1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
62 #include "hard-reg-set.h"
69 #include "basic-block.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
93 #ifdef DBX_DEBUGGING_INFO
97 #ifdef SDB_DEBUGGING_INFO
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
121 /* Bitflags used by final_scan_insn. */
124 #define SEEN_EMITTED 4
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
130 /* Line number of last NOTE. */
131 static int last_linenum;
133 /* Highest line number in current block. */
134 static int high_block_linenum;
136 /* Likewise for function. */
137 static int high_function_linenum;
139 /* Filename of last NOTE. */
140 static const char *last_filename;
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare = 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter = 0;
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status;
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
183 static int block_depth;
185 /* Nonzero if have enabled APP processing of our assembler output. */
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
194 #ifdef ASSEMBLER_DIALECT
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
221 static int alter_cond (rtx);
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
230 /* Initialize data in final at the beginning of a compilation. */
233 init_final (const char *filename ATTRIBUTE_UNUSED)
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
267 fputs (ASM_APP_ON, asm_out_file);
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
280 fputs (ASM_APP_OFF, asm_out_file);
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
306 static int *insn_lengths;
308 VEC(int,heap) *insn_addresses_;
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
331 struct label_alignment
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
341 /* Indicate that branch shortening hasn't yet been done. */
344 init_insn_lengths (void)
355 insn_lengths_max_uid = 0;
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
374 #ifdef HAVE_ATTR_length
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
382 switch (GET_CODE (insn))
390 length = fallback_fn (insn);
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 /* Alignment is machine-dependent and should be handled by
401 length = fallback_fn (insn);
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
415 length = fallback_fn (insn);
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
426 #else /* not HAVE_ATTR_length */
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
436 get_attr_length (rtx insn)
438 return get_attr_length_1 (insn, insn_default_length);
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
444 get_attr_min_length (rtx insn)
446 return get_attr_length_1 (insn, insn_min_length);
449 /* Code to handle alignment inside shorten_branches. */
451 /* Here is an explanation how the algorithm in align_fuzz can give
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
463 Likewise with the next alignment-delimited block following X, which we
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
469 The estimated padding is then OX - IX.
471 OX can be safely estimated as
476 OX = round_up(IX, X) + Y - X
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
491 #define LABEL_ALIGN(LABEL) align_labels_log
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
499 #define LOOP_ALIGN(LABEL) align_loops_log
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
515 #define JUMP_ALIGN(LABEL) align_jumps_log
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
522 #ifndef ADDR_VEC_ALIGN
524 final_addr_vec_align (rtx addr_vec)
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
543 static int min_labelno, max_labelno;
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
551 /* For the benefit of port specific code do this also as a function. */
554 label_to_alignment (rtx label)
556 return LABEL_TO_ALIGNMENT (label);
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
591 int uid = INSN_UID (start);
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
599 int align_addr, new_align;
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
628 insn_current_reference_address (rtx branch)
633 if (! INSN_ADDRESSES_SET_P ())
636 seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
662 #endif /* HAVE_ATTR_length */
664 /* Compute branch alignments based on frequency information in the
668 compute_alignments (void)
670 int log, max_skip, max_log;
673 int freq_threshold = 0;
681 max_labelno = max_label_num ();
682 min_labelno = get_first_label_num ();
683 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
685 /* If not optimizing or optimizing for size, don't assign any alignments. */
686 if (! optimize || optimize_size)
691 dump_flow_info (dump_file, TDF_DETAILS);
692 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
696 if (bb->frequency > freq_max)
697 freq_max = bb->frequency;
698 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
701 fprintf(dump_file, "freq_max: %i\n",freq_max);
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
710 || probably_never_executed_bb_p (bb))
713 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
714 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
717 max_log = LABEL_ALIGN (label);
718 max_skip = LABEL_ALIGN_MAX_SKIP;
720 FOR_EACH_EDGE (e, ei, bb->preds)
722 if (e->flags & EDGE_FALLTHRU)
723 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
725 branch_frequency += EDGE_FREQUENCY (e);
729 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
730 bb->index, bb->frequency, bb->loop_father->num,
732 fallthru_frequency, branch_frequency);
733 if (!bb->loop_father->inner && bb->loop_father->num)
734 fprintf (dump_file, " inner_loop");
735 if (bb->loop_father->header == bb)
736 fprintf (dump_file, " loop_header");
737 fprintf (dump_file, "\n");
740 /* There are two purposes to align block with no fallthru incoming edge:
741 1) to avoid fetch stalls when branch destination is near cache boundary
742 2) to improve cache efficiency in case the previous block is not executed
743 (so it does not need to be in the cache).
745 We to catch first case, we align frequently executed blocks.
746 To catch the second, we align blocks that are executed more frequently
747 than the predecessor and the predecessor is likely to not be executed
748 when function is called. */
751 && (branch_frequency > freq_threshold
752 || (bb->frequency > bb->prev_bb->frequency * 10
753 && (bb->prev_bb->frequency
754 <= ENTRY_BLOCK_PTR->frequency / 2))))
756 log = JUMP_ALIGN (label);
758 fprintf(dump_file, " jump alignment added.\n");
762 max_skip = JUMP_ALIGN_MAX_SKIP;
765 /* In case block is frequent and reached mostly by non-fallthru edge,
766 align it. It is most likely a first block of loop. */
768 && maybe_hot_bb_p (bb)
769 && branch_frequency + fallthru_frequency > freq_threshold
771 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
773 log = LOOP_ALIGN (label);
775 fprintf(dump_file, " internal loop alignment added.\n");
779 max_skip = LOOP_ALIGN_MAX_SKIP;
782 LABEL_TO_ALIGNMENT (label) = max_log;
783 LABEL_TO_MAX_SKIP (label) = max_skip;
787 loop_optimizer_finalize ();
791 struct rtl_opt_pass pass_compute_alignments =
795 "alignments", /* name */
797 compute_alignments, /* execute */
800 0, /* static_pass_number */
802 0, /* properties_required */
803 0, /* properties_provided */
804 0, /* properties_destroyed */
805 0, /* todo_flags_start */
806 TODO_dump_func | TODO_verify_rtl_sharing
807 | TODO_ggc_collect /* todo_flags_finish */
812 /* Make a pass over all insns and compute their actual lengths by shortening
813 any branches of variable length if possible. */
815 /* shorten_branches might be called multiple times: for example, the SH
816 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
817 In order to do this, it needs proper length information, which it obtains
818 by calling shorten_branches. This cannot be collapsed with
819 shorten_branches itself into a single pass unless we also want to integrate
820 reorg.c, since the branch splitting exposes new instructions with delay
824 shorten_branches (rtx first ATTRIBUTE_UNUSED)
831 #ifdef HAVE_ATTR_length
832 #define MAX_CODE_ALIGN 16
834 int something_changed = 1;
835 char *varying_length;
838 rtx align_tab[MAX_CODE_ALIGN];
842 /* Compute maximum UID and allocate label_align / uid_shuid. */
843 max_uid = get_max_uid ();
845 /* Free uid_shuid before reallocating it. */
848 uid_shuid = XNEWVEC (int, max_uid);
850 if (max_labelno != max_label_num ())
852 int old = max_labelno;
856 max_labelno = max_label_num ();
858 n_labels = max_labelno - min_labelno + 1;
859 n_old_labels = old - min_labelno + 1;
861 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
863 /* Range of labels grows monotonically in the function. Failing here
864 means that the initialization of array got lost. */
865 gcc_assert (n_old_labels <= n_labels);
867 memset (label_align + n_old_labels, 0,
868 (n_labels - n_old_labels) * sizeof (struct label_alignment));
871 /* Initialize label_align and set up uid_shuid to be strictly
872 monotonically rising with insn order. */
873 /* We use max_log here to keep track of the maximum alignment we want to
874 impose on the next CODE_LABEL (or the current one if we are processing
875 the CODE_LABEL itself). */
880 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
884 INSN_SHUID (insn) = i++;
892 /* Merge in alignments computed by compute_alignments. */
893 log = LABEL_TO_ALIGNMENT (insn);
897 max_skip = LABEL_TO_MAX_SKIP (insn);
900 log = LABEL_ALIGN (insn);
904 max_skip = LABEL_ALIGN_MAX_SKIP;
906 next = next_nonnote_insn (insn);
907 /* ADDR_VECs only take room if read-only data goes into the text
909 if (JUMP_TABLES_IN_TEXT_SECTION
910 || readonly_data_section == text_section)
911 if (next && JUMP_P (next))
913 rtx nextbody = PATTERN (next);
914 if (GET_CODE (nextbody) == ADDR_VEC
915 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
917 log = ADDR_VEC_ALIGN (next);
921 max_skip = LABEL_ALIGN_MAX_SKIP;
925 LABEL_TO_ALIGNMENT (insn) = max_log;
926 LABEL_TO_MAX_SKIP (insn) = max_skip;
930 else if (BARRIER_P (insn))
934 for (label = insn; label && ! INSN_P (label);
935 label = NEXT_INSN (label))
938 log = LABEL_ALIGN_AFTER_BARRIER (insn);
942 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
948 #ifdef HAVE_ATTR_length
950 /* Allocate the rest of the arrays. */
951 insn_lengths = XNEWVEC (int, max_uid);
952 insn_lengths_max_uid = max_uid;
953 /* Syntax errors can lead to labels being outside of the main insn stream.
954 Initialize insn_addresses, so that we get reproducible results. */
955 INSN_ADDRESSES_ALLOC (max_uid);
957 varying_length = XCNEWVEC (char, max_uid);
959 /* Initialize uid_align. We scan instructions
960 from end to start, and keep in align_tab[n] the last seen insn
961 that does an alignment of at least n+1, i.e. the successor
962 in the alignment chain for an insn that does / has a known
964 uid_align = XCNEWVEC (rtx, max_uid);
966 for (i = MAX_CODE_ALIGN; --i >= 0;)
967 align_tab[i] = NULL_RTX;
968 seq = get_last_insn ();
969 for (; seq; seq = PREV_INSN (seq))
971 int uid = INSN_UID (seq);
973 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
974 uid_align[uid] = align_tab[0];
977 /* Found an alignment label. */
978 uid_align[uid] = align_tab[log];
979 for (i = log - 1; i >= 0; i--)
983 #ifdef CASE_VECTOR_SHORTEN_MODE
986 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
989 int min_shuid = INSN_SHUID (get_insns ()) - 1;
990 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
993 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
995 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
996 int len, i, min, max, insn_shuid;
998 addr_diff_vec_flags flags;
1001 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1003 pat = PATTERN (insn);
1004 len = XVECLEN (pat, 1);
1005 gcc_assert (len > 0);
1006 min_align = MAX_CODE_ALIGN;
1007 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1009 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1010 int shuid = INSN_SHUID (lab);
1021 if (min_align > LABEL_TO_ALIGNMENT (lab))
1022 min_align = LABEL_TO_ALIGNMENT (lab);
1024 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1025 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1026 insn_shuid = INSN_SHUID (insn);
1027 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1028 memset (&flags, 0, sizeof (flags));
1029 flags.min_align = min_align;
1030 flags.base_after_vec = rel > insn_shuid;
1031 flags.min_after_vec = min > insn_shuid;
1032 flags.max_after_vec = max > insn_shuid;
1033 flags.min_after_base = min > rel;
1034 flags.max_after_base = max > rel;
1035 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1038 #endif /* CASE_VECTOR_SHORTEN_MODE */
1040 /* Compute initial lengths, addresses, and varying flags for each insn. */
1041 for (insn_current_address = 0, insn = first;
1043 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1045 uid = INSN_UID (insn);
1047 insn_lengths[uid] = 0;
1051 int log = LABEL_TO_ALIGNMENT (insn);
1054 int align = 1 << log;
1055 int new_address = (insn_current_address + align - 1) & -align;
1056 insn_lengths[uid] = new_address - insn_current_address;
1060 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1062 if (NOTE_P (insn) || BARRIER_P (insn)
1065 if (INSN_DELETED_P (insn))
1068 body = PATTERN (insn);
1069 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1071 /* This only takes room if read-only data goes into the text
1073 if (JUMP_TABLES_IN_TEXT_SECTION
1074 || readonly_data_section == text_section)
1075 insn_lengths[uid] = (XVECLEN (body,
1076 GET_CODE (body) == ADDR_DIFF_VEC)
1077 * GET_MODE_SIZE (GET_MODE (body)));
1078 /* Alignment is handled by ADDR_VEC_ALIGN. */
1080 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1081 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1082 else if (GET_CODE (body) == SEQUENCE)
1085 int const_delay_slots;
1087 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1089 const_delay_slots = 0;
1091 /* Inside a delay slot sequence, we do not do any branch shortening
1092 if the shortening could change the number of delay slots
1094 for (i = 0; i < XVECLEN (body, 0); i++)
1096 rtx inner_insn = XVECEXP (body, 0, i);
1097 int inner_uid = INSN_UID (inner_insn);
1100 if (GET_CODE (body) == ASM_INPUT
1101 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1102 inner_length = (asm_insn_count (PATTERN (inner_insn))
1103 * insn_default_length (inner_insn));
1105 inner_length = insn_default_length (inner_insn);
1107 insn_lengths[inner_uid] = inner_length;
1108 if (const_delay_slots)
1110 if ((varying_length[inner_uid]
1111 = insn_variable_length_p (inner_insn)) != 0)
1112 varying_length[uid] = 1;
1113 INSN_ADDRESSES (inner_uid) = (insn_current_address
1114 + insn_lengths[uid]);
1117 varying_length[inner_uid] = 0;
1118 insn_lengths[uid] += inner_length;
1121 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1123 insn_lengths[uid] = insn_default_length (insn);
1124 varying_length[uid] = insn_variable_length_p (insn);
1127 /* If needed, do any adjustment. */
1128 #ifdef ADJUST_INSN_LENGTH
1129 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1130 if (insn_lengths[uid] < 0)
1131 fatal_insn ("negative insn length", insn);
1135 /* Now loop over all the insns finding varying length insns. For each,
1136 get the current insn length. If it has changed, reflect the change.
1137 When nothing changes for a full pass, we are done. */
1139 while (something_changed)
1141 something_changed = 0;
1142 insn_current_align = MAX_CODE_ALIGN - 1;
1143 for (insn_current_address = 0, insn = first;
1145 insn = NEXT_INSN (insn))
1148 #ifdef ADJUST_INSN_LENGTH
1153 uid = INSN_UID (insn);
1157 int log = LABEL_TO_ALIGNMENT (insn);
1158 if (log > insn_current_align)
1160 int align = 1 << log;
1161 int new_address= (insn_current_address + align - 1) & -align;
1162 insn_lengths[uid] = new_address - insn_current_address;
1163 insn_current_align = log;
1164 insn_current_address = new_address;
1167 insn_lengths[uid] = 0;
1168 INSN_ADDRESSES (uid) = insn_current_address;
1172 length_align = INSN_LENGTH_ALIGNMENT (insn);
1173 if (length_align < insn_current_align)
1174 insn_current_align = length_align;
1176 insn_last_address = INSN_ADDRESSES (uid);
1177 INSN_ADDRESSES (uid) = insn_current_address;
1179 #ifdef CASE_VECTOR_SHORTEN_MODE
1180 if (optimize && JUMP_P (insn)
1181 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1183 rtx body = PATTERN (insn);
1184 int old_length = insn_lengths[uid];
1185 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1186 rtx min_lab = XEXP (XEXP (body, 2), 0);
1187 rtx max_lab = XEXP (XEXP (body, 3), 0);
1188 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1189 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1190 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1193 addr_diff_vec_flags flags;
1195 /* Avoid automatic aggregate initialization. */
1196 flags = ADDR_DIFF_VEC_FLAGS (body);
1198 /* Try to find a known alignment for rel_lab. */
1199 for (prev = rel_lab;
1201 && ! insn_lengths[INSN_UID (prev)]
1202 && ! (varying_length[INSN_UID (prev)] & 1);
1203 prev = PREV_INSN (prev))
1204 if (varying_length[INSN_UID (prev)] & 2)
1206 rel_align = LABEL_TO_ALIGNMENT (prev);
1210 /* See the comment on addr_diff_vec_flags in rtl.h for the
1211 meaning of the flags values. base: REL_LAB vec: INSN */
1212 /* Anything after INSN has still addresses from the last
1213 pass; adjust these so that they reflect our current
1214 estimate for this pass. */
1215 if (flags.base_after_vec)
1216 rel_addr += insn_current_address - insn_last_address;
1217 if (flags.min_after_vec)
1218 min_addr += insn_current_address - insn_last_address;
1219 if (flags.max_after_vec)
1220 max_addr += insn_current_address - insn_last_address;
1221 /* We want to know the worst case, i.e. lowest possible value
1222 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1223 its offset is positive, and we have to be wary of code shrink;
1224 otherwise, it is negative, and we have to be vary of code
1226 if (flags.min_after_base)
1228 /* If INSN is between REL_LAB and MIN_LAB, the size
1229 changes we are about to make can change the alignment
1230 within the observed offset, therefore we have to break
1231 it up into two parts that are independent. */
1232 if (! flags.base_after_vec && flags.min_after_vec)
1234 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1235 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1238 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1242 if (flags.base_after_vec && ! flags.min_after_vec)
1244 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1245 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1248 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1250 /* Likewise, determine the highest lowest possible value
1251 for the offset of MAX_LAB. */
1252 if (flags.max_after_base)
1254 if (! flags.base_after_vec && flags.max_after_vec)
1256 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1257 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1260 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1264 if (flags.base_after_vec && ! flags.max_after_vec)
1266 max_addr += align_fuzz (max_lab, insn, 0, 0);
1267 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1270 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1272 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1273 max_addr - rel_addr,
1275 if (JUMP_TABLES_IN_TEXT_SECTION
1276 || readonly_data_section == text_section)
1279 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1280 insn_current_address += insn_lengths[uid];
1281 if (insn_lengths[uid] != old_length)
1282 something_changed = 1;
1287 #endif /* CASE_VECTOR_SHORTEN_MODE */
1289 if (! (varying_length[uid]))
1291 if (NONJUMP_INSN_P (insn)
1292 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1296 body = PATTERN (insn);
1297 for (i = 0; i < XVECLEN (body, 0); i++)
1299 rtx inner_insn = XVECEXP (body, 0, i);
1300 int inner_uid = INSN_UID (inner_insn);
1302 INSN_ADDRESSES (inner_uid) = insn_current_address;
1304 insn_current_address += insn_lengths[inner_uid];
1308 insn_current_address += insn_lengths[uid];
1313 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1317 body = PATTERN (insn);
1319 for (i = 0; i < XVECLEN (body, 0); i++)
1321 rtx inner_insn = XVECEXP (body, 0, i);
1322 int inner_uid = INSN_UID (inner_insn);
1325 INSN_ADDRESSES (inner_uid) = insn_current_address;
1327 /* insn_current_length returns 0 for insns with a
1328 non-varying length. */
1329 if (! varying_length[inner_uid])
1330 inner_length = insn_lengths[inner_uid];
1332 inner_length = insn_current_length (inner_insn);
1334 if (inner_length != insn_lengths[inner_uid])
1336 insn_lengths[inner_uid] = inner_length;
1337 something_changed = 1;
1339 insn_current_address += insn_lengths[inner_uid];
1340 new_length += inner_length;
1345 new_length = insn_current_length (insn);
1346 insn_current_address += new_length;
1349 #ifdef ADJUST_INSN_LENGTH
1350 /* If needed, do any adjustment. */
1351 tmp_length = new_length;
1352 ADJUST_INSN_LENGTH (insn, new_length);
1353 insn_current_address += (new_length - tmp_length);
1356 if (new_length != insn_lengths[uid])
1358 insn_lengths[uid] = new_length;
1359 something_changed = 1;
1362 /* For a non-optimizing compile, do only a single pass. */
1367 free (varying_length);
1369 #endif /* HAVE_ATTR_length */
1372 #ifdef HAVE_ATTR_length
1373 /* Given the body of an INSN known to be generated by an ASM statement, return
1374 the number of machine instructions likely to be generated for this insn.
1375 This is used to compute its length. */
1378 asm_insn_count (rtx body)
1383 if (GET_CODE (body) == ASM_INPUT)
1384 templ = XSTR (body, 0);
1386 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1391 for (; *templ; templ++)
1392 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1400 /* ??? This is probably the wrong place for these. */
1401 /* Structure recording the mapping from source file and directory
1402 names at compile time to those to be embedded in debug
1404 typedef struct debug_prefix_map
1406 const char *old_prefix;
1407 const char *new_prefix;
1410 struct debug_prefix_map *next;
1413 /* Linked list of such structures. */
1414 debug_prefix_map *debug_prefix_maps;
1417 /* Record a debug file prefix mapping. ARG is the argument to
1418 -fdebug-prefix-map and must be of the form OLD=NEW. */
1421 add_debug_prefix_map (const char *arg)
1423 debug_prefix_map *map;
1426 p = strchr (arg, '=');
1429 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1432 map = XNEW (debug_prefix_map);
1433 map->old_prefix = ggc_alloc_string (arg, p - arg);
1434 map->old_len = p - arg;
1436 map->new_prefix = ggc_strdup (p);
1437 map->new_len = strlen (p);
1438 map->next = debug_prefix_maps;
1439 debug_prefix_maps = map;
1442 /* Perform user-specified mapping of debug filename prefixes. Return
1443 the new name corresponding to FILENAME. */
1446 remap_debug_filename (const char *filename)
1448 debug_prefix_map *map;
1453 for (map = debug_prefix_maps; map; map = map->next)
1454 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1458 name = filename + map->old_len;
1459 name_len = strlen (name) + 1;
1460 s = (char *) alloca (name_len + map->new_len);
1461 memcpy (s, map->new_prefix, map->new_len);
1462 memcpy (s + map->new_len, name, name_len);
1463 return ggc_strdup (s);
1466 /* Output assembler code for the start of a function,
1467 and initialize some of the variables in this file
1468 for the new function. The label for the function and associated
1469 assembler pseudo-ops have already been output in `assemble_start_function'.
1471 FIRST is the first insn of the rtl for the function being compiled.
1472 FILE is the file to write assembler code to.
1473 OPTIMIZE is nonzero if we should eliminate redundant
1474 test and compare insns. */
1477 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1478 int optimize ATTRIBUTE_UNUSED)
1482 this_is_asm_operands = 0;
1484 last_filename = locator_file (prologue_locator);
1485 last_linenum = locator_line (prologue_locator);
1487 high_block_linenum = high_function_linenum = last_linenum;
1489 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1491 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1492 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1493 dwarf2out_begin_prologue (0, NULL);
1496 #ifdef LEAF_REG_REMAP
1497 if (current_function_uses_only_leaf_regs)
1498 leaf_renumber_regs (first);
1501 /* The Sun386i and perhaps other machines don't work right
1502 if the profiling code comes after the prologue. */
1503 #ifdef PROFILE_BEFORE_PROLOGUE
1505 profile_function (file);
1506 #endif /* PROFILE_BEFORE_PROLOGUE */
1508 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1509 if (dwarf2out_do_frame ())
1510 dwarf2out_frame_debug (NULL_RTX, false);
1513 /* If debugging, assign block numbers to all of the blocks in this
1517 reemit_insn_block_notes ();
1518 number_blocks (current_function_decl);
1519 /* We never actually put out begin/end notes for the top-level
1520 block in the function. But, conceptually, that block is
1522 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1525 if (warn_frame_larger_than
1526 && get_frame_size () > frame_larger_than_size)
1528 /* Issue a warning */
1529 warning (OPT_Wframe_larger_than_,
1530 "the frame size of %wd bytes is larger than %wd bytes",
1531 get_frame_size (), frame_larger_than_size);
1534 /* First output the function prologue: code to set up the stack frame. */
1535 targetm.asm_out.function_prologue (file, get_frame_size ());
1537 /* If the machine represents the prologue as RTL, the profiling code must
1538 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1539 #ifdef HAVE_prologue
1540 if (! HAVE_prologue)
1542 profile_after_prologue (file);
1546 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1548 #ifndef PROFILE_BEFORE_PROLOGUE
1550 profile_function (file);
1551 #endif /* not PROFILE_BEFORE_PROLOGUE */
1555 profile_function (FILE *file ATTRIBUTE_UNUSED)
1557 #ifndef NO_PROFILE_COUNTERS
1558 # define NO_PROFILE_COUNTERS 0
1560 #if defined(ASM_OUTPUT_REG_PUSH)
1561 int sval = cfun->returns_struct;
1562 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1563 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1564 int cxt = cfun->static_chain_decl != NULL;
1566 #endif /* ASM_OUTPUT_REG_PUSH */
1568 if (! NO_PROFILE_COUNTERS)
1570 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1571 switch_to_section (data_section);
1572 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1573 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1574 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1577 switch_to_section (current_function_section ());
1579 #if defined(ASM_OUTPUT_REG_PUSH)
1580 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1582 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1586 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1588 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1590 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1593 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1598 FUNCTION_PROFILER (file, current_function_funcdef_no);
1600 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1602 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1604 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1607 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1612 #if defined(ASM_OUTPUT_REG_PUSH)
1613 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1615 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1620 /* Output assembler code for the end of a function.
1621 For clarity, args are same as those of `final_start_function'
1622 even though not all of them are needed. */
1625 final_end_function (void)
1629 (*debug_hooks->end_function) (high_function_linenum);
1631 /* Finally, output the function epilogue:
1632 code to restore the stack frame and return to the caller. */
1633 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1635 /* And debug output. */
1636 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1638 #if defined (DWARF2_UNWIND_INFO)
1639 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1640 && dwarf2out_do_frame ())
1641 dwarf2out_end_epilogue (last_linenum, last_filename);
1645 /* Output assembler code for some insns: all or part of a function.
1646 For description of args, see `final_start_function', above. */
1649 final (rtx first, FILE *file, int optimize)
1655 last_ignored_compare = 0;
1657 for (insn = first; insn; insn = NEXT_INSN (insn))
1659 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1660 max_uid = INSN_UID (insn);
1662 /* If CC tracking across branches is enabled, record the insn which
1663 jumps to each branch only reached from one place. */
1664 if (optimize && JUMP_P (insn))
1666 rtx lab = JUMP_LABEL (insn);
1667 if (lab && LABEL_NUSES (lab) == 1)
1669 LABEL_REFS (lab) = insn;
1679 /* Output the insns. */
1680 for (insn = first; insn;)
1682 #ifdef HAVE_ATTR_length
1683 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1685 /* This can be triggered by bugs elsewhere in the compiler if
1686 new insns are created after init_insn_lengths is called. */
1687 gcc_assert (NOTE_P (insn));
1688 insn_current_address = -1;
1691 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1692 #endif /* HAVE_ATTR_length */
1694 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1699 get_insn_template (int code, rtx insn)
1701 switch (insn_data[code].output_format)
1703 case INSN_OUTPUT_FORMAT_SINGLE:
1704 return insn_data[code].output.single;
1705 case INSN_OUTPUT_FORMAT_MULTI:
1706 return insn_data[code].output.multi[which_alternative];
1707 case INSN_OUTPUT_FORMAT_FUNCTION:
1709 return (*insn_data[code].output.function) (recog_data.operand, insn);
1716 /* Emit the appropriate declaration for an alternate-entry-point
1717 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1718 LABEL_KIND != LABEL_NORMAL.
1720 The case fall-through in this function is intentional. */
1722 output_alternate_entry_point (FILE *file, rtx insn)
1724 const char *name = LABEL_NAME (insn);
1726 switch (LABEL_KIND (insn))
1728 case LABEL_WEAK_ENTRY:
1729 #ifdef ASM_WEAKEN_LABEL
1730 ASM_WEAKEN_LABEL (file, name);
1732 case LABEL_GLOBAL_ENTRY:
1733 targetm.asm_out.globalize_label (file, name);
1734 case LABEL_STATIC_ENTRY:
1735 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1736 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1738 ASM_OUTPUT_LABEL (file, name);
1747 /* Given a CALL_INSN, find and return the nested CALL. */
1749 call_from_call_insn (rtx insn)
1752 gcc_assert (CALL_P (insn));
1755 while (GET_CODE (x) != CALL)
1757 switch (GET_CODE (x))
1762 x = COND_EXEC_CODE (x);
1765 x = XVECEXP (x, 0, 0);
1775 /* The final scan for one insn, INSN.
1776 Args are same as in `final', except that INSN
1777 is the insn being scanned.
1778 Value returned is the next insn to be scanned.
1780 NOPEEPHOLES is the flag to disallow peephole processing (currently
1781 used for within delayed branch sequence output).
1783 SEEN is used to track the end of the prologue, for emitting
1784 debug information. We force the emission of a line note after
1785 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1786 at the beginning of the second basic block, whichever comes
1790 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1791 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1800 /* Ignore deleted insns. These can occur when we split insns (due to a
1801 template of "#") while not optimizing. */
1802 if (INSN_DELETED_P (insn))
1803 return NEXT_INSN (insn);
1805 switch (GET_CODE (insn))
1808 switch (NOTE_KIND (insn))
1810 case NOTE_INSN_DELETED:
1813 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1814 in_cold_section_p = !in_cold_section_p;
1815 #ifdef DWARF2_UNWIND_INFO
1816 if (dwarf2out_do_frame ())
1817 dwarf2out_switch_text_section ();
1820 (*debug_hooks->switch_text_section) ();
1822 switch_to_section (current_function_section ());
1825 case NOTE_INSN_BASIC_BLOCK:
1826 #ifdef TARGET_UNWIND_INFO
1827 targetm.asm_out.unwind_emit (asm_out_file, insn);
1831 fprintf (asm_out_file, "\t%s basic block %d\n",
1832 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1834 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1836 *seen |= SEEN_EMITTED;
1837 force_source_line = true;
1844 case NOTE_INSN_EH_REGION_BEG:
1845 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1846 NOTE_EH_HANDLER (insn));
1849 case NOTE_INSN_EH_REGION_END:
1850 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1851 NOTE_EH_HANDLER (insn));
1854 case NOTE_INSN_PROLOGUE_END:
1855 targetm.asm_out.function_end_prologue (file);
1856 profile_after_prologue (file);
1858 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1860 *seen |= SEEN_EMITTED;
1861 force_source_line = true;
1868 case NOTE_INSN_EPILOGUE_BEG:
1869 targetm.asm_out.function_begin_epilogue (file);
1872 case NOTE_INSN_FUNCTION_BEG:
1874 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1876 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1878 *seen |= SEEN_EMITTED;
1879 force_source_line = true;
1886 case NOTE_INSN_BLOCK_BEG:
1887 if (debug_info_level == DINFO_LEVEL_NORMAL
1888 || debug_info_level == DINFO_LEVEL_VERBOSE
1889 || write_symbols == DWARF2_DEBUG
1890 || write_symbols == VMS_AND_DWARF2_DEBUG
1891 || write_symbols == VMS_DEBUG)
1893 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1897 high_block_linenum = last_linenum;
1899 /* Output debugging info about the symbol-block beginning. */
1900 (*debug_hooks->begin_block) (last_linenum, n);
1902 /* Mark this block as output. */
1903 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1905 if (write_symbols == DBX_DEBUG
1906 || write_symbols == SDB_DEBUG)
1908 location_t *locus_ptr
1909 = block_nonartificial_location (NOTE_BLOCK (insn));
1911 if (locus_ptr != NULL)
1913 override_filename = LOCATION_FILE (*locus_ptr);
1914 override_linenum = LOCATION_LINE (*locus_ptr);
1919 case NOTE_INSN_BLOCK_END:
1920 if (debug_info_level == DINFO_LEVEL_NORMAL
1921 || debug_info_level == DINFO_LEVEL_VERBOSE
1922 || write_symbols == DWARF2_DEBUG
1923 || write_symbols == VMS_AND_DWARF2_DEBUG
1924 || write_symbols == VMS_DEBUG)
1926 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1930 /* End of a symbol-block. */
1932 gcc_assert (block_depth >= 0);
1934 (*debug_hooks->end_block) (high_block_linenum, n);
1936 if (write_symbols == DBX_DEBUG
1937 || write_symbols == SDB_DEBUG)
1939 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1940 location_t *locus_ptr
1941 = block_nonartificial_location (outer_block);
1943 if (locus_ptr != NULL)
1945 override_filename = LOCATION_FILE (*locus_ptr);
1946 override_linenum = LOCATION_LINE (*locus_ptr);
1950 override_filename = NULL;
1951 override_linenum = 0;
1956 case NOTE_INSN_DELETED_LABEL:
1957 /* Emit the label. We may have deleted the CODE_LABEL because
1958 the label could be proved to be unreachable, though still
1959 referenced (in the form of having its address taken. */
1960 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1963 case NOTE_INSN_VAR_LOCATION:
1964 (*debug_hooks->var_location) (insn);
1974 #if defined (DWARF2_UNWIND_INFO)
1975 if (dwarf2out_do_frame ())
1976 dwarf2out_frame_debug (insn, false);
1981 /* The target port might emit labels in the output function for
1982 some insn, e.g. sh.c output_branchy_insn. */
1983 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1985 int align = LABEL_TO_ALIGNMENT (insn);
1986 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1987 int max_skip = LABEL_TO_MAX_SKIP (insn);
1990 if (align && NEXT_INSN (insn))
1992 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1993 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1995 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1996 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1998 ASM_OUTPUT_ALIGN (file, align);
2007 if (LABEL_NAME (insn))
2008 (*debug_hooks->label) (insn);
2012 fputs (ASM_APP_OFF, file);
2016 next = next_nonnote_insn (insn);
2017 if (next != 0 && JUMP_P (next))
2019 rtx nextbody = PATTERN (next);
2021 /* If this label is followed by a jump-table,
2022 make sure we put the label in the read-only section. Also
2023 possibly write the label and jump table together. */
2025 if (GET_CODE (nextbody) == ADDR_VEC
2026 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2028 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2029 /* In this case, the case vector is being moved by the
2030 target, so don't output the label at all. Leave that
2031 to the back end macros. */
2033 if (! JUMP_TABLES_IN_TEXT_SECTION)
2037 switch_to_section (targetm.asm_out.function_rodata_section
2038 (current_function_decl));
2040 #ifdef ADDR_VEC_ALIGN
2041 log_align = ADDR_VEC_ALIGN (next);
2043 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2045 ASM_OUTPUT_ALIGN (file, log_align);
2048 switch_to_section (current_function_section ());
2050 #ifdef ASM_OUTPUT_CASE_LABEL
2051 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2054 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2060 if (LABEL_ALT_ENTRY_P (insn))
2061 output_alternate_entry_point (file, insn);
2063 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2068 rtx body = PATTERN (insn);
2069 int insn_code_number;
2072 #ifdef HAVE_conditional_execution
2073 /* Reset this early so it is correct for ASM statements. */
2074 current_insn_predicate = NULL_RTX;
2076 /* An INSN, JUMP_INSN or CALL_INSN.
2077 First check for special kinds that recog doesn't recognize. */
2079 if (GET_CODE (body) == USE /* These are just declarations. */
2080 || GET_CODE (body) == CLOBBER)
2085 /* If there is a REG_CC_SETTER note on this insn, it means that
2086 the setting of the condition code was done in the delay slot
2087 of the insn that branched here. So recover the cc status
2088 from the insn that set it. */
2090 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2093 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2094 cc_prev_status = cc_status;
2099 /* Detect insns that are really jump-tables
2100 and output them as such. */
2102 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2104 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2108 if (! JUMP_TABLES_IN_TEXT_SECTION)
2109 switch_to_section (targetm.asm_out.function_rodata_section
2110 (current_function_decl));
2112 switch_to_section (current_function_section ());
2116 fputs (ASM_APP_OFF, file);
2120 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2121 if (GET_CODE (body) == ADDR_VEC)
2123 #ifdef ASM_OUTPUT_ADDR_VEC
2124 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2131 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2132 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2138 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2139 for (idx = 0; idx < vlen; idx++)
2141 if (GET_CODE (body) == ADDR_VEC)
2143 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2144 ASM_OUTPUT_ADDR_VEC_ELT
2145 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2152 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2153 ASM_OUTPUT_ADDR_DIFF_ELT
2156 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2157 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2163 #ifdef ASM_OUTPUT_CASE_END
2164 ASM_OUTPUT_CASE_END (file,
2165 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2170 switch_to_section (current_function_section ());
2174 /* Output this line note if it is the first or the last line
2176 if (notice_source_line (insn))
2178 (*debug_hooks->source_line) (last_linenum, last_filename);
2181 if (GET_CODE (body) == ASM_INPUT)
2183 const char *string = XSTR (body, 0);
2185 /* There's no telling what that did to the condition codes. */
2190 expanded_location loc;
2194 fputs (ASM_APP_ON, file);
2197 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2198 if (*loc.file && loc.line)
2199 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2200 ASM_COMMENT_START, loc.line, loc.file);
2201 fprintf (asm_out_file, "\t%s\n", string);
2202 #if HAVE_AS_LINE_ZERO
2203 if (*loc.file && loc.line)
2204 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2210 /* Detect `asm' construct with operands. */
2211 if (asm_noperands (body) >= 0)
2213 unsigned int noperands = asm_noperands (body);
2214 rtx *ops = XALLOCAVEC (rtx, noperands);
2217 expanded_location expanded;
2219 /* There's no telling what that did to the condition codes. */
2222 /* Get out the operand values. */
2223 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2224 /* Inhibit dying on what would otherwise be compiler bugs. */
2225 insn_noperands = noperands;
2226 this_is_asm_operands = insn;
2227 expanded = expand_location (loc);
2229 #ifdef FINAL_PRESCAN_INSN
2230 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2233 /* Output the insn using them. */
2238 fputs (ASM_APP_ON, file);
2241 if (expanded.file && expanded.line)
2242 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2243 ASM_COMMENT_START, expanded.line, expanded.file);
2244 output_asm_insn (string, ops);
2245 #if HAVE_AS_LINE_ZERO
2246 if (expanded.file && expanded.line)
2247 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2251 this_is_asm_operands = 0;
2257 fputs (ASM_APP_OFF, file);
2261 if (GET_CODE (body) == SEQUENCE)
2263 /* A delayed-branch sequence */
2266 final_sequence = body;
2268 /* Record the delay slots' frame information before the branch.
2269 This is needed for delayed calls: see execute_cfa_program(). */
2270 #if defined (DWARF2_UNWIND_INFO)
2271 if (dwarf2out_do_frame ())
2272 for (i = 1; i < XVECLEN (body, 0); i++)
2273 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2276 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2277 force the restoration of a comparison that was previously
2278 thought unnecessary. If that happens, cancel this sequence
2279 and cause that insn to be restored. */
2281 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2282 if (next != XVECEXP (body, 0, 1))
2288 for (i = 1; i < XVECLEN (body, 0); i++)
2290 rtx insn = XVECEXP (body, 0, i);
2291 rtx next = NEXT_INSN (insn);
2292 /* We loop in case any instruction in a delay slot gets
2295 insn = final_scan_insn (insn, file, 0, 1, seen);
2296 while (insn != next);
2298 #ifdef DBR_OUTPUT_SEQEND
2299 DBR_OUTPUT_SEQEND (file);
2303 /* If the insn requiring the delay slot was a CALL_INSN, the
2304 insns in the delay slot are actually executed before the
2305 called function. Hence we don't preserve any CC-setting
2306 actions in these insns and the CC must be marked as being
2307 clobbered by the function. */
2308 if (CALL_P (XVECEXP (body, 0, 0)))
2315 /* We have a real machine instruction as rtl. */
2317 body = PATTERN (insn);
2320 set = single_set (insn);
2322 /* Check for redundant test and compare instructions
2323 (when the condition codes are already set up as desired).
2324 This is done only when optimizing; if not optimizing,
2325 it should be possible for the user to alter a variable
2326 with the debugger in between statements
2327 and the next statement should reexamine the variable
2328 to compute the condition codes. */
2333 && GET_CODE (SET_DEST (set)) == CC0
2334 && insn != last_ignored_compare)
2336 if (GET_CODE (SET_SRC (set)) == SUBREG)
2337 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2338 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2340 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2341 XEXP (SET_SRC (set), 0)
2342 = alter_subreg (&XEXP (SET_SRC (set), 0));
2343 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2344 XEXP (SET_SRC (set), 1)
2345 = alter_subreg (&XEXP (SET_SRC (set), 1));
2347 if ((cc_status.value1 != 0
2348 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2349 || (cc_status.value2 != 0
2350 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2352 /* Don't delete insn if it has an addressing side-effect. */
2353 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2354 /* or if anything in it is volatile. */
2355 && ! volatile_refs_p (PATTERN (insn)))
2357 /* We don't really delete the insn; just ignore it. */
2358 last_ignored_compare = insn;
2367 /* If this is a conditional branch, maybe modify it
2368 if the cc's are in a nonstandard state
2369 so that it accomplishes the same thing that it would
2370 do straightforwardly if the cc's were set up normally. */
2372 if (cc_status.flags != 0
2374 && GET_CODE (body) == SET
2375 && SET_DEST (body) == pc_rtx
2376 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2377 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2378 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2380 /* This function may alter the contents of its argument
2381 and clear some of the cc_status.flags bits.
2382 It may also return 1 meaning condition now always true
2383 or -1 meaning condition now always false
2384 or 2 meaning condition nontrivial but altered. */
2385 int result = alter_cond (XEXP (SET_SRC (body), 0));
2386 /* If condition now has fixed value, replace the IF_THEN_ELSE
2387 with its then-operand or its else-operand. */
2389 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2391 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2393 /* The jump is now either unconditional or a no-op.
2394 If it has become a no-op, don't try to output it.
2395 (It would not be recognized.) */
2396 if (SET_SRC (body) == pc_rtx)
2401 else if (GET_CODE (SET_SRC (body)) == RETURN)
2402 /* Replace (set (pc) (return)) with (return). */
2403 PATTERN (insn) = body = SET_SRC (body);
2405 /* Rerecognize the instruction if it has changed. */
2407 INSN_CODE (insn) = -1;
2410 /* If this is a conditional trap, maybe modify it if the cc's
2411 are in a nonstandard state so that it accomplishes the same
2412 thing that it would do straightforwardly if the cc's were
2414 if (cc_status.flags != 0
2415 && NONJUMP_INSN_P (insn)
2416 && GET_CODE (body) == TRAP_IF
2417 && COMPARISON_P (TRAP_CONDITION (body))
2418 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2420 /* This function may alter the contents of its argument
2421 and clear some of the cc_status.flags bits.
2422 It may also return 1 meaning condition now always true
2423 or -1 meaning condition now always false
2424 or 2 meaning condition nontrivial but altered. */
2425 int result = alter_cond (TRAP_CONDITION (body));
2427 /* If TRAP_CONDITION has become always false, delete the
2435 /* If TRAP_CONDITION has become always true, replace
2436 TRAP_CONDITION with const_true_rtx. */
2438 TRAP_CONDITION (body) = const_true_rtx;
2440 /* Rerecognize the instruction if it has changed. */
2442 INSN_CODE (insn) = -1;
2445 /* Make same adjustments to instructions that examine the
2446 condition codes without jumping and instructions that
2447 handle conditional moves (if this machine has either one). */
2449 if (cc_status.flags != 0
2452 rtx cond_rtx, then_rtx, else_rtx;
2455 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2457 cond_rtx = XEXP (SET_SRC (set), 0);
2458 then_rtx = XEXP (SET_SRC (set), 1);
2459 else_rtx = XEXP (SET_SRC (set), 2);
2463 cond_rtx = SET_SRC (set);
2464 then_rtx = const_true_rtx;
2465 else_rtx = const0_rtx;
2468 switch (GET_CODE (cond_rtx))
2482 if (XEXP (cond_rtx, 0) != cc0_rtx)
2484 result = alter_cond (cond_rtx);
2486 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2487 else if (result == -1)
2488 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2489 else if (result == 2)
2490 INSN_CODE (insn) = -1;
2491 if (SET_DEST (set) == SET_SRC (set))
2503 #ifdef HAVE_peephole
2504 /* Do machine-specific peephole optimizations if desired. */
2506 if (optimize && !flag_no_peephole && !nopeepholes)
2508 rtx next = peephole (insn);
2509 /* When peepholing, if there were notes within the peephole,
2510 emit them before the peephole. */
2511 if (next != 0 && next != NEXT_INSN (insn))
2513 rtx note, prev = PREV_INSN (insn);
2515 for (note = NEXT_INSN (insn); note != next;
2516 note = NEXT_INSN (note))
2517 final_scan_insn (note, file, optimize, nopeepholes, seen);
2519 /* Put the notes in the proper position for a later
2520 rescan. For example, the SH target can do this
2521 when generating a far jump in a delayed branch
2523 note = NEXT_INSN (insn);
2524 PREV_INSN (note) = prev;
2525 NEXT_INSN (prev) = note;
2526 NEXT_INSN (PREV_INSN (next)) = insn;
2527 PREV_INSN (insn) = PREV_INSN (next);
2528 NEXT_INSN (insn) = next;
2529 PREV_INSN (next) = insn;
2532 /* PEEPHOLE might have changed this. */
2533 body = PATTERN (insn);
2537 /* Try to recognize the instruction.
2538 If successful, verify that the operands satisfy the
2539 constraints for the instruction. Crash if they don't,
2540 since `reload' should have changed them so that they do. */
2542 insn_code_number = recog_memoized (insn);
2543 cleanup_subreg_operands (insn);
2545 /* Dump the insn in the assembly for debugging. */
2546 if (flag_dump_rtl_in_asm)
2548 print_rtx_head = ASM_COMMENT_START;
2549 print_rtl_single (asm_out_file, insn);
2550 print_rtx_head = "";
2553 if (! constrain_operands_cached (1))
2554 fatal_insn_not_found (insn);
2556 /* Some target machines need to prescan each insn before
2559 #ifdef FINAL_PRESCAN_INSN
2560 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2563 #ifdef HAVE_conditional_execution
2564 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2565 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2569 cc_prev_status = cc_status;
2571 /* Update `cc_status' for this instruction.
2572 The instruction's output routine may change it further.
2573 If the output routine for a jump insn needs to depend
2574 on the cc status, it should look at cc_prev_status. */
2576 NOTICE_UPDATE_CC (body, insn);
2579 current_output_insn = debug_insn = insn;
2581 #if defined (DWARF2_UNWIND_INFO)
2582 if (CALL_P (insn) && dwarf2out_do_frame ())
2583 dwarf2out_frame_debug (insn, false);
2586 /* Find the proper template for this insn. */
2587 templ = get_insn_template (insn_code_number, insn);
2589 /* If the C code returns 0, it means that it is a jump insn
2590 which follows a deleted test insn, and that test insn
2591 needs to be reinserted. */
2596 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2598 /* We have already processed the notes between the setter and
2599 the user. Make sure we don't process them again, this is
2600 particularly important if one of the notes is a block
2601 scope note or an EH note. */
2603 prev != last_ignored_compare;
2604 prev = PREV_INSN (prev))
2607 delete_insn (prev); /* Use delete_note. */
2613 /* If the template is the string "#", it means that this insn must
2615 if (templ[0] == '#' && templ[1] == '\0')
2617 rtx new_rtx = try_split (body, insn, 0);
2619 /* If we didn't split the insn, go away. */
2620 if (new_rtx == insn && PATTERN (new_rtx) == body)
2621 fatal_insn ("could not split insn", insn);
2623 #ifdef HAVE_ATTR_length
2624 /* This instruction should have been split in shorten_branches,
2625 to ensure that we would have valid length info for the
2633 #ifdef TARGET_UNWIND_INFO
2634 /* ??? This will put the directives in the wrong place if
2635 get_insn_template outputs assembly directly. However calling it
2636 before get_insn_template breaks if the insns is split. */
2637 targetm.asm_out.unwind_emit (asm_out_file, insn);
2642 rtx x = call_from_call_insn (insn);
2644 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2648 t = SYMBOL_REF_DECL (x);
2650 assemble_external (t);
2654 /* Output assembler code from the template. */
2655 output_asm_insn (templ, recog_data.operand);
2657 /* If necessary, report the effect that the instruction has on
2658 the unwind info. We've already done this for delay slots
2659 and call instructions. */
2660 #if defined (DWARF2_UNWIND_INFO)
2661 if (final_sequence == 0
2662 #if !defined (HAVE_prologue)
2663 && !ACCUMULATE_OUTGOING_ARGS
2665 && dwarf2out_do_frame ())
2666 dwarf2out_frame_debug (insn, true);
2669 current_output_insn = debug_insn = 0;
2672 return NEXT_INSN (insn);
2675 /* Return whether a source line note needs to be emitted before INSN. */
2678 notice_source_line (rtx insn)
2680 const char *filename;
2683 if (override_filename)
2685 filename = override_filename;
2686 linenum = override_linenum;
2690 filename = insn_file (insn);
2691 linenum = insn_line (insn);
2695 && (force_source_line
2696 || filename != last_filename
2697 || last_linenum != linenum))
2699 force_source_line = false;
2700 last_filename = filename;
2701 last_linenum = linenum;
2702 high_block_linenum = MAX (last_linenum, high_block_linenum);
2703 high_function_linenum = MAX (last_linenum, high_function_linenum);
2709 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2710 directly to the desired hard register. */
2713 cleanup_subreg_operands (rtx insn)
2716 bool changed = false;
2717 extract_insn_cached (insn);
2718 for (i = 0; i < recog_data.n_operands; i++)
2720 /* The following test cannot use recog_data.operand when testing
2721 for a SUBREG: the underlying object might have been changed
2722 already if we are inside a match_operator expression that
2723 matches the else clause. Instead we test the underlying
2724 expression directly. */
2725 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2727 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2730 else if (GET_CODE (recog_data.operand[i]) == PLUS
2731 || GET_CODE (recog_data.operand[i]) == MULT
2732 || MEM_P (recog_data.operand[i]))
2733 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2736 for (i = 0; i < recog_data.n_dups; i++)
2738 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2740 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2743 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2744 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2745 || MEM_P (*recog_data.dup_loc[i]))
2746 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2749 df_insn_rescan (insn);
2752 /* If X is a SUBREG, replace it with a REG or a MEM,
2753 based on the thing it is a subreg of. */
2756 alter_subreg (rtx *xp)
2759 rtx y = SUBREG_REG (x);
2761 /* simplify_subreg does not remove subreg from volatile references.
2762 We are required to. */
2765 int offset = SUBREG_BYTE (x);
2767 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2768 contains 0 instead of the proper offset. See simplify_subreg. */
2770 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2772 int difference = GET_MODE_SIZE (GET_MODE (y))
2773 - GET_MODE_SIZE (GET_MODE (x));
2774 if (WORDS_BIG_ENDIAN)
2775 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2776 if (BYTES_BIG_ENDIAN)
2777 offset += difference % UNITS_PER_WORD;
2780 *xp = adjust_address (y, GET_MODE (x), offset);
2784 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2791 /* Simplify_subreg can't handle some REG cases, but we have to. */
2793 HOST_WIDE_INT offset;
2795 regno = subreg_regno (x);
2796 if (subreg_lowpart_p (x))
2797 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2799 offset = SUBREG_BYTE (x);
2800 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2807 /* Do alter_subreg on all the SUBREGs contained in X. */
2810 walk_alter_subreg (rtx *xp, bool *changed)
2813 switch (GET_CODE (x))
2818 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2819 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2824 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2829 return alter_subreg (xp);
2840 /* Given BODY, the body of a jump instruction, alter the jump condition
2841 as required by the bits that are set in cc_status.flags.
2842 Not all of the bits there can be handled at this level in all cases.
2844 The value is normally 0.
2845 1 means that the condition has become always true.
2846 -1 means that the condition has become always false.
2847 2 means that COND has been altered. */
2850 alter_cond (rtx cond)
2854 if (cc_status.flags & CC_REVERSED)
2857 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2860 if (cc_status.flags & CC_INVERTED)
2863 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2866 if (cc_status.flags & CC_NOT_POSITIVE)
2867 switch (GET_CODE (cond))
2872 /* Jump becomes unconditional. */
2878 /* Jump becomes no-op. */
2882 PUT_CODE (cond, EQ);
2887 PUT_CODE (cond, NE);
2895 if (cc_status.flags & CC_NOT_NEGATIVE)
2896 switch (GET_CODE (cond))
2900 /* Jump becomes unconditional. */
2905 /* Jump becomes no-op. */
2910 PUT_CODE (cond, EQ);
2916 PUT_CODE (cond, NE);
2924 if (cc_status.flags & CC_NO_OVERFLOW)
2925 switch (GET_CODE (cond))
2928 /* Jump becomes unconditional. */
2932 PUT_CODE (cond, EQ);
2937 PUT_CODE (cond, NE);
2942 /* Jump becomes no-op. */
2949 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2950 switch (GET_CODE (cond))
2956 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2961 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2966 if (cc_status.flags & CC_NOT_SIGNED)
2967 /* The flags are valid if signed condition operators are converted
2969 switch (GET_CODE (cond))
2972 PUT_CODE (cond, LEU);
2977 PUT_CODE (cond, LTU);
2982 PUT_CODE (cond, GTU);
2987 PUT_CODE (cond, GEU);
2999 /* Report inconsistency between the assembler template and the operands.
3000 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3003 output_operand_lossage (const char *cmsgid, ...)
3007 const char *pfx_str;
3010 va_start (ap, cmsgid);
3012 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3013 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3014 vasprintf (&new_message, fmt_string, ap);
3016 if (this_is_asm_operands)
3017 error_for_asm (this_is_asm_operands, "%s", new_message);
3019 internal_error ("%s", new_message);
3026 /* Output of assembler code from a template, and its subroutines. */
3028 /* Annotate the assembly with a comment describing the pattern and
3029 alternative used. */
3032 output_asm_name (void)
3036 int num = INSN_CODE (debug_insn);
3037 fprintf (asm_out_file, "\t%s %d\t%s",
3038 ASM_COMMENT_START, INSN_UID (debug_insn),
3039 insn_data[num].name);
3040 if (insn_data[num].n_alternatives > 1)
3041 fprintf (asm_out_file, "/%d", which_alternative + 1);
3042 #ifdef HAVE_ATTR_length
3043 fprintf (asm_out_file, "\t[length = %d]",
3044 get_attr_length (debug_insn));
3046 /* Clear this so only the first assembler insn
3047 of any rtl insn will get the special comment for -dp. */
3052 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3053 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3054 corresponds to the address of the object and 0 if to the object. */
3057 get_mem_expr_from_op (rtx op, int *paddressp)
3065 return REG_EXPR (op);
3066 else if (!MEM_P (op))
3069 if (MEM_EXPR (op) != 0)
3070 return MEM_EXPR (op);
3072 /* Otherwise we have an address, so indicate it and look at the address. */
3076 /* First check if we have a decl for the address, then look at the right side
3077 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3078 But don't allow the address to itself be indirect. */
3079 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3081 else if (GET_CODE (op) == PLUS
3082 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3085 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3086 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3089 expr = get_mem_expr_from_op (op, &inner_addressp);
3090 return inner_addressp ? 0 : expr;
3093 /* Output operand names for assembler instructions. OPERANDS is the
3094 operand vector, OPORDER is the order to write the operands, and NOPS
3095 is the number of operands to write. */
3098 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3103 for (i = 0; i < nops; i++)
3106 rtx op = operands[oporder[i]];
3107 tree expr = get_mem_expr_from_op (op, &addressp);
3109 fprintf (asm_out_file, "%c%s",
3110 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3114 fprintf (asm_out_file, "%s",
3115 addressp ? "*" : "");
3116 print_mem_expr (asm_out_file, expr);
3119 else if (REG_P (op) && ORIGINAL_REGNO (op)
3120 && ORIGINAL_REGNO (op) != REGNO (op))
3121 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3125 /* Output text from TEMPLATE to the assembler output file,
3126 obeying %-directions to substitute operands taken from
3127 the vector OPERANDS.
3129 %N (for N a digit) means print operand N in usual manner.
3130 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3131 and print the label name with no punctuation.
3132 %cN means require operand N to be a constant
3133 and print the constant expression with no punctuation.
3134 %aN means expect operand N to be a memory address
3135 (not a memory reference!) and print a reference
3137 %nN means expect operand N to be a constant
3138 and print a constant expression for minus the value
3139 of the operand, with no other punctuation. */
3142 output_asm_insn (const char *templ, rtx *operands)
3146 #ifdef ASSEMBLER_DIALECT
3149 int oporder[MAX_RECOG_OPERANDS];
3150 char opoutput[MAX_RECOG_OPERANDS];
3153 /* An insn may return a null string template
3154 in a case where no assembler code is needed. */
3158 memset (opoutput, 0, sizeof opoutput);
3160 putc ('\t', asm_out_file);
3162 #ifdef ASM_OUTPUT_OPCODE
3163 ASM_OUTPUT_OPCODE (asm_out_file, p);
3170 if (flag_verbose_asm)
3171 output_asm_operand_names (operands, oporder, ops);
3172 if (flag_print_asm_name)
3176 memset (opoutput, 0, sizeof opoutput);
3178 putc (c, asm_out_file);
3179 #ifdef ASM_OUTPUT_OPCODE
3180 while ((c = *p) == '\t')
3182 putc (c, asm_out_file);
3185 ASM_OUTPUT_OPCODE (asm_out_file, p);
3189 #ifdef ASSEMBLER_DIALECT
3195 output_operand_lossage ("nested assembly dialect alternatives");
3199 /* If we want the first dialect, do nothing. Otherwise, skip
3200 DIALECT_NUMBER of strings ending with '|'. */
3201 for (i = 0; i < dialect_number; i++)
3203 while (*p && *p != '}' && *p++ != '|')
3212 output_operand_lossage ("unterminated assembly dialect alternative");
3219 /* Skip to close brace. */
3224 output_operand_lossage ("unterminated assembly dialect alternative");
3228 while (*p++ != '}');
3232 putc (c, asm_out_file);
3237 putc (c, asm_out_file);
3243 /* %% outputs a single %. */
3247 putc (c, asm_out_file);
3249 /* %= outputs a number which is unique to each insn in the entire
3250 compilation. This is useful for making local labels that are
3251 referred to more than once in a given insn. */
3255 fprintf (asm_out_file, "%d", insn_counter);
3257 /* % followed by a letter and some digits
3258 outputs an operand in a special way depending on the letter.
3259 Letters `acln' are implemented directly.
3260 Other letters are passed to `output_operand' so that
3261 the PRINT_OPERAND macro can define them. */
3262 else if (ISALPHA (*p))
3265 unsigned long opnum;
3268 opnum = strtoul (p, &endptr, 10);
3271 output_operand_lossage ("operand number missing "
3273 else if (this_is_asm_operands && opnum >= insn_noperands)
3274 output_operand_lossage ("operand number out of range");
3275 else if (letter == 'l')
3276 output_asm_label (operands[opnum]);
3277 else if (letter == 'a')
3278 output_address (operands[opnum]);
3279 else if (letter == 'c')
3281 if (CONSTANT_ADDRESS_P (operands[opnum]))
3282 output_addr_const (asm_out_file, operands[opnum]);
3284 output_operand (operands[opnum], 'c');
3286 else if (letter == 'n')
3288 if (GET_CODE (operands[opnum]) == CONST_INT)
3289 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3290 - INTVAL (operands[opnum]));
3293 putc ('-', asm_out_file);
3294 output_addr_const (asm_out_file, operands[opnum]);
3298 output_operand (operands[opnum], letter);
3300 if (!opoutput[opnum])
3301 oporder[ops++] = opnum;
3302 opoutput[opnum] = 1;
3307 /* % followed by a digit outputs an operand the default way. */
3308 else if (ISDIGIT (*p))
3310 unsigned long opnum;
3313 opnum = strtoul (p, &endptr, 10);
3314 if (this_is_asm_operands && opnum >= insn_noperands)
3315 output_operand_lossage ("operand number out of range");
3317 output_operand (operands[opnum], 0);
3319 if (!opoutput[opnum])
3320 oporder[ops++] = opnum;
3321 opoutput[opnum] = 1;
3326 /* % followed by punctuation: output something for that
3327 punctuation character alone, with no operand.
3328 The PRINT_OPERAND macro decides what is actually done. */
3329 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3330 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3331 output_operand (NULL_RTX, *p++);
3334 output_operand_lossage ("invalid %%-code");
3338 putc (c, asm_out_file);
3341 /* Write out the variable names for operands, if we know them. */
3342 if (flag_verbose_asm)
3343 output_asm_operand_names (operands, oporder, ops);
3344 if (flag_print_asm_name)
3347 putc ('\n', asm_out_file);
3350 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3353 output_asm_label (rtx x)
3357 if (GET_CODE (x) == LABEL_REF)
3361 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3362 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3364 output_operand_lossage ("'%%l' operand isn't a label");
3366 assemble_name (asm_out_file, buf);
3369 /* Print operand X using machine-dependent assembler syntax.
3370 The macro PRINT_OPERAND is defined just to control this function.
3371 CODE is a non-digit that preceded the operand-number in the % spec,
3372 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3373 between the % and the digits.
3374 When CODE is a non-letter, X is 0.
3376 The meanings of the letters are machine-dependent and controlled
3377 by PRINT_OPERAND. */
3380 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3382 if (x && GET_CODE (x) == SUBREG)
3383 x = alter_subreg (&x);
3385 /* X must not be a pseudo reg. */
3386 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3388 PRINT_OPERAND (asm_out_file, x, code);
3389 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3393 t = SYMBOL_REF_DECL (x);
3395 assemble_external (t);
3399 /* Print a memory reference operand for address X
3400 using machine-dependent assembler syntax.
3401 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3404 output_address (rtx x)
3406 bool changed = false;
3407 walk_alter_subreg (&x, &changed);
3408 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3411 /* Print an integer constant expression in assembler syntax.
3412 Addition and subtraction are the only arithmetic
3413 that may appear in these expressions. */
3416 output_addr_const (FILE *file, rtx x)
3421 switch (GET_CODE (x))
3428 if (SYMBOL_REF_DECL (x))
3429 mark_decl_referenced (SYMBOL_REF_DECL (x));
3430 #ifdef ASM_OUTPUT_SYMBOL_REF
3431 ASM_OUTPUT_SYMBOL_REF (file, x);
3433 assemble_name (file, XSTR (x, 0));
3441 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3442 #ifdef ASM_OUTPUT_LABEL_REF
3443 ASM_OUTPUT_LABEL_REF (file, buf);
3445 assemble_name (file, buf);
3450 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3454 /* This used to output parentheses around the expression,
3455 but that does not work on the 386 (either ATT or BSD assembler). */
3456 output_addr_const (file, XEXP (x, 0));
3460 if (GET_MODE (x) == VOIDmode)
3462 /* We can use %d if the number is one word and positive. */
3463 if (CONST_DOUBLE_HIGH (x))
3464 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3465 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3466 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3467 else if (CONST_DOUBLE_LOW (x) < 0)
3468 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3469 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3471 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3474 /* We can't handle floating point constants;
3475 PRINT_OPERAND must handle them. */
3476 output_operand_lossage ("floating constant misused");
3480 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3481 (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3485 /* Some assemblers need integer constants to appear last (eg masm). */
3486 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3488 output_addr_const (file, XEXP (x, 1));
3489 if (INTVAL (XEXP (x, 0)) >= 0)
3490 fprintf (file, "+");
3491 output_addr_const (file, XEXP (x, 0));
3495 output_addr_const (file, XEXP (x, 0));
3496 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3497 || INTVAL (XEXP (x, 1)) >= 0)
3498 fprintf (file, "+");
3499 output_addr_const (file, XEXP (x, 1));
3504 /* Avoid outputting things like x-x or x+5-x,
3505 since some assemblers can't handle that. */
3506 x = simplify_subtraction (x);
3507 if (GET_CODE (x) != MINUS)
3510 output_addr_const (file, XEXP (x, 0));
3511 fprintf (file, "-");
3512 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3513 || GET_CODE (XEXP (x, 1)) == PC
3514 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3515 output_addr_const (file, XEXP (x, 1));
3518 fputs (targetm.asm_out.open_paren, file);
3519 output_addr_const (file, XEXP (x, 1));
3520 fputs (targetm.asm_out.close_paren, file);
3528 output_addr_const (file, XEXP (x, 0));
3532 #ifdef OUTPUT_ADDR_CONST_EXTRA
3533 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3538 output_operand_lossage ("invalid expression as operand");
3542 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3543 %R prints the value of REGISTER_PREFIX.
3544 %L prints the value of LOCAL_LABEL_PREFIX.
3545 %U prints the value of USER_LABEL_PREFIX.
3546 %I prints the value of IMMEDIATE_PREFIX.
3547 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3548 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3550 We handle alternate assembler dialects here, just like output_asm_insn. */
3553 asm_fprintf (FILE *file, const char *p, ...)
3559 va_start (argptr, p);
3566 #ifdef ASSEMBLER_DIALECT