OSDN Git Service

68c4f56e0a014c7fb44057fd5f03e916ef89233a
[pf3gnuchains/gcc-fork.git] / gcc / doc / tree-ssa.texi
1 @c Copyright (c) 2004 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @c ---------------------------------------------------------------------
7 @c Tree SSA
8 @c ---------------------------------------------------------------------
9
10 @node Tree SSA
11 @chapter Analysis and Optimization of GIMPLE Trees
12 @cindex Tree SSA
13 @cindex Optimization infrastructure for GIMPLE
14
15 GCC uses three main intermediate languages to represent the program
16 during compilation: GENERIC, GIMPLE and RTL@.  GENERIC is a
17 language-independent representation generated by each front end.  It
18 is used to serve as an interface between the parser and optimizer.
19 GENERIC is a common representation that is able to represent programs
20 written in all the languages supported by GCC@.
21
22 GIMPLE and RTL are used to optimize the program.  GIMPLE is used for
23 target and language independent optimizations (e.g., inlining,
24 constant propagation, tail call elimination, redundancy elimination,
25 etc).  Much like GENERIC, GIMPLE is a language independent, tree based
26 representation. However, it differs from GENERIC in that the GIMPLE
27 grammar is more restrictive: expressions contain no more than 3
28 operands (except function calls), it has no control flow structures
29 and expressions with side-effects are only allowed on the right hand
30 side of assignments.  See the chapter describing GENERIC and GIMPLE
31 for more details.
32
33 This chapter describes the data structures and functions used in the
34 GIMPLE optimizers (also known as ``tree optimizers'' or ``middle
35 end'').  In particular, it focuses on all the macros, data structures,
36 functions and programming constructs needed to implement optimization
37 passes for GIMPLE@.
38
39 @menu
40 * GENERIC::             A high-level language-independent representation.
41 * GIMPLE::              A lower-level factored tree representation.
42 * Annotations::         Attributes for statements and variables.
43 * Statement Operands::  Variables referenced by GIMPLE statements.
44 * SSA::                 Static Single Assignment representation.
45 * Alias analysis::      Representing aliased loads and stores.
46 @end menu
47
48 @node GENERIC
49 @section GENERIC
50 @cindex GENERIC
51
52 The purpose of GENERIC is simply to provide a language-independent way of
53 representing an entire function in trees.  To this end, it was necessary to
54 add a few new tree codes to the back end, but most everything was already
55 there.  If you can express it with the codes in @code{gcc/tree.def}, it's
56 GENERIC.
57
58 Early on, there was a great deal of debate about how to think about
59 statements in a tree IL.  In GENERIC, a statement is defined as any
60 expression whose value, if any, is ignored.  A statement will always
61 have @code{TREE_SIDE_EFFECTS} set (or it will be discarded), but a
62 non-statement expression may also have side effects.  A
63 @code{CALL_EXPR}, for instance.
64
65 It would be possible for some local optimizations to work on the
66 GENERIC form of a function; indeed, the adapted tree inliner works
67 fine on GENERIC, but the current compiler performs inlining after
68 lowering to GIMPLE (a restricted form described in the next section).
69 Indeed, currently the frontends perform this lowering before handing
70 off to @code{tree_rest_of_compilation}, but this seems inelegant.
71
72 If necessary, a front end can use some language-dependent tree codes
73 in its GENERIC representation, so long as it provides a hook for
74 converting them to GIMPLE and doesn't expect them to work with any
75 (hypothetical) optimizers that run before the conversion to GIMPLE.
76 The intermediate representation used while parsing C and C++ looks
77 very little like GENERIC, but the C and C++ gimplifier hooks are
78 perfectly happy to take it as input and spit out GIMPLE.
79
80 @node GIMPLE
81 @section GIMPLE
82 @cindex GIMPLE
83
84 GIMPLE is a simplified subset of GENERIC for use in optimization.  The
85 particular subset chosen (and the name) was heavily influenced by the
86 SIMPLE IL used by the McCAT compiler project at McGill University
87 (@uref{http://www-acaps.cs.mcgill.ca/info/McCAT/McCAT.html}),
88 though we have made some different choices.  For one thing, SIMPLE
89 doesn't support @code{goto}; a production compiler can't afford that
90 kind of restriction.
91
92 GIMPLE retains much of the structure of the parse trees: lexical
93 scopes are represented as containers, rather than markers.  However,
94 expressions are broken down into a 3-address form, using temporary
95 variables to hold intermediate values.  Also, control structures are
96 lowered to gotos.
97
98 In GIMPLE no container node is ever used for its value; if a
99 @code{COND_EXPR} or @code{BIND_EXPR} has a value, it is stored into a
100 temporary within the controlled blocks, and that temporary is used in
101 place of the container.
102
103 The compiler pass which lowers GENERIC to GIMPLE is referred to as the
104 @samp{gimplifier}.  The gimplifier works recursively, replacing complex
105 statements with sequences of simple statements.
106
107 @c Currently, the only way to
108 @c tell whether or not an expression is in GIMPLE form is by recursively
109 @c examining it; in the future there will probably be a flag to help avoid
110 @c redundant work.  FIXME FIXME
111
112 @menu
113 * Interfaces::
114 * Temporaries::
115 * GIMPLE Expressions::
116 * Statements::
117 * GIMPLE Example::
118 * Rough GIMPLE Grammar::
119 @end menu
120
121 @node Interfaces
122 @subsection Interfaces
123 @cindex gimplification
124
125 The tree representation of a function is stored in
126 @code{DECL_SAVED_TREE}.  It is lowered to GIMPLE by a call to
127 @code{gimplify_function_tree}.
128
129 If a front end wants to include language-specific tree codes in the tree
130 representation which it provides to the back end, it must provide a
131 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
132 convert the front end trees to GIMPLE.  Usually such a hook will involve
133 much of the same code for expanding front end trees to RTL.  This function
134 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
135 main gimplifier lower them the rest of the way; this is often simpler.
136
137 The C and C++ front ends currently convert directly from front end
138 trees to GIMPLE, and hand that off to the back end rather than first
139 converting to GENERIC.  Their gimplifier hooks know about all the
140 @code{_STMT} nodes and how to convert them to GENERIC forms.  There
141 was some work done on a genericization pass which would run first, but
142 the existence of @code{STMT_EXPR} meant that in order to convert all
143 of the C statements into GENERIC equivalents would involve walking the
144 entire tree anyway, so it was simpler to lower all the way.  This
145 might change in the future if someone writes an optimization pass
146 which would work better with higher-level trees, but currently the
147 optimizers all expect GIMPLE.
148
149 A front end which wants to use the tree optimizers (and already has
150 some sort of whole-function tree representation) only needs to provide
151 a definition of @code{LANG_HOOKS_GIMPLIFY_EXPR}, call
152 @code{gimplify_function_tree} to lower to GIMPLE, and then hand off to
153 @code{tree_rest_of_compilation} to compile and output the function.
154
155 You can tell the compiler to dump a C-like representation of the GIMPLE
156 form with the flag @option{-fdump-tree-gimple}.
157
158 @node Temporaries
159 @subsection Temporaries
160 @cindex Temporaries
161
162 When gimplification encounters a subexpression which is too complex, it
163 creates a new temporary variable to hold the value of the subexpression,
164 and adds a new statement to initialize it before the current statement.
165 These special temporaries are known as @samp{expression temporaries}, and are
166 allocated using @code{get_formal_tmp_var}.  The compiler tries to
167 always evaluate identical expressions into the same temporary, to simplify
168 elimination of redundant calculations.
169
170 We can only use expression temporaries when we know that it will not be
171 reevaluated before its value is used, and that it will not be otherwise
172 modified@footnote{These restrictions are derived from those in Morgan 4.8.}.
173 Other temporaries can be allocated using
174 @code{get_initialized_tmp_var} or @code{create_tmp_var}.
175
176 Currently, an expression like @code{a = b + 5} is not reduced any
177 further.  We tried converting it to something like
178 @smallexample
179   T1 = b + 5;
180   a = T1;
181 @end smallexample
182 but this bloated the representation for minimal benefit.  However, a
183 variable which must live in memory cannot appear in an expression; its
184 value is explicitly loaded into a temporary first.  Similarly, storing
185 the value of an expression to a memory variable goes through a
186 temporary.
187
188 @node GIMPLE Expressions
189 @subsection Expressions
190 @cindex GIMPLE Expressions
191
192 In general, expressions in GIMPLE consist of an operation and the
193 appropriate number of simple operands; these operands must either be a
194 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
195 variable.  More complex operands are factored out into temporaries, so
196 that
197 @smallexample
198   a = b + c + d
199 @end smallexample
200 becomes
201 @smallexample
202   T1 = b + c;
203   a = T1 + d;
204 @end smallexample
205
206 The same rule holds for arguments to a @code{CALL_EXPR}.
207
208 The target of an assignment is usually a variable, but can also be an
209 @code{INDIRECT_REF} or a compound lvalue as described below.
210
211 @menu
212 * Compound Expressions::
213 * Compound Lvalues::
214 * Conditional Expressions::
215 * Logical Operators::
216 @end menu
217
218 @node Compound Expressions
219 @subsubsection Compound Expressions
220 @cindex Compound Expressions
221
222 The left-hand side of a C comma expression is simply moved into a separate
223 statement.
224
225 @node Compound Lvalues
226 @subsubsection Compound Lvalues
227 @cindex Compound Lvalues
228
229 Currently compound lvalues involving array and structure field references
230 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
231 any further (though complex array subscripts are).  This restriction is a
232 workaround for limitations in later optimizers; if we were to convert this
233 to
234
235 @smallexample
236   T1 = &a.b;
237   T1[2] = 42;
238 @end smallexample
239
240 alias analysis would not remember that the reference to @code{T1[2]} came
241 by way of @code{a.b}, so it would think that the assignment could alias
242 another member of @code{a}; this broke @code{struct-alias-1.c}.  Future
243 optimizer improvements may make this limitation unnecessary.
244
245 @node Conditional Expressions
246 @subsubsection Conditional Expressions
247 @cindex Conditional Expressions
248
249 A C @code{?:} expression is converted into an @code{if} statement with
250 each branch assigning to the same temporary.  So,
251
252 @smallexample
253   a = b ? c : d;
254 @end smallexample
255 becomes
256 @smallexample
257   if (b)
258     T1 = c;
259   else
260     T1 = d;
261   a = T1;
262 @end smallexample
263
264 Tree level if-conversion pass re-introduces @code{?:} expression, if appropriate.
265 It is used to vectorize loops with conditions using vector conditional operations.
266
267 Note that in GIMPLE, @code{if} statements are also represented using
268 @code{COND_EXPR}, as described below.
269
270 @node Logical Operators
271 @subsubsection Logical Operators
272 @cindex Logical Operators
273
274 Except when they appear in the condition operand of a @code{COND_EXPR},
275 logical `and' and `or' operators are simplified as follows:
276 @code{a = b && c} becomes
277
278 @smallexample
279   T1 = (bool)b;
280   if (T1)
281     T1 = (bool)c;
282   a = T1;
283 @end smallexample
284
285 Note that @code{T1} in this example cannot be an expression temporary,
286 because it has two different assignments.
287
288 @node Statements
289 @subsection Statements
290 @cindex Statements
291
292 Most statements will be assignment statements, represented by
293 @code{MODIFY_EXPR}.  A @code{CALL_EXPR} whose value is ignored can
294 also be a statement.  No other C expressions can appear at statement level;
295 a reference to a volatile object is converted into a @code{MODIFY_EXPR}.
296 In GIMPLE form, type of @code{MODIFY_EXPR} is not meaningful. Instead, use type
297 of LHS or RHS.
298
299 There are also several varieties of complex statements.
300
301 @menu
302 * Blocks::
303 * Statement Sequences::
304 * Empty Statements::
305 * Loops::
306 * Selection Statements::
307 * Jumps::
308 * Cleanups::
309 * GIMPLE Exception Handling::
310 @end menu
311
312 @node Blocks
313 @subsubsection Blocks
314 @cindex Blocks
315
316 Block scopes and the variables they declare in GENERIC and GIMPLE are
317 expressed using the @code{BIND_EXPR} code, which in previous versions of
318 GCC was primarily used for the C statement-expression extension.
319
320 Variables in a block are collected into @code{BIND_EXPR_VARS} in
321 declaration order.  Any runtime initialization is moved out of
322 @code{DECL_INITIAL} and into a statement in the controlled block.  When
323 gimplifying from C or C++, this initialization replaces the
324 @code{DECL_STMT}.
325
326 Variable-length arrays (VLAs) complicate this process, as their size often
327 refers to variables initialized earlier in the block.  To handle this, we
328 currently split the block at that point, and move the VLA into a new, inner
329 @code{BIND_EXPR}.  This strategy may change in the future.
330
331 @code{DECL_SAVED_TREE} for a GIMPLE function will always be a
332 @code{BIND_EXPR} which contains declarations for the temporary variables
333 used in the function.
334
335 A C++ program will usually contain more @code{BIND_EXPR}s than there are
336 syntactic blocks in the source code, since several C++ constructs have
337 implicit scopes associated with them.  On the other hand, although the C++
338 front end uses pseudo-scopes to handle cleanups for objects with
339 destructors, these don't translate into the GIMPLE form; multiple
340 declarations at the same level use the same BIND_EXPR.
341
342 @node Statement Sequences
343 @subsubsection Statement Sequences
344 @cindex Statement Sequences
345
346 Multiple statements at the same nesting level are collected into a
347 @code{STATEMENT_LIST}.  Statement lists are modified and traversed
348 using the interface in @samp{tree-iterator.h}.
349
350 @node Empty Statements
351 @subsubsection Empty Statements
352 @cindex Empty Statements
353
354 Whenever possible, statements with no effect are discarded.  But if they
355 are nested within another construct which cannot be discarded for some
356 reason, they are instead replaced with an empty statement, generated by
357 @code{build_empty_stmt}.  Initially, all empty statements were shared,
358 after the pattern of the Java front end, but this caused a lot of trouble in
359 practice.
360
361 An empty statement is represented as @code{(void)0}.
362
363 @node Loops
364 @subsubsection Loops
365 @cindex Loops
366
367 At one time loops were expressed in GIMPLE using @code{LOOP_EXPR}, but
368 now they are lowered to explicit gotos.
369
370 @node Selection Statements
371 @subsubsection Selection Statements
372 @cindex Selection Statements
373
374 A simple selection statement, such as the C @code{if} statement, is
375 expressed in GIMPLE using a void @code{COND_EXPR}.  If only one branch is
376 used, the other is filled with an empty statement.
377
378 Normally, the condition expression is reduced to a simple comparison.  If
379 it is a shortcut (@code{&&} or @code{||}) expression, however, we try to
380 break up the @code{if} into multiple @code{if}s so that the implied shortcut
381 is taken directly, much like the transformation done by @code{do_jump} in
382 the RTL expander.
383
384 A @code{SWITCH_EXPR} in GIMPLE contains the condition and a
385 @code{TREE_VEC} of @code{CASE_LABEL_EXPR}s describing the case values
386 and corresponding @code{LABEL_DECL}s to jump to.  The body of the
387 @code{switch} is moved after the @code{SWITCH_EXPR}.
388
389 @node Jumps
390 @subsubsection Jumps
391 @cindex Jumps
392
393 Other jumps are expressed by either @code{GOTO_EXPR} or @code{RETURN_EXPR}.
394
395 The operand of a @code{GOTO_EXPR} must be either a label or a variable
396 containing the address to jump to.
397
398 The operand of a @code{RETURN_EXPR} is either @code{NULL_TREE} or a
399 @code{MODIFY_EXPR} which sets the return value.  It would be nice to
400 move the @code{MODIFY_EXPR} into a separate statement, but the special
401 return semantics in @code{expand_return} make that difficult.  It may
402 still happen in the future, perhaps by moving most of that logic into
403 @code{expand_assignment}.
404
405 @node Cleanups
406 @subsubsection Cleanups
407 @cindex Cleanups
408
409 Destructors for local C++ objects and similar dynamic cleanups are
410 represented in GIMPLE by a @code{TRY_FINALLY_EXPR}.  When the controlled
411 block exits, the cleanup is run.
412
413 @code{TRY_FINALLY_EXPR} complicates the flow graph, since the cleanup
414 needs to appear on every edge out of the controlled block; this
415 reduces the freedom to move code across these edges.  Therefore, the
416 EH lowering pass which runs before most of the optimization passes
417 eliminates these expressions by explicitly adding the cleanup to each
418 edge.
419
420 @node GIMPLE Exception Handling
421 @subsubsection Exception Handling
422 @cindex GIMPLE Exception Handling
423
424 Other exception handling constructs are represented using
425 @code{TRY_CATCH_EXPR}.  The handler operand of a @code{TRY_CATCH_EXPR}
426 can be a normal statement to be executed if the controlled block throws an
427 exception, or it can have one of two special forms:
428
429 @enumerate
430 @item A @code{CATCH_EXPR} executes its handler if the thrown exception
431   matches one of the allowed types.  Multiple handlers can be
432   expressed by a sequence of @code{CATCH_EXPR} statements.
433 @item An @code{EH_FILTER_EXPR} executes its handler if the thrown
434   exception does not match one of the allowed types.
435 @end enumerate
436
437 Currently throwing an exception is not directly represented in GIMPLE,
438 since it is implemented by calling a function.  At some point in the future
439 we will want to add some way to express that the call will throw an
440 exception of a known type.
441
442 Just before running the optimizers, the compiler lowers the high-level
443 EH constructs above into a set of @samp{goto}s, magic labels, and EH
444 regions.  Continuing to unwind at the end of a cleanup is represented
445 with a @code{RESX_EXPR}.
446
447 @node GIMPLE Example
448 @subsection GIMPLE Example
449 @cindex GIMPLE Example
450
451 @smallexample
452 struct A @{ A(); ~A(); @};
453
454 int i;
455 int g();
456 void f()
457 @{
458   A a;
459   int j = (--i, i ? 0 : 1);
460
461   for (int x = 42; x > 0; --x)
462     @{
463       i += g()*4 + 32;
464     @}
465 @}
466 @end smallexample
467
468 becomes
469
470 @smallexample
471 void f()
472 @{
473   int i.0;
474   int T.1;
475   int iftmp.2;
476   int T.3;
477   int T.4;
478   int T.5;
479   int T.6;
480
481   @{
482     struct A a;
483     int j;
484
485     __comp_ctor (&a);
486     try
487       @{
488         i.0 = i;
489         T.1 = i.0 - 1;
490         i = T.1;
491         i.0 = i;
492         if (i.0 == 0)
493           iftmp.2 = 1;
494         else
495           iftmp.2 = 0;
496         j = iftmp.2;
497         @{
498           int x;
499
500           x = 42;
501           goto test;
502           loop:;
503
504           T.3 = g ();
505           T.4 = T.3 * 4;
506           i.0 = i;
507           T.5 = T.4 + i.0;
508           T.6 = T.5 + 32;
509           i = T.6;
510           x = x - 1;
511
512           test:;
513           if (x > 0)
514             goto loop;
515           else
516             goto break_;
517           break_:;
518         @}
519       @}
520     finally
521       @{
522         __comp_dtor (&a);
523       @}
524   @}
525 @}
526 @end smallexample
527
528 @node Rough GIMPLE Grammar
529 @subsection Rough GIMPLE Grammar
530 @cindex Rough GIMPLE Grammar
531
532 @smallexample
533    function     : FUNCTION_DECL
534                         DECL_SAVED_TREE -> compound-stmt
535
536    compound-stmt: STATEMENT_LIST
537                         members -> stmt
538
539    stmt         : block
540                 | if-stmt
541                 | switch-stmt
542                 | goto-stmt
543                 | return-stmt
544                 | resx-stmt
545                 | label-stmt
546                 | try-stmt
547                 | modify-stmt
548                 | call-stmt
549
550    block        : BIND_EXPR
551                         BIND_EXPR_VARS -> chain of DECLs
552                         BIND_EXPR_BLOCK -> BLOCK
553                         BIND_EXPR_BODY -> compound-stmt
554
555    if-stmt      : COND_EXPR
556                         op0 -> condition
557                         op1 -> compound-stmt
558                         op2 -> compound-stmt
559
560    switch-stmt  : SWITCH_EXPR
561                         op0 -> val
562                         op1 -> NULL
563                         op2 -> TREE_VEC of CASE_LABEL_EXPRs
564                             The CASE_LABEL_EXPRs are sorted by CASE_LOW,
565                             and default is last.
566
567    goto-stmt    : GOTO_EXPR
568                         op0 -> LABEL_DECL | val
569
570    return-stmt  : RETURN_EXPR
571                         op0 -> return-value
572
573    return-value : NULL
574                 | RESULT_DECL
575                 | MODIFY_EXPR
576                         op0 -> RESULT_DECL
577                         op1 -> lhs
578
579    resx-stmt    : RESX_EXPR
580
581    label-stmt   : LABEL_EXPR
582                         op0 -> LABEL_DECL
583
584    try-stmt     : TRY_CATCH_EXPR
585                         op0 -> compound-stmt
586                         op1 -> handler
587                 | TRY_FINALLY_EXPR
588                         op0 -> compound-stmt
589                         op1 -> compound-stmt
590
591    handler      : catch-seq
592                 | EH_FILTER_EXPR
593                 | compound-stmt
594
595    catch-seq    : STATEMENT_LIST
596                         members -> CATCH_EXPR
597
598    modify-stmt  : MODIFY_EXPR
599                         op0 -> lhs
600                         op1 -> rhs
601
602    call-stmt    : CALL_EXPR
603                         op0 -> val | OBJ_TYPE_REF
604                         op1 -> call-arg-list
605
606    call-arg-list: TREE_LIST
607                         members -> lhs | CONST
608
609    addr-expr-arg: ID
610                 | compref
611
612    addressable  : addr-expr-arg
613                 | indirectref
614
615    with-size-arg: addressable
616                 | call-stmt
617
618    indirectref  : INDIRECT_REF
619                         op0 -> val
620
621    lhs          : addressable
622                 | bitfieldref
623                 | WITH_SIZE_EXPR
624                         op0 -> with-size-arg
625                         op1 -> val
626
627    min-lval     : ID
628                 | indirectref
629
630    bitfieldref  : BIT_FIELD_REF
631                         op0 -> inner-compref
632                         op1 -> CONST
633                         op2 -> var
634
635    compref      : inner-compref
636                 | REALPART_EXPR
637                         op0 -> inner-compref
638                 | IMAGPART_EXPR
639                         op0 -> inner-compref
640
641    inner-compref: min-lval
642                 | COMPONENT_REF
643                         op0 -> inner-compref
644                         op1 -> FIELD_DECL
645                         op2 -> val
646                 | ARRAY_REF
647                         op0 -> inner-compref
648                         op1 -> val
649                         op2 -> val
650                         op3 -> val
651                 | ARRAY_RANGE_REF
652                         op0 -> inner-compref
653                         op1 -> val
654                         op2 -> val
655                         op3 -> val
656                 | VIEW_CONVERT_EXPR
657                         op0 -> inner-compref
658
659    condition    : val
660                 | RELOP
661                         op0 -> val
662                         op1 -> val
663
664    val          : ID
665                 | CONST
666
667    rhs          : lhs
668                 | CONST
669                 | call-stmt
670                 | ADDR_EXPR
671                         op0 -> addr-expr-arg
672                 | UNOP
673                         op0 -> val
674                 | BINOP
675                         op0 -> val
676                         op1 -> val
677                 | RELOP
678                         op0 -> val
679                         op1 -> val
680 @end smallexample
681
682 @node Annotations
683 @section Annotations
684 @cindex annotations
685
686 The optimizers need to associate attributes with statements and
687 variables during the optimization process.  For instance, we need to
688 know what basic block does a statement belong to or whether a variable
689 has aliases.  All these attributes are stored in data structures
690 called annotations which are then linked to the field @code{ann} in
691 @code{struct tree_common}.
692
693 Presently, we define annotations for statements (@code{stmt_ann_t}),
694 variables (@code{var_ann_t}) and SSA names (@code{ssa_name_ann_t}).
695 Annotations are defined and documented in @file{tree-flow.h}.
696
697
698 @node Statement Operands
699 @section Statement Operands
700 @cindex operands
701 @cindex virtual operands
702 @cindex real operands
703 @findex get_stmt_operands
704 @findex modify_stmt
705
706 Almost every GIMPLE statement will contain a reference to a variable
707 or memory location.  Since statements come in different shapes and
708 sizes, their operands are going to be located at various spots inside
709 the statement's tree.  To facilitate access to the statement's
710 operands, they are organized into arrays associated inside each
711 statement's annotation.  Each element in an operand array is a pointer
712 to a @code{VAR_DECL}, @code{PARM_DECL} or @code{SSA_NAME} tree node.
713 This provides a very convenient way of examining and replacing
714 operands.
715
716 Data flow analysis and optimization is done on all tree nodes
717 representing variables.  Any node for which @code{SSA_VAR_P} returns
718 nonzero is considered when scanning statement operands.  However, not
719 all @code{SSA_VAR_P} variables are processed in the same way.  For the
720 purposes of optimization, we need to distinguish between references to
721 local scalar variables and references to globals, statics, structures,
722 arrays, aliased variables, etc.  The reason is simple, the compiler
723 can gather complete data flow information for a local scalar.  On the
724 other hand, a global variable may be modified by a function call, it
725 may not be possible to keep track of all the elements of an array or
726 the fields of a structure, etc.
727
728 The operand scanner gathers two kinds of operands: @dfn{real} and
729 @dfn{virtual}.  An operand for which @code{is_gimple_reg} returns true
730 is considered real, otherwise it is a virtual operand.  We also
731 distinguish between uses and definitions.  An operand is used if its
732 value is loaded by the statement (e.g., the operand at the RHS of an
733 assignment).  If the statement assigns a new value to the operand, the
734 operand is considered a definition (e.g., the operand at the LHS of
735 an assignment).
736
737 Virtual and real operands also have very different data flow
738 properties.  Real operands are unambiguous references to the
739 full object that they represent.  For instance, given
740
741 @smallexample
742 @{
743   int a, b;
744   a = b
745 @}
746 @end smallexample
747
748 Since @code{a} and @code{b} are non-aliased locals, the statement
749 @code{a = b} will have one real definition and one real use because
750 variable @code{b} is completely modified with the contents of
751 variable @code{a}.  Real definition are also known as @dfn{killing
752 definitions}.  Similarly, the use of @code{a} reads all its bits.
753
754 In contrast, virtual operands are used with variables that can have
755 a partial or ambiguous reference. This includes structures, arrays,
756 globals, and aliased variables. In these cases, we have two types of
757 definitions. For globals, structures, and arrays, we can determine from
758 a statement whether a variable of these types has a killing definition.
759 If the variable does, then the statement is marked as having a
760 @dfn{must definition} of that variable. However, if a statement is only
761 defining a part of the variable (i.e.@: a field in a structure), or if we
762 know that a statement might define the variable but we cannot say for sure,
763 then we mark that statement as having a @dfn{may definition}.  For
764 instance, given
765
766 @smallexample
767 @{
768   int a, b, *p;
769
770   if (...)
771     p = &a;
772   else
773     p = &b;
774   *p = 5;
775   return *p;
776 @}
777 @end smallexample
778
779 The assignment @code{*p = 5} may be a definition of @code{a} or
780 @code{b}.  If we cannot determine statically where @code{p} is
781 pointing to at the time of the store operation, we create virtual
782 definitions to mark that statement as a potential definition site for
783 @code{a} and @code{b}.  Memory loads are similarly marked with virtual
784 use operands.  Virtual operands are shown in tree dumps right before
785 the statement that contains them.  To request a tree dump with virtual
786 operands, use the @option{-vops} option to @option{-fdump-tree}:
787
788 @smallexample
789 @{
790   int a, b, *p;
791
792   if (...)
793     p = &a;
794   else
795     p = &b;
796   # a = V_MAY_DEF <a>
797   # b = V_MAY_DEF <b>
798   *p = 5;
799
800   # VUSE <a>
801   # VUSE <b>
802   return *p;
803 @}
804 @end smallexample
805
806 Notice that @code{V_MAY_DEF} operands have two copies of the referenced
807 variable.  This indicates that this is not a killing definition of
808 that variable.  In this case we refer to it as a @dfn{may definition}
809 or @dfn{aliased store}.  The presence of the second copy of the
810 variable in the @code{V_MAY_DEF} operand will become important when the
811 function is converted into SSA form.  This will be used to link all
812 the non-killing definitions to prevent optimizations from making
813 incorrect assumptions about them.
814
815 Operands are collected by @file{tree-ssa-operands.c}.  They are stored
816 inside each statement's annotation and can be accessed with
817 @code{DEF_OPS}, @code{USE_OPS}, @code{V_MAY_DEF_OPS},
818 @code{V_MUST_DEF_OPS} and @code{VUSE_OPS}. The following are all the
819 accessor macros available to access USE operands.  To access all the
820 other operand arrays, just change the name accordingly:
821
822 @defmac USE_OPS (@var{ann})
823 Returns the array of operands used by the statement with annotation
824 @var{ann}.
825 @end defmac
826
827 @defmac STMT_USE_OPS (@var{stmt})
828 Alternate version of USE_OPS that takes the statement @var{stmt} as
829 input.
830 @end defmac
831
832 @defmac NUM_USES (@var{ops})
833 Return the number of USE operands in array @var{ops}.
834 @end defmac
835
836 @defmac USE_OP_PTR (@var{ops}, @var{i})
837 Return a pointer to the @var{i}th operand in array @var{ops}.
838 @end defmac
839
840 @defmac USE_OP (@var{ops}, @var{i})
841 Return the @var{i}th operand in array @var{ops}.
842 @end defmac
843
844 The following function shows how to print all the operands of a given
845 statement:
846
847 @smallexample
848 void
849 print_ops (tree stmt)
850 @{
851   vuse_optype vuses;
852   v_may_def_optype v_may_defs;
853   v_must_def_optype v_must_defs;
854   def_optype defs;
855   use_optype uses;
856   stmt_ann_t ann;
857   size_t i;
858
859   get_stmt_operands (stmt);
860   ann = stmt_ann (stmt);
861
862   defs = DEF_OPS (ann);
863   for (i = 0; i < NUM_DEFS (defs); i++)
864     print_generic_expr (stderr, DEF_OP (defs, i), 0);
865
866   uses = USE_OPS (ann);
867   for (i = 0; i < NUM_USES (uses); i++)
868     print_generic_expr (stderr, USE_OP (uses, i), 0);
869
870   v_may_defs = V_MAY_DEF_OPS (ann);
871   for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
872     @{
873       print_generic_expr (stderr, V_MAY_DEF_OP (v_may_defs, i), 0);
874       print_generic_expr (stderr, V_MAY_DEF_RESULT (v_may_defs, i), 0);
875     @}
876
877   v_must_defs = V_MUST_DEF_OPS (ann);
878   for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
879     print_generic_expr (stderr, V_MUST_DEF_OP (v_must_defs, i), 0);
880
881   vuses = VUSE_OPS (ann);
882   for (i = 0; i < NUM_VUSES (vuses); i++)
883     print_generic_expr (stderr, VUSE_OP (vuses, i), 0);
884 @}
885 @end smallexample
886
887 To collect the operands, you first need to call
888 @code{get_stmt_operands}.  Since that is a potentially expensive
889 operation, statements are only scanned if they have been marked
890 modified by a call to @code{modify_stmt}.  So, if your pass replaces
891 operands in a statement, make sure to call @code{modify_stmt}.
892
893 @subsection Operand Iterators
894 @cindex Operand Iterators
895
896 There is an alternative to iterating over the operands in a statement.
897 It is especially useful when you wish to perform the same operation on
898 more than one type of operand.  The previous example could be
899 rewritten as follows:
900
901 @smallexample
902 void
903 print_ops (tree stmt)
904 @{
905   ssa_op_iter;
906   tree var;
907
908   get_stmt_operands (stmt);
909   FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
910     print_generic_expr (stderr, var, 0);
911 @}
912 @end smallexample
913
914
915 @enumerate
916 @item Determine whether you are need to see the operand pointers, or just the
917     trees, and choose the appropriate macro:
918
919 @smallexample
920 Need            Macro:
921 ----            -------
922 use_operand_p   FOR_EACH_SSA_USE_OPERAND
923 def_operand_p   FOR_EACH_SSA_DEF_OPERAND
924 tree            FOR_EACH_SSA_TREE_OPERAND
925 @end smallexample
926
927 @item You need to declare a variable of the type you are interested
928     in, and an ssa_op_iter structure which serves as the loop
929     controlling variable.
930
931 @item Determine which operands you wish to use, and specify the flags of
932     those you are interested in.  They are documented in
933     @file{tree-ssa-operands.h}:
934
935 @smallexample
936 #define SSA_OP_USE              0x01    /* Real USE operands.  */
937 #define SSA_OP_DEF              0x02    /* Real DEF operands.  */
938 #define SSA_OP_VUSE             0x04    /* VUSE operands.  */
939 #define SSA_OP_VMAYUSE          0x08    /* USE portion of V_MAY_DEFS.  */
940 #define SSA_OP_VMAYDEF          0x10    /* DEF portion of V_MAY_DEFS.  */
941 #define SSA_OP_VMUSTDEF         0x20    /* V_MUST_DEF definitions.  */
942
943 /* These are commonly grouped operand flags.  */
944 #define SSA_OP_VIRTUAL_USES     (SSA_OP_VUSE | SSA_OP_VMAYUSE)
945 #define SSA_OP_VIRTUAL_DEFS     (SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF)
946 #define SSA_OP_ALL_USES         (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
947 #define SSA_OP_ALL_DEFS         (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
948 #define SSA_OP_ALL_OPERANDS     (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
949 @end smallexample
950 @end enumerate
951
952 So if you want to look at the use pointers for all the @code{USE} and
953 @code{VUSE} operands, you would do something like:
954
955 @smallexample
956   use_operand_p use_p;
957   ssa_op_iter iter;
958
959   FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
960     @{
961       process_use_ptr (use_p);
962     @}
963 @end smallexample
964
965 The @code{_TREE_} macro is basically the same as the @code{USE} and
966 @code{DEF} macros, only with the use or def dereferenced via
967 @code{USE_FROM_PTR (use_p)} and @code{DEF_FROM_PTR (def_p)}. Since we
968 aren't using operand pointers, use and defs flags can be mixed.
969
970 @smallexample
971   tree var;
972   ssa_op_iter iter;
973
974   FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE | SSA_OP_VMUSTDEF)
975     @{
976        print_generic_expr (stderr, var, TDF_SLIM);
977     @}
978 @end smallexample
979
980 Note that @code{V_MAY_DEFS} are broken into 2 flags, one for the
981 @code{DEF} portion (@code{SSA_OP_VMAYDEF}) and one for the USE portion
982 (@code{SSA_OP_VMAYUSE}). If all you want to look at are the
983 @code{V_MAY_DEFS} together, there is a fourth iterator macro for this,
984 which returns both a def_operand_p and a use_operand_p for each
985 @code{V_MAY_DEF} in the statement. Note that you don't need any flags for
986 this one.
987
988 @smallexample
989   use_operand_p use_p;
990   def_operand_p def_p;
991   ssa_op_iter iter;
992
993   FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
994     @{
995       my_code;
996     @}
997 @end smallexample
998
999
1000 There are many examples in the code as well, as well as the
1001 documentation in @file{tree-ssa-operands.h}.
1002
1003
1004 @node SSA
1005 @section Static Single Assignment
1006 @cindex SSA
1007 @cindex static single assignment
1008
1009 Most of the tree optimizers rely on the data flow information provided
1010 by the Static Single Assignment (SSA) form.  We implement the SSA form
1011 as described in @cite{R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
1012 K. Zadeck. Efficiently Computing Static Single Assignment Form and the
1013 Control Dependence Graph. ACM Transactions on Programming Languages
1014 and Systems, 13(4):451-490, October 1991}.
1015
1016 The SSA form is based on the premise that program variables are
1017 assigned in exactly one location in the program.  Multiple assignments
1018 to the same variable create new versions of that variable.  Naturally,
1019 actual programs are seldom in SSA form initially because variables
1020 tend to be assigned multiple times.  The compiler modifies the program
1021 representation so that every time a variable is assigned in the code,
1022 a new version of the variable is created.  Different versions of the
1023 same variable are distinguished by subscripting the variable name with
1024 its version number.  Variables used in the right-hand side of
1025 expressions are renamed so that their version number matches that of
1026 the most recent assignment.
1027
1028 We represent variable versions using @code{SSA_NAME} nodes.  The
1029 renaming process in @file{tree-ssa.c} wraps every real and
1030 virtual operand with an @code{SSA_NAME} node which contains
1031 the version number and the statement that created the
1032 @code{SSA_NAME}.  Only definitions and virtual definitions may
1033 create new @code{SSA_NAME} nodes.
1034
1035 Sometimes, flow of control makes it impossible to determine what is the
1036 most recent version of a variable.  In these cases, the compiler
1037 inserts an artificial definition for that variable called
1038 @dfn{PHI function} or @dfn{PHI node}.  This new definition merges
1039 all the incoming versions of the variable to create a new name
1040 for it.  For instance,
1041
1042 @smallexample
1043 if (...)
1044   a_1 = 5;
1045 else if (...)
1046   a_2 = 2;
1047 else
1048   a_3 = 13;
1049
1050 # a_4 = PHI <a_1, a_2, a_3>
1051 return a_4;
1052 @end smallexample
1053
1054 Since it is not possible to determine which of the three branches
1055 will be taken at runtime, we don't know which of @code{a_1},
1056 @code{a_2} or @code{a_3} to use at the return statement.  So, the
1057 SSA renamer creates a new version @code{a_4} which is assigned
1058 the result of ``merging'' @code{a_1}, @code{a_2} and @code{a_3}.
1059 Hence, PHI nodes mean ``one of these operands.  I don't know
1060 which''.
1061
1062 The following macros can be used to examine PHI nodes
1063
1064 @defmac PHI_RESULT (@var{phi})
1065 Returns the @code{SSA_NAME} created by PHI node @var{phi} (i.e.,
1066 @var{phi}'s LHS).
1067 @end defmac
1068
1069 @defmac PHI_NUM_ARGS (@var{phi})
1070 Returns the number of arguments in @var{phi}.  This number is exactly
1071 the number of incoming edges to the basic block holding @var{phi}@.
1072 @end defmac
1073
1074 @defmac PHI_ARG_ELT (@var{phi}, @var{i})
1075 Returns a tuple representing the @var{i}th argument of @var{phi}@.
1076 Each element of this tuple contains an @code{SSA_NAME} @var{var} and
1077 the incoming edge through which @var{var} flows.
1078 @end defmac
1079
1080 @defmac PHI_ARG_EDGE (@var{phi}, @var{i})
1081 Returns the incoming edge for the @var{i}th argument of @var{phi}.
1082 @end defmac
1083
1084 @defmac PHI_ARG_DEF (@var{phi}, @var{i})
1085 Returns the @code{SSA_NAME} for the @var{i}th argument of @var{phi}.
1086 @end defmac
1087
1088
1089 @subsection Preserving the SSA form
1090 @findex vars_to_rename
1091 @cindex preserving SSA form
1092 Some optimization passes make changes to the function that
1093 invalidate the SSA property.  This can happen when a pass has
1094 added new variables or changed the program so that variables that
1095 were previously aliased aren't anymore.
1096
1097 Whenever something like this happens, the affected variables must
1098 be renamed into SSA form again.  To do this, you should mark the
1099 new variables in the global bitmap @code{vars_to_rename}.  Once
1100 your pass has finished, the pass manager will invoke the SSA
1101 renamer to put the program into SSA once more.
1102
1103 @subsection Examining @code{SSA_NAME} nodes
1104 @cindex examining SSA_NAMEs
1105
1106 The following macros can be used to examine @code{SSA_NAME} nodes
1107
1108 @defmac SSA_NAME_DEF_STMT (@var{var})
1109 Returns the statement @var{s} that creates the @code{SSA_NAME}
1110 @var{var}.  If @var{s} is an empty statement (i.e., @code{IS_EMPTY_STMT
1111 (@var{s})} returns @code{true}), it means that the first reference to
1112 this variable is a USE or a VUSE@.
1113 @end defmac
1114
1115 @defmac SSA_NAME_VERSION (@var{var})
1116 Returns the version number of the @code{SSA_NAME} object @var{var}.
1117 @end defmac
1118
1119
1120 @subsection Walking use-def chains
1121
1122 @deftypefn {Tree SSA function} void walk_use_def_chains (@var{var}, @var{fn}, @var{data})
1123
1124 Walks use-def chains starting at the @code{SSA_NAME} node @var{var}.
1125 Calls function @var{fn} at each reaching definition found.  Function
1126 @var{FN} takes three arguments: @var{var}, its defining statement
1127 (@var{def_stmt}) and a generic pointer to whatever state information
1128 that @var{fn} may want to maintain (@var{data}).  Function @var{fn} is
1129 able to stop the walk by returning @code{true}, otherwise in order to
1130 continue the walk, @var{fn} should return @code{false}.
1131
1132 Note, that if @var{def_stmt} is a @code{PHI} node, the semantics are
1133 slightly different.  For each argument @var{arg} of the PHI node, this
1134 function will:
1135
1136 @enumerate
1137 @item   Walk the use-def chains for @var{arg}.
1138 @item   Call @code{FN (@var{arg}, @var{phi}, @var{data})}.
1139 @end enumerate
1140
1141 Note how the first argument to @var{fn} is no longer the original
1142 variable @var{var}, but the PHI argument currently being examined.
1143 If @var{fn} wants to get at @var{var}, it should call
1144 @code{PHI_RESULT} (@var{phi}).
1145 @end deftypefn
1146
1147 @subsection Walking the dominator tree
1148
1149 @deftypefn {Tree SSA function} void walk_dominator_tree (@var{walk_data}, @var{bb})
1150
1151 This function walks the dominator tree for the current CFG calling a
1152 set of callback functions defined in @var{struct dom_walk_data} in
1153 @file{domwalk.h}.  The call back functions you need to define give you
1154 hooks to execute custom code at various points during traversal:
1155
1156 @enumerate
1157 @item Once to initialize any local data needed while processing
1158       @var{bb} and its children.  This local data is pushed into an
1159       internal stack which is automatically pushed and popped as the
1160       walker traverses the dominator tree.
1161
1162 @item Once before traversing all the statements in the @var{bb}.
1163
1164 @item Once for every statement inside @var{bb}.
1165
1166 @item Once after traversing all the statements and before recursing
1167       into @var{bb}'s dominator children.
1168
1169 @item It then recurses into all the dominator children of @var{bb}.
1170
1171 @item After recursing into all the dominator children of @var{bb} it
1172       can, optionally, traverse every statement in @var{bb} again
1173       (i.e., repeating steps 2 and 3).
1174
1175 @item Once after walking the statements in @var{bb} and @var{bb}'s
1176       dominator children.  At this stage, the block local data stack
1177       is popped.
1178 @end enumerate
1179 @end deftypefn
1180
1181 @node Alias analysis
1182 @section Alias analysis
1183 @cindex alias
1184 @cindex flow-sensitive alias analysis
1185 @cindex flow-insensitive alias analysis
1186
1187 Alias analysis proceeds in 3 main phases:
1188
1189 @enumerate
1190 @item   Points-to and escape analysis.
1191
1192 This phase walks the use-def chains in the SSA web looking for
1193 three things:
1194
1195         @itemize @bullet
1196         @item   Assignments of the form @code{P_i = &VAR}
1197         @item   Assignments of the form P_i = malloc()
1198         @item   Pointers and ADDR_EXPR that escape the current function.
1199         @end itemize
1200
1201 The concept of `escaping' is the same one used in the Java world.
1202 When a pointer or an ADDR_EXPR escapes, it means that it has been
1203 exposed outside of the current function.  So, assignment to
1204 global variables, function arguments and returning a pointer are
1205 all escape sites.
1206
1207 This is where we are currently limited.  Since not everything is
1208 renamed into SSA, we lose track of escape properties when a
1209 pointer is stashed inside a field in a structure, for instance.
1210 In those cases, we are assuming that the pointer does escape.
1211
1212 We use escape analysis to determine whether a variable is
1213 call-clobbered.  Simply put, if an ADDR_EXPR escapes, then the
1214 variable is call-clobbered.  If a pointer P_i escapes, then all
1215 the variables pointed-to by P_i (and its memory tag) also escape.
1216
1217 @item   Compute flow-sensitive aliases
1218
1219 We have two classes of memory tags.  Memory tags associated with
1220 the pointed-to data type of the pointers in the program.  These
1221 tags are called ``type memory tag'' (TMT).  The other class are
1222 those associated with SSA_NAMEs, called ``name memory tag'' (NMT).
1223 The basic idea is that when adding operands for an INDIRECT_REF
1224 *P_i, we will first check whether P_i has a name tag, if it does
1225 we use it, because that will have more precise aliasing
1226 information.  Otherwise, we use the standard type tag.
1227
1228 In this phase, we go through all the pointers we found in
1229 points-to analysis and create alias sets for the name memory tags
1230 associated with each pointer P_i.  If P_i escapes, we mark
1231 call-clobbered the variables it points to and its tag.
1232
1233
1234 @item   Compute flow-insensitive aliases
1235
1236 This pass will compare the alias set of every type memory tag and
1237 every addressable variable found in the program.  Given a type
1238 memory tag TMT and an addressable variable V@.  If the alias sets
1239 of TMT and V conflict (as computed by may_alias_p), then V is
1240 marked as an alias tag and added to the alias set of TMT@.
1241 @end enumerate
1242
1243 For instance, consider the following function:
1244
1245 @smallexample
1246 foo (int i)
1247 @{
1248   int *p, *q, a, b;
1249
1250   if (i > 10)
1251     p = &a;
1252   else
1253     q = &b;
1254
1255   *p = 3;
1256   *q = 5;
1257   a = b + 2;
1258   return *p;
1259 @}
1260 @end smallexample
1261
1262 After aliasing analysis has finished, the type memory tag for
1263 pointer @code{p} will have two aliases, namely variables @code{a} and
1264 @code{b}.
1265 Every time pointer @code{p} is dereferenced, we want to mark the
1266 operation as a potential reference to @code{a} and @code{b}.
1267
1268 @smallexample
1269 foo (int i)
1270 @{
1271   int *p, a, b;
1272
1273   if (i_2 > 10)
1274     p_4 = &a;
1275   else
1276     p_6 = &b;
1277   # p_1 = PHI <p_4(1), p_6(2)>;
1278
1279   # a_7 = V_MAY_DEF <a_3>;
1280   # b_8 = V_MAY_DEF <b_5>;
1281   *p_1 = 3;
1282
1283   # a_9 = V_MAY_DEF <a_7>
1284   # VUSE <b_8>
1285   a_9 = b_8 + 2;
1286
1287   # VUSE <a_9>;
1288   # VUSE <b_8>;
1289   return *p_1;
1290 @}
1291 @end smallexample
1292
1293 In certain cases, the list of may aliases for a pointer may grow
1294 too large.  This may cause an explosion in the number of virtual
1295 operands inserted in the code.  Resulting in increased memory
1296 consumption and compilation time.
1297
1298 When the number of virtual operands needed to represent aliased
1299 loads and stores grows too large (configurable with @option{--param
1300 max-aliased-vops}), alias sets are grouped to avoid severe
1301 compile-time slow downs and memory consumption.  The alias
1302 grouping heuristic proceeds as follows:
1303
1304 @enumerate
1305 @item Sort the list of pointers in decreasing number of contributed
1306 virtual operands.
1307
1308 @item Take the first pointer from the list and reverse the role
1309 of the memory tag and its aliases.  Usually, whenever an
1310 aliased variable Vi is found to alias with a memory tag
1311 T, we add Vi to the may-aliases set for T@.  Meaning that
1312 after alias analysis, we will have:
1313
1314 @smallexample
1315 may-aliases(T) = @{ V1, V2, V3, ..., Vn @}
1316 @end smallexample
1317
1318 This means that every statement that references T, will get
1319 @code{n} virtual operands for each of the Vi tags.  But, when
1320 alias grouping is enabled, we make T an alias tag and add it
1321 to the alias set of all the Vi variables:
1322
1323 @smallexample
1324 may-aliases(V1) = @{ T @}
1325 may-aliases(V2) = @{ T @}
1326 ...
1327 may-aliases(Vn) = @{ T @}
1328 @end smallexample
1329
1330 This has two effects: (a) statements referencing T will only get
1331 a single virtual operand, and, (b) all the variables Vi will now
1332 appear to alias each other.  So, we lose alias precision to
1333 improve compile time.  But, in theory, a program with such a high
1334 level of aliasing should not be very optimizable in the first
1335 place.
1336
1337 @item Since variables may be in the alias set of more than one
1338 memory tag, the grouping done in step (2) needs to be extended
1339 to all the memory tags that have a non-empty intersection with
1340 the may-aliases set of tag T@.  For instance, if we originally
1341 had these may-aliases sets:
1342
1343 @smallexample
1344 may-aliases(T) = @{ V1, V2, V3 @}
1345 may-aliases(R) = @{ V2, V4 @}
1346 @end smallexample
1347
1348 In step (2) we would have reverted the aliases for T as:
1349
1350 @smallexample
1351 may-aliases(V1) = @{ T @}
1352 may-aliases(V2) = @{ T @}
1353 may-aliases(V3) = @{ T @}
1354 @end smallexample
1355
1356 But note that now V2 is no longer aliased with R@.  We could
1357 add R to may-aliases(V2), but we are in the process of
1358 grouping aliases to reduce virtual operands so what we do is
1359 add V4 to the grouping to obtain:
1360
1361 @smallexample
1362 may-aliases(V1) = @{ T @}
1363 may-aliases(V2) = @{ T @}
1364 may-aliases(V3) = @{ T @}
1365 may-aliases(V4) = @{ T @}
1366 @end smallexample
1367
1368 @item If the total number of virtual operands due to aliasing is
1369 still above the threshold set by max-alias-vops, go back to (2).
1370 @end enumerate