1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static GTY(()) int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
92 rtx global_rtl[GR_MAX];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
205 /* Returns a hash code for X (which is a really a CONST_INT). */
208 const_int_htab_hash (const void *x)
210 return (hashval_t) INTVAL ((rtx) x);
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
218 const_int_htab_eq (const void *x, const void *y)
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
225 const_double_htab_hash (const void *x)
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
244 const_double_htab_eq (const void *x, const void *y)
246 rtx a = (rtx)x, b = (rtx)y;
248 if (GET_MODE (a) != GET_MODE (b))
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
261 mem_attrs_htab_hash (const void *x)
263 mem_attrs *p = (mem_attrs *) x;
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
276 mem_attrs_htab_eq (const void *x, const void *y)
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
308 attrs.offset = offset;
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
325 reg_attrs_htab_hash (const void *x)
327 reg_attrs *p = (reg_attrs *) x;
329 return ((p->offset * 1000) ^ (long) p->decl);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
337 reg_attrs_htab_eq (const void *x, const void *y)
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
342 return (p->decl == q->decl && p->offset == q->offset);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
349 get_reg_attrs (tree decl, int offset)
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
359 attrs.offset = offset;
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
376 gen_raw_REG (enum machine_mode mode, int regno)
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
412 return GEN_INT (trunc_int_for_mode (c, mode));
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
423 lookup_const_double (rtx real)
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
442 return lookup_const_double (real);
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
456 if (mode != VOIDmode)
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
530 return lookup_const_double (value);
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
550 if (mode == Pmode && !reload_in_progress)
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
595 return gen_raw_REG (mode, regno);
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
603 /* This field is not cleared by the mere allocation of the rtx, so
610 /* Generate a memory referring to non-trapping constant memory. */
613 gen_const_mem (enum machine_mode mode, rtx addr)
615 rtx mem = gen_rtx_MEM (mode, addr);
616 MEM_READONLY_P (mem) = 1;
617 MEM_NOTRAP_P (mem) = 1;
622 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
624 /* This is the most common failure type.
625 Catch it early so we can see who does it. */
626 if ((offset % GET_MODE_SIZE (mode)) != 0)
629 /* This check isn't usable right now because combine will
630 throw arbitrary crap like a CALL into a SUBREG in
631 gen_lowpart_for_combine so we must just eat it. */
633 /* Check for this too. */
634 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
637 return gen_rtx_raw_SUBREG (mode, reg, offset);
640 /* Generate a SUBREG representing the least-significant part of REG if MODE
641 is smaller than mode of REG, otherwise paradoxical SUBREG. */
644 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
646 enum machine_mode inmode;
648 inmode = GET_MODE (reg);
649 if (inmode == VOIDmode)
651 return gen_rtx_SUBREG (mode, reg,
652 subreg_lowpart_offset (mode, inmode));
655 /* gen_rtvec (n, [rt1, ..., rtn])
657 ** This routine creates an rtvec and stores within it the
658 ** pointers to rtx's which are its arguments.
663 gen_rtvec (int n, ...)
672 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
674 vector = alloca (n * sizeof (rtx));
676 for (i = 0; i < n; i++)
677 vector[i] = va_arg (p, rtx);
679 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
683 return gen_rtvec_v (save_n, vector);
687 gen_rtvec_v (int n, rtx *argp)
693 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
695 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
697 for (i = 0; i < n; i++)
698 rt_val->elem[i] = *argp++;
703 /* Generate a REG rtx for a new pseudo register of mode MODE.
704 This pseudo is assigned the next sequential register number. */
707 gen_reg_rtx (enum machine_mode mode)
709 struct function *f = cfun;
712 /* Don't let anything called after initial flow analysis create new
717 if (generating_concat_p
718 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
719 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
721 /* For complex modes, don't make a single pseudo.
722 Instead, make a CONCAT of two pseudos.
723 This allows noncontiguous allocation of the real and imaginary parts,
724 which makes much better code. Besides, allocating DCmode
725 pseudos overstrains reload on some machines like the 386. */
726 rtx realpart, imagpart;
727 enum machine_mode partmode = GET_MODE_INNER (mode);
729 realpart = gen_reg_rtx (partmode);
730 imagpart = gen_reg_rtx (partmode);
731 return gen_rtx_CONCAT (mode, realpart, imagpart);
734 /* Make sure regno_pointer_align, and regno_reg_rtx are large
735 enough to have an element for this pseudo reg number. */
737 if (reg_rtx_no == f->emit->regno_pointer_align_length)
739 int old_size = f->emit->regno_pointer_align_length;
743 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
744 memset (new + old_size, 0, old_size);
745 f->emit->regno_pointer_align = (unsigned char *) new;
747 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
748 old_size * 2 * sizeof (rtx));
749 memset (new1 + old_size, 0, old_size * sizeof (rtx));
750 regno_reg_rtx = new1;
752 f->emit->regno_pointer_align_length = old_size * 2;
755 val = gen_raw_REG (mode, reg_rtx_no);
756 regno_reg_rtx[reg_rtx_no++] = val;
760 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
761 Do the big endian correction if needed. */
764 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
766 rtx new = gen_rtx_REG (mode, regno);
768 HOST_WIDE_INT var_size;
770 /* PR middle-end/14084
771 The problem appears when a variable is stored in a larger register
772 and later it is used in the original mode or some mode in between
773 or some part of variable is accessed.
775 On little endian machines there is no problem because
776 the REG_OFFSET of the start of the variable is the same when
777 accessed in any mode (it is 0).
779 However, this is not true on big endian machines.
780 The offset of the start of the variable is different when accessed
782 When we are taking a part of the REG we have to change the OFFSET
783 from offset WRT size of mode of REG to offset WRT size of variable.
785 If we would not do the big endian correction the resulting REG_OFFSET
786 would be larger than the size of the DECL.
788 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
790 REG.mode MODE DECL size old offset new offset description
791 DI SI 4 4 0 int32 in SImode
792 DI SI 1 4 0 char in SImode
793 DI QI 1 7 0 char in QImode
794 DI QI 4 5 1 1st element in QImode
796 DI HI 4 6 2 1st element in HImode
799 If the size of DECL is equal or greater than the size of REG
800 we can't do this correction because the register holds the
801 whole variable or a part of the variable and thus the REG_OFFSET
802 is already correct. */
804 decl = REG_EXPR (reg);
805 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
808 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
809 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
810 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
814 /* Convert machine endian to little endian WRT size of mode of REG. */
815 if (WORDS_BIG_ENDIAN)
816 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
817 / UNITS_PER_WORD) * UNITS_PER_WORD;
819 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
821 if (BYTES_BIG_ENDIAN)
822 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
825 offset_le += offset % UNITS_PER_WORD;
827 if (offset_le >= var_size)
829 /* MODE is wider than the variable so the new reg will cover
830 the whole variable so the resulting OFFSET should be 0. */
835 /* Convert little endian to machine endian WRT size of variable. */
836 if (WORDS_BIG_ENDIAN)
837 offset = ((var_size - 1 - offset_le)
838 / UNITS_PER_WORD) * UNITS_PER_WORD;
840 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
842 if (BYTES_BIG_ENDIAN)
843 offset += ((var_size - 1 - offset_le)
846 offset += offset_le % UNITS_PER_WORD;
850 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
851 REG_OFFSET (reg) + offset);
855 /* Set the decl for MEM to DECL. */
858 set_reg_attrs_from_mem (rtx reg, rtx mem)
860 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
862 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
865 /* Set the register attributes for registers contained in PARM_RTX.
866 Use needed values from memory attributes of MEM. */
869 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
871 if (REG_P (parm_rtx))
872 set_reg_attrs_from_mem (parm_rtx, mem);
873 else if (GET_CODE (parm_rtx) == PARALLEL)
875 /* Check for a NULL entry in the first slot, used to indicate that the
876 parameter goes both on the stack and in registers. */
877 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
878 for (; i < XVECLEN (parm_rtx, 0); i++)
880 rtx x = XVECEXP (parm_rtx, 0, i);
881 if (REG_P (XEXP (x, 0)))
882 REG_ATTRS (XEXP (x, 0))
883 = get_reg_attrs (MEM_EXPR (mem),
884 INTVAL (XEXP (x, 1)));
889 /* Assign the RTX X to declaration T. */
891 set_decl_rtl (tree t, rtx x)
893 DECL_CHECK (t)->decl.rtl = x;
897 /* For register, we maintain the reverse information too. */
899 REG_ATTRS (x) = get_reg_attrs (t, 0);
900 else if (GET_CODE (x) == SUBREG)
901 REG_ATTRS (SUBREG_REG (x))
902 = get_reg_attrs (t, -SUBREG_BYTE (x));
903 if (GET_CODE (x) == CONCAT)
905 if (REG_P (XEXP (x, 0)))
906 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
907 if (REG_P (XEXP (x, 1)))
908 REG_ATTRS (XEXP (x, 1))
909 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
911 if (GET_CODE (x) == PARALLEL)
914 for (i = 0; i < XVECLEN (x, 0); i++)
916 rtx y = XVECEXP (x, 0, i);
917 if (REG_P (XEXP (y, 0)))
918 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
923 /* Assign the RTX X to parameter declaration T. */
925 set_decl_incoming_rtl (tree t, rtx x)
927 DECL_INCOMING_RTL (t) = x;
931 /* For register, we maintain the reverse information too. */
933 REG_ATTRS (x) = get_reg_attrs (t, 0);
934 else if (GET_CODE (x) == SUBREG)
935 REG_ATTRS (SUBREG_REG (x))
936 = get_reg_attrs (t, -SUBREG_BYTE (x));
937 if (GET_CODE (x) == CONCAT)
939 if (REG_P (XEXP (x, 0)))
940 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
941 if (REG_P (XEXP (x, 1)))
942 REG_ATTRS (XEXP (x, 1))
943 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
945 if (GET_CODE (x) == PARALLEL)
949 /* Check for a NULL entry, used to indicate that the parameter goes
950 both on the stack and in registers. */
951 if (XEXP (XVECEXP (x, 0, 0), 0))
956 for (i = start; i < XVECLEN (x, 0); i++)
958 rtx y = XVECEXP (x, 0, i);
959 if (REG_P (XEXP (y, 0)))
960 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
965 /* Identify REG (which may be a CONCAT) as a user register. */
968 mark_user_reg (rtx reg)
970 if (GET_CODE (reg) == CONCAT)
972 REG_USERVAR_P (XEXP (reg, 0)) = 1;
973 REG_USERVAR_P (XEXP (reg, 1)) = 1;
975 else if (REG_P (reg))
976 REG_USERVAR_P (reg) = 1;
981 /* Identify REG as a probable pointer register and show its alignment
982 as ALIGN, if nonzero. */
985 mark_reg_pointer (rtx reg, int align)
987 if (! REG_POINTER (reg))
989 REG_POINTER (reg) = 1;
992 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
994 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
995 /* We can no-longer be sure just how aligned this pointer is. */
996 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
999 /* Return 1 plus largest pseudo reg number used in the current function. */
1007 /* Return 1 + the largest label number used so far in the current function. */
1010 max_label_num (void)
1012 if (last_label_num && label_num == base_label_num)
1013 return last_label_num;
1017 /* Return first label number used in this function (if any were used). */
1020 get_first_label_num (void)
1022 return first_label_num;
1025 /* If the rtx for label was created during the expansion of a nested
1026 function, then first_label_num won't include this label number.
1027 Fix this now so that array indicies work later. */
1030 maybe_set_first_label_num (rtx x)
1032 if (CODE_LABEL_NUMBER (x) < first_label_num)
1033 first_label_num = CODE_LABEL_NUMBER (x);
1036 /* Return the final regno of X, which is a SUBREG of a hard
1039 subreg_hard_regno (rtx x, int check_mode)
1041 enum machine_mode mode = GET_MODE (x);
1042 unsigned int byte_offset, base_regno, final_regno;
1043 rtx reg = SUBREG_REG (x);
1045 /* This is where we attempt to catch illegal subregs
1046 created by the compiler. */
1047 if (GET_CODE (x) != SUBREG
1050 base_regno = REGNO (reg);
1051 if (base_regno >= FIRST_PSEUDO_REGISTER)
1053 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1055 #ifdef ENABLE_CHECKING
1056 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1057 SUBREG_BYTE (x), mode))
1060 /* Catch non-congruent offsets too. */
1061 byte_offset = SUBREG_BYTE (x);
1062 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1065 final_regno = subreg_regno (x);
1070 /* Return a value representing some low-order bits of X, where the number
1071 of low-order bits is given by MODE. Note that no conversion is done
1072 between floating-point and fixed-point values, rather, the bit
1073 representation is returned.
1075 This function handles the cases in common between gen_lowpart, below,
1076 and two variants in cse.c and combine.c. These are the cases that can
1077 be safely handled at all points in the compilation.
1079 If this is not a case we can handle, return 0. */
1082 gen_lowpart_common (enum machine_mode mode, rtx x)
1084 int msize = GET_MODE_SIZE (mode);
1087 enum machine_mode innermode;
1089 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1090 so we have to make one up. Yuk. */
1091 innermode = GET_MODE (x);
1092 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1093 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1094 else if (innermode == VOIDmode)
1095 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1097 xsize = GET_MODE_SIZE (innermode);
1099 if (innermode == VOIDmode || innermode == BLKmode)
1102 if (innermode == mode)
1105 /* MODE must occupy no more words than the mode of X. */
1106 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1107 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1110 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1111 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1114 offset = subreg_lowpart_offset (mode, innermode);
1116 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1117 && (GET_MODE_CLASS (mode) == MODE_INT
1118 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1120 /* If we are getting the low-order part of something that has been
1121 sign- or zero-extended, we can either just use the object being
1122 extended or make a narrower extension. If we want an even smaller
1123 piece than the size of the object being extended, call ourselves
1126 This case is used mostly by combine and cse. */
1128 if (GET_MODE (XEXP (x, 0)) == mode)
1130 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1131 return gen_lowpart_common (mode, XEXP (x, 0));
1132 else if (msize < xsize)
1133 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1135 else if (GET_CODE (x) == SUBREG || REG_P (x)
1136 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1137 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1138 return simplify_gen_subreg (mode, x, innermode, offset);
1140 /* Otherwise, we can't do this. */
1144 /* Return the constant real or imaginary part (which has mode MODE)
1145 of a complex value X. The IMAGPART_P argument determines whether
1146 the real or complex component should be returned. This function
1147 returns NULL_RTX if the component isn't a constant. */
1150 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1155 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1157 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1158 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1160 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1161 if (TREE_CODE (part) == REAL_CST
1162 || TREE_CODE (part) == INTEGER_CST)
1163 return expand_expr (part, NULL_RTX, mode, 0);
1169 /* Return the real part (which has mode MODE) of a complex value X.
1170 This always comes at the low address in memory. */
1173 gen_realpart (enum machine_mode mode, rtx x)
1177 /* Handle complex constants. */
1178 part = gen_complex_constant_part (mode, x, 0);
1179 if (part != NULL_RTX)
1182 if (WORDS_BIG_ENDIAN
1183 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1185 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1187 ("can't access real part of complex value in hard register");
1188 else if (WORDS_BIG_ENDIAN)
1189 return gen_highpart (mode, x);
1191 return gen_lowpart (mode, x);
1194 /* Return the imaginary part (which has mode MODE) of a complex value X.
1195 This always comes at the high address in memory. */
1198 gen_imagpart (enum machine_mode mode, rtx x)
1202 /* Handle complex constants. */
1203 part = gen_complex_constant_part (mode, x, 1);
1204 if (part != NULL_RTX)
1207 if (WORDS_BIG_ENDIAN)
1208 return gen_lowpart (mode, x);
1209 else if (! WORDS_BIG_ENDIAN
1210 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1212 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1214 ("can't access imaginary part of complex value in hard register");
1216 return gen_highpart (mode, x);
1220 gen_highpart (enum machine_mode mode, rtx x)
1222 unsigned int msize = GET_MODE_SIZE (mode);
1225 /* This case loses if X is a subreg. To catch bugs early,
1226 complain if an invalid MODE is used even in other cases. */
1227 if (msize > UNITS_PER_WORD
1228 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1231 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1232 subreg_highpart_offset (mode, GET_MODE (x)));
1234 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1235 the target if we have a MEM. gen_highpart must return a valid operand,
1236 emitting code if necessary to do so. */
1237 if (result != NULL_RTX && MEM_P (result))
1238 result = validize_mem (result);
1245 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1246 be VOIDmode constant. */
1248 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1250 if (GET_MODE (exp) != VOIDmode)
1252 if (GET_MODE (exp) != innermode)
1254 return gen_highpart (outermode, exp);
1256 return simplify_gen_subreg (outermode, exp, innermode,
1257 subreg_highpart_offset (outermode, innermode));
1260 /* Return offset in bytes to get OUTERMODE low part
1261 of the value in mode INNERMODE stored in memory in target format. */
1264 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1266 unsigned int offset = 0;
1267 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1271 if (WORDS_BIG_ENDIAN)
1272 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1273 if (BYTES_BIG_ENDIAN)
1274 offset += difference % UNITS_PER_WORD;
1280 /* Return offset in bytes to get OUTERMODE high part
1281 of the value in mode INNERMODE stored in memory in target format. */
1283 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1285 unsigned int offset = 0;
1286 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1288 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1293 if (! WORDS_BIG_ENDIAN)
1294 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1295 if (! BYTES_BIG_ENDIAN)
1296 offset += difference % UNITS_PER_WORD;
1302 /* Return 1 iff X, assumed to be a SUBREG,
1303 refers to the least significant part of its containing reg.
1304 If X is not a SUBREG, always return 1 (it is its own low part!). */
1307 subreg_lowpart_p (rtx x)
1309 if (GET_CODE (x) != SUBREG)
1311 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1314 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1315 == SUBREG_BYTE (x));
1318 /* Return subword OFFSET of operand OP.
1319 The word number, OFFSET, is interpreted as the word number starting
1320 at the low-order address. OFFSET 0 is the low-order word if not
1321 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1323 If we cannot extract the required word, we return zero. Otherwise,
1324 an rtx corresponding to the requested word will be returned.
1326 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1327 reload has completed, a valid address will always be returned. After
1328 reload, if a valid address cannot be returned, we return zero.
1330 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1331 it is the responsibility of the caller.
1333 MODE is the mode of OP in case it is a CONST_INT.
1335 ??? This is still rather broken for some cases. The problem for the
1336 moment is that all callers of this thing provide no 'goal mode' to
1337 tell us to work with. This exists because all callers were written
1338 in a word based SUBREG world.
1339 Now use of this function can be deprecated by simplify_subreg in most
1344 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1346 if (mode == VOIDmode)
1347 mode = GET_MODE (op);
1349 if (mode == VOIDmode)
1352 /* If OP is narrower than a word, fail. */
1354 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1357 /* If we want a word outside OP, return zero. */
1359 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1362 /* Form a new MEM at the requested address. */
1365 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1367 if (! validate_address)
1370 else if (reload_completed)
1372 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1376 return replace_equiv_address (new, XEXP (new, 0));
1379 /* Rest can be handled by simplify_subreg. */
1380 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1383 /* Similar to `operand_subword', but never return 0. If we can't extract
1384 the required subword, put OP into a register and try again. If that fails,
1385 abort. We always validate the address in this case.
1387 MODE is the mode of OP, in case it is CONST_INT. */
1390 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1392 rtx result = operand_subword (op, offset, 1, mode);
1397 if (mode != BLKmode && mode != VOIDmode)
1399 /* If this is a register which can not be accessed by words, copy it
1400 to a pseudo register. */
1402 op = copy_to_reg (op);
1404 op = force_reg (mode, op);
1407 result = operand_subword (op, offset, 1, mode);
1414 /* Given a compare instruction, swap the operands.
1415 A test instruction is changed into a compare of 0 against the operand. */
1418 reverse_comparison (rtx insn)
1420 rtx body = PATTERN (insn);
1423 if (GET_CODE (body) == SET)
1424 comp = SET_SRC (body);
1426 comp = SET_SRC (XVECEXP (body, 0, 0));
1428 if (GET_CODE (comp) == COMPARE)
1430 rtx op0 = XEXP (comp, 0);
1431 rtx op1 = XEXP (comp, 1);
1432 XEXP (comp, 0) = op1;
1433 XEXP (comp, 1) = op0;
1437 rtx new = gen_rtx_COMPARE (VOIDmode,
1438 CONST0_RTX (GET_MODE (comp)), comp);
1439 if (GET_CODE (body) == SET)
1440 SET_SRC (body) = new;
1442 SET_SRC (XVECEXP (body, 0, 0)) = new;
1446 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1447 or (2) a component ref of something variable. Represent the later with
1448 a NULL expression. */
1451 component_ref_for_mem_expr (tree ref)
1453 tree inner = TREE_OPERAND (ref, 0);
1455 if (TREE_CODE (inner) == COMPONENT_REF)
1456 inner = component_ref_for_mem_expr (inner);
1459 /* Now remove any conversions: they don't change what the underlying
1460 object is. Likewise for SAVE_EXPR. */
1461 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1462 || TREE_CODE (inner) == NON_LVALUE_EXPR
1463 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1464 || TREE_CODE (inner) == SAVE_EXPR)
1465 inner = TREE_OPERAND (inner, 0);
1467 if (! DECL_P (inner))
1471 if (inner == TREE_OPERAND (ref, 0))
1474 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1475 TREE_OPERAND (ref, 1), NULL_TREE);
1478 /* Returns 1 if both MEM_EXPR can be considered equal
1482 mem_expr_equal_p (tree expr1, tree expr2)
1487 if (! expr1 || ! expr2)
1490 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1493 if (TREE_CODE (expr1) == COMPONENT_REF)
1495 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1496 TREE_OPERAND (expr2, 0))
1497 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1498 TREE_OPERAND (expr2, 1));
1500 if (TREE_CODE (expr1) == INDIRECT_REF)
1501 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1502 TREE_OPERAND (expr2, 0));
1504 /* Decls with different pointers can't be equal. */
1508 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1509 have been resolved here. */
1512 /* Given REF, a MEM, and T, either the type of X or the expression
1513 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1514 if we are making a new object of this type. BITPOS is nonzero if
1515 there is an offset outstanding on T that will be applied later. */
1518 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1519 HOST_WIDE_INT bitpos)
1521 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1522 tree expr = MEM_EXPR (ref);
1523 rtx offset = MEM_OFFSET (ref);
1524 rtx size = MEM_SIZE (ref);
1525 unsigned int align = MEM_ALIGN (ref);
1526 HOST_WIDE_INT apply_bitpos = 0;
1529 /* It can happen that type_for_mode was given a mode for which there
1530 is no language-level type. In which case it returns NULL, which
1535 type = TYPE_P (t) ? t : TREE_TYPE (t);
1536 if (type == error_mark_node)
1539 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1540 wrong answer, as it assumes that DECL_RTL already has the right alias
1541 info. Callers should not set DECL_RTL until after the call to
1542 set_mem_attributes. */
1543 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1546 /* Get the alias set from the expression or type (perhaps using a
1547 front-end routine) and use it. */
1548 alias = get_alias_set (t);
1550 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1551 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1552 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1553 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1555 /* If we are making an object of this type, or if this is a DECL, we know
1556 that it is a scalar if the type is not an aggregate. */
1557 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1558 MEM_SCALAR_P (ref) = 1;
1560 /* We can set the alignment from the type if we are making an object,
1561 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1562 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1563 align = MAX (align, TYPE_ALIGN (type));
1565 /* If the size is known, we can set that. */
1566 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1567 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1569 /* If T is not a type, we may be able to deduce some more information about
1573 tree base = get_base_address (t);
1574 if (base && DECL_P (base)
1575 && TREE_READONLY (base)
1576 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1577 MEM_READONLY_P (ref) = 1;
1579 if (TREE_THIS_VOLATILE (t))
1580 MEM_VOLATILE_P (ref) = 1;
1582 /* Now remove any conversions: they don't change what the underlying
1583 object is. Likewise for SAVE_EXPR. */
1584 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1585 || TREE_CODE (t) == NON_LVALUE_EXPR
1586 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1587 || TREE_CODE (t) == SAVE_EXPR)
1588 t = TREE_OPERAND (t, 0);
1590 /* If this expression can't be addressed (e.g., it contains a reference
1591 to a non-addressable field), show we don't change its alias set. */
1592 if (! can_address_p (t))
1593 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1595 /* If this is a decl, set the attributes of the MEM from it. */
1599 offset = const0_rtx;
1600 apply_bitpos = bitpos;
1601 size = (DECL_SIZE_UNIT (t)
1602 && host_integerp (DECL_SIZE_UNIT (t), 1)
1603 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1604 align = DECL_ALIGN (t);
1607 /* If this is a constant, we know the alignment. */
1608 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1610 align = TYPE_ALIGN (type);
1611 #ifdef CONSTANT_ALIGNMENT
1612 align = CONSTANT_ALIGNMENT (t, align);
1616 /* If this is a field reference and not a bit-field, record it. */
1617 /* ??? There is some information that can be gleened from bit-fields,
1618 such as the word offset in the structure that might be modified.
1619 But skip it for now. */
1620 else if (TREE_CODE (t) == COMPONENT_REF
1621 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1623 expr = component_ref_for_mem_expr (t);
1624 offset = const0_rtx;
1625 apply_bitpos = bitpos;
1626 /* ??? Any reason the field size would be different than
1627 the size we got from the type? */
1630 /* If this is an array reference, look for an outer field reference. */
1631 else if (TREE_CODE (t) == ARRAY_REF)
1633 tree off_tree = size_zero_node;
1634 /* We can't modify t, because we use it at the end of the
1640 tree index = TREE_OPERAND (t2, 1);
1641 tree low_bound = array_ref_low_bound (t2);
1642 tree unit_size = array_ref_element_size (t2);
1644 /* We assume all arrays have sizes that are a multiple of a byte.
1645 First subtract the lower bound, if any, in the type of the
1646 index, then convert to sizetype and multiply by the size of
1647 the array element. */
1648 if (! integer_zerop (low_bound))
1649 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1652 off_tree = size_binop (PLUS_EXPR,
1653 size_binop (MULT_EXPR, convert (sizetype,
1657 t2 = TREE_OPERAND (t2, 0);
1659 while (TREE_CODE (t2) == ARRAY_REF);
1665 if (host_integerp (off_tree, 1))
1667 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1668 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1669 align = DECL_ALIGN (t2);
1670 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1672 offset = GEN_INT (ioff);
1673 apply_bitpos = bitpos;
1676 else if (TREE_CODE (t2) == COMPONENT_REF)
1678 expr = component_ref_for_mem_expr (t2);
1679 if (host_integerp (off_tree, 1))
1681 offset = GEN_INT (tree_low_cst (off_tree, 1));
1682 apply_bitpos = bitpos;
1684 /* ??? Any reason the field size would be different than
1685 the size we got from the type? */
1687 else if (flag_argument_noalias > 1
1688 && TREE_CODE (t2) == INDIRECT_REF
1689 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1696 /* If this is a Fortran indirect argument reference, record the
1698 else if (flag_argument_noalias > 1
1699 && TREE_CODE (t) == INDIRECT_REF
1700 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1707 /* If we modified OFFSET based on T, then subtract the outstanding
1708 bit position offset. Similarly, increase the size of the accessed
1709 object to contain the negative offset. */
1712 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1714 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1717 /* Now set the attributes we computed above. */
1719 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1721 /* If this is already known to be a scalar or aggregate, we are done. */
1722 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1725 /* If it is a reference into an aggregate, this is part of an aggregate.
1726 Otherwise we don't know. */
1727 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1728 || TREE_CODE (t) == ARRAY_RANGE_REF
1729 || TREE_CODE (t) == BIT_FIELD_REF)
1730 MEM_IN_STRUCT_P (ref) = 1;
1734 set_mem_attributes (rtx ref, tree t, int objectp)
1736 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1739 /* Set the decl for MEM to DECL. */
1742 set_mem_attrs_from_reg (rtx mem, rtx reg)
1745 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1746 GEN_INT (REG_OFFSET (reg)),
1747 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1750 /* Set the alias set of MEM to SET. */
1753 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1755 #ifdef ENABLE_CHECKING
1756 /* If the new and old alias sets don't conflict, something is wrong. */
1757 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1761 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1762 MEM_SIZE (mem), MEM_ALIGN (mem),
1766 /* Set the alignment of MEM to ALIGN bits. */
1769 set_mem_align (rtx mem, unsigned int align)
1771 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1772 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1776 /* Set the expr for MEM to EXPR. */
1779 set_mem_expr (rtx mem, tree expr)
1782 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1783 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1786 /* Set the offset of MEM to OFFSET. */
1789 set_mem_offset (rtx mem, rtx offset)
1791 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1792 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1796 /* Set the size of MEM to SIZE. */
1799 set_mem_size (rtx mem, rtx size)
1801 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1802 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1806 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1807 and its address changed to ADDR. (VOIDmode means don't change the mode.
1808 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1809 returned memory location is required to be valid. The memory
1810 attributes are not changed. */
1813 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1817 if (!MEM_P (memref))
1819 if (mode == VOIDmode)
1820 mode = GET_MODE (memref);
1822 addr = XEXP (memref, 0);
1823 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1824 && (!validate || memory_address_p (mode, addr)))
1829 if (reload_in_progress || reload_completed)
1831 if (! memory_address_p (mode, addr))
1835 addr = memory_address (mode, addr);
1838 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1841 new = gen_rtx_MEM (mode, addr);
1842 MEM_COPY_ATTRIBUTES (new, memref);
1846 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1847 way we are changing MEMREF, so we only preserve the alias set. */
1850 change_address (rtx memref, enum machine_mode mode, rtx addr)
1852 rtx new = change_address_1 (memref, mode, addr, 1), size;
1853 enum machine_mode mmode = GET_MODE (new);
1856 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1857 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1859 /* If there are no changes, just return the original memory reference. */
1862 if (MEM_ATTRS (memref) == 0
1863 || (MEM_EXPR (memref) == NULL
1864 && MEM_OFFSET (memref) == NULL
1865 && MEM_SIZE (memref) == size
1866 && MEM_ALIGN (memref) == align))
1869 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1870 MEM_COPY_ATTRIBUTES (new, memref);
1874 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1879 /* Return a memory reference like MEMREF, but with its mode changed
1880 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1881 nonzero, the memory address is forced to be valid.
1882 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1883 and caller is responsible for adjusting MEMREF base register. */
1886 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1887 int validate, int adjust)
1889 rtx addr = XEXP (memref, 0);
1891 rtx memoffset = MEM_OFFSET (memref);
1893 unsigned int memalign = MEM_ALIGN (memref);
1895 /* If there are no changes, just return the original memory reference. */
1896 if (mode == GET_MODE (memref) && !offset
1897 && (!validate || memory_address_p (mode, addr)))
1900 /* ??? Prefer to create garbage instead of creating shared rtl.
1901 This may happen even if offset is nonzero -- consider
1902 (plus (plus reg reg) const_int) -- so do this always. */
1903 addr = copy_rtx (addr);
1907 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1908 object, we can merge it into the LO_SUM. */
1909 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1911 && (unsigned HOST_WIDE_INT) offset
1912 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1913 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1914 plus_constant (XEXP (addr, 1), offset));
1916 addr = plus_constant (addr, offset);
1919 new = change_address_1 (memref, mode, addr, validate);
1921 /* Compute the new values of the memory attributes due to this adjustment.
1922 We add the offsets and update the alignment. */
1924 memoffset = GEN_INT (offset + INTVAL (memoffset));
1926 /* Compute the new alignment by taking the MIN of the alignment and the
1927 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1932 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1934 /* We can compute the size in a number of ways. */
1935 if (GET_MODE (new) != BLKmode)
1936 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1937 else if (MEM_SIZE (memref))
1938 size = plus_constant (MEM_SIZE (memref), -offset);
1940 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1941 memoffset, size, memalign, GET_MODE (new));
1943 /* At some point, we should validate that this offset is within the object,
1944 if all the appropriate values are known. */
1948 /* Return a memory reference like MEMREF, but with its mode changed
1949 to MODE and its address changed to ADDR, which is assumed to be
1950 MEMREF offseted by OFFSET bytes. If VALIDATE is
1951 nonzero, the memory address is forced to be valid. */
1954 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1955 HOST_WIDE_INT offset, int validate)
1957 memref = change_address_1 (memref, VOIDmode, addr, validate);
1958 return adjust_address_1 (memref, mode, offset, validate, 0);
1961 /* Return a memory reference like MEMREF, but whose address is changed by
1962 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1963 known to be in OFFSET (possibly 1). */
1966 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1968 rtx new, addr = XEXP (memref, 0);
1970 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1972 /* At this point we don't know _why_ the address is invalid. It
1973 could have secondary memory references, multiplies or anything.
1975 However, if we did go and rearrange things, we can wind up not
1976 being able to recognize the magic around pic_offset_table_rtx.
1977 This stuff is fragile, and is yet another example of why it is
1978 bad to expose PIC machinery too early. */
1979 if (! memory_address_p (GET_MODE (memref), new)
1980 && GET_CODE (addr) == PLUS
1981 && XEXP (addr, 0) == pic_offset_table_rtx)
1983 addr = force_reg (GET_MODE (addr), addr);
1984 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1987 update_temp_slot_address (XEXP (memref, 0), new);
1988 new = change_address_1 (memref, VOIDmode, new, 1);
1990 /* If there are no changes, just return the original memory reference. */
1994 /* Update the alignment to reflect the offset. Reset the offset, which
1997 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1998 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2003 /* Return a memory reference like MEMREF, but with its address changed to
2004 ADDR. The caller is asserting that the actual piece of memory pointed
2005 to is the same, just the form of the address is being changed, such as
2006 by putting something into a register. */
2009 replace_equiv_address (rtx memref, rtx addr)
2011 /* change_address_1 copies the memory attribute structure without change
2012 and that's exactly what we want here. */
2013 update_temp_slot_address (XEXP (memref, 0), addr);
2014 return change_address_1 (memref, VOIDmode, addr, 1);
2017 /* Likewise, but the reference is not required to be valid. */
2020 replace_equiv_address_nv (rtx memref, rtx addr)
2022 return change_address_1 (memref, VOIDmode, addr, 0);
2025 /* Return a memory reference like MEMREF, but with its mode widened to
2026 MODE and offset by OFFSET. This would be used by targets that e.g.
2027 cannot issue QImode memory operations and have to use SImode memory
2028 operations plus masking logic. */
2031 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2033 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2034 tree expr = MEM_EXPR (new);
2035 rtx memoffset = MEM_OFFSET (new);
2036 unsigned int size = GET_MODE_SIZE (mode);
2038 /* If there are no changes, just return the original memory reference. */
2042 /* If we don't know what offset we were at within the expression, then
2043 we can't know if we've overstepped the bounds. */
2049 if (TREE_CODE (expr) == COMPONENT_REF)
2051 tree field = TREE_OPERAND (expr, 1);
2052 tree offset = component_ref_field_offset (expr);
2054 if (! DECL_SIZE_UNIT (field))
2060 /* Is the field at least as large as the access? If so, ok,
2061 otherwise strip back to the containing structure. */
2062 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2063 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2064 && INTVAL (memoffset) >= 0)
2067 if (! host_integerp (offset, 1))
2073 expr = TREE_OPERAND (expr, 0);
2075 = (GEN_INT (INTVAL (memoffset)
2076 + tree_low_cst (offset, 1)
2077 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2080 /* Similarly for the decl. */
2081 else if (DECL_P (expr)
2082 && DECL_SIZE_UNIT (expr)
2083 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2084 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2085 && (! memoffset || INTVAL (memoffset) >= 0))
2089 /* The widened memory access overflows the expression, which means
2090 that it could alias another expression. Zap it. */
2097 memoffset = NULL_RTX;
2099 /* The widened memory may alias other stuff, so zap the alias set. */
2100 /* ??? Maybe use get_alias_set on any remaining expression. */
2102 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2103 MEM_ALIGN (new), mode);
2108 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2111 gen_label_rtx (void)
2113 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2114 NULL, label_num++, NULL);
2117 /* For procedure integration. */
2119 /* Install new pointers to the first and last insns in the chain.
2120 Also, set cur_insn_uid to one higher than the last in use.
2121 Used for an inline-procedure after copying the insn chain. */
2124 set_new_first_and_last_insn (rtx first, rtx last)
2132 for (insn = first; insn; insn = NEXT_INSN (insn))
2133 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2138 /* Set the last label number found in the current function.
2139 This is used when belatedly compiling an inline function. */
2142 set_new_last_label_num (int last)
2144 base_label_num = label_num;
2145 last_label_num = last;
2148 /* Restore all variables describing the current status from the structure *P.
2149 This is used after a nested function. */
2152 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2157 /* Go through all the RTL insn bodies and copy any invalid shared
2158 structure. This routine should only be called once. */
2161 unshare_all_rtl_1 (tree fndecl, rtx insn)
2165 /* Make sure that virtual parameters are not shared. */
2166 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2167 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2169 /* Make sure that virtual stack slots are not shared. */
2170 unshare_all_decls (DECL_INITIAL (fndecl));
2172 /* Unshare just about everything else. */
2173 unshare_all_rtl_in_chain (insn);
2175 /* Make sure the addresses of stack slots found outside the insn chain
2176 (such as, in DECL_RTL of a variable) are not shared
2177 with the insn chain.
2179 This special care is necessary when the stack slot MEM does not
2180 actually appear in the insn chain. If it does appear, its address
2181 is unshared from all else at that point. */
2182 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2185 /* Go through all the RTL insn bodies and copy any invalid shared
2186 structure, again. This is a fairly expensive thing to do so it
2187 should be done sparingly. */
2190 unshare_all_rtl_again (rtx insn)
2195 for (p = insn; p; p = NEXT_INSN (p))
2198 reset_used_flags (PATTERN (p));
2199 reset_used_flags (REG_NOTES (p));
2200 reset_used_flags (LOG_LINKS (p));
2203 /* Make sure that virtual stack slots are not shared. */
2204 reset_used_decls (DECL_INITIAL (cfun->decl));
2206 /* Make sure that virtual parameters are not shared. */
2207 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2208 reset_used_flags (DECL_RTL (decl));
2210 reset_used_flags (stack_slot_list);
2212 unshare_all_rtl_1 (cfun->decl, insn);
2216 unshare_all_rtl (void)
2218 unshare_all_rtl_1 (current_function_decl, get_insns ());
2221 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2222 Recursively does the same for subexpressions. */
2225 verify_rtx_sharing (rtx orig, rtx insn)
2230 const char *format_ptr;
2235 code = GET_CODE (x);
2237 /* These types may be freely shared. */
2252 /* SCRATCH must be shared because they represent distinct values. */
2254 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2259 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2260 a LABEL_REF, it isn't sharable. */
2261 if (GET_CODE (XEXP (x, 0)) == PLUS
2262 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2263 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2268 /* A MEM is allowed to be shared if its address is constant. */
2269 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2270 || reload_completed || reload_in_progress)
2279 /* This rtx may not be shared. If it has already been seen,
2280 replace it with a copy of itself. */
2282 if (RTX_FLAG (x, used))
2284 error ("Invalid rtl sharing found in the insn");
2286 error ("Shared rtx");
2290 RTX_FLAG (x, used) = 1;
2292 /* Now scan the subexpressions recursively. */
2294 format_ptr = GET_RTX_FORMAT (code);
2296 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2298 switch (*format_ptr++)
2301 verify_rtx_sharing (XEXP (x, i), insn);
2305 if (XVEC (x, i) != NULL)
2308 int len = XVECLEN (x, i);
2310 for (j = 0; j < len; j++)
2312 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2313 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2314 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2315 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2317 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2326 /* Go through all the RTL insn bodies and check that there is no unexpected
2327 sharing in between the subexpressions. */
2330 verify_rtl_sharing (void)
2334 for (p = get_insns (); p; p = NEXT_INSN (p))
2337 reset_used_flags (PATTERN (p));
2338 reset_used_flags (REG_NOTES (p));
2339 reset_used_flags (LOG_LINKS (p));
2342 for (p = get_insns (); p; p = NEXT_INSN (p))
2345 verify_rtx_sharing (PATTERN (p), p);
2346 verify_rtx_sharing (REG_NOTES (p), p);
2347 verify_rtx_sharing (LOG_LINKS (p), p);
2351 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2352 Assumes the mark bits are cleared at entry. */
2355 unshare_all_rtl_in_chain (rtx insn)
2357 for (; insn; insn = NEXT_INSN (insn))
2360 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2361 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2362 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2366 /* Go through all virtual stack slots of a function and copy any
2367 shared structure. */
2369 unshare_all_decls (tree blk)
2373 /* Copy shared decls. */
2374 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2375 if (DECL_RTL_SET_P (t))
2376 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2378 /* Now process sub-blocks. */
2379 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2380 unshare_all_decls (t);
2383 /* Go through all virtual stack slots of a function and mark them as
2386 reset_used_decls (tree blk)
2391 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2392 if (DECL_RTL_SET_P (t))
2393 reset_used_flags (DECL_RTL (t));
2395 /* Now process sub-blocks. */
2396 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2397 reset_used_decls (t);
2400 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2401 placed in the result directly, rather than being copied. MAY_SHARE is
2402 either a MEM of an EXPR_LIST of MEMs. */
2405 copy_most_rtx (rtx orig, rtx may_share)
2410 const char *format_ptr;
2412 if (orig == may_share
2413 || (GET_CODE (may_share) == EXPR_LIST
2414 && in_expr_list_p (may_share, orig)))
2417 code = GET_CODE (orig);
2434 copy = rtx_alloc (code);
2435 PUT_MODE (copy, GET_MODE (orig));
2436 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2437 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2438 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2439 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2440 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2442 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2444 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2446 switch (*format_ptr++)
2449 XEXP (copy, i) = XEXP (orig, i);
2450 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2451 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2455 XEXP (copy, i) = XEXP (orig, i);
2460 XVEC (copy, i) = XVEC (orig, i);
2461 if (XVEC (orig, i) != NULL)
2463 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2464 for (j = 0; j < XVECLEN (copy, i); j++)
2465 XVECEXP (copy, i, j)
2466 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2471 XWINT (copy, i) = XWINT (orig, i);
2476 XINT (copy, i) = XINT (orig, i);
2480 XTREE (copy, i) = XTREE (orig, i);
2485 XSTR (copy, i) = XSTR (orig, i);
2489 X0ANY (copy, i) = X0ANY (orig, i);
2499 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2500 Recursively does the same for subexpressions. Uses
2501 copy_rtx_if_shared_1 to reduce stack space. */
2504 copy_rtx_if_shared (rtx orig)
2506 copy_rtx_if_shared_1 (&orig);
2510 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2511 use. Recursively does the same for subexpressions. */
2514 copy_rtx_if_shared_1 (rtx *orig1)
2520 const char *format_ptr;
2524 /* Repeat is used to turn tail-recursion into iteration. */
2531 code = GET_CODE (x);
2533 /* These types may be freely shared. */
2547 /* SCRATCH must be shared because they represent distinct values. */
2550 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2555 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2556 a LABEL_REF, it isn't sharable. */
2557 if (GET_CODE (XEXP (x, 0)) == PLUS
2558 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2559 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2568 /* The chain of insns is not being copied. */
2575 /* This rtx may not be shared. If it has already been seen,
2576 replace it with a copy of itself. */
2578 if (RTX_FLAG (x, used))
2582 copy = rtx_alloc (code);
2583 memcpy (copy, x, RTX_SIZE (code));
2587 RTX_FLAG (x, used) = 1;
2589 /* Now scan the subexpressions recursively.
2590 We can store any replaced subexpressions directly into X
2591 since we know X is not shared! Any vectors in X
2592 must be copied if X was copied. */
2594 format_ptr = GET_RTX_FORMAT (code);
2595 length = GET_RTX_LENGTH (code);
2598 for (i = 0; i < length; i++)
2600 switch (*format_ptr++)
2604 copy_rtx_if_shared_1 (last_ptr);
2605 last_ptr = &XEXP (x, i);
2609 if (XVEC (x, i) != NULL)
2612 int len = XVECLEN (x, i);
2614 /* Copy the vector iff I copied the rtx and the length
2616 if (copied && len > 0)
2617 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2619 /* Call recursively on all inside the vector. */
2620 for (j = 0; j < len; j++)
2623 copy_rtx_if_shared_1 (last_ptr);
2624 last_ptr = &XVECEXP (x, i, j);
2639 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2640 to look for shared sub-parts. */
2643 reset_used_flags (rtx x)
2647 const char *format_ptr;
2650 /* Repeat is used to turn tail-recursion into iteration. */
2655 code = GET_CODE (x);
2657 /* These types may be freely shared so we needn't do any resetting
2678 /* The chain of insns is not being copied. */
2685 RTX_FLAG (x, used) = 0;
2687 format_ptr = GET_RTX_FORMAT (code);
2688 length = GET_RTX_LENGTH (code);
2690 for (i = 0; i < length; i++)
2692 switch (*format_ptr++)
2700 reset_used_flags (XEXP (x, i));
2704 for (j = 0; j < XVECLEN (x, i); j++)
2705 reset_used_flags (XVECEXP (x, i, j));
2711 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2712 to look for shared sub-parts. */
2715 set_used_flags (rtx x)
2719 const char *format_ptr;
2724 code = GET_CODE (x);
2726 /* These types may be freely shared so we needn't do any resetting
2747 /* The chain of insns is not being copied. */
2754 RTX_FLAG (x, used) = 1;
2756 format_ptr = GET_RTX_FORMAT (code);
2757 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2759 switch (*format_ptr++)
2762 set_used_flags (XEXP (x, i));
2766 for (j = 0; j < XVECLEN (x, i); j++)
2767 set_used_flags (XVECEXP (x, i, j));
2773 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2774 Return X or the rtx for the pseudo reg the value of X was copied into.
2775 OTHER must be valid as a SET_DEST. */
2778 make_safe_from (rtx x, rtx other)
2781 switch (GET_CODE (other))
2784 other = SUBREG_REG (other);
2786 case STRICT_LOW_PART:
2789 other = XEXP (other, 0);
2798 && GET_CODE (x) != SUBREG)
2800 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2801 || reg_mentioned_p (other, x))))
2803 rtx temp = gen_reg_rtx (GET_MODE (x));
2804 emit_move_insn (temp, x);
2810 /* Emission of insns (adding them to the doubly-linked list). */
2812 /* Return the first insn of the current sequence or current function. */
2820 /* Specify a new insn as the first in the chain. */
2823 set_first_insn (rtx insn)
2825 if (PREV_INSN (insn) != 0)
2830 /* Return the last insn emitted in current sequence or current function. */
2833 get_last_insn (void)
2838 /* Specify a new insn as the last in the chain. */
2841 set_last_insn (rtx insn)
2843 if (NEXT_INSN (insn) != 0)
2848 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2851 get_last_insn_anywhere (void)
2853 struct sequence_stack *stack;
2856 for (stack = seq_stack; stack; stack = stack->next)
2857 if (stack->last != 0)
2862 /* Return the first nonnote insn emitted in current sequence or current
2863 function. This routine looks inside SEQUENCEs. */
2866 get_first_nonnote_insn (void)
2868 rtx insn = first_insn;
2872 insn = next_insn (insn);
2873 if (insn == 0 || !NOTE_P (insn))
2880 /* Return the last nonnote insn emitted in current sequence or current
2881 function. This routine looks inside SEQUENCEs. */
2884 get_last_nonnote_insn (void)
2886 rtx insn = last_insn;
2890 insn = previous_insn (insn);
2891 if (insn == 0 || !NOTE_P (insn))
2898 /* Return a number larger than any instruction's uid in this function. */
2903 return cur_insn_uid;
2906 /* Renumber instructions so that no instruction UIDs are wasted. */
2909 renumber_insns (FILE *stream)
2913 /* If we're not supposed to renumber instructions, don't. */
2914 if (!flag_renumber_insns)
2917 /* If there aren't that many instructions, then it's not really
2918 worth renumbering them. */
2919 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2924 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2927 fprintf (stream, "Renumbering insn %d to %d\n",
2928 INSN_UID (insn), cur_insn_uid);
2929 INSN_UID (insn) = cur_insn_uid++;
2933 /* Return the next insn. If it is a SEQUENCE, return the first insn
2937 next_insn (rtx insn)
2941 insn = NEXT_INSN (insn);
2942 if (insn && NONJUMP_INSN_P (insn)
2943 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2944 insn = XVECEXP (PATTERN (insn), 0, 0);
2950 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2954 previous_insn (rtx insn)
2958 insn = PREV_INSN (insn);
2959 if (insn && NONJUMP_INSN_P (insn)
2960 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2961 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2967 /* Return the next insn after INSN that is not a NOTE. This routine does not
2968 look inside SEQUENCEs. */
2971 next_nonnote_insn (rtx insn)
2975 insn = NEXT_INSN (insn);
2976 if (insn == 0 || !NOTE_P (insn))
2983 /* Return the previous insn before INSN that is not a NOTE. This routine does
2984 not look inside SEQUENCEs. */
2987 prev_nonnote_insn (rtx insn)
2991 insn = PREV_INSN (insn);
2992 if (insn == 0 || !NOTE_P (insn))
2999 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3000 or 0, if there is none. This routine does not look inside
3004 next_real_insn (rtx insn)
3008 insn = NEXT_INSN (insn);
3009 if (insn == 0 || INSN_P (insn))
3016 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3017 or 0, if there is none. This routine does not look inside
3021 prev_real_insn (rtx insn)
3025 insn = PREV_INSN (insn);
3026 if (insn == 0 || INSN_P (insn))
3033 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3034 This routine does not look inside SEQUENCEs. */
3037 last_call_insn (void)
3041 for (insn = get_last_insn ();
3042 insn && !CALL_P (insn);
3043 insn = PREV_INSN (insn))
3049 /* Find the next insn after INSN that really does something. This routine
3050 does not look inside SEQUENCEs. Until reload has completed, this is the
3051 same as next_real_insn. */
3054 active_insn_p (rtx insn)
3056 return (CALL_P (insn) || JUMP_P (insn)
3057 || (NONJUMP_INSN_P (insn)
3058 && (! reload_completed
3059 || (GET_CODE (PATTERN (insn)) != USE
3060 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3064 next_active_insn (rtx insn)
3068 insn = NEXT_INSN (insn);
3069 if (insn == 0 || active_insn_p (insn))
3076 /* Find the last insn before INSN that really does something. This routine
3077 does not look inside SEQUENCEs. Until reload has completed, this is the
3078 same as prev_real_insn. */
3081 prev_active_insn (rtx insn)
3085 insn = PREV_INSN (insn);
3086 if (insn == 0 || active_insn_p (insn))
3093 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3096 next_label (rtx insn)
3100 insn = NEXT_INSN (insn);
3101 if (insn == 0 || LABEL_P (insn))
3108 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3111 prev_label (rtx insn)
3115 insn = PREV_INSN (insn);
3116 if (insn == 0 || LABEL_P (insn))
3123 /* Return the last label to mark the same position as LABEL. Return null
3124 if LABEL itself is null. */
3127 skip_consecutive_labels (rtx label)
3131 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3139 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3140 and REG_CC_USER notes so we can find it. */
3143 link_cc0_insns (rtx insn)
3145 rtx user = next_nonnote_insn (insn);
3147 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3148 user = XVECEXP (PATTERN (user), 0, 0);
3150 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3152 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3155 /* Return the next insn that uses CC0 after INSN, which is assumed to
3156 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3157 applied to the result of this function should yield INSN).
3159 Normally, this is simply the next insn. However, if a REG_CC_USER note
3160 is present, it contains the insn that uses CC0.
3162 Return 0 if we can't find the insn. */
3165 next_cc0_user (rtx insn)
3167 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3170 return XEXP (note, 0);
3172 insn = next_nonnote_insn (insn);
3173 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3174 insn = XVECEXP (PATTERN (insn), 0, 0);
3176 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3182 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3183 note, it is the previous insn. */
3186 prev_cc0_setter (rtx insn)
3188 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3191 return XEXP (note, 0);
3193 insn = prev_nonnote_insn (insn);
3194 if (! sets_cc0_p (PATTERN (insn)))
3201 /* Increment the label uses for all labels present in rtx. */
3204 mark_label_nuses (rtx x)
3210 code = GET_CODE (x);
3211 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3212 LABEL_NUSES (XEXP (x, 0))++;
3214 fmt = GET_RTX_FORMAT (code);
3215 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3218 mark_label_nuses (XEXP (x, i));
3219 else if (fmt[i] == 'E')
3220 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3221 mark_label_nuses (XVECEXP (x, i, j));
3226 /* Try splitting insns that can be split for better scheduling.
3227 PAT is the pattern which might split.
3228 TRIAL is the insn providing PAT.
3229 LAST is nonzero if we should return the last insn of the sequence produced.
3231 If this routine succeeds in splitting, it returns the first or last
3232 replacement insn depending on the value of LAST. Otherwise, it
3233 returns TRIAL. If the insn to be returned can be split, it will be. */
3236 try_split (rtx pat, rtx trial, int last)
3238 rtx before = PREV_INSN (trial);
3239 rtx after = NEXT_INSN (trial);
3240 int has_barrier = 0;
3244 rtx insn_last, insn;
3247 if (any_condjump_p (trial)
3248 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3249 split_branch_probability = INTVAL (XEXP (note, 0));
3250 probability = split_branch_probability;
3252 seq = split_insns (pat, trial);
3254 split_branch_probability = -1;
3256 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3257 We may need to handle this specially. */
3258 if (after && BARRIER_P (after))
3261 after = NEXT_INSN (after);
3267 /* Avoid infinite loop if any insn of the result matches
3268 the original pattern. */
3272 if (INSN_P (insn_last)
3273 && rtx_equal_p (PATTERN (insn_last), pat))
3275 if (!NEXT_INSN (insn_last))
3277 insn_last = NEXT_INSN (insn_last);
3281 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3285 mark_jump_label (PATTERN (insn), insn, 0);
3287 if (probability != -1
3288 && any_condjump_p (insn)
3289 && !find_reg_note (insn, REG_BR_PROB, 0))
3291 /* We can preserve the REG_BR_PROB notes only if exactly
3292 one jump is created, otherwise the machine description
3293 is responsible for this step using
3294 split_branch_probability variable. */
3298 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3299 GEN_INT (probability),
3305 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3306 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3309 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3312 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3315 *p = CALL_INSN_FUNCTION_USAGE (trial);
3316 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3320 /* Copy notes, particularly those related to the CFG. */
3321 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3323 switch (REG_NOTE_KIND (note))
3327 while (insn != NULL_RTX)
3330 || (flag_non_call_exceptions && INSN_P (insn)
3331 && may_trap_p (PATTERN (insn))))
3333 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3336 insn = PREV_INSN (insn);
3342 case REG_ALWAYS_RETURN:
3344 while (insn != NULL_RTX)
3348 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3351 insn = PREV_INSN (insn);
3355 case REG_NON_LOCAL_GOTO:
3357 while (insn != NULL_RTX)
3361 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3364 insn = PREV_INSN (insn);
3373 /* If there are LABELS inside the split insns increment the
3374 usage count so we don't delete the label. */
3375 if (NONJUMP_INSN_P (trial))
3378 while (insn != NULL_RTX)
3380 if (NONJUMP_INSN_P (insn))
3381 mark_label_nuses (PATTERN (insn));
3383 insn = PREV_INSN (insn);
3387 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3389 delete_insn (trial);
3391 emit_barrier_after (tem);
3393 /* Recursively call try_split for each new insn created; by the
3394 time control returns here that insn will be fully split, so
3395 set LAST and continue from the insn after the one returned.
3396 We can't use next_active_insn here since AFTER may be a note.
3397 Ignore deleted insns, which can be occur if not optimizing. */
3398 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3399 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3400 tem = try_split (PATTERN (tem), tem, 1);
3402 /* Return either the first or the last insn, depending on which was
3405 ? (after ? PREV_INSN (after) : last_insn)
3406 : NEXT_INSN (before);
3409 /* Make and return an INSN rtx, initializing all its slots.
3410 Store PATTERN in the pattern slots. */
3413 make_insn_raw (rtx pattern)
3417 insn = rtx_alloc (INSN);
3419 INSN_UID (insn) = cur_insn_uid++;
3420 PATTERN (insn) = pattern;
3421 INSN_CODE (insn) = -1;
3422 LOG_LINKS (insn) = NULL;
3423 REG_NOTES (insn) = NULL;
3424 INSN_LOCATOR (insn) = 0;
3425 BLOCK_FOR_INSN (insn) = NULL;
3427 #ifdef ENABLE_RTL_CHECKING
3430 && (returnjump_p (insn)
3431 || (GET_CODE (insn) == SET
3432 && SET_DEST (insn) == pc_rtx)))
3434 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3442 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3445 make_jump_insn_raw (rtx pattern)
3449 insn = rtx_alloc (JUMP_INSN);
3450 INSN_UID (insn) = cur_insn_uid++;
3452 PATTERN (insn) = pattern;
3453 INSN_CODE (insn) = -1;
3454 LOG_LINKS (insn) = NULL;
3455 REG_NOTES (insn) = NULL;
3456 JUMP_LABEL (insn) = NULL;
3457 INSN_LOCATOR (insn) = 0;
3458 BLOCK_FOR_INSN (insn) = NULL;
3463 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3466 make_call_insn_raw (rtx pattern)
3470 insn = rtx_alloc (CALL_INSN);
3471 INSN_UID (insn) = cur_insn_uid++;
3473 PATTERN (insn) = pattern;
3474 INSN_CODE (insn) = -1;
3475 LOG_LINKS (insn) = NULL;
3476 REG_NOTES (insn) = NULL;
3477 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3478 INSN_LOCATOR (insn) = 0;
3479 BLOCK_FOR_INSN (insn) = NULL;
3484 /* Add INSN to the end of the doubly-linked list.
3485 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3490 PREV_INSN (insn) = last_insn;
3491 NEXT_INSN (insn) = 0;
3493 if (NULL != last_insn)
3494 NEXT_INSN (last_insn) = insn;
3496 if (NULL == first_insn)
3502 /* Add INSN into the doubly-linked list after insn AFTER. This and
3503 the next should be the only functions called to insert an insn once
3504 delay slots have been filled since only they know how to update a
3508 add_insn_after (rtx insn, rtx after)
3510 rtx next = NEXT_INSN (after);
3513 if (optimize && INSN_DELETED_P (after))
3516 NEXT_INSN (insn) = next;
3517 PREV_INSN (insn) = after;
3521 PREV_INSN (next) = insn;
3522 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3523 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3525 else if (last_insn == after)
3529 struct sequence_stack *stack = seq_stack;
3530 /* Scan all pending sequences too. */
3531 for (; stack; stack = stack->next)
3532 if (after == stack->last)
3542 if (!BARRIER_P (after)
3543 && !BARRIER_P (insn)
3544 && (bb = BLOCK_FOR_INSN (after)))
3546 set_block_for_insn (insn, bb);
3548 bb->flags |= BB_DIRTY;
3549 /* Should not happen as first in the BB is always
3550 either NOTE or LABEL. */
3551 if (BB_END (bb) == after
3552 /* Avoid clobbering of structure when creating new BB. */
3553 && !BARRIER_P (insn)
3555 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3559 NEXT_INSN (after) = insn;
3560 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3562 rtx sequence = PATTERN (after);
3563 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3567 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3568 the previous should be the only functions called to insert an insn once
3569 delay slots have been filled since only they know how to update a
3573 add_insn_before (rtx insn, rtx before)
3575 rtx prev = PREV_INSN (before);
3578 if (optimize && INSN_DELETED_P (before))
3581 PREV_INSN (insn) = prev;
3582 NEXT_INSN (insn) = before;
3586 NEXT_INSN (prev) = insn;
3587 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3589 rtx sequence = PATTERN (prev);
3590 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3593 else if (first_insn == before)
3597 struct sequence_stack *stack = seq_stack;
3598 /* Scan all pending sequences too. */
3599 for (; stack; stack = stack->next)
3600 if (before == stack->first)
3602 stack->first = insn;
3610 if (!BARRIER_P (before)
3611 && !BARRIER_P (insn)
3612 && (bb = BLOCK_FOR_INSN (before)))
3614 set_block_for_insn (insn, bb);
3616 bb->flags |= BB_DIRTY;
3617 /* Should not happen as first in the BB is always
3618 either NOTE or LABEl. */
3619 if (BB_HEAD (bb) == insn
3620 /* Avoid clobbering of structure when creating new BB. */
3621 && !BARRIER_P (insn)
3623 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3627 PREV_INSN (before) = insn;
3628 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3629 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3632 /* Remove an insn from its doubly-linked list. This function knows how
3633 to handle sequences. */
3635 remove_insn (rtx insn)
3637 rtx next = NEXT_INSN (insn);
3638 rtx prev = PREV_INSN (insn);
3643 NEXT_INSN (prev) = next;
3644 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3646 rtx sequence = PATTERN (prev);
3647 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3650 else if (first_insn == insn)
3654 struct sequence_stack *stack = seq_stack;
3655 /* Scan all pending sequences too. */
3656 for (; stack; stack = stack->next)
3657 if (insn == stack->first)
3659 stack->first = next;
3669 PREV_INSN (next) = prev;
3670 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3671 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3673 else if (last_insn == insn)
3677 struct sequence_stack *stack = seq_stack;
3678 /* Scan all pending sequences too. */
3679 for (; stack; stack = stack->next)
3680 if (insn == stack->last)