1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
65 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
66 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 /* Reduce conditional compilation elsewhere. */
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
100 static int add_cost[NUM_MACHINE_MODES];
101 static int neg_cost[NUM_MACHINE_MODES];
102 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
103 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int mul_cost[NUM_MACHINE_MODES];
106 static int div_cost[NUM_MACHINE_MODES];
107 static int mul_widen_cost[NUM_MACHINE_MODES];
108 static int mul_highpart_cost[NUM_MACHINE_MODES];
115 struct rtx_def reg; rtunion reg_fld[2];
116 struct rtx_def plus; rtunion plus_fld1;
118 struct rtx_def udiv; rtunion udiv_fld1;
119 struct rtx_def mult; rtunion mult_fld1;
120 struct rtx_def div; rtunion div_fld1;
121 struct rtx_def mod; rtunion mod_fld1;
123 struct rtx_def wide_mult; rtunion wide_mult_fld1;
124 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
125 struct rtx_def wide_trunc;
126 struct rtx_def shift; rtunion shift_fld1;
127 struct rtx_def shift_mult; rtunion shift_mult_fld1;
128 struct rtx_def shift_add; rtunion shift_add_fld1;
129 struct rtx_def shift_sub; rtunion shift_sub_fld1;
132 rtx pow2[MAX_BITS_PER_WORD];
133 rtx cint[MAX_BITS_PER_WORD];
135 enum machine_mode mode, wider_mode;
137 zero_cost = rtx_cost (const0_rtx, 0);
139 for (m = 1; m < MAX_BITS_PER_WORD; m++)
141 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
142 cint[m] = GEN_INT (m);
145 memset (&all, 0, sizeof all);
147 PUT_CODE (&all.reg, REG);
148 /* Avoid using hard regs in ways which may be unsupported. */
149 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
151 PUT_CODE (&all.plus, PLUS);
152 XEXP (&all.plus, 0) = &all.reg;
153 XEXP (&all.plus, 1) = &all.reg;
155 PUT_CODE (&all.neg, NEG);
156 XEXP (&all.neg, 0) = &all.reg;
158 PUT_CODE (&all.udiv, UDIV);
159 XEXP (&all.udiv, 0) = &all.reg;
160 XEXP (&all.udiv, 1) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.div, DIV);
167 XEXP (&all.div, 0) = &all.reg;
168 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
170 PUT_CODE (&all.mod, MOD);
171 XEXP (&all.mod, 0) = &all.reg;
172 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
174 PUT_CODE (&all.zext, ZERO_EXTEND);
175 XEXP (&all.zext, 0) = &all.reg;
177 PUT_CODE (&all.wide_mult, MULT);
178 XEXP (&all.wide_mult, 0) = &all.zext;
179 XEXP (&all.wide_mult, 1) = &all.zext;
181 PUT_CODE (&all.wide_lshr, LSHIFTRT);
182 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
184 PUT_CODE (&all.wide_trunc, TRUNCATE);
185 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
187 PUT_CODE (&all.shift, ASHIFT);
188 XEXP (&all.shift, 0) = &all.reg;
190 PUT_CODE (&all.shift_mult, MULT);
191 XEXP (&all.shift_mult, 0) = &all.reg;
193 PUT_CODE (&all.shift_add, PLUS);
194 XEXP (&all.shift_add, 0) = &all.shift_mult;
195 XEXP (&all.shift_add, 1) = &all.reg;
197 PUT_CODE (&all.shift_sub, MINUS);
198 XEXP (&all.shift_sub, 0) = &all.shift_mult;
199 XEXP (&all.shift_sub, 1) = &all.reg;
201 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
203 mode = GET_MODE_WIDER_MODE (mode))
205 PUT_MODE (&all.reg, mode);
206 PUT_MODE (&all.plus, mode);
207 PUT_MODE (&all.neg, mode);
208 PUT_MODE (&all.udiv, mode);
209 PUT_MODE (&all.mult, mode);
210 PUT_MODE (&all.div, mode);
211 PUT_MODE (&all.mod, mode);
212 PUT_MODE (&all.wide_trunc, mode);
213 PUT_MODE (&all.shift, mode);
214 PUT_MODE (&all.shift_mult, mode);
215 PUT_MODE (&all.shift_add, mode);
216 PUT_MODE (&all.shift_sub, mode);
218 add_cost[mode] = rtx_cost (&all.plus, SET);
219 neg_cost[mode] = rtx_cost (&all.neg, SET);
220 div_cost[mode] = rtx_cost (&all.udiv, SET);
221 mul_cost[mode] = rtx_cost (&all.mult, SET);
223 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
224 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
226 wider_mode = GET_MODE_WIDER_MODE (mode);
227 if (wider_mode != VOIDmode)
229 PUT_MODE (&all.zext, wider_mode);
230 PUT_MODE (&all.wide_mult, wider_mode);
231 PUT_MODE (&all.wide_lshr, wider_mode);
232 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
234 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
235 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
238 shift_cost[mode][0] = 0;
239 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
241 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
242 for (m = 1; m < n; m++)
244 XEXP (&all.shift, 1) = cint[m];
245 XEXP (&all.shift_mult, 1) = pow2[m];
247 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
248 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
249 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
254 /* Return an rtx representing minus the value of X.
255 MODE is the intended mode of the result,
256 useful if X is a CONST_INT. */
259 negate_rtx (enum machine_mode mode, rtx x)
261 rtx result = simplify_unary_operation (NEG, mode, x, mode);
264 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
269 /* Report on the availability of insv/extv/extzv and the desired mode
270 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
271 is false; else the mode of the specified operand. If OPNO is -1,
272 all the caller cares about is whether the insn is available. */
274 mode_for_extraction (enum extraction_pattern pattern, int opno)
276 const struct insn_data *data;
283 data = &insn_data[CODE_FOR_insv];
286 return MAX_MACHINE_MODE;
291 data = &insn_data[CODE_FOR_extv];
294 return MAX_MACHINE_MODE;
299 data = &insn_data[CODE_FOR_extzv];
302 return MAX_MACHINE_MODE;
311 /* Everyone who uses this function used to follow it with
312 if (result == VOIDmode) result = word_mode; */
313 if (data->operand[opno].mode == VOIDmode)
315 return data->operand[opno].mode;
319 /* Generate code to store value from rtx VALUE
320 into a bit-field within structure STR_RTX
321 containing BITSIZE bits starting at bit BITNUM.
322 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
323 ALIGN is the alignment that STR_RTX is known to have.
324 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
326 /* ??? Note that there are two different ideas here for how
327 to determine the size to count bits within, for a register.
328 One is BITS_PER_WORD, and the other is the size of operand 3
331 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
332 else, we use the mode of operand 3. */
335 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
336 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
340 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
341 unsigned HOST_WIDE_INT offset, bitpos;
346 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
348 while (GET_CODE (op0) == SUBREG)
350 /* The following line once was done only if WORDS_BIG_ENDIAN,
351 but I think that is a mistake. WORDS_BIG_ENDIAN is
352 meaningful at a much higher level; when structures are copied
353 between memory and regs, the higher-numbered regs
354 always get higher addresses. */
355 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
356 op0 = SUBREG_REG (op0);
359 /* No action is needed if the target is a register and if the field
360 lies completely outside that register. This can occur if the source
361 code contains an out-of-bounds access to a small array. */
362 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
365 /* Use vec_set patterns for inserting parts of vectors whenever
367 if (VECTOR_MODE_P (GET_MODE (op0))
369 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
371 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
372 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
373 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
375 enum machine_mode outermode = GET_MODE (op0);
376 enum machine_mode innermode = GET_MODE_INNER (outermode);
377 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
378 int pos = bitnum / GET_MODE_BITSIZE (innermode);
379 rtx rtxpos = GEN_INT (pos);
383 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
384 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
385 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
389 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
390 src = copy_to_mode_reg (mode1, src);
392 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
393 rtxpos = copy_to_mode_reg (mode1, rtxpos);
395 /* We could handle this, but we should always be called with a pseudo
396 for our targets and all insns should take them as outputs. */
397 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
398 && (*insn_data[icode].operand[1].predicate) (src, mode1)
399 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
400 pat = GEN_FCN (icode) (dest, src, rtxpos);
411 /* If the target is a register, overwriting the entire object, or storing
412 a full-word or multi-word field can be done with just a SUBREG.
414 If the target is memory, storing any naturally aligned field can be
415 done with a simple store. For targets that support fast unaligned
416 memory, any naturally sized, unit aligned field can be done directly. */
418 offset = bitnum / unit;
419 bitpos = bitnum % unit;
420 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
421 + (offset * UNITS_PER_WORD);
424 && bitsize == GET_MODE_BITSIZE (fieldmode)
426 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
427 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
428 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
429 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
430 || (offset * BITS_PER_UNIT % bitsize == 0
431 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
433 if (GET_MODE (op0) != fieldmode)
436 op0 = adjust_address (op0, fieldmode, offset);
438 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
441 emit_move_insn (op0, value);
445 /* Make sure we are playing with integral modes. Pun with subregs
446 if we aren't. This must come after the entire register case above,
447 since that case is valid for any mode. The following cases are only
448 valid for integral modes. */
450 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
451 if (imode != GET_MODE (op0))
454 op0 = adjust_address (op0, imode, 0);
457 gcc_assert (imode != BLKmode);
458 op0 = gen_lowpart (imode, op0);
463 /* We may be accessing data outside the field, which means
464 we can alias adjacent data. */
467 op0 = shallow_copy_rtx (op0);
468 set_mem_alias_set (op0, 0);
469 set_mem_expr (op0, 0);
472 /* If OP0 is a register, BITPOS must count within a word.
473 But as we have it, it counts within whatever size OP0 now has.
474 On a bigendian machine, these are not the same, so convert. */
477 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
478 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
480 /* Storing an lsb-aligned field in a register
481 can be done with a movestrict instruction. */
484 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
485 && bitsize == GET_MODE_BITSIZE (fieldmode)
486 && (movstrict_optab->handlers[fieldmode].insn_code
487 != CODE_FOR_nothing))
489 int icode = movstrict_optab->handlers[fieldmode].insn_code;
491 /* Get appropriate low part of the value being stored. */
492 if (GET_CODE (value) == CONST_INT || REG_P (value))
493 value = gen_lowpart (fieldmode, value);
494 else if (!(GET_CODE (value) == SYMBOL_REF
495 || GET_CODE (value) == LABEL_REF
496 || GET_CODE (value) == CONST))
497 value = convert_to_mode (fieldmode, value, 0);
499 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
500 value = copy_to_mode_reg (fieldmode, value);
502 if (GET_CODE (op0) == SUBREG)
504 /* Else we've got some float mode source being extracted into
505 a different float mode destination -- this combination of
506 subregs results in Severe Tire Damage. */
507 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
508 || GET_MODE_CLASS (fieldmode) == MODE_INT
509 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
510 op0 = SUBREG_REG (op0);
513 emit_insn (GEN_FCN (icode)
514 (gen_rtx_SUBREG (fieldmode, op0,
515 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
516 + (offset * UNITS_PER_WORD)),
522 /* Handle fields bigger than a word. */
524 if (bitsize > BITS_PER_WORD)
526 /* Here we transfer the words of the field
527 in the order least significant first.
528 This is because the most significant word is the one which may
530 However, only do that if the value is not BLKmode. */
532 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
533 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
536 /* This is the mode we must force value to, so that there will be enough
537 subwords to extract. Note that fieldmode will often (always?) be
538 VOIDmode, because that is what store_field uses to indicate that this
539 is a bit field, but passing VOIDmode to operand_subword_force
541 fieldmode = GET_MODE (value);
542 if (fieldmode == VOIDmode)
543 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
545 for (i = 0; i < nwords; i++)
547 /* If I is 0, use the low-order word in both field and target;
548 if I is 1, use the next to lowest word; and so on. */
549 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
550 unsigned int bit_offset = (backwards
551 ? MAX ((int) bitsize - ((int) i + 1)
554 : (int) i * BITS_PER_WORD);
556 store_bit_field (op0, MIN (BITS_PER_WORD,
557 bitsize - i * BITS_PER_WORD),
558 bitnum + bit_offset, word_mode,
559 operand_subword_force (value, wordnum, fieldmode));
564 /* From here on we can assume that the field to be stored in is
565 a full-word (whatever type that is), since it is shorter than a word. */
567 /* OFFSET is the number of words or bytes (UNIT says which)
568 from STR_RTX to the first word or byte containing part of the field. */
573 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
577 /* Since this is a destination (lvalue), we can't copy
578 it to a pseudo. We can remove a SUBREG that does not
579 change the size of the operand. Such a SUBREG may
580 have been added above. */
581 gcc_assert (GET_CODE (op0) == SUBREG
582 && (GET_MODE_SIZE (GET_MODE (op0))
583 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
584 op0 = SUBREG_REG (op0);
586 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
587 op0, (offset * UNITS_PER_WORD));
592 /* If VALUE has a floating-point or complex mode, access it as an
593 integer of the corresponding size. This can occur on a machine
594 with 64 bit registers that uses SFmode for float. It can also
595 occur for unaligned float or complex fields. */
597 if (GET_MODE (value) != VOIDmode
598 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
599 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
601 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
602 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
605 /* Now OFFSET is nonzero only if OP0 is memory
606 and is therefore always measured in bytes. */
609 && GET_MODE (value) != BLKmode
610 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
611 /* Ensure insv's size is wide enough for this field. */
612 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
613 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
614 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
616 int xbitpos = bitpos;
619 rtx last = get_last_insn ();
621 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
622 int save_volatile_ok = volatile_ok;
626 /* If this machine's insv can only insert into a register, copy OP0
627 into a register and save it back later. */
629 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
633 enum machine_mode bestmode;
635 /* Get the mode to use for inserting into this field. If OP0 is
636 BLKmode, get the smallest mode consistent with the alignment. If
637 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
638 mode. Otherwise, use the smallest mode containing the field. */
640 if (GET_MODE (op0) == BLKmode
641 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
643 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
644 MEM_VOLATILE_P (op0));
646 bestmode = GET_MODE (op0);
648 if (bestmode == VOIDmode
649 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
650 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
653 /* Adjust address to point to the containing unit of that mode.
654 Compute offset as multiple of this unit, counting in bytes. */
655 unit = GET_MODE_BITSIZE (bestmode);
656 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
657 bitpos = bitnum % unit;
658 op0 = adjust_address (op0, bestmode, offset);
660 /* Fetch that unit, store the bitfield in it, then store
662 tempreg = copy_to_reg (op0);
663 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
664 emit_move_insn (op0, tempreg);
667 volatile_ok = save_volatile_ok;
669 /* Add OFFSET into OP0's address. */
671 xop0 = adjust_address (xop0, byte_mode, offset);
673 /* If xop0 is a register, we need it in MAXMODE
674 to make it acceptable to the format of insv. */
675 if (GET_CODE (xop0) == SUBREG)
676 /* We can't just change the mode, because this might clobber op0,
677 and we will need the original value of op0 if insv fails. */
678 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
679 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
680 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
682 /* On big-endian machines, we count bits from the most significant.
683 If the bit field insn does not, we must invert. */
685 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
686 xbitpos = unit - bitsize - xbitpos;
688 /* We have been counting XBITPOS within UNIT.
689 Count instead within the size of the register. */
690 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
691 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
693 unit = GET_MODE_BITSIZE (maxmode);
695 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
697 if (GET_MODE (value) != maxmode)
699 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
701 /* Optimization: Don't bother really extending VALUE
702 if it has all the bits we will actually use. However,
703 if we must narrow it, be sure we do it correctly. */
705 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
709 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
711 tmp = simplify_gen_subreg (maxmode,
712 force_reg (GET_MODE (value),
714 GET_MODE (value), 0);
718 value1 = gen_lowpart (maxmode, value1);
720 else if (GET_CODE (value) == CONST_INT)
721 value1 = gen_int_mode (INTVAL (value), maxmode);
723 /* Parse phase is supposed to make VALUE's data type
724 match that of the component reference, which is a type
725 at least as wide as the field; so VALUE should have
726 a mode that corresponds to that type. */
727 gcc_assert (CONSTANT_P (value));
730 /* If this machine's insv insists on a register,
731 get VALUE1 into a register. */
732 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
734 value1 = force_reg (maxmode, value1);
736 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
741 delete_insns_since (last);
742 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
747 /* Insv is not available; store using shifts and boolean ops. */
748 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
752 /* Use shifts and boolean operations to store VALUE
753 into a bit field of width BITSIZE
754 in a memory location specified by OP0 except offset by OFFSET bytes.
755 (OFFSET must be 0 if OP0 is a register.)
756 The field starts at position BITPOS within the byte.
757 (If OP0 is a register, it may be a full word or a narrower mode,
758 but BITPOS still counts within a full word,
759 which is significant on bigendian machines.) */
762 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
763 unsigned HOST_WIDE_INT bitsize,
764 unsigned HOST_WIDE_INT bitpos, rtx value)
766 enum machine_mode mode;
767 unsigned int total_bits = BITS_PER_WORD;
772 /* There is a case not handled here:
773 a structure with a known alignment of just a halfword
774 and a field split across two aligned halfwords within the structure.
775 Or likewise a structure with a known alignment of just a byte
776 and a field split across two bytes.
777 Such cases are not supposed to be able to occur. */
779 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
781 gcc_assert (!offset);
782 /* Special treatment for a bit field split across two registers. */
783 if (bitsize + bitpos > BITS_PER_WORD)
785 store_split_bit_field (op0, bitsize, bitpos, value);
791 /* Get the proper mode to use for this field. We want a mode that
792 includes the entire field. If such a mode would be larger than
793 a word, we won't be doing the extraction the normal way.
794 We don't want a mode bigger than the destination. */
796 mode = GET_MODE (op0);
797 if (GET_MODE_BITSIZE (mode) == 0
798 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
800 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
801 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
803 if (mode == VOIDmode)
805 /* The only way this should occur is if the field spans word
807 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
812 total_bits = GET_MODE_BITSIZE (mode);
814 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
815 be in the range 0 to total_bits-1, and put any excess bytes in
817 if (bitpos >= total_bits)
819 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
820 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
824 /* Get ref to an aligned byte, halfword, or word containing the field.
825 Adjust BITPOS to be position within a word,
826 and OFFSET to be the offset of that word.
827 Then alter OP0 to refer to that word. */
828 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
829 offset -= (offset % (total_bits / BITS_PER_UNIT));
830 op0 = adjust_address (op0, mode, offset);
833 mode = GET_MODE (op0);
835 /* Now MODE is either some integral mode for a MEM as OP0,
836 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
837 The bit field is contained entirely within OP0.
838 BITPOS is the starting bit number within OP0.
839 (OP0's mode may actually be narrower than MODE.) */
841 if (BYTES_BIG_ENDIAN)
842 /* BITPOS is the distance between our msb
843 and that of the containing datum.
844 Convert it to the distance from the lsb. */
845 bitpos = total_bits - bitsize - bitpos;
847 /* Now BITPOS is always the distance between our lsb
850 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
851 we must first convert its mode to MODE. */
853 if (GET_CODE (value) == CONST_INT)
855 HOST_WIDE_INT v = INTVAL (value);
857 if (bitsize < HOST_BITS_PER_WIDE_INT)
858 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
862 else if ((bitsize < HOST_BITS_PER_WIDE_INT
863 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
864 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
867 value = lshift_value (mode, value, bitpos, bitsize);
871 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
872 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
874 if (GET_MODE (value) != mode)
876 if ((REG_P (value) || GET_CODE (value) == SUBREG)
877 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
878 value = gen_lowpart (mode, value);
880 value = convert_to_mode (mode, value, 1);
884 value = expand_binop (mode, and_optab, value,
885 mask_rtx (mode, 0, bitsize, 0),
886 NULL_RTX, 1, OPTAB_LIB_WIDEN);
888 value = expand_shift (LSHIFT_EXPR, mode, value,
889 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
892 /* Now clear the chosen bits in OP0,
893 except that if VALUE is -1 we need not bother. */
899 temp = expand_binop (mode, and_optab, op0,
900 mask_rtx (mode, bitpos, bitsize, 1),
901 subtarget, 1, OPTAB_LIB_WIDEN);
907 /* Now logical-or VALUE into OP0, unless it is zero. */
910 temp = expand_binop (mode, ior_optab, temp, value,
911 subtarget, 1, OPTAB_LIB_WIDEN);
913 emit_move_insn (op0, temp);
916 /* Store a bit field that is split across multiple accessible memory objects.
918 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
919 BITSIZE is the field width; BITPOS the position of its first bit
921 VALUE is the value to store.
923 This does not yet handle fields wider than BITS_PER_WORD. */
926 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
927 unsigned HOST_WIDE_INT bitpos, rtx value)
930 unsigned int bitsdone = 0;
932 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
934 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
935 unit = BITS_PER_WORD;
937 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
939 /* If VALUE is a constant other than a CONST_INT, get it into a register in
940 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
941 that VALUE might be a floating-point constant. */
942 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
944 rtx word = gen_lowpart_common (word_mode, value);
946 if (word && (value != word))
949 value = gen_lowpart_common (word_mode,
950 force_reg (GET_MODE (value) != VOIDmode
952 : word_mode, value));
955 while (bitsdone < bitsize)
957 unsigned HOST_WIDE_INT thissize;
959 unsigned HOST_WIDE_INT thispos;
960 unsigned HOST_WIDE_INT offset;
962 offset = (bitpos + bitsdone) / unit;
963 thispos = (bitpos + bitsdone) % unit;
965 /* THISSIZE must not overrun a word boundary. Otherwise,
966 store_fixed_bit_field will call us again, and we will mutually
968 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
969 thissize = MIN (thissize, unit - thispos);
971 if (BYTES_BIG_ENDIAN)
975 /* We must do an endian conversion exactly the same way as it is
976 done in extract_bit_field, so that the two calls to
977 extract_fixed_bit_field will have comparable arguments. */
978 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
979 total_bits = BITS_PER_WORD;
981 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
983 /* Fetch successively less significant portions. */
984 if (GET_CODE (value) == CONST_INT)
985 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
986 >> (bitsize - bitsdone - thissize))
987 & (((HOST_WIDE_INT) 1 << thissize) - 1));
989 /* The args are chosen so that the last part includes the
990 lsb. Give extract_bit_field the value it needs (with
991 endianness compensation) to fetch the piece we want. */
992 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
993 total_bits - bitsize + bitsdone,
998 /* Fetch successively more significant portions. */
999 if (GET_CODE (value) == CONST_INT)
1000 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1002 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1004 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1005 bitsdone, NULL_RTX, 1);
1008 /* If OP0 is a register, then handle OFFSET here.
1010 When handling multiword bitfields, extract_bit_field may pass
1011 down a word_mode SUBREG of a larger REG for a bitfield that actually
1012 crosses a word boundary. Thus, for a SUBREG, we must find
1013 the current word starting from the base register. */
1014 if (GET_CODE (op0) == SUBREG)
1016 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1017 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1018 GET_MODE (SUBREG_REG (op0)));
1021 else if (REG_P (op0))
1023 word = operand_subword_force (op0, offset, GET_MODE (op0));
1029 /* OFFSET is in UNITs, and UNIT is in bits.
1030 store_fixed_bit_field wants offset in bytes. */
1031 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1033 bitsdone += thissize;
1037 /* Generate code to extract a byte-field from STR_RTX
1038 containing BITSIZE bits, starting at BITNUM,
1039 and put it in TARGET if possible (if TARGET is nonzero).
1040 Regardless of TARGET, we return the rtx for where the value is placed.
1042 STR_RTX is the structure containing the byte (a REG or MEM).
1043 UNSIGNEDP is nonzero if this is an unsigned bit field.
1044 MODE is the natural mode of the field value once extracted.
1045 TMODE is the mode the caller would like the value to have;
1046 but the value may be returned with type MODE instead.
1048 TOTAL_SIZE is the size in bytes of the containing structure,
1051 If a TARGET is specified and we can store in it at no extra cost,
1052 we do so, and return TARGET.
1053 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1054 if they are equally easy. */
1057 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1058 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1059 enum machine_mode mode, enum machine_mode tmode)
1062 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1063 unsigned HOST_WIDE_INT offset, bitpos;
1065 rtx spec_target = target;
1066 rtx spec_target_subreg = 0;
1067 enum machine_mode int_mode;
1068 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1069 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1070 enum machine_mode mode1;
1073 if (tmode == VOIDmode)
1076 while (GET_CODE (op0) == SUBREG)
1078 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1079 op0 = SUBREG_REG (op0);
1082 /* If we have an out-of-bounds access to a register, just return an
1083 uninitialized register of the required mode. This can occur if the
1084 source code contains an out-of-bounds access to a small array. */
1085 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1086 return gen_reg_rtx (tmode);
1089 && mode == GET_MODE (op0)
1091 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1093 /* We're trying to extract a full register from itself. */
1097 /* Use vec_extract patterns for extracting parts of vectors whenever
1099 if (VECTOR_MODE_P (GET_MODE (op0))
1101 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1102 != CODE_FOR_nothing)
1103 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1104 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1106 enum machine_mode outermode = GET_MODE (op0);
1107 enum machine_mode innermode = GET_MODE_INNER (outermode);
1108 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1109 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1110 rtx rtxpos = GEN_INT (pos);
1112 rtx dest = NULL, pat, seq;
1113 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1114 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1115 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1117 if (innermode == tmode || innermode == mode)
1121 dest = gen_reg_rtx (innermode);
1125 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1126 dest = copy_to_mode_reg (mode0, dest);
1128 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1129 src = copy_to_mode_reg (mode1, src);
1131 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1132 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1134 /* We could handle this, but we should always be called with a pseudo
1135 for our targets and all insns should take them as outputs. */
1136 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1137 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1138 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1140 pat = GEN_FCN (icode) (dest, src, rtxpos);
1151 /* Make sure we are playing with integral modes. Pun with subregs
1154 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1155 if (imode != GET_MODE (op0))
1158 op0 = adjust_address (op0, imode, 0);
1161 gcc_assert (imode != BLKmode);
1162 op0 = gen_lowpart (imode, op0);
1164 /* If we got a SUBREG, force it into a register since we
1165 aren't going to be able to do another SUBREG on it. */
1166 if (GET_CODE (op0) == SUBREG)
1167 op0 = force_reg (imode, op0);
1172 /* We may be accessing data outside the field, which means
1173 we can alias adjacent data. */
1176 op0 = shallow_copy_rtx (op0);
1177 set_mem_alias_set (op0, 0);
1178 set_mem_expr (op0, 0);
1181 /* Extraction of a full-word or multi-word value from a structure
1182 in a register or aligned memory can be done with just a SUBREG.
1183 A subword value in the least significant part of a register
1184 can also be extracted with a SUBREG. For this, we need the
1185 byte offset of the value in op0. */
1187 bitpos = bitnum % unit;
1188 offset = bitnum / unit;
1189 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1191 /* If OP0 is a register, BITPOS must count within a word.
1192 But as we have it, it counts within whatever size OP0 now has.
1193 On a bigendian machine, these are not the same, so convert. */
1194 if (BYTES_BIG_ENDIAN
1196 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1197 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1199 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1200 If that's wrong, the solution is to test for it and set TARGET to 0
1203 /* Only scalar integer modes can be converted via subregs. There is an
1204 additional problem for FP modes here in that they can have a precision
1205 which is different from the size. mode_for_size uses precision, but
1206 we want a mode based on the size, so we must avoid calling it for FP
1208 mode1 = (SCALAR_INT_MODE_P (tmode)
1209 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1212 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1213 && bitpos % BITS_PER_WORD == 0)
1214 || (mode1 != BLKmode
1215 /* ??? The big endian test here is wrong. This is correct
1216 if the value is in a register, and if mode_for_size is not
1217 the same mode as op0. This causes us to get unnecessarily
1218 inefficient code from the Thumb port when -mbig-endian. */
1219 && (BYTES_BIG_ENDIAN
1220 ? bitpos + bitsize == BITS_PER_WORD
1223 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1224 GET_MODE_BITSIZE (GET_MODE (op0)))
1225 && GET_MODE_SIZE (mode1) != 0
1226 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1228 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1229 || (offset * BITS_PER_UNIT % bitsize == 0
1230 && MEM_ALIGN (op0) % bitsize == 0)))))
1232 if (mode1 != GET_MODE (op0))
1235 op0 = adjust_address (op0, mode1, offset);
1238 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1241 goto no_subreg_mode_swap;
1246 return convert_to_mode (tmode, op0, unsignedp);
1249 no_subreg_mode_swap:
1251 /* Handle fields bigger than a word. */
1253 if (bitsize > BITS_PER_WORD)
1255 /* Here we transfer the words of the field
1256 in the order least significant first.
1257 This is because the most significant word is the one which may
1258 be less than full. */
1260 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1263 if (target == 0 || !REG_P (target))
1264 target = gen_reg_rtx (mode);
1266 /* Indicate for flow that the entire target reg is being set. */
1267 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1269 for (i = 0; i < nwords; i++)
1271 /* If I is 0, use the low-order word in both field and target;
1272 if I is 1, use the next to lowest word; and so on. */
1273 /* Word number in TARGET to use. */
1274 unsigned int wordnum
1276 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1278 /* Offset from start of field in OP0. */
1279 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1280 ? MAX (0, ((int) bitsize - ((int) i + 1)
1281 * (int) BITS_PER_WORD))
1282 : (int) i * BITS_PER_WORD);
1283 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1285 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1286 bitsize - i * BITS_PER_WORD),
1287 bitnum + bit_offset, 1, target_part, mode,
1290 gcc_assert (target_part);
1292 if (result_part != target_part)
1293 emit_move_insn (target_part, result_part);
1298 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1299 need to be zero'd out. */
1300 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1302 unsigned int i, total_words;
1304 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1305 for (i = nwords; i < total_words; i++)
1307 (operand_subword (target,
1308 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1315 /* Signed bit field: sign-extend with two arithmetic shifts. */
1316 target = expand_shift (LSHIFT_EXPR, mode, target,
1317 build_int_cst (NULL_TREE,
1318 GET_MODE_BITSIZE (mode) - bitsize),
1320 return expand_shift (RSHIFT_EXPR, mode, target,
1321 build_int_cst (NULL_TREE,
1322 GET_MODE_BITSIZE (mode) - bitsize),
1326 /* From here on we know the desired field is smaller than a word. */
1328 /* Check if there is a correspondingly-sized integer field, so we can
1329 safely extract it as one size of integer, if necessary; then
1330 truncate or extend to the size that is wanted; then use SUBREGs or
1331 convert_to_mode to get one of the modes we really wanted. */
1333 int_mode = int_mode_for_mode (tmode);
1334 if (int_mode == BLKmode)
1335 int_mode = int_mode_for_mode (mode);
1336 /* Should probably push op0 out to memory and then do a load. */
1337 gcc_assert (int_mode != BLKmode);
1339 /* OFFSET is the number of words or bytes (UNIT says which)
1340 from STR_RTX to the first word or byte containing part of the field. */
1344 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1347 op0 = copy_to_reg (op0);
1348 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1349 op0, (offset * UNITS_PER_WORD));
1354 /* Now OFFSET is nonzero only for memory operands. */
1359 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1360 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1361 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1363 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1364 rtx bitsize_rtx, bitpos_rtx;
1365 rtx last = get_last_insn ();
1367 rtx xtarget = target;
1368 rtx xspec_target = spec_target;
1369 rtx xspec_target_subreg = spec_target_subreg;
1371 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1375 int save_volatile_ok = volatile_ok;
1378 /* Is the memory operand acceptable? */
1379 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1380 (xop0, GET_MODE (xop0))))
1382 /* No, load into a reg and extract from there. */
1383 enum machine_mode bestmode;
1385 /* Get the mode to use for inserting into this field. If
1386 OP0 is BLKmode, get the smallest mode consistent with the
1387 alignment. If OP0 is a non-BLKmode object that is no
1388 wider than MAXMODE, use its mode. Otherwise, use the
1389 smallest mode containing the field. */
1391 if (GET_MODE (xop0) == BLKmode
1392 || (GET_MODE_SIZE (GET_MODE (op0))
1393 > GET_MODE_SIZE (maxmode)))
1394 bestmode = get_best_mode (bitsize, bitnum,
1395 MEM_ALIGN (xop0), maxmode,
1396 MEM_VOLATILE_P (xop0));
1398 bestmode = GET_MODE (xop0);
1400 if (bestmode == VOIDmode
1401 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1402 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1405 /* Compute offset as multiple of this unit,
1406 counting in bytes. */
1407 unit = GET_MODE_BITSIZE (bestmode);
1408 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1409 xbitpos = bitnum % unit;
1410 xop0 = adjust_address (xop0, bestmode, xoffset);
1412 /* Fetch it to a register in that size. */
1413 xop0 = force_reg (bestmode, xop0);
1415 /* XBITPOS counts within UNIT, which is what is expected. */
1418 /* Get ref to first byte containing part of the field. */
1419 xop0 = adjust_address (xop0, byte_mode, xoffset);
1421 volatile_ok = save_volatile_ok;
1424 /* If op0 is a register, we need it in MAXMODE (which is usually
1425 SImode). to make it acceptable to the format of extzv. */
1426 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1428 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1429 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1431 /* On big-endian machines, we count bits from the most significant.
1432 If the bit field insn does not, we must invert. */
1433 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1434 xbitpos = unit - bitsize - xbitpos;
1436 /* Now convert from counting within UNIT to counting in MAXMODE. */
1437 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1438 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1440 unit = GET_MODE_BITSIZE (maxmode);
1443 xtarget = xspec_target = gen_reg_rtx (tmode);
1445 if (GET_MODE (xtarget) != maxmode)
1447 if (REG_P (xtarget))
1449 int wider = (GET_MODE_SIZE (maxmode)
1450 > GET_MODE_SIZE (GET_MODE (xtarget)));
1451 xtarget = gen_lowpart (maxmode, xtarget);
1453 xspec_target_subreg = xtarget;
1456 xtarget = gen_reg_rtx (maxmode);
1459 /* If this machine's extzv insists on a register target,
1460 make sure we have one. */
1461 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1462 (xtarget, maxmode)))
1463 xtarget = gen_reg_rtx (maxmode);
1465 bitsize_rtx = GEN_INT (bitsize);
1466 bitpos_rtx = GEN_INT (xbitpos);
1468 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1473 spec_target = xspec_target;
1474 spec_target_subreg = xspec_target_subreg;
1478 delete_insns_since (last);
1479 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1485 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1491 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1492 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1493 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1495 int xbitpos = bitpos, xoffset = offset;
1496 rtx bitsize_rtx, bitpos_rtx;
1497 rtx last = get_last_insn ();
1498 rtx xop0 = op0, xtarget = target;
1499 rtx xspec_target = spec_target;
1500 rtx xspec_target_subreg = spec_target_subreg;
1502 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1506 /* Is the memory operand acceptable? */
1507 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1508 (xop0, GET_MODE (xop0))))
1510 /* No, load into a reg and extract from there. */
1511 enum machine_mode bestmode;
1513 /* Get the mode to use for inserting into this field. If
1514 OP0 is BLKmode, get the smallest mode consistent with the
1515 alignment. If OP0 is a non-BLKmode object that is no
1516 wider than MAXMODE, use its mode. Otherwise, use the
1517 smallest mode containing the field. */
1519 if (GET_MODE (xop0) == BLKmode
1520 || (GET_MODE_SIZE (GET_MODE (op0))
1521 > GET_MODE_SIZE (maxmode)))
1522 bestmode = get_best_mode (bitsize, bitnum,
1523 MEM_ALIGN (xop0), maxmode,
1524 MEM_VOLATILE_P (xop0));
1526 bestmode = GET_MODE (xop0);
1528 if (bestmode == VOIDmode
1529 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1530 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1533 /* Compute offset as multiple of this unit,
1534 counting in bytes. */
1535 unit = GET_MODE_BITSIZE (bestmode);
1536 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1537 xbitpos = bitnum % unit;
1538 xop0 = adjust_address (xop0, bestmode, xoffset);
1540 /* Fetch it to a register in that size. */
1541 xop0 = force_reg (bestmode, xop0);
1543 /* XBITPOS counts within UNIT, which is what is expected. */
1546 /* Get ref to first byte containing part of the field. */
1547 xop0 = adjust_address (xop0, byte_mode, xoffset);
1550 /* If op0 is a register, we need it in MAXMODE (which is usually
1551 SImode) to make it acceptable to the format of extv. */
1552 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1554 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1555 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1557 /* On big-endian machines, we count bits from the most significant.
1558 If the bit field insn does not, we must invert. */
1559 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1560 xbitpos = unit - bitsize - xbitpos;
1562 /* XBITPOS counts within a size of UNIT.
1563 Adjust to count within a size of MAXMODE. */
1564 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1565 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1567 unit = GET_MODE_BITSIZE (maxmode);
1570 xtarget = xspec_target = gen_reg_rtx (tmode);
1572 if (GET_MODE (xtarget) != maxmode)
1574 if (REG_P (xtarget))
1576 int wider = (GET_MODE_SIZE (maxmode)
1577 > GET_MODE_SIZE (GET_MODE (xtarget)));
1578 xtarget = gen_lowpart (maxmode, xtarget);
1580 xspec_target_subreg = xtarget;
1583 xtarget = gen_reg_rtx (maxmode);
1586 /* If this machine's extv insists on a register target,
1587 make sure we have one. */
1588 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1589 (xtarget, maxmode)))
1590 xtarget = gen_reg_rtx (maxmode);
1592 bitsize_rtx = GEN_INT (bitsize);
1593 bitpos_rtx = GEN_INT (xbitpos);
1595 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1600 spec_target = xspec_target;
1601 spec_target_subreg = xspec_target_subreg;
1605 delete_insns_since (last);
1606 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1612 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1615 if (target == spec_target)
1617 if (target == spec_target_subreg)
1619 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1621 /* If the target mode is not a scalar integral, first convert to the
1622 integer mode of that size and then access it as a floating-point
1623 value via a SUBREG. */
1624 if (!SCALAR_INT_MODE_P (tmode))
1626 enum machine_mode smode
1627 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1628 target = convert_to_mode (smode, target, unsignedp);
1629 target = force_reg (smode, target);
1630 return gen_lowpart (tmode, target);
1633 return convert_to_mode (tmode, target, unsignedp);
1638 /* Extract a bit field using shifts and boolean operations
1639 Returns an rtx to represent the value.
1640 OP0 addresses a register (word) or memory (byte).
1641 BITPOS says which bit within the word or byte the bit field starts in.
1642 OFFSET says how many bytes farther the bit field starts;
1643 it is 0 if OP0 is a register.
1644 BITSIZE says how many bits long the bit field is.
1645 (If OP0 is a register, it may be narrower than a full word,
1646 but BITPOS still counts within a full word,
1647 which is significant on bigendian machines.)
1649 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1650 If TARGET is nonzero, attempts to store the value there
1651 and return TARGET, but this is not guaranteed.
1652 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1655 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1656 unsigned HOST_WIDE_INT offset,
1657 unsigned HOST_WIDE_INT bitsize,
1658 unsigned HOST_WIDE_INT bitpos, rtx target,
1661 unsigned int total_bits = BITS_PER_WORD;
1662 enum machine_mode mode;
1664 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1666 /* Special treatment for a bit field split across two registers. */
1667 if (bitsize + bitpos > BITS_PER_WORD)
1668 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1672 /* Get the proper mode to use for this field. We want a mode that
1673 includes the entire field. If such a mode would be larger than
1674 a word, we won't be doing the extraction the normal way. */
1676 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1677 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1679 if (mode == VOIDmode)
1680 /* The only way this should occur is if the field spans word
1682 return extract_split_bit_field (op0, bitsize,
1683 bitpos + offset * BITS_PER_UNIT,
1686 total_bits = GET_MODE_BITSIZE (mode);
1688 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1689 be in the range 0 to total_bits-1, and put any excess bytes in
1691 if (bitpos >= total_bits)
1693 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1694 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1698 /* Get ref to an aligned byte, halfword, or word containing the field.
1699 Adjust BITPOS to be position within a word,
1700 and OFFSET to be the offset of that word.
1701 Then alter OP0 to refer to that word. */
1702 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1703 offset -= (offset % (total_bits / BITS_PER_UNIT));
1704 op0 = adjust_address (op0, mode, offset);
1707 mode = GET_MODE (op0);
1709 if (BYTES_BIG_ENDIAN)
1710 /* BITPOS is the distance between our msb and that of OP0.
1711 Convert it to the distance from the lsb. */
1712 bitpos = total_bits - bitsize - bitpos;
1714 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1715 We have reduced the big-endian case to the little-endian case. */
1721 /* If the field does not already start at the lsb,
1722 shift it so it does. */
1723 tree amount = build_int_cst (NULL_TREE, bitpos);
1724 /* Maybe propagate the target for the shift. */
1725 /* But not if we will return it--could confuse integrate.c. */
1726 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1727 if (tmode != mode) subtarget = 0;
1728 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1730 /* Convert the value to the desired mode. */
1732 op0 = convert_to_mode (tmode, op0, 1);
1734 /* Unless the msb of the field used to be the msb when we shifted,
1735 mask out the upper bits. */
1737 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1738 return expand_binop (GET_MODE (op0), and_optab, op0,
1739 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1740 target, 1, OPTAB_LIB_WIDEN);
1744 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1745 then arithmetic-shift its lsb to the lsb of the word. */
1746 op0 = force_reg (mode, op0);
1750 /* Find the narrowest integer mode that contains the field. */
1752 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1753 mode = GET_MODE_WIDER_MODE (mode))
1754 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1756 op0 = convert_to_mode (mode, op0, 0);
1760 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1763 = build_int_cst (NULL_TREE,
1764 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1765 /* Maybe propagate the target for the shift. */
1766 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1767 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1770 return expand_shift (RSHIFT_EXPR, mode, op0,
1771 build_int_cst (NULL_TREE,
1772 GET_MODE_BITSIZE (mode) - bitsize),
1776 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1777 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1778 complement of that if COMPLEMENT. The mask is truncated if
1779 necessary to the width of mode MODE. The mask is zero-extended if
1780 BITSIZE+BITPOS is too small for MODE. */
1783 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1785 HOST_WIDE_INT masklow, maskhigh;
1789 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1790 masklow = (HOST_WIDE_INT) -1 << bitpos;
1794 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1795 masklow &= ((unsigned HOST_WIDE_INT) -1
1796 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1798 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1801 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1805 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1806 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1807 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1813 maskhigh = ~maskhigh;
1817 return immed_double_const (masklow, maskhigh, mode);
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1821 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1824 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1826 unsigned HOST_WIDE_INT v = INTVAL (value);
1827 HOST_WIDE_INT low, high;
1829 if (bitsize < HOST_BITS_PER_WIDE_INT)
1830 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1832 if (bitpos < HOST_BITS_PER_WIDE_INT)
1835 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1840 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1843 return immed_double_const (low, high, mode);
1846 /* Extract a bit field from a memory by forcing the alignment of the
1847 memory. This efficient only if the field spans at least 4 boundaries.
1850 BITSIZE is the field width; BITPOS is the position of the first bit.
1851 UNSIGNEDP is true if the result should be zero-extended. */
1854 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1855 unsigned HOST_WIDE_INT bitpos,
1858 enum machine_mode mode, dmode;
1859 unsigned int m_bitsize, m_size;
1860 unsigned int sign_shift_up, sign_shift_dn;
1861 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1863 /* Choose a mode that will fit BITSIZE. */
1864 mode = smallest_mode_for_size (bitsize, MODE_INT);
1865 m_size = GET_MODE_SIZE (mode);
1866 m_bitsize = GET_MODE_BITSIZE (mode);
1868 /* Choose a mode twice as wide. Fail if no such mode exists. */
1869 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1870 if (dmode == BLKmode)
1873 do_pending_stack_adjust ();
1874 start = get_last_insn ();
1876 /* At the end, we'll need an additional shift to deal with sign/zero
1877 extension. By default this will be a left+right shift of the
1878 appropriate size. But we may be able to eliminate one of them. */
1879 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1881 if (STRICT_ALIGNMENT)
1883 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1884 bitpos %= BITS_PER_UNIT;
1886 /* We load two values to be concatenate. There's an edge condition
1887 that bears notice -- an aligned value at the end of a page can
1888 only load one value lest we segfault. So the two values we load
1889 are at "base & -size" and "(base + size - 1) & -size". If base
1890 is unaligned, the addresses will be aligned and sequential; if
1891 base is aligned, the addresses will both be equal to base. */
1893 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1894 GEN_INT (-(HOST_WIDE_INT)m_size),
1895 NULL, true, OPTAB_LIB_WIDEN);
1896 mark_reg_pointer (a1, m_bitsize);
1897 v1 = gen_rtx_MEM (mode, a1);
1898 set_mem_align (v1, m_bitsize);
1899 v1 = force_reg (mode, validize_mem (v1));
1901 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1902 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1903 GEN_INT (-(HOST_WIDE_INT)m_size),
1904 NULL, true, OPTAB_LIB_WIDEN);
1905 v2 = gen_rtx_MEM (mode, a2);
1906 set_mem_align (v2, m_bitsize);
1907 v2 = force_reg (mode, validize_mem (v2));
1909 /* Combine these two values into a double-word value. */
1910 if (m_bitsize == BITS_PER_WORD)
1912 comb = gen_reg_rtx (dmode);
1913 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1914 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1915 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1919 if (BYTES_BIG_ENDIAN)
1920 comb = v1, v1 = v2, v2 = comb;
1921 v1 = convert_modes (dmode, mode, v1, true);
1924 v2 = convert_modes (dmode, mode, v2, true);
1925 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1926 NULL, true, OPTAB_LIB_WIDEN);
1929 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1930 true, OPTAB_LIB_WIDEN);
1935 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1936 NULL, true, OPTAB_LIB_WIDEN);
1937 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1941 if (sign_shift_up <= bitpos)
1942 bitpos -= sign_shift_up, sign_shift_up = 0;
1943 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1944 NULL, true, OPTAB_LIB_WIDEN);
1949 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1950 bitpos %= BITS_PER_UNIT;
1952 /* When strict alignment is not required, we can just load directly
1953 from memory without masking. If the remaining BITPOS offset is
1954 small enough, we may be able to do all operations in MODE as
1955 opposed to DMODE. */
1956 if (bitpos + bitsize <= m_bitsize)
1958 comb = adjust_address (op0, dmode, offset);
1960 if (sign_shift_up <= bitpos)
1961 bitpos -= sign_shift_up, sign_shift_up = 0;
1962 shift = GEN_INT (bitpos);
1965 /* Shift down the double-word such that the requested value is at bit 0. */
1966 if (shift != const0_rtx)
1967 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1968 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1972 /* If the field exactly matches MODE, then all we need to do is return the
1973 lowpart. Otherwise, shift to get the sign bits set properly. */
1974 result = force_reg (mode, gen_lowpart (mode, comb));
1977 result = expand_simple_binop (mode, ASHIFT, result,
1978 GEN_INT (sign_shift_up),
1979 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1981 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1982 result, GEN_INT (sign_shift_dn),
1983 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1988 delete_insns_since (start);
1992 /* Extract a bit field that is split across two words
1993 and return an RTX for the result.
1995 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1996 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1997 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2000 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2001 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2004 unsigned int bitsdone = 0;
2005 rtx result = NULL_RTX;
2008 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2010 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2011 unit = BITS_PER_WORD;
2014 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2015 if (0 && bitsize / unit > 2)
2017 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2024 while (bitsdone < bitsize)
2026 unsigned HOST_WIDE_INT thissize;
2028 unsigned HOST_WIDE_INT thispos;
2029 unsigned HOST_WIDE_INT offset;
2031 offset = (bitpos + bitsdone) / unit;
2032 thispos = (bitpos + bitsdone) % unit;
2034 /* THISSIZE must not overrun a word boundary. Otherwise,
2035 extract_fixed_bit_field will call us again, and we will mutually
2037 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2038 thissize = MIN (thissize, unit - thispos);
2040 /* If OP0 is a register, then handle OFFSET here.
2042 When handling multiword bitfields, extract_bit_field may pass
2043 down a word_mode SUBREG of a larger REG for a bitfield that actually
2044 crosses a word boundary. Thus, for a SUBREG, we must find
2045 the current word starting from the base register. */
2046 if (GET_CODE (op0) == SUBREG)
2048 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2049 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2050 GET_MODE (SUBREG_REG (op0)));
2053 else if (REG_P (op0))
2055 word = operand_subword_force (op0, offset, GET_MODE (op0));
2061 /* Extract the parts in bit-counting order,
2062 whose meaning is determined by BYTES_PER_UNIT.
2063 OFFSET is in UNITs, and UNIT is in bits.
2064 extract_fixed_bit_field wants offset in bytes. */
2065 part = extract_fixed_bit_field (word_mode, word,
2066 offset * unit / BITS_PER_UNIT,
2067 thissize, thispos, 0, 1);
2068 bitsdone += thissize;
2070 /* Shift this part into place for the result. */
2071 if (BYTES_BIG_ENDIAN)
2073 if (bitsize != bitsdone)
2074 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2075 build_int_cst (NULL_TREE, bitsize - bitsdone),
2080 if (bitsdone != thissize)
2081 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2082 build_int_cst (NULL_TREE,
2083 bitsdone - thissize), 0, 1);
2089 /* Combine the parts with bitwise or. This works
2090 because we extracted each part as an unsigned bit field. */
2091 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2097 /* Unsigned bit field: we are done. */
2100 /* Signed bit field: sign-extend with two arithmetic shifts. */
2101 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2102 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2104 return expand_shift (RSHIFT_EXPR, word_mode, result,
2105 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2109 /* Add INC into TARGET. */
2112 expand_inc (rtx target, rtx inc)
2114 rtx value = expand_binop (GET_MODE (target), add_optab,
2116 target, 0, OPTAB_LIB_WIDEN);
2117 if (value != target)
2118 emit_move_insn (target, value);
2121 /* Subtract DEC from TARGET. */
2124 expand_dec (rtx target, rtx dec)
2126 rtx value = expand_binop (GET_MODE (target), sub_optab,
2128 target, 0, OPTAB_LIB_WIDEN);
2129 if (value != target)
2130 emit_move_insn (target, value);
2133 /* Output a shift instruction for expression code CODE,
2134 with SHIFTED being the rtx for the value to shift,
2135 and AMOUNT the tree for the amount to shift by.
2136 Store the result in the rtx TARGET, if that is convenient.
2137 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2138 Return the rtx for where the value is. */
2141 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2142 tree amount, rtx target, int unsignedp)
2145 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2146 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2149 /* Previously detected shift-counts computed by NEGATE_EXPR
2150 and shifted in the other direction; but that does not work
2153 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2155 if (SHIFT_COUNT_TRUNCATED)
2157 if (GET_CODE (op1) == CONST_INT
2158 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2159 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2160 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2161 % GET_MODE_BITSIZE (mode));
2162 else if (GET_CODE (op1) == SUBREG
2163 && subreg_lowpart_p (op1))
2164 op1 = SUBREG_REG (op1);
2167 if (op1 == const0_rtx)
2170 /* Check whether its cheaper to implement a left shift by a constant
2171 bit count by a sequence of additions. */
2172 if (code == LSHIFT_EXPR
2173 && GET_CODE (op1) == CONST_INT
2175 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2176 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2179 for (i = 0; i < INTVAL (op1); i++)
2181 temp = force_reg (mode, shifted);
2182 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2183 unsignedp, OPTAB_LIB_WIDEN);
2188 for (try = 0; temp == 0 && try < 3; try++)
2190 enum optab_methods methods;
2193 methods = OPTAB_DIRECT;
2195 methods = OPTAB_WIDEN;
2197 methods = OPTAB_LIB_WIDEN;
2201 /* Widening does not work for rotation. */
2202 if (methods == OPTAB_WIDEN)
2204 else if (methods == OPTAB_LIB_WIDEN)
2206 /* If we have been unable to open-code this by a rotation,
2207 do it as the IOR of two shifts. I.e., to rotate A
2208 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2209 where C is the bitsize of A.
2211 It is theoretically possible that the target machine might
2212 not be able to perform either shift and hence we would
2213 be making two libcalls rather than just the one for the
2214 shift (similarly if IOR could not be done). We will allow
2215 this extremely unlikely lossage to avoid complicating the
2218 rtx subtarget = target == shifted ? 0 : target;
2220 tree type = TREE_TYPE (amount);
2221 tree new_amount = make_tree (type, op1);
2223 = fold_build2 (MINUS_EXPR, type,
2224 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2227 shifted = force_reg (mode, shifted);
2229 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2230 mode, shifted, new_amount, subtarget, 1);
2231 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2232 mode, shifted, other_amount, 0, 1);
2233 return expand_binop (mode, ior_optab, temp, temp1, target,
2234 unsignedp, methods);
2237 temp = expand_binop (mode,
2238 left ? rotl_optab : rotr_optab,
2239 shifted, op1, target, unsignedp, methods);
2241 /* If we don't have the rotate, but we are rotating by a constant
2242 that is in range, try a rotate in the opposite direction. */
2244 if (temp == 0 && GET_CODE (op1) == CONST_INT
2246 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2247 temp = expand_binop (mode,
2248 left ? rotr_optab : rotl_optab,
2250 GEN_INT (GET_MODE_BITSIZE (mode)
2252 target, unsignedp, methods);
2255 temp = expand_binop (mode,
2256 left ? ashl_optab : lshr_optab,
2257 shifted, op1, target, unsignedp, methods);
2259 /* Do arithmetic shifts.
2260 Also, if we are going to widen the operand, we can just as well
2261 use an arithmetic right-shift instead of a logical one. */
2262 if (temp == 0 && ! rotate
2263 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2265 enum optab_methods methods1 = methods;
2267 /* If trying to widen a log shift to an arithmetic shift,
2268 don't accept an arithmetic shift of the same size. */
2270 methods1 = OPTAB_MUST_WIDEN;
2272 /* Arithmetic shift */
2274 temp = expand_binop (mode,
2275 left ? ashl_optab : ashr_optab,
2276 shifted, op1, target, unsignedp, methods1);
2279 /* We used to try extzv here for logical right shifts, but that was
2280 only useful for one machine, the VAX, and caused poor code
2281 generation there for lshrdi3, so the code was deleted and a
2282 define_expand for lshrsi3 was added to vax.md. */
2289 enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift,
2290 alg_add_t_m2, alg_sub_t_m2,
2291 alg_add_factor, alg_sub_factor,
2292 alg_add_t2_m, alg_sub_t2_m };
2294 /* This structure holds the "cost" of a multiply sequence. The
2295 "cost" field holds the total rtx_cost of every operator in the
2296 synthetic multiplication sequence, hence cost(a op b) is defined
2297 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2298 The "latency" field holds the minimum possible latency of the
2299 synthetic multiply, on a hypothetical infinitely parallel CPU.
2300 This is the critical path, or the maximum height, of the expression
2301 tree which is the sum of rtx_costs on the most expensive path from
2302 any leaf to the root. Hence latency(a op b) is defined as zero for
2303 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2306 short cost; /* Total rtx_cost of the multiplication sequence. */
2307 short latency; /* The latency of the multiplication sequence. */
2310 /* This macro is used to compare a pointer to a mult_cost against an
2311 single integer "rtx_cost" value. This is equivalent to the macro
2312 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2313 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2314 || ((X)->cost == (Y) && (X)->latency < (Y)))
2316 /* This macro is used to compare two pointers to mult_costs against
2317 each other. The macro returns true if X is cheaper than Y.
2318 Currently, the cheaper of two mult_costs is the one with the
2319 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2320 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2321 || ((X)->cost == (Y)->cost \
2322 && (X)->latency < (Y)->latency))
2324 /* This structure records a sequence of operations.
2325 `ops' is the number of operations recorded.
2326 `cost' is their total cost.
2327 The operations are stored in `op' and the corresponding
2328 logarithms of the integer coefficients in `log'.
2330 These are the operations:
2331 alg_zero total := 0;
2332 alg_m total := multiplicand;
2333 alg_shift total := total * coeff
2334 alg_add_t_m2 total := total + multiplicand * coeff;
2335 alg_sub_t_m2 total := total - multiplicand * coeff;
2336 alg_add_factor total := total * coeff + total;
2337 alg_sub_factor total := total * coeff - total;
2338 alg_add_t2_m total := total * coeff + multiplicand;
2339 alg_sub_t2_m total := total * coeff - multiplicand;
2341 The first operand must be either alg_zero or alg_m. */
2345 struct mult_cost cost;
2347 /* The size of the OP and LOG fields are not directly related to the
2348 word size, but the worst-case algorithms will be if we have few
2349 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2350 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2351 in total wordsize operations. */
2352 enum alg_code op[MAX_BITS_PER_WORD];
2353 char log[MAX_BITS_PER_WORD];
2356 /* The entry for our multiplication cache/hash table. */
2357 struct alg_hash_entry {
2358 /* The number we are multiplying by. */
2361 /* The mode in which we are multiplying something by T. */
2362 enum machine_mode mode;
2364 /* The best multiplication algorithm for t. */
2368 /* The number of cache/hash entries. */
2369 #define NUM_ALG_HASH_ENTRIES 307
2371 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2372 actually a hash table. If we have a collision, that the older
2373 entry is kicked out. */
2374 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2376 /* Indicates the type of fixup needed after a constant multiplication.
2377 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2378 the result should be negated, and ADD_VARIANT means that the
2379 multiplicand should be added to the result. */
2380 enum mult_variant {basic_variant, negate_variant, add_variant};
2382 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2383 const struct mult_cost *, enum machine_mode mode);
2384 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2385 struct algorithm *, enum mult_variant *, int);
2386 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2387 const struct algorithm *, enum mult_variant);
2388 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2389 int, rtx *, int *, int *);
2390 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2391 static rtx extract_high_half (enum machine_mode, rtx);
2392 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2393 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2402 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2403 const struct mult_cost *cost_limit, enum machine_mode mode)
2406 struct algorithm *alg_in, *best_alg;
2407 struct mult_cost best_cost;
2408 struct mult_cost new_limit;
2409 int op_cost, op_latency;
2410 unsigned HOST_WIDE_INT q;
2411 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2413 bool cache_hit = false;
2414 enum alg_code cache_alg = alg_zero;
2416 /* Indicate that no algorithm is yet found. If no algorithm
2417 is found, this value will be returned and indicate failure. */
2418 alg_out->cost.cost = cost_limit->cost + 1;
2419 alg_out->cost.latency = cost_limit->latency + 1;
2421 if (cost_limit->cost < 0
2422 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2425 /* Restrict the bits of "t" to the multiplication's mode. */
2426 t &= GET_MODE_MASK (mode);
2428 /* t == 1 can be done in zero cost. */
2432 alg_out->cost.cost = 0;
2433 alg_out->cost.latency = 0;
2434 alg_out->op[0] = alg_m;
2438 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2442 if (MULT_COST_LESS (cost_limit, zero_cost))
2447 alg_out->cost.cost = zero_cost;
2448 alg_out->cost.latency = zero_cost;
2449 alg_out->op[0] = alg_zero;
2454 /* We'll be needing a couple extra algorithm structures now. */
2456 alg_in = alloca (sizeof (struct algorithm));
2457 best_alg = alloca (sizeof (struct algorithm));
2458 best_cost = *cost_limit;
2460 /* Compute the hash index. */
2461 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2463 /* See if we already know what to do for T. */
2464 if (alg_hash[hash_index].t == t
2465 && alg_hash[hash_index].mode == mode
2466 && alg_hash[hash_index].alg != alg_unknown)
2469 cache_alg = alg_hash[hash_index].alg;
2477 goto do_alg_addsub_t_m2;
2479 case alg_add_factor:
2480 case alg_sub_factor:
2481 goto do_alg_addsub_factor;
2484 goto do_alg_add_t2_m;
2487 goto do_alg_sub_t2_m;
2494 /* If we have a group of zero bits at the low-order part of T, try
2495 multiplying by the remaining bits and then doing a shift. */
2500 m = floor_log2 (t & -t); /* m = number of low zero bits */
2504 /* The function expand_shift will choose between a shift and
2505 a sequence of additions, so the observed cost is given as
2506 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2507 op_cost = m * add_cost[mode];
2508 if (shift_cost[mode][m] < op_cost)
2509 op_cost = shift_cost[mode][m];
2510 new_limit.cost = best_cost.cost - op_cost;
2511 new_limit.latency = best_cost.latency - op_cost;
2512 synth_mult (alg_in, q, &new_limit, mode);
2514 alg_in->cost.cost += op_cost;
2515 alg_in->cost.latency += op_cost;
2516 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2518 struct algorithm *x;
2519 best_cost = alg_in->cost;
2520 x = alg_in, alg_in = best_alg, best_alg = x;
2521 best_alg->log[best_alg->ops] = m;
2522 best_alg->op[best_alg->ops] = alg_shift;
2529 /* If we have an odd number, add or subtract one. */
2532 unsigned HOST_WIDE_INT w;
2535 for (w = 1; (w & t) != 0; w <<= 1)
2537 /* If T was -1, then W will be zero after the loop. This is another
2538 case where T ends with ...111. Handling this with (T + 1) and
2539 subtract 1 produces slightly better code and results in algorithm
2540 selection much faster than treating it like the ...0111 case
2544 /* Reject the case where t is 3.
2545 Thus we prefer addition in that case. */
2548 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2550 op_cost = add_cost[mode];
2551 new_limit.cost = best_cost.cost - op_cost;
2552 new_limit.latency = best_cost.latency - op_cost;
2553 synth_mult (alg_in, t + 1, &new_limit, mode);
2555 alg_in->cost.cost += op_cost;
2556 alg_in->cost.latency += op_cost;
2557 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2559 struct algorithm *x;
2560 best_cost = alg_in->cost;
2561 x = alg_in, alg_in = best_alg, best_alg = x;
2562 best_alg->log[best_alg->ops] = 0;
2563 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2568 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2570 op_cost = add_cost[mode];
2571 new_limit.cost = best_cost.cost - op_cost;
2572 new_limit.latency = best_cost.latency - op_cost;
2573 synth_mult (alg_in, t - 1, &new_limit, mode);
2575 alg_in->cost.cost += op_cost;
2576 alg_in->cost.latency += op_cost;
2577 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2579 struct algorithm *x;
2580 best_cost = alg_in->cost;
2581 x = alg_in, alg_in = best_alg, best_alg = x;
2582 best_alg->log[best_alg->ops] = 0;
2583 best_alg->op[best_alg->ops] = alg_add_t_m2;
2590 /* Look for factors of t of the form
2591 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2592 If we find such a factor, we can multiply by t using an algorithm that
2593 multiplies by q, shift the result by m and add/subtract it to itself.
2595 We search for large factors first and loop down, even if large factors
2596 are less probable than small; if we find a large factor we will find a
2597 good sequence quickly, and therefore be able to prune (by decreasing
2598 COST_LIMIT) the search. */
2600 do_alg_addsub_factor:
2601 for (m = floor_log2 (t - 1); m >= 2; m--)
2603 unsigned HOST_WIDE_INT d;
2605 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2606 if (t % d == 0 && t > d && m < maxm
2607 && (!cache_hit || cache_alg == alg_add_factor))
2609 /* If the target has a cheap shift-and-add instruction use
2610 that in preference to a shift insn followed by an add insn.
2611 Assume that the shift-and-add is "atomic" with a latency
2612 equal to its cost, otherwise assume that on superscalar
2613 hardware the shift may be executed concurrently with the
2614 earlier steps in the algorithm. */
2615 op_cost = add_cost[mode] + shift_cost[mode][m];
2616 if (shiftadd_cost[mode][m] < op_cost)
2618 op_cost = shiftadd_cost[mode][m];
2619 op_latency = op_cost;
2622 op_latency = add_cost[mode];
2624 new_limit.cost = best_cost.cost - op_cost;
2625 new_limit.latency = best_cost.latency - op_latency;
2626 synth_mult (alg_in, t / d, &new_limit, mode);
2628 alg_in->cost.cost += op_cost;
2629 alg_in->cost.latency += op_latency;
2630 if (alg_in->cost.latency < op_cost)
2631 alg_in->cost.latency = op_cost;
2632 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2634 struct algorithm *x;
2635 best_cost = alg_in->cost;
2636 x = alg_in, alg_in = best_alg, best_alg = x;
2637 best_alg->log[best_alg->ops] = m;
2638 best_alg->op[best_alg->ops] = alg_add_factor;
2640 /* Other factors will have been taken care of in the recursion. */
2644 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2645 if (t % d == 0 && t > d && m < maxm
2646 && (!cache_hit || cache_alg == alg_sub_factor))
2648 /* If the target has a cheap shift-and-subtract insn use
2649 that in preference to a shift insn followed by a sub insn.
2650 Assume that the shift-and-sub is "atomic" with a latency
2651 equal to it's cost, otherwise assume that on superscalar
2652 hardware the shift may be executed concurrently with the
2653 earlier steps in the algorithm. */
2654 op_cost = add_cost[mode] + shift_cost[mode][m];
2655 if (shiftsub_cost[mode][m] < op_cost)
2657 op_cost = shiftsub_cost[mode][m];
2658 op_latency = op_cost;
2661 op_latency = add_cost[mode];
2663 new_limit.cost = best_cost.cost - op_cost;
2664 new_limit.latency = best_cost.latency - op_latency;
2665 synth_mult (alg_in, t / d, &new_limit, mode);
2667 alg_in->cost.cost += op_cost;
2668 alg_in->cost.latency += op_latency;
2669 if (alg_in->cost.latency < op_cost)
2670 alg_in->cost.latency = op_cost;
2671 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2673 struct algorithm *x;
2674 best_cost = alg_in->cost;
2675 x = alg_in, alg_in = best_alg, best_alg = x;
2676 best_alg->log[best_alg->ops] = m;
2677 best_alg->op[best_alg->ops] = alg_sub_factor;
2685 /* Try shift-and-add (load effective address) instructions,
2686 i.e. do a*3, a*5, a*9. */
2693 if (m >= 0 && m < maxm)
2695 op_cost = shiftadd_cost[mode][m];
2696 new_limit.cost = best_cost.cost - op_cost;
2697 new_limit.latency = best_cost.latency - op_cost;
2698 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2700 alg_in->cost.cost += op_cost;
2701 alg_in->cost.latency += op_cost;
2702 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2704 struct algorithm *x;
2705 best_cost = alg_in->cost;
2706 x = alg_in, alg_in = best_alg, best_alg = x;
2707 best_alg->log[best_alg->ops] = m;
2708 best_alg->op[best_alg->ops] = alg_add_t2_m;
2718 if (m >= 0 && m < maxm)
2720 op_cost = shiftsub_cost[mode][m];
2721 new_limit.cost = best_cost.cost - op_cost;
2722 new_limit.latency = best_cost.latency - op_cost;
2723 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2725 alg_in->cost.cost += op_cost;
2726 alg_in->cost.latency += op_cost;
2727 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2729 struct algorithm *x;
2730 best_cost = alg_in->cost;
2731 x = alg_in, alg_in = best_alg, best_alg = x;
2732 best_alg->log[best_alg->ops] = m;
2733 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2741 /* If best_cost has not decreased, we have not found any algorithm. */
2742 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2745 /* Cache the result. */
2748 alg_hash[hash_index].t = t;
2749 alg_hash[hash_index].mode = mode;
2750 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2753 /* If we are getting a too long sequence for `struct algorithm'
2754 to record, make this search fail. */
2755 if (best_alg->ops == MAX_BITS_PER_WORD)
2758 /* Copy the algorithm from temporary space to the space at alg_out.
2759 We avoid using structure assignment because the majority of
2760 best_alg is normally undefined, and this is a critical function. */
2761 alg_out->ops = best_alg->ops + 1;
2762 alg_out->cost = best_cost;
2763 memcpy (alg_out->op, best_alg->op,
2764 alg_out->ops * sizeof *alg_out->op);
2765 memcpy (alg_out->log, best_alg->log,
2766 alg_out->ops * sizeof *alg_out->log);
2769 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2770 Try three variations:
2772 - a shift/add sequence based on VAL itself
2773 - a shift/add sequence based on -VAL, followed by a negation
2774 - a shift/add sequence based on VAL - 1, followed by an addition.
2776 Return true if the cheapest of these cost less than MULT_COST,
2777 describing the algorithm in *ALG and final fixup in *VARIANT. */
2780 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2781 struct algorithm *alg, enum mult_variant *variant,
2784 struct algorithm alg2;
2785 struct mult_cost limit;
2788 *variant = basic_variant;
2789 limit.cost = mult_cost;
2790 limit.latency = mult_cost;
2791 synth_mult (alg, val, &limit, mode);
2793 /* This works only if the inverted value actually fits in an
2795 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2797 op_cost = neg_cost[mode];
2798 if (MULT_COST_LESS (&alg->cost, mult_cost))
2800 limit.cost = alg->cost.cost - op_cost;
2801 limit.latency = alg->cost.latency - op_cost;
2805 limit.cost = mult_cost - op_cost;
2806 limit.latency = mult_cost - op_cost;
2809 synth_mult (&alg2, -val, &limit, mode);
2810 alg2.cost.cost += op_cost;
2811 alg2.cost.latency += op_cost;
2812 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2813 *alg = alg2, *variant = negate_variant;
2816 /* This proves very useful for division-by-constant. */
2817 op_cost = add_cost[mode];
2818 if (MULT_COST_LESS (&alg->cost, mult_cost))
2820 limit.cost = alg->cost.cost - op_cost;
2821 limit.latency = alg->cost.latency - op_cost;
2825 limit.cost = mult_cost - op_cost;
2826 limit.latency = mult_cost - op_cost;
2829 synth_mult (&alg2, val - 1, &limit, mode);
2830 alg2.cost.cost += op_cost;
2831 alg2.cost.latency += op_cost;
2832 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2833 *alg = alg2, *variant = add_variant;
2835 return MULT_COST_LESS (&alg->cost, mult_cost);
2838 /* A subroutine of expand_mult, used for constant multiplications.
2839 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2840 convenient. Use the shift/add sequence described by ALG and apply
2841 the final fixup specified by VARIANT. */
2844 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2845 rtx target, const struct algorithm *alg,
2846 enum mult_variant variant)
2848 HOST_WIDE_INT val_so_far;
2849 rtx insn, accum, tem;
2851 enum machine_mode nmode;
2853 /* Avoid referencing memory over and over.
2854 For speed, but also for correctness when mem is volatile. */
2856 op0 = force_reg (mode, op0);
2858 /* ACCUM starts out either as OP0 or as a zero, depending on
2859 the first operation. */
2861 if (alg->op[0] == alg_zero)
2863 accum = copy_to_mode_reg (mode, const0_rtx);
2866 else if (alg->op[0] == alg_m)
2868 accum = copy_to_mode_reg (mode, op0);
2874 for (opno = 1; opno < alg->ops; opno++)
2876 int log = alg->log[opno];
2877 rtx shift_subtarget = optimize ? 0 : accum;
2879 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2882 rtx accum_target = optimize ? 0 : accum;
2884 switch (alg->op[opno])
2887 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2888 build_int_cst (NULL_TREE, log),
2894 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2895 build_int_cst (NULL_TREE, log),
2897 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2898 add_target ? add_target : accum_target);
2899 val_so_far += (HOST_WIDE_INT) 1 << log;
2903 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2904 build_int_cst (NULL_TREE, log),
2906 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2907 add_target ? add_target : accum_target);
2908 val_so_far -= (HOST_WIDE_INT) 1 << log;
2912 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2913 build_int_cst (NULL_TREE, log),
2916 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2917 add_target ? add_target : accum_target);
2918 val_so_far = (val_so_far << log) + 1;
2922 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2923 build_int_cst (NULL_TREE, log),
2924 shift_subtarget, 0);
2925 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2926 add_target ? add_target : accum_target);
2927 val_so_far = (val_so_far << log) - 1;
2930 case alg_add_factor:
2931 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2932 build_int_cst (NULL_TREE, log),
2934 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2935 add_target ? add_target : accum_target);
2936 val_so_far += val_so_far << log;
2939 case alg_sub_factor:
2940 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2941 build_int_cst (NULL_TREE, log),
2943 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2945 ? add_target : (optimize ? 0 : tem)));
2946 val_so_far = (val_so_far << log) - val_so_far;
2953 /* Write a REG_EQUAL note on the last insn so that we can cse
2954 multiplication sequences. Note that if ACCUM is a SUBREG,
2955 we've set the inner register and must properly indicate
2958 tem = op0, nmode = mode;
2959 if (GET_CODE (accum) == SUBREG)
2961 nmode = GET_MODE (SUBREG_REG (accum));
2962 tem = gen_lowpart (nmode, op0);
2965 insn = get_last_insn ();
2966 set_unique_reg_note (insn, REG_EQUAL,
2967 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2970 if (variant == negate_variant)
2972 val_so_far = -val_so_far;
2973 accum = expand_unop (mode, neg_optab, accum, target, 0);
2975 else if (variant == add_variant)
2977 val_so_far = val_so_far + 1;
2978 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2981 /* Compare only the bits of val and val_so_far that are significant
2982 in the result mode, to avoid sign-/zero-extension confusion. */
2983 val &= GET_MODE_MASK (mode);
2984 val_so_far &= GET_MODE_MASK (mode);
2985 gcc_assert (val == val_so_far);
2990 /* Perform a multiplication and return an rtx for the result.
2991 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2992 TARGET is a suggestion for where to store the result (an rtx).
2994 We check specially for a constant integer as OP1.
2995 If you want this check for OP0 as well, then before calling
2996 you should swap the two operands if OP0 would be constant. */
2999 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3002 enum mult_variant variant;
3003 struct algorithm algorithm;
3006 /* Handling const0_rtx here allows us to use zero as a rogue value for
3008 if (op1 == const0_rtx)
3010 if (op1 == const1_rtx)
3012 if (op1 == constm1_rtx)
3013 return expand_unop (mode,
3014 GET_MODE_CLASS (mode) == MODE_INT
3015 && !unsignedp && flag_trapv
3016 ? negv_optab : neg_optab,
3019 /* These are the operations that are potentially turned into a sequence
3020 of shifts and additions. */
3021 if (SCALAR_INT_MODE_P (mode)
3022 && (unsignedp || !flag_trapv))
3024 HOST_WIDE_INT coeff = 0;
3026 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3027 less than or equal in size to `unsigned int' this doesn't matter.
3028 If the mode is larger than `unsigned int', then synth_mult works
3029 only if the constant value exactly fits in an `unsigned int' without
3030 any truncation. This means that multiplying by negative values does
3031 not work; results are off by 2^32 on a 32 bit machine. */
3033 if (GET_CODE (op1) == CONST_INT)
3035 /* Attempt to handle multiplication of DImode values by negative
3036 coefficients, by performing the multiplication by a positive
3037 multiplier and then inverting the result. */
3038 if (INTVAL (op1) < 0
3039 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3041 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3042 result is interpreted as an unsigned coefficient. */
3043 max_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET)
3046 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3047 &variant, max_cost))
3049 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3050 NULL_RTX, &algorithm,
3052 return expand_unop (mode, neg_optab, temp, target, 0);
3055 else coeff = INTVAL (op1);
3057 else if (GET_CODE (op1) == CONST_DOUBLE)
3059 /* If we are multiplying in DImode, it may still be a win
3060 to try to work with shifts and adds. */
3061 if (CONST_DOUBLE_HIGH (op1) == 0)
3062 coeff = CONST_DOUBLE_LOW (op1);
3063 else if (CONST_DOUBLE_LOW (op1) == 0
3064 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3066 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3067 + HOST_BITS_PER_WIDE_INT;
3068 return expand_shift (LSHIFT_EXPR, mode, op0,
3069 build_int_cst (NULL_TREE, shift),
3074 /* We used to test optimize here, on the grounds that it's better to
3075 produce a smaller program when -O is not used. But this causes
3076 such a terrible slowdown sometimes that it seems better to always
3080 /* Special case powers of two. */
3081 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3082 return expand_shift (LSHIFT_EXPR, mode, op0,
3083 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3086 max_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
3087 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3089 return expand_mult_const (mode, op0, coeff, target,
3090 &algorithm, variant);
3094 if (GET_CODE (op0) == CONST_DOUBLE)
3101 /* Expand x*2.0 as x+x. */
3102 if (GET_CODE (op1) == CONST_DOUBLE
3103 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3106 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3108 if (REAL_VALUES_EQUAL (d, dconst2))
3110 op0 = force_reg (GET_MODE (op0), op0);
3111 return expand_binop (mode, add_optab, op0, op0,
3112 target, unsignedp, OPTAB_LIB_WIDEN);
3116 /* This used to use umul_optab if unsigned, but for non-widening multiply
3117 there is no difference between signed and unsigned. */
3118 op0 = expand_binop (mode,
3120 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3121 ? smulv_optab : smul_optab,
3122 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3127 /* Return the smallest n such that 2**n >= X. */
3130 ceil_log2 (unsigned HOST_WIDE_INT x)
3132 return floor_log2 (x - 1) + 1;
3135 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3136 replace division by D, and put the least significant N bits of the result
3137 in *MULTIPLIER_PTR and return the most significant bit.
3139 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3140 needed precision is in PRECISION (should be <= N).
3142 PRECISION should be as small as possible so this function can choose
3143 multiplier more freely.
3145 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3146 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3148 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3149 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3152 unsigned HOST_WIDE_INT
3153 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3154 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3156 HOST_WIDE_INT mhigh_hi, mlow_hi;
3157 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3158 int lgup, post_shift;
3160 unsigned HOST_WIDE_INT nl, dummy1;
3161 HOST_WIDE_INT nh, dummy2;
3163 /* lgup = ceil(log2(divisor)); */
3164 lgup = ceil_log2 (d);
3166 gcc_assert (lgup <= n);
3169 pow2 = n + lgup - precision;
3171 /* We could handle this with some effort, but this case is much
3172 better handled directly with a scc insn, so rely on caller using
3174 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3176 /* mlow = 2^(N + lgup)/d */
3177 if (pow >= HOST_BITS_PER_WIDE_INT)
3179 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3185 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3187 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3188 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3190 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3191 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3192 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3194 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3195 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3196 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3198 gcc_assert (!mhigh_hi || nh - d < d);
3199 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3200 /* Assert that mlow < mhigh. */
3201 gcc_assert (mlow_hi < mhigh_hi
3202 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3204 /* If precision == N, then mlow, mhigh exceed 2^N
3205 (but they do not exceed 2^(N+1)). */
3207 /* Reduce to lowest terms. */
3208 for (post_shift = lgup; post_shift > 0; post_shift--)
3210 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3211 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3221 *post_shift_ptr = post_shift;
3223 if (n < HOST_BITS_PER_WIDE_INT)
3225 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3226 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3227 return mhigh_lo >= mask;
3231 *multiplier_ptr = GEN_INT (mhigh_lo);
3236 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3237 congruent to 1 (mod 2**N). */
3239 static unsigned HOST_WIDE_INT
3240 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3242 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3244 /* The algorithm notes that the choice y = x satisfies
3245 x*y == 1 mod 2^3, since x is assumed odd.
3246 Each iteration doubles the number of bits of significance in y. */
3248 unsigned HOST_WIDE_INT mask;
3249 unsigned HOST_WIDE_INT y = x;
3252 mask = (n == HOST_BITS_PER_WIDE_INT
3253 ? ~(unsigned HOST_WIDE_INT) 0
3254 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3258 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3264 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3265 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3266 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3267 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3270 The result is put in TARGET if that is convenient.
3272 MODE is the mode of operation. */
3275 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3276 rtx op1, rtx target, int unsignedp)
3279 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3281 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3282 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3284 tem = expand_and (mode, tem, op1, NULL_RTX);
3286 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3289 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3290 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3292 tem = expand_and (mode, tem, op0, NULL_RTX);
3293 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3299 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3302 extract_high_half (enum machine_mode mode, rtx op)
3304 enum machine_mode wider_mode;
3306 if (mode == word_mode)
3307 return gen_highpart (mode, op);
3309 wider_mode = GET_MODE_WIDER_MODE (mode);
3310 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3311 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3312 return convert_modes (mode, wider_mode, op, 0);
3315 /* Like expand_mult_highpart, but only consider using a multiplication
3316 optab. OP1 is an rtx for the constant operand. */
3319 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3320 rtx target, int unsignedp, int max_cost)
3322 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3323 enum machine_mode wider_mode;
3328 wider_mode = GET_MODE_WIDER_MODE (mode);
3329 size = GET_MODE_BITSIZE (mode);
3331 /* Firstly, try using a multiplication insn that only generates the needed
3332 high part of the product, and in the sign flavor of unsignedp. */
3333 if (mul_highpart_cost[mode] < max_cost)
3335 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3336 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3337 unsignedp, OPTAB_DIRECT);
3342 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3343 Need to adjust the result after the multiplication. */
3344 if (size - 1 < BITS_PER_WORD
3345 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3346 + 4 * add_cost[mode] < max_cost))
3348 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3349 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3350 unsignedp, OPTAB_DIRECT);
3352 /* We used the wrong signedness. Adjust the result. */
3353 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3357 /* Try widening multiplication. */
3358 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3359 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3360 && mul_widen_cost[wider_mode] < max_cost)
3362 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3363 unsignedp, OPTAB_WIDEN);
3365 return extract_high_half (mode, tem);
3368 /* Try widening the mode and perform a non-widening multiplication. */
3369 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3370 && size - 1 < BITS_PER_WORD
3371 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3373 rtx insns, wop0, wop1;