1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
67 static bool sdiv_pow2_cheap[2][NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[2][NUM_MACHINE_MODES];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
82 /* Reduce conditional compilation elsewhere. */
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost[2];
102 static int add_cost[2][NUM_MACHINE_MODES];
103 static int neg_cost[2][NUM_MACHINE_MODES];
104 static int shift_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub0_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int shiftsub1_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
108 static int mul_cost[2][NUM_MACHINE_MODES];
109 static int sdiv_cost[2][NUM_MACHINE_MODES];
110 static int udiv_cost[2][NUM_MACHINE_MODES];
111 static int mul_widen_cost[2][NUM_MACHINE_MODES];
112 static int mul_highpart_cost[2][NUM_MACHINE_MODES];
119 struct rtx_def reg; rtunion reg_fld[2];
120 struct rtx_def plus; rtunion plus_fld1;
122 struct rtx_def mult; rtunion mult_fld1;
123 struct rtx_def sdiv; rtunion sdiv_fld1;
124 struct rtx_def udiv; rtunion udiv_fld1;
126 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
127 struct rtx_def smod_32; rtunion smod_32_fld1;
128 struct rtx_def wide_mult; rtunion wide_mult_fld1;
129 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
130 struct rtx_def wide_trunc;
131 struct rtx_def shift; rtunion shift_fld1;
132 struct rtx_def shift_mult; rtunion shift_mult_fld1;
133 struct rtx_def shift_add; rtunion shift_add_fld1;
134 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
135 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
138 rtx pow2[MAX_BITS_PER_WORD];
139 rtx cint[MAX_BITS_PER_WORD];
141 enum machine_mode mode, wider_mode;
145 for (m = 1; m < MAX_BITS_PER_WORD; m++)
147 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
148 cint[m] = GEN_INT (m);
150 memset (&all, 0, sizeof all);
152 PUT_CODE (&all.reg, REG);
153 /* Avoid using hard regs in ways which may be unsupported. */
154 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
156 PUT_CODE (&all.plus, PLUS);
157 XEXP (&all.plus, 0) = &all.reg;
158 XEXP (&all.plus, 1) = &all.reg;
160 PUT_CODE (&all.neg, NEG);
161 XEXP (&all.neg, 0) = &all.reg;
163 PUT_CODE (&all.mult, MULT);
164 XEXP (&all.mult, 0) = &all.reg;
165 XEXP (&all.mult, 1) = &all.reg;
167 PUT_CODE (&all.sdiv, DIV);
168 XEXP (&all.sdiv, 0) = &all.reg;
169 XEXP (&all.sdiv, 1) = &all.reg;
171 PUT_CODE (&all.udiv, UDIV);
172 XEXP (&all.udiv, 0) = &all.reg;
173 XEXP (&all.udiv, 1) = &all.reg;
175 PUT_CODE (&all.sdiv_32, DIV);
176 XEXP (&all.sdiv_32, 0) = &all.reg;
177 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
179 PUT_CODE (&all.smod_32, MOD);
180 XEXP (&all.smod_32, 0) = &all.reg;
181 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
183 PUT_CODE (&all.zext, ZERO_EXTEND);
184 XEXP (&all.zext, 0) = &all.reg;
186 PUT_CODE (&all.wide_mult, MULT);
187 XEXP (&all.wide_mult, 0) = &all.zext;
188 XEXP (&all.wide_mult, 1) = &all.zext;
190 PUT_CODE (&all.wide_lshr, LSHIFTRT);
191 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
193 PUT_CODE (&all.wide_trunc, TRUNCATE);
194 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
196 PUT_CODE (&all.shift, ASHIFT);
197 XEXP (&all.shift, 0) = &all.reg;
199 PUT_CODE (&all.shift_mult, MULT);
200 XEXP (&all.shift_mult, 0) = &all.reg;
202 PUT_CODE (&all.shift_add, PLUS);
203 XEXP (&all.shift_add, 0) = &all.shift_mult;
204 XEXP (&all.shift_add, 1) = &all.reg;
206 PUT_CODE (&all.shift_sub0, MINUS);
207 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
208 XEXP (&all.shift_sub0, 1) = &all.reg;
210 PUT_CODE (&all.shift_sub1, MINUS);
211 XEXP (&all.shift_sub1, 0) = &all.reg;
212 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
214 for (speed = 0; speed < 2; speed++)
216 crtl->maybe_hot_insn_p = speed;
217 zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
219 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
221 mode = GET_MODE_WIDER_MODE (mode))
223 PUT_MODE (&all.reg, mode);
224 PUT_MODE (&all.plus, mode);
225 PUT_MODE (&all.neg, mode);
226 PUT_MODE (&all.mult, mode);
227 PUT_MODE (&all.sdiv, mode);
228 PUT_MODE (&all.udiv, mode);
229 PUT_MODE (&all.sdiv_32, mode);
230 PUT_MODE (&all.smod_32, mode);
231 PUT_MODE (&all.wide_trunc, mode);
232 PUT_MODE (&all.shift, mode);
233 PUT_MODE (&all.shift_mult, mode);
234 PUT_MODE (&all.shift_add, mode);
235 PUT_MODE (&all.shift_sub0, mode);
236 PUT_MODE (&all.shift_sub1, mode);
238 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
239 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
240 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
241 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
242 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
244 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
245 <= 2 * add_cost[speed][mode]);
246 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
247 <= 4 * add_cost[speed][mode]);
249 wider_mode = GET_MODE_WIDER_MODE (mode);
250 if (wider_mode != VOIDmode)
252 PUT_MODE (&all.zext, wider_mode);
253 PUT_MODE (&all.wide_mult, wider_mode);
254 PUT_MODE (&all.wide_lshr, wider_mode);
255 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
257 mul_widen_cost[speed][wider_mode]
258 = rtx_cost (&all.wide_mult, SET, speed);
259 mul_highpart_cost[speed][mode]
260 = rtx_cost (&all.wide_trunc, SET, speed);
263 shift_cost[speed][mode][0] = 0;
264 shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
265 = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
267 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
268 for (m = 1; m < n; m++)
270 XEXP (&all.shift, 1) = cint[m];
271 XEXP (&all.shift_mult, 1) = pow2[m];
273 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
274 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
275 shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
276 shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
280 default_rtl_profile ();
283 /* Return an rtx representing minus the value of X.
284 MODE is the intended mode of the result,
285 useful if X is a CONST_INT. */
288 negate_rtx (enum machine_mode mode, rtx x)
290 rtx result = simplify_unary_operation (NEG, mode, x, mode);
293 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
298 /* Report on the availability of insv/extv/extzv and the desired mode
299 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
300 is false; else the mode of the specified operand. If OPNO is -1,
301 all the caller cares about is whether the insn is available. */
303 mode_for_extraction (enum extraction_pattern pattern, int opno)
305 const struct insn_data *data;
312 data = &insn_data[CODE_FOR_insv];
315 return MAX_MACHINE_MODE;
320 data = &insn_data[CODE_FOR_extv];
323 return MAX_MACHINE_MODE;
328 data = &insn_data[CODE_FOR_extzv];
331 return MAX_MACHINE_MODE;
340 /* Everyone who uses this function used to follow it with
341 if (result == VOIDmode) result = word_mode; */
342 if (data->operand[opno].mode == VOIDmode)
344 return data->operand[opno].mode;
347 /* Return true if X, of mode MODE, matches the predicate for operand
348 OPNO of instruction ICODE. Allow volatile memories, regardless of
349 the ambient volatile_ok setting. */
352 check_predicate_volatile_ok (enum insn_code icode, int opno,
353 rtx x, enum machine_mode mode)
355 bool save_volatile_ok, result;
357 save_volatile_ok = volatile_ok;
358 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
359 volatile_ok = save_volatile_ok;
363 /* A subroutine of store_bit_field, with the same arguments. Return true
364 if the operation could be implemented.
366 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
367 no other way of implementing the operation. If FALLBACK_P is false,
368 return false instead. */
371 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
372 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
373 rtx value, bool fallback_p)
376 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
377 unsigned HOST_WIDE_INT offset, bitpos;
382 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
384 while (GET_CODE (op0) == SUBREG)
386 /* The following line once was done only if WORDS_BIG_ENDIAN,
387 but I think that is a mistake. WORDS_BIG_ENDIAN is
388 meaningful at a much higher level; when structures are copied
389 between memory and regs, the higher-numbered regs
390 always get higher addresses. */
391 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
392 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
396 /* Paradoxical subregs need special handling on big endian machines. */
397 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
399 int difference = inner_mode_size - outer_mode_size;
401 if (WORDS_BIG_ENDIAN)
402 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
403 if (BYTES_BIG_ENDIAN)
404 byte_offset += difference % UNITS_PER_WORD;
407 byte_offset = SUBREG_BYTE (op0);
409 bitnum += byte_offset * BITS_PER_UNIT;
410 op0 = SUBREG_REG (op0);
413 /* No action is needed if the target is a register and if the field
414 lies completely outside that register. This can occur if the source
415 code contains an out-of-bounds access to a small array. */
416 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
419 /* Use vec_set patterns for inserting parts of vectors whenever
421 if (VECTOR_MODE_P (GET_MODE (op0))
423 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
425 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
426 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
427 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
429 enum machine_mode outermode = GET_MODE (op0);
430 enum machine_mode innermode = GET_MODE_INNER (outermode);
431 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
432 int pos = bitnum / GET_MODE_BITSIZE (innermode);
433 rtx rtxpos = GEN_INT (pos);
437 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
438 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
439 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
443 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
444 src = copy_to_mode_reg (mode1, src);
446 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
447 rtxpos = copy_to_mode_reg (mode1, rtxpos);
449 /* We could handle this, but we should always be called with a pseudo
450 for our targets and all insns should take them as outputs. */
451 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
452 && (*insn_data[icode].operand[1].predicate) (src, mode1)
453 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
454 pat = GEN_FCN (icode) (dest, src, rtxpos);
465 /* If the target is a register, overwriting the entire object, or storing
466 a full-word or multi-word field can be done with just a SUBREG.
468 If the target is memory, storing any naturally aligned field can be
469 done with a simple store. For targets that support fast unaligned
470 memory, any naturally sized, unit aligned field can be done directly. */
472 offset = bitnum / unit;
473 bitpos = bitnum % unit;
474 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
475 + (offset * UNITS_PER_WORD);
478 && bitsize == GET_MODE_BITSIZE (fieldmode)
480 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
481 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
482 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
483 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
484 || (offset * BITS_PER_UNIT % bitsize == 0
485 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
488 op0 = adjust_address (op0, fieldmode, offset);
489 else if (GET_MODE (op0) != fieldmode)
490 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
492 emit_move_insn (op0, value);
496 /* Make sure we are playing with integral modes. Pun with subregs
497 if we aren't. This must come after the entire register case above,
498 since that case is valid for any mode. The following cases are only
499 valid for integral modes. */
501 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
502 if (imode != GET_MODE (op0))
505 op0 = adjust_address (op0, imode, 0);
508 gcc_assert (imode != BLKmode);
509 op0 = gen_lowpart (imode, op0);
514 /* We may be accessing data outside the field, which means
515 we can alias adjacent data. */
518 op0 = shallow_copy_rtx (op0);
519 set_mem_alias_set (op0, 0);
520 set_mem_expr (op0, 0);
523 /* If OP0 is a register, BITPOS must count within a word.
524 But as we have it, it counts within whatever size OP0 now has.
525 On a bigendian machine, these are not the same, so convert. */
528 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
529 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
531 /* Storing an lsb-aligned field in a register
532 can be done with a movestrict instruction. */
535 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
536 && bitsize == GET_MODE_BITSIZE (fieldmode)
537 && (optab_handler (movstrict_optab, fieldmode)->insn_code
538 != CODE_FOR_nothing))
540 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
542 rtx start = get_last_insn ();
545 /* Get appropriate low part of the value being stored. */
546 if (CONST_INT_P (value) || REG_P (value))
547 value = gen_lowpart (fieldmode, value);
548 else if (!(GET_CODE (value) == SYMBOL_REF
549 || GET_CODE (value) == LABEL_REF
550 || GET_CODE (value) == CONST))
551 value = convert_to_mode (fieldmode, value, 0);
553 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
554 value = copy_to_mode_reg (fieldmode, value);
556 if (GET_CODE (op0) == SUBREG)
558 /* Else we've got some float mode source being extracted into
559 a different float mode destination -- this combination of
560 subregs results in Severe Tire Damage. */
561 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
562 || GET_MODE_CLASS (fieldmode) == MODE_INT
563 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
564 arg0 = SUBREG_REG (op0);
567 insn = (GEN_FCN (icode)
568 (gen_rtx_SUBREG (fieldmode, arg0,
569 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
570 + (offset * UNITS_PER_WORD)),
577 delete_insns_since (start);
580 /* Handle fields bigger than a word. */
582 if (bitsize > BITS_PER_WORD)
584 /* Here we transfer the words of the field
585 in the order least significant first.
586 This is because the most significant word is the one which may
588 However, only do that if the value is not BLKmode. */
590 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
591 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
595 /* This is the mode we must force value to, so that there will be enough
596 subwords to extract. Note that fieldmode will often (always?) be
597 VOIDmode, because that is what store_field uses to indicate that this
598 is a bit field, but passing VOIDmode to operand_subword_force
600 fieldmode = GET_MODE (value);
601 if (fieldmode == VOIDmode)
602 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
604 last = get_last_insn ();
605 for (i = 0; i < nwords; i++)
607 /* If I is 0, use the low-order word in both field and target;
608 if I is 1, use the next to lowest word; and so on. */
609 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
610 unsigned int bit_offset = (backwards
611 ? MAX ((int) bitsize - ((int) i + 1)
614 : (int) i * BITS_PER_WORD);
615 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
617 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
618 bitsize - i * BITS_PER_WORD),
619 bitnum + bit_offset, word_mode,
620 value_word, fallback_p))
622 delete_insns_since (last);
629 /* From here on we can assume that the field to be stored in is
630 a full-word (whatever type that is), since it is shorter than a word. */
632 /* OFFSET is the number of words or bytes (UNIT says which)
633 from STR_RTX to the first word or byte containing part of the field. */
638 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
642 /* Since this is a destination (lvalue), we can't copy
643 it to a pseudo. We can remove a SUBREG that does not
644 change the size of the operand. Such a SUBREG may
645 have been added above. */
646 gcc_assert (GET_CODE (op0) == SUBREG
647 && (GET_MODE_SIZE (GET_MODE (op0))
648 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
649 op0 = SUBREG_REG (op0);
651 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
652 op0, (offset * UNITS_PER_WORD));
657 /* If VALUE has a floating-point or complex mode, access it as an
658 integer of the corresponding size. This can occur on a machine
659 with 64 bit registers that uses SFmode for float. It can also
660 occur for unaligned float or complex fields. */
662 if (GET_MODE (value) != VOIDmode
663 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
664 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
666 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
667 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
670 /* Now OFFSET is nonzero only if OP0 is memory
671 and is therefore always measured in bytes. */
674 && GET_MODE (value) != BLKmode
676 && GET_MODE_BITSIZE (op_mode) >= bitsize
677 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
678 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
679 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
681 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
683 int xbitpos = bitpos;
686 rtx last = get_last_insn ();
688 bool copy_back = false;
690 /* Add OFFSET into OP0's address. */
692 xop0 = adjust_address (xop0, byte_mode, offset);
694 /* If xop0 is a register, we need it in OP_MODE
695 to make it acceptable to the format of insv. */
696 if (GET_CODE (xop0) == SUBREG)
697 /* We can't just change the mode, because this might clobber op0,
698 and we will need the original value of op0 if insv fails. */
699 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
700 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
701 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
703 /* If the destination is a paradoxical subreg such that we need a
704 truncate to the inner mode, perform the insertion on a temporary and
705 truncate the result to the original destination. Note that we can't
706 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
707 X) 0)) is (reg:N X). */
708 if (GET_CODE (xop0) == SUBREG
709 && REG_P (SUBREG_REG (xop0))
710 && (!TRULY_NOOP_TRUNCATION
711 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
712 GET_MODE_BITSIZE (op_mode))))
714 rtx tem = gen_reg_rtx (op_mode);
715 emit_move_insn (tem, xop0);
720 /* On big-endian machines, we count bits from the most significant.
721 If the bit field insn does not, we must invert. */
723 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
724 xbitpos = unit - bitsize - xbitpos;
726 /* We have been counting XBITPOS within UNIT.
727 Count instead within the size of the register. */
728 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
729 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
731 unit = GET_MODE_BITSIZE (op_mode);
733 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
735 if (GET_MODE (value) != op_mode)
737 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
739 /* Optimization: Don't bother really extending VALUE
740 if it has all the bits we will actually use. However,
741 if we must narrow it, be sure we do it correctly. */
743 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
747 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
749 tmp = simplify_gen_subreg (op_mode,
750 force_reg (GET_MODE (value),
752 GET_MODE (value), 0);
756 value1 = gen_lowpart (op_mode, value1);
758 else if (CONST_INT_P (value))
759 value1 = gen_int_mode (INTVAL (value), op_mode);
761 /* Parse phase is supposed to make VALUE's data type
762 match that of the component reference, which is a type
763 at least as wide as the field; so VALUE should have
764 a mode that corresponds to that type. */
765 gcc_assert (CONSTANT_P (value));
768 /* If this machine's insv insists on a register,
769 get VALUE1 into a register. */
770 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
772 value1 = force_reg (op_mode, value1);
774 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
780 convert_move (op0, xop0, true);
783 delete_insns_since (last);
786 /* If OP0 is a memory, try copying it to a register and seeing if a
787 cheap register alternative is available. */
788 if (HAVE_insv && MEM_P (op0))
790 enum machine_mode bestmode;
792 /* Get the mode to use for inserting into this field. If OP0 is
793 BLKmode, get the smallest mode consistent with the alignment. If
794 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
795 mode. Otherwise, use the smallest mode containing the field. */
797 if (GET_MODE (op0) == BLKmode
798 || (op_mode != MAX_MACHINE_MODE
799 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
800 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
801 (op_mode == MAX_MACHINE_MODE
802 ? VOIDmode : op_mode),
803 MEM_VOLATILE_P (op0));
805 bestmode = GET_MODE (op0);
807 if (bestmode != VOIDmode
808 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
809 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
810 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
812 rtx last, tempreg, xop0;
813 unsigned HOST_WIDE_INT xoffset, xbitpos;
815 last = get_last_insn ();
817 /* Adjust address to point to the containing unit of
818 that mode. Compute the offset as a multiple of this unit,
819 counting in bytes. */
820 unit = GET_MODE_BITSIZE (bestmode);
821 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
822 xbitpos = bitnum % unit;
823 xop0 = adjust_address (op0, bestmode, xoffset);
825 /* Fetch that unit, store the bitfield in it, then store
827 tempreg = copy_to_reg (xop0);
828 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
829 fieldmode, orig_value, false))
831 emit_move_insn (xop0, tempreg);
834 delete_insns_since (last);
841 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
845 /* Generate code to store value from rtx VALUE
846 into a bit-field within structure STR_RTX
847 containing BITSIZE bits starting at bit BITNUM.
848 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
851 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
852 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
855 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
859 /* Use shifts and boolean operations to store VALUE
860 into a bit field of width BITSIZE
861 in a memory location specified by OP0 except offset by OFFSET bytes.
862 (OFFSET must be 0 if OP0 is a register.)
863 The field starts at position BITPOS within the byte.
864 (If OP0 is a register, it may be a full word or a narrower mode,
865 but BITPOS still counts within a full word,
866 which is significant on bigendian machines.) */
869 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
870 unsigned HOST_WIDE_INT bitsize,
871 unsigned HOST_WIDE_INT bitpos, rtx value)
873 enum machine_mode mode;
874 unsigned int total_bits = BITS_PER_WORD;
879 /* There is a case not handled here:
880 a structure with a known alignment of just a halfword
881 and a field split across two aligned halfwords within the structure.
882 Or likewise a structure with a known alignment of just a byte
883 and a field split across two bytes.
884 Such cases are not supposed to be able to occur. */
886 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
888 gcc_assert (!offset);
889 /* Special treatment for a bit field split across two registers. */
890 if (bitsize + bitpos > BITS_PER_WORD)
892 store_split_bit_field (op0, bitsize, bitpos, value);
898 /* Get the proper mode to use for this field. We want a mode that
899 includes the entire field. If such a mode would be larger than
900 a word, we won't be doing the extraction the normal way.
901 We don't want a mode bigger than the destination. */
903 mode = GET_MODE (op0);
904 if (GET_MODE_BITSIZE (mode) == 0
905 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
907 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
908 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
910 if (mode == VOIDmode)
912 /* The only way this should occur is if the field spans word
914 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
919 total_bits = GET_MODE_BITSIZE (mode);
921 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
922 be in the range 0 to total_bits-1, and put any excess bytes in
924 if (bitpos >= total_bits)
926 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
927 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
931 /* Get ref to an aligned byte, halfword, or word containing the field.
932 Adjust BITPOS to be position within a word,
933 and OFFSET to be the offset of that word.
934 Then alter OP0 to refer to that word. */
935 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
936 offset -= (offset % (total_bits / BITS_PER_UNIT));
937 op0 = adjust_address (op0, mode, offset);
940 mode = GET_MODE (op0);
942 /* Now MODE is either some integral mode for a MEM as OP0,
943 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
944 The bit field is contained entirely within OP0.
945 BITPOS is the starting bit number within OP0.
946 (OP0's mode may actually be narrower than MODE.) */
948 if (BYTES_BIG_ENDIAN)
949 /* BITPOS is the distance between our msb
950 and that of the containing datum.
951 Convert it to the distance from the lsb. */
952 bitpos = total_bits - bitsize - bitpos;
954 /* Now BITPOS is always the distance between our lsb
957 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
958 we must first convert its mode to MODE. */
960 if (CONST_INT_P (value))
962 HOST_WIDE_INT v = INTVAL (value);
964 if (bitsize < HOST_BITS_PER_WIDE_INT)
965 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
969 else if ((bitsize < HOST_BITS_PER_WIDE_INT
970 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
971 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
974 value = lshift_value (mode, value, bitpos, bitsize);
978 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
979 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
981 if (GET_MODE (value) != mode)
982 value = convert_to_mode (mode, value, 1);
985 value = expand_binop (mode, and_optab, value,
986 mask_rtx (mode, 0, bitsize, 0),
987 NULL_RTX, 1, OPTAB_LIB_WIDEN);
989 value = expand_shift (LSHIFT_EXPR, mode, value,
990 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
993 /* Now clear the chosen bits in OP0,
994 except that if VALUE is -1 we need not bother. */
995 /* We keep the intermediates in registers to allow CSE to combine
996 consecutive bitfield assignments. */
998 temp = force_reg (mode, op0);
1002 temp = expand_binop (mode, and_optab, temp,
1003 mask_rtx (mode, bitpos, bitsize, 1),
1004 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1005 temp = force_reg (mode, temp);
1008 /* Now logical-or VALUE into OP0, unless it is zero. */
1012 temp = expand_binop (mode, ior_optab, temp, value,
1013 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1014 temp = force_reg (mode, temp);
1019 op0 = copy_rtx (op0);
1020 emit_move_insn (op0, temp);
1024 /* Store a bit field that is split across multiple accessible memory objects.
1026 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1027 BITSIZE is the field width; BITPOS the position of its first bit
1029 VALUE is the value to store.
1031 This does not yet handle fields wider than BITS_PER_WORD. */
1034 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1035 unsigned HOST_WIDE_INT bitpos, rtx value)
1038 unsigned int bitsdone = 0;
1040 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1042 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1043 unit = BITS_PER_WORD;
1045 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1047 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1048 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1049 that VALUE might be a floating-point constant. */
1050 if (CONSTANT_P (value) && !CONST_INT_P (value))
1052 rtx word = gen_lowpart_common (word_mode, value);
1054 if (word && (value != word))
1057 value = gen_lowpart_common (word_mode,
1058 force_reg (GET_MODE (value) != VOIDmode
1060 : word_mode, value));
1063 while (bitsdone < bitsize)
1065 unsigned HOST_WIDE_INT thissize;
1067 unsigned HOST_WIDE_INT thispos;
1068 unsigned HOST_WIDE_INT offset;
1070 offset = (bitpos + bitsdone) / unit;
1071 thispos = (bitpos + bitsdone) % unit;
1073 /* THISSIZE must not overrun a word boundary. Otherwise,
1074 store_fixed_bit_field will call us again, and we will mutually
1076 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1077 thissize = MIN (thissize, unit - thispos);
1079 if (BYTES_BIG_ENDIAN)
1083 /* We must do an endian conversion exactly the same way as it is
1084 done in extract_bit_field, so that the two calls to
1085 extract_fixed_bit_field will have comparable arguments. */
1086 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1087 total_bits = BITS_PER_WORD;
1089 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1091 /* Fetch successively less significant portions. */
1092 if (CONST_INT_P (value))
1093 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1094 >> (bitsize - bitsdone - thissize))
1095 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1097 /* The args are chosen so that the last part includes the
1098 lsb. Give extract_bit_field the value it needs (with
1099 endianness compensation) to fetch the piece we want. */
1100 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1101 total_bits - bitsize + bitsdone,
1106 /* Fetch successively more significant portions. */
1107 if (CONST_INT_P (value))
1108 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1110 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1112 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1113 bitsdone, NULL_RTX, 1);
1116 /* If OP0 is a register, then handle OFFSET here.
1118 When handling multiword bitfields, extract_bit_field may pass
1119 down a word_mode SUBREG of a larger REG for a bitfield that actually
1120 crosses a word boundary. Thus, for a SUBREG, we must find
1121 the current word starting from the base register. */
1122 if (GET_CODE (op0) == SUBREG)
1124 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1125 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1126 GET_MODE (SUBREG_REG (op0)));
1129 else if (REG_P (op0))
1131 word = operand_subword_force (op0, offset, GET_MODE (op0));
1137 /* OFFSET is in UNITs, and UNIT is in bits.
1138 store_fixed_bit_field wants offset in bytes. */
1139 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1141 bitsdone += thissize;
1145 /* A subroutine of extract_bit_field_1 that converts return value X
1146 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1147 to extract_bit_field. */
1150 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1151 enum machine_mode tmode, bool unsignedp)
1153 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1156 /* If the x mode is not a scalar integral, first convert to the
1157 integer mode of that size and then access it as a floating-point
1158 value via a SUBREG. */
1159 if (!SCALAR_INT_MODE_P (tmode))
1161 enum machine_mode smode;
1163 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1164 x = convert_to_mode (smode, x, unsignedp);
1165 x = force_reg (smode, x);
1166 return gen_lowpart (tmode, x);
1169 return convert_to_mode (tmode, x, unsignedp);
1172 /* A subroutine of extract_bit_field, with the same arguments.
1173 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1174 if we can find no other means of implementing the operation.
1175 if FALLBACK_P is false, return NULL instead. */
1178 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1179 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1180 enum machine_mode mode, enum machine_mode tmode,
1184 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1185 unsigned HOST_WIDE_INT offset, bitpos;
1187 enum machine_mode int_mode;
1188 enum machine_mode ext_mode;
1189 enum machine_mode mode1;
1190 enum insn_code icode;
1193 if (tmode == VOIDmode)
1196 while (GET_CODE (op0) == SUBREG)
1198 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1199 op0 = SUBREG_REG (op0);
1202 /* If we have an out-of-bounds access to a register, just return an
1203 uninitialized register of the required mode. This can occur if the
1204 source code contains an out-of-bounds access to a small array. */
1205 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1206 return gen_reg_rtx (tmode);
1209 && mode == GET_MODE (op0)
1211 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1213 /* We're trying to extract a full register from itself. */
1217 /* See if we can get a better vector mode before extracting. */
1218 if (VECTOR_MODE_P (GET_MODE (op0))
1220 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1222 enum machine_mode new_mode;
1223 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1225 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1226 new_mode = MIN_MODE_VECTOR_FLOAT;
1227 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1228 new_mode = MIN_MODE_VECTOR_FRACT;
1229 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1230 new_mode = MIN_MODE_VECTOR_UFRACT;
1231 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1232 new_mode = MIN_MODE_VECTOR_ACCUM;
1233 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1234 new_mode = MIN_MODE_VECTOR_UACCUM;
1236 new_mode = MIN_MODE_VECTOR_INT;
1238 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1239 if (GET_MODE_NUNITS (new_mode) == nunits
1240 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1241 && targetm.vector_mode_supported_p (new_mode))
1243 if (new_mode != VOIDmode)
1244 op0 = gen_lowpart (new_mode, op0);
1247 /* Use vec_extract patterns for extracting parts of vectors whenever
1249 if (VECTOR_MODE_P (GET_MODE (op0))
1251 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1252 != CODE_FOR_nothing)
1253 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1254 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1256 enum machine_mode outermode = GET_MODE (op0);
1257 enum machine_mode innermode = GET_MODE_INNER (outermode);
1258 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1259 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1260 rtx rtxpos = GEN_INT (pos);
1262 rtx dest = NULL, pat, seq;
1263 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1264 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1265 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1267 if (innermode == tmode || innermode == mode)
1271 dest = gen_reg_rtx (innermode);
1275 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1276 dest = copy_to_mode_reg (mode0, dest);
1278 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1279 src = copy_to_mode_reg (mode1, src);
1281 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1282 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1284 /* We could handle this, but we should always be called with a pseudo
1285 for our targets and all insns should take them as outputs. */
1286 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1287 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1288 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1290 pat = GEN_FCN (icode) (dest, src, rtxpos);
1298 return gen_lowpart (tmode, dest);
1303 /* Make sure we are playing with integral modes. Pun with subregs
1306 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1307 if (imode != GET_MODE (op0))
1310 op0 = adjust_address (op0, imode, 0);
1311 else if (imode != BLKmode)
1313 op0 = gen_lowpart (imode, op0);
1315 /* If we got a SUBREG, force it into a register since we
1316 aren't going to be able to do another SUBREG on it. */
1317 if (GET_CODE (op0) == SUBREG)
1318 op0 = force_reg (imode, op0);
1320 else if (REG_P (op0))
1323 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1325 reg = gen_reg_rtx (imode);
1326 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1327 emit_move_insn (subreg, op0);
1329 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1333 rtx mem = assign_stack_temp (GET_MODE (op0),
1334 GET_MODE_SIZE (GET_MODE (op0)), 0);
1335 emit_move_insn (mem, op0);
1336 op0 = adjust_address (mem, BLKmode, 0);
1341 /* We may be accessing data outside the field, which means
1342 we can alias adjacent data. */
1345 op0 = shallow_copy_rtx (op0);
1346 set_mem_alias_set (op0, 0);
1347 set_mem_expr (op0, 0);
1350 /* Extraction of a full-word or multi-word value from a structure
1351 in a register or aligned memory can be done with just a SUBREG.
1352 A subword value in the least significant part of a register
1353 can also be extracted with a SUBREG. For this, we need the
1354 byte offset of the value in op0. */
1356 bitpos = bitnum % unit;
1357 offset = bitnum / unit;
1358 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1360 /* If OP0 is a register, BITPOS must count within a word.
1361 But as we have it, it counts within whatever size OP0 now has.
1362 On a bigendian machine, these are not the same, so convert. */
1363 if (BYTES_BIG_ENDIAN
1365 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1366 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1368 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1369 If that's wrong, the solution is to test for it and set TARGET to 0
1372 /* Only scalar integer modes can be converted via subregs. There is an
1373 additional problem for FP modes here in that they can have a precision
1374 which is different from the size. mode_for_size uses precision, but
1375 we want a mode based on the size, so we must avoid calling it for FP
1377 mode1 = (SCALAR_INT_MODE_P (tmode)
1378 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1381 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1382 && bitpos % BITS_PER_WORD == 0)
1383 || (mode1 != BLKmode
1384 /* ??? The big endian test here is wrong. This is correct
1385 if the value is in a register, and if mode_for_size is not
1386 the same mode as op0. This causes us to get unnecessarily
1387 inefficient code from the Thumb port when -mbig-endian. */
1388 && (BYTES_BIG_ENDIAN
1389 ? bitpos + bitsize == BITS_PER_WORD
1392 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1393 GET_MODE_BITSIZE (GET_MODE (op0)))
1394 && GET_MODE_SIZE (mode1) != 0
1395 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1397 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1398 || (offset * BITS_PER_UNIT % bitsize == 0
1399 && MEM_ALIGN (op0) % bitsize == 0)))))
1402 op0 = adjust_address (op0, mode1, offset);
1403 else if (mode1 != GET_MODE (op0))
1405 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1408 goto no_subreg_mode_swap;
1412 return convert_to_mode (tmode, op0, unsignedp);
1415 no_subreg_mode_swap:
1417 /* Handle fields bigger than a word. */
1419 if (bitsize > BITS_PER_WORD)
1421 /* Here we transfer the words of the field
1422 in the order least significant first.
1423 This is because the most significant word is the one which may
1424 be less than full. */
1426 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1429 if (target == 0 || !REG_P (target))
1430 target = gen_reg_rtx (mode);
1432 /* Indicate for flow that the entire target reg is being set. */
1433 emit_clobber (target);
1435 for (i = 0; i < nwords; i++)
1437 /* If I is 0, use the low-order word in both field and target;
1438 if I is 1, use the next to lowest word; and so on. */
1439 /* Word number in TARGET to use. */
1440 unsigned int wordnum
1442 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1444 /* Offset from start of field in OP0. */
1445 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1446 ? MAX (0, ((int) bitsize - ((int) i + 1)
1447 * (int) BITS_PER_WORD))
1448 : (int) i * BITS_PER_WORD);
1449 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1451 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1452 bitsize - i * BITS_PER_WORD),
1453 bitnum + bit_offset, 1, target_part, mode,
1456 gcc_assert (target_part);
1458 if (result_part != target_part)
1459 emit_move_insn (target_part, result_part);
1464 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1465 need to be zero'd out. */
1466 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1468 unsigned int i, total_words;
1470 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1471 for (i = nwords; i < total_words; i++)
1473 (operand_subword (target,
1474 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1481 /* Signed bit field: sign-extend with two arithmetic shifts. */
1482 target = expand_shift (LSHIFT_EXPR, mode, target,
1483 build_int_cst (NULL_TREE,
1484 GET_MODE_BITSIZE (mode) - bitsize),
1486 return expand_shift (RSHIFT_EXPR, mode, target,
1487 build_int_cst (NULL_TREE,
1488 GET_MODE_BITSIZE (mode) - bitsize),
1492 /* From here on we know the desired field is smaller than a word. */
1494 /* Check if there is a correspondingly-sized integer field, so we can
1495 safely extract it as one size of integer, if necessary; then
1496 truncate or extend to the size that is wanted; then use SUBREGs or
1497 convert_to_mode to get one of the modes we really wanted. */
1499 int_mode = int_mode_for_mode (tmode);
1500 if (int_mode == BLKmode)
1501 int_mode = int_mode_for_mode (mode);
1502 /* Should probably push op0 out to memory and then do a load. */
1503 gcc_assert (int_mode != BLKmode);
1505 /* OFFSET is the number of words or bytes (UNIT says which)
1506 from STR_RTX to the first word or byte containing part of the field. */
1510 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1513 op0 = copy_to_reg (op0);
1514 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1515 op0, (offset * UNITS_PER_WORD));
1520 /* Now OFFSET is nonzero only for memory operands. */
1521 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1522 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1523 if (ext_mode != MAX_MACHINE_MODE
1525 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1526 /* If op0 is a register, we need it in EXT_MODE to make it
1527 acceptable to the format of ext(z)v. */
1528 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1529 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1530 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1531 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1533 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1534 rtx bitsize_rtx, bitpos_rtx;
1535 rtx last = get_last_insn ();
1537 rtx xtarget = target;
1538 rtx xspec_target = target;
1539 rtx xspec_target_subreg = 0;
1542 /* If op0 is a register, we need it in EXT_MODE to make it
1543 acceptable to the format of ext(z)v. */
1544 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1545 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1547 /* Get ref to first byte containing part of the field. */
1548 xop0 = adjust_address (xop0, byte_mode, xoffset);
1550 /* On big-endian machines, we count bits from the most significant.
1551 If the bit field insn does not, we must invert. */
1552 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1553 xbitpos = unit - bitsize - xbitpos;
1555 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1556 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1557 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1559 unit = GET_MODE_BITSIZE (ext_mode);
1562 xtarget = xspec_target = gen_reg_rtx (tmode);
1564 if (GET_MODE (xtarget) != ext_mode)
1566 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1567 between the mode of the extraction (word_mode) and the target
1568 mode. Instead, create a temporary and use convert_move to set
1571 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1572 GET_MODE_BITSIZE (ext_mode)))
1574 xtarget = gen_lowpart (ext_mode, xtarget);
1575 if (GET_MODE_SIZE (ext_mode)
1576 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1577 xspec_target_subreg = xtarget;
1580 xtarget = gen_reg_rtx (ext_mode);
1583 /* If this machine's ext(z)v insists on a register target,
1584 make sure we have one. */
1585 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1586 xtarget = gen_reg_rtx (ext_mode);
1588 bitsize_rtx = GEN_INT (bitsize);
1589 bitpos_rtx = GEN_INT (xbitpos);
1592 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1593 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1597 if (xtarget == xspec_target)
1599 if (xtarget == xspec_target_subreg)
1600 return xspec_target;
1601 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1603 delete_insns_since (last);
1606 /* If OP0 is a memory, try copying it to a register and seeing if a
1607 cheap register alternative is available. */
1608 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1610 enum machine_mode bestmode;
1612 /* Get the mode to use for inserting into this field. If
1613 OP0 is BLKmode, get the smallest mode consistent with the
1614 alignment. If OP0 is a non-BLKmode object that is no
1615 wider than EXT_MODE, use its mode. Otherwise, use the
1616 smallest mode containing the field. */
1618 if (GET_MODE (op0) == BLKmode
1619 || (ext_mode != MAX_MACHINE_MODE
1620 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1621 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1622 (ext_mode == MAX_MACHINE_MODE
1623 ? VOIDmode : ext_mode),
1624 MEM_VOLATILE_P (op0));
1626 bestmode = GET_MODE (op0);
1628 if (bestmode != VOIDmode
1629 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1630 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1632 unsigned HOST_WIDE_INT xoffset, xbitpos;
1634 /* Compute the offset as a multiple of this unit,
1635 counting in bytes. */
1636 unit = GET_MODE_BITSIZE (bestmode);
1637 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1638 xbitpos = bitnum % unit;
1640 /* Make sure the register is big enough for the whole field. */
1641 if (xoffset * BITS_PER_UNIT + unit
1642 >= offset * BITS_PER_UNIT + bitsize)
1644 rtx last, result, xop0;
1646 last = get_last_insn ();
1648 /* Fetch it to a register in that size. */
1649 xop0 = adjust_address (op0, bestmode, xoffset);
1650 xop0 = force_reg (bestmode, xop0);
1651 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1653 mode, tmode, false);
1657 delete_insns_since (last);
1665 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1666 bitpos, target, unsignedp);
1667 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1670 /* Generate code to extract a byte-field from STR_RTX
1671 containing BITSIZE bits, starting at BITNUM,
1672 and put it in TARGET if possible (if TARGET is nonzero).
1673 Regardless of TARGET, we return the rtx for where the value is placed.
1675 STR_RTX is the structure containing the byte (a REG or MEM).
1676 UNSIGNEDP is nonzero if this is an unsigned bit field.
1677 MODE is the natural mode of the field value once extracted.
1678 TMODE is the mode the caller would like the value to have;
1679 but the value may be returned with type MODE instead.
1681 If a TARGET is specified and we can store in it at no extra cost,
1682 we do so, and return TARGET.
1683 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1684 if they are equally easy. */
1687 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1688 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1689 enum machine_mode mode, enum machine_mode tmode)
1691 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1692 target, mode, tmode, true);
1695 /* Extract a bit field using shifts and boolean operations
1696 Returns an rtx to represent the value.
1697 OP0 addresses a register (word) or memory (byte).
1698 BITPOS says which bit within the word or byte the bit field starts in.
1699 OFFSET says how many bytes farther the bit field starts;
1700 it is 0 if OP0 is a register.
1701 BITSIZE says how many bits long the bit field is.
1702 (If OP0 is a register, it may be narrower than a full word,
1703 but BITPOS still counts within a full word,
1704 which is significant on bigendian machines.)
1706 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1707 If TARGET is nonzero, attempts to store the value there
1708 and return TARGET, but this is not guaranteed.
1709 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1712 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1713 unsigned HOST_WIDE_INT offset,
1714 unsigned HOST_WIDE_INT bitsize,
1715 unsigned HOST_WIDE_INT bitpos, rtx target,
1718 unsigned int total_bits = BITS_PER_WORD;
1719 enum machine_mode mode;
1721 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1723 /* Special treatment for a bit field split across two registers. */
1724 if (bitsize + bitpos > BITS_PER_WORD)
1725 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1729 /* Get the proper mode to use for this field. We want a mode that
1730 includes the entire field. If such a mode would be larger than
1731 a word, we won't be doing the extraction the normal way. */
1733 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1734 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1736 if (mode == VOIDmode)
1737 /* The only way this should occur is if the field spans word
1739 return extract_split_bit_field (op0, bitsize,
1740 bitpos + offset * BITS_PER_UNIT,
1743 total_bits = GET_MODE_BITSIZE (mode);
1745 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1746 be in the range 0 to total_bits-1, and put any excess bytes in
1748 if (bitpos >= total_bits)
1750 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1751 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1755 /* Get ref to an aligned byte, halfword, or word containing the field.
1756 Adjust BITPOS to be position within a word,
1757 and OFFSET to be the offset of that word.
1758 Then alter OP0 to refer to that word. */
1759 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1760 offset -= (offset % (total_bits / BITS_PER_UNIT));
1761 op0 = adjust_address (op0, mode, offset);
1764 mode = GET_MODE (op0);
1766 if (BYTES_BIG_ENDIAN)
1767 /* BITPOS is the distance between our msb and that of OP0.
1768 Convert it to the distance from the lsb. */
1769 bitpos = total_bits - bitsize - bitpos;
1771 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1772 We have reduced the big-endian case to the little-endian case. */
1778 /* If the field does not already start at the lsb,
1779 shift it so it does. */
1780 tree amount = build_int_cst (NULL_TREE, bitpos);
1781 /* Maybe propagate the target for the shift. */
1782 /* But not if we will return it--could confuse integrate.c. */
1783 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1784 if (tmode != mode) subtarget = 0;
1785 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1787 /* Convert the value to the desired mode. */
1789 op0 = convert_to_mode (tmode, op0, 1);
1791 /* Unless the msb of the field used to be the msb when we shifted,
1792 mask out the upper bits. */
1794 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1795 return expand_binop (GET_MODE (op0), and_optab, op0,
1796 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1797 target, 1, OPTAB_LIB_WIDEN);
1801 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1802 then arithmetic-shift its lsb to the lsb of the word. */
1803 op0 = force_reg (mode, op0);
1807 /* Find the narrowest integer mode that contains the field. */
1809 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1810 mode = GET_MODE_WIDER_MODE (mode))
1811 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1813 op0 = convert_to_mode (mode, op0, 0);
1817 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1820 = build_int_cst (NULL_TREE,
1821 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1822 /* Maybe propagate the target for the shift. */
1823 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1824 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1827 return expand_shift (RSHIFT_EXPR, mode, op0,
1828 build_int_cst (NULL_TREE,
1829 GET_MODE_BITSIZE (mode) - bitsize),
1833 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1834 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1835 complement of that if COMPLEMENT. The mask is truncated if
1836 necessary to the width of mode MODE. The mask is zero-extended if
1837 BITSIZE+BITPOS is too small for MODE. */
1840 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1844 mask = double_int_mask (bitsize);
1845 mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1848 mask = double_int_not (mask);
1850 return immed_double_const (mask.low, mask.high, mode);
1853 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1854 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1857 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1861 val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
1862 val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1864 return immed_double_const (val.low, val.high, mode);
1867 /* Extract a bit field that is split across two words
1868 and return an RTX for the result.
1870 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1871 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1872 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1875 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1876 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1879 unsigned int bitsdone = 0;
1880 rtx result = NULL_RTX;
1883 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1885 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1886 unit = BITS_PER_WORD;
1888 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1890 while (bitsdone < bitsize)
1892 unsigned HOST_WIDE_INT thissize;
1894 unsigned HOST_WIDE_INT thispos;
1895 unsigned HOST_WIDE_INT offset;
1897 offset = (bitpos + bitsdone) / unit;
1898 thispos = (bitpos + bitsdone) % unit;
1900 /* THISSIZE must not overrun a word boundary. Otherwise,
1901 extract_fixed_bit_field will call us again, and we will mutually
1903 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1904 thissize = MIN (thissize, unit - thispos);
1906 /* If OP0 is a register, then handle OFFSET here.
1908 When handling multiword bitfields, extract_bit_field may pass
1909 down a word_mode SUBREG of a larger REG for a bitfield that actually
1910 crosses a word boundary. Thus, for a SUBREG, we must find
1911 the current word starting from the base register. */
1912 if (GET_CODE (op0) == SUBREG)
1914 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1915 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1916 GET_MODE (SUBREG_REG (op0)));
1919 else if (REG_P (op0))
1921 word = operand_subword_force (op0, offset, GET_MODE (op0));
1927 /* Extract the parts in bit-counting order,
1928 whose meaning is determined by BYTES_PER_UNIT.
1929 OFFSET is in UNITs, and UNIT is in bits.
1930 extract_fixed_bit_field wants offset in bytes. */
1931 part = extract_fixed_bit_field (word_mode, word,
1932 offset * unit / BITS_PER_UNIT,
1933 thissize, thispos, 0, 1);
1934 bitsdone += thissize;
1936 /* Shift this part into place for the result. */
1937 if (BYTES_BIG_ENDIAN)
1939 if (bitsize != bitsdone)
1940 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1941 build_int_cst (NULL_TREE, bitsize - bitsdone),
1946 if (bitsdone != thissize)
1947 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1948 build_int_cst (NULL_TREE,
1949 bitsdone - thissize), 0, 1);
1955 /* Combine the parts with bitwise or. This works
1956 because we extracted each part as an unsigned bit field. */
1957 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1963 /* Unsigned bit field: we are done. */
1966 /* Signed bit field: sign-extend with two arithmetic shifts. */
1967 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1968 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1970 return expand_shift (RSHIFT_EXPR, word_mode, result,
1971 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1975 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1976 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1977 MODE, fill the upper bits with zeros. Fail if the layout of either
1978 mode is unknown (as for CC modes) or if the extraction would involve
1979 unprofitable mode punning. Return the value on success, otherwise
1982 This is different from gen_lowpart* in these respects:
1984 - the returned value must always be considered an rvalue
1986 - when MODE is wider than SRC_MODE, the extraction involves
1989 - when MODE is smaller than SRC_MODE, the extraction involves
1990 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1992 In other words, this routine performs a computation, whereas the
1993 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1997 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1999 enum machine_mode int_mode, src_int_mode;
2001 if (mode == src_mode)
2004 if (CONSTANT_P (src))
2006 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2007 fails, it will happily create (subreg (symbol_ref)) or similar
2009 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2010 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2014 if (GET_MODE (src) == VOIDmode
2015 || !validate_subreg (mode, src_mode, src, byte))
2018 src = force_reg (GET_MODE (src), src);
2019 return gen_rtx_SUBREG (mode, src, byte);
2022 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2025 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2026 && MODES_TIEABLE_P (mode, src_mode))
2028 rtx x = gen_lowpart_common (mode, src);
2033 src_int_mode = int_mode_for_mode (src_mode);
2034 int_mode = int_mode_for_mode (mode);
2035 if (src_int_mode == BLKmode || int_mode == BLKmode)
2038 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2040 if (!MODES_TIEABLE_P (int_mode, mode))
2043 src = gen_lowpart (src_int_mode, src);
2044 src = convert_modes (int_mode, src_int_mode, src, true);
2045 src = gen_lowpart (mode, src);
2049 /* Add INC into TARGET. */
2052 expand_inc (rtx target, rtx inc)
2054 rtx value = expand_binop (GET_MODE (target), add_optab,
2056 target, 0, OPTAB_LIB_WIDEN);
2057 if (value != target)
2058 emit_move_insn (target, value);
2061 /* Subtract DEC from TARGET. */
2064 expand_dec (rtx target, rtx dec)
2066 rtx value = expand_binop (GET_MODE (target), sub_optab,
2068 target, 0, OPTAB_LIB_WIDEN);
2069 if (value != target)
2070 emit_move_insn (target, value);
2073 /* Output a shift instruction for expression code CODE,
2074 with SHIFTED being the rtx for the value to shift,
2075 and AMOUNT the tree for the amount to shift by.
2076 Store the result in the rtx TARGET, if that is convenient.
2077 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2078 Return the rtx for where the value is. */
2081 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2082 tree amount, rtx target, int unsignedp)
2085 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2086 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2087 optab lshift_optab = ashl_optab;
2088 optab rshift_arith_optab = ashr_optab;
2089 optab rshift_uns_optab = lshr_optab;
2090 optab lrotate_optab = rotl_optab;
2091 optab rrotate_optab = rotr_optab;
2092 enum machine_mode op1_mode;
2094 bool speed = optimize_insn_for_speed_p ();
2096 op1 = expand_normal (amount);
2097 op1_mode = GET_MODE (op1);
2099 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2100 shift amount is a vector, use the vector/vector shift patterns. */
2101 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2103 lshift_optab = vashl_optab;
2104 rshift_arith_optab = vashr_optab;
2105 rshift_uns_optab = vlshr_optab;
2106 lrotate_optab = vrotl_optab;
2107 rrotate_optab = vrotr_optab;
2110 /* Previously detected shift-counts computed by NEGATE_EXPR
2111 and shifted in the other direction; but that does not work
2114 if (SHIFT_COUNT_TRUNCATED)
2116 if (CONST_INT_P (op1)
2117 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2118 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2119 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2120 % GET_MODE_BITSIZE (mode));
2121 else if (GET_CODE (op1) == SUBREG
2122 && subreg_lowpart_p (op1)
2123 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2124 op1 = SUBREG_REG (op1);
2127 if (op1 == const0_rtx)
2130 /* Check whether its cheaper to implement a left shift by a constant
2131 bit count by a sequence of additions. */
2132 if (code == LSHIFT_EXPR
2133 && CONST_INT_P (op1)
2135 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2136 && INTVAL (op1) < MAX_BITS_PER_WORD
2137 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2138 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2141 for (i = 0; i < INTVAL (op1); i++)
2143 temp = force_reg (mode, shifted);
2144 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2145 unsignedp, OPTAB_LIB_WIDEN);
2150 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2152 enum optab_methods methods;
2155 methods = OPTAB_DIRECT;
2156 else if (attempt == 1)
2157 methods = OPTAB_WIDEN;
2159 methods = OPTAB_LIB_WIDEN;
2163 /* Widening does not work for rotation. */
2164 if (methods == OPTAB_WIDEN)
2166 else if (methods == OPTAB_LIB_WIDEN)
2168 /* If we have been unable to open-code this by a rotation,
2169 do it as the IOR of two shifts. I.e., to rotate A
2170 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2171 where C is the bitsize of A.
2173 It is theoretically possible that the target machine might
2174 not be able to perform either shift and hence we would
2175 be making two libcalls rather than just the one for the
2176 shift (similarly if IOR could not be done). We will allow
2177 this extremely unlikely lossage to avoid complicating the
2180 rtx subtarget = target == shifted ? 0 : target;
2181 tree new_amount, other_amount;
2183 tree type = TREE_TYPE (amount);
2184 if (GET_MODE (op1) != TYPE_MODE (type)
2185 && GET_MODE (op1) != VOIDmode)
2186 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2187 new_amount = make_tree (type, op1);
2189 = fold_build2 (MINUS_EXPR, type,
2190 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2193 shifted = force_reg (mode, shifted);
2195 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2196 mode, shifted, new_amount, 0, 1);
2197 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2198 mode, shifted, other_amount, subtarget, 1);
2199 return expand_binop (mode, ior_optab, temp, temp1, target,
2200 unsignedp, methods);
2203 temp = expand_binop (mode,
2204 left ? lrotate_optab : rrotate_optab,
2205 shifted, op1, target, unsignedp, methods);
2208 temp = expand_binop (mode,
2209 left ? lshift_optab : rshift_uns_optab,
2210 shifted, op1, target, unsignedp, methods);
2212 /* Do arithmetic shifts.
2213 Also, if we are going to widen the operand, we can just as well
2214 use an arithmetic right-shift instead of a logical one. */
2215 if (temp == 0 && ! rotate
2216 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2218 enum optab_methods methods1 = methods;
2220 /* If trying to widen a log shift to an arithmetic shift,
2221 don't accept an arithmetic shift of the same size. */
2223 methods1 = OPTAB_MUST_WIDEN;
2225 /* Arithmetic shift */
2227 temp = expand_binop (mode,
2228 left ? lshift_optab : rshift_arith_optab,
2229 shifted, op1, target, unsignedp, methods1);
2232 /* We used to try extzv here for logical right shifts, but that was
2233 only useful for one machine, the VAX, and caused poor code
2234 generation there for lshrdi3, so the code was deleted and a
2235 define_expand for lshrsi3 was added to vax.md. */
2255 /* This structure holds the "cost" of a multiply sequence. The
2256 "cost" field holds the total rtx_cost of every operator in the
2257 synthetic multiplication sequence, hence cost(a op b) is defined
2258 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2259 The "latency" field holds the minimum possible latency of the
2260 synthetic multiply, on a hypothetical infinitely parallel CPU.
2261 This is the critical path, or the maximum height, of the expression
2262 tree which is the sum of rtx_costs on the most expensive path from
2263 any leaf to the root. Hence latency(a op b) is defined as zero for
2264 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2267 short cost; /* Total rtx_cost of the multiplication sequence. */
2268 short latency; /* The latency of the multiplication sequence. */
2271 /* This macro is used to compare a pointer to a mult_cost against an
2272 single integer "rtx_cost" value. This is equivalent to the macro
2273 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2274 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2275 || ((X)->cost == (Y) && (X)->latency < (Y)))
2277 /* This macro is used to compare two pointers to mult_costs against
2278 each other. The macro returns true if X is cheaper than Y.
2279 Currently, the cheaper of two mult_costs is the one with the
2280 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2281 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2282 || ((X)->cost == (Y)->cost \
2283 && (X)->latency < (Y)->latency))
2285 /* This structure records a sequence of operations.
2286 `ops' is the number of operations recorded.
2287 `cost' is their total cost.
2288 The operations are stored in `op' and the corresponding
2289 logarithms of the integer coefficients in `log'.
2291 These are the operations:
2292 alg_zero total := 0;
2293 alg_m total := multiplicand;
2294 alg_shift total := total * coeff
2295 alg_add_t_m2 total := total + multiplicand * coeff;
2296 alg_sub_t_m2 total := total - multiplicand * coeff;
2297 alg_add_factor total := total * coeff + total;
2298 alg_sub_factor total := total * coeff - total;
2299 alg_add_t2_m total := total * coeff + multiplicand;
2300 alg_sub_t2_m total := total * coeff - multiplicand;
2302 The first operand must be either alg_zero or alg_m. */
2306 struct mult_cost cost;
2308 /* The size of the OP and LOG fields are not directly related to the
2309 word size, but the worst-case algorithms will be if we have few
2310 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2311 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2312 in total wordsize operations. */
2313 enum alg_code op[MAX_BITS_PER_WORD];
2314 char log[MAX_BITS_PER_WORD];
2317 /* The entry for our multiplication cache/hash table. */
2318 struct alg_hash_entry {
2319 /* The number we are multiplying by. */
2320 unsigned HOST_WIDE_INT t;
2322 /* The mode in which we are multiplying something by T. */
2323 enum machine_mode mode;
2325 /* The best multiplication algorithm for t. */
2328 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2329 Otherwise, the cost within which multiplication by T is
2331 struct mult_cost cost;
2333 /* OPtimized for speed? */
2337 /* The number of cache/hash entries. */
2338 #if HOST_BITS_PER_WIDE_INT == 64
2339 #define NUM_ALG_HASH_ENTRIES 1031
2341 #define NUM_ALG_HASH_ENTRIES 307
2344 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2345 actually a hash table. If we have a collision, that the older
2346 entry is kicked out. */
2347 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2349 /* Indicates the type of fixup needed after a constant multiplication.
2350 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2351 the result should be negated, and ADD_VARIANT means that the
2352 multiplicand should be added to the result. */
2353 enum mult_variant {basic_variant, negate_variant, add_variant};
2355 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2356 const struct mult_cost *, enum machine_mode mode);
2357 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2358 struct algorithm *, enum mult_variant *, int);
2359 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2360 const struct algorithm *, enum mult_variant);
2361 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2362 int, rtx *, int *, int *);
2363 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2364 static rtx extract_high_half (enum machine_mode, rtx);
2365 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2366 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2368 /* Compute and return the best algorithm for multiplying by T.
2369 The algorithm must cost less than cost_limit
2370 If retval.cost >= COST_LIMIT, no algorithm was found and all
2371 other field of the returned struct are undefined.
2372 MODE is the machine mode of the multiplication. */
2375 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2376 const struct mult_cost *cost_limit, enum machine_mode mode)
2379 struct algorithm *alg_in, *best_alg;
2380 struct mult_cost best_cost;
2381 struct mult_cost new_limit;
2382 int op_cost, op_latency;
2383 unsigned HOST_WIDE_INT orig_t = t;
2384 unsigned HOST_WIDE_INT q;
2385 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2387 bool cache_hit = false;
2388 enum alg_code cache_alg = alg_zero;
2389 bool speed = optimize_insn_for_speed_p ();
2391 /* Indicate that no algorithm is yet found. If no algorithm
2392 is found, this value will be returned and indicate failure. */
2393 alg_out->cost.cost = cost_limit->cost + 1;
2394 alg_out->cost.latency = cost_limit->latency + 1;
2396 if (cost_limit->cost < 0
2397 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2400 /* Restrict the bits of "t" to the multiplication's mode. */
2401 t &= GET_MODE_MASK (mode);
2403 /* t == 1 can be done in zero cost. */
2407 alg_out->cost.cost = 0;
2408 alg_out->cost.latency = 0;
2409 alg_out->op[0] = alg_m;
2413 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2417 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2422 alg_out->cost.cost = zero_cost[speed];
2423 alg_out->cost.latency = zero_cost[speed];
2424 alg_out->op[0] = alg_zero;
2429 /* We'll be needing a couple extra algorithm structures now. */
2431 alg_in = XALLOCA (struct algorithm);
2432 best_alg = XALLOCA (struct algorithm);
2433 best_cost = *cost_limit;
2435 /* Compute the hash index. */
2436 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2438 /* See if we already know what to do for T. */
2439 if (alg_hash[hash_index].t == t
2440 && alg_hash[hash_index].mode == mode
2441 && alg_hash[hash_index].mode == mode
2442 && alg_hash[hash_index].speed == speed
2443 && alg_hash[hash_index].alg != alg_unknown)
2445 cache_alg = alg_hash[hash_index].alg;
2447 if (cache_alg == alg_impossible)
2449 /* The cache tells us that it's impossible to synthesize
2450 multiplication by T within alg_hash[hash_index].cost. */
2451 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2452 /* COST_LIMIT is at least as restrictive as the one
2453 recorded in the hash table, in which case we have no
2454 hope of synthesizing a multiplication. Just
2458 /* If we get here, COST_LIMIT is less restrictive than the
2459 one recorded in the hash table, so we may be able to
2460 synthesize a multiplication. Proceed as if we didn't
2461 have the cache entry. */
2465 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2466 /* The cached algorithm shows that this multiplication
2467 requires more cost than COST_LIMIT. Just return. This
2468 way, we don't clobber this cache entry with
2469 alg_impossible but retain useful information. */
2481 goto do_alg_addsub_t_m2;
2483 case alg_add_factor:
2484 case alg_sub_factor:
2485 goto do_alg_addsub_factor;
2488 goto do_alg_add_t2_m;
2491 goto do_alg_sub_t2_m;
2499 /* If we have a group of zero bits at the low-order part of T, try
2500 multiplying by the remaining bits and then doing a shift. */
2505 m = floor_log2 (t & -t); /* m = number of low zero bits */
2509 /* The function expand_shift will choose between a shift and
2510 a sequence of additions, so the observed cost is given as
2511 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2512 op_cost = m * add_cost[speed][mode];
2513 if (shift_cost[speed][mode][m] < op_cost)
2514 op_cost = shift_cost[speed][mode][m];
2515 new_limit.cost = best_cost.cost - op_cost;
2516 new_limit.latency = best_cost.latency - op_cost;
2517 synth_mult (alg_in, q, &new_limit, mode);
2519 alg_in->cost.cost += op_cost;
2520 alg_in->cost.latency += op_cost;
2521 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2523 struct algorithm *x;
2524 best_cost = alg_in->cost;
2525 x = alg_in, alg_in = best_alg, best_alg = x;
2526 best_alg->log[best_alg->ops] = m;
2527 best_alg->op[best_alg->ops] = alg_shift;
2530 /* See if treating ORIG_T as a signed number yields a better
2531 sequence. Try this sequence only for a negative ORIG_T
2532 as it would be useless for a non-negative ORIG_T. */
2533 if ((HOST_WIDE_INT) orig_t < 0)
2535 /* Shift ORIG_T as follows because a right shift of a
2536 negative-valued signed type is implementation
2538 q = ~(~orig_t >> m);
2539 /* The function expand_shift will choose between a shift
2540 and a sequence of additions, so the observed cost is
2541 given as MIN (m * add_cost[speed][mode],
2542 shift_cost[speed][mode][m]). */
2543 op_cost = m * add_cost[speed][mode];
2544 if (shift_cost[speed][mode][m] < op_cost)
2545 op_cost = shift_cost[speed][mode][m];
2546 new_limit.cost = best_cost.cost - op_cost;
2547 new_limit.latency = best_cost.latency - op_cost;
2548 synth_mult (alg_in, q, &new_limit, mode);
2550 alg_in->cost.cost += op_cost;
2551 alg_in->cost.latency += op_cost;
2552 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2554 struct algorithm *x;
2555 best_cost = alg_in->cost;
2556 x = alg_in, alg_in = best_alg, best_alg = x;
2557 best_alg->log[best_alg->ops] = m;
2558 best_alg->op[best_alg->ops] = alg_shift;
2566 /* If we have an odd number, add or subtract one. */
2569 unsigned HOST_WIDE_INT w;
2572 for (w = 1; (w & t) != 0; w <<= 1)
2574 /* If T was -1, then W will be zero after the loop. This is another
2575 case where T ends with ...111. Handling this with (T + 1) and
2576 subtract 1 produces slightly better code and results in algorithm
2577 selection much faster than treating it like the ...0111 case
2581 /* Reject the case where t is 3.
2582 Thus we prefer addition in that case. */
2585 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2587 op_cost = add_cost[speed][mode];
2588 new_limit.cost = best_cost.cost - op_cost;
2589 new_limit.latency = best_cost.latency - op_cost;
2590 synth_mult (alg_in, t + 1, &new_limit, mode);
2592 alg_in->cost.cost += op_cost;
2593 alg_in->cost.latency += op_cost;
2594 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2596 struct algorithm *x;
2597 best_cost = alg_in->cost;
2598 x = alg_in, alg_in = best_alg, best_alg = x;
2599 best_alg->log[best_alg->ops] = 0;
2600 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2605 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2607 op_cost = add_cost[speed][mode];
2608 new_limit.cost = best_cost.cost - op_cost;
2609 new_limit.latency = best_cost.latency - op_cost;
2610 synth_mult (alg_in, t - 1, &new_limit, mode);
2612 alg_in->cost.cost += op_cost;
2613 alg_in->cost.latency += op_cost;
2614 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2616 struct algorithm *x;
2617 best_cost = alg_in->cost;
2618 x = alg_in, alg_in = best_alg, best_alg = x;
2619 best_alg->log[best_alg->ops] = 0;
2620 best_alg->op[best_alg->ops] = alg_add_t_m2;
2624 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2625 quickly with a - a * n for some appropriate constant n. */
2626 m = exact_log2 (-orig_t + 1);
2627 if (m >= 0 && m < maxm)
2629 op_cost = shiftsub1_cost[speed][mode][m];
2630 new_limit.cost = best_cost.cost - op_cost;
2631 new_limit.latency = best_cost.latency - op_cost;
2632 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
2634 alg_in->cost.cost += op_cost;
2635 alg_in->cost.latency += op_cost;
2636 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2638 struct algorithm *x;
2639 best_cost = alg_in->cost;
2640 x = alg_in, alg_in = best_alg, best_alg = x;
2641 best_alg->log[best_alg->ops] = m;
2642 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2650 /* Look for factors of t of the form
2651 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2652 If we find such a factor, we can multiply by t using an algorithm that
2653 multiplies by q, shift the result by m and add/subtract it to itself.
2655 We search for large factors first and loop down, even if large factors
2656 are less probable than small; if we find a large factor we will find a
2657 good sequence quickly, and therefore be able to prune (by decreasing
2658 COST_LIMIT) the search. */
2660 do_alg_addsub_factor:
2661 for (m = floor_log2 (t - 1); m >= 2; m--)
2663 unsigned HOST_WIDE_INT d;
2665 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2666 if (t % d == 0 && t > d && m < maxm
2667 && (!cache_hit || cache_alg == alg_add_factor))
2669 /* If the target has a cheap shift-and-add instruction use
2670 that in preference to a shift insn followed by an add insn.
2671 Assume that the shift-and-add is "atomic" with a latency
2672 equal to its cost, otherwise assume that on superscalar
2673 hardware the shift may be executed concurrently with the
2674 earlier steps in the algorithm. */
2675 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2676 if (shiftadd_cost[speed][mode][m] < op_cost)
2678 op_cost = shiftadd_cost[speed][mode][m];
2679 op_latency = op_cost;
2682 op_latency = add_cost[speed][mode];
2684 new_limit.cost = best_cost.cost - op_cost;
2685 new_limit.latency = best_cost.latency - op_latency;
2686 synth_mult (alg_in, t / d, &new_limit, mode);
2688 alg_in->cost.cost += op_cost;
2689 alg_in->cost.latency += op_latency;
2690 if (alg_in->cost.latency < op_cost)
2691 alg_in->cost.latency = op_cost;
2692 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2694 struct algorithm *x;
2695 best_cost = alg_in->cost;
2696 x = alg_in, alg_in = best_alg, best_alg = x;
2697 best_alg->log[best_alg->ops] = m;
2698 best_alg->op[best_alg->ops] = alg_add_factor;
2700 /* Other factors will have been taken care of in the recursion. */
2704 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2705 if (t % d == 0 && t > d && m < maxm
2706 && (!cache_hit || cache_alg == alg_sub_factor))
2708 /* If the target has a cheap shift-and-subtract insn use
2709 that in preference to a shift insn followed by a sub insn.
2710 Assume that the shift-and-sub is "atomic" with a latency
2711 equal to it's cost, otherwise assume that on superscalar
2712 hardware the shift may be executed concurrently with the
2713 earlier steps in the algorithm. */
2714 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2715 if (shiftsub0_cost[speed][mode][m] < op_cost)
2717 op_cost = shiftsub0_cost[speed][mode][m];
2718 op_latency = op_cost;
2721 op_latency = add_cost[speed][mode];
2723 new_limit.cost = best_cost.cost - op_cost;
2724 new_limit.latency = best_cost.latency - op_latency;
2725 synth_mult (alg_in, t / d, &new_limit, mode);
2727 alg_in->cost.cost += op_cost;
2728 alg_in->cost.latency += op_latency;
2729 if (alg_in->cost.latency < op_cost)
2730 alg_in->cost.latency = op_cost;
2731 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2733 struct algorithm *x;
2734 best_cost = alg_in->cost;
2735 x = alg_in, alg_in = best_alg, best_alg = x;
2736 best_alg->log[best_alg->ops] = m;
2737 best_alg->op[best_alg->ops] = alg_sub_factor;
2745 /* Try shift-and-add (load effective address) instructions,
2746 i.e. do a*3, a*5, a*9. */
2753 if (m >= 0 && m < maxm)
2755 op_cost = shiftadd_cost[speed][mode][m];
2756 new_limit.cost = best_cost.cost - op_cost;
2757 new_limit.latency = best_cost.latency - op_cost;
2758 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2760 alg_in->cost.cost += op_cost;
2761 alg_in->cost.latency += op_cost;
2762 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2764 struct algorithm *x;
2765 best_cost = alg_in->cost;
2766 x = alg_in, alg_in = best_alg, best_alg = x;
2767 best_alg->log[best_alg->ops] = m;
2768 best_alg->op[best_alg->ops] = alg_add_t2_m;
2778 if (m >= 0 && m < maxm)
2780 op_cost = shiftsub0_cost[speed][mode][m];
2781 new_limit.cost = best_cost.cost - op_cost;
2782 new_limit.latency = best_cost.latency - op_cost;
2783 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2785 alg_in->cost.cost += op_cost;
2786 alg_in->cost.latency += op_cost;
2787 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2789 struct algorithm *x;
2790 best_cost = alg_in->cost;
2791 x = alg_in, alg_in = best_alg, best_alg = x;
2792 best_alg->log[best_alg->ops] = m;
2793 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2801 /* If best_cost has not decreased, we have not found any algorithm. */
2802 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2804 /* We failed to find an algorithm. Record alg_impossible for
2805 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2806 we are asked to find an algorithm for T within the same or
2807 lower COST_LIMIT, we can immediately return to the
2809 alg_hash[hash_index].t = t;
2810 alg_hash[hash_index].mode = mode;
2811 alg_hash[hash_index].speed = speed;
2812 alg_hash[hash_index].alg = alg_impossible;
2813 alg_hash[hash_index].cost = *cost_limit;
2817 /* Cache the result. */
2820 alg_hash[hash_index].t = t;
2821 alg_hash[hash_index].mode = mode;
2822 alg_hash[hash_index].speed = speed;
2823 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2824 alg_hash[hash_index].cost.cost = best_cost.cost;
2825 alg_hash[hash_index].cost.latency = best_cost.latency;
2828 /* If we are getting a too long sequence for `struct algorithm'
2829 to record, make this search fail. */
2830 if (best_alg->ops == MAX_BITS_PER_WORD)
2833 /* Copy the algorithm from temporary space to the space at alg_out.
2834 We avoid using structure assignment because the majority of
2835 best_alg is normally undefined, and this is a critical function. */
2836 alg_out->ops = best_alg->ops + 1;
2837 alg_out->cost = best_cost;
2838 memcpy (alg_out->op, best_alg->op,
2839 alg_out->ops * sizeof *alg_out->op);
2840 memcpy (alg_out->log, best_alg->log,
2841 alg_out->ops * sizeof *alg_out->log);
2844 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2845 Try three variations:
2847 - a shift/add sequence based on VAL itself
2848 - a shift/add sequence based on -VAL, followed by a negation
2849 - a shift/add sequence based on VAL - 1, followed by an addition.
2851 Return true if the cheapest of these cost less than MULT_COST,
2852 describing the algorithm in *ALG and final fixup in *VARIANT. */
2855 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2856 struct algorithm *alg, enum mult_variant *variant,
2859 struct algorithm alg2;
2860 struct mult_cost limit;
2862 bool speed = optimize_insn_for_speed_p ();
2864 /* Fail quickly for impossible bounds. */
2868 /* Ensure that mult_cost provides a reasonable upper bound.
2869 Any constant multiplication can be performed with less
2870 than 2 * bits additions. */
2871 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2872 if (mult_cost > op_cost)
2873 mult_cost = op_cost;
2875 *variant = basic_variant;
2876 limit.cost = mult_cost;
2877 limit.latency = mult_cost;
2878 synth_mult (alg, val, &limit, mode);
2880 /* This works only if the inverted value actually fits in an
2882 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2884 op_cost = neg_cost[speed][mode];
2885 if (MULT_COST_LESS (&alg->cost, mult_cost))
2887 limit.cost = alg->cost.cost - op_cost;
2888 limit.latency = alg->cost.latency - op_cost;
2892 limit.cost = mult_cost - op_cost;
2893 limit.latency = mult_cost - op_cost;
2896 synth_mult (&alg2, -val, &limit, mode);
2897 alg2.cost.cost += op_cost;
2898 alg2.cost.latency += op_cost;
2899 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2900 *alg = alg2, *variant = negate_variant;
2903 /* This proves very useful for division-by-constant. */
2904 op_cost = add_cost[speed][mode];
2905 if (MULT_COST_LESS (&alg->cost, mult_cost))
2907 limit.cost = alg->cost.cost - op_cost;
2908 limit.latency = alg->cost.latency - op_cost;
2912 limit.cost = mult_cost - op_cost;
2913 limit.latency = mult_cost - op_cost;
2916 synth_mult (&alg2, val - 1, &limit, mode);
2917 alg2.cost.cost += op_cost;
2918 alg2.cost.latency += op_cost;
2919 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2920 *alg = alg2, *variant = add_variant;
2922 return MULT_COST_LESS (&alg->cost, mult_cost);
2925 /* A subroutine of expand_mult, used for constant multiplications.
2926 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2927 convenient. Use the shift/add sequence described by ALG and apply
2928 the final fixup specified by VARIANT. */
2931 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2932 rtx target, const struct algorithm *alg,
2933 enum mult_variant variant)
2935 HOST_WIDE_INT val_so_far;
2936 rtx insn, accum, tem;
2938 enum machine_mode nmode;
2940 /* Avoid referencing memory over and over and invalid sharing
2942 op0 = force_reg (mode, op0);
2944 /* ACCUM starts out either as OP0 or as a zero, depending on
2945 the first operation. */
2947 if (alg->op[0] == alg_zero)
2949 accum = copy_to_mode_reg (mode, const0_rtx);
2952 else if (alg->op[0] == alg_m)
2954 accum = copy_to_mode_reg (mode, op0);
2960 for (opno = 1; opno < alg->ops; opno++)
2962 int log = alg->log[opno];
2963 rtx shift_subtarget = optimize ? 0 : accum;
2965 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2968 rtx accum_target = optimize ? 0 : accum;
2970 switch (alg->op[opno])
2973 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2974 build_int_cst (NULL_TREE, log),
2980 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2981 build_int_cst (NULL_TREE, log),
2983 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2984 add_target ? add_target : accum_target);
2985 val_so_far += (HOST_WIDE_INT) 1 << log;
2989 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2990 build_int_cst (NULL_TREE, log),
2992 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2993 add_target ? add_target : accum_target);
2994 val_so_far -= (HOST_WIDE_INT) 1 << log;
2998 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2999 build_int_cst (NULL_TREE, log),
3002 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3003 add_target ? add_target : accum_target);
3004 val_so_far = (val_so_far << log) + 1;
3008 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3009 build_int_cst (NULL_TREE, log),
3010 shift_subtarget, 0);
3011 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3012 add_target ? add_target : accum_target);
3013 val_so_far = (val_so_far << log) - 1;
3016 case alg_add_factor:
3017 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3018 build_int_cst (NULL_TREE, log),
3020 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3021 add_target ? add_target : accum_target);
3022 val_so_far += val_so_far << log;
3025 case alg_sub_factor:
3026 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3027 build_int_cst (NULL_TREE, log),
3029 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3031 ? add_target : (optimize ? 0 : tem)));
3032 val_so_far = (val_so_far << log) - val_so_far;
3039 /* Write a REG_EQUAL note on the last insn so that we can cse
3040 multiplication sequences. Note that if ACCUM is a SUBREG,
3041 we've set the inner register and must properly indicate
3044 tem = op0, nmode = mode;
3045 if (GET_CODE (accum) == SUBREG)
3047 nmode = GET_MODE (SUBREG_REG (accum));
3048 tem = gen_lowpart (nmode, op0);
3051 insn = get_last_insn ();
3052 set_unique_reg_note (insn, REG_EQUAL,
3053 gen_rtx_MULT (nmode, tem,
3054 GEN_INT (val_so_far)));
3057 if (variant == negate_variant)
3059 val_so_far = -val_so_far;
3060 accum = expand_unop (mode, neg_optab, accum, target, 0);
3062 else if (variant == add_variant)
3064 val_so_far = val_so_far + 1;
3065 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3068 /* Compare only the bits of val and val_so_far that are significant
3069 in the result mode, to avoid sign-/zero-extension confusion. */
3070 val &= GET_MODE_MASK (mode);
3071 val_so_far &= GET_MODE_MASK (mode);
3072 gcc_assert (val == val_so_far);
3077 /* Perform a multiplication and return an rtx for the result.
3078 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3079 TARGET is a suggestion for where to store the result (an rtx).
3081 We check specially for a constant integer as OP1.
3082 If you want this check for OP0 as well, then before calling
3083 you should swap the two operands if OP0 would be constant. */
3086 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3089 enum mult_variant variant;
3090 struct algorithm algorithm;
3092 bool speed = optimize_insn_for_speed_p ();
3094 /* Handling const0_rtx here allows us to use zero as a rogue value for
3096 if (op1 == const0_rtx)
3098 if (op1 == const1_rtx)
3100 if (op1 == constm1_rtx)
3101 return expand_unop (mode,
3102 GET_MODE_CLASS (mode) == MODE_INT
3103 && !unsignedp && flag_trapv
3104 ? negv_optab : neg_optab,
3107 /* These are the operations that are potentially turned into a sequence
3108 of shifts and additions. */
3109 if (SCALAR_INT_MODE_P (mode)
3110 && (unsignedp || !flag_trapv))
3112 HOST_WIDE_INT coeff = 0;
3113 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3115 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3116 less than or equal in size to `unsigned int' this doesn't matter.
3117 If the mode is larger than `unsigned int', then synth_mult works
3118 only if the constant value exactly fits in an `unsigned int' without
3119 any truncation. This means that multiplying by negative values does
3120 not work; results are off by 2^32 on a 32 bit machine. */
3122 if (CONST_INT_P (op1))
3124 /* Attempt to handle multiplication of DImode values by negative
3125 coefficients, by performing the multiplication by a positive
3126 multiplier and then inverting the result. */
3127 if (INTVAL (op1) < 0
3128 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3130 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3131 result is interpreted as an unsigned coefficient.
3132 Exclude cost of op0 from max_cost to match the cost
3133 calculation of the synth_mult. */
3134 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3135 - neg_cost[speed][mode];
3137 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3138 &variant, max_cost))
3140 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3141 NULL_RTX, &algorithm,
3143 return expand_unop (mode, neg_optab, temp, target, 0);
3146 else coeff = INTVAL (op1);
3148 else if (GET_CODE (op1) == CONST_DOUBLE)
3150 /* If we are multiplying in DImode, it may still be a win
3151 to try to work with shifts and adds. */
3152 if (CONST_DOUBLE_HIGH (op1) == 0
3153 && CONST_DOUBLE_LOW (op1) > 0)
3154 coeff = CONST_DOUBLE_LOW (op1);
3155 else if (CONST_DOUBLE_LOW (op1) == 0
3156 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3158 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3159 + HOST_BITS_PER_WIDE_INT;
3160 return expand_shift (LSHIFT_EXPR, mode, op0,
3161 build_int_cst (NULL_TREE, shift),
3166 /* We used to test optimize here, on the grounds that it's better to
3167 produce a smaller program when -O is not used. But this causes
3168 such a terrible slowdown sometimes that it seems better to always
3172 /* Special case powers of two. */
3173 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3174 return expand_shift (LSHIFT_EXPR, mode, op0,
3175 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3178 /* Exclude cost of op0 from max_cost to match the cost
3179 calculation of the synth_mult. */
3180 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3181 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3183 return expand_mult_const (mode, op0, coeff, target,
3184 &algorithm, variant);
3188 if (GET_CODE (op0) == CONST_DOUBLE)
3195 /* Expand x*2.0 as x+x. */
3196 if (GET_CODE (op1) == CONST_DOUBLE
3197 && SCALAR_FLOAT_MODE_P (mode))
3200 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3202 if (REAL_VALUES_EQUAL (d, dconst2))
3204 op0 = force_reg (GET_MODE (op0), op0);
3205 return expand_binop (mode, add_optab, op0, op0,
3206 target, unsignedp, OPTAB_LIB_WIDEN);
3210 /* This used to use umul_optab if unsigned, but for non-widening multiply
3211 there is no difference between signed and unsigned. */
3212 op0 = expand_binop (mode,
3214 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3215 ? smulv_optab : smul_optab,
3216 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3221 /* Return the smallest n such that 2**n >= X. */
3224 ceil_log2 (unsigned HOST_WIDE_INT x)
3226 return floor_log2 (x - 1) + 1;
3229 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3230 replace division by D, and put the least significant N bits of the result
3231 in *MULTIPLIER_PTR and return the most significant bit.
3233 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3234 needed precision is in PRECISION (should be <= N).
3236 PRECISION should be as small as possible so this function can choose
3237 multiplier more freely.
3239 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3240 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3242 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3243 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3246 unsigned HOST_WIDE_INT
3247 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3248 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3250 HOST_WIDE_INT mhigh_hi, mlow_hi;
3251 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3252 int lgup, post_shift;
3254 unsigned HOST_WIDE_INT nl, dummy1;
3255 HOST_WIDE_INT nh, dummy2;
3257 /* lgup = ceil(log2(divisor)); */
3258 lgup = ceil_log2 (d);
3260 gcc_assert (lgup <= n);
3263 pow2 = n + lgup - precision;
3265 /* We could handle this with some effort, but this case is much
3266 better handled directly with a scc insn, so rely on caller using
3268 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3270 /* mlow = 2^(N + lgup)/d */
3271 if (pow >= HOST_BITS_PER_WIDE_INT)
3273 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3279 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3281 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3282 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3284 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3285 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3286 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3288 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3289 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3290 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3292 gcc_assert (!mhigh_hi || nh - d < d);
3293 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3294 /* Assert that mlow < mhigh. */
3295 gcc_assert (mlow_hi < mhigh_hi
3296 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3298 /* If precision == N, then mlow, mhigh exceed 2^N
3299 (but they do not exceed 2^(N+1)). */
3301 /* Reduce to lowest terms. */
3302 for (post_shift = lgup; post_shift > 0; post_shift--)
3304 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3305 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3315 *post_shift_ptr = post_shift;
3317 if (n < HOST_BITS_PER_WIDE_INT)
3319 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3320 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3321 return mhigh_lo >= mask;
3325 *multiplier_ptr = GEN_INT (mhigh_lo);
3330 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3331 congruent to 1 (mod 2**N). */
3333 static unsigned HOST_WIDE_INT
3334 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3336 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3338 /* The algorithm notes that the choice y = x satisfies
3339 x*y == 1 mod 2^3, since x is assumed odd.
3340 Each iteration doubles the number of bits of significance in y. */
3342 unsigned HOST_WIDE_INT mask;
3343 unsigned HOST_WIDE_INT y = x;
3346 mask = (n == HOST_BITS_PER_WIDE_INT
3347 ? ~(unsigned HOST_WIDE_INT) 0
3348 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3352 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3358 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3359 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3360 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3361 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3364 The result is put in TARGET if that is convenient.
3366 MODE is the mode of operation. */
3369 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3370 rtx op1, rtx target, int unsignedp)
3373 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3375 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3376 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3378 tem = expand_and (mode, tem, op1, NULL_RTX);
3380 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3383 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3384 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3386 tem = expand_and (mode, tem, op0, NULL_RTX);
3387 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3393 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3396 extract_high_half (enum machine_mode mode, rtx op)
3398 enum machine_mode wider_mode;
3400 if (mode == word_mode)
3401 return gen_highpart (mode, op);
3403 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3405 wider_mode = GET_MODE_WIDER_MODE (mode);
3406 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3407 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3408 return convert_modes (mode, wider_mode, op, 0);
3411 /* Like expand_mult_highpart, but only consider using a multiplication
3412 optab. OP1 is an rtx for the constant operand. */
3415 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3416 rtx target, int unsignedp, int max_cost)
3418 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3419 enum machine_mode wider_mode;
3423 bool speed = optimize_insn_for_speed_p ();
3425 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3427 wider_mode = GET_MODE_WIDER_MODE (mode);
3428 size = GET_MODE_BITSIZE (mode);
3430 /* Firstly, try using a multiplication insn that only generates the needed
3431 high part of the product, and in the sign flavor of unsignedp. */
3432 if (mul_highpart_cost[speed][mode] < max_cost)
3434 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3435 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3436 unsignedp, OPTAB_DIRECT);
3441 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3442 Need to adjust the result after the multiplication. */
3443 if (size - 1 < BITS_PER_WORD
3444 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3445 + 4 * add_cost[speed][mode] < max_cost))
3447 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3448 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3449 unsignedp, OPTAB_DIRECT);
3451 /* We used the wrong signedness. Adjust the result. */
3452 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3456 /* Try widening multiplication. */
3457 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3458 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3459 && mul_widen_cost[speed][wider_mode] < max_cost)
3461 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3462 unsignedp, OPTAB_WIDEN);
3464 return extract_high_half (mode, tem);
3467 /* Try widening the mode and perform a non-widening multiplication. */
3468 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3469 && size - 1 < BITS_PER_WORD
3470 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3472 rtx insns, wop0, wop1;
3474 /* We need to widen the operands, for example to ensure the
3475 constant multiplier is correctly sign or zero extended.
3476 Use a sequence to clean-up any instructions emitted by
3477 the conversions if things don't work out. */
3479 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3480 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3481 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3482 unsignedp, OPTAB_WIDEN);
3483 insns = get_insns ();
3489 return extract_high_half (mode, tem);
3493 /* Try widening multiplication of opposite signedness, and adjust. */
3494 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3495 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3496 && size - 1 < BITS_PER_WORD
3497 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3498 + 4 * add_cost[speed][mode] < max_cost))
3500 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3501 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3504 tem = extract_high_half (mode, tem);
3505 /* We used the wrong signedness. Adjust the result. */
3506 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3514 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3515 putting the high half of the result in TARGET if that is convenient,
3516 and return where the result is. If the operation can not be performed,
3519 MODE is the mode of operation and result.
3521 UNSIGNEDP nonzero means unsigned multiply.
3523 MAX_COST is the total allowed cost for the expanded RTL. */
3526 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3527 rtx target, int unsignedp, int max_cost)
3529 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3530 unsigned HOST_WIDE_INT cnst1;
3532 bool sign_adjust = false;
3533 enum mult_variant variant;
3534 struct algorithm alg;
3536 bool speed = optimize_insn_for_speed_p ();
3538 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3539 /* We can't support modes wider than HOST_BITS_PER_INT. */
3540 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3542 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3544 /* We can't optimize modes wider than BITS_PER_WORD.
3545 ??? We might be able to perform double-word arithmetic if
3546 mode == word_mode, however all the cost calculations in
3547 synth_mult etc. assume single-word operations. */
3548 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3549 return expand_mult_highpart_optab (mode, op0, op1, target,
3550 unsignedp, max_cost);
3552 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3554 /* Check whether we try to multiply by a negative constant. */
3555 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3558 extra_cost += add_cost[speed][mode];
3561 /* See whether shift/add multiplication is cheap enough. */
3562 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3563 max_cost - extra_cost))
3565 /* See whether the specialized multiplication optabs are
3566 cheaper than the shift/add version. */
3567 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3568 alg.cost.cost + extra_cost);
3572 tem = convert_to_mode (wider_mode, op0, unsignedp);
3573 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3574 tem = extract_high_half (mode, tem);
3576 /* Adjust result for signedness. */
3578 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3582 return expand_mult_highpart_optab (mode, op0, op1, target,
3583 unsignedp, max_cost);
3587 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3590 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3592 unsigned HOST_WIDE_INT masklow, maskhigh;
3593 rtx result, temp, shift, label;
3596 logd = floor_log2 (d);
3597 result = gen_reg_rtx (mode);
3599 /* Avoid conditional branches when they're expensive. */
3600 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3601 && optimize_insn_for_speed_p ())
3603 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3607 signmask = force_reg (mode, signmask);
3608 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3609 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3611 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3612 which instruction sequence to use. If logical right shifts
3613 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3614 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3616 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3617 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3618 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3620 temp = expand_binop (mode, xor_optab, op0, signmask,
3621 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3622 temp = expand_binop (mode, sub_optab, temp, signmask,
3623 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3624 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3625 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3626 temp = expand_binop (mode, xor_optab, temp, signmask,
3627 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3628 temp = expand_binop (mode, sub_optab, temp, signmask,
3629 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3633 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3635 signmask = force_reg (mode, signmask);
3637 temp = expand_binop (mode, add_optab, op0, signmask,
3638 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3639 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3640 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3641 temp = expand_binop (mode, sub_optab, temp, signmask,
3642 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3648 /* Mask contains the mode's signbit and the significant bits of the
3649 modulus. By including the signbit in the operation, many targets
3650 can avoid an explicit compare operation in the following comparison
3653 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3654 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3656 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3660 maskhigh = (HOST_WIDE_INT) -1
3661 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3663 temp = expand_binop (mode, and_optab, op0,
3664 immed_double_const (masklow, maskhigh, mode),
3665 result, 1, OPTAB_LIB_WIDEN);
3667 emit_move_insn (result, temp);
3669 label = gen_label_rtx ();
3670 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3672 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3673 0, OPTAB_LIB_WIDEN);
3674 masklow = (HOST_WIDE_INT) -1 << logd;
3676 temp = expand_binop (mode, ior_optab, temp,
3677 immed_double_const (masklow, maskhigh, mode),
3678 result, 1, OPTAB_LIB_WIDEN);
3679 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3680 0, OPTAB_LIB_WIDEN);
3682 emit_move_insn (result, temp);
3687 /* Expand signed division of OP0 by a power of two D in mode MODE.
3688 This routine is only called for positive values of D. */
3691 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3697 logd = floor_log2 (d);
3698 shift = build_int_cst (NULL_TREE, logd);
3701 && BRANCH_COST (optimize_insn_for_speed_p (),
3704 temp = gen_reg_rtx (mode);
3705 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3706 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3707 0, OPTAB_LIB_WIDEN);
3708 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3711 #ifdef HAVE_conditional_move
3712 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3717 /* ??? emit_conditional_move forces a stack adjustment via
3718 compare_from_rtx so, if the sequence is discarded, it will
3719 be lost. Do it now instead. */
3720 do_pending_stack_adjust ();
3723 temp2 = copy_to_mode_reg (mode, op0);
3724 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3725 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3726 temp = force_reg (mode, temp);
3728 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3729 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3730 mode, temp, temp2, mode, 0);
3733 rtx seq = get_insns ();
3736 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3742 if (BRANCH_COST (optimize_insn_for_speed_p (),
3745 int ushift = GET_MODE_BITSIZE (mode) - logd;
3747 temp = gen_reg_rtx (mode);
3748 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3749 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3750 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3751 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3753 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3754 build_int_cst (NULL_TREE, ushift),
3756 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3757 0, OPTAB_LIB_WIDEN);
3758 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3761 label = gen_label_rtx ();
3762 temp = copy_to_mode_reg (mode, op0);
3763 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3764 expand_inc (temp, GEN_INT (d - 1));
3766 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3769 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3770 if that is convenient, and returning where the result is.
3771 You may request either the quotient or the remainder as the result;
3772 specify REM_FLAG nonzero to get the remainder.
3774 CODE is the expression code for which kind of division this is;
3775 it controls how rounding is done. MODE is the machine mode to use.
3776 UNSIGNEDP nonzero means do unsigned division. */
3778 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3779 and then correct it by or'ing in missing high bits
3780 if result of ANDI is nonzero.
3781 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3782 This could optimize to a bfexts instruction.
3783 But C doesn't use these operations, so their optimizations are
3785 /* ??? For modulo, we don't actually need the highpart of the first product,
3786 the low part will do nicely. And for small divisors, the second multiply
3787 can also be a low-part only multiply or even be completely left out.
3788 E.g. to calculate the remainder of a division by 3 with a 32 bit
3789 multiply, multiply with 0x55555556 and extract the upper two bits;
3790 the result is exact for inputs up to 0x1fffffff.
3791 The input range can be reduced by using cross-sum rules.
3792 For odd divisors >= 3, the following table gives right shift counts
3793 so that if a number is shifted by an integer multiple of the given
3794 amount, the remainder stays the same:
3795 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3796 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3797 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3798 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3799 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3801 Cross-sum rules for even numbers can be derived by leaving as many bits
3802 to the right alone as the divisor has zeros to the right.
3803 E.g. if x is an unsigned 32 bit number:
3804 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3808 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3809 rtx op0, rtx op1, rtx target, int unsignedp)
3811 enum machine_mode compute_mode;
3813 rtx quotient = 0, remainder = 0;
3817 optab optab1, optab2;
3818 int op1_is_constant, op1_is_pow2 = 0;
3819 int max_cost, extra_cost;
3820 static HOST_WIDE_INT last_div_const = 0;
3821 static HOST_WIDE_INT ext_op1;
3822 bool speed = optimize_insn_for_speed_p ();
3824 op1_is_constant = CONST_INT_P (op1);
3825 if (op1_is_constant)
3827 ext_op1 = INTVAL (op1);
3829 ext_op1 &= GET_MODE_MASK (mode);
3830 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3831 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3835 This is the structure of expand_divmod:
3837 First comes code to fix up the operands so we can perform the operations
3838 correctly and efficiently.
3840 Second comes a switch statement with code specific for each rounding mode.
3841 For some special operands this code emits all RTL for the desired
3842 operation, for other cases, it generates only a quotient and stores it in
3843 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3844 to indicate that it has not done anything.
3846 Last comes code that finishes the operation. If QUOTIENT is set and
3847 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3848 QUOTIENT is not set, it is computed using trunc rounding.
3850 We try to generate special code for division and remainder when OP1 is a
3851 constant. If |OP1| = 2**n we can use shifts and some other fast
3852 operations. For other values of OP1, we compute a carefully selected
3853 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3856 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3857 half of the product. Different strategies for generating the product are
3858 implemented in expand_mult_highpart.
3860 If what we actually want is the remainder, we generate that by another
3861 by-constant multiplication and a subtraction. */
3863 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3864 code below will malfunction if we are, so check here and handle
3865 the special case if so. */
3866 if (op1 == const1_rtx)
3867 return rem_flag ? const0_rtx : op0;
3869 /* When dividing by -1, we could get an overflow.
3870 negv_optab can handle overflows. */
3871 if (! unsignedp && op1 == constm1_rtx)
3875 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3876 ? negv_optab : neg_optab, op0, target, 0);
3880 /* Don't use the function value register as a target
3881 since we have to read it as well as write it,
3882 and function-inlining gets confused by this. */
3883 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3884 /* Don't clobber an operand while doing a multi-step calculation. */
3885 || ((rem_flag || op1_is_constant)
3886 && (reg_mentioned_p (target, op0)
3887 || (MEM_P (op0) && MEM_P (target))))
3888 || reg_mentioned_p (target, op1)
3889 || (MEM_P (op1) && MEM_P (target))))
3892 /* Get the mode in which to perform this computation. Normally it will
3893 be MODE, but sometimes we can't do the desired operation in MODE.
3894 If so, pick a wider mode in which we can do the operation. Convert
3895 to that mode at the start to avoid repeated conversions.
3897 First see what operations we need. These depend on the expression
3898 we are evaluating. (We assume that divxx3 insns exist under the
3899 same conditions that modxx3 insns and that these insns don't normally
3900 fail. If these assumptions are not correct, we may generate less
3901 efficient code in some cases.)
3903 Then see if we find a mode in which we can open-code that operation
3904 (either a division, modulus, or shift). Finally, check for the smallest
3905 mode for which we can do the operation with a library call. */
3907 /* We might want to refine this now that we have division-by-constant
3908 optimization. Since expand_mult_highpart tries so many variants, it is
3909 not straightforward to generalize this. Maybe we should make an array
3910 of possible modes in init_expmed? Save this for GCC 2.7. */
3912 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3913 ? (unsignedp ? lshr_optab : ashr_optab)
3914 : (unsignedp ? udiv_optab : sdiv_optab));
3915 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3917 : (unsignedp ? udivmod_optab : sdivmod_optab));
3919 for (compute_mode = mode; compute_mode != VOIDmode;
3920 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3921 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3922 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3925 if (compute_mode == VOIDmode)
3926 for (compute_mode = mode; compute_mode != VOIDmode;
3927 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3928 if (optab_libfunc (optab1, compute_mode)
3929 || optab_libfunc (optab2, compute_mode))
3932 /* If we still couldn't find a mode, use MODE, but expand_binop will
3934 if (compute_mode == VOIDmode)
3935 compute_mode = mode;
3937 if (target && GET_MODE (target) == compute_mode)
3940 tquotient = gen_reg_rtx (compute_mode);
3942 size = GET_MODE_BITSIZE (compute_mode);
3944 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3945 (mode), and thereby get better code when OP1 is a constant. Do that
3946 later. It will require going over all usages of SIZE below. */
3947 size = GET_MODE_BITSIZE (mode);
3950 /* Only deduct something for a REM if the last divide done was
3951 for a different constant. Then set the constant of the last
3953 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3954 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3955 && INTVAL (op1) == last_div_const))
3956 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3958 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3960 /* Now convert to the best mode to use. */
3961 if (compute_mode != mode)
3963 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3964 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3966 /* convert_modes may have placed op1 into a register, so we