname);
4153 assemble_end_function (current_function_decl, fnname);
4155 #ifndef TARGET_UNWIND_INFO
4156 /* Otherwise, it feels unclean to switch sections in the middle. */
4157 output_function_exception_table (fnname);
4160 user_defined_section_attribute = false;
4162 /* Free up reg info memory. */
4166 fflush (asm_out_file);
4168 /* Write DBX symbols if requested. */
4170 /* Note that for those inline functions where we don't initially
4171 know for certain that we will be generating an out-of-line copy,
4172 the first invocation of this routine (rest_of_compilation) will
4173 skip over this code by doing a `goto exit_rest_of_compilation;'.
4174 Later on, wrapup_global_declarations will (indirectly) call
4175 rest_of_compilation again for those inline functions that need
4176 to have out-of-line copies generated. During that call, we
4177 *will* be routed past here. */
4179 timevar_push (TV_SYMOUT);
4180 (*debug_hooks->function_decl) (current_function_decl);
4181 timevar_pop (TV_SYMOUT);
4182 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4183 && targetm.have_ctors_dtors)
4184 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4185 decl_init_priority_lookup
4186 (current_function_decl));
4187 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4188 && targetm.have_ctors_dtors)
4189 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4190 decl_fini_priority_lookup
4191 (current_function_decl));
4195 struct rtl_opt_pass pass_final =
4201 rest_of_handle_final, /* execute */
4204 0, /* static_pass_number */
4205 TV_FINAL, /* tv_id */
4206 0, /* properties_required */
4207 0, /* properties_provided */
4208 0, /* properties_destroyed */