OSDN Git Service

PR middle-end/52419
[pf3gnuchains/gcc-fork.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4    2010, 2011
5    Free Software Foundation, Inc.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26    This file contains support functions for creating rtl expressions
27    and manipulating them in the doubly-linked chain of insns.
28
29    The patterns of the insns are created by machine-dependent
30    routines in insn-emit.c, which is generated automatically from
31    the machine description.  These routines make the individual rtx's
32    of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33    which are automatically generated from rtl.def; what is machine
34    dependent is the kind of rtx's they make and what arguments they
35    use.  */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58 #include "tree-pass.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
62 #include "tree-flow.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes.  */
72
73 enum machine_mode byte_mode;    /* Mode whose width is BITS_PER_UNIT.  */
74 enum machine_mode word_mode;    /* Mode whose width is BITS_PER_WORD.  */
75 enum machine_mode double_mode;  /* Mode whose width is DOUBLE_TYPE_SIZE.  */
76 enum machine_mode ptr_mode;     /* Mode whose width is POINTER_SIZE.  */
77
78 /* Datastructures maintained for currently processed function in RTL form.  */
79
80 struct rtl_data x_rtl;
81
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83    Allocated in parallel with regno_pointer_align.
84    FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85    with length attribute nested in top level structures.  */
86
87 rtx * regno_reg_rtx;
88
89 /* This is *not* reset after each function.  It gives each CODE_LABEL
90    in the entire compilation a unique label number.  */
91
92 static GTY(()) int label_num = 1;
93
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95    the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
96    record a copy of const[012]_rtx and constm1_rtx.  CONSTM1_RTX
97    is set only for MODE_INT and MODE_VECTOR_INT modes.  */
98
99 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
100
101 rtx const_true_rtx;
102
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
107 REAL_VALUE_TYPE dconsthalf;
108
109 /* Record fixed-point constant 0 and 1.  */
110 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112
113 /* We make one copy of (const_int C) where C is in
114    [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115    to save space during the compilation and simplify comparisons of
116    integers.  */
117
118 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119
120 /* A hash table storing CONST_INTs whose absolute value is greater
121    than MAX_SAVED_CONST_INT.  */
122
123 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
124      htab_t const_int_htab;
125
126 /* A hash table storing memory attribute structures.  */
127 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
128      htab_t mem_attrs_htab;
129
130 /* A hash table storing register attribute structures.  */
131 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
132      htab_t reg_attrs_htab;
133
134 /* A hash table storing all CONST_DOUBLEs.  */
135 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
136      htab_t const_double_htab;
137
138 /* A hash table storing all CONST_FIXEDs.  */
139 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
140      htab_t const_fixed_htab;
141
142 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
143 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
144 #define last_location (crtl->emit.x_last_location)
145 #define first_label_num (crtl->emit.x_first_label_num)
146
147 static rtx make_call_insn_raw (rtx);
148 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
149 static void set_used_decls (tree);
150 static void mark_label_nuses (rtx);
151 static hashval_t const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx lookup_const_double (rtx);
156 static hashval_t const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx lookup_const_fixed (rtx);
159 static hashval_t mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs *get_reg_attrs (tree, int);
164 static rtx gen_const_vector (enum machine_mode, int);
165 static void copy_rtx_if_shared_1 (rtx *orig);
166
167 /* Probability of the conditional branch currently proceeded by try_split.
168    Set to -1 otherwise.  */
169 int split_branch_probability = -1;
170 \f
171 /* Returns a hash code for X (which is a really a CONST_INT).  */
172
173 static hashval_t
174 const_int_htab_hash (const void *x)
175 {
176   return (hashval_t) INTVAL ((const_rtx) x);
177 }
178
179 /* Returns nonzero if the value represented by X (which is really a
180    CONST_INT) is the same as that given by Y (which is really a
181    HOST_WIDE_INT *).  */
182
183 static int
184 const_int_htab_eq (const void *x, const void *y)
185 {
186   return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
187 }
188
189 /* Returns a hash code for X (which is really a CONST_DOUBLE).  */
190 static hashval_t
191 const_double_htab_hash (const void *x)
192 {
193   const_rtx const value = (const_rtx) x;
194   hashval_t h;
195
196   if (GET_MODE (value) == VOIDmode)
197     h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
198   else
199     {
200       h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
201       /* MODE is used in the comparison, so it should be in the hash.  */
202       h ^= GET_MODE (value);
203     }
204   return h;
205 }
206
207 /* Returns nonzero if the value represented by X (really a ...)
208    is the same as that represented by Y (really a ...) */
209 static int
210 const_double_htab_eq (const void *x, const void *y)
211 {
212   const_rtx const a = (const_rtx)x, b = (const_rtx)y;
213
214   if (GET_MODE (a) != GET_MODE (b))
215     return 0;
216   if (GET_MODE (a) == VOIDmode)
217     return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
218             && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
219   else
220     return real_identical (CONST_DOUBLE_REAL_VALUE (a),
221                            CONST_DOUBLE_REAL_VALUE (b));
222 }
223
224 /* Returns a hash code for X (which is really a CONST_FIXED).  */
225
226 static hashval_t
227 const_fixed_htab_hash (const void *x)
228 {
229   const_rtx const value = (const_rtx) x;
230   hashval_t h;
231
232   h = fixed_hash (CONST_FIXED_VALUE (value));
233   /* MODE is used in the comparison, so it should be in the hash.  */
234   h ^= GET_MODE (value);
235   return h;
236 }
237
238 /* Returns nonzero if the value represented by X (really a ...)
239    is the same as that represented by Y (really a ...).  */
240
241 static int
242 const_fixed_htab_eq (const void *x, const void *y)
243 {
244   const_rtx const a = (const_rtx) x, b = (const_rtx) y;
245
246   if (GET_MODE (a) != GET_MODE (b))
247     return 0;
248   return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
249 }
250
251 /* Returns a hash code for X (which is a really a mem_attrs *).  */
252
253 static hashval_t
254 mem_attrs_htab_hash (const void *x)
255 {
256   const mem_attrs *const p = (const mem_attrs *) x;
257
258   return (p->alias ^ (p->align * 1000)
259           ^ (p->addrspace * 4000)
260           ^ ((p->offset_known_p ? p->offset : 0) * 50000)
261           ^ ((p->size_known_p ? p->size : 0) * 2500000)
262           ^ (size_t) iterative_hash_expr (p->expr, 0));
263 }
264
265 /* Return true if the given memory attributes are equal.  */
266
267 static bool
268 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
269 {
270   return (p->alias == q->alias
271           && p->offset_known_p == q->offset_known_p
272           && (!p->offset_known_p || p->offset == q->offset)
273           && p->size_known_p == q->size_known_p
274           && (!p->size_known_p || p->size == q->size)
275           && p->align == q->align
276           && p->addrspace == q->addrspace
277           && (p->expr == q->expr
278               || (p->expr != NULL_TREE && q->expr != NULL_TREE
279                   && operand_equal_p (p->expr, q->expr, 0))));
280 }
281
282 /* Returns nonzero if the value represented by X (which is really a
283    mem_attrs *) is the same as that given by Y (which is also really a
284    mem_attrs *).  */
285
286 static int
287 mem_attrs_htab_eq (const void *x, const void *y)
288 {
289   return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
290 }
291
292 /* Set MEM's memory attributes so that they are the same as ATTRS.  */
293
294 static void
295 set_mem_attrs (rtx mem, mem_attrs *attrs)
296 {
297   void **slot;
298
299   /* If everything is the default, we can just clear the attributes.  */
300   if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
301     {
302       MEM_ATTRS (mem) = 0;
303       return;
304     }
305
306   slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
307   if (*slot == 0)
308     {
309       *slot = ggc_alloc_mem_attrs ();
310       memcpy (*slot, attrs, sizeof (mem_attrs));
311     }
312
313   MEM_ATTRS (mem) = (mem_attrs *) *slot;
314 }
315
316 /* Returns a hash code for X (which is a really a reg_attrs *).  */
317
318 static hashval_t
319 reg_attrs_htab_hash (const void *x)
320 {
321   const reg_attrs *const p = (const reg_attrs *) x;
322
323   return ((p->offset * 1000) ^ (intptr_t) p->decl);
324 }
325
326 /* Returns nonzero if the value represented by X (which is really a
327    reg_attrs *) is the same as that given by Y (which is also really a
328    reg_attrs *).  */
329
330 static int
331 reg_attrs_htab_eq (const void *x, const void *y)
332 {
333   const reg_attrs *const p = (const reg_attrs *) x;
334   const reg_attrs *const q = (const reg_attrs *) y;
335
336   return (p->decl == q->decl && p->offset == q->offset);
337 }
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339    one identical to it is not already in the table.  We are doing this for
340    MEM of mode MODE.  */
341
342 static reg_attrs *
343 get_reg_attrs (tree decl, int offset)
344 {
345   reg_attrs attrs;
346   void **slot;
347
348   /* If everything is the default, we can just return zero.  */
349   if (decl == 0 && offset == 0)
350     return 0;
351
352   attrs.decl = decl;
353   attrs.offset = offset;
354
355   slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
356   if (*slot == 0)
357     {
358       *slot = ggc_alloc_reg_attrs ();
359       memcpy (*slot, &attrs, sizeof (reg_attrs));
360     }
361
362   return (reg_attrs *) *slot;
363 }
364
365
366 #if !HAVE_blockage
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
368    across this insn. */
369
370 rtx
371 gen_blockage (void)
372 {
373   rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
374   MEM_VOLATILE_P (x) = true;
375   return x;
376 }
377 #endif
378
379
380 /* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
381    don't attempt to share with the various global pieces of rtl (such as
382    frame_pointer_rtx).  */
383
384 rtx
385 gen_raw_REG (enum machine_mode mode, int regno)
386 {
387   rtx x = gen_rtx_raw_REG (mode, regno);
388   ORIGINAL_REGNO (x) = regno;
389   return x;
390 }
391
392 /* There are some RTL codes that require special attention; the generation
393    functions do the raw handling.  If you add to this list, modify
394    special_rtx in gengenrtl.c as well.  */
395
396 rtx
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
398 {
399   void **slot;
400
401   if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
402     return const_int_rtx[arg + MAX_SAVED_CONST_INT];
403
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405   if (const_true_rtx && arg == STORE_FLAG_VALUE)
406     return const_true_rtx;
407 #endif
408
409   /* Look up the CONST_INT in the hash table.  */
410   slot = htab_find_slot_with_hash (const_int_htab, &arg,
411                                    (hashval_t) arg, INSERT);
412   if (*slot == 0)
413     *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
414
415   return (rtx) *slot;
416 }
417
418 rtx
419 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
420 {
421   return GEN_INT (trunc_int_for_mode (c, mode));
422 }
423
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425    REAL_VALUE_TYPEs.  Also, their length is known only at run time,
426    so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
427
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429    hash table.  If so, return its counterpart; otherwise add it
430    to the hash table and return it.  */
431 static rtx
432 lookup_const_double (rtx real)
433 {
434   void **slot = htab_find_slot (const_double_htab, real, INSERT);
435   if (*slot == 0)
436     *slot = real;
437
438   return (rtx) *slot;
439 }
440
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442    VALUE in mode MODE.  */
443 rtx
444 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
445 {
446   rtx real = rtx_alloc (CONST_DOUBLE);
447   PUT_MODE (real, mode);
448
449   real->u.rv = value;
450
451   return lookup_const_double (real);
452 }
453
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455    hash table.  If so, return its counterpart; otherwise add it
456    to the hash table and return it.  */
457
458 static rtx
459 lookup_const_fixed (rtx fixed)
460 {
461   void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
462   if (*slot == 0)
463     *slot = fixed;
464
465   return (rtx) *slot;
466 }
467
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469    VALUE in mode MODE.  */
470
471 rtx
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
473 {
474   rtx fixed = rtx_alloc (CONST_FIXED);
475   PUT_MODE (fixed, mode);
476
477   fixed->u.fv = value;
478
479   return lookup_const_fixed (fixed);
480 }
481
482 /* Constructs double_int from rtx CST.  */
483
484 double_int
485 rtx_to_double_int (const_rtx cst)
486 {
487   double_int r;
488
489   if (CONST_INT_P (cst))
490       r = shwi_to_double_int (INTVAL (cst));
491   else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
492     {
493       r.low = CONST_DOUBLE_LOW (cst);
494       r.high = CONST_DOUBLE_HIGH (cst);
495     }
496   else
497     gcc_unreachable ();
498   
499   return r;
500 }
501
502
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
504    a double_int.  */
505
506 rtx
507 immed_double_int_const (double_int i, enum machine_mode mode)
508 {
509   return immed_double_const (i.low, i.high, mode);
510 }
511
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513    of ints: I0 is the low-order word and I1 is the high-order word.
514    Do not use this routine for non-integer modes; convert to
515    REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
516
517 rtx
518 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
519 {
520   rtx value;
521   unsigned int i;
522
523   /* There are the following cases (note that there are no modes with
524      HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
525
526      1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
527         gen_int_mode.
528      2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
529         the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
530         from copies of the sign bit, and sign of i0 and i1 are the same),  then
531         we return a CONST_INT for i0.
532      3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
533   if (mode != VOIDmode)
534     {
535       gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
536                   || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
537                   /* We can get a 0 for an error mark.  */
538                   || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
539                   || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
540
541       if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
542         return gen_int_mode (i0, mode);
543
544       gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
545     }
546
547   /* If this integer fits in one word, return a CONST_INT.  */
548   if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
549     return GEN_INT (i0);
550
551   /* We use VOIDmode for integers.  */
552   value = rtx_alloc (CONST_DOUBLE);
553   PUT_MODE (value, VOIDmode);
554
555   CONST_DOUBLE_LOW (value) = i0;
556   CONST_DOUBLE_HIGH (value) = i1;
557
558   for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
559     XWINT (value, i) = 0;
560
561   return lookup_const_double (value);
562 }
563
564 rtx
565 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
566 {
567   /* In case the MD file explicitly references the frame pointer, have
568      all such references point to the same frame pointer.  This is
569      used during frame pointer elimination to distinguish the explicit
570      references to these registers from pseudos that happened to be
571      assigned to them.
572
573      If we have eliminated the frame pointer or arg pointer, we will
574      be using it as a normal register, for example as a spill
575      register.  In such cases, we might be accessing it in a mode that
576      is not Pmode and therefore cannot use the pre-allocated rtx.
577
578      Also don't do this when we are making new REGs in reload, since
579      we don't want to get confused with the real pointers.  */
580
581   if (mode == Pmode && !reload_in_progress)
582     {
583       if (regno == FRAME_POINTER_REGNUM
584           && (!reload_completed || frame_pointer_needed))
585         return frame_pointer_rtx;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587       if (regno == HARD_FRAME_POINTER_REGNUM
588           && (!reload_completed || frame_pointer_needed))
589         return hard_frame_pointer_rtx;
590 #endif
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592       if (regno == ARG_POINTER_REGNUM)
593         return arg_pointer_rtx;
594 #endif
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596       if (regno == RETURN_ADDRESS_POINTER_REGNUM)
597         return return_address_pointer_rtx;
598 #endif
599       if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
600           && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
601           && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
602         return pic_offset_table_rtx;
603       if (regno == STACK_POINTER_REGNUM)
604         return stack_pointer_rtx;
605     }
606
607 #if 0
608   /* If the per-function register table has been set up, try to re-use
609      an existing entry in that table to avoid useless generation of RTL.
610
611      This code is disabled for now until we can fix the various backends
612      which depend on having non-shared hard registers in some cases.   Long
613      term we want to re-enable this code as it can significantly cut down
614      on the amount of useless RTL that gets generated.
615
616      We'll also need to fix some code that runs after reload that wants to
617      set ORIGINAL_REGNO.  */
618
619   if (cfun
620       && cfun->emit
621       && regno_reg_rtx
622       && regno < FIRST_PSEUDO_REGISTER
623       && reg_raw_mode[regno] == mode)
624     return regno_reg_rtx[regno];
625 #endif
626
627   return gen_raw_REG (mode, regno);
628 }
629
630 rtx
631 gen_rtx_MEM (enum machine_mode mode, rtx addr)
632 {
633   rtx rt = gen_rtx_raw_MEM (mode, addr);
634
635   /* This field is not cleared by the mere allocation of the rtx, so
636      we clear it here.  */
637   MEM_ATTRS (rt) = 0;
638
639   return rt;
640 }
641
642 /* Generate a memory referring to non-trapping constant memory.  */
643
644 rtx
645 gen_const_mem (enum machine_mode mode, rtx addr)
646 {
647   rtx mem = gen_rtx_MEM (mode, addr);
648   MEM_READONLY_P (mem) = 1;
649   MEM_NOTRAP_P (mem) = 1;
650   return mem;
651 }
652
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
654    save areas.  */
655
656 rtx
657 gen_frame_mem (enum machine_mode mode, rtx addr)
658 {
659   rtx mem = gen_rtx_MEM (mode, addr);
660   MEM_NOTRAP_P (mem) = 1;
661   set_mem_alias_set (mem, get_frame_alias_set ());
662   return mem;
663 }
664
665 /* Generate a MEM referring to a temporary use of the stack, not part
666     of the fixed stack frame.  For example, something which is pushed
667     by a target splitter.  */
668 rtx
669 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
670 {
671   rtx mem = gen_rtx_MEM (mode, addr);
672   MEM_NOTRAP_P (mem) = 1;
673   if (!cfun->calls_alloca)
674     set_mem_alias_set (mem, get_frame_alias_set ());
675   return mem;
676 }
677
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
679    this construct would be valid, and false otherwise.  */
680
681 bool
682 validate_subreg (enum machine_mode omode, enum machine_mode imode,
683                  const_rtx reg, unsigned int offset)
684 {
685   unsigned int isize = GET_MODE_SIZE (imode);
686   unsigned int osize = GET_MODE_SIZE (omode);
687
688   /* All subregs must be aligned.  */
689   if (offset % osize != 0)
690     return false;
691
692   /* The subreg offset cannot be outside the inner object.  */
693   if (offset >= isize)
694     return false;
695
696   /* ??? This should not be here.  Temporarily continue to allow word_mode
697      subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
698      Generally, backends are doing something sketchy but it'll take time to
699      fix them all.  */
700   if (omode == word_mode)
701     ;
702   /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
703      is the culprit here, and not the backends.  */
704   else if (osize >= UNITS_PER_WORD && isize >= osize)
705     ;
706   /* Allow component subregs of complex and vector.  Though given the below
707      extraction rules, it's not always clear what that means.  */
708   else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
709            && GET_MODE_INNER (imode) == omode)
710     ;
711   /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712      i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
713      represent this.  It's questionable if this ought to be represented at
714      all -- why can't this all be hidden in post-reload splitters that make
715      arbitrarily mode changes to the registers themselves.  */
716   else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
717     ;
718   /* Subregs involving floating point modes are not allowed to
719      change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
720      (subreg:SI (reg:DF) 0) isn't.  */
721   else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
722     {
723       if (isize != osize)
724         return false;
725     }
726
727   /* Paradoxical subregs must have offset zero.  */
728   if (osize > isize)
729     return offset == 0;
730
731   /* This is a normal subreg.  Verify that the offset is representable.  */
732
733   /* For hard registers, we already have most of these rules collected in
734      subreg_offset_representable_p.  */
735   if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
736     {
737       unsigned int regno = REGNO (reg);
738
739 #ifdef CANNOT_CHANGE_MODE_CLASS
740       if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
741           && GET_MODE_INNER (imode) == omode)
742         ;
743       else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
744         return false;
745 #endif
746
747       return subreg_offset_representable_p (regno, imode, offset, omode);
748     }
749
750   /* For pseudo registers, we want most of the same checks.  Namely:
751      If the register no larger than a word, the subreg must be lowpart.
752      If the register is larger than a word, the subreg must be the lowpart
753      of a subword.  A subreg does *not* perform arbitrary bit extraction.
754      Given that we've already checked mode/offset alignment, we only have
755      to check subword subregs here.  */
756   if (osize < UNITS_PER_WORD)
757     {
758       enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
759       unsigned int low_off = subreg_lowpart_offset (omode, wmode);
760       if (offset % UNITS_PER_WORD != low_off)
761         return false;
762     }
763   return true;
764 }
765
766 rtx
767 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
768 {
769   gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
770   return gen_rtx_raw_SUBREG (mode, reg, offset);
771 }
772
773 /* Generate a SUBREG representing the least-significant part of REG if MODE
774    is smaller than mode of REG, otherwise paradoxical SUBREG.  */
775
776 rtx
777 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
778 {
779   enum machine_mode inmode;
780
781   inmode = GET_MODE (reg);
782   if (inmode == VOIDmode)
783     inmode = mode;
784   return gen_rtx_SUBREG (mode, reg,
785                          subreg_lowpart_offset (mode, inmode));
786 }
787 \f
788
789 /* Create an rtvec and stores within it the RTXen passed in the arguments.  */
790
791 rtvec
792 gen_rtvec (int n, ...)
793 {
794   int i;
795   rtvec rt_val;
796   va_list p;
797
798   va_start (p, n);
799
800   /* Don't allocate an empty rtvec...  */
801   if (n == 0)
802     {
803       va_end (p);
804       return NULL_RTVEC;
805     }
806
807   rt_val = rtvec_alloc (n);
808
809   for (i = 0; i < n; i++)
810     rt_val->elem[i] = va_arg (p, rtx);
811
812   va_end (p);
813   return rt_val;
814 }
815
816 rtvec
817 gen_rtvec_v (int n, rtx *argp)
818 {
819   int i;
820   rtvec rt_val;
821
822   /* Don't allocate an empty rtvec...  */
823   if (n == 0)
824     return NULL_RTVEC;
825
826   rt_val = rtvec_alloc (n);
827
828   for (i = 0; i < n; i++)
829     rt_val->elem[i] = *argp++;
830
831   return rt_val;
832 }
833 \f
834 /* Return the number of bytes between the start of an OUTER_MODE
835    in-memory value and the start of an INNER_MODE in-memory value,
836    given that the former is a lowpart of the latter.  It may be a
837    paradoxical lowpart, in which case the offset will be negative
838    on big-endian targets.  */
839
840 int
841 byte_lowpart_offset (enum machine_mode outer_mode,
842                      enum machine_mode inner_mode)
843 {
844   if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
845     return subreg_lowpart_offset (outer_mode, inner_mode);
846   else
847     return -subreg_lowpart_offset (inner_mode, outer_mode);
848 }
849 \f
850 /* Generate a REG rtx for a new pseudo register of mode MODE.
851    This pseudo is assigned the next sequential register number.  */
852
853 rtx
854 gen_reg_rtx (enum machine_mode mode)
855 {
856   rtx val;
857   unsigned int align = GET_MODE_ALIGNMENT (mode);
858
859   gcc_assert (can_create_pseudo_p ());
860
861   /* If a virtual register with bigger mode alignment is generated,
862      increase stack alignment estimation because it might be spilled
863      to stack later.  */
864   if (SUPPORTS_STACK_ALIGNMENT
865       && crtl->stack_alignment_estimated < align
866       && !crtl->stack_realign_processed)
867     {
868       unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
869       if (crtl->stack_alignment_estimated < min_align)
870         crtl->stack_alignment_estimated = min_align;
871     }
872
873   if (generating_concat_p
874       && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
875           || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
876     {
877       /* For complex modes, don't make a single pseudo.
878          Instead, make a CONCAT of two pseudos.
879          This allows noncontiguous allocation of the real and imaginary parts,
880          which makes much better code.  Besides, allocating DCmode
881          pseudos overstrains reload on some machines like the 386.  */
882       rtx realpart, imagpart;
883       enum machine_mode partmode = GET_MODE_INNER (mode);
884
885       realpart = gen_reg_rtx (partmode);
886       imagpart = gen_reg_rtx (partmode);
887       return gen_rtx_CONCAT (mode, realpart, imagpart);
888     }
889
890   /* Make sure regno_pointer_align, and regno_reg_rtx are large
891      enough to have an element for this pseudo reg number.  */
892
893   if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
894     {
895       int old_size = crtl->emit.regno_pointer_align_length;
896       char *tmp;
897       rtx *new1;
898
899       tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
900       memset (tmp + old_size, 0, old_size);
901       crtl->emit.regno_pointer_align = (unsigned char *) tmp;
902
903       new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
904       memset (new1 + old_size, 0, old_size * sizeof (rtx));
905       regno_reg_rtx = new1;
906
907       crtl->emit.regno_pointer_align_length = old_size * 2;
908     }
909
910   val = gen_raw_REG (mode, reg_rtx_no);
911   regno_reg_rtx[reg_rtx_no++] = val;
912   return val;
913 }
914
915 /* Update NEW with the same attributes as REG, but with OFFSET added
916    to the REG_OFFSET.  */
917
918 static void
919 update_reg_offset (rtx new_rtx, rtx reg, int offset)
920 {
921   REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
922                                    REG_OFFSET (reg) + offset);
923 }
924
925 /* Generate a register with same attributes as REG, but with OFFSET
926    added to the REG_OFFSET.  */
927
928 rtx
929 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
930                     int offset)
931 {
932   rtx new_rtx = gen_rtx_REG (mode, regno);
933
934   update_reg_offset (new_rtx, reg, offset);
935   return new_rtx;
936 }
937
938 /* Generate a new pseudo-register with the same attributes as REG, but
939    with OFFSET added to the REG_OFFSET.  */
940
941 rtx
942 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
943 {
944   rtx new_rtx = gen_reg_rtx (mode);
945
946   update_reg_offset (new_rtx, reg, offset);
947   return new_rtx;
948 }
949
950 /* Adjust REG in-place so that it has mode MODE.  It is assumed that the
951    new register is a (possibly paradoxical) lowpart of the old one.  */
952
953 void
954 adjust_reg_mode (rtx reg, enum machine_mode mode)
955 {
956   update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
957   PUT_MODE (reg, mode);
958 }
959
960 /* Copy REG's attributes from X, if X has any attributes.  If REG and X
961    have different modes, REG is a (possibly paradoxical) lowpart of X.  */
962
963 void
964 set_reg_attrs_from_value (rtx reg, rtx x)
965 {
966   int offset;
967
968   /* Hard registers can be reused for multiple purposes within the same
969      function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
970      on them is wrong.  */
971   if (HARD_REGISTER_P (reg))
972     return;
973
974   offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
975   if (MEM_P (x))
976     {
977       if (MEM_OFFSET_KNOWN_P (x))
978         REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
979                                          MEM_OFFSET (x) + offset);
980       if (MEM_POINTER (x))
981         mark_reg_pointer (reg, 0);
982     }
983   else if (REG_P (x))
984     {
985       if (REG_ATTRS (x))
986         update_reg_offset (reg, x, offset);
987       if (REG_POINTER (x))
988         mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
989     }
990 }
991
992 /* Generate a REG rtx for a new pseudo register, copying the mode
993    and attributes from X.  */
994
995 rtx
996 gen_reg_rtx_and_attrs (rtx x)
997 {
998   rtx reg = gen_reg_rtx (GET_MODE (x));
999   set_reg_attrs_from_value (reg, x);
1000   return reg;
1001 }
1002
1003 /* Set the register attributes for registers contained in PARM_RTX.
1004    Use needed values from memory attributes of MEM.  */
1005
1006 void
1007 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1008 {
1009   if (REG_P (parm_rtx))
1010     set_reg_attrs_from_value (parm_rtx, mem);
1011   else if (GET_CODE (parm_rtx) == PARALLEL)
1012     {
1013       /* Check for a NULL entry in the first slot, used to indicate that the
1014          parameter goes both on the stack and in registers.  */
1015       int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1016       for (; i < XVECLEN (parm_rtx, 0); i++)
1017         {
1018           rtx x = XVECEXP (parm_rtx, 0, i);
1019           if (REG_P (XEXP (x, 0)))
1020             REG_ATTRS (XEXP (x, 0))
1021               = get_reg_attrs (MEM_EXPR (mem),
1022                                INTVAL (XEXP (x, 1)));
1023         }
1024     }
1025 }
1026
1027 /* Set the REG_ATTRS for registers in value X, given that X represents
1028    decl T.  */
1029
1030 void
1031 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1032 {
1033   if (GET_CODE (x) == SUBREG)
1034     {
1035       gcc_assert (subreg_lowpart_p (x));
1036       x = SUBREG_REG (x);
1037     }
1038   if (REG_P (x))
1039     REG_ATTRS (x)
1040       = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1041                                                DECL_MODE (t)));
1042   if (GET_CODE (x) == CONCAT)
1043     {
1044       if (REG_P (XEXP (x, 0)))
1045         REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1046       if (REG_P (XEXP (x, 1)))
1047         REG_ATTRS (XEXP (x, 1))
1048           = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1049     }
1050   if (GET_CODE (x) == PARALLEL)
1051     {
1052       int i, start;
1053
1054       /* Check for a NULL entry, used to indicate that the parameter goes
1055          both on the stack and in registers.  */
1056       if (XEXP (XVECEXP (x, 0, 0), 0))
1057         start = 0;
1058       else
1059         start = 1;
1060
1061       for (i = start; i < XVECLEN (x, 0); i++)
1062         {
1063           rtx y = XVECEXP (x, 0, i);
1064           if (REG_P (XEXP (y, 0)))
1065             REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1066         }
1067     }
1068 }
1069
1070 /* Assign the RTX X to declaration T.  */
1071
1072 void
1073 set_decl_rtl (tree t, rtx x)
1074 {
1075   DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1076   if (x)
1077     set_reg_attrs_for_decl_rtl (t, x);
1078 }
1079
1080 /* Assign the RTX X to parameter declaration T.  BY_REFERENCE_P is true
1081    if the ABI requires the parameter to be passed by reference.  */
1082
1083 void
1084 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1085 {
1086   DECL_INCOMING_RTL (t) = x;
1087   if (x && !by_reference_p)
1088     set_reg_attrs_for_decl_rtl (t, x);
1089 }
1090
1091 /* Identify REG (which may be a CONCAT) as a user register.  */
1092
1093 void
1094 mark_user_reg (rtx reg)
1095 {
1096   if (GET_CODE (reg) == CONCAT)
1097     {
1098       REG_USERVAR_P (XEXP (reg, 0)) = 1;
1099       REG_USERVAR_P (XEXP (reg, 1)) = 1;
1100     }
1101   else
1102     {
1103       gcc_assert (REG_P (reg));
1104       REG_USERVAR_P (reg) = 1;
1105     }
1106 }
1107
1108 /* Identify REG as a probable pointer register and show its alignment
1109    as ALIGN, if nonzero.  */
1110
1111 void
1112 mark_reg_pointer (rtx reg, int align)
1113 {
1114   if (! REG_POINTER (reg))
1115     {
1116       REG_POINTER (reg) = 1;
1117
1118       if (align)
1119         REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1120     }
1121   else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1122     /* We can no-longer be sure just how aligned this pointer is.  */
1123     REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124 }
1125
1126 /* Return 1 plus largest pseudo reg number used in the current function.  */
1127
1128 int
1129 max_reg_num (void)
1130 {
1131   return reg_rtx_no;
1132 }
1133
1134 /* Return 1 + the largest label number used so far in the current function.  */
1135
1136 int
1137 max_label_num (void)
1138 {
1139   return label_num;
1140 }
1141
1142 /* Return first label number used in this function (if any were used).  */
1143
1144 int
1145 get_first_label_num (void)
1146 {
1147   return first_label_num;
1148 }
1149
1150 /* If the rtx for label was created during the expansion of a nested
1151    function, then first_label_num won't include this label number.
1152    Fix this now so that array indices work later.  */
1153
1154 void
1155 maybe_set_first_label_num (rtx x)
1156 {
1157   if (CODE_LABEL_NUMBER (x) < first_label_num)
1158     first_label_num = CODE_LABEL_NUMBER (x);
1159 }
1160 \f
1161 /* Return a value representing some low-order bits of X, where the number
1162    of low-order bits is given by MODE.  Note that no conversion is done
1163    between floating-point and fixed-point values, rather, the bit
1164    representation is returned.
1165
1166    This function handles the cases in common between gen_lowpart, below,
1167    and two variants in cse.c and combine.c.  These are the cases that can
1168    be safely handled at all points in the compilation.
1169
1170    If this is not a case we can handle, return 0.  */
1171
1172 rtx
1173 gen_lowpart_common (enum machine_mode mode, rtx x)
1174 {
1175   int msize = GET_MODE_SIZE (mode);
1176   int xsize;
1177   int offset = 0;
1178   enum machine_mode innermode;
1179
1180   /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1181      so we have to make one up.  Yuk.  */
1182   innermode = GET_MODE (x);
1183   if (CONST_INT_P (x)
1184       && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1185     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1186   else if (innermode == VOIDmode)
1187     innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1188
1189   xsize = GET_MODE_SIZE (innermode);
1190
1191   gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1192
1193   if (innermode == mode)
1194     return x;
1195
1196   /* MODE must occupy no more words than the mode of X.  */
1197   if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1198       > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1199     return 0;
1200
1201   /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1202   if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1203     return 0;
1204
1205   offset = subreg_lowpart_offset (mode, innermode);
1206
1207   if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1208       && (GET_MODE_CLASS (mode) == MODE_INT
1209           || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1210     {
1211       /* If we are getting the low-order part of something that has been
1212          sign- or zero-extended, we can either just use the object being
1213          extended or make a narrower extension.  If we want an even smaller
1214          piece than the size of the object being extended, call ourselves
1215          recursively.
1216
1217          This case is used mostly by combine and cse.  */
1218
1219       if (GET_MODE (XEXP (x, 0)) == mode)
1220         return XEXP (x, 0);
1221       else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1222         return gen_lowpart_common (mode, XEXP (x, 0));
1223       else if (msize < xsize)
1224         return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1225     }
1226   else if (GET_CODE (x) == SUBREG || REG_P (x)
1227            || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1228            || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1229     return simplify_gen_subreg (mode, x, innermode, offset);
1230
1231   /* Otherwise, we can't do this.  */
1232   return 0;
1233 }
1234 \f
1235 rtx
1236 gen_highpart (enum machine_mode mode, rtx x)
1237 {
1238   unsigned int msize = GET_MODE_SIZE (mode);
1239   rtx result;
1240
1241   /* This case loses if X is a subreg.  To catch bugs early,
1242      complain if an invalid MODE is used even in other cases.  */
1243   gcc_assert (msize <= UNITS_PER_WORD
1244               || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1245
1246   result = simplify_gen_subreg (mode, x, GET_MODE (x),
1247                                 subreg_highpart_offset (mode, GET_MODE (x)));
1248   gcc_assert (result);
1249
1250   /* simplify_gen_subreg is not guaranteed to return a valid operand for
1251      the target if we have a MEM.  gen_highpart must return a valid operand,
1252      emitting code if necessary to do so.  */
1253   if (MEM_P (result))
1254     {
1255       result = validize_mem (result);
1256       gcc_assert (result);
1257     }
1258
1259   return result;
1260 }
1261
1262 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1263    be VOIDmode constant.  */
1264 rtx
1265 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1266 {
1267   if (GET_MODE (exp) != VOIDmode)
1268     {
1269       gcc_assert (GET_MODE (exp) == innermode);
1270       return gen_highpart (outermode, exp);
1271     }
1272   return simplify_gen_subreg (outermode, exp, innermode,
1273                               subreg_highpart_offset (outermode, innermode));
1274 }
1275
1276 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
1277
1278 unsigned int
1279 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1280 {
1281   unsigned int offset = 0;
1282   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1283
1284   if (difference > 0)
1285     {
1286       if (WORDS_BIG_ENDIAN)
1287         offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1288       if (BYTES_BIG_ENDIAN)
1289         offset += difference % UNITS_PER_WORD;
1290     }
1291
1292   return offset;
1293 }
1294
1295 /* Return offset in bytes to get OUTERMODE high part
1296    of the value in mode INNERMODE stored in memory in target format.  */
1297 unsigned int
1298 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1299 {
1300   unsigned int offset = 0;
1301   int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1302
1303   gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1304
1305   if (difference > 0)
1306     {
1307       if (! WORDS_BIG_ENDIAN)
1308         offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1309       if (! BYTES_BIG_ENDIAN)
1310         offset += difference % UNITS_PER_WORD;
1311     }
1312
1313   return offset;
1314 }
1315
1316 /* Return 1 iff X, assumed to be a SUBREG,
1317    refers to the least significant part of its containing reg.
1318    If X is not a SUBREG, always return 1 (it is its own low part!).  */
1319
1320 int
1321 subreg_lowpart_p (const_rtx x)
1322 {
1323   if (GET_CODE (x) != SUBREG)
1324     return 1;
1325   else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1326     return 0;
1327
1328   return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1329           == SUBREG_BYTE (x));
1330 }
1331
1332 /* Return true if X is a paradoxical subreg, false otherwise.  */
1333 bool
1334 paradoxical_subreg_p (const_rtx x)
1335 {
1336   if (GET_CODE (x) != SUBREG)
1337     return false;
1338   return (GET_MODE_PRECISION (GET_MODE (x))
1339           > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1340 }
1341 \f
1342 /* Return subword OFFSET of operand OP.
1343    The word number, OFFSET, is interpreted as the word number starting
1344    at the low-order address.  OFFSET 0 is the low-order word if not
1345    WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1346
1347    If we cannot extract the required word, we return zero.  Otherwise,
1348    an rtx corresponding to the requested word will be returned.
1349
1350    VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1351    reload has completed, a valid address will always be returned.  After
1352    reload, if a valid address cannot be returned, we return zero.
1353
1354    If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1355    it is the responsibility of the caller.
1356
1357    MODE is the mode of OP in case it is a CONST_INT.
1358
1359    ??? This is still rather broken for some cases.  The problem for the
1360    moment is that all callers of this thing provide no 'goal mode' to
1361    tell us to work with.  This exists because all callers were written
1362    in a word based SUBREG world.
1363    Now use of this function can be deprecated by simplify_subreg in most
1364    cases.
1365  */
1366
1367 rtx
1368 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1369 {
1370   if (mode == VOIDmode)
1371     mode = GET_MODE (op);
1372
1373   gcc_assert (mode != VOIDmode);
1374
1375   /* If OP is narrower than a word, fail.  */
1376   if (mode != BLKmode
1377       && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1378     return 0;
1379
1380   /* If we want a word outside OP, return zero.  */
1381   if (mode != BLKmode
1382       && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1383     return const0_rtx;
1384
1385   /* Form a new MEM at the requested address.  */
1386   if (MEM_P (op))
1387     {
1388       rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1389
1390       if (! validate_address)
1391         return new_rtx;
1392
1393       else if (reload_completed)
1394         {
1395           if (! strict_memory_address_addr_space_p (word_mode,
1396                                                     XEXP (new_rtx, 0),
1397                                                     MEM_ADDR_SPACE (op)))
1398             return 0;
1399         }
1400       else
1401         return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1402     }
1403
1404   /* Rest can be handled by simplify_subreg.  */
1405   return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1406 }
1407
1408 /* Similar to `operand_subword', but never return 0.  If we can't
1409    extract the required subword, put OP into a register and try again.
1410    The second attempt must succeed.  We always validate the address in
1411    this case.
1412
1413    MODE is the mode of OP, in case it is CONST_INT.  */
1414
1415 rtx
1416 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1417 {
1418   rtx result = operand_subword (op, offset, 1, mode);
1419
1420   if (result)
1421     return result;
1422
1423   if (mode != BLKmode && mode != VOIDmode)
1424     {
1425       /* If this is a register which can not be accessed by words, copy it
1426          to a pseudo register.  */
1427       if (REG_P (op))
1428         op = copy_to_reg (op);
1429       else
1430         op = force_reg (mode, op);
1431     }
1432
1433   result = operand_subword (op, offset, 1, mode);
1434   gcc_assert (result);
1435
1436   return result;
1437 }
1438 \f
1439 /* Returns 1 if both MEM_EXPR can be considered equal
1440    and 0 otherwise.  */
1441
1442 int
1443 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1444 {
1445   if (expr1 == expr2)
1446     return 1;
1447
1448   if (! expr1 || ! expr2)
1449     return 0;
1450
1451   if (TREE_CODE (expr1) != TREE_CODE (expr2))
1452     return 0;
1453
1454   return operand_equal_p (expr1, expr2, 0);
1455 }
1456
1457 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1458    bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1459    -1 if not known.  */
1460
1461 int
1462 get_mem_align_offset (rtx mem, unsigned int align)
1463 {
1464   tree expr;
1465   unsigned HOST_WIDE_INT offset;
1466
1467   /* This function can't use
1468      if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1469          || (MAX (MEM_ALIGN (mem),
1470                   MAX (align, get_object_alignment (MEM_EXPR (mem))))
1471              < align))
1472        return -1;
1473      else
1474        return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1475      for two reasons:
1476      - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1477        for <variable>.  get_inner_reference doesn't handle it and
1478        even if it did, the alignment in that case needs to be determined
1479        from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1480      - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1481        isn't sufficiently aligned, the object it is in might be.  */
1482   gcc_assert (MEM_P (mem));
1483   expr = MEM_EXPR (mem);
1484   if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1485     return -1;
1486
1487   offset = MEM_OFFSET (mem);
1488   if (DECL_P (expr))
1489     {
1490       if (DECL_ALIGN (expr) < align)
1491         return -1;
1492     }
1493   else if (INDIRECT_REF_P (expr))
1494     {
1495       if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1496         return -1;
1497     }
1498   else if (TREE_CODE (expr) == COMPONENT_REF)
1499     {
1500       while (1)
1501         {
1502           tree inner = TREE_OPERAND (expr, 0);
1503           tree field = TREE_OPERAND (expr, 1);
1504           tree byte_offset = component_ref_field_offset (expr);
1505           tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1506
1507           if (!byte_offset
1508               || !host_integerp (byte_offset, 1)
1509               || !host_integerp (bit_offset, 1))
1510             return -1;
1511
1512           offset += tree_low_cst (byte_offset, 1);
1513           offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1514
1515           if (inner == NULL_TREE)
1516             {
1517               if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1518                   < (unsigned int) align)
1519                 return -1;
1520               break;
1521             }
1522           else if (DECL_P (inner))
1523             {
1524               if (DECL_ALIGN (inner) < align)
1525                 return -1;
1526               break;
1527             }
1528           else if (TREE_CODE (inner) != COMPONENT_REF)
1529             return -1;
1530           expr = inner;
1531         }
1532     }
1533   else
1534     return -1;
1535
1536   return offset & ((align / BITS_PER_UNIT) - 1);
1537 }
1538
1539 /* Given REF (a MEM) and T, either the type of X or the expression
1540    corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1541    if we are making a new object of this type.  BITPOS is nonzero if
1542    there is an offset outstanding on T that will be applied later.  */
1543
1544 void
1545 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1546                                  HOST_WIDE_INT bitpos)
1547 {
1548   HOST_WIDE_INT apply_bitpos = 0;
1549   tree type;
1550   struct mem_attrs attrs, *defattrs, *refattrs;
1551   addr_space_t as;
1552
1553   /* It can happen that type_for_mode was given a mode for which there
1554      is no language-level type.  In which case it returns NULL, which
1555      we can see here.  */
1556   if (t == NULL_TREE)
1557     return;
1558
1559   type = TYPE_P (t) ? t : TREE_TYPE (t);
1560   if (type == error_mark_node)
1561     return;
1562
1563   /* If we have already set DECL_RTL = ref, get_alias_set will get the
1564      wrong answer, as it assumes that DECL_RTL already has the right alias
1565      info.  Callers should not set DECL_RTL until after the call to
1566      set_mem_attributes.  */
1567   gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1568
1569   memset (&attrs, 0, sizeof (attrs));
1570
1571   /* Get the alias set from the expression or type (perhaps using a
1572      front-end routine) and use it.  */
1573   attrs.alias = get_alias_set (t);
1574
1575   MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1576   MEM_POINTER (ref) = POINTER_TYPE_P (type);
1577
1578   /* Default values from pre-existing memory attributes if present.  */
1579   refattrs = MEM_ATTRS (ref);
1580   if (refattrs)
1581     {
1582       /* ??? Can this ever happen?  Calling this routine on a MEM that
1583          already carries memory attributes should probably be invalid.  */
1584       attrs.expr = refattrs->expr;
1585       attrs.offset_known_p = refattrs->offset_known_p;
1586       attrs.offset = refattrs->offset;
1587       attrs.size_known_p = refattrs->size_known_p;
1588       attrs.size = refattrs->size;
1589       attrs.align = refattrs->align;
1590     }
1591
1592   /* Otherwise, default values from the mode of the MEM reference.  */
1593   else
1594     {
1595       defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1596       gcc_assert (!defattrs->expr);
1597       gcc_assert (!defattrs->offset_known_p);
1598
1599       /* Respect mode size.  */
1600       attrs.size_known_p = defattrs->size_known_p;
1601       attrs.size = defattrs->size;
1602       /* ??? Is this really necessary?  We probably should always get
1603          the size from the type below.  */
1604
1605       /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1606          if T is an object, always compute the object alignment below.  */
1607       if (TYPE_P (t))
1608         attrs.align = defattrs->align;
1609       else
1610         attrs.align = BITS_PER_UNIT;
1611       /* ??? If T is a type, respecting mode alignment may *also* be wrong
1612          e.g. if the type carries an alignment attribute.  Should we be
1613          able to simply always use TYPE_ALIGN?  */
1614     }
1615
1616   /* We can set the alignment from the type if we are making an object,
1617      this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1618   if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1619     attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1620
1621   else if (TREE_CODE (t) == MEM_REF)
1622     {
1623       tree op0 = TREE_OPERAND (t, 0);
1624       if (TREE_CODE (op0) == ADDR_EXPR
1625           && (DECL_P (TREE_OPERAND (op0, 0))
1626               || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1627         {
1628           if (DECL_P (TREE_OPERAND (op0, 0)))
1629             attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1630           else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1631             {
1632               attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1633 #ifdef CONSTANT_ALIGNMENT
1634               attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1635                                                 attrs.align);
1636 #endif
1637             }
1638           if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1639             {
1640               unsigned HOST_WIDE_INT ioff
1641                 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1642               unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1643               attrs.align = MIN (aoff, attrs.align);
1644             }
1645         }
1646       else
1647         /* ??? This isn't fully correct, we can't set the alignment from the
1648            type in all cases.  */
1649         attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1650     }
1651
1652   else if (TREE_CODE (t) == TARGET_MEM_REF)
1653     /* ??? This isn't fully correct, we can't set the alignment from the
1654        type in all cases.  */
1655     attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1656
1657   /* If the size is known, we can set that.  */
1658   if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1659     {
1660       attrs.size_known_p = true;
1661       attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1662     }
1663
1664   /* If T is not a type, we may be able to deduce some more information about
1665      the expression.  */
1666   if (! TYPE_P (t))
1667     {
1668       tree base;
1669       bool align_computed = false;
1670
1671       if (TREE_THIS_VOLATILE (t))
1672         MEM_VOLATILE_P (ref) = 1;
1673
1674       /* Now remove any conversions: they don't change what the underlying
1675          object is.  Likewise for SAVE_EXPR.  */
1676       while (CONVERT_EXPR_P (t)
1677              || TREE_CODE (t) == VIEW_CONVERT_EXPR
1678              || TREE_CODE (t) == SAVE_EXPR)
1679         t = TREE_OPERAND (t, 0);
1680
1681       /* Note whether this expression can trap.  */
1682       MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1683
1684       base = get_base_address (t);
1685       if (base)
1686         {
1687           if (DECL_P (base)
1688               && TREE_READONLY (base)
1689               && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1690               && !TREE_THIS_VOLATILE (base))
1691             MEM_READONLY_P (ref) = 1;
1692
1693           /* Mark static const strings readonly as well.  */
1694           if (TREE_CODE (base) == STRING_CST
1695               && TREE_READONLY (base)
1696               && TREE_STATIC (base))
1697             MEM_READONLY_P (ref) = 1;
1698
1699           if (TREE_CODE (base) == MEM_REF
1700               || TREE_CODE (base) == TARGET_MEM_REF)
1701             as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1702                                                                       0))));
1703           else
1704             as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1705         }
1706       else
1707         as = TYPE_ADDR_SPACE (type);
1708
1709       /* If this expression uses it's parent's alias set, mark it such
1710          that we won't change it.  */
1711       if (component_uses_parent_alias_set (t))
1712         MEM_KEEP_ALIAS_SET_P (ref) = 1;
1713
1714       /* If this is a decl, set the attributes of the MEM from it.  */
1715       if (DECL_P (t))
1716         {
1717           attrs.expr = t;
1718           attrs.offset_known_p = true;
1719           attrs.offset = 0;
1720           apply_bitpos = bitpos;
1721           if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1722             {
1723               attrs.size_known_p = true;
1724               attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1725             }
1726           else
1727             attrs.size_known_p = false;
1728           attrs.align = DECL_ALIGN (t);
1729           align_computed = true;
1730         }
1731
1732       /* If this is a constant, we know the alignment.  */
1733       else if (CONSTANT_CLASS_P (t))
1734         {
1735           attrs.align = TYPE_ALIGN (type);
1736 #ifdef CONSTANT_ALIGNMENT
1737           attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1738 #endif
1739           align_computed = true;
1740         }
1741
1742       /* If this is a field reference and not a bit-field, record it.  */
1743       /* ??? There is some information that can be gleaned from bit-fields,
1744          such as the word offset in the structure that might be modified.
1745          But skip it for now.  */
1746       else if (TREE_CODE (t) == COMPONENT_REF
1747                && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1748         {
1749           attrs.expr = t;
1750           attrs.offset_known_p = true;
1751           attrs.offset = 0;
1752           apply_bitpos = bitpos;
1753           /* ??? Any reason the field size would be different than
1754              the size we got from the type?  */
1755         }
1756
1757       /* If this is an array reference, look for an outer field reference.  */
1758       else if (TREE_CODE (t) == ARRAY_REF)
1759         {
1760           tree off_tree = size_zero_node;
1761           /* We can't modify t, because we use it at the end of the
1762              function.  */
1763           tree t2 = t;
1764
1765           do
1766             {
1767               tree index = TREE_OPERAND (t2, 1);
1768               tree low_bound = array_ref_low_bound (t2);
1769               tree unit_size = array_ref_element_size (t2);
1770
1771               /* We assume all arrays have sizes that are a multiple of a byte.
1772                  First subtract the lower bound, if any, in the type of the
1773                  index, then convert to sizetype and multiply by the size of
1774                  the array element.  */
1775               if (! integer_zerop (low_bound))
1776                 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1777                                      index, low_bound);
1778
1779               off_tree = size_binop (PLUS_EXPR,
1780                                      size_binop (MULT_EXPR,
1781                                                  fold_convert (sizetype,
1782                                                                index),
1783                                                  unit_size),
1784                                      off_tree);
1785               t2 = TREE_OPERAND (t2, 0);
1786             }
1787           while (TREE_CODE (t2) == ARRAY_REF);
1788
1789           if (DECL_P (t2))
1790             {
1791               attrs.expr = t2;
1792               attrs.offset_known_p = false;
1793               if (host_integerp (off_tree, 1))
1794                 {
1795                   HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1796                   HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1797                   attrs.align = DECL_ALIGN (t2);
1798                   if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1799                     attrs.align = aoff;
1800                   align_computed = true;
1801                   attrs.offset_known_p = true;
1802                   attrs.offset = ioff;
1803                   apply_bitpos = bitpos;
1804                 }
1805             }
1806           else if (TREE_CODE (t2) == COMPONENT_REF)
1807             {
1808               attrs.expr = t2;
1809               attrs.offset_known_p = false;
1810               if (host_integerp (off_tree, 1))
1811                 {
1812                   attrs.offset_known_p = true;
1813                   attrs.offset = tree_low_cst (off_tree, 1);
1814                   apply_bitpos = bitpos;
1815                 }
1816               /* ??? Any reason the field size would be different than
1817                  the size we got from the type?  */
1818             }
1819
1820           /* If this is an indirect reference, record it.  */
1821           else if (TREE_CODE (t) == MEM_REF)
1822             {
1823               attrs.expr = t;
1824               attrs.offset_known_p = true;
1825               attrs.offset = 0;
1826               apply_bitpos = bitpos;
1827             }
1828         }
1829
1830       /* If this is an indirect reference, record it.  */
1831       else if (TREE_CODE (t) == MEM_REF 
1832                || TREE_CODE (t) == TARGET_MEM_REF)
1833         {
1834           attrs.expr = t;
1835           attrs.offset_known_p = true;
1836           attrs.offset = 0;
1837           apply_bitpos = bitpos;
1838         }
1839
1840       if (!align_computed)
1841         {
1842           unsigned int obj_align = get_object_alignment (t);
1843           attrs.align = MAX (attrs.align, obj_align);
1844         }
1845     }
1846   else
1847     as = TYPE_ADDR_SPACE (type);
1848
1849   /* If we modified OFFSET based on T, then subtract the outstanding
1850      bit position offset.  Similarly, increase the size of the accessed
1851      object to contain the negative offset.  */
1852   if (apply_bitpos)
1853     {
1854       gcc_assert (attrs.offset_known_p);
1855       attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1856       if (attrs.size_known_p)
1857         attrs.size += apply_bitpos / BITS_PER_UNIT;
1858     }
1859
1860   /* Now set the attributes we computed above.  */
1861   attrs.addrspace = as;
1862   set_mem_attrs (ref, &attrs);
1863 }
1864
1865 void
1866 set_mem_attributes (rtx ref, tree t, int objectp)
1867 {
1868   set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1869 }
1870
1871 /* Set the alias set of MEM to SET.  */
1872
1873 void
1874 set_mem_alias_set (rtx mem, alias_set_type set)
1875 {
1876   struct mem_attrs attrs;
1877
1878   /* If the new and old alias sets don't conflict, something is wrong.  */
1879   gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1880   attrs = *get_mem_attrs (mem);
1881   attrs.alias = set;
1882   set_mem_attrs (mem, &attrs);
1883 }
1884
1885 /* Set the address space of MEM to ADDRSPACE (target-defined).  */
1886
1887 void
1888 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1889 {
1890   struct mem_attrs attrs;
1891
1892   attrs = *get_mem_attrs (mem);
1893   attrs.addrspace = addrspace;
1894   set_mem_attrs (mem, &attrs);
1895 }
1896
1897 /* Set the alignment of MEM to ALIGN bits.  */
1898
1899 void
1900 set_mem_align (rtx mem, unsigned int align)
1901 {
1902   struct mem_attrs attrs;
1903
1904   attrs = *get_mem_attrs (mem);
1905   attrs.align = align;
1906   set_mem_attrs (mem, &attrs);
1907 }
1908
1909 /* Set the expr for MEM to EXPR.  */
1910
1911 void
1912 set_mem_expr (rtx mem, tree expr)
1913 {
1914   struct mem_attrs attrs;
1915
1916   attrs = *get_mem_attrs (mem);
1917   attrs.expr = expr;
1918   set_mem_attrs (mem, &attrs);
1919 }
1920
1921 /* Set the offset of MEM to OFFSET.  */
1922
1923 void
1924 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1925 {
1926   struct mem_attrs attrs;
1927
1928   attrs = *get_mem_attrs (mem);
1929   attrs.offset_known_p = true;
1930   attrs.offset = offset;
1931   set_mem_attrs (mem, &attrs);
1932 }
1933
1934 /* Clear the offset of MEM.  */
1935
1936 void
1937 clear_mem_offset (rtx mem)
1938 {
1939   struct mem_attrs attrs;
1940
1941   attrs = *get_mem_attrs (mem);
1942   attrs.offset_known_p = false;
1943   set_mem_attrs (mem, &attrs);
1944 }
1945
1946 /* Set the size of MEM to SIZE.  */
1947
1948 void
1949 set_mem_size (rtx mem, HOST_WIDE_INT size)
1950 {
1951   struct mem_attrs attrs;
1952
1953   attrs = *get_mem_attrs (mem);
1954   attrs.size_known_p = true;
1955   attrs.size = size;
1956   set_mem_attrs (mem, &attrs);
1957 }
1958
1959 /* Clear the size of MEM.  */
1960
1961 void
1962 clear_mem_size (rtx mem)
1963 {
1964   struct mem_attrs attrs;
1965
1966   attrs = *get_mem_attrs (mem);
1967   attrs.size_known_p = false;
1968   set_mem_attrs (mem, &attrs);
1969 }
1970 \f
1971 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1972    and its address changed to ADDR.  (VOIDmode means don't change the mode.
1973    NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1974    returned memory location is required to be valid.  The memory
1975    attributes are not changed.  */
1976
1977 static rtx
1978 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1979 {
1980   addr_space_t as;
1981   rtx new_rtx;
1982
1983   gcc_assert (MEM_P (memref));
1984   as = MEM_ADDR_SPACE (memref);
1985   if (mode == VOIDmode)
1986     mode = GET_MODE (memref);
1987   if (addr == 0)
1988     addr = XEXP (memref, 0);
1989   if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1990       && (!validate || memory_address_addr_space_p (mode, addr, as)))
1991     return memref;
1992
1993   if (validate)
1994     {
1995       if (reload_in_progress || reload_completed)
1996         gcc_assert (memory_address_addr_space_p (mode, addr, as));
1997       else
1998         addr = memory_address_addr_space (mode, addr, as);
1999     }
2000
2001   if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2002     return memref;
2003
2004   new_rtx = gen_rtx_MEM (mode, addr);
2005   MEM_COPY_ATTRIBUTES (new_rtx, memref);
2006   return new_rtx;
2007 }
2008
2009 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2010    way we are changing MEMREF, so we only preserve the alias set.  */
2011
2012 rtx
2013 change_address (rtx memref, enum machine_mode mode, rtx addr)
2014 {
2015   rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2016   enum machine_mode mmode = GET_MODE (new_rtx);
2017   struct mem_attrs attrs, *defattrs;
2018
2019   attrs = *get_mem_attrs (memref);
2020   defattrs = mode_mem_attrs[(int) mmode];
2021   attrs.expr = NULL_TREE;
2022   attrs.offset_known_p = false;
2023   attrs.size_known_p = defattrs->size_known_p;
2024   attrs.size = defattrs->size;
2025   attrs.align = defattrs->align;
2026
2027   /* If there are no changes, just return the original memory reference.  */
2028   if (new_rtx == memref)
2029     {
2030       if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2031         return new_rtx;
2032
2033       new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2034       MEM_COPY_ATTRIBUTES (new_rtx, memref);
2035     }
2036
2037   set_mem_attrs (new_rtx, &attrs);
2038   return new_rtx;
2039 }
2040
2041 /* Return a memory reference like MEMREF, but with its mode changed
2042    to MODE and its address offset by OFFSET bytes.  If VALIDATE is
2043    nonzero, the memory address is forced to be valid.
2044    If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2045    and caller is responsible for adjusting MEMREF base register.  */
2046
2047 rtx
2048 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2049                   int validate, int adjust)
2050 {
2051   rtx addr = XEXP (memref, 0);
2052   rtx new_rtx;
2053   enum machine_mode address_mode;
2054   int pbits;
2055   struct mem_attrs attrs, *defattrs;
2056   unsigned HOST_WIDE_INT max_align;
2057
2058   attrs = *get_mem_attrs (memref);
2059
2060   /* If there are no changes, just return the original memory reference.  */
2061   if (mode == GET_MODE (memref) && !offset
2062       && (!validate || memory_address_addr_space_p (mode, addr,
2063                                                     attrs.addrspace)))
2064     return memref;
2065
2066   /* ??? Prefer to create garbage instead of creating shared rtl.
2067      This may happen even if offset is nonzero -- consider
2068      (plus (plus reg reg) const_int) -- so do this always.  */
2069   addr = copy_rtx (addr);
2070
2071   /* Convert a possibly large offset to a signed value within the
2072      range of the target address space.  */
2073   address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2074   pbits = GET_MODE_BITSIZE (address_mode);
2075   if (HOST_BITS_PER_WIDE_INT > pbits)
2076     {
2077       int shift = HOST_BITS_PER_WIDE_INT - pbits;
2078       offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2079                 >> shift);
2080     }
2081
2082   if (adjust)
2083     {
2084       /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2085          object, we can merge it into the LO_SUM.  */
2086       if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2087           && offset >= 0
2088           && (unsigned HOST_WIDE_INT) offset
2089               < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2090         addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2091                                plus_constant (XEXP (addr, 1), offset));
2092       else
2093         addr = plus_constant (addr, offset);
2094     }
2095
2096   new_rtx = change_address_1 (memref, mode, addr, validate);
2097
2098   /* If the address is a REG, change_address_1 rightfully returns memref,
2099      but this would destroy memref's MEM_ATTRS.  */
2100   if (new_rtx == memref && offset != 0)
2101     new_rtx = copy_rtx (new_rtx);
2102
2103   /* Compute the new values of the memory attributes due to this adjustment.
2104      We add the offsets and update the alignment.  */
2105   if (attrs.offset_known_p)
2106     attrs.offset += offset;
2107
2108   /* Compute the new alignment by taking the MIN of the alignment and the
2109      lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2110      if zero.  */
2111   if (offset != 0)
2112     {
2113       max_align = (offset & -offset) * BITS_PER_UNIT;
2114       attrs.align = MIN (attrs.align, max_align);
2115     }
2116
2117   /* We can compute the size in a number of ways.  */
2118   defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2119   if (defattrs->size_known_p)
2120     {
2121       attrs.size_known_p = true;
2122       attrs.size = defattrs->size;
2123     }
2124   else if (attrs.size_known_p)
2125     attrs.size -= offset;
2126
2127   set_mem_attrs (new_rtx, &attrs);
2128
2129   /* At some point, we should validate that this offset is within the object,
2130      if all the appropriate values are known.  */
2131   return new_rtx;
2132 }
2133
2134 /* Return a memory reference like MEMREF, but with its mode changed
2135    to MODE and its address changed to ADDR, which is assumed to be
2136    MEMREF offset by OFFSET bytes.  If VALIDATE is
2137    nonzero, the memory address is forced to be valid.  */
2138
2139 rtx
2140 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2141                              HOST_WIDE_INT offset, int validate)
2142 {
2143   memref = change_address_1 (memref, VOIDmode, addr, validate);
2144   return adjust_address_1 (memref, mode, offset, validate, 0);
2145 }
2146
2147 /* Return a memory reference like MEMREF, but whose address is changed by
2148    adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
2149    known to be in OFFSET (possibly 1).  */
2150
2151 rtx
2152 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2153 {
2154   rtx new_rtx, addr = XEXP (memref, 0);
2155   enum machine_mode address_mode;
2156   struct mem_attrs attrs, *defattrs;
2157
2158   attrs = *get_mem_attrs (memref);
2159   address_mode = targetm.addr_space.address_mode (attrs.addrspace);
2160   new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2161
2162   /* At this point we don't know _why_ the address is invalid.  It
2163      could have secondary memory references, multiplies or anything.
2164
2165      However, if we did go and rearrange things, we can wind up not
2166      being able to recognize the magic around pic_offset_table_rtx.
2167      This stuff is fragile, and is yet another example of why it is
2168      bad to expose PIC machinery too early.  */
2169   if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2170                                      attrs.addrspace)
2171       && GET_CODE (addr) == PLUS
2172       && XEXP (addr, 0) == pic_offset_table_rtx)
2173     {
2174       addr = force_reg (GET_MODE (addr), addr);
2175       new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2176     }
2177
2178   update_temp_slot_address (XEXP (memref, 0), new_rtx);
2179   new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2180
2181   /* If there are no changes, just return the original memory reference.  */
2182   if (new_rtx == memref)
2183     return new_rtx;
2184
2185   /* Update the alignment to reflect the offset.  Reset the offset, which
2186      we don't know.  */
2187   defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2188   attrs.offset_known_p = false;
2189   attrs.size_known_p = defattrs->size_known_p;
2190   attrs.size = defattrs->size;
2191   attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2192   set_mem_attrs (new_rtx, &attrs);
2193   return new_rtx;
2194 }
2195
2196 /* Return a memory reference like MEMREF, but with its address changed to
2197    ADDR.  The caller is asserting that the actual piece of memory pointed
2198    to is the same, just the form of the address is being changed, such as
2199    by putting something into a register.  */
2200
2201 rtx
2202 replace_equiv_address (rtx memref, rtx addr)
2203 {
2204   /* change_address_1 copies the memory attribute structure without change
2205      and that's exactly what we want here.  */
2206   update_temp_slot_address (XEXP (memref, 0), addr);
2207   return change_address_1 (memref, VOIDmode, addr, 1);
2208 }
2209
2210 /* Likewise, but the reference is not required to be valid.  */
2211
2212 rtx
2213 replace_equiv_address_nv (rtx memref, rtx addr)
2214 {
2215   return change_address_1 (memref, VOIDmode, addr, 0);
2216 }
2217
2218 /* Return a memory reference like MEMREF, but with its mode widened to
2219    MODE and offset by OFFSET.  This would be used by targets that e.g.
2220    cannot issue QImode memory operations and have to use SImode memory
2221    operations plus masking logic.  */
2222
2223 rtx
2224 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2225 {
2226   rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2227   struct mem_attrs attrs;
2228   unsigned int size = GET_MODE_SIZE (mode);
2229
2230   /* If there are no changes, just return the original memory reference.  */
2231   if (new_rtx == memref)
2232     return new_rtx;
2233
2234   attrs = *get_mem_attrs (new_rtx);
2235
2236   /* If we don't know what offset we were at within the expression, then
2237      we can't know if we've overstepped the bounds.  */
2238   if (! attrs.offset_known_p)
2239     attrs.expr = NULL_TREE;
2240
2241   while (attrs.expr)
2242     {
2243       if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2244         {
2245           tree field = TREE_OPERAND (attrs.expr, 1);
2246           tree offset = component_ref_field_offset (attrs.expr);
2247
2248           if (! DECL_SIZE_UNIT (field))
2249             {
2250               attrs.expr = NULL_TREE;
2251               break;
2252             }
2253
2254           /* Is the field at least as large as the access?  If so, ok,
2255              otherwise strip back to the containing structure.  */
2256           if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2257               && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2258               && attrs.offset >= 0)
2259             break;
2260
2261           if (! host_integerp (offset, 1))
2262             {
2263               attrs.expr = NULL_TREE;
2264               break;
2265             }
2266
2267           attrs.expr = TREE_OPERAND (attrs.expr, 0);
2268           attrs.offset += tree_low_cst (offset, 1);
2269           attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2270                            / BITS_PER_UNIT);
2271         }
2272       /* Similarly for the decl.  */
2273       else if (DECL_P (attrs.expr)
2274                && DECL_SIZE_UNIT (attrs.expr)
2275                && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2276                && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2277                && (! attrs.offset_known_p || attrs.offset >= 0))
2278         break;
2279       else
2280         {
2281           /* The widened memory access overflows the expression, which means
2282              that it could alias another expression.  Zap it.  */
2283           attrs.expr = NULL_TREE;
2284           break;
2285         }
2286     }
2287
2288   if (! attrs.expr)
2289     attrs.offset_known_p = false;
2290
2291   /* The widened memory may alias other stuff, so zap the alias set.  */
2292   /* ??? Maybe use get_alias_set on any remaining expression.  */
2293   attrs.alias = 0;
2294   attrs.size_known_p = true;
2295   attrs.size = size;
2296   set_mem_attrs (new_rtx, &attrs);
2297   return new_rtx;
2298 }
2299 \f
2300 /* A fake decl that is used as the MEM_EXPR of spill slots.  */
2301 static GTY(()) tree spill_slot_decl;
2302
2303 tree
2304 get_spill_slot_decl (bool force_build_p)
2305 {
2306   tree d = spill_slot_decl;
2307   rtx rd;
2308   struct mem_attrs attrs;
2309
2310   if (d || !force_build_p)
2311     return d;
2312
2313   d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2314                   VAR_DECL, get_identifier ("%sfp"), void_type_node);
2315   DECL_ARTIFICIAL (d) = 1;
2316   DECL_IGNORED_P (d) = 1;
2317   TREE_USED (d) = 1;
2318   spill_slot_decl = d;
2319
2320   rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2321   MEM_NOTRAP_P (rd) = 1;
2322   attrs = *mode_mem_attrs[(int) BLKmode];
2323   attrs.alias = new_alias_set ();
2324   attrs.expr = d;
2325   set_mem_attrs (rd, &attrs);
2326   SET_DECL_RTL (d, rd);
2327
2328   return d;
2329 }
2330
2331 /* Given MEM, a result from assign_stack_local, fill in the memory
2332    attributes as appropriate for a register allocator spill slot.
2333    These slots are not aliasable by other memory.  We arrange for
2334    them all to use a single MEM_EXPR, so that the aliasing code can
2335    work properly in the case of shared spill slots.  */
2336
2337 void
2338 set_mem_attrs_for_spill (rtx mem)
2339 {
2340   struct mem_attrs attrs;
2341   rtx addr;
2342
2343   attrs = *get_mem_attrs (mem);
2344   attrs.expr = get_spill_slot_decl (true);
2345   attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2346   attrs.addrspace = ADDR_SPACE_GENERIC;
2347
2348   /* We expect the incoming memory to be of the form:
2349         (mem:MODE (plus (reg sfp) (const_int offset)))
2350      with perhaps the plus missing for offset = 0.  */
2351   addr = XEXP (mem, 0);
2352   attrs.offset_known_p = true;
2353   attrs.offset = 0;
2354   if (GET_CODE (addr) == PLUS
2355       && CONST_INT_P (XEXP (addr, 1)))
2356     attrs.offset = INTVAL (XEXP (addr, 1));
2357
2358   set_mem_attrs (mem, &attrs);
2359   MEM_NOTRAP_P (mem) = 1;
2360 }
2361 \f
2362 /* Return a newly created CODE_LABEL rtx with a unique label number.  */
2363
2364 rtx
2365 gen_label_rtx (void)
2366 {
2367   return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2368                              NULL, label_num++, NULL);
2369 }
2370 \f
2371 /* For procedure integration.  */
2372
2373 /* Install new pointers to the first and last insns in the chain.
2374    Also, set cur_insn_uid to one higher than the last in use.
2375    Used for an inline-procedure after copying the insn chain.  */
2376
2377 void
2378 set_new_first_and_last_insn (rtx first, rtx last)
2379 {
2380   rtx insn;
2381
2382   set_first_insn (first);
2383   set_last_insn (last);
2384   cur_insn_uid = 0;
2385
2386   if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2387     {
2388       int debug_count = 0;
2389
2390       cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2391       cur_debug_insn_uid = 0;
2392
2393       for (insn = first; insn; insn = NEXT_INSN (insn))
2394         if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2395           cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2396         else
2397           {
2398             cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2399             if (DEBUG_INSN_P (insn))
2400               debug_count++;
2401           }
2402
2403       if (debug_count)
2404         cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2405       else
2406         cur_debug_insn_uid++;
2407     }
2408   else
2409     for (insn = first; insn; insn = NEXT_INSN (insn))
2410       cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2411
2412   cur_insn_uid++;
2413 }
2414 \f
2415 /* Go through all the RTL insn bodies and copy any invalid shared
2416    structure.  This routine should only be called once.  */
2417
2418 static void
2419 unshare_all_rtl_1 (rtx insn)
2420 {
2421   /* Unshare just about everything else.  */
2422   unshare_all_rtl_in_chain (insn);
2423
2424   /* Make sure the addresses of stack slots found outside the insn chain
2425      (such as, in DECL_RTL of a variable) are not shared
2426      with the insn chain.
2427
2428      This special care is necessary when the stack slot MEM does not
2429      actually appear in the insn chain.  If it does appear, its address
2430      is unshared from all else at that point.  */
2431   stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2432 }
2433
2434 /* Go through all the RTL insn bodies and copy any invalid shared
2435    structure, again.  This is a fairly expensive thing to do so it
2436    should be done sparingly.  */
2437
2438 void
2439 unshare_all_rtl_again (rtx insn)
2440 {
2441   rtx p;
2442   tree decl;
2443
2444   for (p = insn; p; p = NEXT_INSN (p))
2445     if (INSN_P (p))
2446       {
2447         reset_used_flags (PATTERN (p));
2448         reset_used_flags (REG_NOTES (p));
2449         if (CALL_P (p))
2450           reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2451       }
2452
2453   /* Make sure that virtual stack slots are not shared.  */
2454   set_used_decls (DECL_INITIAL (cfun->decl));
2455
2456   /* Make sure that virtual parameters are not shared.  */
2457   for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2458     set_used_flags (DECL_RTL (decl));
2459
2460   reset_used_flags (stack_slot_list);
2461
2462   unshare_all_rtl_1 (insn);
2463 }
2464
2465 unsigned int
2466 unshare_all_rtl (void)
2467 {
2468   unshare_all_rtl_1 (get_insns ());
2469   return 0;
2470 }
2471
2472 struct rtl_opt_pass pass_unshare_all_rtl =
2473 {
2474  {
2475   RTL_PASS,
2476   "unshare",                            /* name */
2477   NULL,                                 /* gate */
2478   unshare_all_rtl,                      /* execute */
2479   NULL,                                 /* sub */
2480   NULL,                                 /* next */
2481   0,                                    /* static_pass_number */
2482   TV_NONE,                              /* tv_id */
2483   0,                                    /* properties_required */
2484   0,                                    /* properties_provided */
2485   0,                                    /* properties_destroyed */
2486   0,                                    /* todo_flags_start */
2487   TODO_verify_rtl_sharing               /* todo_flags_finish */
2488  }
2489 };
2490
2491
2492 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2493    Recursively does the same for subexpressions.  */
2494
2495 static void
2496 verify_rtx_sharing (rtx orig, rtx insn)
2497 {
2498   rtx x = orig;
2499   int i;
2500   enum rtx_code code;
2501   const char *format_ptr;
2502
2503   if (x == 0)
2504     return;
2505
2506   code = GET_CODE (x);
2507
2508   /* These types may be freely shared.  */
2509
2510   switch (code)
2511     {
2512     case REG:
2513     case DEBUG_EXPR:
2514     case VALUE:
2515     case CONST_INT:
2516     case CONST_DOUBLE:
2517     case CONST_FIXED:
2518     case CONST_VECTOR:
2519     case SYMBOL_REF:
2520     case LABEL_REF:
2521     case CODE_LABEL:
2522     case PC:
2523     case CC0:
2524     case RETURN:
2525     case SIMPLE_RETURN:
2526     case SCRATCH:
2527       return;
2528       /* SCRATCH must be shared because they represent distinct values.  */
2529     case CLOBBER:
2530       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2531         return;
2532       break;
2533
2534     case CONST:
2535       if (shared_const_p (orig))
2536         return;
2537       break;
2538
2539     case MEM:
2540       /* A MEM is allowed to be shared if its address is constant.  */
2541       if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2542           || reload_completed || reload_in_progress)
2543         return;
2544
2545       break;
2546
2547     default:
2548       break;
2549     }
2550
2551   /* This rtx may not be shared.  If it has already been seen,
2552      replace it with a copy of itself.  */
2553 #ifdef ENABLE_CHECKING
2554   if (RTX_FLAG (x, used))
2555     {
2556       error ("invalid rtl sharing found in the insn");
2557       debug_rtx (insn);
2558       error ("shared rtx");
2559       debug_rtx (x);
2560       internal_error ("internal consistency failure");
2561     }
2562 #endif
2563   gcc_assert (!RTX_FLAG (x, used));
2564
2565   RTX_FLAG (x, used) = 1;
2566
2567   /* Now scan the subexpressions recursively.  */
2568
2569   format_ptr = GET_RTX_FORMAT (code);
2570
2571   for (i = 0; i < GET_RTX_LENGTH (code); i++)
2572     {
2573       switch (*format_ptr++)
2574         {
2575         case 'e':
2576           verify_rtx_sharing (XEXP (x, i), insn);
2577           break;
2578
2579         case 'E':
2580           if (XVEC (x, i) != NULL)
2581             {
2582               int j;
2583               int len = XVECLEN (x, i);
2584
2585               for (j = 0; j < len; j++)
2586                 {
2587                   /* We allow sharing of ASM_OPERANDS inside single
2588                      instruction.  */
2589                   if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2590                       && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2591                           == ASM_OPERANDS))
2592                     verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2593                   else
2594                     verify_rtx_sharing (XVECEXP (x, i, j), insn);
2595                 }
2596             }
2597           break;
2598         }
2599     }
2600   return;
2601 }
2602
2603 /* Go through all the RTL insn bodies and check that there is no unexpected
2604    sharing in between the subexpressions.  */
2605
2606 DEBUG_FUNCTION void
2607 verify_rtl_sharing (void)
2608 {
2609   rtx p;
2610
2611   timevar_push (TV_VERIFY_RTL_SHARING);
2612
2613   for (p = get_insns (); p; p = NEXT_INSN (p))
2614     if (INSN_P (p))
2615       {
2616         reset_used_flags (PATTERN (p));
2617         reset_used_flags (REG_NOTES (p));
2618         if (CALL_P (p))
2619           reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2620         if (GET_CODE (PATTERN (p)) == SEQUENCE)
2621           {
2622             int i;
2623             rtx q, sequence = PATTERN (p);
2624
2625             for (i = 0; i < XVECLEN (sequence, 0); i++)
2626               {
2627                 q = XVECEXP (sequence, 0, i);
2628                 gcc_assert (INSN_P (q));
2629                 reset_used_flags (PATTERN (q));
2630                 reset_used_flags (REG_NOTES (q));
2631                 if (CALL_P (q))
2632                   reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2633               }
2634           }
2635       }
2636
2637   for (p = get_insns (); p; p = NEXT_INSN (p))
2638     if (INSN_P (p))
2639       {
2640         verify_rtx_sharing (PATTERN (p), p);
2641         verify_rtx_sharing (REG_NOTES (p), p);
2642         if (CALL_P (p))
2643           verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2644       }
2645
2646   timevar_pop (TV_VERIFY_RTL_SHARING);
2647 }
2648
2649 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2650    Assumes the mark bits are cleared at entry.  */
2651
2652 void
2653 unshare_all_rtl_in_chain (rtx insn)
2654 {
2655   for (; insn; insn = NEXT_INSN (insn))
2656     if (INSN_P (insn))
2657       {
2658         PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2659         REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2660         if (CALL_P (insn))
2661           CALL_INSN_FUNCTION_USAGE (insn)
2662             = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2663       }
2664 }
2665
2666 /* Go through all virtual stack slots of a function and mark them as
2667    shared.  We never replace the DECL_RTLs themselves with a copy,
2668    but expressions mentioned into a DECL_RTL cannot be shared with
2669    expressions in the instruction stream.
2670
2671    Note that reload may convert pseudo registers into memories in-place.
2672    Pseudo registers are always shared, but MEMs never are.  Thus if we
2673    reset the used flags on MEMs in the instruction stream, we must set
2674    them again on MEMs that appear in DECL_RTLs.  */
2675
2676 static void
2677 set_used_decls (tree blk)
2678 {
2679   tree t;
2680
2681   /* Mark decls.  */
2682   for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2683     if (DECL_RTL_SET_P (t))
2684       set_used_flags (DECL_RTL (t));
2685
2686   /* Now process sub-blocks.  */
2687   for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2688     set_used_decls (t);
2689 }
2690
2691 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2692    Recursively does the same for subexpressions.  Uses
2693    copy_rtx_if_shared_1 to reduce stack space.  */
2694
2695 rtx
2696 copy_rtx_if_shared (rtx orig)
2697 {
2698   copy_rtx_if_shared_1 (&orig);
2699   return orig;
2700 }
2701
2702 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2703    use.  Recursively does the same for subexpressions.  */
2704
2705 static void
2706 copy_rtx_if_shared_1 (rtx *orig1)
2707 {
2708   rtx x;
2709   int i;
2710   enum rtx_code code;
2711   rtx *last_ptr;
2712   const char *format_ptr;
2713   int copied = 0;
2714   int length;
2715
2716   /* Repeat is used to turn tail-recursion into iteration.  */
2717 repeat:
2718   x = *orig1;
2719
2720   if (x == 0)
2721     return;
2722
2723   code = GET_CODE (x);
2724
2725   /* These types may be freely shared.  */
2726
2727   switch (code)
2728     {
2729     case REG:
2730     case DEBUG_EXPR:
2731     case VALUE:
2732     case CONST_INT:
2733     case CONST_DOUBLE:
2734     case CONST_FIXED:
2735     case CONST_VECTOR:
2736     case SYMBOL_REF:
2737     case LABEL_REF:
2738     case CODE_LABEL:
2739     case PC:
2740     case CC0:
2741     case RETURN:
2742     case SIMPLE_RETURN:
2743     case SCRATCH:
2744       /* SCRATCH must be shared because they represent distinct values.  */
2745       return;
2746     case CLOBBER:
2747       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2748         return;
2749       break;
2750
2751     case CONST:
2752       if (shared_const_p (x))
2753         return;
2754       break;
2755
2756     case DEBUG_INSN:
2757     case INSN:
2758     case JUMP_INSN:
2759     case CALL_INSN:
2760     case NOTE:
2761     case BARRIER:
2762       /* The chain of insns is not being copied.  */
2763       return;
2764
2765     default:
2766       break;
2767     }
2768
2769   /* This rtx may not be shared.  If it has already been seen,
2770      replace it with a copy of itself.  */
2771
2772   if (RTX_FLAG (x, used))
2773     {
2774       x = shallow_copy_rtx (x);
2775       copied = 1;
2776     }
2777   RTX_FLAG (x, used) = 1;
2778
2779   /* Now scan the subexpressions recursively.
2780      We can store any replaced subexpressions directly into X
2781      since we know X is not shared!  Any vectors in X
2782      must be copied if X was copied.  */
2783
2784   format_ptr = GET_RTX_FORMAT (code);
2785   length = GET_RTX_LENGTH (code);
2786   last_ptr = NULL;
2787
2788   for (i = 0; i < length; i++)
2789     {
2790       switch (*format_ptr++)
2791         {
2792         case 'e':
2793           if (last_ptr)
2794             copy_rtx_if_shared_1 (last_ptr);
2795           last_ptr = &XEXP (x, i);
2796           break;
2797
2798         case 'E':
2799           if (XVEC (x, i) != NULL)
2800             {
2801               int j;
2802               int len = XVECLEN (x, i);
2803
2804               /* Copy the vector iff I copied the rtx and the length
2805                  is nonzero.  */
2806               if (copied && len > 0)
2807                 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2808
2809               /* Call recursively on all inside the vector.  */
2810               for (j = 0; j < len; j++)
2811                 {
2812                   if (last_ptr)
2813                     copy_rtx_if_shared_1 (last_ptr);
2814                   last_ptr = &XVECEXP (x, i, j);
2815                 }
2816             }
2817           break;
2818         }
2819     }
2820   *orig1 = x;
2821   if (last_ptr)
2822     {
2823       orig1 = last_ptr;
2824       goto repeat;
2825     }
2826   return;
2827 }
2828
2829 /* Set the USED bit in X and its non-shareable subparts to FLAG.  */
2830
2831 static void
2832 mark_used_flags (rtx x, int flag)
2833 {
2834   int i, j;
2835   enum rtx_code code;
2836   const char *format_ptr;
2837   int length;
2838
2839   /* Repeat is used to turn tail-recursion into iteration.  */
2840 repeat:
2841   if (x == 0)
2842     return;
2843
2844   code = GET_CODE (x);
2845
2846   /* These types may be freely shared so we needn't do any resetting
2847      for them.  */
2848
2849   switch (code)
2850     {
2851     case REG:
2852     case DEBUG_EXPR:
2853     case VALUE:
2854     case CONST_INT:
2855     case CONST_DOUBLE:
2856     case CONST_FIXED:
2857     case CONST_VECTOR:
2858     case SYMBOL_REF:
2859     case CODE_LABEL:
2860     case PC:
2861     case CC0:
2862     case RETURN:
2863     case SIMPLE_RETURN:
2864       return;
2865
2866     case DEBUG_INSN:
2867     case INSN:
2868     case JUMP_INSN:
2869     case CALL_INSN:
2870     case NOTE:
2871     case LABEL_REF:
2872     case BARRIER:
2873       /* The chain of insns is not being copied.  */
2874       return;
2875
2876     default:
2877       break;
2878     }
2879
2880   RTX_FLAG (x, used) = flag;
2881
2882   format_ptr = GET_RTX_FORMAT (code);
2883   length = GET_RTX_LENGTH (code);
2884
2885   for (i = 0; i < length; i++)
2886     {
2887       switch (*format_ptr++)
2888         {
2889         case 'e':
2890           if (i == length-1)
2891             {
2892               x = XEXP (x, i);
2893               goto repeat;
2894             }
2895           mark_used_flags (XEXP (x, i), flag);
2896           break;
2897
2898         case 'E':
2899           for (j = 0; j < XVECLEN (x, i); j++)
2900             mark_used_flags (XVECEXP (x, i, j), flag);
2901           break;
2902         }
2903     }
2904 }
2905
2906 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2907    to look for shared sub-parts.  */
2908
2909 void
2910 reset_used_flags (rtx x)
2911 {
2912   mark_used_flags (x, 0);
2913 }
2914
2915 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2916    to look for shared sub-parts.  */
2917
2918 void
2919 set_used_flags (rtx x)
2920 {
2921   mark_used_flags (x, 1);
2922 }
2923 \f
2924 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2925    Return X or the rtx for the pseudo reg the value of X was copied into.
2926    OTHER must be valid as a SET_DEST.  */
2927
2928 rtx
2929 make_safe_from (rtx x, rtx other)
2930 {
2931   while (1)
2932     switch (GET_CODE (other))
2933       {
2934       case SUBREG:
2935         other = SUBREG_REG (other);
2936         break;
2937       case STRICT_LOW_PART:
2938       case SIGN_EXTEND:
2939       case ZERO_EXTEND:
2940         other = XEXP (other, 0);
2941         break;
2942       default:
2943         goto done;
2944       }
2945  done:
2946   if ((MEM_P (other)
2947        && ! CONSTANT_P (x)
2948        && !REG_P (x)
2949        && GET_CODE (x) != SUBREG)
2950       || (REG_P (other)
2951           && (REGNO (other) < FIRST_PSEUDO_REGISTER
2952               || reg_mentioned_p (other, x))))
2953     {
2954       rtx temp = gen_reg_rtx (GET_MODE (x));
2955       emit_move_insn (temp, x);
2956       return temp;
2957     }
2958   return x;
2959 }
2960 \f
2961 /* Emission of insns (adding them to the doubly-linked list).  */
2962
2963 /* Return the last insn emitted, even if it is in a sequence now pushed.  */
2964
2965 rtx
2966 get_last_insn_anywhere (void)
2967 {
2968   struct sequence_stack *stack;
2969   if (get_last_insn ())
2970     return get_last_insn ();
2971   for (stack = seq_stack; stack; stack = stack->next)
2972     if (stack->last != 0)
2973       return stack->last;
2974   return 0;
2975 }
2976
2977 /* Return the first nonnote insn emitted in current sequence or current
2978    function.  This routine looks inside SEQUENCEs.  */
2979
2980 rtx
2981 get_first_nonnote_insn (void)
2982 {
2983   rtx insn = get_insns ();
2984
2985   if (insn)
2986     {
2987       if (NOTE_P (insn))
2988         for (insn = next_insn (insn);
2989              insn && NOTE_P (insn);
2990              insn = next_insn (insn))
2991           continue;
2992       else
2993         {
2994           if (NONJUMP_INSN_P (insn)
2995               && GET_CODE (PATTERN (insn)) == SEQUENCE)
2996             insn = XVECEXP (PATTERN (insn), 0, 0);
2997         }
2998     }
2999
3000   return insn;
3001 }
3002
3003 /* Return the last nonnote insn emitted in current sequence or current
3004    function.  This routine looks inside SEQUENCEs.  */
3005
3006 rtx
3007 get_last_nonnote_insn (void)
3008 {
3009   rtx insn = get_last_insn ();
3010
3011   if (insn)
3012     {
3013       if (NOTE_P (insn))
3014         for (insn = previous_insn (insn);
3015              insn && NOTE_P (insn);
3016              insn = previous_insn (insn))
3017           continue;
3018       else
3019         {
3020           if (NONJUMP_INSN_P (insn)
3021               && GET_CODE (PATTERN (insn)) == SEQUENCE)
3022             insn = XVECEXP (PATTERN (insn), 0,
3023                             XVECLEN (PATTERN (insn), 0) - 1);
3024         }
3025     }
3026
3027   return insn;
3028 }
3029
3030 /* Return the number of actual (non-debug) insns emitted in this
3031    function.  */
3032
3033 int
3034 get_max_insn_count (void)
3035 {
3036   int n = cur_insn_uid;
3037
3038   /* The table size must be stable across -g, to avoid codegen
3039      differences due to debug insns, and not be affected by
3040      -fmin-insn-uid, to avoid excessive table size and to simplify
3041      debugging of -fcompare-debug failures.  */
3042   if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3043     n -= cur_debug_insn_uid;
3044   else
3045     n -= MIN_NONDEBUG_INSN_UID;
3046
3047   return n;
3048 }
3049
3050 \f
3051 /* Return the next insn.  If it is a SEQUENCE, return the first insn
3052    of the sequence.  */
3053
3054 rtx
3055 next_insn (rtx insn)
3056 {
3057   if (insn)
3058     {
3059       insn = NEXT_INSN (insn);
3060       if (insn && NONJUMP_INSN_P (insn)
3061           && GET_CODE (PATTERN (insn)) == SEQUENCE)
3062         insn = XVECEXP (PATTERN (insn), 0, 0);
3063     }
3064
3065   return insn;
3066 }
3067
3068 /* Return the previous insn.  If it is a SEQUENCE, return the last insn
3069    of the sequence.  */
3070
3071 rtx
3072 previous_insn (rtx insn)
3073 {
3074   if (insn)
3075     {
3076       insn = PREV_INSN (insn);
3077       if (insn && NONJUMP_INSN_P (insn)
3078           && GET_CODE (PATTERN (insn)) == SEQUENCE)
3079         insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3080     }
3081
3082   return insn;
3083 }
3084
3085 /* Return the next insn after INSN that is not a NOTE.  This routine does not
3086    look inside SEQUENCEs.  */
3087
3088 rtx
3089 next_nonnote_insn (rtx insn)
3090 {
3091   while (insn)
3092     {
3093       insn = NEXT_INSN (insn);
3094       if (insn == 0 || !NOTE_P (insn))
3095         break;
3096     }
3097
3098   return insn;
3099 }
3100
3101 /* Return the next insn after INSN that is not a NOTE, but stop the
3102    search before we enter another basic block.  This routine does not
3103    look inside SEQUENCEs.  */
3104
3105 rtx
3106 next_nonnote_insn_bb (rtx insn)
3107 {
3108   while (insn)
3109     {
3110       insn = NEXT_INSN (insn);
3111       if (insn == 0 || !NOTE_P (insn))
3112         break;
3113       if (NOTE_INSN_BASIC_BLOCK_P (insn))
3114         return NULL_RTX;
3115     }
3116
3117   return insn;
3118 }
3119
3120 /* Return the previous insn before INSN that is not a NOTE.  This routine does
3121    not look inside SEQUENCEs.  */
3122
3123 rtx
3124 prev_nonnote_insn (rtx insn)
3125 {
3126   while (insn)
3127     {
3128       insn = PREV_INSN (insn);
3129       if (insn == 0 || !NOTE_P (insn))
3130         break;
3131     }
3132
3133   return insn;
3134 }
3135
3136 /* Return the previous insn before INSN that is not a NOTE, but stop
3137    the search before we enter another basic block.  This routine does
3138    not look inside SEQUENCEs.  */
3139
3140 rtx
3141 prev_nonnote_insn_bb (rtx insn)
3142 {
3143   while (insn)
3144     {
3145       insn = PREV_INSN (insn);
3146       if (insn == 0 || !NOTE_P (insn))
3147         break;
3148       if (NOTE_INSN_BASIC_BLOCK_P (insn))
3149         return NULL_RTX;
3150     }
3151
3152   return insn;
3153 }
3154
3155 /* Return the next insn after INSN that is not a DEBUG_INSN.  This
3156    routine does not look inside SEQUENCEs.  */
3157
3158 rtx
3159 next_nondebug_insn (rtx insn)
3160 {
3161   while (insn)
3162     {
3163       insn = NEXT_INSN (insn);
3164       if (insn == 0 || !DEBUG_INSN_P (insn))
3165         break;
3166     }
3167
3168   return insn;
3169 }
3170
3171 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3172    This routine does not look inside SEQUENCEs.  */
3173
3174 rtx
3175 prev_nondebug_insn (rtx insn)
3176 {
3177   while (insn)
3178     {
3179       insn = PREV_INSN (insn);
3180       if (insn == 0 || !DEBUG_INSN_P (insn))
3181         break;
3182     }
3183
3184   return insn;
3185 }
3186
3187 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3188    This routine does not look inside SEQUENCEs.  */
3189
3190 rtx
3191 next_nonnote_nondebug_insn (rtx insn)
3192 {
3193   while (insn)
3194     {
3195       insn = NEXT_INSN (insn);
3196       if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3197         break;
3198     }
3199
3200   return insn;
3201 }
3202
3203 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3204    This routine does not look inside SEQUENCEs.  */
3205
3206 rtx
3207 prev_nonnote_nondebug_insn (rtx insn)
3208 {
3209   while (insn)
3210     {
3211       insn = PREV_INSN (insn);
3212       if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3213         break;
3214     }
3215
3216   return insn;
3217 }
3218
3219 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3220    or 0, if there is none.  This routine does not look inside
3221    SEQUENCEs.  */
3222
3223 rtx
3224 next_real_insn (rtx insn)
3225 {
3226   while (insn)
3227     {
3228       insn = NEXT_INSN (insn);
3229       if (insn == 0 || INSN_P (insn))
3230         break;
3231     }
3232
3233   return insn;
3234 }
3235
3236 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3237    or 0, if there is none.  This routine does not look inside
3238    SEQUENCEs.  */
3239
3240 rtx
3241 prev_real_insn (rtx insn)
3242 {
3243   while (insn)
3244     {
3245       insn = PREV_INSN (insn);
3246       if (insn == 0 || INSN_P (insn))
3247         break;
3248     }
3249
3250   return insn;
3251 }
3252
3253 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3254    This routine does not look inside SEQUENCEs.  */
3255
3256 rtx
3257 last_call_insn (void)
3258 {
3259   rtx insn;
3260
3261   for (insn = get_last_insn ();
3262        insn && !CALL_P (insn);
3263        insn = PREV_INSN (insn))
3264     ;
3265
3266   return insn;
3267 }
3268
3269 /* Find the next insn after INSN that really does something.  This routine
3270    does not look inside SEQUENCEs.  After reload this also skips over
3271    standalone USE and CLOBBER insn.  */
3272
3273 int
3274 active_insn_p (const_rtx insn)
3275 {
3276   return (CALL_P (insn) || JUMP_P (insn)
3277           || (NONJUMP_INSN_P (insn)
3278               && (! reload_completed
3279                   || (GET_CODE (PATTERN (insn)) != USE
3280                       && GET_CODE (PATTERN (insn)) != CLOBBER))));
3281 }
3282
3283 rtx
3284 next_active_insn (rtx insn)
3285 {
3286   while (insn)
3287     {
3288       insn = NEXT_INSN (insn);
3289       if (insn == 0 || active_insn_p (insn))
3290         break;
3291     }
3292
3293   return insn;
3294 }
3295
3296 /* Find the last insn before INSN that really does something.  This routine
3297    does not look inside SEQUENCEs.  After reload this also skips over
3298    standalone USE and CLOBBER insn.  */
3299
3300 rtx
3301 prev_active_insn (rtx insn)
3302 {
3303   while (insn)
3304     {
3305       insn = PREV_INSN (insn);
3306       if (insn == 0 || active_insn_p (insn))
3307         break;
3308     }
3309
3310   return insn;
3311 }
3312
3313 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
3314
3315 rtx
3316 next_label (rtx insn)
3317 {
3318   while (insn)
3319     {
3320       insn = NEXT_INSN (insn);
3321       if (insn == 0 || LABEL_P (insn))
3322         break;
3323     }
3324
3325   return insn;
3326 }
3327
3328 /* Return the last label to mark the same position as LABEL.  Return LABEL
3329    itself if it is null or any return rtx.  */
3330
3331 rtx
3332 skip_consecutive_labels (rtx label)
3333 {
3334   rtx insn;
3335
3336   if (label && ANY_RETURN_P (label))
3337     return label;
3338
3339   for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3340     if (LABEL_P (insn))
3341       label = insn;
3342
3343   return label;
3344 }
3345 \f
3346 #ifdef HAVE_cc0
3347 /* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3348    and REG_CC_USER notes so we can find it.  */
3349
3350 void
3351 link_cc0_insns (rtx insn)
3352 {
3353   rtx user = next_nonnote_insn (insn);
3354
3355   if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3356     user = XVECEXP (PATTERN (user), 0, 0);
3357
3358   add_reg_note (user, REG_CC_SETTER, insn);
3359   add_reg_note (insn, REG_CC_USER, user);
3360 }
3361
3362 /* Return the next insn that uses CC0 after INSN, which is assumed to
3363    set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3364    applied to the result of this function should yield INSN).
3365
3366    Normally, this is simply the next insn.  However, if a REG_CC_USER note
3367    is present, it contains the insn that uses CC0.
3368
3369    Return 0 if we can't find the insn.  */
3370
3371 rtx
3372 next_cc0_user (rtx insn)
3373 {
3374   rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3375
3376   if (note)
3377     return XEXP (note, 0);
3378
3379   insn = next_nonnote_insn (insn);
3380   if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3381     insn = XVECEXP (PATTERN (insn), 0, 0);
3382
3383   if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3384     return insn;
3385
3386   return 0;
3387 }
3388
3389 /* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3390    note, it is the previous insn.  */
3391
3392 rtx
3393 prev_cc0_setter (rtx insn)
3394 {
3395   rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3396
3397   if (note)
3398     return XEXP (note, 0);
3399
3400   insn = prev_nonnote_insn (insn);
3401   gcc_assert (sets_cc0_p (PATTERN (insn)));
3402
3403   return insn;
3404 }
3405 #endif
3406
3407 #ifdef AUTO_INC_DEC
3408 /* Find a RTX_AUTOINC class rtx which matches DATA.  */
3409
3410 static int
3411 find_auto_inc (rtx *xp, void *data)
3412 {
3413   rtx x = *xp;
3414   rtx reg = (rtx) data;
3415
3416   if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3417     return 0;
3418
3419   switch (GET_CODE (x))
3420     {
3421       case PRE_DEC:
3422       case PRE_INC:
3423       case POST_DEC:
3424       case POST_INC:
3425       case PRE_MODIFY:
3426       case POST_MODIFY:
3427         if (rtx_equal_p (reg, XEXP (x, 0)))
3428           return 1;
3429         break;
3430
3431       default:
3432         gcc_unreachable ();
3433     }
3434   return -1;
3435 }
3436 #endif
3437
3438 /* Increment the label uses for all labels present in rtx.  */
3439
3440 static void
3441 mark_label_nuses (rtx x)
3442 {
3443   enum rtx_code code;
3444   int i, j;
3445   const char *fmt;
3446
3447   code = GET_CODE (x);
3448   if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3449     LABEL_NUSES (XEXP (x, 0))++;
3450
3451   fmt = GET_RTX_FORMAT (code);
3452   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3453     {
3454       if (fmt[i] == 'e')
3455         mark_label_nuses (XEXP (x, i));
3456       else if (fmt[i] == 'E')
3457         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3458           mark_label_nuses (XVECEXP (x, i, j));
3459     }
3460 }
3461
3462 \f
3463 /* Try splitting insns that can be split for better scheduling.
3464    PAT is the pattern which might split.
3465    TRIAL is the insn providing PAT.
3466    LAST is nonzero if we should return the last insn of the sequence produced.
3467
3468    If this routine succeeds in splitting, it returns the first or last
3469    replacement insn depending on the value of LAST.  Otherwise, it
3470    returns TRIAL.  If the insn to be returned can be split, it will be.  */
3471
3472 rtx
3473 try_split (rtx pat, rtx trial, int last)
3474 {
3475   rtx before = PREV_INSN (trial);
3476   rtx after = NEXT_INSN (trial);
3477   int has_barrier = 0;
3478   rtx note, seq, tem;
3479   int probability;
3480   rtx insn_last, insn;
3481   int njumps = 0;
3482
3483   /* We're not good at redistributing frame information.  */
3484   if (RTX_FRAME_RELATED_P (trial))
3485     return trial;
3486
3487   if (any_condjump_p (trial)
3488       && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3489     split_branch_probability = INTVAL (XEXP (note, 0));
3490   probability = split_branch_probability;
3491
3492   seq = split_insns (pat, trial);
3493
3494   split_branch_probability = -1;
3495
3496   /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3497      We may need to handle this specially.  */
3498   if (after && BARRIER_P (after))
3499     {
3500       has_barrier = 1;
3501       after = NEXT_INSN (after);
3502     }
3503
3504   if (!seq)
3505     return trial;
3506
3507   /* Avoid infinite loop if any insn of the result matches
3508      the original pattern.  */
3509   insn_last = seq;
3510   while (1)
3511     {
3512       if (INSN_P (insn_last)
3513           && rtx_equal_p (PATTERN (insn_last), pat))
3514         return trial;
3515       if (!NEXT_INSN (insn_last))
3516         break;
3517       insn_last = NEXT_INSN (insn_last);
3518     }
3519
3520   /* We will be adding the new sequence to the function.  The splitters
3521      may have introduced invalid RTL sharing, so unshare the sequence now.  */
3522   unshare_all_rtl_in_chain (seq);
3523
3524   /* Mark labels.  */
3525   for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3526     {
3527       if (JUMP_P (insn))
3528         {
3529           mark_jump_label (PATTERN (insn), insn, 0);
3530           njumps++;
3531           if (probability != -1
3532               && any_condjump_p (insn)
3533               && !find_reg_note (insn, REG_BR_PROB, 0))
3534             {
3535               /* We can preserve the REG_BR_PROB notes only if exactly
3536                  one jump is created, otherwise the machine description
3537                  is responsible for this step using
3538                  split_branch_probability variable.  */
3539               gcc_assert (njumps == 1);
3540               add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3541             }
3542         }
3543     }
3544
3545   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3546      in SEQ and copy any additional information across.  */
3547   if (CALL_P (trial))
3548     {
3549       for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3550         if (CALL_P (insn))
3551           {
3552             rtx next, *p;
3553
3554             /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3555                target may have explicitly specified.  */
3556             p = &CALL_INSN_FUNCTION_USAGE (insn);
3557             while (*p)
3558               p = &XEXP (*p, 1);
3559             *p = CALL_INSN_FUNCTION_USAGE (trial);
3560
3561             /* If the old call was a sibling call, the new one must
3562                be too.  */
3563             SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3564
3565             /* If the new call is the last instruction in the sequence,
3566                it will effectively replace the old call in-situ.  Otherwise
3567                we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3568                so that it comes immediately after the new call.  */
3569             if (NEXT_INSN (insn))
3570               for (next = NEXT_INSN (trial);
3571                    next && NOTE_P (next);
3572                    next = NEXT_INSN (next))
3573                 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3574                   {
3575                     remove_insn (next);
3576                     add_insn_after (next, insn, NULL);
3577                     break;
3578                   }
3579           }
3580     }
3581
3582   /* Copy notes, particularly those related to the CFG.  */
3583   for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3584     {
3585       switch (REG_NOTE_KIND (note))
3586         {
3587         case REG_EH_REGION:
3588           copy_reg_eh_region_note_backward (note, insn_last, NULL);
3589           break;
3590
3591         case REG_NORETURN:
3592         case REG_SETJMP:
3593         case REG_TM:
3594           for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3595             {
3596               if (CALL_P (insn))
3597                 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3598             }
3599           break;
3600
3601         case REG_NON_LOCAL_GOTO:
3602           for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3603             {
3604               if (JUMP_P (insn))
3605                 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3606             }
3607           break;
3608
3609 #ifdef AUTO_INC_DEC
3610         case REG_INC:
3611           for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3612             {
3613               rtx reg = XEXP (note, 0);
3614               if (!FIND_REG_INC_NOTE (insn, reg)
3615                   && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3616                 add_reg_note (insn, REG_INC, reg);
3617             }
3618           break;
3619 #endif
3620
3621         case REG_ARGS_SIZE:
3622           fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3623           break;
3624
3625         default:
3626           break;
3627         }
3628     }
3629
3630   /* If there are LABELS inside the split insns increment the
3631      usage count so we don't delete the label.  */
3632   if (INSN_P (trial))
3633     {
3634       insn = insn_last;
3635       while (insn != NULL_RTX)
3636         {
3637           /* JUMP_P insns have already been "marked" above.  */
3638           if (NONJUMP_INSN_P (insn))
3639             mark_label_nuses (PATTERN (insn));
3640
3641           insn = PREV_INSN (insn);
3642         }
3643     }
3644
3645   tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3646
3647   delete_insn (trial);
3648   if (has_barrier)
3649     emit_barrier_after (tem);
3650
3651   /* Recursively call try_split for each new insn created; by the
3652      time control returns here that insn will be fully split, so
3653      set LAST and continue from the insn after the one returned.
3654      We can't use next_active_insn here since AFTER may be a note.
3655      Ignore deleted insns, which can be occur if not optimizing.  */
3656   for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3657     if (! INSN_DELETED_P (tem) && INSN_P (tem))
3658       tem = try_split (PATTERN (tem), tem, 1);
3659
3660   /* Return either the first or the last insn, depending on which was
3661      requested.  */
3662   return last
3663     ? (after ? PREV_INSN (after) : get_last_insn ())
3664     : NEXT_INSN (before);
3665 }
3666 \f
3667 /* Make and return an INSN rtx, initializing all its slots.
3668    Store PATTERN in the pattern slots.  */
3669
3670 rtx
3671 make_insn_raw (rtx pattern)
3672 {
3673   rtx insn;
3674
3675   insn = rtx_alloc (INSN);
3676
3677   INSN_UID (insn) = cur_insn_uid++;
3678   PATTERN (insn) = pattern;
3679   INSN_CODE (insn) = -1;
3680   REG_NOTES (insn) = NULL;
3681   INSN_LOCATOR (insn) = curr_insn_locator ();
3682   BLOCK_FOR_INSN (insn) = NULL;
3683
3684 #ifdef ENABLE_RTL_CHECKING
3685   if (insn
3686       && INSN_P (insn)
3687       && (returnjump_p (insn)
3688           || (GET_CODE (insn) == SET
3689               && SET_DEST (insn) == pc_rtx)))
3690     {
3691       warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3692       debug_rtx (insn);
3693     }
3694 #endif
3695
3696   return insn;
3697 }
3698
3699 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn.  */
3700
3701 rtx
3702 make_debug_insn_raw (rtx pattern)
3703 {
3704   rtx insn;
3705
3706   insn = rtx_alloc (DEBUG_INSN);
3707   INSN_UID (insn) = cur_debug_insn_uid++;
3708   if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3709     INSN_UID (insn) = cur_insn_uid++;
3710
3711   PATTERN (insn) = pattern;
3712   INSN_CODE (insn) = -1;
3713   REG_NOTES (insn) = NULL;
3714   INSN_LOCATOR (insn) = curr_insn_locator ();
3715   BLOCK_FOR_INSN (insn) = NULL;
3716
3717   return insn;
3718 }
3719
3720 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3721
3722 rtx
3723 make_jump_insn_raw (rtx pattern)
3724 {
3725   rtx insn;
3726
3727   insn = rtx_alloc (JUMP_INSN);
3728   INSN_UID (insn) = cur_insn_uid++;
3729
3730   PATTERN (insn) = pattern;
3731   INSN_CODE (insn) = -1;
3732   REG_NOTES (insn) = NULL;
3733   JUMP_LABEL (insn) = NULL;
3734   INSN_LOCATOR (insn) = curr_insn_locator ();
3735   BLOCK_FOR_INSN (insn) = NULL;
3736
3737   return insn;
3738 }
3739
3740 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3741
3742 static rtx
3743 make_call_insn_raw (rtx pattern)
3744 {
3745   rtx insn;
3746
3747   insn = rtx_alloc (CALL_INSN);
3748   INSN_UID (insn) = cur_insn_uid++;
3749
3750   PATTERN (insn) = pattern;
3751   INSN_CODE (insn) = -1;
3752   REG_NOTES (insn) = NULL;
3753   CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3754   INSN_LOCATOR (insn) = curr_insn_locator ();
3755   BLOCK_FOR_INSN (insn) = NULL;
3756
3757   return insn;
3758 }
3759 \f
3760 /* Add INSN to the end of the doubly-linked list.
3761    INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3762
3763 void
3764 add_insn (rtx insn)
3765 {
3766   PREV_INSN (insn) = get_last_insn();
3767   NEXT_INSN (insn) = 0;
3768
3769   if (NULL != get_last_insn())
3770     NEXT_INSN (get_last_insn ()) = insn;
3771
3772   if (NULL == get_insns ())
3773     set_first_insn (insn);
3774
3775   set_last_insn (insn);
3776 }
3777
3778 /* Add INSN into the doubly-linked list after insn AFTER.  This and
3779    the next should be the only functions called to insert an insn once
3780    delay slots have been filled since only they know how to update a
3781    SEQUENCE.  */
3782
3783 void
3784 add_insn_after (rtx insn, rtx after, basic_block bb)
3785 {
3786   rtx next = NEXT_INSN (after);
3787
3788   gcc_assert (!optimize || !INSN_DELETED_P (after));
3789
3790   NEXT_INSN (insn) = next;
3791   PREV_INSN (insn) = after;
3792
3793   if (next)
3794     {
3795       PREV_INSN (next) = insn;
3796       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3797         PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3798     }
3799   else if (get_last_insn () == after)
3800     set_last_insn (insn);
3801   else
3802     {
3803       struct sequence_stack *stack = seq_stack;
3804       /* Scan all pending sequences too.  */
3805       for (; stack; stack = stack->next)
3806         if (after == stack->last)
3807           {
3808             stack->last = insn;
3809             break;
3810           }
3811
3812       gcc_assert (stack);
3813     }
3814
3815   if (!BARRIER_P (after)
3816       && !BARRIER_P (insn)
3817       && (bb = BLOCK_FOR_INSN (after)))
3818     {
3819       set_block_for_insn (insn, bb);
3820       if (INSN_P (insn))
3821         df_insn_rescan (insn);
3822       /* Should not happen as first in the BB is always
3823          either NOTE or LABEL.  */
3824       if (BB_END (bb) == after
3825           /* Avoid clobbering of structure when creating new BB.  */
3826           && !BARRIER_P (insn)
3827           && !NOTE_INSN_BASIC_BLOCK_P (insn))
3828         BB_END (bb) = insn;
3829     }
3830
3831   NEXT_INSN (after) = insn;
3832   if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3833     {
3834       rtx sequence = PATTERN (after);
3835       NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3836     }
3837 }
3838
3839 /* Add INSN into the doubly-linked list before insn BEFORE.  This and
3840    the previous should be the only functions called to insert an insn
3841    once delay slots have been filled since only they know how to
3842    update a SEQUENCE.  If BB is NULL, an attempt is made to infer the
3843    bb from before.  */
3844
3845 void
3846 add_insn_before (rtx insn, rtx before, basic_block bb)
3847 {
3848   rtx prev = PREV_INSN (before);
3849
3850   gcc_assert (!optimize || !INSN_DELETED_P (before));
3851
3852   PREV_INSN (insn) = prev;
3853   NEXT_INSN (insn) = before;
3854
3855   if (prev)
3856     {
3857       NEXT_INSN (prev) = insn;
3858       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3859         {
3860           rtx sequence = PATTERN (prev);
3861           NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3862         }
3863     }
3864   else if (get_insns () == before)
3865     set_first_insn (insn);
3866   else
3867     {
3868       struct sequence_stack *stack = seq_stack;
3869       /* Scan all pending sequences too.  */
3870       for (; stack; stack = stack->next)
3871         if (before == stack->first)
3872           {
3873             stack->first = insn;
3874             break;
3875           }
3876
3877       gcc_assert (stack);
3878     }
3879
3880   if (!bb
3881       && !BARRIER_P (before)
3882       && !BARRIER_P (insn))
3883     bb = BLOCK_FOR_INSN (before);
3884
3885   if (bb)
3886     {
3887       set_block_for_insn (insn, bb);
3888       if (INSN_P (insn))
3889         df_insn_rescan (insn);
3890       /* Should not happen as first in the BB is always either NOTE or
3891          LABEL.  */
3892       gcc_assert (BB_HEAD (bb) != insn
3893                   /* Avoid clobbering of structure when creating new BB.  */
3894                   || BARRIER_P (insn)
3895                   || NOTE_INSN_BASIC_BLOCK_P (insn));
3896     }
3897
3898   PREV_INSN (before) = insn;
3899   if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3900     PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3901 }
3902
3903
3904 /* Replace insn with an deleted instruction note.  */
3905
3906 void
3907 set_insn_deleted (rtx insn)
3908 {
3909   df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3910   PUT_CODE (insn, NOTE);
3911   NOTE_KIND (insn) = NOTE_INSN_DELETED;
3912 }
3913
3914
3915 /* Remove an insn from its doubly-linked list.  This function knows how
3916    to handle sequences.  */
3917 void
3918 remove_insn (rtx insn)
3919 {
3920   rtx next = NEXT_INSN (insn);
3921   rtx prev = PREV_INSN (insn);
3922   basic_block bb;
3923
3924   /* Later in the code, the block will be marked dirty.  */
3925   df_insn_delete (NULL, INSN_UID (insn));
3926
3927   if (prev)
3928     {
3929       NEXT_INSN (prev) = next;
3930       if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3931         {
3932           rtx sequence = PATTERN (prev);
3933           NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3934         }
3935     }
3936   else if (get_insns () == insn)
3937     {
3938       if (next)
3939         PREV_INSN (next) = NULL;
3940       set_first_insn (next);
3941     }
3942   else
3943     {
3944       struct sequence_stack *stack = seq_stack;
3945       /* Scan all pending sequences too.  */
3946       for (; stack; stack = stack->next)
3947         if (insn == stack->first)
3948           {
3949             stack->first = next;
3950             break;
3951           }
3952
3953       gcc_assert (stack);
3954     }
3955
3956   if (next)
3957     {
3958       PREV_INSN (next) = prev;
3959       if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3960         PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3961     }
3962   else if (get_last_insn () == insn)
3963     set_last_insn (prev);
3964   else
3965     {
3966       struct sequence_stack *stack = seq_stack;
3967       /* Scan all pending sequences too.  */
3968       for (; stack; stack = stack->next)
3969         if (insn == stack->last)
3970           {
3971             stack->last = prev;
3972             break;
3973           }
3974
3975       gcc_assert (stack);
3976     }
3977   if (!BARRIER_P (insn)
3978       && (bb = BLOCK_FOR_INSN (insn)))
3979     {
3980       if (NONDEBUG_INSN_P (insn))
3981         df_set_bb_dirty (bb);
3982       if (BB_HEAD (bb) == insn)
3983         {
3984           /* Never ever delete the basic block note without deleting whole
3985              basic block.  */
3986           gcc_assert (!NOTE_P (insn));
3987           BB_HEAD (bb) = next;
3988         }
3989       if (BB_END (bb) == insn)
3990         BB_END (bb) = prev;
3991     }
3992 }
3993
3994 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3995
3996 void
3997 add_function_usage_to (rtx call_insn, rtx call_fusage)
3998 {
3999   gcc_assert (call_insn && CALL_P (call_insn));
4000
4001   /* Put the register usage information on the CALL.  If there is already
4002      some usage information, put ours at the end.  */
4003   if (CALL_INSN_FUNCTION_USAGE (call_insn))
4004     {
4005       rtx link;
4006
4007       for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4008            link = XEXP (link, 1))
4009         ;
4010
4011       XEXP (link, 1) = call_fusage;
4012     }
4013   else
4014     CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4015 }
4016
4017 /* Delete all insns made since FROM.
4018    FROM becomes the new last instruction.  */
4019
4020 void
4021 delete_insns_since (rtx from)
4022 {
4023   if (from == 0)
4024     set_first_insn (0);
4025   else
4026     NEXT_INSN (from) = 0;
4027   set_last_insn (from);
4028 }
4029
4030 /* This function is deprecated, please use sequences instead.
4031
4032    Move a consecutive bunch of insns to a different place in the chain.
4033    The insns to be moved are those between FROM and TO.
4034    They are moved to a new position after the insn AFTER.
4035    AFTER must not be FROM or TO or any insn in between.
4036
4037    This function does not know about SEQUENCEs and hence should not be
4038    called after delay-slot filling has been done.  */
4039
4040 void
4041 reorder_insns_nobb (rtx from, rtx to, rtx after)
4042 {
4043 #ifdef ENABLE_CHECKING
4044   rtx x;
4045   for (x = from; x != to; x = NEXT_INSN (x))
4046     gcc_assert (after != x);
4047   gcc_assert (after != to);
4048 #endif
4049
4050   /* Splice this bunch out of where it is now.  */
4051   if (PREV_INSN (from))
4052     NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4053   if (NEXT_INSN (to))
4054     PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4055   if (get_last_insn () == to)
4056     set_last_insn (PREV_INSN (from));
4057   if (get_insns () == from)
4058     set_first_insn (NEXT_INSN (to));
4059
4060   /* Make the new neighbors point to it and it to them.  */
4061   if (NEXT_INSN (after))
4062     PREV_INSN (NEXT_INSN (after)) = to;
4063
4064   NEXT_INSN (to) = NEXT_INSN (after);
4065   PREV_INSN (from) = after;
4066   NEXT_INSN (after) = from;
4067   if (after == get_last_insn())
4068     set_last_insn (to);
4069 }
4070
4071 /* Same as function above, but take care to update BB boundaries.  */
4072 void
4073 reorder_insns (rtx from, rtx to, rtx after)
4074 {
4075   rtx prev = PREV_INSN (from);
4076   basic_block bb, bb2;
4077
4078   reorder_insns_nobb (from, to, after);
4079
4080   if (!BARRIER_P (after)
4081       && (bb = BLOCK_FOR_INSN (after)))
4082     {
4083       rtx x;
4084       df_set_bb_dirty (bb);
4085
4086       if (!BARRIER_P (from)
4087           && (bb2 = BLOCK_FOR_INSN (from)))
4088         {
4089           if (BB_END (bb2) == to)
4090             BB_END (bb2) = prev;
4091           df_set_bb_dirty (bb2);
4092         }
4093
4094       if (BB_END (bb) == after)
4095         BB_END (bb) = to;
4096
4097       for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4098         if (!BARRIER_P (x))
4099           df_insn_change_bb (x, bb);
4100     }
4101 }
4102
4103 \f
4104 /* Emit insn(s) of given code and pattern
4105    at a specified place within the doubly-linked list.
4106
4107    All of the emit_foo global entry points accept an object
4108    X which is either an insn list or a PATTERN of a single
4109    instruction.
4110
4111    There are thus a few canonical ways to generate code and
4112    emit it at a specific place in the instruction stream.  For
4113    example, consider the instruction named SPOT and the fact that
4114    we would like to emit some instructions before SPOT.  We might
4115    do it like this:
4116
4117         start_sequence ();
4118         ... emit the new instructions ...
4119         insns_head = get_insns ();
4120         end_sequence ();
4121
4122         emit_insn_before (insns_head, SPOT);
4123
4124    It used to be common to generate SEQUENCE rtl instead, but that
4125    is a relic of the past which no longer occurs.  The reason is that
4126    SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4127    generated would almost certainly die right after it was created.  */
4128
4129 static rtx
4130 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4131                            rtx (*make_raw) (rtx))
4132 {
4133   rtx insn;
4134
4135   gcc_assert (before);
4136
4137   if (x == NULL_RTX)
4138     return last;
4139
4140   switch (GET_CODE (x))
4141     {
4142     case DEBUG_INSN:
4143     case INSN:
4144     case JUMP_INSN:
4145     case CALL_INSN:
4146     case CODE_LABEL:
4147     case BARRIER:
4148     case NOTE:
4149       insn = x;
4150       while (insn)
4151         {
4152           rtx next = NEXT_INSN (insn);
4153           add_insn_before (insn, before, bb);
4154           last = insn;
4155           insn = next;
4156         }
4157       break;
4158
4159 #ifdef ENABLE_RTL_CHECKING
4160     case SEQUENCE:
4161       gcc_unreachable ();
4162       break;
4163 #endif
4164
4165     default:
4166       last = (*make_raw) (x);
4167       add_insn_before (last, before, bb);
4168       break;
4169     }
4170
4171   return last;
4172 }
4173
4174 /* Make X be output before the instruction BEFORE.  */
4175
4176 rtx
4177 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4178 {
4179   return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4180 }
4181
4182 /* Make an instruction with body X and code JUMP_INSN
4183    and output it before the instruction BEFORE.  */
4184
4185 rtx
4186 emit_jump_insn_before_noloc (rtx x, rtx before)
4187 {
4188   return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4189                                     make_jump_insn_raw);
4190 }
4191
4192 /* Make an instruction with body X and code CALL_INSN
4193    and output it before the instruction BEFORE.  */
4194
4195 rtx
4196 emit_call_insn_before_noloc (rtx x, rtx before)
4197 {
4198   return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4199                                     make_call_insn_raw);
4200 }
4201
4202 /* Make an instruction with body X and code DEBUG_INSN
4203    and output it before the instruction BEFORE.  */
4204
4205 rtx
4206 emit_debug_insn_before_noloc (rtx x, rtx before)
4207 {
4208   return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4209                                     make_debug_insn_raw);
4210 }
4211
4212 /* Make an insn of code BARRIER
4213    and output it before the insn BEFORE.  */
4214
4215 rtx
4216 emit_barrier_before (rtx before)
4217 {
4218   rtx insn = rtx_alloc (BARRIER);
4219
4220   INSN_UID (insn) = cur_insn_uid++;
4221
4222   add_insn_before (insn, before, NULL);
4223   return insn;
4224 }
4225
4226 /* Emit the label LABEL before the insn BEFORE.  */
4227
4228 rtx
4229 emit_label_before (rtx label, rtx before)
4230 {
4231   /* This can be called twice for the same label as a result of the
4232      confusion that follows a syntax error!  So make it harmless.  */
4233   if (INSN_UID (label) == 0)
4234     {
4235       INSN_UID (label) = cur_insn_uid++;
4236       add_insn_before (label, before, NULL);
4237     }
4238
4239   return label;
4240 }
4241
4242 /* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
4243
4244 rtx
4245 emit_note_before (enum insn_note subtype, rtx before)
4246 {
4247   rtx note = rtx_alloc (NOTE);
4248   INSN_UID (note) = cur_insn_uid++;
4249   NOTE_KIND (note) = subtype;
4250   BLOCK_FOR_INSN (note) = NULL;
4251   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4252
4253   add_insn_before (note, before, NULL);
4254   return note;
4255 }
4256 \f
4257 /* Helper for emit_insn_after, handles lists of instructions
4258    efficiently.  */
4259
4260 static rtx
4261 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4262 {
4263   rtx last;
4264   rtx after_after;
4265   if (!bb && !BARRIER_P (after))
4266     bb = BLOCK_FOR_INSN (after);
4267
4268   if (bb)
4269     {
4270       df_set_bb_dirty (bb);
4271       for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4272         if (!BARRIER_P (last))
4273           {
4274             set_block_for_insn (last, bb);
4275             df_insn_rescan (last);
4276           }
4277       if (!BARRIER_P (last))
4278         {
4279           set_block_for_insn (last, bb);
4280           df_insn_rescan (last);
4281         }
4282       if (BB_END (bb) == after)
4283         BB_END (bb) = last;
4284     }
4285   else
4286     for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4287       continue;
4288
4289   after_after = NEXT_INSN (after);
4290
4291   NEXT_INSN (after) = first;
4292   PREV_INSN (first) = after;
4293   NEXT_INSN (last) = after_after;
4294   if (after_after)
4295     PREV_INSN (after_after) = last;
4296
4297   if (after == get_last_insn())
4298     set_last_insn (last);
4299
4300   return last;
4301 }
4302
4303 static rtx
4304 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4305                           rtx (*make_raw)(rtx))
4306 {
4307   rtx last = after;
4308
4309   gcc_assert (after);
4310
4311   if (x == NULL_RTX)
4312     return last;
4313
4314   switch (GET_CODE (x))
4315     {
4316     case DEBUG_INSN:
4317     case INSN:
4318     case JUMP_INSN:
4319     case CALL_INSN:
4320     case CODE_LABEL:
4321     case BARRIER:
4322     case NOTE:
4323       last = emit_insn_after_1 (x, after, bb);
4324       break;
4325
4326 #ifdef ENABLE_RTL_CHECKING
4327     case SEQUENCE:
4328       gcc_unreachable ();
4329       break;
4330 #endif
4331
4332     default:
4333       last = (*make_raw) (x);
4334       add_insn_after (last, after, bb);
4335       break;
4336     }
4337
4338   return last;
4339 }
4340
4341 /* Make X be output after the insn AFTER and set the BB of insn.  If
4342    BB is NULL, an attempt is made to infer the BB from AFTER.  */
4343
4344 rtx
4345 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4346 {
4347   return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4348 }
4349
4350
4351 /* Make an insn of code JUMP_INSN with body X
4352    and output it after the insn AFTER.  */
4353
4354 rtx
4355 emit_jump_insn_after_noloc (rtx x, rtx after)
4356 {
4357   return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4358 }
4359
4360 /* Make an instruction with body X and code CALL_INSN
4361    and output it after the instruction AFTER.  */
4362
4363 rtx
4364 emit_call_insn_after_noloc (rtx x, rtx after)
4365 {
4366   return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4367 }
4368
4369 /* Make an instruction with body X and code CALL_INSN
4370    and output it after the instruction AFTER.  */
4371
4372 rtx
4373 emit_debug_insn_after_noloc (rtx x, rtx after)
4374 {
4375   return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4376 }
4377
4378 /* Make an insn of code BARRIER
4379    and output it after the insn AFTER.  */
4380
4381 rtx
4382 emit_barrier_after (rtx after)
4383 {
4384   rtx insn = rtx_alloc (BARRIER);
4385
4386   INSN_UID (insn) = cur_insn_uid++;
4387
4388   add_insn_after (insn, after, NULL);
4389   return insn;
4390 }
4391
4392 /* Emit the label LABEL after the insn AFTER.  */
4393
4394 rtx
4395 emit_label_after (rtx label, rtx after)
4396 {
4397   /* This can be called twice for the same label
4398      as a result of the confusion that follows a syntax error!
4399      So make it harmless.  */
4400   if (INSN_UID (label) == 0)
4401     {
4402       INSN_UID (label) = cur_insn_uid++;
4403       add_insn_after (label, after, NULL);
4404     }
4405
4406   return label;
4407 }
4408
4409 /* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4410
4411 rtx
4412 emit_note_after (enum insn_note subtype, rtx after)
4413 {
4414   rtx note = rtx_alloc (NOTE);
4415   INSN_UID (note) = cur_insn_uid++;
4416   NOTE_KIND (note) = subtype;
4417   BLOCK_FOR_INSN (note) = NULL;
4418   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4419   add_insn_after (note, after, NULL);
4420   return note;
4421 }
4422 \f
4423 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4424    MAKE_RAW indicates how to turn PATTERN into a real insn.  */
4425
4426 static rtx
4427 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4428                            rtx (*make_raw) (rtx))
4429 {
4430   rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4431
4432   if (pattern == NULL_RTX || !loc)
4433     return last;
4434
4435   after = NEXT_INSN (after);
4436   while (1)
4437     {
4438       if (active_insn_p (after) && !INSN_LOCATOR (after))
4439         INSN_LOCATOR (after) = loc;
4440       if (after == last)
4441         break;
4442       after = NEXT_INSN (after);
4443     }
4444   return last;
4445 }
4446
4447 /* Insert PATTERN after AFTER.  MAKE_RAW indicates how to turn PATTERN
4448    into a real insn.  SKIP_DEBUG_INSNS indicates whether to insert after
4449    any DEBUG_INSNs.  */
4450
4451 static rtx
4452 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4453                     rtx (*make_raw) (rtx))
4454 {
4455   rtx prev = after;
4456
4457   if (skip_debug_insns)
4458     while (DEBUG_INSN_P (prev))
4459       prev = PREV_INSN (prev);
4460
4461   if (INSN_P (prev))
4462     return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4463                                       make_raw);
4464   else
4465     return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4466 }
4467
4468 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC.  */
4469 rtx
4470 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4471 {
4472   return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4473 }
4474
4475 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4476 rtx
4477 emit_insn_after (rtx pattern, rtx after)
4478 {
4479   return emit_pattern_after (pattern, after, true, make_insn_raw);
4480 }
4481
4482 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC.  */
4483 rtx
4484 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4485 {
4486   return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4487 }
4488
4489 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4490 rtx
4491 emit_jump_insn_after (rtx pattern, rtx after)
4492 {
4493   return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4494 }
4495
4496 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC.  */
4497 rtx
4498 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4499 {
4500   return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4501 }
4502
4503 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4504 rtx
4505 emit_call_insn_after (rtx pattern, rtx after)
4506 {
4507   return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4508 }
4509
4510 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC.  */
4511 rtx
4512 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4513 {
4514   return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4515 }
4516
4517 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4518 rtx
4519 emit_debug_insn_after (rtx pattern, rtx after)
4520 {
4521   return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4522 }
4523
4524 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4525    MAKE_RAW indicates how to turn PATTERN into a real insn.  INSNP
4526    indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4527    CALL_INSN, etc.  */
4528
4529 static rtx
4530 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4531                             rtx (*make_raw) (rtx))
4532 {
4533   rtx first = PREV_INSN (before);
4534   rtx last = emit_pattern_before_noloc (pattern, before,
4535                                         insnp ? before : NULL_RTX,
4536                                         NULL, make_raw);
4537
4538   if (pattern == NULL_RTX || !loc)
4539     return last;
4540
4541   if (!first)
4542     first = get_insns ();
4543   else
4544     first = NEXT_INSN (first);
4545   while (1)
4546     {
4547       if (active_insn_p (first) && !INSN_LOCATOR (first))
4548         INSN_LOCATOR (first) = loc;
4549       if (first == last)
4550         break;
4551       first = NEXT_INSN (first);
4552     }
4553   return last;
4554 }
4555
4556 /* Insert PATTERN before BEFORE.  MAKE_RAW indicates how to turn PATTERN
4557    into a real insn.  SKIP_DEBUG_INSNS indicates whether to insert
4558    before any DEBUG_INSNs.  INSNP indicates if PATTERN is meant for an
4559    INSN as opposed to a JUMP_INSN, CALL_INSN, etc.  */
4560
4561 static rtx
4562 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4563                      bool insnp, rtx (*make_raw) (rtx))
4564 {
4565   rtx next = before;
4566
4567   if (skip_debug_insns)
4568     while (DEBUG_INSN_P (next))
4569       next = PREV_INSN (next);
4570
4571   if (INSN_P (next))
4572     return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4573                                        insnp, make_raw);
4574   else
4575     return emit_pattern_before_noloc (pattern, before,
4576                                       insnp ? before : NULL_RTX,
4577                                       NULL, make_raw);
4578 }
4579
4580 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC.  */
4581 rtx
4582 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4583 {
4584   return emit_pattern_before_setloc (pattern, before, loc, true,
4585                                      make_insn_raw);
4586 }
4587
4588 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4589 rtx
4590 emit_insn_before (rtx pattern, rtx before)
4591 {
4592   return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4593 }
4594
4595 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC.  */
4596 rtx
4597 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4598 {
4599   return emit_pattern_before_setloc (pattern, before, loc, false,
4600                                      make_jump_insn_raw);
4601 }
4602
4603 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4604 rtx
4605 emit_jump_insn_before (rtx pattern, rtx before)
4606 {
4607   return emit_pattern_before (pattern, before, true, false,
4608                               make_jump_insn_raw);
4609 }
4610
4611 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC.  */
4612 rtx
4613 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4614 {
4615   return emit_pattern_before_setloc (pattern, before, loc, false,
4616                                      make_call_insn_raw);
4617 }
4618
4619 /* Like emit_call_insn_before_noloc,
4620    but set insn_locator according to BEFORE.  */
4621 rtx
4622 emit_call_insn_before (rtx pattern, rtx before)
4623 {
4624   return emit_pattern_before (pattern, before, true, false,
4625                               make_call_insn_raw);
4626 }
4627
4628 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC.  */
4629 rtx
4630 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4631 {
4632   return emit_pattern_before_setloc (pattern, before, loc, false,
4633                                      make_debug_insn_raw);
4634 }
4635
4636 /* Like emit_debug_insn_before_noloc,
4637    but set insn_locator according to BEFORE.  */
4638 rtx
4639 emit_debug_insn_before (rtx pattern, rtx before)
4640 {
4641   return emit_pattern_before (pattern, before, false, false,
4642                               make_debug_insn_raw);
4643 }
4644 \f
4645 /* Take X and emit it at the end of the doubly-linked
4646    INSN list.
4647
4648    Returns the last insn emitted.  */
4649
4650 rtx
4651 emit_insn (rtx x)
4652 {
4653   rtx last = get_last_insn();
4654   rtx insn;
4655
4656   if (x == NULL_RTX)
4657     return last;
4658
4659   switch (GET_CODE (x))
4660     {
4661     case DEBUG_INSN:
4662     case INSN:
4663     case JUMP_INSN:
4664     case CALL_INSN:
4665     case CODE_LABEL:
4666     case BARRIER:
4667     case NOTE:
4668       insn = x;
4669       while (insn)
4670         {
4671           rtx next = NEXT_INSN (insn);
4672           add_insn (insn);
4673           last = insn;
4674           insn = next;
4675         }
4676       break;
4677
4678 #ifdef ENABLE_RTL_CHECKING
4679     case SEQUENCE:
4680       gcc_unreachable ();
4681       break;
4682 #endif
4683
4684     default:
4685       last = make_insn_raw (x);
4686       add_insn (last);
4687       break;
4688     }
4689
4690   return last;
4691 }
4692
4693 /* Make an insn of code DEBUG_INSN with pattern X
4694    and add it to the end of the doubly-linked list.  */
4695
4696 rtx
4697 emit_debug_insn (rtx x)
4698 {
4699   rtx last = get_last_insn();
4700   rtx insn;
4701
4702   if (x == NULL_RTX)
4703     return last;
4704
4705   switch (GET_CODE (x))
4706     {
4707     case DEBUG_INSN:
4708     case INSN:
4709     case JUMP_INSN:
4710     case CALL_INSN:
4711     case CODE_LABEL:
4712     case BARRIER:
4713     case NOTE:
4714       insn = x;
4715       while (insn)
4716         {
4717           rtx next = NEXT_INSN (insn);
4718           add_insn (insn);
4719           last = insn;
4720           insn = next;
4721         }
4722       break;
4723
4724 #ifdef ENABLE_RTL_CHECKING
4725     case SEQUENCE:
4726       gcc_unreachable ();
4727       break;
4728 #endif
4729
4730     default:
4731       last = make_debug_insn_raw (x);
4732       add_insn (last);
4733       break;
4734     }
4735
4736   return last;
4737 }
4738
4739 /* Make an insn of code JUMP_INSN with pattern X
4740    and add it to the end of the doubly-linked list.  */
4741
4742 rtx
4743 emit_jump_insn (rtx x)
4744 {
4745   rtx last = NULL_RTX, insn;
4746
4747   switch (GET_CODE (x))
4748     {
4749     case DEBUG_INSN:
4750     case INSN:
4751     case JUMP_INSN:
4752     case CALL_INSN:
4753     case CODE_LABEL:
4754     case BARRIER:
4755     case NOTE:
4756       insn = x;
4757       while (insn)
4758         {
4759           rtx next = NEXT_INSN (insn);
4760           add_insn (insn);
4761           last = insn;
4762           insn = next;
4763         }
4764       break;
4765
4766 #ifdef ENABLE_RTL_CHECKING
4767     case SEQUENCE:
4768       gcc_unreachable ();
4769       break;
4770 #endif
4771
4772     default:
4773       last = make_jump_insn_raw (x);
4774       add_insn (last);
4775       break;
4776     }
4777
4778   return last;
4779 }
4780
4781 /* Make an insn of code CALL_INSN with pattern X
4782    and add it to the end of the doubly-linked list.  */
4783
4784 rtx
4785 emit_call_insn (rtx x)
4786 {
4787   rtx insn;
4788
4789   switch (GET_CODE (x))
4790     {
4791     case DEBUG_INSN:
4792     case INSN:
4793     case JUMP_INSN:
4794     case CALL_INSN:
4795     case CODE_LABEL:
4796     case BARRIER:
4797     case NOTE:
4798       insn = emit_insn (x);
4799       break;
4800
4801 #ifdef ENABLE_RTL_CHECKING
4802     case SEQUENCE:
4803       gcc_unreachable ();
4804       break;
4805 #endif
4806
4807     default:
4808       insn = make_call_insn_raw (x);
4809       add_insn (insn);
4810       break;
4811     }
4812
4813   return insn;
4814 }
4815
4816 /* Add the label LABEL to the end of the doubly-linked list.  */
4817
4818 rtx
4819 emit_label (rtx label)
4820 {
4821   /* This can be called twice for the same label
4822      as a result of the confusion that follows a syntax error!
4823      So make it harmless.  */
4824   if (INSN_UID (label) == 0)
4825     {
4826       INSN_UID (label) = cur_insn_uid++;
4827       add_insn (label);
4828     }
4829   return label;
4830 }
4831
4832 /* Make an insn of code BARRIER
4833    and add it to the end of the doubly-linked list.  */
4834
4835 rtx
4836 emit_barrier (void)
4837 {
4838   rtx barrier = rtx_alloc (BARRIER);
4839   INSN_UID (barrier) = cur_insn_uid++;
4840   add_insn (barrier);
4841   return barrier;
4842 }
4843
4844 /* Emit a copy of note ORIG.  */
4845
4846 rtx
4847 emit_note_copy (rtx orig)
4848 {
4849   rtx note;
4850
4851   note = rtx_alloc (NOTE);
4852
4853   INSN_UID (note) = cur_insn_uid++;
4854   NOTE_DATA (note) = NOTE_DATA (orig);
4855   NOTE_KIND (note) = NOTE_KIND (orig);
4856   BLOCK_FOR_INSN (note) = NULL;
4857   add_insn (note);
4858
4859   return note;
4860 }
4861
4862 /* Make an insn of code NOTE or type NOTE_NO
4863    and add it to the end of the doubly-linked list.  */
4864
4865 rtx
4866 emit_note (enum insn_note kind)
4867 {
4868   rtx note;
4869
4870   note = rtx_alloc (NOTE);
4871   INSN_UID (note) = cur_insn_uid++;
4872   NOTE_KIND (note) = kind;
4873   memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4874   BLOCK_FOR_INSN (note) = NULL;
4875   add_insn (note);
4876   return note;
4877 }
4878
4879 /* Emit a clobber of lvalue X.  */
4880
4881 rtx
4882 emit_clobber (rtx x)
4883 {
4884   /* CONCATs should not appear in the insn stream.  */
4885   if (GET_CODE (x) == CONCAT)
4886     {
4887       emit_clobber (XEXP (x, 0));
4888       return emit_clobber (XEXP (x, 1));
4889     }
4890   return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4891 }
4892
4893 /* Return a sequence of insns to clobber lvalue X.  */
4894
4895 rtx
4896 gen_clobber (rtx x)
4897 {
4898   rtx seq;
4899
4900   start_sequence ();
4901   emit_clobber (x);
4902   seq = get_insns ();
4903   end_sequence ();
4904   return seq;
4905 }
4906
4907 /* Emit a use of rvalue X.  */
4908
4909 rtx
4910 emit_use (rtx x)
4911 {
4912   /* CONCATs should not appear in the insn stream.  */
4913   if (GET_CODE (x) == CONCAT)
4914     {
4915       emit_use (XEXP (x, 0));
4916       return emit_use (XEXP (x, 1));
4917     }
4918   return emit_insn (gen_rtx_USE (VOIDmode, x));
4919 }
4920
4921 /* Return a sequence of insns to use rvalue X.  */
4922
4923 rtx
4924 gen_use (rtx x)
4925 {
4926   rtx seq;
4927
4928   start_sequence ();
4929   emit_use (x);
4930   seq = get_insns ();
4931   end_sequence ();
4932   return seq;
4933 }
4934
4935 /* Cause next statement to emit a line note even if the line number
4936    has not changed.  */
4937
4938 void
4939 force_next_line_note (void)
4940 {
4941   last_location = -1;
4942 }
4943
4944 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4945    note of this type already exists, remove it first.  */
4946
4947 rtx
4948 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4949 {
4950   rtx note = find_reg_note (insn, kind, NULL_RTX);
4951
4952   switch (kind)
4953     {
4954     case REG_EQUAL:
4955     case REG_EQUIV:
4956       /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4957          has multiple sets (some callers assume single_set
4958          means the insn only has one set, when in fact it
4959          means the insn only has one * useful * set).  */
4960       if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4961         {
4962           gcc_assert (!note);
4963           return NULL_RTX;
4964         }
4965
4966       /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4967          It serves no useful purpose and breaks eliminate_regs.  */
4968       if (GET_CODE (datum) == ASM_OPERANDS)
4969         return NULL_RTX;
4970
4971       if (note)
4972         {
4973           XEXP (note, 0) = datum;
4974           df_notes_rescan (insn);
4975           return note;
4976         }
4977       break;
4978
4979     default:
4980       if (note)
4981         {
4982           XEXP (note, 0) = datum;
4983           return note;
4984         }
4985       break;
4986     }
4987
4988   add_reg_note (insn, kind, datum);
4989
4990   switch (kind)
4991     {
4992     case REG_EQUAL:
4993     case REG_EQUIV:
4994       df_notes_rescan (insn);
4995       break;
4996     default:
4997       break;
4998     }
4999
5000   return REG_NOTES (insn);
5001 }
5002
5003 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST.  */
5004 rtx
5005 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5006 {
5007   rtx set = single_set (insn);
5008
5009   if (set && SET_DEST (set) == dst)
5010     return set_unique_reg_note (insn, kind, datum);
5011   return NULL_RTX;
5012 }
5013 \f
5014 /* Return an indication of which type of insn should have X as a body.
5015    The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
5016
5017 static enum rtx_code
5018 classify_insn (rtx x)
5019 {
5020   if (LABEL_P (x))
5021     return CODE_LABEL;
5022   if (GET_CODE (x) == CALL)
5023     return CALL_INSN;
5024   if (ANY_RETURN_P (x))
5025     return JUMP_INSN;
5026   if (GET_CODE (x) == SET)
5027     {
5028       if (SET_DEST (x) == pc_rtx)
5029         return JUMP_INSN;
5030       else if (GET_CODE (SET_SRC (x)) == CALL)
5031         return CALL_INSN;
5032       else
5033         return INSN;
5034     }
5035   if (GET_CODE (x) == PARALLEL)
5036     {
5037       int j;
5038       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5039         if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5040           return CALL_INSN;
5041         else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5042                  && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5043           return JUMP_INSN;
5044         else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5045                  && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5046           return CALL_INSN;
5047     }
5048   return INSN;
5049 }
5050
5051 /* Emit the rtl pattern X as an appropriate kind of insn.
5052    If X is a label, it is simply added into the insn chain.  */
5053
5054 rtx
5055 emit (rtx x)
5056 {
5057   enum rtx_code code = classify_insn (x);
5058
5059   switch (code)
5060     {
5061     case CODE_LABEL:
5062       return emit_label (x);
5063     case INSN:
5064       return emit_insn (x);
5065     case  JUMP_INSN:
5066       {
5067         rtx insn = emit_jump_insn (x);
5068         if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5069           return emit_barrier ();
5070         return insn;
5071       }
5072     case CALL_INSN:
5073       return emit_call_insn (x);
5074     case DEBUG_INSN:
5075       return emit_debug_insn (x);
5076     default:
5077       gcc_unreachable ();
5078     }
5079 }
5080 \f
5081 /* Space for free sequence stack entries.  */
5082 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5083
5084 /* Begin emitting insns to a sequence.  If this sequence will contain
5085    something that might cause the compiler to pop arguments to function
5086    calls (because those pops have previously been deferred; see
5087    INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5088    before calling this function.  That will ensure that the deferred
5089    pops are not accidentally emitted in the middle of this sequence.  */
5090
5091 void
5092 start_sequence (void)
5093 {
5094   struct sequence_stack *tem;
5095
5096   if (free_sequence_stack != NULL)
5097     {
5098       tem = free_sequence_stack;
5099       free_sequence_stack = tem->next;
5100     }
5101   else
5102     tem = ggc_alloc_sequence_stack ();
5103
5104   tem->next = seq_stack;
5105   tem->first = get_insns ();
5106   tem->last = get_last_insn ();
5107
5108   seq_stack = tem;
5109
5110   set_first_insn (0);
5111   set_last_insn (0);
5112 }
5113
5114 /* Set up the insn chain starting with FIRST as the current sequence,
5115    saving the previously current one.  See the documentation for
5116    start_sequence for more information about how to use this function.  */
5117
5118 void
5119 push_to_sequence (rtx first)
5120 {
5121   rtx last;
5122
5123   start_sequence ();
5124
5125   for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5126     ;
5127
5128   set_first_insn (first);
5129   set_last_insn (last);
5130 }
5131
5132 /* Like push_to_sequence, but take the last insn as an argument to avoid
5133    looping through the list.  */
5134
5135 void
5136 push_to_sequence2 (rtx first, rtx last)
5137 {
5138   start_sequence ();
5139
5140   set_first_insn (first);
5141   set_last_insn (last);
5142 }
5143
5144 /* Set up the outer-level insn chain
5145    as the current sequence, saving the previously current one.  */
5146
5147 void
5148 push_topmost_sequence (void)
5149 {
5150   struct sequence_stack *stack, *top = NULL;
5151
5152   start_sequence ();
5153
5154   for (stack = seq_stack; stack; stack = stack->next)
5155     top = stack;
5156
5157   set_first_insn (top->first);
5158   set_last_insn (top->last);
5159 }
5160
5161 /* After emitting to the outer-level insn chain, update the outer-level
5162    insn chain, and restore the previous saved state.  */
5163
5164 void
5165 pop_topmost_sequence (void)
5166 {
5167   struct sequence_stack *stack, *top = NULL;
5168
5169   for (stack = seq_stack; stack; stack = stack->next)
5170     top = stack;
5171
5172   top->first = get_insns ();
5173   top->last = get_last_insn ();
5174
5175   end_sequence ();
5176 }
5177
5178 /* After emitting to a sequence, restore previous saved state.
5179
5180    To get the contents of the sequence just made, you must call
5181    `get_insns' *before* calling here.
5182
5183    If the compiler might have deferred popping arguments while
5184    generating this sequence, and this sequence will not be immediately
5185    inserted into the instruction stream, use do_pending_stack_adjust
5186    before calling get_insns.  That will ensure that the deferred
5187    pops are inserted into this sequence, and not into some random
5188    location in the instruction stream.  See INHIBIT_DEFER_POP for more
5189    information about deferred popping of arguments.  */
5190
5191 void
5192 end_sequence (void)
5193 {
5194   struct sequence_stack *tem = seq_stack;
5195
5196   set_first_insn (tem->first);
5197   set_last_insn (tem->last);
5198   seq_stack = tem->next;
5199
5200   memset (tem, 0, sizeof (*tem));
5201   tem->next = free_sequence_stack;
5202   free_sequence_stack = tem;
5203 }
5204
5205 /* Return 1 if currently emitting into a sequence.  */
5206
5207 int
5208 in_sequence_p (void)
5209 {
5210   return seq_stack != 0;
5211 }
5212 \f
5213 /* Put the various virtual registers into REGNO_REG_RTX.  */
5214
5215 static void
5216 init_virtual_regs (void)
5217 {
5218   regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5219   regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5220   regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5221   regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5222   regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5223   regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5224     = virtual_preferred_stack_boundary_rtx;
5225 }
5226
5227 \f
5228 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
5229 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5230 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5231 static int copy_insn_n_scratches;
5232
5233 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5234    copied an ASM_OPERANDS.
5235    In that case, it is the original input-operand vector.  */
5236 static rtvec orig_asm_operands_vector;
5237
5238 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5239    copied an ASM_OPERANDS.
5240    In that case, it is the copied input-operand vector.  */
5241 static rtvec copy_asm_operands_vector;
5242
5243 /* Likewise for the constraints vector.  */
5244 static rtvec orig_asm_constraints_vector;
5245 static rtvec copy_asm_constraints_vector;
5246
5247 /* Recursively create a new copy of an rtx for copy_insn.
5248    This function differs from copy_rtx in that it handles SCRATCHes and
5249    ASM_OPERANDs properly.
5250    Normally, this function is not used directly; use copy_insn as front end.
5251    However, you could first copy an insn pattern with copy_insn and then use
5252    this function afterwards to properly copy any REG_NOTEs containing
5253    SCRATCHes.  */
5254
5255 rtx
5256 copy_insn_1 (rtx orig)
5257 {
5258   rtx copy;
5259   int i, j;
5260   RTX_CODE code;
5261   const char *format_ptr;
5262
5263   if (orig == NULL)
5264     return NULL;
5265
5266   code = GET_CODE (orig);
5267
5268   switch (code)
5269     {
5270     case REG:
5271     case DEBUG_EXPR:
5272     case CONST_INT:
5273     case CONST_DOUBLE:
5274     case CONST_FIXED:
5275     case CONST_VECTOR:
5276     case SYMBOL_REF:
5277     case CODE_LABEL:
5278     case PC:
5279     case CC0:
5280     case RETURN:
5281     case SIMPLE_RETURN:
5282       return orig;
5283     case CLOBBER:
5284       if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5285         return orig;
5286       break;
5287
5288     case SCRATCH:
5289       for (i = 0; i < copy_insn_n_scratches; i++)
5290         if (copy_insn_scratch_in[i] == orig)
5291           return copy_insn_scratch_out[i];
5292       break;
5293
5294     case CONST:
5295       if (shared_const_p (orig))
5296         return orig;
5297       break;
5298
5299       /* A MEM with a constant address is not sharable.  The problem is that
5300          the constant address may need to be reloaded.  If the mem is shared,
5301          then reloading one copy of this mem will cause all copies to appear
5302          to have been reloaded.  */
5303
5304     default:
5305       break;
5306     }
5307
5308   /* Copy the various flags, fields, and other information.  We assume
5309      that all fields need copying, and then clear the fields that should
5310      not be copied.  That is the sensible default behavior, and forces
5311      us to explicitly document why we are *not* copying a flag.  */
5312   copy = shallow_copy_rtx (orig);
5313
5314   /* We do not copy the USED flag, which is used as a mark bit during
5315      walks over the RTL.  */
5316   RTX_FLAG (copy, used) = 0;
5317
5318   /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
5319   if (INSN_P (orig))
5320     {
5321       RTX_FLAG (copy, jump) = 0;
5322       RTX_FLAG (copy, call) = 0;
5323       RTX_FLAG (copy, frame_related) = 0;
5324     }
5325
5326   format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5327
5328   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5329     switch (*format_ptr++)
5330       {
5331       case 'e':
5332         if (XEXP (orig, i) != NULL)
5333           XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5334         break;
5335
5336       case 'E':
5337       case 'V':
5338         if (XVEC (orig, i) == orig_asm_constraints_vector)
5339           XVEC (copy, i) = copy_asm_constraints_vector;
5340         else if (XVEC (orig, i) == orig_asm_operands_vector)
5341           XVEC (copy, i) = copy_asm_operands_vector;
5342         else if (XVEC (orig, i) != NULL)
5343           {
5344             XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5345             for (j = 0; j < XVECLEN (copy, i); j++)
5346               XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5347           }
5348         break;
5349
5350       case 't':
5351       case 'w':
5352       case 'i':
5353       case 's':
5354       case 'S':
5355       case 'u':
5356       case '0':
5357         /* These are left unchanged.  */
5358         break;
5359
5360       default:
5361         gcc_unreachable ();
5362       }
5363
5364   if (code == SCRATCH)
5365     {
5366       i = copy_insn_n_scratches++;
5367       gcc_assert (i < MAX_RECOG_OPERANDS);
5368       copy_insn_scratch_in[i] = orig;
5369       copy_insn_scratch_out[i] = copy;
5370     }
5371   else if (code == ASM_OPERANDS)
5372     {
5373       orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5374       copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5375       orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5376       copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5377     }
5378
5379   return copy;
5380 }
5381
5382 /* Create a new copy of an rtx.
5383    This function differs from copy_rtx in that it handles SCRATCHes and
5384    ASM_OPERANDs properly.
5385    INSN doesn't really have to be a full INSN; it could be just the
5386    pattern.  */
5387 rtx
5388 copy_insn (rtx insn)
5389 {
5390   copy_insn_n_scratches = 0;
5391   orig_asm_operands_vector = 0;
5392   orig_asm_constraints_vector = 0;
5393   copy_asm_operands_vector = 0;
5394   copy_asm_constraints_vector = 0;
5395   return copy_insn_1 (insn);
5396 }
5397
5398 /* Initialize data structures and variables in this file
5399    before generating rtl for each function.  */
5400
5401 void
5402 init_emit (void)
5403 {
5404   set_first_insn (NULL);
5405   set_last_insn (NULL);
5406   if (MIN_NONDEBUG_INSN_UID)
5407     cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5408   else
5409     cur_insn_uid = 1;
5410   cur_debug_insn_uid = 1;
5411   reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5412   last_location = UNKNOWN_LOCATION;
5413   first_label_num = label_num;
5414   seq_stack = NULL;
5415
5416   /* Init the tables that describe all the pseudo regs.  */
5417
5418   crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5419
5420   crtl->emit.regno_pointer_align
5421     = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5422
5423   regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5424
5425   /* Put copies of all the hard registers into regno_reg_rtx.  */
5426   memcpy (regno_reg_rtx,
5427           initial_regno_reg_rtx,
5428           FIRST_PSEUDO_REGISTER * sizeof (rtx));
5429
5430   /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5431   init_virtual_regs ();
5432
5433   /* Indicate that the virtual registers and stack locations are
5434      all pointers.  */
5435   REG_POINTER (stack_pointer_rtx) = 1;
5436   REG_POINTER (frame_pointer_rtx) = 1;
5437   REG_POINTER (hard_frame_pointer_rtx) = 1;
5438   REG_POINTER (arg_pointer_rtx) = 1;
5439
5440   REG_POINTER (virtual_incoming_args_rtx) = 1;
5441   REG_POINTER (virtual_stack_vars_rtx) = 1;
5442   REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5443   REG_POINTER (virtual_outgoing_args_rtx) = 1;
5444   REG_POINTER (virtual_cfa_rtx) = 1;
5445
5446 #ifdef STACK_BOUNDARY
5447   REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5448   REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5449   REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5450   REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5451
5452   REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5453   REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5454   REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5455   REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5456   REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5457 #endif
5458
5459 #ifdef INIT_EXPANDERS
5460   INIT_EXPANDERS;
5461 #endif
5462 }
5463
5464 /* Generate a vector constant for mode MODE and constant value CONSTANT.  */
5465
5466 static rtx
5467 gen_const_vector (enum machine_mode mode, int constant)
5468 {
5469   rtx tem;
5470   rtvec v;
5471   int units, i;
5472   enum machine_mode inner;
5473
5474   units = GET_MODE_NUNITS (mode);
5475   inner = GET_MODE_INNER (mode);
5476
5477   gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5478
5479   v = rtvec_alloc (units);
5480
5481   /* We need to call this function after we set the scalar const_tiny_rtx
5482      entries.  */
5483   gcc_assert (const_tiny_rtx[constant][(int) inner]);
5484
5485   for (i = 0; i < units; ++i)
5486     RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5487
5488   tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5489   return tem;
5490 }
5491
5492 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5493    all elements are zero, and the one vector when all elements are one.  */
5494 rtx
5495 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5496 {
5497   enum machine_mode inner = GET_MODE_INNER (mode);
5498   int nunits = GET_MODE_NUNITS (mode);
5499   rtx x;
5500   int i;
5501
5502   /* Check to see if all of the elements have the same value.  */
5503   x = RTVEC_ELT (v, nunits - 1);
5504   for (i = nunits - 2; i >= 0; i--)
5505     if (RTVEC_ELT (v, i) != x)
5506       break;
5507
5508   /* If the values are all the same, check to see if we can use one of the
5509      standard constant vectors.  */
5510   if (i == -1)
5511     {
5512       if (x == CONST0_RTX (inner))
5513         return CONST0_RTX (mode);
5514       else if (x == CONST1_RTX (inner))
5515         return CONST1_RTX (mode);
5516       else if (x == CONSTM1_RTX (inner))
5517         return CONSTM1_RTX (mode);
5518     }
5519
5520   return gen_rtx_raw_CONST_VECTOR (mode, v);
5521 }
5522
5523 /* Initialise global register information required by all functions.  */
5524
5525 void
5526 init_emit_regs (void)
5527 {
5528   int i;
5529   enum machine_mode mode;
5530   mem_attrs *attrs;
5531
5532   /* Reset register attributes */
5533   htab_empty (reg_attrs_htab);
5534
5535   /* We need reg_raw_mode, so initialize the modes now.  */
5536   init_reg_modes_target ();
5537
5538   /* Assign register numbers to the globally defined register rtx.  */
5539   pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5540   ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5541   simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5542   cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5543   stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5544   frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5545   hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5546   arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5547   virtual_incoming_args_rtx =
5548     gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5549   virtual_stack_vars_rtx =
5550     gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5551   virtual_stack_dynamic_rtx =
5552     gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5553   virtual_outgoing_args_rtx =
5554     gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5555   virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5556   virtual_preferred_stack_boundary_rtx =
5557     gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5558
5559   /* Initialize RTL for commonly used hard registers.  These are
5560      copied into regno_reg_rtx as we begin to compile each function.  */
5561   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5562     initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5563
5564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5565   return_address_pointer_rtx
5566     = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5567 #endif
5568
5569   if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5570     pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5571   else
5572     pic_offset_table_rtx = NULL_RTX;
5573
5574   for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5575     {
5576       mode = (enum machine_mode) i;
5577       attrs = ggc_alloc_cleared_mem_attrs ();
5578       attrs->align = BITS_PER_UNIT;
5579       attrs->addrspace = ADDR_SPACE_GENERIC;
5580       if (mode != BLKmode)
5581         {
5582           attrs->size_known_p = true;
5583           attrs->size = GET_MODE_SIZE (mode);
5584           if (STRICT_ALIGNMENT)
5585             attrs->align = GET_MODE_ALIGNMENT (mode);
5586         }
5587       mode_mem_attrs[i] = attrs;
5588     }
5589 }
5590
5591 /* Create some permanent unique rtl objects shared between all functions.  */
5592
5593 void
5594 init_emit_once (void)
5595 {
5596   int i;
5597   enum machine_mode mode;
5598   enum machine_mode double_mode;
5599
5600   /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5601      hash tables.  */
5602   const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5603                                     const_int_htab_eq, NULL);
5604
5605   const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5606                                        const_double_htab_eq, NULL);
5607
5608   const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5609                                       const_fixed_htab_eq, NULL);
5610
5611   mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5612                                     mem_attrs_htab_eq, NULL);
5613   reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5614                                     reg_attrs_htab_eq, NULL);
5615
5616   /* Compute the word and byte modes.  */
5617
5618   byte_mode = VOIDmode;
5619   word_mode = VOIDmode;
5620   double_mode = VOIDmode;
5621
5622   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5623        mode != VOIDmode;
5624        mode = GET_MODE_WIDER_MODE (mode))
5625     {
5626       if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5627           && byte_mode == VOIDmode)
5628         byte_mode = mode;
5629
5630       if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5631           && word_mode == VOIDmode)
5632         word_mode = mode;
5633     }
5634
5635   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5636        mode != VOIDmode;
5637        mode = GET_MODE_WIDER_MODE (mode))
5638     {
5639       if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5640           && double_mode == VOIDmode)
5641         double_mode = mode;
5642     }
5643
5644   ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5645
5646 #ifdef INIT_EXPANDERS
5647   /* This is to initialize {init|mark|free}_machine_status before the first
5648      call to push_function_context_to.  This is needed by the Chill front
5649      end which calls push_function_context_to before the first call to
5650      init_function_start.  */
5651   INIT_EXPANDERS;
5652 #endif
5653
5654   /* Create the unique rtx's for certain rtx codes and operand values.  */
5655
5656   /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5657      tries to use these variables.  */
5658   for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5659     const_int_rtx[i + MAX_SAVED_CONST_INT] =
5660       gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5661
5662   if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5663       && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5664     const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5665   else
5666     const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5667
5668   REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5669   REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5670   REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5671
5672   dconstm1 = dconst1;
5673   dconstm1.sign = 1;
5674
5675   dconsthalf = dconst1;
5676   SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5677
5678   for (i = 0; i < 3; i++)
5679     {
5680       const REAL_VALUE_TYPE *const r =
5681         (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5682
5683       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5684            mode != VOIDmode;
5685            mode = GET_MODE_WIDER_MODE (mode))
5686         const_tiny_rtx[i][(int) mode] =
5687           CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5688
5689       for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5690            mode != VOIDmode;
5691            mode = GET_MODE_WIDER_MODE (mode))
5692         const_tiny_rtx[i][(int) mode] =
5693           CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5694
5695       const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5696
5697       for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5698            mode != VOIDmode;
5699            mode = GET_MODE_WIDER_MODE (mode))
5700         const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5701
5702       for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5703            mode != VOIDmode;
5704            mode = GET_MODE_WIDER_MODE (mode))
5705         const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5706     }
5707
5708   const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5709
5710   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5711        mode != VOIDmode;
5712        mode = GET_MODE_WIDER_MODE (mode))
5713     const_tiny_rtx[3][(int) mode] = constm1_rtx;
5714
5715   for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5716        mode != VOIDmode;
5717        mode = GET_MODE_WIDER_MODE (mode))
5718     const_tiny_rtx[3][(int) mode] = constm1_rtx;
5719       
5720   for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5721        mode != VOIDmode;
5722        mode = GET_MODE_WIDER_MODE (mode))
5723     {
5724       rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5725       const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5726     }
5727
5728   for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5729        mode != VOIDmode;
5730        mode = GET_MODE_WIDER_MODE (mode))
5731     {
5732       rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5733       const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5734     }
5735
5736   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5737        mode != VOIDmode;
5738        mode = GET_MODE_WIDER_MODE (mode))
5739     {
5740       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5741       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5742       const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5743     }
5744
5745   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5746        mode != VOIDmode;
5747        mode = GET_MODE_WIDER_MODE (mode))
5748     {
5749       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5750       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5751     }
5752
5753   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5754        mode != VOIDmode;
5755        mode = GET_MODE_WIDER_MODE (mode))
5756     {
5757       FCONST0(mode).data.high = 0;
5758       FCONST0(mode).data.low = 0;
5759       FCONST0(mode).mode = mode;
5760       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5761                                       FCONST0 (mode), mode);
5762     }
5763
5764   for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5765        mode != VOIDmode;
5766        mode = GET_MODE_WIDER_MODE (mode))
5767     {
5768       FCONST0(mode).data.high = 0;
5769       FCONST0(mode).data.low = 0;
5770       FCONST0(mode).mode = mode;
5771       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5772                                       FCONST0 (mode), mode);
5773     }
5774
5775   for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5776        mode != VOIDmode;
5777        mode = GET_MODE_WIDER_MODE (mode))
5778     {
5779       FCONST0(mode).data.high = 0;
5780       FCONST0(mode).data.low = 0;
5781       FCONST0(mode).mode = mode;
5782       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5783                                       FCONST0 (mode), mode);
5784
5785       /* We store the value 1.  */
5786       FCONST1(mode).data.high = 0;
5787       FCONST1(mode).data.low = 0;
5788       FCONST1(mode).mode = mode;
5789       lshift_double (1, 0, GET_MODE_FBIT (mode),
5790                      2 * HOST_BITS_PER_WIDE_INT,
5791                      &FCONST1(mode).data.low,
5792                      &FCONST1(mode).data.high,
5793                      SIGNED_FIXED_POINT_MODE_P (mode));
5794       const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5795                                       FCONST1 (mode), mode);
5796     }
5797
5798   for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5799        mode != VOIDmode;
5800        mode = GET_MODE_WIDER_MODE (mode))
5801     {
5802       FCONST0(mode).data.high = 0;
5803       FCONST0(mode).data.low = 0;
5804       FCONST0(mode).mode = mode;
5805       const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5806                                       FCONST0 (mode), mode);
5807
5808       /* We store the value 1.  */
5809       FCONST1(mode).data.high = 0;
5810       FCONST1(mode).data.low = 0;
5811       FCONST1(mode).mode = mode;
5812       lshift_double (1, 0, GET_MODE_FBIT (mode),
5813                      2 * HOST_BITS_PER_WIDE_INT,
5814                      &FCONST1(mode).data.low,
5815                      &FCONST1(mode).data.high,
5816                      SIGNED_FIXED_POINT_MODE_P (mode));
5817       const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5818                                       FCONST1 (mode), mode);
5819     }
5820
5821   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5822        mode != VOIDmode;
5823        mode = GET_MODE_WIDER_MODE (mode))
5824     {
5825       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5826     }
5827
5828   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5829        mode != VOIDmode;
5830        mode = GET_MODE_WIDER_MODE (mode))
5831     {
5832       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5833     }
5834
5835   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5836        mode != VOIDmode;
5837        mode = GET_MODE_WIDER_MODE (mode))
5838     {
5839       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5840       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5841     }
5842
5843   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5844        mode != VOIDmode;
5845        mode = GET_MODE_WIDER_MODE (mode))
5846     {
5847       const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5848       const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5849     }
5850
5851   for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5852     if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5853       const_tiny_rtx[0][i] = const0_rtx;
5854
5855   const_tiny_rtx[0][(int) BImode] = const0_rtx;
5856   if (STORE_FLAG_VALUE == 1)
5857     const_tiny_rtx[1][(int) BImode] = const1_rtx;
5858 }
5859 \f
5860 /* Produce exact duplicate of insn INSN after AFTER.
5861    Care updating of libcall regions if present.  */
5862
5863 rtx
5864 emit_copy_of_insn_after (rtx insn, rtx after)
5865 {
5866   rtx new_rtx, link;
5867
5868   switch (GET_CODE (insn))
5869     {
5870     case INSN:
5871       new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5872       break;
5873
5874     case JUMP_INSN:
5875       new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5876       break;
5877
5878     case DEBUG_INSN:
5879       new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5880       break;
5881
5882     case CALL_INSN:
5883       new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5884       if (CALL_INSN_FUNCTION_USAGE (insn))
5885         CALL_INSN_FUNCTION_USAGE (new_rtx)
5886           = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5887       SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5888       RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5889       RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5890       RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5891         = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5892       break;
5893
5894     default:
5895       gcc_unreachable ();
5896     }
5897
5898   /* Update LABEL_NUSES.  */
5899   mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5900
5901   INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5902
5903   /* If the old insn is frame related, then so is the new one.  This is
5904      primarily needed for IA-64 unwind info which marks epilogue insns,
5905      which may be duplicated by the basic block reordering code.  */
5906   RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5907
5908   /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5909      will make them.  REG_LABEL_TARGETs are created there too, but are
5910      supposed to be sticky, so we copy them.  */
5911   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5912     if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5913       {
5914         if (GET_CODE (link) == EXPR_LIST)
5915           add_reg_note (new_rtx, REG_NOTE_KIND (link),
5916                         copy_insn_1 (XEXP (link, 0)));
5917         else
5918           add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5919       }
5920
5921   INSN_CODE (new_rtx) = INSN_CODE (insn);
5922   return new_rtx;
5923 }
5924
5925 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5926 rtx
5927 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5928 {
5929   if (hard_reg_clobbers[mode][regno])
5930     return hard_reg_clobbers[mode][regno];
5931   else
5932     return (hard_reg_clobbers[mode][regno] =
5933             gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5934 }
5935
5936 #include "gt-emit-rtl.h"