OSDN Git Service

2007-04-24 Hui-May Chang <hm.chang@apple.com>
[pf3gnuchains/gcc-fork.git] / gcc / domwalk.c
1 /* Generic dominator tree walker
2    Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "basic-block.h"
28 #include "tree-flow.h"
29 #include "domwalk.h"
30 #include "ggc.h"
31
32 /* This file implements a generic walker for dominator trees. 
33
34   To understand the dominator walker one must first have a grasp of dominators,
35   immediate dominators and the dominator tree.
36
37   Dominators
38     A block B1 is said to dominate B2 if every path from the entry to B2 must
39     pass through B1.  Given the dominance relationship, we can proceed to
40     compute immediate dominators.  Note it is not important whether or not
41     our definition allows a block to dominate itself.
42
43   Immediate Dominators:
44     Every block in the CFG has no more than one immediate dominator.  The
45     immediate dominator of block BB must dominate BB and must not dominate
46     any other dominator of BB and must not be BB itself.
47
48   Dominator tree:
49     If we then construct a tree where each node is a basic block and there
50     is an edge from each block's immediate dominator to the block itself, then
51     we have a dominator tree.
52
53
54   [ Note this walker can also walk the post-dominator tree, which is
55     defined in a similar manner.  i.e., block B1 is said to post-dominate
56     block B2 if all paths from B2 to the exit block must pass through
57     B1.  ]
58
59   For example, given the CFG
60
61                    1
62                    |
63                    2
64                   / \
65                  3   4
66                     / \
67        +---------->5   6
68        |          / \ /
69        |    +--->8   7
70        |    |   /    |
71        |    +--9    11
72        |      /      |
73        +--- 10 ---> 12
74           
75   
76   We have a dominator tree which looks like
77
78                    1
79                    |
80                    2
81                   / \
82                  /   \
83                 3     4
84                    / / \ \
85                    | | | |
86                    5 6 7 12
87                    |   |
88                    8   11
89                    |
90                    9
91                    |
92                   10
93   
94   
95   
96   The dominator tree is the basis for a number of analysis, transformation
97   and optimization algorithms that operate on a semi-global basis.
98   
99   The dominator walker is a generic routine which visits blocks in the CFG
100   via a depth first search of the dominator tree.  In the example above
101   the dominator walker might visit blocks in the following order
102   1, 2, 3, 4, 5, 8, 9, 10, 6, 7, 11, 12.
103   
104   The dominator walker has a number of callbacks to perform actions
105   during the walk of the dominator tree.  There are two callbacks
106   which walk statements, one before visiting the dominator children,
107   one after visiting the dominator children.  There is a callback 
108   before and after each statement walk callback.  In addition, the
109   dominator walker manages allocation/deallocation of data structures
110   which are local to each block visited.
111   
112   The dominator walker is meant to provide a generic means to build a pass
113   which can analyze or transform/optimize a function based on walking
114   the dominator tree.  One simply fills in the dominator walker data
115   structure with the appropriate callbacks and calls the walker.
116   
117   We currently use the dominator walker to prune the set of variables
118   which might need PHI nodes (which can greatly improve compile-time
119   performance in some cases).
120   
121   We also use the dominator walker to rewrite the function into SSA form
122   which reduces code duplication since the rewriting phase is inherently
123   a walk of the dominator tree.
124
125   And (of course), we use the dominator walker to drive a our dominator
126   optimizer, which is a semi-global optimizer.
127
128   TODO:
129
130     Walking statements is based on the block statement iterator abstraction,
131     which is currently an abstraction over walking tree statements.  Thus
132     the dominator walker is currently only useful for trees.  */
133
134 /* Recursively walk the dominator tree.
135
136    WALK_DATA contains a set of callbacks to perform pass-specific
137    actions during the dominator walk as well as a stack of block local
138    data maintained during the dominator walk.
139
140    BB is the basic block we are currently visiting.  */
141
142 void
143 walk_dominator_tree (struct dom_walk_data *walk_data, basic_block bb)
144 {
145   void *bd = NULL;
146   basic_block dest;
147   block_stmt_iterator bsi;
148   bool is_interesting;
149   basic_block *worklist = XNEWVEC (basic_block, n_basic_blocks * 2);
150   int sp = 0;
151
152   while (true)
153     {
154       /* Don't worry about unreachable blocks.  */
155       if (EDGE_COUNT (bb->preds) > 0 || bb == ENTRY_BLOCK_PTR)
156         {
157           /* If block BB is not interesting to the caller, then none of the
158              callbacks that walk the statements in BB are going to be
159              executed.  */
160           is_interesting = walk_data->interesting_blocks == NULL
161                            || TEST_BIT (walk_data->interesting_blocks,
162                                         bb->index);
163
164           /* Callback to initialize the local data structure.  */
165           if (walk_data->initialize_block_local_data)
166             {
167               bool recycled;
168
169               /* First get some local data, reusing any local data pointer we may
170                  have saved.  */
171               if (VEC_length (void_p, walk_data->free_block_data) > 0)
172                 {
173                   bd = VEC_pop (void_p, walk_data->free_block_data);
174                   recycled = 1;
175                 }
176               else
177                 {
178                   bd = xcalloc (1, walk_data->block_local_data_size);
179                   recycled = 0;
180                 }
181
182               /* Push the local data into the local data stack.  */
183               VEC_safe_push (void_p, heap, walk_data->block_data_stack, bd);
184
185               /* Call the initializer.  */
186               walk_data->initialize_block_local_data (walk_data, bb,
187                                                       recycled);
188
189             }
190
191           /* Callback for operations to execute before we have walked the
192              dominator children, but before we walk statements.  */
193           if (walk_data->before_dom_children_before_stmts)
194             (*walk_data->before_dom_children_before_stmts) (walk_data, bb);
195
196           /* Statement walk before walking dominator children.  */
197           if (is_interesting && walk_data->before_dom_children_walk_stmts)
198             {
199               if (walk_data->walk_stmts_backward)
200                 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
201                   (*walk_data->before_dom_children_walk_stmts) (walk_data, bb,
202                                                                 bsi);
203               else
204                 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
205                   (*walk_data->before_dom_children_walk_stmts) (walk_data, bb,
206                                                                 bsi);
207             }
208
209           /* Callback for operations to execute before we have walked the
210              dominator children, and after we walk statements.  */
211           if (walk_data->before_dom_children_after_stmts)
212             (*walk_data->before_dom_children_after_stmts) (walk_data, bb);
213
214           /* Mark the current BB to be popped out of the recursion stack
215              once childs are processed.  */
216           worklist[sp++] = bb;
217           worklist[sp++] = NULL;
218
219           for (dest = first_dom_son (walk_data->dom_direction, bb);
220                dest; dest = next_dom_son (walk_data->dom_direction, dest))
221             worklist[sp++] = dest;
222         }
223       /* NULL is used to signalize pop operation in recursion stack.  */
224       while (sp > 0 && !worklist[sp - 1])
225         {
226           --sp;
227           bb = worklist[--sp];
228           is_interesting = walk_data->interesting_blocks == NULL
229                            || TEST_BIT (walk_data->interesting_blocks,
230                                         bb->index);
231           /* Callback for operations to execute after we have walked the
232              dominator children, but before we walk statements.  */
233           if (walk_data->after_dom_children_before_stmts)
234             (*walk_data->after_dom_children_before_stmts) (walk_data, bb);
235
236           /* Statement walk after walking dominator children.  */
237           if (is_interesting && walk_data->after_dom_children_walk_stmts)
238             {
239               if (walk_data->walk_stmts_backward)
240                 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
241                   (*walk_data->after_dom_children_walk_stmts) (walk_data, bb,
242                                                                bsi);
243               else
244                 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
245                   (*walk_data->after_dom_children_walk_stmts) (walk_data, bb,
246                                                                bsi);
247             }
248
249           /* Callback for operations to execute after we have walked the
250              dominator children and after we have walked statements.  */
251           if (walk_data->after_dom_children_after_stmts)
252             (*walk_data->after_dom_children_after_stmts) (walk_data, bb);
253
254           if (walk_data->initialize_block_local_data)
255             {
256               /* And finally pop the record off the block local data stack.  */
257               bd = VEC_pop (void_p, walk_data->block_data_stack);
258               /* And save the block data so that we can re-use it.  */
259               VEC_safe_push (void_p, heap, walk_data->free_block_data, bd);
260             }
261         }
262       if (sp)
263         bb = worklist[--sp];
264       else
265         break;
266     }
267   free (worklist);
268 }
269
270 void
271 init_walk_dominator_tree (struct dom_walk_data *walk_data)
272 {
273   walk_data->free_block_data = NULL;
274   walk_data->block_data_stack = NULL;
275 }
276
277 void
278 fini_walk_dominator_tree (struct dom_walk_data *walk_data)
279 {
280   if (walk_data->initialize_block_local_data)
281     {
282       while (VEC_length (void_p, walk_data->free_block_data) > 0)
283         free (VEC_pop (void_p, walk_data->free_block_data));
284     }
285
286   VEC_free (void_p, heap, walk_data->free_block_data);
287   VEC_free (void_p, heap, walk_data->block_data_stack);
288 }