OSDN Git Service

2012-02-01 Richard Guenther <rguenther@suse.de>
[pf3gnuchains/gcc-fork.git] / gcc / doc / tm.texi.in
1 @c Copyright (C) 1988,1989,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 @c Free Software Foundation, Inc.
4 @c This is part of the GCC manual.
5 @c For copying conditions, see the file gcc.texi.
6
7 @node Target Macros
8 @chapter Target Description Macros and Functions
9 @cindex machine description macros
10 @cindex target description macros
11 @cindex macros, target description
12 @cindex @file{tm.h} macros
13
14 In addition to the file @file{@var{machine}.md}, a machine description
15 includes a C header file conventionally given the name
16 @file{@var{machine}.h} and a C source file named @file{@var{machine}.c}.
17 The header file defines numerous macros that convey the information
18 about the target machine that does not fit into the scheme of the
19 @file{.md} file.  The file @file{tm.h} should be a link to
20 @file{@var{machine}.h}.  The header file @file{config.h} includes
21 @file{tm.h} and most compiler source files include @file{config.h}.  The
22 source file defines a variable @code{targetm}, which is a structure
23 containing pointers to functions and data relating to the target
24 machine.  @file{@var{machine}.c} should also contain their definitions,
25 if they are not defined elsewhere in GCC, and other functions called
26 through the macros defined in the @file{.h} file.
27
28 @menu
29 * Target Structure::    The @code{targetm} variable.
30 * Driver::              Controlling how the driver runs the compilation passes.
31 * Run-time Target::     Defining @samp{-m} options like @option{-m68000} and @option{-m68020}.
32 * Per-Function Data::   Defining data structures for per-function information.
33 * Storage Layout::      Defining sizes and alignments of data.
34 * Type Layout::         Defining sizes and properties of basic user data types.
35 * Registers::           Naming and describing the hardware registers.
36 * Register Classes::    Defining the classes of hardware registers.
37 * Old Constraints::     The old way to define machine-specific constraints.
38 * Stack and Calling::   Defining which way the stack grows and by how much.
39 * Varargs::             Defining the varargs macros.
40 * Trampolines::         Code set up at run time to enter a nested function.
41 * Library Calls::       Controlling how library routines are implicitly called.
42 * Addressing Modes::    Defining addressing modes valid for memory operands.
43 * Anchored Addresses::  Defining how @option{-fsection-anchors} should work.
44 * Condition Code::      Defining how insns update the condition code.
45 * Costs::               Defining relative costs of different operations.
46 * Scheduling::          Adjusting the behavior of the instruction scheduler.
47 * Sections::            Dividing storage into text, data, and other sections.
48 * PIC::                 Macros for position independent code.
49 * Assembler Format::    Defining how to write insns and pseudo-ops to output.
50 * Debugging Info::      Defining the format of debugging output.
51 * Floating Point::      Handling floating point for cross-compilers.
52 * Mode Switching::      Insertion of mode-switching instructions.
53 * Target Attributes::   Defining target-specific uses of @code{__attribute__}.
54 * Emulated TLS::        Emulated TLS support.
55 * MIPS Coprocessors::   MIPS coprocessor support and how to customize it.
56 * PCH Target::          Validity checking for precompiled headers.
57 * C++ ABI::             Controlling C++ ABI changes.
58 * Named Address Spaces:: Adding support for named address spaces
59 * Misc::                Everything else.
60 @end menu
61
62 @node Target Structure
63 @section The Global @code{targetm} Variable
64 @cindex target hooks
65 @cindex target functions
66
67 @deftypevar {struct gcc_target} targetm
68 The target @file{.c} file must define the global @code{targetm} variable
69 which contains pointers to functions and data relating to the target
70 machine.  The variable is declared in @file{target.h};
71 @file{target-def.h} defines the macro @code{TARGET_INITIALIZER} which is
72 used to initialize the variable, and macros for the default initializers
73 for elements of the structure.  The @file{.c} file should override those
74 macros for which the default definition is inappropriate.  For example:
75 @smallexample
76 #include "target.h"
77 #include "target-def.h"
78
79 /* @r{Initialize the GCC target structure.}  */
80
81 #undef TARGET_COMP_TYPE_ATTRIBUTES
82 #define TARGET_COMP_TYPE_ATTRIBUTES @var{machine}_comp_type_attributes
83
84 struct gcc_target targetm = TARGET_INITIALIZER;
85 @end smallexample
86 @end deftypevar
87
88 Where a macro should be defined in the @file{.c} file in this manner to
89 form part of the @code{targetm} structure, it is documented below as a
90 ``Target Hook'' with a prototype.  Many macros will change in future
91 from being defined in the @file{.h} file to being part of the
92 @code{targetm} structure.
93
94 Similarly, there is a @code{targetcm} variable for hooks that are
95 specific to front ends for C-family languages, documented as ``C
96 Target Hook''.  This is declared in @file{c-family/c-target.h}, the
97 initializer @code{TARGETCM_INITIALIZER} in
98 @file{c-family/c-target-def.h}.  If targets initialize @code{targetcm}
99 themselves, they should set @code{target_has_targetcm=yes} in
100 @file{config.gcc}; otherwise a default definition is used.
101
102 Similarly, there is a @code{targetm_common} variable for hooks that
103 are shared between the compiler driver and the compilers proper,
104 documented as ``Common Target Hook''.  This is declared in
105 @file{common/common-target.h}, the initializer
106 @code{TARGETM_COMMON_INITIALIZER} in
107 @file{common/common-target-def.h}.  If targets initialize
108 @code{targetm_common} themselves, they should set
109 @code{target_has_targetm_common=yes} in @file{config.gcc}; otherwise a
110 default definition is used.
111
112 @node Driver
113 @section Controlling the Compilation Driver, @file{gcc}
114 @cindex driver
115 @cindex controlling the compilation driver
116
117 @c prevent bad page break with this line
118 You can control the compilation driver.
119
120 @defmac DRIVER_SELF_SPECS
121 A list of specs for the driver itself.  It should be a suitable
122 initializer for an array of strings, with no surrounding braces.
123
124 The driver applies these specs to its own command line between loading
125 default @file{specs} files (but not command-line specified ones) and
126 choosing the multilib directory or running any subcommands.  It
127 applies them in the order given, so each spec can depend on the
128 options added by earlier ones.  It is also possible to remove options
129 using @samp{%<@var{option}} in the usual way.
130
131 This macro can be useful when a port has several interdependent target
132 options.  It provides a way of standardizing the command line so
133 that the other specs are easier to write.
134
135 Do not define this macro if it does not need to do anything.
136 @end defmac
137
138 @defmac OPTION_DEFAULT_SPECS
139 A list of specs used to support configure-time default options (i.e.@:
140 @option{--with} options) in the driver.  It should be a suitable initializer
141 for an array of structures, each containing two strings, without the
142 outermost pair of surrounding braces.
143
144 The first item in the pair is the name of the default.  This must match
145 the code in @file{config.gcc} for the target.  The second item is a spec
146 to apply if a default with this name was specified.  The string
147 @samp{%(VALUE)} in the spec will be replaced by the value of the default
148 everywhere it occurs.
149
150 The driver will apply these specs to its own command line between loading
151 default @file{specs} files and processing @code{DRIVER_SELF_SPECS}, using
152 the same mechanism as @code{DRIVER_SELF_SPECS}.
153
154 Do not define this macro if it does not need to do anything.
155 @end defmac
156
157 @defmac CPP_SPEC
158 A C string constant that tells the GCC driver program options to
159 pass to CPP@.  It can also specify how to translate options you
160 give to GCC into options for GCC to pass to the CPP@.
161
162 Do not define this macro if it does not need to do anything.
163 @end defmac
164
165 @defmac CPLUSPLUS_CPP_SPEC
166 This macro is just like @code{CPP_SPEC}, but is used for C++, rather
167 than C@.  If you do not define this macro, then the value of
168 @code{CPP_SPEC} (if any) will be used instead.
169 @end defmac
170
171 @defmac CC1_SPEC
172 A C string constant that tells the GCC driver program options to
173 pass to @code{cc1}, @code{cc1plus}, @code{f771}, and the other language
174 front ends.
175 It can also specify how to translate options you give to GCC into options
176 for GCC to pass to front ends.
177
178 Do not define this macro if it does not need to do anything.
179 @end defmac
180
181 @defmac CC1PLUS_SPEC
182 A C string constant that tells the GCC driver program options to
183 pass to @code{cc1plus}.  It can also specify how to translate options you
184 give to GCC into options for GCC to pass to the @code{cc1plus}.
185
186 Do not define this macro if it does not need to do anything.
187 Note that everything defined in CC1_SPEC is already passed to
188 @code{cc1plus} so there is no need to duplicate the contents of
189 CC1_SPEC in CC1PLUS_SPEC@.
190 @end defmac
191
192 @defmac ASM_SPEC
193 A C string constant that tells the GCC driver program options to
194 pass to the assembler.  It can also specify how to translate options
195 you give to GCC into options for GCC to pass to the assembler.
196 See the file @file{sun3.h} for an example of this.
197
198 Do not define this macro if it does not need to do anything.
199 @end defmac
200
201 @defmac ASM_FINAL_SPEC
202 A C string constant that tells the GCC driver program how to
203 run any programs which cleanup after the normal assembler.
204 Normally, this is not needed.  See the file @file{mips.h} for
205 an example of this.
206
207 Do not define this macro if it does not need to do anything.
208 @end defmac
209
210 @defmac AS_NEEDS_DASH_FOR_PIPED_INPUT
211 Define this macro, with no value, if the driver should give the assembler
212 an argument consisting of a single dash, @option{-}, to instruct it to
213 read from its standard input (which will be a pipe connected to the
214 output of the compiler proper).  This argument is given after any
215 @option{-o} option specifying the name of the output file.
216
217 If you do not define this macro, the assembler is assumed to read its
218 standard input if given no non-option arguments.  If your assembler
219 cannot read standard input at all, use a @samp{%@{pipe:%e@}} construct;
220 see @file{mips.h} for instance.
221 @end defmac
222
223 @defmac LINK_SPEC
224 A C string constant that tells the GCC driver program options to
225 pass to the linker.  It can also specify how to translate options you
226 give to GCC into options for GCC to pass to the linker.
227
228 Do not define this macro if it does not need to do anything.
229 @end defmac
230
231 @defmac LIB_SPEC
232 Another C string constant used much like @code{LINK_SPEC}.  The difference
233 between the two is that @code{LIB_SPEC} is used at the end of the
234 command given to the linker.
235
236 If this macro is not defined, a default is provided that
237 loads the standard C library from the usual place.  See @file{gcc.c}.
238 @end defmac
239
240 @defmac LIBGCC_SPEC
241 Another C string constant that tells the GCC driver program
242 how and when to place a reference to @file{libgcc.a} into the
243 linker command line.  This constant is placed both before and after
244 the value of @code{LIB_SPEC}.
245
246 If this macro is not defined, the GCC driver provides a default that
247 passes the string @option{-lgcc} to the linker.
248 @end defmac
249
250 @defmac REAL_LIBGCC_SPEC
251 By default, if @code{ENABLE_SHARED_LIBGCC} is defined, the
252 @code{LIBGCC_SPEC} is not directly used by the driver program but is
253 instead modified to refer to different versions of @file{libgcc.a}
254 depending on the values of the command line flags @option{-static},
255 @option{-shared}, @option{-static-libgcc}, and @option{-shared-libgcc}.  On
256 targets where these modifications are inappropriate, define
257 @code{REAL_LIBGCC_SPEC} instead.  @code{REAL_LIBGCC_SPEC} tells the
258 driver how to place a reference to @file{libgcc} on the link command
259 line, but, unlike @code{LIBGCC_SPEC}, it is used unmodified.
260 @end defmac
261
262 @defmac USE_LD_AS_NEEDED
263 A macro that controls the modifications to @code{LIBGCC_SPEC}
264 mentioned in @code{REAL_LIBGCC_SPEC}.  If nonzero, a spec will be
265 generated that uses --as-needed and the shared libgcc in place of the
266 static exception handler library, when linking without any of
267 @code{-static}, @code{-static-libgcc}, or @code{-shared-libgcc}.
268 @end defmac
269
270 @defmac LINK_EH_SPEC
271 If defined, this C string constant is added to @code{LINK_SPEC}.
272 When @code{USE_LD_AS_NEEDED} is zero or undefined, it also affects
273 the modifications to @code{LIBGCC_SPEC} mentioned in
274 @code{REAL_LIBGCC_SPEC}.
275 @end defmac
276
277 @defmac STARTFILE_SPEC
278 Another C string constant used much like @code{LINK_SPEC}.  The
279 difference between the two is that @code{STARTFILE_SPEC} is used at
280 the very beginning of the command given to the linker.
281
282 If this macro is not defined, a default is provided that loads the
283 standard C startup file from the usual place.  See @file{gcc.c}.
284 @end defmac
285
286 @defmac ENDFILE_SPEC
287 Another C string constant used much like @code{LINK_SPEC}.  The
288 difference between the two is that @code{ENDFILE_SPEC} is used at
289 the very end of the command given to the linker.
290
291 Do not define this macro if it does not need to do anything.
292 @end defmac
293
294 @defmac THREAD_MODEL_SPEC
295 GCC @code{-v} will print the thread model GCC was configured to use.
296 However, this doesn't work on platforms that are multilibbed on thread
297 models, such as AIX 4.3.  On such platforms, define
298 @code{THREAD_MODEL_SPEC} such that it evaluates to a string without
299 blanks that names one of the recognized thread models.  @code{%*}, the
300 default value of this macro, will expand to the value of
301 @code{thread_file} set in @file{config.gcc}.
302 @end defmac
303
304 @defmac SYSROOT_SUFFIX_SPEC
305 Define this macro to add a suffix to the target sysroot when GCC is
306 configured with a sysroot.  This will cause GCC to search for usr/lib,
307 et al, within sysroot+suffix.
308 @end defmac
309
310 @defmac SYSROOT_HEADERS_SUFFIX_SPEC
311 Define this macro to add a headers_suffix to the target sysroot when
312 GCC is configured with a sysroot.  This will cause GCC to pass the
313 updated sysroot+headers_suffix to CPP, causing it to search for
314 usr/include, et al, within sysroot+headers_suffix.
315 @end defmac
316
317 @defmac EXTRA_SPECS
318 Define this macro to provide additional specifications to put in the
319 @file{specs} file that can be used in various specifications like
320 @code{CC1_SPEC}.
321
322 The definition should be an initializer for an array of structures,
323 containing a string constant, that defines the specification name, and a
324 string constant that provides the specification.
325
326 Do not define this macro if it does not need to do anything.
327
328 @code{EXTRA_SPECS} is useful when an architecture contains several
329 related targets, which have various @code{@dots{}_SPECS} which are similar
330 to each other, and the maintainer would like one central place to keep
331 these definitions.
332
333 For example, the PowerPC System V.4 targets use @code{EXTRA_SPECS} to
334 define either @code{_CALL_SYSV} when the System V calling sequence is
335 used or @code{_CALL_AIX} when the older AIX-based calling sequence is
336 used.
337
338 The @file{config/rs6000/rs6000.h} target file defines:
339
340 @smallexample
341 #define EXTRA_SPECS \
342   @{ "cpp_sysv_default", CPP_SYSV_DEFAULT @},
343
344 #define CPP_SYS_DEFAULT ""
345 @end smallexample
346
347 The @file{config/rs6000/sysv.h} target file defines:
348 @smallexample
349 #undef CPP_SPEC
350 #define CPP_SPEC \
351 "%@{posix: -D_POSIX_SOURCE @} \
352 %@{mcall-sysv: -D_CALL_SYSV @} \
353 %@{!mcall-sysv: %(cpp_sysv_default) @} \
354 %@{msoft-float: -D_SOFT_FLOAT@} %@{mcpu=403: -D_SOFT_FLOAT@}"
355
356 #undef CPP_SYSV_DEFAULT
357 #define CPP_SYSV_DEFAULT "-D_CALL_SYSV"
358 @end smallexample
359
360 while the @file{config/rs6000/eabiaix.h} target file defines
361 @code{CPP_SYSV_DEFAULT} as:
362
363 @smallexample
364 #undef CPP_SYSV_DEFAULT
365 #define CPP_SYSV_DEFAULT "-D_CALL_AIX"
366 @end smallexample
367 @end defmac
368
369 @defmac LINK_LIBGCC_SPECIAL_1
370 Define this macro if the driver program should find the library
371 @file{libgcc.a}.  If you do not define this macro, the driver program will pass
372 the argument @option{-lgcc} to tell the linker to do the search.
373 @end defmac
374
375 @defmac LINK_GCC_C_SEQUENCE_SPEC
376 The sequence in which libgcc and libc are specified to the linker.
377 By default this is @code{%G %L %G}.
378 @end defmac
379
380 @defmac LINK_COMMAND_SPEC
381 A C string constant giving the complete command line need to execute the
382 linker.  When you do this, you will need to update your port each time a
383 change is made to the link command line within @file{gcc.c}.  Therefore,
384 define this macro only if you need to completely redefine the command
385 line for invoking the linker and there is no other way to accomplish
386 the effect you need.  Overriding this macro may be avoidable by overriding
387 @code{LINK_GCC_C_SEQUENCE_SPEC} instead.
388 @end defmac
389
390 @defmac LINK_ELIMINATE_DUPLICATE_LDIRECTORIES
391 A nonzero value causes @command{collect2} to remove duplicate @option{-L@var{directory}} search
392 directories from linking commands.  Do not give it a nonzero value if
393 removing duplicate search directories changes the linker's semantics.
394 @end defmac
395
396 @hook TARGET_ALWAYS_STRIP_DOTDOT
397
398 @defmac MULTILIB_DEFAULTS
399 Define this macro as a C expression for the initializer of an array of
400 string to tell the driver program which options are defaults for this
401 target and thus do not need to be handled specially when using
402 @code{MULTILIB_OPTIONS}.
403
404 Do not define this macro if @code{MULTILIB_OPTIONS} is not defined in
405 the target makefile fragment or if none of the options listed in
406 @code{MULTILIB_OPTIONS} are set by default.
407 @xref{Target Fragment}.
408 @end defmac
409
410 @defmac RELATIVE_PREFIX_NOT_LINKDIR
411 Define this macro to tell @command{gcc} that it should only translate
412 a @option{-B} prefix into a @option{-L} linker option if the prefix
413 indicates an absolute file name.
414 @end defmac
415
416 @defmac MD_EXEC_PREFIX
417 If defined, this macro is an additional prefix to try after
418 @code{STANDARD_EXEC_PREFIX}.  @code{MD_EXEC_PREFIX} is not searched
419 when the compiler is built as a cross
420 compiler.  If you define @code{MD_EXEC_PREFIX}, then be sure to add it
421 to the list of directories used to find the assembler in @file{configure.in}.
422 @end defmac
423
424 @defmac STANDARD_STARTFILE_PREFIX
425 Define this macro as a C string constant if you wish to override the
426 standard choice of @code{libdir} as the default prefix to
427 try when searching for startup files such as @file{crt0.o}.
428 @code{STANDARD_STARTFILE_PREFIX} is not searched when the compiler
429 is built as a cross compiler.
430 @end defmac
431
432 @defmac STANDARD_STARTFILE_PREFIX_1
433 Define this macro as a C string constant if you wish to override the
434 standard choice of @code{/lib} as a prefix to try after the default prefix
435 when searching for startup files such as @file{crt0.o}.
436 @code{STANDARD_STARTFILE_PREFIX_1} is not searched when the compiler
437 is built as a cross compiler.
438 @end defmac
439
440 @defmac STANDARD_STARTFILE_PREFIX_2
441 Define this macro as a C string constant if you wish to override the
442 standard choice of @code{/lib} as yet another prefix to try after the
443 default prefix when searching for startup files such as @file{crt0.o}.
444 @code{STANDARD_STARTFILE_PREFIX_2} is not searched when the compiler
445 is built as a cross compiler.
446 @end defmac
447
448 @defmac MD_STARTFILE_PREFIX
449 If defined, this macro supplies an additional prefix to try after the
450 standard prefixes.  @code{MD_EXEC_PREFIX} is not searched when the
451 compiler is built as a cross compiler.
452 @end defmac
453
454 @defmac MD_STARTFILE_PREFIX_1
455 If defined, this macro supplies yet another prefix to try after the
456 standard prefixes.  It is not searched when the compiler is built as a
457 cross compiler.
458 @end defmac
459
460 @defmac INIT_ENVIRONMENT
461 Define this macro as a C string constant if you wish to set environment
462 variables for programs called by the driver, such as the assembler and
463 loader.  The driver passes the value of this macro to @code{putenv} to
464 initialize the necessary environment variables.
465 @end defmac
466
467 @defmac LOCAL_INCLUDE_DIR
468 Define this macro as a C string constant if you wish to override the
469 standard choice of @file{/usr/local/include} as the default prefix to
470 try when searching for local header files.  @code{LOCAL_INCLUDE_DIR}
471 comes before @code{NATIVE_SYSTEM_HEADER_DIR} (set in
472 @file{config.gcc}, normally @file{/usr/include}) in the search order.
473
474 Cross compilers do not search either @file{/usr/local/include} or its
475 replacement.
476 @end defmac
477
478 @defmac NATIVE_SYSTEM_HEADER_COMPONENT
479 The ``component'' corresponding to @code{NATIVE_SYSTEM_HEADER_DIR}.
480 See @code{INCLUDE_DEFAULTS}, below, for the description of components.
481 If you do not define this macro, no component is used.
482 @end defmac
483
484 @defmac INCLUDE_DEFAULTS
485 Define this macro if you wish to override the entire default search path
486 for include files.  For a native compiler, the default search path
487 usually consists of @code{GCC_INCLUDE_DIR}, @code{LOCAL_INCLUDE_DIR},
488 @code{GPLUSPLUS_INCLUDE_DIR}, and
489 @code{NATIVE_SYSTEM_HEADER_DIR}.  In addition, @code{GPLUSPLUS_INCLUDE_DIR}
490 and @code{GCC_INCLUDE_DIR} are defined automatically by @file{Makefile},
491 and specify private search areas for GCC@.  The directory
492 @code{GPLUSPLUS_INCLUDE_DIR} is used only for C++ programs.
493
494 The definition should be an initializer for an array of structures.
495 Each array element should have four elements: the directory name (a
496 string constant), the component name (also a string constant), a flag
497 for C++-only directories,
498 and a flag showing that the includes in the directory don't need to be
499 wrapped in @code{extern @samp{C}} when compiling C++.  Mark the end of
500 the array with a null element.
501
502 The component name denotes what GNU package the include file is part of,
503 if any, in all uppercase letters.  For example, it might be @samp{GCC}
504 or @samp{BINUTILS}.  If the package is part of a vendor-supplied
505 operating system, code the component name as @samp{0}.
506
507 For example, here is the definition used for VAX/VMS:
508
509 @smallexample
510 #define INCLUDE_DEFAULTS \
511 @{                                       \
512   @{ "GNU_GXX_INCLUDE:", "G++", 1, 1@},   \
513   @{ "GNU_CC_INCLUDE:", "GCC", 0, 0@},    \
514   @{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0@},  \
515   @{ ".", 0, 0, 0@},                      \
516   @{ 0, 0, 0, 0@}                         \
517 @}
518 @end smallexample
519 @end defmac
520
521 Here is the order of prefixes tried for exec files:
522
523 @enumerate
524 @item
525 Any prefixes specified by the user with @option{-B}.
526
527 @item
528 The environment variable @code{GCC_EXEC_PREFIX} or, if @code{GCC_EXEC_PREFIX}
529 is not set and the compiler has not been installed in the configure-time
530 @var{prefix}, the location in which the compiler has actually been installed.
531
532 @item
533 The directories specified by the environment variable @code{COMPILER_PATH}.
534
535 @item
536 The macro @code{STANDARD_EXEC_PREFIX}, if the compiler has been installed
537 in the configured-time @var{prefix}.
538
539 @item
540 The location @file{/usr/libexec/gcc/}, but only if this is a native compiler.
541
542 @item
543 The location @file{/usr/lib/gcc/}, but only if this is a native compiler.
544
545 @item
546 The macro @code{MD_EXEC_PREFIX}, if defined, but only if this is a native
547 compiler.
548 @end enumerate
549
550 Here is the order of prefixes tried for startfiles:
551
552 @enumerate
553 @item
554 Any prefixes specified by the user with @option{-B}.
555
556 @item
557 The environment variable @code{GCC_EXEC_PREFIX} or its automatically determined
558 value based on the installed toolchain location.
559
560 @item
561 The directories specified by the environment variable @code{LIBRARY_PATH}
562 (or port-specific name; native only, cross compilers do not use this).
563
564 @item
565 The macro @code{STANDARD_EXEC_PREFIX}, but only if the toolchain is installed
566 in the configured @var{prefix} or this is a native compiler.
567
568 @item
569 The location @file{/usr/lib/gcc/}, but only if this is a native compiler.
570
571 @item
572 The macro @code{MD_EXEC_PREFIX}, if defined, but only if this is a native
573 compiler.
574
575 @item
576 The macro @code{MD_STARTFILE_PREFIX}, if defined, but only if this is a
577 native compiler, or we have a target system root.
578
579 @item
580 The macro @code{MD_STARTFILE_PREFIX_1}, if defined, but only if this is a
581 native compiler, or we have a target system root.
582
583 @item
584 The macro @code{STANDARD_STARTFILE_PREFIX}, with any sysroot modifications.
585 If this path is relative it will be prefixed by @code{GCC_EXEC_PREFIX} and
586 the machine suffix or @code{STANDARD_EXEC_PREFIX} and the machine suffix.
587
588 @item
589 The macro @code{STANDARD_STARTFILE_PREFIX_1}, but only if this is a native
590 compiler, or we have a target system root. The default for this macro is
591 @file{/lib/}.
592
593 @item
594 The macro @code{STANDARD_STARTFILE_PREFIX_2}, but only if this is a native
595 compiler, or we have a target system root. The default for this macro is
596 @file{/usr/lib/}.
597 @end enumerate
598
599 @node Run-time Target
600 @section Run-time Target Specification
601 @cindex run-time target specification
602 @cindex predefined macros
603 @cindex target specifications
604
605 @c prevent bad page break with this line
606 Here are run-time target specifications.
607
608 @defmac TARGET_CPU_CPP_BUILTINS ()
609 This function-like macro expands to a block of code that defines
610 built-in preprocessor macros and assertions for the target CPU, using
611 the functions @code{builtin_define}, @code{builtin_define_std} and
612 @code{builtin_assert}.  When the front end
613 calls this macro it provides a trailing semicolon, and since it has
614 finished command line option processing your code can use those
615 results freely.
616
617 @code{builtin_assert} takes a string in the form you pass to the
618 command-line option @option{-A}, such as @code{cpu=mips}, and creates
619 the assertion.  @code{builtin_define} takes a string in the form
620 accepted by option @option{-D} and unconditionally defines the macro.
621
622 @code{builtin_define_std} takes a string representing the name of an
623 object-like macro.  If it doesn't lie in the user's namespace,
624 @code{builtin_define_std} defines it unconditionally.  Otherwise, it
625 defines a version with two leading underscores, and another version
626 with two leading and trailing underscores, and defines the original
627 only if an ISO standard was not requested on the command line.  For
628 example, passing @code{unix} defines @code{__unix}, @code{__unix__}
629 and possibly @code{unix}; passing @code{_mips} defines @code{__mips},
630 @code{__mips__} and possibly @code{_mips}, and passing @code{_ABI64}
631 defines only @code{_ABI64}.
632
633 You can also test for the C dialect being compiled.  The variable
634 @code{c_language} is set to one of @code{clk_c}, @code{clk_cplusplus}
635 or @code{clk_objective_c}.  Note that if we are preprocessing
636 assembler, this variable will be @code{clk_c} but the function-like
637 macro @code{preprocessing_asm_p()} will return true, so you might want
638 to check for that first.  If you need to check for strict ANSI, the
639 variable @code{flag_iso} can be used.  The function-like macro
640 @code{preprocessing_trad_p()} can be used to check for traditional
641 preprocessing.
642 @end defmac
643
644 @defmac TARGET_OS_CPP_BUILTINS ()
645 Similarly to @code{TARGET_CPU_CPP_BUILTINS} but this macro is optional
646 and is used for the target operating system instead.
647 @end defmac
648
649 @defmac TARGET_OBJFMT_CPP_BUILTINS ()
650 Similarly to @code{TARGET_CPU_CPP_BUILTINS} but this macro is optional
651 and is used for the target object format.  @file{elfos.h} uses this
652 macro to define @code{__ELF__}, so you probably do not need to define
653 it yourself.
654 @end defmac
655
656 @deftypevar {extern int} target_flags
657 This variable is declared in @file{options.h}, which is included before
658 any target-specific headers.
659 @end deftypevar
660
661 @hook TARGET_DEFAULT_TARGET_FLAGS
662 This variable specifies the initial value of @code{target_flags}.
663 Its default setting is 0.
664 @end deftypevr
665
666 @cindex optional hardware or system features
667 @cindex features, optional, in system conventions
668
669 @hook TARGET_HANDLE_OPTION
670 This hook is called whenever the user specifies one of the
671 target-specific options described by the @file{.opt} definition files
672 (@pxref{Options}).  It has the opportunity to do some option-specific
673 processing and should return true if the option is valid.  The default
674 definition does nothing but return true.
675
676 @var{decoded} specifies the option and its arguments.  @var{opts} and
677 @var{opts_set} are the @code{gcc_options} structures to be used for
678 storing option state, and @var{loc} is the location at which the
679 option was passed (@code{UNKNOWN_LOCATION} except for options passed
680 via attributes).
681 @end deftypefn
682
683 @hook TARGET_HANDLE_C_OPTION
684 This target hook is called whenever the user specifies one of the
685 target-specific C language family options described by the @file{.opt}
686 definition files(@pxref{Options}).  It has the opportunity to do some
687 option-specific processing and should return true if the option is
688 valid.  The arguments are like for @code{TARGET_HANDLE_OPTION}.  The
689 default definition does nothing but return false.
690
691 In general, you should use @code{TARGET_HANDLE_OPTION} to handle
692 options.  However, if processing an option requires routines that are
693 only available in the C (and related language) front ends, then you
694 should use @code{TARGET_HANDLE_C_OPTION} instead.
695 @end deftypefn
696
697 @hook TARGET_OBJC_CONSTRUCT_STRING_OBJECT
698
699 @hook TARGET_STRING_OBJECT_REF_TYPE_P
700
701 @hook TARGET_CHECK_STRING_OBJECT_FORMAT_ARG
702
703 @hook TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
704 This target function is similar to the hook @code{TARGET_OPTION_OVERRIDE}
705 but is called when the optimize level is changed via an attribute or
706 pragma or when it is reset at the end of the code affected by the
707 attribute or pragma.  It is not called at the beginning of compilation
708 when @code{TARGET_OPTION_OVERRIDE} is called so if you want to perform these
709 actions then, you should have @code{TARGET_OPTION_OVERRIDE} call
710 @code{TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE}.
711 @end deftypefn
712
713 @defmac C_COMMON_OVERRIDE_OPTIONS
714 This is similar to the @code{TARGET_OPTION_OVERRIDE} hook
715 but is only used in the C
716 language frontends (C, Objective-C, C++, Objective-C++) and so can be
717 used to alter option flag variables which only exist in those
718 frontends.
719 @end defmac
720
721 @hook TARGET_OPTION_OPTIMIZATION_TABLE
722 Some machines may desire to change what optimizations are performed for
723 various optimization levels.   This variable, if defined, describes
724 options to enable at particular sets of optimization levels.  These
725 options are processed once
726 just after the optimization level is determined and before the remainder
727 of the command options have been parsed, so may be overridden by other
728 options passed explicitly.
729
730 This processing is run once at program startup and when the optimization
731 options are changed via @code{#pragma GCC optimize} or by using the
732 @code{optimize} attribute.
733 @end deftypevr
734
735 @hook TARGET_OPTION_INIT_STRUCT
736
737 @hook TARGET_OPTION_DEFAULT_PARAMS
738
739 @defmac SWITCHABLE_TARGET
740 Some targets need to switch between substantially different subtargets
741 during compilation.  For example, the MIPS target has one subtarget for
742 the traditional MIPS architecture and another for MIPS16.  Source code
743 can switch between these two subarchitectures using the @code{mips16}
744 and @code{nomips16} attributes.
745
746 Such subtargets can differ in things like the set of available
747 registers, the set of available instructions, the costs of various
748 operations, and so on.  GCC caches a lot of this type of information
749 in global variables, and recomputing them for each subtarget takes a
750 significant amount of time.  The compiler therefore provides a facility
751 for maintaining several versions of the global variables and quickly
752 switching between them; see @file{target-globals.h} for details.
753
754 Define this macro to 1 if your target needs this facility.  The default
755 is 0.
756 @end defmac
757
758 @node Per-Function Data
759 @section Defining data structures for per-function information.
760 @cindex per-function data
761 @cindex data structures
762
763 If the target needs to store information on a per-function basis, GCC
764 provides a macro and a couple of variables to allow this.  Note, just
765 using statics to store the information is a bad idea, since GCC supports
766 nested functions, so you can be halfway through encoding one function
767 when another one comes along.
768
769 GCC defines a data structure called @code{struct function} which
770 contains all of the data specific to an individual function.  This
771 structure contains a field called @code{machine} whose type is
772 @code{struct machine_function *}, which can be used by targets to point
773 to their own specific data.
774
775 If a target needs per-function specific data it should define the type
776 @code{struct machine_function} and also the macro @code{INIT_EXPANDERS}.
777 This macro should be used to initialize the function pointer
778 @code{init_machine_status}.  This pointer is explained below.
779
780 One typical use of per-function, target specific data is to create an
781 RTX to hold the register containing the function's return address.  This
782 RTX can then be used to implement the @code{__builtin_return_address}
783 function, for level 0.
784
785 Note---earlier implementations of GCC used a single data area to hold
786 all of the per-function information.  Thus when processing of a nested
787 function began the old per-function data had to be pushed onto a
788 stack, and when the processing was finished, it had to be popped off the
789 stack.  GCC used to provide function pointers called
790 @code{save_machine_status} and @code{restore_machine_status} to handle
791 the saving and restoring of the target specific information.  Since the
792 single data area approach is no longer used, these pointers are no
793 longer supported.
794
795 @defmac INIT_EXPANDERS
796 Macro called to initialize any target specific information.  This macro
797 is called once per function, before generation of any RTL has begun.
798 The intention of this macro is to allow the initialization of the
799 function pointer @code{init_machine_status}.
800 @end defmac
801
802 @deftypevar {void (*)(struct function *)} init_machine_status
803 If this function pointer is non-@code{NULL} it will be called once per
804 function, before function compilation starts, in order to allow the
805 target to perform any target specific initialization of the
806 @code{struct function} structure.  It is intended that this would be
807 used to initialize the @code{machine} of that structure.
808
809 @code{struct machine_function} structures are expected to be freed by GC@.
810 Generally, any memory that they reference must be allocated by using
811 GC allocation, including the structure itself.
812 @end deftypevar
813
814 @node Storage Layout
815 @section Storage Layout
816 @cindex storage layout
817
818 Note that the definitions of the macros in this table which are sizes or
819 alignments measured in bits do not need to be constant.  They can be C
820 expressions that refer to static variables, such as the @code{target_flags}.
821 @xref{Run-time Target}.
822
823 @defmac BITS_BIG_ENDIAN
824 Define this macro to have the value 1 if the most significant bit in a
825 byte has the lowest number; otherwise define it to have the value zero.
826 This means that bit-field instructions count from the most significant
827 bit.  If the machine has no bit-field instructions, then this must still
828 be defined, but it doesn't matter which value it is defined to.  This
829 macro need not be a constant.
830
831 This macro does not affect the way structure fields are packed into
832 bytes or words; that is controlled by @code{BYTES_BIG_ENDIAN}.
833 @end defmac
834
835 @defmac BYTES_BIG_ENDIAN
836 Define this macro to have the value 1 if the most significant byte in a
837 word has the lowest number.  This macro need not be a constant.
838 @end defmac
839
840 @defmac WORDS_BIG_ENDIAN
841 Define this macro to have the value 1 if, in a multiword object, the
842 most significant word has the lowest number.  This applies to both
843 memory locations and registers; see @code{REG_WORDS_BIG_ENDIAN} if the
844 order of words in memory is not the same as the order in registers.  This
845 macro need not be a constant.
846 @end defmac
847
848 @defmac REG_WORDS_BIG_ENDIAN
849 On some machines, the order of words in a multiword object differs between
850 registers in memory.  In such a situation, define this macro to describe
851 the order of words in a register.  The macro @code{WORDS_BIG_ENDIAN} controls
852 the order of words in memory.
853 @end defmac
854
855 @defmac FLOAT_WORDS_BIG_ENDIAN
856 Define this macro to have the value 1 if @code{DFmode}, @code{XFmode} or
857 @code{TFmode} floating point numbers are stored in memory with the word
858 containing the sign bit at the lowest address; otherwise define it to
859 have the value 0.  This macro need not be a constant.
860
861 You need not define this macro if the ordering is the same as for
862 multi-word integers.
863 @end defmac
864
865 @defmac BITS_PER_UNIT
866 Define this macro to be the number of bits in an addressable storage
867 unit (byte).  If you do not define this macro the default is 8.
868 @end defmac
869
870 @defmac BITS_PER_WORD
871 Number of bits in a word.  If you do not define this macro, the default
872 is @code{BITS_PER_UNIT * UNITS_PER_WORD}.
873 @end defmac
874
875 @defmac MAX_BITS_PER_WORD
876 Maximum number of bits in a word.  If this is undefined, the default is
877 @code{BITS_PER_WORD}.  Otherwise, it is the constant value that is the
878 largest value that @code{BITS_PER_WORD} can have at run-time.
879 @end defmac
880
881 @defmac UNITS_PER_WORD
882 Number of storage units in a word; normally the size of a general-purpose
883 register, a power of two from 1 or 8.
884 @end defmac
885
886 @defmac MIN_UNITS_PER_WORD
887 Minimum number of units in a word.  If this is undefined, the default is
888 @code{UNITS_PER_WORD}.  Otherwise, it is the constant value that is the
889 smallest value that @code{UNITS_PER_WORD} can have at run-time.
890 @end defmac
891
892 @defmac POINTER_SIZE
893 Width of a pointer, in bits.  You must specify a value no wider than the
894 width of @code{Pmode}.  If it is not equal to the width of @code{Pmode},
895 you must define @code{POINTERS_EXTEND_UNSIGNED}.  If you do not specify
896 a value the default is @code{BITS_PER_WORD}.
897 @end defmac
898
899 @defmac POINTERS_EXTEND_UNSIGNED
900 A C expression that determines how pointers should be extended from
901 @code{ptr_mode} to either @code{Pmode} or @code{word_mode}.  It is
902 greater than zero if pointers should be zero-extended, zero if they
903 should be sign-extended, and negative if some other sort of conversion
904 is needed.  In the last case, the extension is done by the target's
905 @code{ptr_extend} instruction.
906
907 You need not define this macro if the @code{ptr_mode}, @code{Pmode}
908 and @code{word_mode} are all the same width.
909 @end defmac
910
911 @defmac PROMOTE_MODE (@var{m}, @var{unsignedp}, @var{type})
912 A macro to update @var{m} and @var{unsignedp} when an object whose type
913 is @var{type} and which has the specified mode and signedness is to be
914 stored in a register.  This macro is only called when @var{type} is a
915 scalar type.
916
917 On most RISC machines, which only have operations that operate on a full
918 register, define this macro to set @var{m} to @code{word_mode} if
919 @var{m} is an integer mode narrower than @code{BITS_PER_WORD}.  In most
920 cases, only integer modes should be widened because wider-precision
921 floating-point operations are usually more expensive than their narrower
922 counterparts.
923
924 For most machines, the macro definition does not change @var{unsignedp}.
925 However, some machines, have instructions that preferentially handle
926 either signed or unsigned quantities of certain modes.  For example, on
927 the DEC Alpha, 32-bit loads from memory and 32-bit add instructions
928 sign-extend the result to 64 bits.  On such machines, set
929 @var{unsignedp} according to which kind of extension is more efficient.
930
931 Do not define this macro if it would never modify @var{m}.
932 @end defmac
933
934 @hook TARGET_PROMOTE_FUNCTION_MODE
935 Like @code{PROMOTE_MODE}, but it is applied to outgoing function arguments or
936 function return values.  The target hook should return the new mode
937 and possibly change @code{*@var{punsignedp}} if the promotion should
938 change signedness.  This function is called only for scalar @emph{or
939 pointer} types.
940
941 @var{for_return} allows to distinguish the promotion of arguments and
942 return values.  If it is @code{1}, a return value is being promoted and
943 @code{TARGET_FUNCTION_VALUE} must perform the same promotions done here.
944 If it is @code{2}, the returned mode should be that of the register in
945 which an incoming parameter is copied, or the outgoing result is computed;
946 then the hook should return the same mode as @code{promote_mode}, though
947 the signedness may be different.
948
949 @var{type} can be NULL when promoting function arguments of libcalls.
950
951 The default is to not promote arguments and return values.  You can
952 also define the hook to @code{default_promote_function_mode_always_promote}
953 if you would like to apply the same rules given by @code{PROMOTE_MODE}.
954 @end deftypefn
955
956 @defmac PARM_BOUNDARY
957 Normal alignment required for function parameters on the stack, in
958 bits.  All stack parameters receive at least this much alignment
959 regardless of data type.  On most machines, this is the same as the
960 size of an integer.
961 @end defmac
962
963 @defmac STACK_BOUNDARY
964 Define this macro to the minimum alignment enforced by hardware for the
965 stack pointer on this machine.  The definition is a C expression for the
966 desired alignment (measured in bits).  This value is used as a default
967 if @code{PREFERRED_STACK_BOUNDARY} is not defined.  On most machines,
968 this should be the same as @code{PARM_BOUNDARY}.
969 @end defmac
970
971 @defmac PREFERRED_STACK_BOUNDARY
972 Define this macro if you wish to preserve a certain alignment for the
973 stack pointer, greater than what the hardware enforces.  The definition
974 is a C expression for the desired alignment (measured in bits).  This
975 macro must evaluate to a value equal to or larger than
976 @code{STACK_BOUNDARY}.
977 @end defmac
978
979 @defmac INCOMING_STACK_BOUNDARY
980 Define this macro if the incoming stack boundary may be different
981 from @code{PREFERRED_STACK_BOUNDARY}.  This macro must evaluate
982 to a value equal to or larger than @code{STACK_BOUNDARY}.
983 @end defmac
984
985 @defmac FUNCTION_BOUNDARY
986 Alignment required for a function entry point, in bits.
987 @end defmac
988
989 @defmac BIGGEST_ALIGNMENT
990 Biggest alignment that any data type can require on this machine, in
991 bits.  Note that this is not the biggest alignment that is supported,
992 just the biggest alignment that, when violated, may cause a fault.
993 @end defmac
994
995 @defmac MALLOC_ABI_ALIGNMENT
996 Alignment, in bits, a C conformant malloc implementation has to
997 provide.  If not defined, the default value is @code{BITS_PER_WORD}.
998 @end defmac
999
1000 @defmac ATTRIBUTE_ALIGNED_VALUE
1001 Alignment used by the @code{__attribute__ ((aligned))} construct.  If
1002 not defined, the default value is @code{BIGGEST_ALIGNMENT}.
1003 @end defmac
1004
1005 @defmac MINIMUM_ATOMIC_ALIGNMENT
1006 If defined, the smallest alignment, in bits, that can be given to an
1007 object that can be referenced in one operation, without disturbing any
1008 nearby object.  Normally, this is @code{BITS_PER_UNIT}, but may be larger
1009 on machines that don't have byte or half-word store operations.
1010 @end defmac
1011
1012 @defmac BIGGEST_FIELD_ALIGNMENT
1013 Biggest alignment that any structure or union field can require on this
1014 machine, in bits.  If defined, this overrides @code{BIGGEST_ALIGNMENT} for
1015 structure and union fields only, unless the field alignment has been set
1016 by the @code{__attribute__ ((aligned (@var{n})))} construct.
1017 @end defmac
1018
1019 @defmac ADJUST_FIELD_ALIGN (@var{field}, @var{computed})
1020 An expression for the alignment of a structure field @var{field} if the
1021 alignment computed in the usual way (including applying of
1022 @code{BIGGEST_ALIGNMENT} and @code{BIGGEST_FIELD_ALIGNMENT} to the
1023 alignment) is @var{computed}.  It overrides alignment only if the
1024 field alignment has not been set by the
1025 @code{__attribute__ ((aligned (@var{n})))} construct.
1026 @end defmac
1027
1028 @defmac MAX_STACK_ALIGNMENT
1029 Biggest stack alignment guaranteed by the backend.  Use this macro
1030 to specify the maximum alignment of a variable on stack.
1031
1032 If not defined, the default value is @code{STACK_BOUNDARY}.
1033
1034 @c FIXME: The default should be @code{PREFERRED_STACK_BOUNDARY}.
1035 @c But the fix for PR 32893 indicates that we can only guarantee
1036 @c maximum stack alignment on stack up to @code{STACK_BOUNDARY}, not
1037 @c @code{PREFERRED_STACK_BOUNDARY}, if stack alignment isn't supported.
1038 @end defmac
1039
1040 @defmac MAX_OFILE_ALIGNMENT
1041 Biggest alignment supported by the object file format of this machine.
1042 Use this macro to limit the alignment which can be specified using the
1043 @code{__attribute__ ((aligned (@var{n})))} construct.  If not defined,
1044 the default value is @code{BIGGEST_ALIGNMENT}.
1045
1046 On systems that use ELF, the default (in @file{config/elfos.h}) is
1047 the largest supported 32-bit ELF section alignment representable on
1048 a 32-bit host e.g. @samp{(((unsigned HOST_WIDEST_INT) 1 << 28) * 8)}.
1049 On 32-bit ELF the largest supported section alignment in bits is
1050 @samp{(0x80000000 * 8)}, but this is not representable on 32-bit hosts.
1051 @end defmac
1052
1053 @defmac DATA_ALIGNMENT (@var{type}, @var{basic-align})
1054 If defined, a C expression to compute the alignment for a variable in
1055 the static store.  @var{type} is the data type, and @var{basic-align} is
1056 the alignment that the object would ordinarily have.  The value of this
1057 macro is used instead of that alignment to align the object.
1058
1059 If this macro is not defined, then @var{basic-align} is used.
1060
1061 @findex strcpy
1062 One use of this macro is to increase alignment of medium-size data to
1063 make it all fit in fewer cache lines.  Another is to cause character
1064 arrays to be word-aligned so that @code{strcpy} calls that copy
1065 constants to character arrays can be done inline.
1066 @end defmac
1067
1068 @defmac CONSTANT_ALIGNMENT (@var{constant}, @var{basic-align})
1069 If defined, a C expression to compute the alignment given to a constant
1070 that is being placed in memory.  @var{constant} is the constant and
1071 @var{basic-align} is the alignment that the object would ordinarily
1072 have.  The value of this macro is used instead of that alignment to
1073 align the object.
1074
1075 If this macro is not defined, then @var{basic-align} is used.
1076
1077 The typical use of this macro is to increase alignment for string
1078 constants to be word aligned so that @code{strcpy} calls that copy
1079 constants can be done inline.
1080 @end defmac
1081
1082 @defmac LOCAL_ALIGNMENT (@var{type}, @var{basic-align})
1083 If defined, a C expression to compute the alignment for a variable in
1084 the local store.  @var{type} is the data type, and @var{basic-align} is
1085 the alignment that the object would ordinarily have.  The value of this
1086 macro is used instead of that alignment to align the object.
1087
1088 If this macro is not defined, then @var{basic-align} is used.
1089
1090 One use of this macro is to increase alignment of medium-size data to
1091 make it all fit in fewer cache lines.
1092
1093 If the value of this macro has a type, it should be an unsigned type.
1094 @end defmac
1095
1096 @defmac STACK_SLOT_ALIGNMENT (@var{type}, @var{mode}, @var{basic-align})
1097 If defined, a C expression to compute the alignment for stack slot.
1098 @var{type} is the data type, @var{mode} is the widest mode available,
1099 and @var{basic-align} is the alignment that the slot would ordinarily
1100 have.  The value of this macro is used instead of that alignment to
1101 align the slot.
1102
1103 If this macro is not defined, then @var{basic-align} is used when
1104 @var{type} is @code{NULL}.  Otherwise, @code{LOCAL_ALIGNMENT} will
1105 be used.
1106
1107 This macro is to set alignment of stack slot to the maximum alignment
1108 of all possible modes which the slot may have.
1109
1110 If the value of this macro has a type, it should be an unsigned type.
1111 @end defmac
1112
1113 @defmac LOCAL_DECL_ALIGNMENT (@var{decl})
1114 If defined, a C expression to compute the alignment for a local
1115 variable @var{decl}.
1116
1117 If this macro is not defined, then
1118 @code{LOCAL_ALIGNMENT (TREE_TYPE (@var{decl}), DECL_ALIGN (@var{decl}))}
1119 is used.
1120
1121 One use of this macro is to increase alignment of medium-size data to
1122 make it all fit in fewer cache lines.
1123
1124 If the value of this macro has a type, it should be an unsigned type.
1125 @end defmac
1126
1127 @defmac MINIMUM_ALIGNMENT (@var{exp}, @var{mode}, @var{align})
1128 If defined, a C expression to compute the minimum required alignment
1129 for dynamic stack realignment purposes for @var{exp} (a type or decl),
1130 @var{mode}, assuming normal alignment @var{align}.
1131
1132 If this macro is not defined, then @var{align} will be used.
1133 @end defmac
1134
1135 @defmac EMPTY_FIELD_BOUNDARY
1136 Alignment in bits to be given to a structure bit-field that follows an
1137 empty field such as @code{int : 0;}.
1138
1139 If @code{PCC_BITFIELD_TYPE_MATTERS} is true, it overrides this macro.
1140 @end defmac
1141
1142 @defmac STRUCTURE_SIZE_BOUNDARY
1143 Number of bits which any structure or union's size must be a multiple of.
1144 Each structure or union's size is rounded up to a multiple of this.
1145
1146 If you do not define this macro, the default is the same as
1147 @code{BITS_PER_UNIT}.
1148 @end defmac
1149
1150 @defmac STRICT_ALIGNMENT
1151 Define this macro to be the value 1 if instructions will fail to work
1152 if given data not on the nominal alignment.  If instructions will merely
1153 go slower in that case, define this macro as 0.
1154 @end defmac
1155
1156 @defmac PCC_BITFIELD_TYPE_MATTERS
1157 Define this if you wish to imitate the way many other C compilers handle
1158 alignment of bit-fields and the structures that contain them.
1159
1160 The behavior is that the type written for a named bit-field (@code{int},
1161 @code{short}, or other integer type) imposes an alignment for the entire
1162 structure, as if the structure really did contain an ordinary field of
1163 that type.  In addition, the bit-field is placed within the structure so
1164 that it would fit within such a field, not crossing a boundary for it.
1165
1166 Thus, on most machines, a named bit-field whose type is written as
1167 @code{int} would not cross a four-byte boundary, and would force
1168 four-byte alignment for the whole structure.  (The alignment used may
1169 not be four bytes; it is controlled by the other alignment parameters.)
1170
1171 An unnamed bit-field will not affect the alignment of the containing
1172 structure.
1173
1174 If the macro is defined, its definition should be a C expression;
1175 a nonzero value for the expression enables this behavior.
1176
1177 Note that if this macro is not defined, or its value is zero, some
1178 bit-fields may cross more than one alignment boundary.  The compiler can
1179 support such references if there are @samp{insv}, @samp{extv}, and
1180 @samp{extzv} insns that can directly reference memory.
1181
1182 The other known way of making bit-fields work is to define
1183 @code{STRUCTURE_SIZE_BOUNDARY} as large as @code{BIGGEST_ALIGNMENT}.
1184 Then every structure can be accessed with fullwords.
1185
1186 Unless the machine has bit-field instructions or you define
1187 @code{STRUCTURE_SIZE_BOUNDARY} that way, you must define
1188 @code{PCC_BITFIELD_TYPE_MATTERS} to have a nonzero value.
1189
1190 If your aim is to make GCC use the same conventions for laying out
1191 bit-fields as are used by another compiler, here is how to investigate
1192 what the other compiler does.  Compile and run this program:
1193
1194 @smallexample
1195 struct foo1
1196 @{
1197   char x;
1198   char :0;
1199   char y;
1200 @};
1201
1202 struct foo2
1203 @{
1204   char x;
1205   int :0;
1206   char y;
1207 @};
1208
1209 main ()
1210 @{
1211   printf ("Size of foo1 is %d\n",
1212           sizeof (struct foo1));
1213   printf ("Size of foo2 is %d\n",
1214           sizeof (struct foo2));
1215   exit (0);
1216 @}
1217 @end smallexample
1218
1219 If this prints 2 and 5, then the compiler's behavior is what you would
1220 get from @code{PCC_BITFIELD_TYPE_MATTERS}.
1221 @end defmac
1222
1223 @defmac BITFIELD_NBYTES_LIMITED
1224 Like @code{PCC_BITFIELD_TYPE_MATTERS} except that its effect is limited
1225 to aligning a bit-field within the structure.
1226 @end defmac
1227
1228 @hook TARGET_ALIGN_ANON_BITFIELD
1229 When @code{PCC_BITFIELD_TYPE_MATTERS} is true this hook will determine
1230 whether unnamed bitfields affect the alignment of the containing
1231 structure.  The hook should return true if the structure should inherit
1232 the alignment requirements of an unnamed bitfield's type.
1233 @end deftypefn
1234
1235 @hook TARGET_NARROW_VOLATILE_BITFIELD
1236 This target hook should return @code{true} if accesses to volatile bitfields
1237 should use the narrowest mode possible.  It should return @code{false} if
1238 these accesses should use the bitfield container type.
1239
1240 The default is @code{!TARGET_STRICT_ALIGN}.
1241 @end deftypefn
1242
1243 @defmac MEMBER_TYPE_FORCES_BLK (@var{field}, @var{mode})
1244 Return 1 if a structure or array containing @var{field} should be accessed using
1245 @code{BLKMODE}.
1246
1247 If @var{field} is the only field in the structure, @var{mode} is its
1248 mode, otherwise @var{mode} is VOIDmode.  @var{mode} is provided in the
1249 case where structures of one field would require the structure's mode to
1250 retain the field's mode.
1251
1252 Normally, this is not needed.
1253 @end defmac
1254
1255 @defmac ROUND_TYPE_ALIGN (@var{type}, @var{computed}, @var{specified})
1256 Define this macro as an expression for the alignment of a type (given
1257 by @var{type} as a tree node) if the alignment computed in the usual
1258 way is @var{computed} and the alignment explicitly specified was
1259 @var{specified}.
1260
1261 The default is to use @var{specified} if it is larger; otherwise, use
1262 the smaller of @var{computed} and @code{BIGGEST_ALIGNMENT}
1263 @end defmac
1264
1265 @defmac MAX_FIXED_MODE_SIZE
1266 An integer expression for the size in bits of the largest integer
1267 machine mode that should actually be used.  All integer machine modes of
1268 this size or smaller can be used for structures and unions with the
1269 appropriate sizes.  If this macro is undefined, @code{GET_MODE_BITSIZE
1270 (DImode)} is assumed.
1271 @end defmac
1272
1273 @defmac STACK_SAVEAREA_MODE (@var{save_level})
1274 If defined, an expression of type @code{enum machine_mode} that
1275 specifies the mode of the save area operand of a
1276 @code{save_stack_@var{level}} named pattern (@pxref{Standard Names}).
1277 @var{save_level} is one of @code{SAVE_BLOCK}, @code{SAVE_FUNCTION}, or
1278 @code{SAVE_NONLOCAL} and selects which of the three named patterns is
1279 having its mode specified.
1280
1281 You need not define this macro if it always returns @code{Pmode}.  You
1282 would most commonly define this macro if the
1283 @code{save_stack_@var{level}} patterns need to support both a 32- and a
1284 64-bit mode.
1285 @end defmac
1286
1287 @defmac STACK_SIZE_MODE
1288 If defined, an expression of type @code{enum machine_mode} that
1289 specifies the mode of the size increment operand of an
1290 @code{allocate_stack} named pattern (@pxref{Standard Names}).
1291
1292 You need not define this macro if it always returns @code{word_mode}.
1293 You would most commonly define this macro if the @code{allocate_stack}
1294 pattern needs to support both a 32- and a 64-bit mode.
1295 @end defmac
1296
1297 @hook TARGET_LIBGCC_CMP_RETURN_MODE
1298 This target hook should return the mode to be used for the return value
1299 of compare instructions expanded to libgcc calls.  If not defined
1300 @code{word_mode} is returned which is the right choice for a majority of
1301 targets.
1302 @end deftypefn
1303
1304 @hook TARGET_LIBGCC_SHIFT_COUNT_MODE
1305 This target hook should return the mode to be used for the shift count operand
1306 of shift instructions expanded to libgcc calls.  If not defined
1307 @code{word_mode} is returned which is the right choice for a majority of
1308 targets.
1309 @end deftypefn
1310
1311 @hook TARGET_UNWIND_WORD_MODE
1312 Return machine mode to be used for @code{_Unwind_Word} type.
1313 The default is to use @code{word_mode}.
1314 @end deftypefn
1315
1316 @defmac ROUND_TOWARDS_ZERO
1317 If defined, this macro should be true if the prevailing rounding
1318 mode is towards zero.
1319
1320 Defining this macro only affects the way @file{libgcc.a} emulates
1321 floating-point arithmetic.
1322
1323 Not defining this macro is equivalent to returning zero.
1324 @end defmac
1325
1326 @defmac LARGEST_EXPONENT_IS_NORMAL (@var{size})
1327 This macro should return true if floats with @var{size}
1328 bits do not have a NaN or infinity representation, but use the largest
1329 exponent for normal numbers instead.
1330
1331 Defining this macro only affects the way @file{libgcc.a} emulates
1332 floating-point arithmetic.
1333
1334 The default definition of this macro returns false for all sizes.
1335 @end defmac
1336
1337 @hook TARGET_MS_BITFIELD_LAYOUT_P
1338 This target hook returns @code{true} if bit-fields in the given
1339 @var{record_type} are to be laid out following the rules of Microsoft
1340 Visual C/C++, namely: (i) a bit-field won't share the same storage
1341 unit with the previous bit-field if their underlying types have
1342 different sizes, and the bit-field will be aligned to the highest
1343 alignment of the underlying types of itself and of the previous
1344 bit-field; (ii) a zero-sized bit-field will affect the alignment of
1345 the whole enclosing structure, even if it is unnamed; except that
1346 (iii) a zero-sized bit-field will be disregarded unless it follows
1347 another bit-field of nonzero size.  If this hook returns @code{true},
1348 other macros that control bit-field layout are ignored.
1349
1350 When a bit-field is inserted into a packed record, the whole size
1351 of the underlying type is used by one or more same-size adjacent
1352 bit-fields (that is, if its long:3, 32 bits is used in the record,
1353 and any additional adjacent long bit-fields are packed into the same
1354 chunk of 32 bits.  However, if the size changes, a new field of that
1355 size is allocated).  In an unpacked record, this is the same as using
1356 alignment, but not equivalent when packing.
1357
1358 If both MS bit-fields and @samp{__attribute__((packed))} are used,
1359 the latter will take precedence.  If @samp{__attribute__((packed))} is
1360 used on a single field when MS bit-fields are in use, it will take
1361 precedence for that field, but the alignment of the rest of the structure
1362 may affect its placement.
1363 @end deftypefn
1364
1365 @hook TARGET_DECIMAL_FLOAT_SUPPORTED_P
1366 Returns true if the target supports decimal floating point.
1367 @end deftypefn
1368
1369 @hook TARGET_FIXED_POINT_SUPPORTED_P
1370 Returns true if the target supports fixed-point arithmetic.
1371 @end deftypefn
1372
1373 @hook TARGET_EXPAND_TO_RTL_HOOK
1374 This hook is called just before expansion into rtl, allowing the target
1375 to perform additional initializations or analysis before the expansion.
1376 For example, the rs6000 port uses it to allocate a scratch stack slot
1377 for use in copying SDmode values between memory and floating point
1378 registers whenever the function being expanded has any SDmode
1379 usage.
1380 @end deftypefn
1381
1382 @hook TARGET_INSTANTIATE_DECLS
1383 This hook allows the backend to perform additional instantiations on rtl
1384 that are not actually in any insns yet, but will be later.
1385 @end deftypefn
1386
1387 @hook TARGET_MANGLE_TYPE
1388 If your target defines any fundamental types, or any types your target
1389 uses should be mangled differently from the default, define this hook
1390 to return the appropriate encoding for these types as part of a C++
1391 mangled name.  The @var{type} argument is the tree structure representing
1392 the type to be mangled.  The hook may be applied to trees which are
1393 not target-specific fundamental types; it should return @code{NULL}
1394 for all such types, as well as arguments it does not recognize.  If the
1395 return value is not @code{NULL}, it must point to a statically-allocated
1396 string constant.
1397
1398 Target-specific fundamental types might be new fundamental types or
1399 qualified versions of ordinary fundamental types.  Encode new
1400 fundamental types as @samp{@w{u @var{n} @var{name}}}, where @var{name}
1401 is the name used for the type in source code, and @var{n} is the
1402 length of @var{name} in decimal.  Encode qualified versions of
1403 ordinary types as @samp{@w{U @var{n} @var{name} @var{code}}}, where
1404 @var{name} is the name used for the type qualifier in source code,
1405 @var{n} is the length of @var{name} as above, and @var{code} is the
1406 code used to represent the unqualified version of this type.  (See
1407 @code{write_builtin_type} in @file{cp/mangle.c} for the list of
1408 codes.)  In both cases the spaces are for clarity; do not include any
1409 spaces in your string.
1410
1411 This hook is applied to types prior to typedef resolution.  If the mangled
1412 name for a particular type depends only on that type's main variant, you
1413 can perform typedef resolution yourself using @code{TYPE_MAIN_VARIANT}
1414 before mangling.
1415
1416 The default version of this hook always returns @code{NULL}, which is
1417 appropriate for a target that does not define any new fundamental
1418 types.
1419 @end deftypefn
1420
1421 @node Type Layout
1422 @section Layout of Source Language Data Types
1423
1424 These macros define the sizes and other characteristics of the standard
1425 basic data types used in programs being compiled.  Unlike the macros in
1426 the previous section, these apply to specific features of C and related
1427 languages, rather than to fundamental aspects of storage layout.
1428
1429 @defmac INT_TYPE_SIZE
1430 A C expression for the size in bits of the type @code{int} on the
1431 target machine.  If you don't define this, the default is one word.
1432 @end defmac
1433
1434 @defmac SHORT_TYPE_SIZE
1435 A C expression for the size in bits of the type @code{short} on the
1436 target machine.  If you don't define this, the default is half a word.
1437 (If this would be less than one storage unit, it is rounded up to one
1438 unit.)
1439 @end defmac
1440
1441 @defmac LONG_TYPE_SIZE
1442 A C expression for the size in bits of the type @code{long} on the
1443 target machine.  If you don't define this, the default is one word.
1444 @end defmac
1445
1446 @defmac ADA_LONG_TYPE_SIZE
1447 On some machines, the size used for the Ada equivalent of the type
1448 @code{long} by a native Ada compiler differs from that used by C@.  In
1449 that situation, define this macro to be a C expression to be used for
1450 the size of that type.  If you don't define this, the default is the
1451 value of @code{LONG_TYPE_SIZE}.
1452 @end defmac
1453
1454 @defmac LONG_LONG_TYPE_SIZE
1455 A C expression for the size in bits of the type @code{long long} on the
1456 target machine.  If you don't define this, the default is two
1457 words.  If you want to support GNU Ada on your machine, the value of this
1458 macro must be at least 64.
1459 @end defmac
1460
1461 @defmac CHAR_TYPE_SIZE
1462 A C expression for the size in bits of the type @code{char} on the
1463 target machine.  If you don't define this, the default is
1464 @code{BITS_PER_UNIT}.
1465 @end defmac
1466
1467 @defmac BOOL_TYPE_SIZE
1468 A C expression for the size in bits of the C++ type @code{bool} and
1469 C99 type @code{_Bool} on the target machine.  If you don't define
1470 this, and you probably shouldn't, the default is @code{CHAR_TYPE_SIZE}.
1471 @end defmac
1472
1473 @defmac FLOAT_TYPE_SIZE
1474 A C expression for the size in bits of the type @code{float} on the
1475 target machine.  If you don't define this, the default is one word.
1476 @end defmac
1477
1478 @defmac DOUBLE_TYPE_SIZE
1479 A C expression for the size in bits of the type @code{double} on the
1480 target machine.  If you don't define this, the default is two
1481 words.
1482 @end defmac
1483
1484 @defmac LONG_DOUBLE_TYPE_SIZE
1485 A C expression for the size in bits of the type @code{long double} on
1486 the target machine.  If you don't define this, the default is two
1487 words.
1488 @end defmac
1489
1490 @defmac SHORT_FRACT_TYPE_SIZE
1491 A C expression for the size in bits of the type @code{short _Fract} on
1492 the target machine.  If you don't define this, the default is
1493 @code{BITS_PER_UNIT}.
1494 @end defmac
1495
1496 @defmac FRACT_TYPE_SIZE
1497 A C expression for the size in bits of the type @code{_Fract} on
1498 the target machine.  If you don't define this, the default is
1499 @code{BITS_PER_UNIT * 2}.
1500 @end defmac
1501
1502 @defmac LONG_FRACT_TYPE_SIZE
1503 A C expression for the size in bits of the type @code{long _Fract} on
1504 the target machine.  If you don't define this, the default is
1505 @code{BITS_PER_UNIT * 4}.
1506 @end defmac
1507
1508 @defmac LONG_LONG_FRACT_TYPE_SIZE
1509 A C expression for the size in bits of the type @code{long long _Fract} on
1510 the target machine.  If you don't define this, the default is
1511 @code{BITS_PER_UNIT * 8}.
1512 @end defmac
1513
1514 @defmac SHORT_ACCUM_TYPE_SIZE
1515 A C expression for the size in bits of the type @code{short _Accum} on
1516 the target machine.  If you don't define this, the default is
1517 @code{BITS_PER_UNIT * 2}.
1518 @end defmac
1519
1520 @defmac ACCUM_TYPE_SIZE
1521 A C expression for the size in bits of the type @code{_Accum} on
1522 the target machine.  If you don't define this, the default is
1523 @code{BITS_PER_UNIT * 4}.
1524 @end defmac
1525
1526 @defmac LONG_ACCUM_TYPE_SIZE
1527 A C expression for the size in bits of the type @code{long _Accum} on
1528 the target machine.  If you don't define this, the default is
1529 @code{BITS_PER_UNIT * 8}.
1530 @end defmac
1531
1532 @defmac LONG_LONG_ACCUM_TYPE_SIZE
1533 A C expression for the size in bits of the type @code{long long _Accum} on
1534 the target machine.  If you don't define this, the default is
1535 @code{BITS_PER_UNIT * 16}.
1536 @end defmac
1537
1538 @defmac LIBGCC2_LONG_DOUBLE_TYPE_SIZE
1539 Define this macro if @code{LONG_DOUBLE_TYPE_SIZE} is not constant or
1540 if you want routines in @file{libgcc2.a} for a size other than
1541 @code{LONG_DOUBLE_TYPE_SIZE}.  If you don't define this, the
1542 default is @code{LONG_DOUBLE_TYPE_SIZE}.
1543 @end defmac
1544
1545 @defmac LIBGCC2_HAS_DF_MODE
1546 Define this macro if neither @code{DOUBLE_TYPE_SIZE} nor
1547 @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE} is
1548 @code{DFmode} but you want @code{DFmode} routines in @file{libgcc2.a}
1549 anyway.  If you don't define this and either @code{DOUBLE_TYPE_SIZE}
1550 or @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE} is 64 then the default is 1,
1551 otherwise it is 0.
1552 @end defmac
1553
1554 @defmac LIBGCC2_HAS_XF_MODE
1555 Define this macro if @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE} is not
1556 @code{XFmode} but you want @code{XFmode} routines in @file{libgcc2.a}
1557 anyway.  If you don't define this and @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE}
1558 is 80 then the default is 1, otherwise it is 0.
1559 @end defmac
1560
1561 @defmac LIBGCC2_HAS_TF_MODE
1562 Define this macro if @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE} is not
1563 @code{TFmode} but you want @code{TFmode} routines in @file{libgcc2.a}
1564 anyway.  If you don't define this and @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE}
1565 is 128 then the default is 1, otherwise it is 0.
1566 @end defmac
1567
1568 @defmac LIBGCC2_GNU_PREFIX
1569 This macro corresponds to the @code{TARGET_LIBFUNC_GNU_PREFIX} target
1570 hook and should be defined if that hook is overriden to be true.  It
1571 causes function names in libgcc to be changed to use a @code{__gnu_}
1572 prefix for their name rather than the default @code{__}.  A port which
1573 uses this macro should also arrange to use @file{t-gnu-prefix} in
1574 the libgcc @file{config.host}.
1575 @end defmac
1576
1577 @defmac SF_SIZE
1578 @defmacx DF_SIZE
1579 @defmacx XF_SIZE
1580 @defmacx TF_SIZE
1581 Define these macros to be the size in bits of the mantissa of
1582 @code{SFmode}, @code{DFmode}, @code{XFmode} and @code{TFmode} values,
1583 if the defaults in @file{libgcc2.h} are inappropriate.  By default,
1584 @code{FLT_MANT_DIG} is used for @code{SF_SIZE}, @code{LDBL_MANT_DIG}
1585 for @code{XF_SIZE} and @code{TF_SIZE}, and @code{DBL_MANT_DIG} or
1586 @code{LDBL_MANT_DIG} for @code{DF_SIZE} according to whether
1587 @code{DOUBLE_TYPE_SIZE} or
1588 @code{LIBGCC2_LONG_DOUBLE_TYPE_SIZE} is 64.
1589 @end defmac
1590
1591 @defmac TARGET_FLT_EVAL_METHOD
1592 A C expression for the value for @code{FLT_EVAL_METHOD} in @file{float.h},
1593 assuming, if applicable, that the floating-point control word is in its
1594 default state.  If you do not define this macro the value of
1595 @code{FLT_EVAL_METHOD} will be zero.
1596 @end defmac
1597
1598 @defmac WIDEST_HARDWARE_FP_SIZE
1599 A C expression for the size in bits of the widest floating-point format
1600 supported by the hardware.  If you define this macro, you must specify a
1601 value less than or equal to the value of @code{LONG_DOUBLE_TYPE_SIZE}.
1602 If you do not define this macro, the value of @code{LONG_DOUBLE_TYPE_SIZE}
1603 is the default.
1604 @end defmac
1605
1606 @defmac DEFAULT_SIGNED_CHAR
1607 An expression whose value is 1 or 0, according to whether the type
1608 @code{char} should be signed or unsigned by default.  The user can
1609 always override this default with the options @option{-fsigned-char}
1610 and @option{-funsigned-char}.
1611 @end defmac
1612
1613 @hook TARGET_DEFAULT_SHORT_ENUMS
1614 This target hook should return true if the compiler should give an
1615 @code{enum} type only as many bytes as it takes to represent the range
1616 of possible values of that type.  It should return false if all
1617 @code{enum} types should be allocated like @code{int}.
1618
1619 The default is to return false.
1620 @end deftypefn
1621
1622 @defmac SIZE_TYPE
1623 A C expression for a string describing the name of the data type to use
1624 for size values.  The typedef name @code{size_t} is defined using the
1625 contents of the string.
1626
1627 The string can contain more than one keyword.  If so, separate them with
1628 spaces, and write first any length keyword, then @code{unsigned} if
1629 appropriate, and finally @code{int}.  The string must exactly match one
1630 of the data type names defined in the function
1631 @code{init_decl_processing} in the file @file{c-decl.c}.  You may not
1632 omit @code{int} or change the order---that would cause the compiler to
1633 crash on startup.
1634
1635 If you don't define this macro, the default is @code{"long unsigned
1636 int"}.
1637 @end defmac
1638
1639 @defmac PTRDIFF_TYPE
1640 A C expression for a string describing the name of the data type to use
1641 for the result of subtracting two pointers.  The typedef name
1642 @code{ptrdiff_t} is defined using the contents of the string.  See
1643 @code{SIZE_TYPE} above for more information.
1644
1645 If you don't define this macro, the default is @code{"long int"}.
1646 @end defmac
1647
1648 @defmac WCHAR_TYPE
1649 A C expression for a string describing the name of the data type to use
1650 for wide characters.  The typedef name @code{wchar_t} is defined using
1651 the contents of the string.  See @code{SIZE_TYPE} above for more
1652 information.
1653
1654 If you don't define this macro, the default is @code{"int"}.
1655 @end defmac
1656
1657 @defmac WCHAR_TYPE_SIZE
1658 A C expression for the size in bits of the data type for wide
1659 characters.  This is used in @code{cpp}, which cannot make use of
1660 @code{WCHAR_TYPE}.
1661 @end defmac
1662
1663 @defmac WINT_TYPE
1664 A C expression for a string describing the name of the data type to
1665 use for wide characters passed to @code{printf} and returned from
1666 @code{getwc}.  The typedef name @code{wint_t} is defined using the
1667 contents of the string.  See @code{SIZE_TYPE} above for more
1668 information.
1669
1670 If you don't define this macro, the default is @code{"unsigned int"}.
1671 @end defmac
1672
1673 @defmac INTMAX_TYPE
1674 A C expression for a string describing the name of the data type that
1675 can represent any value of any standard or extended signed integer type.
1676 The typedef name @code{intmax_t} is defined using the contents of the
1677 string.  See @code{SIZE_TYPE} above for more information.
1678
1679 If you don't define this macro, the default is the first of
1680 @code{"int"}, @code{"long int"}, or @code{"long long int"} that has as
1681 much precision as @code{long long int}.
1682 @end defmac
1683
1684 @defmac UINTMAX_TYPE
1685 A C expression for a string describing the name of the data type that
1686 can represent any value of any standard or extended unsigned integer
1687 type.  The typedef name @code{uintmax_t} is defined using the contents
1688 of the string.  See @code{SIZE_TYPE} above for more information.
1689
1690 If you don't define this macro, the default is the first of
1691 @code{"unsigned int"}, @code{"long unsigned int"}, or @code{"long long
1692 unsigned int"} that has as much precision as @code{long long unsigned
1693 int}.
1694 @end defmac
1695
1696 @defmac SIG_ATOMIC_TYPE
1697 @defmacx INT8_TYPE
1698 @defmacx INT16_TYPE
1699 @defmacx INT32_TYPE
1700 @defmacx INT64_TYPE
1701 @defmacx UINT8_TYPE
1702 @defmacx UINT16_TYPE
1703 @defmacx UINT32_TYPE
1704 @defmacx UINT64_TYPE
1705 @defmacx INT_LEAST8_TYPE
1706 @defmacx INT_LEAST16_TYPE
1707 @defmacx INT_LEAST32_TYPE
1708 @defmacx INT_LEAST64_TYPE
1709 @defmacx UINT_LEAST8_TYPE
1710 @defmacx UINT_LEAST16_TYPE
1711 @defmacx UINT_LEAST32_TYPE
1712 @defmacx UINT_LEAST64_TYPE
1713 @defmacx INT_FAST8_TYPE
1714 @defmacx INT_FAST16_TYPE
1715 @defmacx INT_FAST32_TYPE
1716 @defmacx INT_FAST64_TYPE
1717 @defmacx UINT_FAST8_TYPE
1718 @defmacx UINT_FAST16_TYPE
1719 @defmacx UINT_FAST32_TYPE
1720 @defmacx UINT_FAST64_TYPE
1721 @defmacx INTPTR_TYPE
1722 @defmacx UINTPTR_TYPE
1723 C expressions for the standard types @code{sig_atomic_t},
1724 @code{int8_t}, @code{int16_t}, @code{int32_t}, @code{int64_t},
1725 @code{uint8_t}, @code{uint16_t}, @code{uint32_t}, @code{uint64_t},
1726 @code{int_least8_t}, @code{int_least16_t}, @code{int_least32_t},
1727 @code{int_least64_t}, @code{uint_least8_t}, @code{uint_least16_t},
1728 @code{uint_least32_t}, @code{uint_least64_t}, @code{int_fast8_t},
1729 @code{int_fast16_t}, @code{int_fast32_t}, @code{int_fast64_t},
1730 @code{uint_fast8_t}, @code{uint_fast16_t}, @code{uint_fast32_t},
1731 @code{uint_fast64_t}, @code{intptr_t}, and @code{uintptr_t}.  See
1732 @code{SIZE_TYPE} above for more information.
1733
1734 If any of these macros evaluates to a null pointer, the corresponding
1735 type is not supported; if GCC is configured to provide
1736 @code{<stdint.h>} in such a case, the header provided may not conform
1737 to C99, depending on the type in question.  The defaults for all of
1738 these macros are null pointers.
1739 @end defmac
1740
1741 @defmac TARGET_PTRMEMFUNC_VBIT_LOCATION
1742 The C++ compiler represents a pointer-to-member-function with a struct
1743 that looks like:
1744
1745 @smallexample
1746   struct @{
1747     union @{
1748       void (*fn)();
1749       ptrdiff_t vtable_index;
1750     @};
1751     ptrdiff_t delta;
1752   @};
1753 @end smallexample
1754
1755 @noindent
1756 The C++ compiler must use one bit to indicate whether the function that
1757 will be called through a pointer-to-member-function is virtual.
1758 Normally, we assume that the low-order bit of a function pointer must
1759 always be zero.  Then, by ensuring that the vtable_index is odd, we can
1760 distinguish which variant of the union is in use.  But, on some
1761 platforms function pointers can be odd, and so this doesn't work.  In
1762 that case, we use the low-order bit of the @code{delta} field, and shift
1763 the remainder of the @code{delta} field to the left.
1764
1765 GCC will automatically make the right selection about where to store
1766 this bit using the @code{FUNCTION_BOUNDARY} setting for your platform.
1767 However, some platforms such as ARM/Thumb have @code{FUNCTION_BOUNDARY}
1768 set such that functions always start at even addresses, but the lowest
1769 bit of pointers to functions indicate whether the function at that
1770 address is in ARM or Thumb mode.  If this is the case of your
1771 architecture, you should define this macro to
1772 @code{ptrmemfunc_vbit_in_delta}.
1773
1774 In general, you should not have to define this macro.  On architectures
1775 in which function addresses are always even, according to
1776 @code{FUNCTION_BOUNDARY}, GCC will automatically define this macro to
1777 @code{ptrmemfunc_vbit_in_pfn}.
1778 @end defmac
1779
1780 @defmac TARGET_VTABLE_USES_DESCRIPTORS
1781 Normally, the C++ compiler uses function pointers in vtables.  This
1782 macro allows the target to change to use ``function descriptors''
1783 instead.  Function descriptors are found on targets for whom a
1784 function pointer is actually a small data structure.  Normally the
1785 data structure consists of the actual code address plus a data
1786 pointer to which the function's data is relative.
1787
1788 If vtables are used, the value of this macro should be the number
1789 of words that the function descriptor occupies.
1790 @end defmac
1791
1792 @defmac TARGET_VTABLE_ENTRY_ALIGN
1793 By default, the vtable entries are void pointers, the so the alignment
1794 is the same as pointer alignment.  The value of this macro specifies
1795 the alignment of the vtable entry in bits.  It should be defined only
1796 when special alignment is necessary. */
1797 @end defmac
1798
1799 @defmac TARGET_VTABLE_DATA_ENTRY_DISTANCE
1800 There are a few non-descriptor entries in the vtable at offsets below
1801 zero.  If these entries must be padded (say, to preserve the alignment
1802 specified by @code{TARGET_VTABLE_ENTRY_ALIGN}), set this to the number
1803 of words in each data entry.
1804 @end defmac
1805
1806 @node Registers
1807 @section Register Usage
1808 @cindex register usage
1809
1810 This section explains how to describe what registers the target machine
1811 has, and how (in general) they can be used.
1812
1813 The description of which registers a specific instruction can use is
1814 done with register classes; see @ref{Register Classes}.  For information
1815 on using registers to access a stack frame, see @ref{Frame Registers}.
1816 For passing values in registers, see @ref{Register Arguments}.
1817 For returning values in registers, see @ref{Scalar Return}.
1818
1819 @menu
1820 * Register Basics::             Number and kinds of registers.
1821 * Allocation Order::            Order in which registers are allocated.
1822 * Values in Registers::         What kinds of values each reg can hold.
1823 * Leaf Functions::              Renumbering registers for leaf functions.
1824 * Stack Registers::             Handling a register stack such as 80387.
1825 @end menu
1826
1827 @node Register Basics
1828 @subsection Basic Characteristics of Registers
1829
1830 @c prevent bad page break with this line
1831 Registers have various characteristics.
1832
1833 @defmac FIRST_PSEUDO_REGISTER
1834 Number of hardware registers known to the compiler.  They receive
1835 numbers 0 through @code{FIRST_PSEUDO_REGISTER-1}; thus, the first
1836 pseudo register's number really is assigned the number
1837 @code{FIRST_PSEUDO_REGISTER}.
1838 @end defmac
1839
1840 @defmac FIXED_REGISTERS
1841 @cindex fixed register
1842 An initializer that says which registers are used for fixed purposes
1843 all throughout the compiled code and are therefore not available for
1844 general allocation.  These would include the stack pointer, the frame
1845 pointer (except on machines where that can be used as a general
1846 register when no frame pointer is needed), the program counter on
1847 machines where that is considered one of the addressable registers,
1848 and any other numbered register with a standard use.
1849
1850 This information is expressed as a sequence of numbers, separated by
1851 commas and surrounded by braces.  The @var{n}th number is 1 if
1852 register @var{n} is fixed, 0 otherwise.
1853
1854 The table initialized from this macro, and the table initialized by
1855 the following one, may be overridden at run time either automatically,
1856 by the actions of the macro @code{CONDITIONAL_REGISTER_USAGE}, or by
1857 the user with the command options @option{-ffixed-@var{reg}},
1858 @option{-fcall-used-@var{reg}} and @option{-fcall-saved-@var{reg}}.
1859 @end defmac
1860
1861 @defmac CALL_USED_REGISTERS
1862 @cindex call-used register
1863 @cindex call-clobbered register
1864 @cindex call-saved register
1865 Like @code{FIXED_REGISTERS} but has 1 for each register that is
1866 clobbered (in general) by function calls as well as for fixed
1867 registers.  This macro therefore identifies the registers that are not
1868 available for general allocation of values that must live across
1869 function calls.
1870
1871 If a register has 0 in @code{CALL_USED_REGISTERS}, the compiler
1872 automatically saves it on function entry and restores it on function
1873 exit, if the register is used within the function.
1874 @end defmac
1875
1876 @defmac CALL_REALLY_USED_REGISTERS
1877 @cindex call-used register
1878 @cindex call-clobbered register
1879 @cindex call-saved register
1880 Like @code{CALL_USED_REGISTERS} except this macro doesn't require
1881 that the entire set of @code{FIXED_REGISTERS} be included.
1882 (@code{CALL_USED_REGISTERS} must be a superset of @code{FIXED_REGISTERS}).
1883 This macro is optional.  If not specified, it defaults to the value
1884 of @code{CALL_USED_REGISTERS}.
1885 @end defmac
1886
1887 @defmac HARD_REGNO_CALL_PART_CLOBBERED (@var{regno}, @var{mode})
1888 @cindex call-used register
1889 @cindex call-clobbered register
1890 @cindex call-saved register
1891 A C expression that is nonzero if it is not permissible to store a
1892 value of mode @var{mode} in hard register number @var{regno} across a
1893 call without some part of it being clobbered.  For most machines this
1894 macro need not be defined.  It is only required for machines that do not
1895 preserve the entire contents of a register across a call.
1896 @end defmac
1897
1898 @findex fixed_regs
1899 @findex call_used_regs
1900 @findex global_regs
1901 @findex reg_names
1902 @findex reg_class_contents
1903 @hook TARGET_CONDITIONAL_REGISTER_USAGE
1904 This hook may conditionally modify five variables
1905 @code{fixed_regs}, @code{call_used_regs}, @code{global_regs},
1906 @code{reg_names}, and @code{reg_class_contents}, to take into account
1907 any dependence of these register sets on target flags.  The first three
1908 of these are of type @code{char []} (interpreted as Boolean vectors).
1909 @code{global_regs} is a @code{const char *[]}, and
1910 @code{reg_class_contents} is a @code{HARD_REG_SET}.  Before the macro is
1911 called, @code{fixed_regs}, @code{call_used_regs},
1912 @code{reg_class_contents}, and @code{reg_names} have been initialized
1913 from @code{FIXED_REGISTERS}, @code{CALL_USED_REGISTERS},
1914 @code{REG_CLASS_CONTENTS}, and @code{REGISTER_NAMES}, respectively.
1915 @code{global_regs} has been cleared, and any @option{-ffixed-@var{reg}},
1916 @option{-fcall-used-@var{reg}} and @option{-fcall-saved-@var{reg}}
1917 command options have been applied.
1918
1919 @cindex disabling certain registers
1920 @cindex controlling register usage
1921 If the usage of an entire class of registers depends on the target
1922 flags, you may indicate this to GCC by using this macro to modify
1923 @code{fixed_regs} and @code{call_used_regs} to 1 for each of the
1924 registers in the classes which should not be used by GCC@.  Also define
1925 the macro @code{REG_CLASS_FROM_LETTER} / @code{REG_CLASS_FROM_CONSTRAINT}
1926 to return @code{NO_REGS} if it
1927 is called with a letter for a class that shouldn't be used.
1928
1929 (However, if this class is not included in @code{GENERAL_REGS} and all
1930 of the insn patterns whose constraints permit this class are
1931 controlled by target switches, then GCC will automatically avoid using
1932 these registers when the target switches are opposed to them.)
1933 @end deftypefn
1934
1935 @defmac INCOMING_REGNO (@var{out})
1936 Define this macro if the target machine has register windows.  This C
1937 expression returns the register number as seen by the called function
1938 corresponding to the register number @var{out} as seen by the calling
1939 function.  Return @var{out} if register number @var{out} is not an
1940 outbound register.
1941 @end defmac
1942
1943 @defmac OUTGOING_REGNO (@var{in})
1944 Define this macro if the target machine has register windows.  This C
1945 expression returns the register number as seen by the calling function
1946 corresponding to the register number @var{in} as seen by the called
1947 function.  Return @var{in} if register number @var{in} is not an inbound
1948 register.
1949 @end defmac
1950
1951 @defmac LOCAL_REGNO (@var{regno})
1952 Define this macro if the target machine has register windows.  This C
1953 expression returns true if the register is call-saved but is in the
1954 register window.  Unlike most call-saved registers, such registers
1955 need not be explicitly restored on function exit or during non-local
1956 gotos.
1957 @end defmac
1958
1959 @defmac PC_REGNUM
1960 If the program counter has a register number, define this as that
1961 register number.  Otherwise, do not define it.
1962 @end defmac
1963
1964 @node Allocation Order
1965 @subsection Order of Allocation of Registers
1966 @cindex order of register allocation
1967 @cindex register allocation order
1968
1969 @c prevent bad page break with this line
1970 Registers are allocated in order.
1971
1972 @defmac REG_ALLOC_ORDER
1973 If defined, an initializer for a vector of integers, containing the
1974 numbers of hard registers in the order in which GCC should prefer
1975 to use them (from most preferred to least).
1976
1977 If this macro is not defined, registers are used lowest numbered first
1978 (all else being equal).
1979
1980 One use of this macro is on machines where the highest numbered
1981 registers must always be saved and the save-multiple-registers
1982 instruction supports only sequences of consecutive registers.  On such
1983 machines, define @code{REG_ALLOC_ORDER} to be an initializer that lists
1984 the highest numbered allocable register first.
1985 @end defmac
1986
1987 @defmac ADJUST_REG_ALLOC_ORDER
1988 A C statement (sans semicolon) to choose the order in which to allocate
1989 hard registers for pseudo-registers local to a basic block.
1990
1991 Store the desired register order in the array @code{reg_alloc_order}.
1992 Element 0 should be the register to allocate first; element 1, the next
1993 register; and so on.
1994
1995 The macro body should not assume anything about the contents of
1996 @code{reg_alloc_order} before execution of the macro.
1997
1998 On most machines, it is not necessary to define this macro.
1999 @end defmac
2000
2001 @defmac HONOR_REG_ALLOC_ORDER
2002 Normally, IRA tries to estimate the costs for saving a register in the
2003 prologue and restoring it in the epilogue.  This discourages it from
2004 using call-saved registers.  If a machine wants to ensure that IRA
2005 allocates registers in the order given by REG_ALLOC_ORDER even if some
2006 call-saved registers appear earlier than call-used ones, this macro
2007 should be defined.
2008 @end defmac
2009
2010 @defmac IRA_HARD_REGNO_ADD_COST_MULTIPLIER (@var{regno})
2011 In some case register allocation order is not enough for the
2012 Integrated Register Allocator (@acronym{IRA}) to generate a good code.
2013 If this macro is defined, it should return a floating point value
2014 based on @var{regno}.  The cost of using @var{regno} for a pseudo will
2015 be increased by approximately the pseudo's usage frequency times the
2016 value returned by this macro.  Not defining this macro is equivalent
2017 to having it always return @code{0.0}.
2018
2019 On most machines, it is not necessary to define this macro.
2020 @end defmac
2021
2022 @node Values in Registers
2023 @subsection How Values Fit in Registers
2024
2025 This section discusses the macros that describe which kinds of values
2026 (specifically, which machine modes) each register can hold, and how many
2027 consecutive registers are needed for a given mode.
2028
2029 @defmac HARD_REGNO_NREGS (@var{regno}, @var{mode})
2030 A C expression for the number of consecutive hard registers, starting
2031 at register number @var{regno}, required to hold a value of mode
2032 @var{mode}.  This macro must never return zero, even if a register
2033 cannot hold the requested mode - indicate that with HARD_REGNO_MODE_OK
2034 and/or CANNOT_CHANGE_MODE_CLASS instead.
2035
2036 On a machine where all registers are exactly one word, a suitable
2037 definition of this macro is
2038
2039 @smallexample
2040 #define HARD_REGNO_NREGS(REGNO, MODE)            \
2041    ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
2042     / UNITS_PER_WORD)
2043 @end smallexample
2044 @end defmac
2045
2046 @defmac HARD_REGNO_NREGS_HAS_PADDING (@var{regno}, @var{mode})
2047 A C expression that is nonzero if a value of mode @var{mode}, stored
2048 in memory, ends with padding that causes it to take up more space than
2049 in registers starting at register number @var{regno} (as determined by
2050 multiplying GCC's notion of the size of the register when containing
2051 this mode by the number of registers returned by
2052 @code{HARD_REGNO_NREGS}).  By default this is zero.
2053
2054 For example, if a floating-point value is stored in three 32-bit
2055 registers but takes up 128 bits in memory, then this would be
2056 nonzero.
2057
2058 This macros only needs to be defined if there are cases where
2059 @code{subreg_get_info}
2060 would otherwise wrongly determine that a @code{subreg} can be
2061 represented by an offset to the register number, when in fact such a
2062 @code{subreg} would contain some of the padding not stored in
2063 registers and so not be representable.
2064 @end defmac
2065
2066 @defmac HARD_REGNO_NREGS_WITH_PADDING (@var{regno}, @var{mode})
2067 For values of @var{regno} and @var{mode} for which
2068 @code{HARD_REGNO_NREGS_HAS_PADDING} returns nonzero, a C expression
2069 returning the greater number of registers required to hold the value
2070 including any padding.  In the example above, the value would be four.
2071 @end defmac
2072
2073 @defmac REGMODE_NATURAL_SIZE (@var{mode})
2074 Define this macro if the natural size of registers that hold values
2075 of mode @var{mode} is not the word size.  It is a C expression that
2076 should give the natural size in bytes for the specified mode.  It is
2077 used by the register allocator to try to optimize its results.  This
2078 happens for example on SPARC 64-bit where the natural size of
2079 floating-point registers is still 32-bit.
2080 @end defmac
2081
2082 @defmac HARD_REGNO_MODE_OK (@var{regno}, @var{mode})
2083 A C expression that is nonzero if it is permissible to store a value
2084 of mode @var{mode} in hard register number @var{regno} (or in several
2085 registers starting with that one).  For a machine where all registers
2086 are equivalent, a suitable definition is
2087
2088 @smallexample
2089 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
2090 @end smallexample
2091
2092 You need not include code to check for the numbers of fixed registers,
2093 because the allocation mechanism considers them to be always occupied.
2094
2095 @cindex register pairs
2096 On some machines, double-precision values must be kept in even/odd
2097 register pairs.  You can implement that by defining this macro to reject
2098 odd register numbers for such modes.
2099
2100 The minimum requirement for a mode to be OK in a register is that the
2101 @samp{mov@var{mode}} instruction pattern support moves between the
2102 register and other hard register in the same class and that moving a
2103 value into the register and back out not alter it.
2104
2105 Since the same instruction used to move @code{word_mode} will work for
2106 all narrower integer modes, it is not necessary on any machine for
2107 @code{HARD_REGNO_MODE_OK} to distinguish between these modes, provided
2108 you define patterns @samp{movhi}, etc., to take advantage of this.  This
2109 is useful because of the interaction between @code{HARD_REGNO_MODE_OK}
2110 and @code{MODES_TIEABLE_P}; it is very desirable for all integer modes
2111 to be tieable.
2112
2113 Many machines have special registers for floating point arithmetic.
2114 Often people assume that floating point machine modes are allowed only
2115 in floating point registers.  This is not true.  Any registers that
2116 can hold integers can safely @emph{hold} a floating point machine
2117 mode, whether or not floating arithmetic can be done on it in those
2118 registers.  Integer move instructions can be used to move the values.
2119
2120 On some machines, though, the converse is true: fixed-point machine
2121 modes may not go in floating registers.  This is true if the floating
2122 registers normalize any value stored in them, because storing a
2123 non-floating value there would garble it.  In this case,
2124 @code{HARD_REGNO_MODE_OK} should reject fixed-point machine modes in
2125 floating registers.  But if the floating registers do not automatically
2126 normalize, if you can store any bit pattern in one and retrieve it
2127 unchanged without a trap, then any machine mode may go in a floating
2128 register, so you can define this macro to say so.
2129
2130 The primary significance of special floating registers is rather that
2131 they are the registers acceptable in floating point arithmetic
2132 instructions.  However, this is of no concern to
2133 @code{HARD_REGNO_MODE_OK}.  You handle it by writing the proper
2134 constraints for those instructions.
2135
2136 On some machines, the floating registers are especially slow to access,
2137 so that it is better to store a value in a stack frame than in such a
2138 register if floating point arithmetic is not being done.  As long as the
2139 floating registers are not in class @code{GENERAL_REGS}, they will not
2140 be used unless some pattern's constraint asks for one.
2141 @end defmac
2142
2143 @defmac HARD_REGNO_RENAME_OK (@var{from}, @var{to})
2144 A C expression that is nonzero if it is OK to rename a hard register
2145 @var{from} to another hard register @var{to}.
2146
2147 One common use of this macro is to prevent renaming of a register to
2148 another register that is not saved by a prologue in an interrupt
2149 handler.
2150
2151 The default is always nonzero.
2152 @end defmac
2153
2154 @defmac MODES_TIEABLE_P (@var{mode1}, @var{mode2})
2155 A C expression that is nonzero if a value of mode
2156 @var{mode1} is accessible in mode @var{mode2} without copying.
2157
2158 If @code{HARD_REGNO_MODE_OK (@var{r}, @var{mode1})} and
2159 @code{HARD_REGNO_MODE_OK (@var{r}, @var{mode2})} are always the same for
2160 any @var{r}, then @code{MODES_TIEABLE_P (@var{mode1}, @var{mode2})}
2161 should be nonzero.  If they differ for any @var{r}, you should define
2162 this macro to return zero unless some other mechanism ensures the
2163 accessibility of the value in a narrower mode.
2164
2165 You should define this macro to return nonzero in as many cases as
2166 possible since doing so will allow GCC to perform better register
2167 allocation.
2168 @end defmac
2169
2170 @hook TARGET_HARD_REGNO_SCRATCH_OK
2171 This target hook should return @code{true} if it is OK to use a hard register
2172 @var{regno} as scratch reg in peephole2.
2173
2174 One common use of this macro is to prevent using of a register that
2175 is not saved by a prologue in an interrupt handler.
2176
2177 The default version of this hook always returns @code{true}.
2178 @end deftypefn
2179
2180 @defmac AVOID_CCMODE_COPIES
2181 Define this macro if the compiler should avoid copies to/from @code{CCmode}
2182 registers.  You should only define this macro if support for copying to/from
2183 @code{CCmode} is incomplete.
2184 @end defmac
2185
2186 @node Leaf Functions
2187 @subsection Handling Leaf Functions
2188
2189 @cindex leaf functions
2190 @cindex functions, leaf
2191 On some machines, a leaf function (i.e., one which makes no calls) can run
2192 more efficiently if it does not make its own register window.  Often this
2193 means it is required to receive its arguments in the registers where they
2194 are passed by the caller, instead of the registers where they would
2195 normally arrive.
2196
2197 The special treatment for leaf functions generally applies only when
2198 other conditions are met; for example, often they may use only those
2199 registers for its own variables and temporaries.  We use the term ``leaf
2200 function'' to mean a function that is suitable for this special
2201 handling, so that functions with no calls are not necessarily ``leaf
2202 functions''.
2203
2204 GCC assigns register numbers before it knows whether the function is
2205 suitable for leaf function treatment.  So it needs to renumber the
2206 registers in order to output a leaf function.  The following macros
2207 accomplish this.
2208
2209 @defmac LEAF_REGISTERS
2210 Name of a char vector, indexed by hard register number, which
2211 contains 1 for a register that is allowable in a candidate for leaf
2212 function treatment.
2213
2214 If leaf function treatment involves renumbering the registers, then the
2215 registers marked here should be the ones before renumbering---those that
2216 GCC would ordinarily allocate.  The registers which will actually be
2217 used in the assembler code, after renumbering, should not be marked with 1
2218 in this vector.
2219
2220 Define this macro only if the target machine offers a way to optimize
2221 the treatment of leaf functions.
2222 @end defmac
2223
2224 @defmac LEAF_REG_REMAP (@var{regno})
2225 A C expression whose value is the register number to which @var{regno}
2226 should be renumbered, when a function is treated as a leaf function.
2227
2228 If @var{regno} is a register number which should not appear in a leaf
2229 function before renumbering, then the expression should yield @minus{}1, which
2230 will cause the compiler to abort.
2231
2232 Define this macro only if the target machine offers a way to optimize the
2233 treatment of leaf functions, and registers need to be renumbered to do
2234 this.
2235 @end defmac
2236
2237 @findex current_function_is_leaf
2238 @findex current_function_uses_only_leaf_regs
2239 @code{TARGET_ASM_FUNCTION_PROLOGUE} and
2240 @code{TARGET_ASM_FUNCTION_EPILOGUE} must usually treat leaf functions
2241 specially.  They can test the C variable @code{current_function_is_leaf}
2242 which is nonzero for leaf functions.  @code{current_function_is_leaf} is
2243 set prior to local register allocation and is valid for the remaining
2244 compiler passes.  They can also test the C variable
2245 @code{current_function_uses_only_leaf_regs} which is nonzero for leaf
2246 functions which only use leaf registers.
2247 @code{current_function_uses_only_leaf_regs} is valid after all passes
2248 that modify the instructions have been run and is only useful if
2249 @code{LEAF_REGISTERS} is defined.
2250 @c changed this to fix overfull.  ALSO:  why the "it" at the beginning
2251 @c of the next paragraph?!  --mew 2feb93
2252
2253 @node Stack Registers
2254 @subsection Registers That Form a Stack
2255
2256 There are special features to handle computers where some of the
2257 ``registers'' form a stack.  Stack registers are normally written by
2258 pushing onto the stack, and are numbered relative to the top of the
2259 stack.
2260
2261 Currently, GCC can only handle one group of stack-like registers, and
2262 they must be consecutively numbered.  Furthermore, the existing
2263 support for stack-like registers is specific to the 80387 floating
2264 point coprocessor.  If you have a new architecture that uses
2265 stack-like registers, you will need to do substantial work on
2266 @file{reg-stack.c} and write your machine description to cooperate
2267 with it, as well as defining these macros.
2268
2269 @defmac STACK_REGS
2270 Define this if the machine has any stack-like registers.
2271 @end defmac
2272
2273 @defmac STACK_REG_COVER_CLASS
2274 This is a cover class containing the stack registers.  Define this if
2275 the machine has any stack-like registers.
2276 @end defmac
2277
2278 @defmac FIRST_STACK_REG
2279 The number of the first stack-like register.  This one is the top
2280 of the stack.
2281 @end defmac
2282
2283 @defmac LAST_STACK_REG
2284 The number of the last stack-like register.  This one is the bottom of
2285 the stack.
2286 @end defmac
2287
2288 @node Register Classes
2289 @section Register Classes
2290 @cindex register class definitions
2291 @cindex class definitions, register
2292
2293 On many machines, the numbered registers are not all equivalent.
2294 For example, certain registers may not be allowed for indexed addressing;
2295 certain registers may not be allowed in some instructions.  These machine
2296 restrictions are described to the compiler using @dfn{register classes}.
2297
2298 You define a number of register classes, giving each one a name and saying
2299 which of the registers belong to it.  Then you can specify register classes
2300 that are allowed as operands to particular instruction patterns.
2301
2302 @findex ALL_REGS
2303 @findex NO_REGS
2304 In general, each register will belong to several classes.  In fact, one
2305 class must be named @code{ALL_REGS} and contain all the registers.  Another
2306 class must be named @code{NO_REGS} and contain no registers.  Often the
2307 union of two classes will be another class; however, this is not required.
2308
2309 @findex GENERAL_REGS
2310 One of the classes must be named @code{GENERAL_REGS}.  There is nothing
2311 terribly special about the name, but the operand constraint letters
2312 @samp{r} and @samp{g} specify this class.  If @code{GENERAL_REGS} is
2313 the same as @code{ALL_REGS}, just define it as a macro which expands
2314 to @code{ALL_REGS}.
2315
2316 Order the classes so that if class @var{x} is contained in class @var{y}
2317 then @var{x} has a lower class number than @var{y}.
2318
2319 The way classes other than @code{GENERAL_REGS} are specified in operand
2320 constraints is through machine-dependent operand constraint letters.
2321 You can define such letters to correspond to various classes, then use
2322 them in operand constraints.
2323
2324 You must define the narrowest register classes for allocatable
2325 registers, so that each class either has no subclasses, or that for
2326 some mode, the move cost between registers within the class is
2327 cheaper than moving a register in the class to or from memory
2328 (@pxref{Costs}).
2329
2330 You should define a class for the union of two classes whenever some
2331 instruction allows both classes.  For example, if an instruction allows
2332 either a floating point (coprocessor) register or a general register for a
2333 certain operand, you should define a class @code{FLOAT_OR_GENERAL_REGS}
2334 which includes both of them.  Otherwise you will get suboptimal code,
2335 or even internal compiler errors when reload cannot find a register in the
2336 class computed via @code{reg_class_subunion}.
2337
2338 You must also specify certain redundant information about the register
2339 classes: for each class, which classes contain it and which ones are
2340 contained in it; for each pair of classes, the largest class contained
2341 in their union.
2342
2343 When a value occupying several consecutive registers is expected in a
2344 certain class, all the registers used must belong to that class.
2345 Therefore, register classes cannot be used to enforce a requirement for
2346 a register pair to start with an even-numbered register.  The way to
2347 specify this requirement is with @code{HARD_REGNO_MODE_OK}.
2348
2349 Register classes used for input-operands of bitwise-and or shift
2350 instructions have a special requirement: each such class must have, for
2351 each fixed-point machine mode, a subclass whose registers can transfer that
2352 mode to or from memory.  For example, on some machines, the operations for
2353 single-byte values (@code{QImode}) are limited to certain registers.  When
2354 this is so, each register class that is used in a bitwise-and or shift
2355 instruction must have a subclass consisting of registers from which
2356 single-byte values can be loaded or stored.  This is so that
2357 @code{PREFERRED_RELOAD_CLASS} can always have a possible value to return.
2358
2359 @deftp {Data type} {enum reg_class}
2360 An enumerated type that must be defined with all the register class names
2361 as enumerated values.  @code{NO_REGS} must be first.  @code{ALL_REGS}
2362 must be the last register class, followed by one more enumerated value,
2363 @code{LIM_REG_CLASSES}, which is not a register class but rather
2364 tells how many classes there are.
2365
2366 Each register class has a number, which is the value of casting
2367 the class name to type @code{int}.  The number serves as an index
2368 in many of the tables described below.
2369 @end deftp
2370
2371 @defmac N_REG_CLASSES
2372 The number of distinct register classes, defined as follows:
2373
2374 @smallexample
2375 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2376 @end smallexample
2377 @end defmac
2378
2379 @defmac REG_CLASS_NAMES
2380 An initializer containing the names of the register classes as C string
2381 constants.  These names are used in writing some of the debugging dumps.
2382 @end defmac
2383
2384 @defmac REG_CLASS_CONTENTS
2385 An initializer containing the contents of the register classes, as integers
2386 which are bit masks.  The @var{n}th integer specifies the contents of class
2387 @var{n}.  The way the integer @var{mask} is interpreted is that
2388 register @var{r} is in the class if @code{@var{mask} & (1 << @var{r})} is 1.
2389
2390 When the machine has more than 32 registers, an integer does not suffice.
2391 Then the integers are replaced by sub-initializers, braced groupings containing
2392 several integers.  Each sub-initializer must be suitable as an initializer
2393 for the type @code{HARD_REG_SET} which is defined in @file{hard-reg-set.h}.
2394 In this situation, the first integer in each sub-initializer corresponds to
2395 registers 0 through 31, the second integer to registers 32 through 63, and
2396 so on.
2397 @end defmac
2398
2399 @defmac REGNO_REG_CLASS (@var{regno})
2400 A C expression whose value is a register class containing hard register
2401 @var{regno}.  In general there is more than one such class; choose a class
2402 which is @dfn{minimal}, meaning that no smaller class also contains the
2403 register.
2404 @end defmac
2405
2406 @defmac BASE_REG_CLASS
2407 A macro whose definition is the name of the class to which a valid
2408 base register must belong.  A base register is one used in an address
2409 which is the register value plus a displacement.
2410 @end defmac
2411
2412 @defmac MODE_BASE_REG_CLASS (@var{mode})
2413 This is a variation of the @code{BASE_REG_CLASS} macro which allows
2414 the selection of a base register in a mode dependent manner.  If
2415 @var{mode} is VOIDmode then it should return the same value as
2416 @code{BASE_REG_CLASS}.
2417 @end defmac
2418
2419 @defmac MODE_BASE_REG_REG_CLASS (@var{mode})
2420 A C expression whose value is the register class to which a valid
2421 base register must belong in order to be used in a base plus index
2422 register address.  You should define this macro if base plus index
2423 addresses have different requirements than other base register uses.
2424 @end defmac
2425
2426 @defmac MODE_CODE_BASE_REG_CLASS (@var{mode}, @var{address_space}, @var{outer_code}, @var{index_code})
2427 A C expression whose value is the register class to which a valid
2428 base register for a memory reference in mode @var{mode} to address
2429 space @var{address_space} must belong.  @var{outer_code} and @var{index_code}
2430 define the context in which the base register occurs.  @var{outer_code} is
2431 the code of the immediately enclosing expression (@code{MEM} for the top level
2432 of an address, @code{ADDRESS} for something that occurs in an
2433 @code{address_operand}).  @var{index_code} is the code of the corresponding
2434 index expression if @var{outer_code} is @code{PLUS}; @code{SCRATCH} otherwise.
2435 @end defmac
2436
2437 @defmac INDEX_REG_CLASS
2438 A macro whose definition is the name of the class to which a valid
2439 index register must belong.  An index register is one used in an
2440 address where its value is either multiplied by a scale factor or
2441 added to another register (as well as added to a displacement).
2442 @end defmac
2443
2444 @defmac REGNO_OK_FOR_BASE_P (@var{num})
2445 A C expression which is nonzero if register number @var{num} is
2446 suitable for use as a base register in operand addresses.
2447 @end defmac
2448
2449 @defmac REGNO_MODE_OK_FOR_BASE_P (@var{num}, @var{mode})
2450 A C expression that is just like @code{REGNO_OK_FOR_BASE_P}, except that
2451 that expression may examine the mode of the memory reference in
2452 @var{mode}.  You should define this macro if the mode of the memory
2453 reference affects whether a register may be used as a base register.  If
2454 you define this macro, the compiler will use it instead of
2455 @code{REGNO_OK_FOR_BASE_P}.  The mode may be @code{VOIDmode} for
2456 addresses that appear outside a @code{MEM}, i.e., as an
2457 @code{address_operand}.
2458 @end defmac
2459
2460 @defmac REGNO_MODE_OK_FOR_REG_BASE_P (@var{num}, @var{mode})
2461 A C expression which is nonzero if register number @var{num} is suitable for
2462 use as a base register in base plus index operand addresses, accessing
2463 memory in mode @var{mode}.  It may be either a suitable hard register or a
2464 pseudo register that has been allocated such a hard register.  You should
2465 define this macro if base plus index addresses have different requirements
2466 than other base register uses.
2467
2468 Use of this macro is deprecated; please use the more general
2469 @code{REGNO_MODE_CODE_OK_FOR_BASE_P}.
2470 @end defmac
2471
2472 @defmac REGNO_MODE_CODE_OK_FOR_BASE_P (@var{num}, @var{mode}, @var{address_space}, @var{outer_code}, @var{index_code})
2473 A C expression which is nonzero if register number @var{num} is
2474 suitable for use as a base register in operand addresses, accessing
2475 memory in mode @var{mode} in address space @var{address_space}.
2476 This is similar to @code{REGNO_MODE_OK_FOR_BASE_P}, except
2477 that that expression may examine the context in which the register
2478 appears in the memory reference.  @var{outer_code} is the code of the
2479 immediately enclosing expression (@code{MEM} if at the top level of the
2480 address, @code{ADDRESS} for something that occurs in an
2481 @code{address_operand}).  @var{index_code} is the code of the
2482 corresponding index expression if @var{outer_code} is @code{PLUS};
2483 @code{SCRATCH} otherwise.  The mode may be @code{VOIDmode} for addresses
2484 that appear outside a @code{MEM}, i.e., as an @code{address_operand}.
2485 @end defmac
2486
2487 @defmac REGNO_OK_FOR_INDEX_P (@var{num})
2488 A C expression which is nonzero if register number @var{num} is
2489 suitable for use as an index register in operand addresses.  It may be
2490 either a suitable hard register or a pseudo register that has been
2491 allocated such a hard register.
2492
2493 The difference between an index register and a base register is that
2494 the index register may be scaled.  If an address involves the sum of
2495 two registers, neither one of them scaled, then either one may be
2496 labeled the ``base'' and the other the ``index''; but whichever
2497 labeling is used must fit the machine's constraints of which registers
2498 may serve in each capacity.  The compiler will try both labelings,
2499 looking for one that is valid, and will reload one or both registers
2500 only if neither labeling works.
2501 @end defmac
2502
2503 @hook TARGET_PREFERRED_RENAME_CLASS
2504
2505 @hook TARGET_PREFERRED_RELOAD_CLASS
2506 A target hook that places additional restrictions on the register class
2507 to use when it is necessary to copy value @var{x} into a register in class
2508 @var{rclass}.  The value is a register class; perhaps @var{rclass}, or perhaps
2509 another, smaller class.
2510
2511 The default version of this hook always returns value of @code{rclass} argument.
2512
2513 Sometimes returning a more restrictive class makes better code.  For
2514 example, on the 68000, when @var{x} is an integer constant that is in range
2515 for a @samp{moveq} instruction, the value of this macro is always
2516 @code{DATA_REGS} as long as @var{rclass} includes the data registers.
2517 Requiring a data register guarantees that a @samp{moveq} will be used.
2518
2519 One case where @code{TARGET_PREFERRED_RELOAD_CLASS} must not return
2520 @var{rclass} is if @var{x} is a legitimate constant which cannot be
2521 loaded into some register class.  By returning @code{NO_REGS} you can
2522 force @var{x} into a memory location.  For example, rs6000 can load
2523 immediate values into general-purpose registers, but does not have an
2524 instruction for loading an immediate value into a floating-point
2525 register, so @code{TARGET_PREFERRED_RELOAD_CLASS} returns @code{NO_REGS} when
2526 @var{x} is a floating-point constant.  If the constant can't be loaded
2527 into any kind of register, code generation will be better if
2528 @code{TARGET_LEGITIMATE_CONSTANT_P} makes the constant illegitimate instead
2529 of using @code{TARGET_PREFERRED_RELOAD_CLASS}.
2530
2531 If an insn has pseudos in it after register allocation, reload will go
2532 through the alternatives and call repeatedly @code{TARGET_PREFERRED_RELOAD_CLASS}
2533 to find the best one.  Returning @code{NO_REGS}, in this case, makes
2534 reload add a @code{!} in front of the constraint: the x86 back-end uses
2535 this feature to discourage usage of 387 registers when math is done in
2536 the SSE registers (and vice versa).
2537 @end deftypefn
2538
2539 @defmac PREFERRED_RELOAD_CLASS (@var{x}, @var{class})
2540 A C expression that places additional restrictions on the register class
2541 to use when it is necessary to copy value @var{x} into a register in class
2542 @var{class}.  The value is a register class; perhaps @var{class}, or perhaps
2543 another, smaller class.  On many machines, the following definition is
2544 safe:
2545
2546 @smallexample
2547 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
2548 @end smallexample
2549
2550 Sometimes returning a more restrictive class makes better code.  For
2551 example, on the 68000, when @var{x} is an integer constant that is in range
2552 for a @samp{moveq} instruction, the value of this macro is always
2553 @code{DATA_REGS} as long as @var{class} includes the data registers.
2554 Requiring a data register guarantees that a @samp{moveq} will be used.
2555
2556 One case where @code{PREFERRED_RELOAD_CLASS} must not return
2557 @var{class} is if @var{x} is a legitimate constant which cannot be
2558 loaded into some register class.  By returning @code{NO_REGS} you can
2559 force @var{x} into a memory location.  For example, rs6000 can load
2560 immediate values into general-purpose registers, but does not have an
2561 instruction for loading an immediate value into a floating-point
2562 register, so @code{PREFERRED_RELOAD_CLASS} returns @code{NO_REGS} when
2563 @var{x} is a floating-point constant.  If the constant can't be loaded
2564 into any kind of register, code generation will be better if
2565 @code{TARGET_LEGITIMATE_CONSTANT_P} makes the constant illegitimate instead
2566 of using @code{TARGET_PREFERRED_RELOAD_CLASS}.
2567
2568 If an insn has pseudos in it after register allocation, reload will go
2569 through the alternatives and call repeatedly @code{PREFERRED_RELOAD_CLASS}
2570 to find the best one.  Returning @code{NO_REGS}, in this case, makes
2571 reload add a @code{!} in front of the constraint: the x86 back-end uses
2572 this feature to discourage usage of 387 registers when math is done in
2573 the SSE registers (and vice versa).
2574 @end defmac
2575
2576 @hook TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
2577 Like @code{TARGET_PREFERRED_RELOAD_CLASS}, but for output reloads instead of
2578 input reloads.
2579
2580 The default version of this hook always returns value of @code{rclass}
2581 argument.
2582
2583 You can also use @code{TARGET_PREFERRED_OUTPUT_RELOAD_CLASS} to discourage
2584 reload from using some alternatives, like @code{TARGET_PREFERRED_RELOAD_CLASS}.
2585 @end deftypefn
2586
2587 @defmac LIMIT_RELOAD_CLASS (@var{mode}, @var{class})
2588 A C expression that places additional restrictions on the register class
2589 to use when it is necessary to be able to hold a value of mode
2590 @var{mode} in a reload register for which class @var{class} would
2591 ordinarily be used.
2592
2593 Unlike @code{PREFERRED_RELOAD_CLASS}, this macro should be used when
2594 there are certain modes that simply can't go in certain reload classes.
2595
2596 The value is a register class; perhaps @var{class}, or perhaps another,
2597 smaller class.
2598
2599 Don't define this macro unless the target machine has limitations which
2600 require the macro to do something nontrivial.
2601 @end defmac
2602
2603 @hook TARGET_SECONDARY_RELOAD
2604 Many machines have some registers that cannot be copied directly to or
2605 from memory or even from other types of registers.  An example is the
2606 @samp{MQ} register, which on most machines, can only be copied to or
2607 from general registers, but not memory.  Below, we shall be using the
2608 term 'intermediate register' when a move operation cannot be performed
2609 directly, but has to be done by copying the source into the intermediate
2610 register first, and then copying the intermediate register to the
2611 destination.  An intermediate register always has the same mode as
2612 source and destination.  Since it holds the actual value being copied,
2613 reload might apply optimizations to re-use an intermediate register
2614 and eliding the copy from the source when it can determine that the
2615 intermediate register still holds the required value.
2616
2617 Another kind of secondary reload is required on some machines which
2618 allow copying all registers to and from memory, but require a scratch
2619 register for stores to some memory locations (e.g., those with symbolic
2620 address on the RT, and those with certain symbolic address on the SPARC
2621 when compiling PIC)@.  Scratch registers need not have the same mode
2622 as the value being copied, and usually hold a different value than
2623 that being copied.  Special patterns in the md file are needed to
2624 describe how the copy is performed with the help of the scratch register;
2625 these patterns also describe the number, register class(es) and mode(s)
2626 of the scratch register(s).
2627
2628 In some cases, both an intermediate and a scratch register are required.
2629
2630 For input reloads, this target hook is called with nonzero @var{in_p},
2631 and @var{x} is an rtx that needs to be copied to a register of class
2632 @var{reload_class} in @var{reload_mode}.  For output reloads, this target
2633 hook is called with zero @var{in_p}, and a register of class @var{reload_class}
2634 needs to be copied to rtx @var{x} in @var{reload_mode}.
2635
2636 If copying a register of @var{reload_class} from/to @var{x} requires
2637 an intermediate register, the hook @code{secondary_reload} should
2638 return the register class required for this intermediate register.
2639 If no intermediate register is required, it should return NO_REGS.
2640 If more than one intermediate register is required, describe the one
2641 that is closest in the copy chain to the reload register.
2642
2643 If scratch registers are needed, you also have to describe how to
2644 perform the copy from/to the reload register to/from this
2645 closest intermediate register.  Or if no intermediate register is
2646 required, but still a scratch register is needed, describe the
2647 copy  from/to the reload register to/from the reload operand @var{x}.
2648
2649 You do this by setting @code{sri->icode} to the instruction code of a pattern
2650 in the md file which performs the move.  Operands 0 and 1 are the output
2651 and input of this copy, respectively.  Operands from operand 2 onward are
2652 for scratch operands.  These scratch operands must have a mode, and a
2653 single-register-class
2654 @c [later: or memory]
2655 output constraint.
2656
2657 When an intermediate register is used, the @code{secondary_reload}
2658 hook will be called again to determine how to copy the intermediate
2659 register to/from the reload operand @var{x}, so your hook must also
2660 have code to handle the register class of the intermediate operand.
2661
2662 @c [For later: maybe we'll allow multi-alternative reload patterns -
2663 @c   the port maintainer could name a mov<mode> pattern that has clobbers -
2664 @c   and match the constraints of input and output to determine the required
2665 @c   alternative.  A restriction would be that constraints used to match
2666 @c   against reloads registers would have to be written as register class
2667 @c   constraints, or we need a new target macro / hook that tells us if an
2668 @c   arbitrary constraint can match an unknown register of a given class.
2669 @c   Such a macro / hook would also be useful in other places.]
2670
2671
2672 @var{x} might be a pseudo-register or a @code{subreg} of a
2673 pseudo-register, which could either be in a hard register or in memory.
2674 Use @code{true_regnum} to find out; it will return @minus{}1 if the pseudo is
2675 in memory and the hard register number if it is in a register.
2676
2677 Scratch operands in memory (constraint @code{"=m"} / @code{"=&m"}) are
2678 currently not supported.  For the time being, you will have to continue
2679 to use @code{SECONDARY_MEMORY_NEEDED} for that purpose.
2680
2681 @code{copy_cost} also uses this target hook to find out how values are
2682 copied.  If you want it to include some extra cost for the need to allocate
2683 (a) scratch register(s), set @code{sri->extra_cost} to the additional cost.
2684 Or if two dependent moves are supposed to have a lower cost than the sum
2685 of the individual moves due to expected fortuitous scheduling and/or special
2686 forwarding logic, you can set @code{sri->extra_cost} to a negative amount.
2687 @end deftypefn
2688
2689 @defmac SECONDARY_RELOAD_CLASS (@var{class}, @var{mode}, @var{x})
2690 @defmacx SECONDARY_INPUT_RELOAD_CLASS (@var{class}, @var{mode}, @var{x})
2691 @defmacx SECONDARY_OUTPUT_RELOAD_CLASS (@var{class}, @var{mode}, @var{x})
2692 These macros are obsolete, new ports should use the target hook
2693 @code{TARGET_SECONDARY_RELOAD} instead.
2694
2695 These are obsolete macros, replaced by the @code{TARGET_SECONDARY_RELOAD}
2696 target hook.  Older ports still define these macros to indicate to the
2697 reload phase that it may
2698 need to allocate at least one register for a reload in addition to the
2699 register to contain the data.  Specifically, if copying @var{x} to a
2700 register @var{class} in @var{mode} requires an intermediate register,
2701 you were supposed to define @code{SECONDARY_INPUT_RELOAD_CLASS} to return the
2702 largest register class all of whose registers can be used as
2703 intermediate registers or scratch registers.
2704
2705 If copying a register @var{class} in @var{mode} to @var{x} requires an
2706 intermediate or scratch register, @code{SECONDARY_OUTPUT_RELOAD_CLASS}
2707 was supposed to be defined be defined to return the largest register
2708 class required.  If the
2709 requirements for input and output reloads were the same, the macro
2710 @code{SECONDARY_RELOAD_CLASS} should have been used instead of defining both
2711 macros identically.
2712
2713 The values returned by these macros are often @code{GENERAL_REGS}.
2714 Return @code{NO_REGS} if no spare register is needed; i.e., if @var{x}
2715 can be directly copied to or from a register of @var{class} in
2716 @var{mode} without requiring a scratch register.  Do not define this
2717 macro if it would always return @code{NO_REGS}.
2718
2719 If a scratch register is required (either with or without an
2720 intermediate register), you were supposed to define patterns for
2721 @samp{reload_in@var{m}} or @samp{reload_out@var{m}}, as required
2722 (@pxref{Standard Names}.  These patterns, which were normally
2723 implemented with a @code{define_expand}, should be similar to the
2724 @samp{mov@var{m}} patterns, except that operand 2 is the scratch
2725 register.
2726
2727 These patterns need constraints for the reload register and scratch
2728 register that
2729 contain a single register class.  If the original reload register (whose
2730 class is @var{class}) can meet the constraint given in the pattern, the
2731 value returned by these macros is used for the class of the scratch
2732 register.  Otherwise, two additional reload registers are required.
2733 Their classes are obtained from the constraints in the insn pattern.
2734
2735 @var{x} might be a pseudo-register or a @code{subreg} of a
2736 pseudo-register, which could either be in a hard register or in memory.
2737 Use @code{true_regnum} to find out; it will return @minus{}1 if the pseudo is
2738 in memory and the hard register number if it is in a register.
2739
2740 These macros should not be used in the case where a particular class of
2741 registers can only be copied to memory and not to another class of
2742 registers.  In that case, secondary reload registers are not needed and
2743 would not be helpful.  Instead, a stack location must be used to perform
2744 the copy and the @code{mov@var{m}} pattern should use memory as an
2745 intermediate storage.  This case often occurs between floating-point and
2746 general registers.
2747 @end defmac
2748
2749 @defmac SECONDARY_MEMORY_NEEDED (@var{class1}, @var{class2}, @var{m})
2750 Certain machines have the property that some registers cannot be copied
2751 to some other registers without using memory.  Define this macro on
2752 those machines to be a C expression that is nonzero if objects of mode
2753 @var{m} in registers of @var{class1} can only be copied to registers of
2754 class @var{class2} by storing a register of @var{class1} into memory
2755 and loading that memory location into a register of @var{class2}.
2756
2757 Do not define this macro if its value would always be zero.
2758 @end defmac
2759
2760 @defmac SECONDARY_MEMORY_NEEDED_RTX (@var{mode})
2761 Normally when @code{SECONDARY_MEMORY_NEEDED} is defined, the compiler
2762 allocates a stack slot for a memory location needed for register copies.
2763 If this macro is defined, the compiler instead uses the memory location
2764 defined by this macro.
2765
2766 Do not define this macro if you do not define
2767 @code{SECONDARY_MEMORY_NEEDED}.
2768 @end defmac
2769
2770 @defmac SECONDARY_MEMORY_NEEDED_MODE (@var{mode})
2771 When the compiler needs a secondary memory location to copy between two
2772 registers of mode @var{mode}, it normally allocates sufficient memory to
2773 hold a quantity of @code{BITS_PER_WORD} bits and performs the store and
2774 load operations in a mode that many bits wide and whose class is the
2775 same as that of @var{mode}.
2776
2777 This is right thing to do on most machines because it ensures that all
2778 bits of the register are copied and prevents accesses to the registers
2779 in a narrower mode, which some machines prohibit for floating-point
2780 registers.
2781
2782 However, this default behavior is not correct on some machines, such as
2783 the DEC Alpha, that store short integers in floating-point registers
2784 differently than in integer registers.  On those machines, the default
2785 widening will not work correctly and you must define this macro to
2786 suppress that widening in some cases.  See the file @file{alpha.h} for
2787 details.
2788
2789 Do not define this macro if you do not define
2790 @code{SECONDARY_MEMORY_NEEDED} or if widening @var{mode} to a mode that
2791 is @code{BITS_PER_WORD} bits wide is correct for your machine.
2792 @end defmac
2793
2794 @hook TARGET_CLASS_LIKELY_SPILLED_P
2795 A target hook which returns @code{true} if pseudos that have been assigned
2796 to registers of class @var{rclass} would likely be spilled because
2797 registers of @var{rclass} are needed for spill registers.
2798
2799 The default version of this target hook returns @code{true} if @var{rclass}
2800 has exactly one register and @code{false} otherwise.  On most machines, this
2801 default should be used.  Only use this target hook to some other expression
2802 if pseudos allocated by @file{local-alloc.c} end up in memory because their
2803 hard registers were needed for spill registers.  If this target hook returns
2804 @code{false} for those classes, those pseudos will only be allocated by
2805 @file{global.c}, which knows how to reallocate the pseudo to another
2806 register.  If there would not be another register available for reallocation,
2807 you should not change the implementation of this target hook since
2808 the only effect of such implementation would be to slow down register
2809 allocation.
2810 @end deftypefn
2811
2812 @hook TARGET_CLASS_MAX_NREGS
2813 A target hook returns the maximum number of consecutive registers
2814 of class @var{rclass} needed to hold a value of mode @var{mode}.
2815
2816 This is closely related to the macro @code{HARD_REGNO_NREGS}.  In fact,
2817 the value returned by @code{TARGET_CLASS_MAX_NREGS (@var{rclass},
2818 @var{mode})} target hook should be the maximum value of
2819 @code{HARD_REGNO_NREGS (@var{regno}, @var{mode})} for all @var{regno}
2820 values in the class @var{rclass}.
2821
2822 This target hook helps control the handling of multiple-word values
2823 in the reload pass.
2824
2825 The default version of this target hook returns the size of @var{mode}
2826 in words.
2827 @end deftypefn
2828
2829 @defmac CLASS_MAX_NREGS (@var{class}, @var{mode})
2830 A C expression for the maximum number of consecutive registers
2831 of class @var{class} needed to hold a value of mode @var{mode}.
2832
2833 This is closely related to the macro @code{HARD_REGNO_NREGS}.  In fact,
2834 the value of the macro @code{CLASS_MAX_NREGS (@var{class}, @var{mode})}
2835 should be the maximum value of @code{HARD_REGNO_NREGS (@var{regno},
2836 @var{mode})} for all @var{regno} values in the class @var{class}.
2837
2838 This macro helps control the handling of multiple-word values
2839 in the reload pass.
2840 @end defmac
2841
2842 @defmac CANNOT_CHANGE_MODE_CLASS (@var{from}, @var{to}, @var{class})
2843 If defined, a C expression that returns nonzero for a @var{class} for which
2844 a change from mode @var{from} to mode @var{to} is invalid.
2845
2846 For the example, loading 32-bit integer or floating-point objects into
2847 floating-point registers on the Alpha extends them to 64 bits.
2848 Therefore loading a 64-bit object and then storing it as a 32-bit object
2849 does not store the low-order 32 bits, as would be the case for a normal
2850 register.  Therefore, @file{alpha.h} defines @code{CANNOT_CHANGE_MODE_CLASS}
2851 as below:
2852
2853 @smallexample
2854 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2855   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
2856    ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
2857 @end smallexample
2858 @end defmac
2859
2860 @node Old Constraints
2861 @section Obsolete Macros for Defining Constraints
2862 @cindex defining constraints, obsolete method
2863 @cindex constraints, defining, obsolete method
2864
2865 Machine-specific constraints can be defined with these macros instead
2866 of the machine description constructs described in @ref{Define
2867 Constraints}.  This mechanism is obsolete.  New ports should not use
2868 it; old ports should convert to the new mechanism.
2869
2870 @defmac CONSTRAINT_LEN (@var{char}, @var{str})
2871 For the constraint at the start of @var{str}, which starts with the letter
2872 @var{c}, return the length.  This allows you to have register class /
2873 constant / extra constraints that are longer than a single letter;
2874 you don't need to define this macro if you can do with single-letter
2875 constraints only.  The definition of this macro should use
2876 DEFAULT_CONSTRAINT_LEN for all the characters that you don't want
2877 to handle specially.
2878 There are some sanity checks in genoutput.c that check the constraint lengths
2879 for the md file, so you can also use this macro to help you while you are
2880 transitioning from a byzantine single-letter-constraint scheme: when you
2881 return a negative length for a constraint you want to re-use, genoutput
2882 will complain about every instance where it is used in the md file.
2883 @end defmac
2884
2885 @defmac REG_CLASS_FROM_LETTER (@var{char})
2886 A C expression which defines the machine-dependent operand constraint
2887 letters for register classes.  If @var{char} is such a letter, the
2888 value should be the register class corresponding to it.  Otherwise,
2889 the value should be @code{NO_REGS}.  The register letter @samp{r},
2890 corresponding to class @code{GENERAL_REGS}, will not be passed
2891 to this macro; you do not need to handle it.
2892 @end defmac
2893
2894 @defmac REG_CLASS_FROM_CONSTRAINT (@var{char}, @var{str})
2895 Like @code{REG_CLASS_FROM_LETTER}, but you also get the constraint string
2896 passed in @var{str}, so that you can use suffixes to distinguish between
2897 different variants.
2898 @end defmac
2899
2900 @defmac CONST_OK_FOR_LETTER_P (@var{value}, @var{c})
2901 A C expression that defines the machine-dependent operand constraint
2902 letters (@samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}) that specify
2903 particular ranges of integer values.  If @var{c} is one of those
2904 letters, the expression should check that @var{value}, an integer, is in
2905 the appropriate range and return 1 if so, 0 otherwise.  If @var{c} is
2906 not one of those letters, the value should be 0 regardless of
2907 @var{value}.
2908 @end defmac
2909
2910 @defmac CONST_OK_FOR_CONSTRAINT_P (@var{value}, @var{c}, @var{str})
2911 Like @code{CONST_OK_FOR_LETTER_P}, but you also get the constraint
2912 string passed in @var{str}, so that you can use suffixes to distinguish
2913 between different variants.
2914 @end defmac
2915
2916 @defmac CONST_DOUBLE_OK_FOR_LETTER_P (@var{value}, @var{c})
2917 A C expression that defines the machine-dependent operand constraint
2918 letters that specify particular ranges of @code{const_double} values
2919 (@samp{G} or @samp{H}).
2920
2921 If @var{c} is one of those letters, the expression should check that
2922 @var{value}, an RTX of code @code{const_double}, is in the appropriate
2923 range and return 1 if so, 0 otherwise.  If @var{c} is not one of those
2924 letters, the value should be 0 regardless of @var{value}.
2925
2926 @code{const_double} is used for all floating-point constants and for
2927 @code{DImode} fixed-point constants.  A given letter can accept either
2928 or both kinds of values.  It can use @code{GET_MODE} to distinguish
2929 between these kinds.
2930 @end defmac
2931
2932 @defmac CONST_DOUBLE_OK_FOR_CONSTRAINT_P (@var{value}, @var{c}, @var{str})
2933 Like @code{CONST_DOUBLE_OK_FOR_LETTER_P}, but you also get the constraint
2934 string passed in @var{str}, so that you can use suffixes to distinguish
2935 between different variants.
2936 @end defmac
2937
2938 @defmac EXTRA_CONSTRAINT (@var{value}, @var{c})
2939 A C expression that defines the optional machine-dependent constraint
2940 letters that can be used to segregate specific types of operands, usually
2941 memory references, for the target machine.  Any letter that is not
2942 elsewhere defined and not matched by @code{REG_CLASS_FROM_LETTER} /
2943 @code{REG_CLASS_FROM_CONSTRAINT}
2944 may be used.  Normally this macro will not be defined.
2945
2946 If it is required for a particular target machine, it should return 1
2947 if @var{value} corresponds to the operand type represented by the
2948 constraint letter @var{c}.  If @var{c} is not defined as an extra
2949 constraint, the value returned should be 0 regardless of @var{value}.
2950
2951 For example, on the ROMP, load instructions cannot have their output
2952 in r0 if the memory reference contains a symbolic address.  Constraint
2953 letter @samp{Q} is defined as representing a memory address that does
2954 @emph{not} contain a symbolic address.  An alternative is specified with
2955 a @samp{Q} constraint on the input and @samp{r} on the output.  The next
2956 alternative specifies @samp{m} on the input and a register class that
2957 does not include r0 on the output.
2958 @end defmac
2959
2960 @defmac EXTRA_CONSTRAINT_STR (@var{value}, @var{c}, @var{str})
2961 Like @code{EXTRA_CONSTRAINT}, but you also get the constraint string passed
2962 in @var{str}, so that you can use suffixes to distinguish between different
2963 variants.
2964 @end defmac
2965
2966 @defmac EXTRA_MEMORY_CONSTRAINT (@var{c}, @var{str})
2967 A C expression that defines the optional machine-dependent constraint
2968 letters, amongst those accepted by @code{EXTRA_CONSTRAINT}, that should
2969 be treated like memory constraints by the reload pass.
2970
2971 It should return 1 if the operand type represented by the constraint
2972 at the start of @var{str}, the first letter of which is the letter @var{c},
2973 comprises a subset of all memory references including
2974 all those whose address is simply a base register.  This allows the reload
2975 pass to reload an operand, if it does not directly correspond to the operand
2976 type of @var{c}, by copying its address into a base register.
2977
2978 For example, on the S/390, some instructions do not accept arbitrary
2979 memory references, but only those that do not make use of an index
2980 register.  The constraint letter @samp{Q} is defined via
2981 @code{EXTRA_CONSTRAINT} as representing a memory address of this type.
2982 If the letter @samp{Q} is marked as @code{EXTRA_MEMORY_CONSTRAINT},
2983 a @samp{Q} constraint can handle any memory operand, because the
2984 reload pass knows it can be reloaded by copying the memory address
2985 into a base register if required.  This is analogous to the way
2986 an @samp{o} constraint can handle any memory operand.
2987 @end defmac
2988
2989 @defmac EXTRA_ADDRESS_CONSTRAINT (@var{c}, @var{str})
2990 A C expression that defines the optional machine-dependent constraint
2991 letters, amongst those accepted by @code{EXTRA_CONSTRAINT} /
2992 @code{EXTRA_CONSTRAINT_STR}, that should
2993 be treated like address constraints by the reload pass.
2994
2995 It should return 1 if the operand type represented by the constraint
2996 at the start of @var{str}, which starts with the letter @var{c}, comprises
2997 a subset of all memory addresses including
2998 all those that consist of just a base register.  This allows the reload
2999 pass to reload an operand, if it does not directly correspond to the operand
3000 type of @var{str}, by copying it into a base register.
3001
3002 Any constraint marked as @code{EXTRA_ADDRESS_CONSTRAINT} can only
3003 be used with the @code{address_operand} predicate.  It is treated
3004 analogously to the @samp{p} constraint.
3005 @end defmac
3006
3007 @node Stack and Calling
3008 @section Stack Layout and Calling Conventions
3009 @cindex calling conventions
3010
3011 @c prevent bad page break with this line
3012 This describes the stack layout and calling conventions.
3013
3014 @menu
3015 * Frame Layout::
3016 * Exception Handling::
3017 * Stack Checking::
3018 * Frame Registers::
3019 * Elimination::
3020 * Stack Arguments::
3021 * Register Arguments::
3022 * Scalar Return::
3023 * Aggregate Return::
3024 * Caller Saves::
3025 * Function Entry::
3026 * Profiling::
3027 * Tail Calls::
3028 * Stack Smashing Protection::
3029 @end menu
3030
3031 @node Frame Layout
3032 @subsection Basic Stack Layout
3033 @cindex stack frame layout
3034 @cindex frame layout
3035
3036 @c prevent bad page break with this line
3037 Here is the basic stack layout.
3038
3039 @defmac STACK_GROWS_DOWNWARD
3040 Define this macro if pushing a word onto the stack moves the stack
3041 pointer to a smaller address.
3042
3043 When we say, ``define this macro if @dots{}'', it means that the
3044 compiler checks this macro only with @code{#ifdef} so the precise
3045 definition used does not matter.
3046 @end defmac
3047
3048 @defmac STACK_PUSH_CODE
3049 This macro defines the operation used when something is pushed
3050 on the stack.  In RTL, a push operation will be
3051 @code{(set (mem (STACK_PUSH_CODE (reg sp))) @dots{})}
3052
3053 The choices are @code{PRE_DEC}, @code{POST_DEC}, @code{PRE_INC},
3054 and @code{POST_INC}.  Which of these is correct depends on
3055 the stack direction and on whether the stack pointer points
3056 to the last item on the stack or whether it points to the
3057 space for the next item on the stack.
3058
3059 The default is @code{PRE_DEC} when @code{STACK_GROWS_DOWNWARD} is
3060 defined, which is almost always right, and @code{PRE_INC} otherwise,
3061 which is often wrong.
3062 @end defmac
3063
3064 @defmac FRAME_GROWS_DOWNWARD
3065 Define this macro to nonzero value if the addresses of local variable slots
3066 are at negative offsets from the frame pointer.
3067 @end defmac
3068
3069 @defmac ARGS_GROW_DOWNWARD
3070 Define this macro if successive arguments to a function occupy decreasing
3071 addresses on the stack.
3072 @end defmac
3073
3074 @defmac STARTING_FRAME_OFFSET
3075 Offset from the frame pointer to the first local variable slot to be allocated.
3076
3077 If @code{FRAME_GROWS_DOWNWARD}, find the next slot's offset by
3078 subtracting the first slot's length from @code{STARTING_FRAME_OFFSET}.
3079 Otherwise, it is found by adding the length of the first slot to the
3080 value @code{STARTING_FRAME_OFFSET}.
3081 @c i'm not sure if the above is still correct.. had to change it to get
3082 @c rid of an overfull.  --mew 2feb93
3083 @end defmac
3084
3085 @defmac STACK_ALIGNMENT_NEEDED
3086 Define to zero to disable final alignment of the stack during reload.
3087 The nonzero default for this macro is suitable for most ports.
3088
3089 On ports where @code{STARTING_FRAME_OFFSET} is nonzero or where there
3090 is a register save block following the local block that doesn't require
3091 alignment to @code{STACK_BOUNDARY}, it may be beneficial to disable
3092 stack alignment and do it in the backend.
3093 @end defmac
3094
3095 @defmac STACK_POINTER_OFFSET
3096 Offset from the stack pointer register to the first location at which
3097 outgoing arguments are placed.  If not specified, the default value of
3098 zero is used.  This is the proper value for most machines.
3099
3100 If @code{ARGS_GROW_DOWNWARD}, this is the offset to the location above
3101 the first location at which outgoing arguments are placed.
3102 @end defmac
3103
3104 @defmac FIRST_PARM_OFFSET (@var{fundecl})
3105 Offset from the argument pointer register to the first argument's
3106 address.  On some machines it may depend on the data type of the
3107 function.
3108
3109 If @code{ARGS_GROW_DOWNWARD}, this is the offset to the location above
3110 the first argument's address.
3111 @end defmac
3112
3113 @defmac STACK_DYNAMIC_OFFSET (@var{fundecl})
3114 Offset from the stack pointer register to an item dynamically allocated
3115 on the stack, e.g., by @code{alloca}.
3116
3117 The default value for this macro is @code{STACK_POINTER_OFFSET} plus the
3118 length of the outgoing arguments.  The default is correct for most
3119 machines.  See @file{function.c} for details.
3120 @end defmac
3121
3122 @defmac INITIAL_FRAME_ADDRESS_RTX
3123 A C expression whose value is RTL representing the address of the initial
3124 stack frame. This address is passed to @code{RETURN_ADDR_RTX} and
3125 @code{DYNAMIC_CHAIN_ADDRESS}.  If you don't define this macro, a reasonable
3126 default value will be used.  Define this macro in order to make frame pointer
3127 elimination work in the presence of @code{__builtin_frame_address (count)} and
3128 @code{__builtin_return_address (count)} for @code{count} not equal to zero.
3129 @end defmac
3130
3131 @defmac DYNAMIC_CHAIN_ADDRESS (@var{frameaddr})
3132 A C expression whose value is RTL representing the address in a stack
3133 frame where the pointer to the caller's frame is stored.  Assume that
3134 @var{frameaddr} is an RTL expression for the address of the stack frame
3135 itself.
3136
3137 If you don't define this macro, the default is to return the value
3138 of @var{frameaddr}---that is, the stack frame address is also the
3139 address of the stack word that points to the previous frame.
3140 @end defmac
3141
3142 @defmac SETUP_FRAME_ADDRESSES
3143 If defined, a C expression that produces the machine-specific code to
3144 setup the stack so that arbitrary frames can be accessed.  For example,
3145 on the SPARC, we must flush all of the register windows to the stack
3146 before we can access arbitrary stack frames.  You will seldom need to
3147 define this macro.
3148 @end defmac
3149
3150 @hook TARGET_BUILTIN_SETJMP_FRAME_VALUE
3151 This target hook should return an rtx that is used to store
3152 the address of the current frame into the built in @code{setjmp} buffer.
3153 The default value, @code{virtual_stack_vars_rtx}, is correct for most
3154 machines.  One reason you may need to define this target hook is if
3155 @code{hard_frame_pointer_rtx} is the appropriate value on your machine.
3156 @end deftypefn
3157
3158 @defmac FRAME_ADDR_RTX (@var{frameaddr})
3159 A C expression whose value is RTL representing the value of the frame
3160 address for the current frame.  @var{frameaddr} is the frame pointer
3161 of the current frame.  This is used for __builtin_frame_address.
3162 You need only define this macro if the frame address is not the same
3163 as the frame pointer.  Most machines do not need to define it.
3164 @end defmac
3165
3166 @defmac RETURN_ADDR_RTX (@var{count}, @var{frameaddr})
3167 A C expression whose value is RTL representing the value of the return
3168 address for the frame @var{count} steps up from the current frame, after
3169 the prologue.  @var{frameaddr} is the frame pointer of the @var{count}
3170 frame, or the frame pointer of the @var{count} @minus{} 1 frame if
3171 @code{RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
3172
3173 The value of the expression must always be the correct address when
3174 @var{count} is zero, but may be @code{NULL_RTX} if there is no way to
3175 determine the return address of other frames.
3176 @end defmac
3177
3178 @defmac RETURN_ADDR_IN_PREVIOUS_FRAME
3179 Define this if the return address of a particular stack frame is accessed
3180 from the frame pointer of the previous stack frame.
3181 @end defmac
3182
3183 @defmac INCOMING_RETURN_ADDR_RTX
3184 A C expression whose value is RTL representing the location of the
3185 incoming return address at the beginning of any function, before the
3186 prologue.  This RTL is either a @code{REG}, indicating that the return
3187 value is saved in @samp{REG}, or a @code{MEM} representing a location in
3188 the stack.
3189
3190 You only need to define this macro if you want to support call frame
3191 debugging information like that provided by DWARF 2.
3192
3193 If this RTL is a @code{REG}, you should also define
3194 @code{DWARF_FRAME_RETURN_COLUMN} to @code{DWARF_FRAME_REGNUM (REGNO)}.
3195 @end defmac
3196
3197 @defmac DWARF_ALT_FRAME_RETURN_COLUMN
3198 A C expression whose value is an integer giving a DWARF 2 column
3199 number that may be used as an alternative return column.  The column
3200 must not correspond to any gcc hard register (that is, it must not
3201 be in the range of @code{DWARF_FRAME_REGNUM}).
3202
3203 This macro can be useful if @code{DWARF_FRAME_RETURN_COLUMN} is set to a
3204 general register, but an alternative column needs to be used for signal
3205 frames.  Some targets have also used different frame return columns
3206 over time.
3207 @end defmac
3208
3209 @defmac DWARF_ZERO_REG
3210 A C expression whose value is an integer giving a DWARF 2 register
3211 number that is considered to always have the value zero.  This should
3212 only be defined if the target has an architected zero register, and
3213 someone decided it was a good idea to use that register number to
3214 terminate the stack backtrace.  New ports should avoid this.
3215 @end defmac
3216
3217 @hook TARGET_DWARF_HANDLE_FRAME_UNSPEC
3218 This target hook allows the backend to emit frame-related insns that
3219 contain UNSPECs or UNSPEC_VOLATILEs.  The DWARF 2 call frame debugging
3220 info engine will invoke it on insns of the form
3221 @smallexample
3222 (set (reg) (unspec [@dots{}] UNSPEC_INDEX))
3223 @end smallexample
3224 and
3225 @smallexample
3226 (set (reg) (unspec_volatile [@dots{}] UNSPECV_INDEX)).
3227 @end smallexample
3228 to let the backend emit the call frame instructions.  @var{label} is
3229 the CFI label attached to the insn, @var{pattern} is the pattern of
3230 the insn and @var{index} is @code{UNSPEC_INDEX} or @code{UNSPECV_INDEX}.
3231 @end deftypefn
3232
3233 @defmac INCOMING_FRAME_SP_OFFSET
3234 A C expression whose value is an integer giving the offset, in bytes,
3235 from the value of the stack pointer register to the top of the stack
3236 frame at the beginning of any function, before the prologue.  The top of
3237 the frame is defined to be the value of the stack pointer in the
3238 previous frame, just before the call instruction.
3239
3240 You only need to define this macro if you want to support call frame
3241 debugging information like that provided by DWARF 2.
3242 @end defmac
3243
3244 @defmac ARG_POINTER_CFA_OFFSET (@var{fundecl})
3245 A C expression whose value is an integer giving the offset, in bytes,
3246 from the argument pointer to the canonical frame address (cfa).  The
3247 final value should coincide with that calculated by
3248 @code{INCOMING_FRAME_SP_OFFSET}.  Which is unfortunately not usable
3249 during virtual register instantiation.
3250
3251 The default value for this macro is
3252 @code{FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size},
3253 which is correct for most machines; in general, the arguments are found
3254 immediately before the stack frame.  Note that this is not the case on
3255 some targets that save registers into the caller's frame, such as SPARC
3256 and rs6000, and so such targets need to define this macro.
3257
3258 You only need to define this macro if the default is incorrect, and you
3259 want to support call frame debugging information like that provided by
3260 DWARF 2.
3261 @end defmac
3262
3263 @defmac FRAME_POINTER_CFA_OFFSET (@var{fundecl})
3264 If defined, a C expression whose value is an integer giving the offset
3265 in bytes from the frame pointer to the canonical frame address (cfa).
3266 The final value should coincide with that calculated by
3267 @code{INCOMING_FRAME_SP_OFFSET}.
3268
3269 Normally the CFA is calculated as an offset from the argument pointer,
3270 via @code{ARG_POINTER_CFA_OFFSET}, but if the argument pointer is
3271 variable due to the ABI, this may not be possible.  If this macro is
3272 defined, it implies that the virtual register instantiation should be
3273 based on the frame pointer instead of the argument pointer.  Only one
3274 of @code{FRAME_POINTER_CFA_OFFSET} and @code{ARG_POINTER_CFA_OFFSET}
3275 should be defined.
3276 @end defmac
3277
3278 @defmac CFA_FRAME_BASE_OFFSET (@var{fundecl})
3279 If defined, a C expression whose value is an integer giving the offset
3280 in bytes from the canonical frame address (cfa) to the frame base used
3281 in DWARF 2 debug information.  The default is zero.  A different value
3282 may reduce the size of debug information on some ports.
3283 @end defmac
3284
3285 @node Exception Handling
3286 @subsection Exception Handling Support
3287 @cindex exception handling
3288
3289 @defmac EH_RETURN_DATA_REGNO (@var{N})
3290 A C expression whose value is the @var{N}th register number used for
3291 data by exception handlers, or @code{INVALID_REGNUM} if fewer than
3292 @var{N} registers are usable.
3293
3294 The exception handling library routines communicate with the exception
3295 handlers via a set of agreed upon registers.  Ideally these registers
3296 should be call-clobbered; it is possible to use call-saved registers,
3297 but may negatively impact code size.  The target must support at least
3298 2 data registers, but should define 4 if there are enough free registers.
3299
3300 You must define this macro if you want to support call frame exception
3301 handling like that provided by DWARF 2.
3302 @end defmac
3303
3304 @defmac EH_RETURN_STACKADJ_RTX
3305 A C expression whose value is RTL representing a location in which
3306 to store a stack adjustment to be applied before function return.
3307 This is used to unwind the stack to an exception handler's call frame.
3308 It will be assigned zero on code paths that return normally.
3309
3310 Typically this is a call-clobbered hard register that is otherwise
3311 untouched by the epilogue, but could also be a stack slot.
3312
3313 Do not define this macro if the stack pointer is saved and restored
3314 by the regular prolog and epilog code in the call frame itself; in
3315 this case, the exception handling library routines will update the
3316 stack location to be restored in place.  Otherwise, you must define
3317 this macro if you want to support call frame exception handling like
3318 that provided by DWARF 2.
3319 @end defmac
3320
3321 @defmac EH_RETURN_HANDLER_RTX
3322 A C expression whose value is RTL representing a location in which
3323 to store the address of an exception handler to which we should
3324 return.  It will not be assigned on code paths that return normally.
3325
3326 Typically this is the location in the call frame at which the normal
3327 return address is stored.  For targets that return by popping an
3328 address off the stack, this might be a memory address just below
3329 the @emph{target} call frame rather than inside the current call
3330 frame.  If defined, @code{EH_RETURN_STACKADJ_RTX} will have already
3331 been assigned, so it may be used to calculate the location of the
3332 target call frame.
3333
3334 Some targets have more complex requirements than storing to an
3335 address calculable during initial code generation.  In that case
3336 the @code{eh_return} instruction pattern should be used instead.
3337
3338 If you want to support call frame exception handling, you must
3339 define either this macro or the @code{eh_return} instruction pattern.
3340 @end defmac
3341
3342 @defmac RETURN_ADDR_OFFSET
3343 If defined, an integer-valued C expression for which rtl will be generated
3344 to add it to the exception handler address before it is searched in the
3345 exception handling tables, and to subtract it again from the address before
3346 using it to return to the exception handler.
3347 @end defmac
3348
3349 @defmac ASM_PREFERRED_EH_DATA_FORMAT (@var{code}, @var{global})
3350 This macro chooses the encoding of pointers embedded in the exception
3351 handling sections.  If at all possible, this should be defined such
3352 that the exception handling section will not require dynamic relocations,
3353 and so may be read-only.
3354
3355 @var{code} is 0 for data, 1 for code labels, 2 for function pointers.
3356 @var{global} is true if the symbol may be affected by dynamic relocations.
3357 The macro should return a combination of the @code{DW_EH_PE_*} defines
3358 as found in @file{dwarf2.h}.
3359
3360 If this macro is not defined, pointers will not be encoded but
3361 represented directly.
3362 @end defmac
3363
3364 @defmac ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (@var{file}, @var{encoding}, @var{size}, @var{addr}, @var{done})
3365 This macro allows the target to emit whatever special magic is required
3366 to represent the encoding chosen by @code{ASM_PREFERRED_EH_DATA_FORMAT}.
3367 Generic code takes care of pc-relative and indirect encodings; this must
3368 be defined if the target uses text-relative or data-relative encodings.
3369
3370 This is a C statement that branches to @var{done} if the format was
3371 handled.  @var{encoding} is the format chosen, @var{size} is the number
3372 of bytes that the format occupies, @var{addr} is the @code{SYMBOL_REF}
3373 to be emitted.
3374 @end defmac
3375
3376 @defmac MD_FALLBACK_FRAME_STATE_FOR (@var{context}, @var{fs})
3377 This macro allows the target to add CPU and operating system specific
3378 code to the call-frame unwinder for use when there is no unwind data
3379 available.  The most common reason to implement this macro is to unwind
3380 through signal frames.
3381
3382 This macro is called from @code{uw_frame_state_for} in
3383 @file{unwind-dw2.c}, @file{unwind-dw2-xtensa.c} and
3384 @file{unwind-ia64.c}.  @var{context} is an @code{_Unwind_Context};
3385 @var{fs} is an @code{_Unwind_FrameState}.  Examine @code{context->ra}
3386 for the address of the code being executed and @code{context->cfa} for
3387 the stack pointer value.  If the frame can be decoded, the register
3388 save addresses should be updated in @var{fs} and the macro should
3389 evaluate to @code{_URC_NO_REASON}.  If the frame cannot be decoded,
3390 the macro should evaluate to @code{_URC_END_OF_STACK}.
3391
3392 For proper signal handling in Java this macro is accompanied by
3393 @code{MAKE_THROW_FRAME}, defined in @file{libjava/include/*-signal.h} headers.
3394 @end defmac
3395
3396 @defmac MD_HANDLE_UNWABI (@var{context}, @var{fs})
3397 This macro allows the target to add operating system specific code to the
3398 call-frame unwinder to handle the IA-64 @code{.unwabi} unwinding directive,
3399 usually used for signal or interrupt frames.
3400
3401 This macro is called from @code{uw_update_context} in @file{unwind-ia64.c}.
3402 @var{context} is an @code{_Unwind_Context};
3403 @var{fs} is an @code{_Unwind_FrameState}.  Examine @code{fs->unwabi}
3404 for the abi and context in the @code{.unwabi} directive.  If the
3405 @code{.unwabi} directive can be handled, the register save addresses should
3406 be updated in @var{fs}.
3407 @end defmac
3408
3409 @defmac TARGET_USES_WEAK_UNWIND_INFO
3410 A C expression that evaluates to true if the target requires unwind
3411 info to be given comdat linkage.  Define it to be @code{1} if comdat
3412 linkage is necessary.  The default is @code{0}.
3413 @end defmac
3414
3415 @node Stack Checking
3416 @subsection Specifying How Stack Checking is Done
3417
3418 GCC will check that stack references are within the boundaries of the
3419 stack, if the option @option{-fstack-check} is specified, in one of
3420 three ways:
3421
3422 @enumerate
3423 @item
3424 If the value of the @code{STACK_CHECK_BUILTIN} macro is nonzero, GCC
3425 will assume that you have arranged for full stack checking to be done
3426 at appropriate places in the configuration files.  GCC will not do
3427 other special processing.
3428
3429 @item
3430 If @code{STACK_CHECK_BUILTIN} is zero and the value of the
3431 @code{STACK_CHECK_STATIC_BUILTIN} macro is nonzero, GCC will assume
3432 that you have arranged for static stack checking (checking of the
3433 static stack frame of functions) to be done at appropriate places
3434 in the configuration files.  GCC will only emit code to do dynamic
3435 stack checking (checking on dynamic stack allocations) using the third
3436 approach below.
3437
3438 @item
3439 If neither of the above are true, GCC will generate code to periodically
3440 ``probe'' the stack pointer using the values of the macros defined below.
3441 @end enumerate
3442
3443 If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined,
3444 GCC will change its allocation strategy for large objects if the option
3445 @option{-fstack-check} is specified: they will always be allocated
3446 dynamically if their size exceeds @code{STACK_CHECK_MAX_VAR_SIZE} bytes.
3447
3448 @defmac STACK_CHECK_BUILTIN
3449 A nonzero value if stack checking is done by the configuration files in a
3450 machine-dependent manner.  You should define this macro if stack checking
3451 is required by the ABI of your machine or if you would like to do stack
3452 checking in some more efficient way than the generic approach.  The default
3453 value of this macro is zero.
3454 @end defmac
3455
3456 @defmac STACK_CHECK_STATIC_BUILTIN
3457 A nonzero value if static stack checking is done by the configuration files
3458 in a machine-dependent manner.  You should define this macro if you would
3459 like to do static stack checking in some more efficient way than the generic
3460 approach.  The default value of this macro is zero.
3461 @end defmac
3462
3463 @defmac STACK_CHECK_PROBE_INTERVAL_EXP
3464 An integer specifying the interval at which GCC must generate stack probe
3465 instructions, defined as 2 raised to this integer.  You will normally
3466 define this macro so that the interval be no larger than the size of
3467 the ``guard pages'' at the end of a stack area.  The default value
3468 of 12 (4096-byte interval) is suitable for most systems.
3469 @end defmac
3470
3471 @defmac STACK_CHECK_MOVING_SP
3472 An integer which is nonzero if GCC should move the stack pointer page by page
3473 when doing probes.  This can be necessary on systems where the stack pointer
3474 contains the bottom address of the memory area accessible to the executing
3475 thread at any point in time.  In this situation an alternate signal stack
3476 is required in order to be able to recover from a stack overflow.  The
3477 default value of this macro is zero.
3478 @end defmac
3479
3480 @defmac STACK_CHECK_PROTECT
3481 The number of bytes of stack needed to recover from a stack overflow, for
3482 languages where such a recovery is supported.  The default value of 75 words
3483 with the @code{setjmp}/@code{longjmp}-based exception handling mechanism and
3484 8192 bytes with other exception handling mechanisms should be adequate for
3485 most machines.
3486 @end defmac
3487
3488 The following macros are relevant only if neither STACK_CHECK_BUILTIN
3489 nor STACK_CHECK_STATIC_BUILTIN is defined; you can omit them altogether
3490 in the opposite case.
3491
3492 @defmac STACK_CHECK_MAX_FRAME_SIZE
3493 The maximum size of a stack frame, in bytes.  GCC will generate probe
3494 instructions in non-leaf functions to ensure at least this many bytes of
3495 stack are available.  If a stack frame is larger than this size, stack
3496 checking will not be reliable and GCC will issue a warning.  The
3497 default is chosen so that GCC only generates one instruction on most
3498 systems.  You should normally not change the default value of this macro.
3499 @end defmac
3500
3501 @defmac STACK_CHECK_FIXED_FRAME_SIZE
3502 GCC uses this value to generate the above warning message.  It
3503 represents the amount of fixed frame used by a function, not including
3504 space for any callee-saved registers, temporaries and user variables.
3505 You need only specify an upper bound for this amount and will normally
3506 use the default of four words.
3507 @end defmac
3508
3509 @defmac STACK_CHECK_MAX_VAR_SIZE
3510 The maximum size, in bytes, of an object that GCC will place in the
3511 fixed area of the stack frame when the user specifies
3512 @option{-fstack-check}.
3513 GCC computed the default from the values of the above macros and you will
3514 normally not need to override that default.
3515 @end defmac
3516
3517 @need 2000
3518 @node Frame Registers
3519 @subsection Registers That Address the Stack Frame
3520
3521 @c prevent bad page break with this line
3522 This discusses registers that address the stack frame.
3523
3524 @defmac STACK_POINTER_REGNUM
3525 The register number of the stack pointer register, which must also be a
3526 fixed register according to @code{FIXED_REGISTERS}.  On most machines,
3527 the hardware determines which register this is.
3528 @end defmac
3529
3530 @defmac FRAME_POINTER_REGNUM
3531 The register number of the frame pointer register, which is used to
3532 access automatic variables in the stack frame.  On some machines, the
3533 hardware determines which register this is.  On other machines, you can
3534 choose any register you wish for this purpose.
3535 @end defmac
3536
3537 @defmac HARD_FRAME_POINTER_REGNUM
3538 On some machines the offset between the frame pointer and starting
3539 offset of the automatic variables is not known until after register
3540 allocation has been done (for example, because the saved registers are
3541 between these two locations).  On those machines, define
3542 @code{FRAME_POINTER_REGNUM} the number of a special, fixed register to
3543 be used internally until the offset is known, and define
3544 @code{HARD_FRAME_POINTER_REGNUM} to be the actual hard register number
3545 used for the frame pointer.
3546
3547 You should define this macro only in the very rare circumstances when it
3548 is not possible to calculate the offset between the frame pointer and
3549 the automatic variables until after register allocation has been
3550 completed.  When this macro is defined, you must also indicate in your
3551 definition of @code{ELIMINABLE_REGS} how to eliminate
3552 @code{FRAME_POINTER_REGNUM} into either @code{HARD_FRAME_POINTER_REGNUM}
3553 or @code{STACK_POINTER_REGNUM}.
3554
3555 Do not define this macro if it would be the same as
3556 @code{FRAME_POINTER_REGNUM}.
3557 @end defmac
3558
3559 @defmac ARG_POINTER_REGNUM
3560 The register number of the arg pointer register, which is used to access
3561 the function's argument list.  On some machines, this is the same as the
3562 frame pointer register.  On some machines, the hardware determines which
3563 register this is.  On other machines, you can choose any register you
3564 wish for this purpose.  If this is not the same register as the frame
3565 pointer register, then you must mark it as a fixed register according to
3566 @code{FIXED_REGISTERS}, or arrange to be able to eliminate it
3567 (@pxref{Elimination}).
3568 @end defmac
3569
3570 @defmac HARD_FRAME_POINTER_IS_FRAME_POINTER
3571 Define this to a preprocessor constant that is nonzero if
3572 @code{hard_frame_pointer_rtx} and @code{frame_pointer_rtx} should be
3573 the same.  The default definition is @samp{(HARD_FRAME_POINTER_REGNUM
3574 == FRAME_POINTER_REGNUM)}; you only need to define this macro if that
3575 definition is not suitable for use in preprocessor conditionals.
3576 @end defmac
3577
3578 @defmac HARD_FRAME_POINTER_IS_ARG_POINTER
3579 Define this to a preprocessor constant that is nonzero if
3580 @code{hard_frame_pointer_rtx} and @code{arg_pointer_rtx} should be the
3581 same.  The default definition is @samp{(HARD_FRAME_POINTER_REGNUM ==
3582 ARG_POINTER_REGNUM)}; you only need to define this macro if that
3583 definition is not suitable for use in preprocessor conditionals.
3584 @end defmac
3585
3586 @defmac RETURN_ADDRESS_POINTER_REGNUM
3587 The register number of the return address pointer register, which is used to
3588 access the current function's return address from the stack.  On some
3589 machines, the return address is not at a fixed offset from the frame
3590 pointer or stack pointer or argument pointer.  This register can be defined
3591 to point to the return address on the stack, and then be converted by
3592 @code{ELIMINABLE_REGS} into either the frame pointer or stack pointer.
3593
3594 Do not define this macro unless there is no other way to get the return
3595 address from the stack.
3596 @end defmac
3597
3598 @defmac STATIC_CHAIN_REGNUM
3599 @defmacx STATIC_CHAIN_INCOMING_REGNUM
3600 Register numbers used for passing a function's static chain pointer.  If
3601 register windows are used, the register number as seen by the called
3602 function is @code{STATIC_CHAIN_INCOMING_REGNUM}, while the register
3603 number as seen by the calling function is @code{STATIC_CHAIN_REGNUM}.  If
3604 these registers are the same, @code{STATIC_CHAIN_INCOMING_REGNUM} need
3605 not be defined.
3606
3607 The static chain register need not be a fixed register.
3608
3609 If the static chain is passed in memory, these macros should not be
3610 defined; instead, the @code{TARGET_STATIC_CHAIN} hook should be used.
3611 @end defmac
3612
3613 @hook TARGET_STATIC_CHAIN
3614 This hook replaces the use of @code{STATIC_CHAIN_REGNUM} et al for
3615 targets that may use different static chain locations for different
3616 nested functions.  This may be required if the target has function
3617 attributes that affect the calling conventions of the function and
3618 those calling conventions use different static chain locations.
3619
3620 The default version of this hook uses @code{STATIC_CHAIN_REGNUM} et al.
3621
3622 If the static chain is passed in memory, this hook should be used to
3623 provide rtx giving @code{mem} expressions that denote where they are stored.
3624 Often the @code{mem} expression as seen by the caller will be at an offset
3625 from the stack pointer and the @code{mem} expression as seen by the callee
3626 will be at an offset from the frame pointer.
3627 @findex stack_pointer_rtx
3628 @findex frame_pointer_rtx
3629 @findex arg_pointer_rtx
3630 The variables @code{stack_pointer_rtx}, @code{frame_pointer_rtx}, and
3631 @code{arg_pointer_rtx} will have been initialized and should be used
3632 to refer to those items.
3633 @end deftypefn
3634
3635 @defmac DWARF_FRAME_REGISTERS
3636 This macro specifies the maximum number of hard registers that can be
3637 saved in a call frame.  This is used to size data structures used in
3638 DWARF2 exception handling.
3639
3640 Prior to GCC 3.0, this macro was needed in order to establish a stable
3641 exception handling ABI in the face of adding new hard registers for ISA
3642 extensions.  In GCC 3.0 and later, the EH ABI is insulated from changes
3643 in the number of hard registers.  Nevertheless, this macro can still be
3644 used to reduce the runtime memory requirements of the exception handling
3645 routines, which can be substantial if the ISA contains a lot of
3646 registers that are not call-saved.
3647
3648 If this macro is not defined, it defaults to
3649 @code{FIRST_PSEUDO_REGISTER}.
3650 @end defmac
3651
3652 @defmac PRE_GCC3_DWARF_FRAME_REGISTERS
3653
3654 This macro is similar to @code{DWARF_FRAME_REGISTERS}, but is provided
3655 for backward compatibility in pre GCC 3.0 compiled code.
3656
3657 If this macro is not defined, it defaults to
3658 @code{DWARF_FRAME_REGISTERS}.
3659 @end defmac
3660
3661 @defmac DWARF_REG_TO_UNWIND_COLUMN (@var{regno})
3662
3663 Define this macro if the target's representation for dwarf registers
3664 is different than the internal representation for unwind column.
3665 Given a dwarf register, this macro should return the internal unwind
3666 column number to use instead.
3667
3668 See the PowerPC's SPE target for an example.
3669 @end defmac
3670
3671 @defmac DWARF_FRAME_REGNUM (@var{regno})
3672
3673 Define this macro if the target's representation for dwarf registers
3674 used in .eh_frame or .debug_frame is different from that used in other
3675 debug info sections.  Given a GCC hard register number, this macro
3676 should return the .eh_frame register number.  The default is
3677 @code{DBX_REGISTER_NUMBER (@var{regno})}.
3678
3679 @end defmac
3680
3681 @defmac DWARF2_FRAME_REG_OUT (@var{regno}, @var{for_eh})
3682
3683 Define this macro to map register numbers held in the call frame info
3684 that GCC has collected using @code{DWARF_FRAME_REGNUM} to those that
3685 should be output in .debug_frame (@code{@var{for_eh}} is zero) and
3686 .eh_frame (@code{@var{for_eh}} is nonzero).  The default is to
3687 return @code{@var{regno}}.
3688
3689 @end defmac
3690
3691 @defmac REG_VALUE_IN_UNWIND_CONTEXT
3692
3693 Define this macro if the target stores register values as
3694 @code{_Unwind_Word} type in unwind context.  It should be defined if
3695 target register size is larger than the size of @code{void *}.  The
3696 default is to store register values as @code{void *} type.
3697
3698 @end defmac
3699
3700 @defmac ASSUME_EXTENDED_UNWIND_CONTEXT
3701
3702 Define this macro to be 1 if the target always uses extended unwind
3703 context with version, args_size and by_value fields.  If it is undefined,
3704 it will be defined to 1 when @code{REG_VALUE_IN_UNWIND_CONTEXT} is
3705 defined and 0 otherwise.
3706
3707 @end defmac
3708
3709 @node Elimination
3710 @subsection Eliminating Frame Pointer and Arg Pointer
3711
3712 @c prevent bad page break with this line
3713 This is about eliminating the frame pointer and arg pointer.
3714
3715 @hook TARGET_FRAME_POINTER_REQUIRED
3716 This target hook should return @code{true} if a function must have and use
3717 a frame pointer.  This target hook is called in the reload pass.  If its return
3718 value is @code{true} the function will have a frame pointer.
3719
3720 This target hook can in principle examine the current function and decide
3721 according to the facts, but on most machines the constant @code{false} or the
3722 constant @code{true} suffices.  Use @code{false} when the machine allows code
3723 to be generated with no frame pointer, and doing so saves some time or space.
3724 Use @code{true} when there is no possible advantage to avoiding a frame
3725 pointer.
3726
3727 In certain cases, the compiler does not know how to produce valid code
3728 without a frame pointer.  The compiler recognizes those cases and
3729 automatically gives the function a frame pointer regardless of what
3730 @code{TARGET_FRAME_POINTER_REQUIRED} returns.  You don't need to worry about
3731 them.
3732
3733 In a function that does not require a frame pointer, the frame pointer
3734 register can be allocated for ordinary usage, unless you mark it as a
3735 fixed register.  See @code{FIXED_REGISTERS} for more information.
3736
3737 Default return value is @code{false}.
3738 @end deftypefn
3739
3740 @findex get_frame_size
3741 @defmac INITIAL_FRAME_POINTER_OFFSET (@var{depth-var})
3742 A C statement to store in the variable @var{depth-var} the difference
3743 between the frame pointer and the stack pointer values immediately after
3744 the function prologue.  The value would be computed from information
3745 such as the result of @code{get_frame_size ()} and the tables of
3746 registers @code{regs_ever_live} and @code{call_used_regs}.
3747
3748 If @code{ELIMINABLE_REGS} is defined, this macro will be not be used and
3749 need not be defined.  Otherwise, it must be defined even if
3750 @code{TARGET_FRAME_POINTER_REQUIRED} always returns true; in that
3751 case, you may set @var{depth-var} to anything.
3752 @end defmac
3753
3754 @defmac ELIMINABLE_REGS
3755 If defined, this macro specifies a table of register pairs used to
3756 eliminate unneeded registers that point into the stack frame.  If it is not
3757 defined, the only elimination attempted by the compiler is to replace
3758 references to the frame pointer with references to the stack pointer.
3759
3760 The definition of this macro is a list of structure initializations, each
3761 of which specifies an original and replacement register.
3762
3763 On some machines, the position of the argument pointer is not known until
3764 the compilation is completed.  In such a case, a separate hard register
3765 must be used for the argument pointer.  This register can be eliminated by
3766 replacing it with either the frame pointer or the argument pointer,
3767 depending on whether or not the frame pointer has been eliminated.
3768
3769 In this case, you might specify:
3770 @smallexample
3771 #define ELIMINABLE_REGS  \
3772 @{@{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM@}, \
3773  @{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM@}, \
3774  @{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM@}@}
3775 @end smallexample
3776
3777 Note that the elimination of the argument pointer with the stack pointer is
3778 specified first since that is the preferred elimination.
3779 @end defmac
3780
3781 @hook TARGET_CAN_ELIMINATE
3782 This target hook should returns @code{true} if the compiler is allowed to
3783 try to replace register number @var{from_reg} with register number
3784 @var{to_reg}.  This target hook need only be defined if @code{ELIMINABLE_REGS}
3785 is defined, and will usually be @code{true}, since most of the cases
3786 preventing register elimination are things that the compiler already
3787 knows about.
3788
3789 Default return value is @code{true}.
3790 @end deftypefn
3791
3792 @defmac INITIAL_ELIMINATION_OFFSET (@var{from-reg}, @var{to-reg}, @var{offset-var})
3793 This macro is similar to @code{INITIAL_FRAME_POINTER_OFFSET}.  It
3794 specifies the initial difference between the specified pair of
3795 registers.  This macro must be defined if @code{ELIMINABLE_REGS} is
3796 defined.
3797 @end defmac
3798
3799 @node Stack Arguments
3800 @subsection Passing Function Arguments on the Stack
3801 @cindex arguments on stack
3802 @cindex stack arguments
3803
3804 The macros in this section control how arguments are passed
3805 on the stack.  See the following section for other macros that
3806 control passing certain arguments in registers.
3807
3808 @hook TARGET_PROMOTE_PROTOTYPES
3809 This target hook returns @code{true} if an argument declared in a
3810 prototype as an integral type smaller than @code{int} should actually be
3811 passed as an @code{int}.  In addition to avoiding errors in certain
3812 cases of mismatch, it also makes for better code on certain machines.
3813 The default is to not promote prototypes.
3814 @end deftypefn
3815
3816 @defmac PUSH_ARGS
3817 A C expression.  If nonzero, push insns will be used to pass
3818 outgoing arguments.
3819 If the target machine does not have a push instruction, set it to zero.
3820 That directs GCC to use an alternate strategy: to
3821 allocate the entire argument block and then store the arguments into
3822 it.  When @code{PUSH_ARGS} is nonzero, @code{PUSH_ROUNDING} must be defined too.
3823 @end defmac
3824
3825 @defmac PUSH_ARGS_REVERSED
3826 A C expression.  If nonzero, function arguments will be evaluated from
3827 last to first, rather than from first to last.  If this macro is not
3828 defined, it defaults to @code{PUSH_ARGS} on targets where the stack
3829 and args grow in opposite directions, and 0 otherwise.
3830 @end defmac
3831
3832 @defmac PUSH_ROUNDING (@var{npushed})
3833 A C expression that is the number of bytes actually pushed onto the
3834 stack when an instruction attempts to push @var{npushed} bytes.
3835
3836 On some machines, the definition
3837
3838 @smallexample
3839 #define PUSH_ROUNDING(BYTES) (BYTES)
3840 @end smallexample
3841
3842 @noindent
3843 will suffice.  But on other machines, instructions that appear
3844 to push one byte actually push two bytes in an attempt to maintain
3845 alignment.  Then the definition should be
3846
3847 @smallexample
3848 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
3849 @end smallexample
3850
3851 If the value of this macro has a type, it should be an unsigned type.
3852 @end defmac
3853
3854 @findex current_function_outgoing_args_size
3855 @defmac ACCUMULATE_OUTGOING_ARGS
3856 A C expression.  If nonzero, the maximum amount of space required for outgoing arguments
3857 will be computed and placed into the variable
3858 @code{current_function_outgoing_args_size}.  No space will be pushed
3859 onto the stack for each call; instead, the function prologue should
3860 increase the stack frame size by this amount.
3861
3862 Setting both @code{PUSH_ARGS} and @code{ACCUMULATE_OUTGOING_ARGS}
3863 is not proper.
3864 @end defmac
3865
3866 @defmac REG_PARM_STACK_SPACE (@var{fndecl})
3867 Define this macro if functions should assume that stack space has been
3868 allocated for arguments even when their values are passed in
3869 registers.
3870
3871 The value of this macro is the size, in bytes, of the area reserved for
3872 arguments passed in registers for the function represented by @var{fndecl},
3873 which can be zero if GCC is calling a library function.
3874 The argument @var{fndecl} can be the FUNCTION_DECL, or the type itself
3875 of the function.
3876
3877 This space can be allocated by the caller, or be a part of the
3878 machine-dependent stack frame: @code{OUTGOING_REG_PARM_STACK_SPACE} says
3879 which.
3880 @end defmac
3881 @c above is overfull.  not sure what to do.  --mew 5feb93  did
3882 @c something, not sure if it looks good.  --mew 10feb93
3883
3884 @defmac OUTGOING_REG_PARM_STACK_SPACE (@var{fntype})
3885 Define this to a nonzero value if it is the responsibility of the
3886 caller to allocate the area reserved for arguments passed in registers
3887 when calling a function of @var{fntype}.  @var{fntype} may be NULL
3888 if the function called is a library function.
3889
3890 If @code{ACCUMULATE_OUTGOING_ARGS} is defined, this macro controls
3891 whether the space for these arguments counts in the value of
3892 @code{current_function_outgoing_args_size}.
3893 @end defmac
3894
3895 @defmac STACK_PARMS_IN_REG_PARM_AREA
3896 Define this macro if @code{REG_PARM_STACK_SPACE} is defined, but the
3897 stack parameters don't skip the area specified by it.
3898 @c i changed this, makes more sens and it should have taken care of the
3899 @c overfull.. not as specific, tho.  --mew 5feb93
3900
3901 Normally, when a parameter is not passed in registers, it is placed on the
3902 stack beyond the @code{REG_PARM_STACK_SPACE} area.  Defining this macro
3903 suppresses this behavior and causes the parameter to be passed on the
3904 stack in its natural location.
3905 @end defmac
3906
3907 @hook TARGET_RETURN_POPS_ARGS
3908 This target hook returns the number of bytes of its own arguments that
3909 a function pops on returning, or 0 if the function pops no arguments
3910 and the caller must therefore pop them all after the function returns.
3911
3912 @var{fundecl} is a C variable whose value is a tree node that describes
3913 the function in question.  Normally it is a node of type
3914 @code{FUNCTION_DECL} that describes the declaration of the function.
3915 From this you can obtain the @code{DECL_ATTRIBUTES} of the function.
3916
3917 @var{funtype} is a C variable whose value is a tree node that
3918 describes the function in question.  Normally it is a node of type
3919 @code{FUNCTION_TYPE} that describes the data type of the function.
3920 From this it is possible to obtain the data types of the value and
3921 arguments (if known).
3922
3923 When a call to a library function is being considered, @var{fundecl}
3924 will contain an identifier node for the library function.  Thus, if
3925 you need to distinguish among various library functions, you can do so
3926 by their names.  Note that ``library function'' in this context means
3927 a function used to perform arithmetic, whose name is known specially
3928 in the compiler and was not mentioned in the C code being compiled.
3929
3930 @var{size} is the number of bytes of arguments passed on the
3931 stack.  If a variable number of bytes is passed, it is zero, and
3932 argument popping will always be the responsibility of the calling function.
3933
3934 On the VAX, all functions always pop their arguments, so the definition
3935 of this macro is @var{size}.  On the 68000, using the standard
3936 calling convention, no functions pop their arguments, so the value of
3937 the macro is always 0 in this case.  But an alternative calling
3938 convention is available in which functions that take a fixed number of
3939 arguments pop them but other functions (such as @code{printf}) pop
3940 nothing (the caller pops all).  When this convention is in use,
3941 @var{funtype} is examined to determine whether a function takes a fixed
3942 number of arguments.
3943 @end deftypefn
3944
3945 @defmac CALL_POPS_ARGS (@var{cum})
3946 A C expression that should indicate the number of bytes a call sequence
3947 pops off the stack.  It is added to the value of @code{RETURN_POPS_ARGS}
3948 when compiling a function call.
3949
3950 @var{cum} is the variable in which all arguments to the called function
3951 have been accumulated.
3952
3953 On certain architectures, such as the SH5, a call trampoline is used
3954 that pops certain registers off the stack, depending on the arguments
3955 that have been passed to the function.  Since this is a property of the
3956 call site, not of the called function, @code{RETURN_POPS_ARGS} is not
3957 appropriate.
3958 @end defmac
3959
3960 @node Register Arguments
3961 @subsection Passing Arguments in Registers
3962 @cindex arguments in registers
3963 @cindex registers arguments
3964
3965 This section describes the macros which let you control how various
3966 types of arguments are passed in registers or how they are arranged in
3967 the stack.
3968
3969 @hook TARGET_FUNCTION_ARG
3970 Return an RTX indicating whether a function argument is passed in a
3971 register and if so, which register.
3972
3973 The arguments are @var{ca}, which summarizes all the previous
3974 arguments; @var{mode}, the machine mode of the argument; @var{type},
3975 the data type of the argument as a tree node or 0 if that is not known
3976 (which happens for C support library functions); and @var{named},
3977 which is @code{true} for an ordinary argument and @code{false} for
3978 nameless arguments that correspond to @samp{@dots{}} in the called
3979 function's prototype.  @var{type} can be an incomplete type if a
3980 syntax error has previously occurred.
3981
3982 The return value is usually either a @code{reg} RTX for the hard
3983 register in which to pass the argument, or zero to pass the argument
3984 on the stack.
3985
3986 The value of the expression can also be a @code{parallel} RTX@.  This is
3987 used when an argument is passed in multiple locations.  The mode of the
3988 @code{parallel} should be the mode of the entire argument.  The
3989 @code{parallel} holds any number of @code{expr_list} pairs; each one
3990 describes where part of the argument is passed.  In each
3991 @code{expr_list} the first operand must be a @code{reg} RTX for the hard
3992 register in which to pass this part of the argument, and the mode of the
3993 register RTX indicates how large this part of the argument is.  The
3994 second operand of the @code{expr_list} is a @code{const_int} which gives
3995 the offset in bytes into the entire argument of where this part starts.
3996 As a special exception the first @code{expr_list} in the @code{parallel}
3997 RTX may have a first operand of zero.  This indicates that the entire
3998 argument is also stored on the stack.
3999
4000 The last time this hook is called, it is called with @code{MODE ==
4001 VOIDmode}, and its result is passed to the @code{call} or @code{call_value}
4002 pattern as operands 2 and 3 respectively.
4003
4004 @cindex @file{stdarg.h} and register arguments
4005 The usual way to make the ISO library @file{stdarg.h} work on a
4006 machine where some arguments are usually passed in registers, is to
4007 cause nameless arguments to be passed on the stack instead.  This is
4008 done by making @code{TARGET_FUNCTION_ARG} return 0 whenever
4009 @var{named} is @code{false}.
4010
4011 @cindex @code{TARGET_MUST_PASS_IN_STACK}, and @code{TARGET_FUNCTION_ARG}
4012 @cindex @code{REG_PARM_STACK_SPACE}, and @code{TARGET_FUNCTION_ARG}
4013 You may use the hook @code{targetm.calls.must_pass_in_stack}
4014 in the definition of this macro to determine if this argument is of a
4015 type that must be passed in the stack.  If @code{REG_PARM_STACK_SPACE}
4016 is not defined and @code{TARGET_FUNCTION_ARG} returns nonzero for such an
4017 argument, the compiler will abort.  If @code{REG_PARM_STACK_SPACE} is
4018 defined, the argument will be computed in the stack and then loaded into
4019 a register.
4020 @end deftypefn
4021
4022 @hook TARGET_MUST_PASS_IN_STACK
4023 This target hook should return @code{true} if we should not pass @var{type}
4024 solely in registers.  The file @file{expr.h} defines a
4025 definition that is usually appropriate, refer to @file{expr.h} for additional
4026 documentation.
4027 @end deftypefn
4028
4029 @hook TARGET_FUNCTION_INCOMING_ARG
4030 Define this hook if the target machine has ``register windows'', so
4031 that the register in which a function sees an arguments is not
4032 necessarily the same as the one in which the caller passed the
4033 argument.
4034
4035 For such machines, @code{TARGET_FUNCTION_ARG} computes the register in
4036 which the caller passes the value, and
4037 @code{TARGET_FUNCTION_INCOMING_ARG} should be defined in a similar
4038 fashion to tell the function being called where the arguments will
4039 arrive.
4040
4041 If @code{TARGET_FUNCTION_INCOMING_ARG} is not defined,
4042 @code{TARGET_FUNCTION_ARG} serves both purposes.
4043 @end deftypefn
4044
4045 @hook TARGET_ARG_PARTIAL_BYTES
4046 This target hook returns the number of bytes at the beginning of an
4047 argument that must be put in registers.  The value must be zero for
4048 arguments that are passed entirely in registers or that are entirely
4049 pushed on the stack.
4050
4051 On some machines, certain arguments must be passed partially in
4052 registers and partially in memory.  On these machines, typically the
4053 first few words of arguments are passed in registers, and the rest
4054 on the stack.  If a multi-word argument (a @code{double} or a
4055 structure) crosses that boundary, its first few words must be passed
4056 in registers and the rest must be pushed.  This macro tells the
4057 compiler when this occurs, and how many bytes should go in registers.
4058
4059 @code{TARGET_FUNCTION_ARG} for these arguments should return the first
4060 register to be used by the caller for this argument; likewise
4061 @code{TARGET_FUNCTION_INCOMING_ARG}, for the called function.
4062 @end deftypefn
4063
4064 @hook TARGET_PASS_BY_REFERENCE
4065 This target hook should return @code{true} if an argument at the
4066 position indicated by @var{cum} should be passed by reference.  This
4067 predicate is queried after target independent reasons for being
4068 passed by reference, such as @code{TREE_ADDRESSABLE (type)}.
4069
4070 If the hook returns true, a copy of that argument is made in memory and a
4071 pointer to the argument is passed instead of the argument itself.
4072 The pointer is passed in whatever way is appropriate for passing a pointer
4073 to that type.
4074 @end deftypefn
4075
4076 @hook TARGET_CALLEE_COPIES
4077 The function argument described by the parameters to this hook is
4078 known to be passed by reference.  The hook should return true if the
4079 function argument should be copied by the callee instead of copied
4080 by the caller.
4081
4082 For any argument for which the hook returns true, if it can be
4083 determined that the argument is not modified, then a copy need
4084 not be generated.
4085
4086 The default version of this hook always returns false.
4087 @end deftypefn
4088
4089 @defmac CUMULATIVE_ARGS
4090 A C type for declaring a variable that is used as the first argument
4091 of @code{TARGET_FUNCTION_ARG} and other related values.  For some
4092 target machines, the type @code{int} suffices and can hold the number
4093 of bytes of argument so far.
4094
4095 There is no need to record in @code{CUMULATIVE_ARGS} anything about the
4096 arguments that have been passed on the stack.  The compiler has other
4097 variables to keep track of that.  For target machines on which all
4098 arguments are passed on the stack, there is no need to store anything in
4099 @code{CUMULATIVE_ARGS}; however, the data structure must exist and
4100 should not be empty, so use @code{int}.
4101 @end defmac
4102
4103 @defmac OVERRIDE_ABI_FORMAT (@var{fndecl})
4104 If defined, this macro is called before generating any code for a
4105 function, but after the @var{cfun} descriptor for the function has been
4106 created.  The back end may use this macro to update @var{cfun} to
4107 reflect an ABI other than that which would normally be used by default.
4108 If the compiler is generating code for a compiler-generated function,
4109 @var{fndecl} may be @code{NULL}.
4110 @end defmac
4111
4112 @defmac INIT_CUMULATIVE_ARGS (@var{cum}, @var{fntype}, @var{libname}, @var{fndecl}, @var{n_named_args})
4113 A C statement (sans semicolon) for initializing the variable
4114 @var{cum} for the state at the beginning of the argument list.  The
4115 variable has type @code{CUMULATIVE_ARGS}.  The value of @var{fntype}
4116 is the tree node for the data type of the function which will receive
4117 the args, or 0 if the args are to a compiler support library function.
4118 For direct calls that are not libcalls, @var{fndecl} contain the
4119 declaration node of the function.  @var{fndecl} is also set when
4120 @code{INIT_CUMULATIVE_ARGS} is used to find arguments for the function
4121 being compiled.  @var{n_named_args} is set to the number of named
4122 arguments, including a structure return address if it is passed as a
4123 parameter, when making a call.  When processing incoming arguments,
4124 @var{n_named_args} is set to @minus{}1.
4125
4126 When processing a call to a compiler support library function,
4127 @var{libname} identifies which one.  It is a @code{symbol_ref} rtx which
4128 contains the name of the function, as a string.  @var{libname} is 0 when
4129 an ordinary C function call is being processed.  Thus, each time this
4130 macro is called, either @var{libname} or @var{fntype} is nonzero, but
4131 never both of them at once.
4132 @end defmac
4133
4134 @defmac INIT_CUMULATIVE_LIBCALL_ARGS (@var{cum}, @var{mode}, @var{libname})
4135 Like @code{INIT_CUMULATIVE_ARGS} but only used for outgoing libcalls,
4136 it gets a @code{MODE} argument instead of @var{fntype}, that would be
4137 @code{NULL}.  @var{indirect} would always be zero, too.  If this macro
4138 is not defined, @code{INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname,
4139 0)} is used instead.
4140 @end defmac
4141
4142 @defmac INIT_CUMULATIVE_INCOMING_ARGS (@var{cum}, @var{fntype}, @var{libname})
4143 Like @code{INIT_CUMULATIVE_ARGS} but overrides it for the purposes of
4144 finding the arguments for the function being compiled.  If this macro is
4145 undefined, @code{INIT_CUMULATIVE_ARGS} is used instead.
4146
4147 The value passed for @var{libname} is always 0, since library routines
4148 with special calling conventions are never compiled with GCC@.  The
4149 argument @var{libname} exists for symmetry with
4150 @code{INIT_CUMULATIVE_ARGS}.
4151 @c could use "this macro" in place of @code{INIT_CUMULATIVE_ARGS}, maybe.
4152 @c --mew 5feb93   i switched the order of the sentences.  --mew 10feb93
4153 @end defmac
4154
4155 @hook TARGET_FUNCTION_ARG_ADVANCE
4156 This hook updates the summarizer variable pointed to by @var{ca} to
4157 advance past an argument in the argument list.  The values @var{mode},
4158 @var{type} and @var{named} describe that argument.  Once this is done,
4159 the variable @var{cum} is suitable for analyzing the @emph{following}
4160 argument with @code{TARGET_FUNCTION_ARG}, etc.
4161
4162 This hook need not do anything if the argument in question was passed
4163 on the stack.  The compiler knows how to track the amount of stack space
4164 used for arguments without any special help.
4165 @end deftypefn
4166
4167 @defmac FUNCTION_ARG_OFFSET (@var{mode}, @var{type})
4168 If defined, a C expression that is the number of bytes to add to the
4169 offset of the argument passed in memory.  This is needed for the SPU,
4170 which passes @code{char} and @code{short} arguments in the preferred
4171 slot that is in the middle of the quad word instead of starting at the
4172 top.
4173 @end defmac
4174
4175 @defmac FUNCTION_ARG_PADDING (@var{mode}, @var{type})
4176 If defined, a C expression which determines whether, and in which direction,
4177 to pad out an argument with extra space.  The value should be of type
4178 @code{enum direction}: either @code{upward} to pad above the argument,
4179 @code{downward} to pad below, or @code{none} to inhibit padding.
4180
4181 The @emph{amount} of padding is not controlled by this macro, but by the
4182 target hook @code{TARGET_FUNCTION_ARG_ROUND_BOUNDARY}.  It is
4183 always just enough to reach the next multiple of that boundary. 
4184
4185 This macro has a default definition which is right for most systems.
4186 For little-endian machines, the default is to pad upward.  For
4187 big-endian machines, the default is to pad downward for an argument of
4188 constant size shorter than an @code{int}, and upward otherwise.
4189 @end defmac
4190
4191 @defmac PAD_VARARGS_DOWN
4192 If defined, a C expression which determines whether the default
4193 implementation of va_arg will attempt to pad down before reading the
4194 next argument, if that argument is smaller than its aligned space as
4195 controlled by @code{PARM_BOUNDARY}.  If this macro is not defined, all such
4196 arguments are padded down if @code{BYTES_BIG_ENDIAN} is true.
4197 @end defmac
4198
4199 @defmac BLOCK_REG_PADDING (@var{mode}, @var{type}, @var{first})
4200 Specify padding for the last element of a block move between registers and
4201 memory.  @var{first} is nonzero if this is the only element.  Defining this
4202 macro allows better control of register function parameters on big-endian
4203 machines, without using @code{PARALLEL} rtl.  In particular,
4204 @code{MUST_PASS_IN_STACK} need not test padding and mode of types in
4205 registers, as there is no longer a "wrong" part of a register;  For example,
4206 a three byte aggregate may be passed in the high part of a register if so
4207 required.
4208 @end defmac
4209
4210 @hook TARGET_FUNCTION_ARG_BOUNDARY
4211 This hook returns the alignment boundary, in bits, of an argument
4212 with the specified mode and type.  The default hook returns
4213 @code{PARM_BOUNDARY} for all arguments.
4214 @end deftypefn
4215
4216 @hook TARGET_FUNCTION_ARG_ROUND_BOUNDARY
4217
4218 @defmac FUNCTION_ARG_REGNO_P (@var{regno})
4219 A C expression that is nonzero if @var{regno} is the number of a hard
4220 register in which function arguments are sometimes passed.  This does
4221 @emph{not} include implicit arguments such as the static chain and
4222 the structure-value address.  On many machines, no registers can be
4223 used for this purpose since all function arguments are pushed on the
4224 stack.
4225 @end defmac
4226
4227 @hook TARGET_SPLIT_COMPLEX_ARG
4228 This hook should return true if parameter of type @var{type} are passed
4229 as two scalar parameters.  By default, GCC will attempt to pack complex
4230 arguments into the target's word size.  Some ABIs require complex arguments
4231 to be split and treated as their individual components.  For example, on
4232 AIX64, complex floats should be passed in a pair of floating point
4233 registers, even though a complex float would fit in one 64-bit floating
4234 point register.
4235
4236 The default value of this hook is @code{NULL}, which is treated as always
4237 false.
4238 @end deftypefn
4239
4240 @hook TARGET_BUILD_BUILTIN_VA_LIST
4241 This hook returns a type node for @code{va_list} for the target.
4242 The default version of the hook returns @code{void*}.
4243 @end deftypefn
4244
4245 @hook TARGET_ENUM_VA_LIST_P
4246 This target hook is used in function @code{c_common_nodes_and_builtins}
4247 to iterate through the target specific builtin types for va_list. The
4248 variable @var{idx} is used as iterator. @var{pname} has to be a pointer
4249 to a @code{const char *} and @var{ptree} a pointer to a @code{tree} typed
4250 variable.
4251 The arguments @var{pname} and @var{ptree} are used to store the result of
4252 this macro and are set to the name of the va_list builtin type and its
4253 internal type.
4254 If the return value of this macro is zero, then there is no more element.
4255 Otherwise the @var{IDX} should be increased for the next call of this
4256 macro to iterate through all types.
4257 @end deftypefn
4258
4259 @hook TARGET_FN_ABI_VA_LIST
4260 This hook returns the va_list type of the calling convention specified by
4261 @var{fndecl}.
4262 The default version of this hook returns @code{va_list_type_node}.
4263 @end deftypefn
4264
4265 @hook TARGET_CANONICAL_VA_LIST_TYPE
4266 This hook returns the va_list type of the calling convention specified by the
4267 type of @var{type}. If @var{type} is not a valid va_list type, it returns
4268 @code{NULL_TREE}.
4269 @end deftypefn
4270
4271 @hook TARGET_GIMPLIFY_VA_ARG_EXPR
4272 This hook performs target-specific gimplification of
4273 @code{VA_ARG_EXPR}.  The first two parameters correspond to the
4274 arguments to @code{va_arg}; the latter two are as in
4275 @code{gimplify.c:gimplify_expr}.
4276 @end deftypefn
4277
4278 @hook TARGET_VALID_POINTER_MODE
4279 Define this to return nonzero if the port can handle pointers
4280 with machine mode @var{mode}.  The default version of this
4281 hook returns true for both @code{ptr_mode} and @code{Pmode}.
4282 @end deftypefn
4283
4284 @hook TARGET_REF_MAY_ALIAS_ERRNO
4285
4286 @hook TARGET_SCALAR_MODE_SUPPORTED_P
4287 Define this to return nonzero if the port is prepared to handle
4288 insns involving scalar mode @var{mode}.  For a scalar mode to be
4289 considered supported, all the basic arithmetic and comparisons
4290 must work.
4291
4292 The default version of this hook returns true for any mode
4293 required to handle the basic C types (as defined by the port).
4294 Included here are the double-word arithmetic supported by the
4295 code in @file{optabs.c}.
4296 @end deftypefn
4297
4298 @hook TARGET_VECTOR_MODE_SUPPORTED_P
4299 Define this to return nonzero if the port is prepared to handle
4300 insns involving vector mode @var{mode}.  At the very least, it
4301 must have move patterns for this mode.
4302 @end deftypefn
4303
4304 @hook TARGET_ARRAY_MODE_SUPPORTED_P
4305
4306 @hook TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
4307 Define this to return nonzero for machine modes for which the port has
4308 small register classes.  If this target hook returns nonzero for a given
4309 @var{mode}, the compiler will try to minimize the lifetime of registers
4310 in @var{mode}.  The hook may be called with @code{VOIDmode} as argument.
4311 In this case, the hook is expected to return nonzero if it returns nonzero
4312 for any mode.
4313
4314 On some machines, it is risky to let hard registers live across arbitrary
4315 insns.  Typically, these machines have instructions that require values
4316 to be in specific registers (like an accumulator), and reload will fail
4317 if the required hard register is used for another purpose across such an
4318 insn.
4319
4320 Passes before reload do not know which hard registers will be used
4321 in an instruction, but the machine modes of the registers set or used in
4322 the instruction are already known.  And for some machines, register
4323 classes are small for, say, integer registers but not for floating point
4324 registers.  For example, the AMD x86-64 architecture requires specific
4325 registers for the legacy x86 integer instructions, but there are many
4326 SSE registers for floating point operations.  On such targets, a good
4327 strategy may be to return nonzero from this hook for @code{INTEGRAL_MODE_P}
4328 machine modes but zero for the SSE register classes.
4329
4330 The default version of this hook returns false for any mode.  It is always
4331 safe to redefine this hook to return with a nonzero value.  But if you
4332 unnecessarily define it, you will reduce the amount of optimizations
4333 that can be performed in some cases.  If you do not define this hook
4334 to return a nonzero value when it is required, the compiler will run out
4335 of spill registers and print a fatal error message.
4336 @end deftypefn
4337
4338 @hook TARGET_FLAGS_REGNUM
4339
4340 @node Scalar Return
4341 @subsection How Scalar Function Values Are Returned
4342 @cindex return values in registers
4343 @cindex values, returned by functions
4344 @cindex scalars, returned as values
4345
4346 This section discusses the macros that control returning scalars as
4347 values---values that can fit in registers.
4348
4349 @hook TARGET_FUNCTION_VALUE
4350
4351 Define this to return an RTX representing the place where a function
4352 returns or receives a value of data type @var{ret_type}, a tree node
4353 representing a data type.  @var{fn_decl_or_type} is a tree node
4354 representing @code{FUNCTION_DECL} or @code{FUNCTION_TYPE} of a
4355 function being called.  If @var{outgoing} is false, the hook should
4356 compute the register in which the caller will see the return value.
4357 Otherwise, the hook should return an RTX representing the place where
4358 a function returns a value.
4359
4360 On many machines, only @code{TYPE_MODE (@var{ret_type})} is relevant.
4361 (Actually, on most machines, scalar values are returned in the same
4362 place regardless of mode.)  The value of the expression is usually a
4363 @code{reg} RTX for the hard register where the return value is stored.
4364 The value can also be a @code{parallel} RTX, if the return value is in
4365 multiple places.  See @code{TARGET_FUNCTION_ARG} for an explanation of the
4366 @code{parallel} form.   Note that the callee will populate every
4367 location specified in the @code{parallel}, but if the first element of
4368 the @code{parallel} contains the whole return value, callers will use
4369 that element as the canonical location and ignore the others.  The m68k
4370 port uses this type of @code{parallel} to return pointers in both
4371 @samp{%a0} (the canonical location) and @samp{%d0}.
4372
4373 If @code{TARGET_PROMOTE_FUNCTION_RETURN} returns true, you must apply
4374 the same promotion rules specified in @code{PROMOTE_MODE} if
4375 @var{valtype} is a scalar type.
4376
4377 If the precise function being called is known, @var{func} is a tree
4378 node (@code{FUNCTION_DECL}) for it; otherwise, @var{func} is a null
4379 pointer.  This makes it possible to use a different value-returning
4380 convention for specific functions when all their calls are
4381 known.
4382
4383 Some target machines have ``register windows'' so that the register in
4384 which a function returns its value is not the same as the one in which
4385 the caller sees the value.  For such machines, you should return
4386 different RTX depending on @var{outgoing}.
4387
4388 @code{TARGET_FUNCTION_VALUE} is not used for return values with
4389 aggregate data types, because these are returned in another way.  See
4390 @code{TARGET_STRUCT_VALUE_RTX} and related macros, below.
4391 @end deftypefn
4392
4393 @defmac FUNCTION_VALUE (@var{valtype}, @var{func})
4394 This macro has been deprecated.  Use @code{TARGET_FUNCTION_VALUE} for
4395 a new target instead.
4396 @end defmac
4397
4398 @defmac LIBCALL_VALUE (@var{mode})
4399 A C expression to create an RTX representing the place where a library
4400 function returns a value of mode @var{mode}.
4401
4402 Note that ``library function'' in this context means a compiler
4403 support routine, used to perform arithmetic, whose name is known
4404 specially by the compiler and was not mentioned in the C code being
4405 compiled.
4406 @end defmac
4407
4408 @hook TARGET_LIBCALL_VALUE
4409 Define this hook if the back-end needs to know the name of the libcall
4410 function in order to determine where the result should be returned.
4411
4412 The mode of the result is given by @var{mode} and the name of the called
4413 library function is given by @var{fun}.  The hook should return an RTX
4414 representing the place where the library function result will be returned.
4415
4416 If this hook is not defined, then LIBCALL_VALUE will be used.
4417 @end deftypefn
4418
4419 @defmac FUNCTION_VALUE_REGNO_P (@var{regno})
4420 A C expression that is nonzero if @var{regno} is the number of a hard
4421 register in which the values of called function may come back.
4422
4423 A register whose use for returning values is limited to serving as the
4424 second of a pair (for a value of type @code{double}, say) need not be
4425 recognized by this macro.  So for most machines, this definition
4426 suffices:
4427
4428 @smallexample
4429 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
4430 @end smallexample
4431
4432 If the machine has register windows, so that the caller and the called
4433 function use different registers for the return value, this macro
4434 should recognize only the caller's register numbers.
4435
4436 This macro has been deprecated.  Use @code{TARGET_FUNCTION_VALUE_REGNO_P}
4437 for a new target instead.
4438 @end defmac
4439
4440 @hook TARGET_FUNCTION_VALUE_REGNO_P
4441 A target hook that return @code{true} if @var{regno} is the number of a hard
4442 register in which the values of called function may come back.
4443
4444 A register whose use for returning values is limited to serving as the
4445 second of a pair (for a value of type @code{double}, say) need not be
4446 recognized by this target hook.
4447
4448 If the machine has register windows, so that the caller and the called
4449 function use different registers for the return value, this target hook
4450 should recognize only the caller's register numbers.
4451
4452 If this hook is not defined, then FUNCTION_VALUE_REGNO_P will be used.
4453 @end deftypefn
4454
4455 @defmac APPLY_RESULT_SIZE
4456 Define this macro if @samp{untyped_call} and @samp{untyped_return}
4457 need more space than is implied by @code{FUNCTION_VALUE_REGNO_P} for
4458 saving and restoring an arbitrary return value.
4459 @end defmac
4460
4461 @hook TARGET_RETURN_IN_MSB
4462 This hook should return true if values of type @var{type} are returned
4463 at the most significant end of a register (in other words, if they are
4464 padded at the least significant end).  You can assume that @var{type}
4465 is returned in a register; the caller is required to check this.
4466
4467 Note that the register provided by @code{TARGET_FUNCTION_VALUE} must
4468 be able to hold the complete return value.  For example, if a 1-, 2-
4469 or 3-byte structure is returned at the most significant end of a
4470 4-byte register, @code{TARGET_FUNCTION_VALUE} should provide an
4471 @code{SImode} rtx.
4472 @end deftypefn
4473
4474 @node Aggregate Return
4475 @subsection How Large Values Are Returned
4476 @cindex aggregates as return values
4477 @cindex large return values
4478 @cindex returning aggregate values
4479 @cindex structure value address
4480
4481 When a function value's mode is @code{BLKmode} (and in some other
4482 cases), the value is not returned according to
4483 @code{TARGET_FUNCTION_VALUE} (@pxref{Scalar Return}).  Instead, the
4484 caller passes the address of a block of memory in which the value
4485 should be stored.  This address is called the @dfn{structure value
4486 address}.
4487
4488 This section describes how to control returning structure values in
4489 memory.
4490
4491 @hook TARGET_RETURN_IN_MEMORY
4492 This target hook should return a nonzero value to say to return the
4493 function value in memory, just as large structures are always returned.
4494 Here @var{type} will be the data type of the value, and @var{fntype}
4495 will be the type of the function doing the returning, or @code{NULL} for
4496 libcalls.
4497
4498 Note that values of mode @code{BLKmode} must be explicitly handled
4499 by this function.  Also, the option @option{-fpcc-struct-return}
4500 takes effect regardless of this macro.  On most systems, it is
4501 possible to leave the hook undefined; this causes a default
4502 definition to be used, whose value is the constant 1 for @code{BLKmode}
4503 values, and 0 otherwise.
4504
4505 Do not use this hook to indicate that structures and unions should always
4506 be returned in memory.  You should instead use @code{DEFAULT_PCC_STRUCT_RETURN}
4507 to indicate this.
4508 @end deftypefn
4509
4510 @defmac DEFAULT_PCC_STRUCT_RETURN
4511 Define this macro to be 1 if all structure and union return values must be
4512 in memory.  Since this results in slower code, this should be defined
4513 only if needed for compatibility with other compilers or with an ABI@.
4514 If you define this macro to be 0, then the conventions used for structure
4515 and union return values are decided by the @code{TARGET_RETURN_IN_MEMORY}
4516 target hook.
4517
4518 If not defined, this defaults to the value 1.
4519 @end defmac
4520
4521 @hook TARGET_STRUCT_VALUE_RTX
4522 This target hook should return the location of the structure value
4523 address (normally a @code{mem} or @code{reg}), or 0 if the address is
4524 passed as an ``invisible'' first argument.  Note that @var{fndecl} may
4525 be @code{NULL}, for libcalls.  You do not need to define this target
4526 hook if the address is always passed as an ``invisible'' first
4527 argument.
4528
4529 On some architectures the place where the structure value address
4530 is found by the called function is not the same place that the
4531 caller put it.  This can be due to register windows, or it could
4532 be because the function prologue moves it to a different place.
4533 @var{incoming} is @code{1} or @code{2} when the location is needed in
4534 the context of the called function, and @code{0} in the context of
4535 the caller.
4536
4537 If @var{incoming} is nonzero and the address is to be found on the
4538 stack, return a @code{mem} which refers to the frame pointer. If
4539 @var{incoming} is @code{2}, the result is being used to fetch the
4540 structure value address at the beginning of a function.  If you need
4541 to emit adjusting code, you should do it at this point.
4542 @end deftypefn
4543
4544 @defmac PCC_STATIC_STRUCT_RETURN
4545 Define this macro if the usual system convention on the target machine
4546 for returning structures and unions is for the called function to return
4547 the address of a static variable containing the value.
4548
4549 Do not define this if the usual system convention is for the caller to
4550 pass an address to the subroutine.
4551
4552 This macro has effect in @option{-fpcc-struct-return} mode, but it does
4553 nothing when you use @option{-freg-struct-return} mode.
4554 @end defmac
4555
4556 @hook TARGET_GET_RAW_RESULT_MODE
4557
4558 @hook TARGET_GET_RAW_ARG_MODE
4559
4560 @node Caller Saves
4561 @subsection Caller-Saves Register Allocation
4562
4563 If you enable it, GCC can save registers around function calls.  This
4564 makes it possible to use call-clobbered registers to hold variables that
4565 must live across calls.
4566
4567 @defmac CALLER_SAVE_PROFITABLE (@var{refs}, @var{calls})
4568 A C expression to determine whether it is worthwhile to consider placing
4569 a pseudo-register in a call-clobbered hard register and saving and
4570 restoring it around each function call.  The expression should be 1 when
4571 this is worth doing, and 0 otherwise.
4572
4573 If you don't define this macro, a default is used which is good on most
4574 machines: @code{4 * @var{calls} < @var{refs}}.
4575 @end defmac
4576
4577 @defmac HARD_REGNO_CALLER_SAVE_MODE (@var{regno}, @var{nregs})
4578 A C expression specifying which mode is required for saving @var{nregs}
4579 of a pseudo-register in call-clobbered hard register @var{regno}.  If
4580 @var{regno} is unsuitable for caller save, @code{VOIDmode} should be
4581 returned.  For most machines this macro need not be defined since GCC
4582 will select the smallest suitable mode.
4583 @end defmac
4584
4585 @node Function Entry
4586 @subsection Function Entry and Exit
4587 @cindex function entry and exit
4588 @cindex prologue
4589 @cindex epilogue
4590
4591 This section describes the macros that output function entry
4592 (@dfn{prologue}) and exit (@dfn{epilogue}) code.
4593
4594 @hook TARGET_ASM_FUNCTION_PROLOGUE
4595 If defined, a function that outputs the assembler code for entry to a
4596 function.  The prologue is responsible for setting up the stack frame,
4597 initializing the frame pointer register, saving registers that must be
4598 saved, and allocating @var{size} additional bytes of storage for the
4599 local variables.  @var{size} is an integer.  @var{file} is a stdio
4600 stream to which the assembler code should be output.
4601
4602 The label for the beginning of the function need not be output by this
4603 macro.  That has already been done when the macro is run.
4604
4605 @findex regs_ever_live
4606 To determine which registers to save, the macro can refer to the array
4607 @code{regs_ever_live}: element @var{r} is nonzero if hard register
4608 @var{r} is used anywhere within the function.  This implies the function
4609 prologue should save register @var{r}, provided it is not one of the
4610 call-used registers.  (@code{TARGET_ASM_FUNCTION_EPILOGUE} must likewise use
4611 @code{regs_ever_live}.)
4612
4613 On machines that have ``register windows'', the function entry code does
4614 not save on the stack the registers that are in the windows, even if
4615 they are supposed to be preserved by function calls; instead it takes
4616 appropriate steps to ``push'' the register stack, if any non-call-used
4617 registers are used in the function.
4618
4619 @findex frame_pointer_needed
4620 On machines where functions may or may not have frame-pointers, the
4621 function entry code must vary accordingly; it must set up the frame
4622 pointer if one is wanted, and not otherwise.  To determine whether a
4623 frame pointer is in wanted, the macro can refer to the variable
4624 @code{frame_pointer_needed}.  The variable's value will be 1 at run
4625 time in a function that needs a frame pointer.  @xref{Elimination}.
4626
4627 The function entry code is responsible for allocating any stack space
4628 required for the function.  This stack space consists of the regions
4629 listed below.  In most cases, these regions are allocated in the
4630 order listed, with the last listed region closest to the top of the
4631 stack (the lowest address if @code{STACK_GROWS_DOWNWARD} is defined, and
4632 the highest address if it is not defined).  You can use a different order
4633 for a machine if doing so is more convenient or required for
4634 compatibility reasons.  Except in cases where required by standard
4635 or by a debugger, there is no reason why the stack layout used by GCC
4636 need agree with that used by other compilers for a machine.
4637 @end deftypefn
4638
4639 @hook TARGET_ASM_FUNCTION_END_PROLOGUE
4640 If defined, a function that outputs assembler code at the end of a
4641 prologue.  This should be used when the function prologue is being
4642 emitted as RTL, and you have some extra assembler that needs to be
4643 emitted.  @xref{prologue instruction pattern}.
4644 @end deftypefn
4645
4646 @hook TARGET_ASM_FUNCTION_BEGIN_EPILOGUE
4647 If defined, a function that outputs assembler code at the start of an
4648 epilogue.  This should be used when the function epilogue is being
4649 emitted as RTL, and you have some extra assembler that needs to be
4650 emitted.  @xref{epilogue instruction pattern}.
4651 @end deftypefn
4652
4653 @hook TARGET_ASM_FUNCTION_EPILOGUE
4654 If defined, a function that outputs the assembler code for exit from a
4655 function.  The epilogue is responsible for restoring the saved
4656 registers and stack pointer to their values when the function was
4657 called, and returning control to the caller.  This macro takes the
4658 same arguments as the macro @code{TARGET_ASM_FUNCTION_PROLOGUE}, and the
4659 registers to restore are determined from @code{regs_ever_live} and
4660 @code{CALL_USED_REGISTERS} in the same way.
4661
4662 On some machines, there is a single instruction that does all the work
4663 of returning from the function.  On these machines, give that
4664 instruction the name @samp{return} and do not define the macro
4665 @code{TARGET_ASM_FUNCTION_EPILOGUE} at all.
4666
4667 Do not define a pattern named @samp{return} if you want the
4668 @code{TARGET_ASM_FUNCTION_EPILOGUE} to be used.  If you want the target
4669 switches to control whether return instructions or epilogues are used,
4670 define a @samp{return} pattern with a validity condition that tests the
4671 target switches appropriately.  If the @samp{return} pattern's validity
4672 condition is false, epilogues will be used.
4673
4674 On machines where functions may or may not have frame-pointers, the
4675 function exit code must vary accordingly.  Sometimes the code for these
4676 two cases is completely different.  To determine whether a frame pointer
4677 is wanted, the macro can refer to the variable
4678 @code{frame_pointer_needed}.  The variable's value will be 1 when compiling
4679 a function that needs a frame pointer.
4680
4681 Normally, @code{TARGET_ASM_FUNCTION_PROLOGUE} and
4682 @code{TARGET_ASM_FUNCTION_EPILOGUE} must treat leaf functions specially.
4683 The C variable @code{current_function_is_leaf} is nonzero for such a
4684 function.  @xref{Leaf Functions}.
4685
4686 On some machines, some functions pop their arguments on exit while
4687 others leave that for the caller to do.  For example, the 68020 when
4688 given @option{-mrtd} pops arguments in functions that take a fixed
4689 number of arguments.
4690
4691 @findex current_function_pops_args
4692 Your definition of the macro @code{RETURN_POPS_ARGS} decides which
4693 functions pop their own arguments.  @code{TARGET_ASM_FUNCTION_EPILOGUE}
4694 needs to know what was decided.  The number of bytes of the current
4695 function's arguments that this function should pop is available in
4696 @code{crtl->args.pops_args}.  @xref{Scalar Return}.
4697 @end deftypefn
4698
4699 @itemize @bullet
4700 @item
4701 @findex current_function_pretend_args_size
4702 A region of @code{current_function_pretend_args_size} bytes of
4703 uninitialized space just underneath the first argument arriving on the
4704 stack.  (This may not be at the very start of the allocated stack region
4705 if the calling sequence has pushed anything else since pushing the stack
4706 arguments.  But usually, on such machines, nothing else has been pushed
4707 yet, because the function prologue itself does all the pushing.)  This
4708 region is used on machines where an argument may be passed partly in
4709 registers and partly in memory, and, in some cases to support the
4710 features in @code{<stdarg.h>}.
4711
4712 @item
4713 An area of memory used to save certain registers used by the function.
4714 The size of this area, which may also include space for such things as
4715 the return address and pointers to previous stack frames, is
4716 machine-specific and usually depends on which registers have been used
4717 in the function.  Machines with register windows often do not require
4718 a save area.
4719
4720 @item
4721 A region of at least @var{size} bytes, possibly rounded up to an allocation
4722 boundary, to contain the local variables of the function.  On some machines,
4723 this region and the save area may occur in the opposite order, with the
4724 save area closer to the top of the stack.
4725
4726 @item
4727 @cindex @code{ACCUMULATE_OUTGOING_ARGS} and stack frames
4728 Optionally, when @code{ACCUMULATE_OUTGOING_ARGS} is defined, a region of
4729 @code{current_function_outgoing_args_size} bytes to be used for outgoing
4730 argument lists of the function.  @xref{Stack Arguments}.
4731 @end itemize
4732
4733 @defmac EXIT_IGNORE_STACK
4734 Define this macro as a C expression that is nonzero if the return
4735 instruction or the function epilogue ignores the value of the stack
4736 pointer; in other words, if it is safe to delete an instruction to
4737 adjust the stack pointer before a return from the function.  The
4738 default is 0.
4739
4740 Note that this macro's value is relevant only for functions for which
4741 frame pointers are maintained.  It is never safe to delete a final
4742 stack adjustment in a function that has no frame pointer, and the
4743 compiler knows this regardless of @code{EXIT_IGNORE_STACK}.
4744 @end defmac
4745
4746 @defmac EPILOGUE_USES (@var{regno})
4747 Define this macro as a C expression that is nonzero for registers that are
4748 used by the epilogue or the @samp{return} pattern.  The stack and frame
4749 pointer registers are already assumed to be used as needed.
4750 @end defmac
4751
4752 @defmac EH_USES (@var{regno})
4753 Define this macro as a C expression that is nonzero for registers that are
4754 used by the exception handling mechanism, and so should be considered live
4755 on entry to an exception edge.
4756 @end defmac
4757
4758 @defmac DELAY_SLOTS_FOR_EPILOGUE
4759 Define this macro if the function epilogue contains delay slots to which
4760 instructions from the rest of the function can be ``moved''.  The
4761 definition should be a C expression whose value is an integer
4762 representing the number of delay slots there.
4763 @end defmac
4764
4765 @defmac ELIGIBLE_FOR_EPILOGUE_DELAY (@var{insn}, @var{n})
4766 A C expression that returns 1 if @var{insn} can be placed in delay
4767 slot number @var{n} of the epilogue.
4768
4769 The argument @var{n} is an integer which identifies the delay slot now
4770 being considered (since different slots may have different rules of
4771 eligibility).  It is never negative and is always less than the number
4772 of epilogue delay slots (what @code{DELAY_SLOTS_FOR_EPILOGUE} returns).
4773 If you reject a particular insn for a given delay slot, in principle, it
4774 may be reconsidered for a subsequent delay slot.  Also, other insns may
4775 (at least in principle) be considered for the so far unfilled delay
4776 slot.
4777
4778 @findex current_function_epilogue_delay_list
4779 @findex final_scan_insn
4780 The insns accepted to fill the epilogue delay slots are put in an RTL
4781 list made with @code{insn_list} objects, stored in the variable
4782 @code{current_function_epilogue_delay_list}.  The insn for the first
4783 delay slot comes first in the list.  Your definition of the macro
4784 @code{TARGET_ASM_FUNCTION_EPILOGUE} should fill the delay slots by
4785 outputting the insns in this list, usually by calling
4786 @code{final_scan_insn}.
4787
4788 You need not define this macro if you did not define
4789 @code{DELAY_SLOTS_FOR_EPILOGUE}.
4790 @end defmac
4791
4792 @hook TARGET_ASM_OUTPUT_MI_THUNK
4793 A function that outputs the assembler code for a thunk
4794 function, used to implement C++ virtual function calls with multiple
4795 inheritance.  The thunk acts as a wrapper around a virtual function,
4796 adjusting the implicit object parameter before handing control off to
4797 the real function.
4798
4799 First, emit code to add the integer @var{delta} to the location that
4800 contains the incoming first argument.  Assume that this argument
4801 contains a pointer, and is the one used to pass the @code{this} pointer
4802 in C++.  This is the incoming argument @emph{before} the function prologue,
4803 e.g.@: @samp{%o0} on a sparc.  The addition must preserve the values of
4804 all other incoming arguments.
4805
4806 Then, if @var{vcall_offset} is nonzero, an additional adjustment should be
4807 made after adding @code{delta}.  In particular, if @var{p} is the
4808 adjusted pointer, the following adjustment should be made:
4809
4810 @smallexample
4811 p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]
4812 @end smallexample
4813
4814 After the additions, emit code to jump to @var{function}, which is a
4815 @code{FUNCTION_DECL}.  This is a direct pure jump, not a call, and does
4816 not touch the return address.  Hence returning from @var{FUNCTION} will
4817 return to whoever called the current @samp{thunk}.
4818
4819 The effect must be as if @var{function} had been called directly with
4820 the adjusted first argument.  This macro is responsible for emitting all
4821 of the code for a thunk function; @code{TARGET_ASM_FUNCTION_PROLOGUE}
4822 and @code{TARGET_ASM_FUNCTION_EPILOGUE} are not invoked.
4823
4824 The @var{thunk_fndecl} is redundant.  (@var{delta} and @var{function}
4825 have already been extracted from it.)  It might possibly be useful on
4826 some targets, but probably not.
4827
4828 If you do not define this macro, the target-independent code in the C++
4829 front end will generate a less efficient heavyweight thunk that calls
4830 @var{function} instead of jumping to it.  The generic approach does
4831 not support varargs.
4832 @end deftypefn
4833
4834 @hook TARGET_ASM_CAN_OUTPUT_MI_THUNK
4835 A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be able
4836 to output the assembler code for the thunk function specified by the
4837 arguments it is passed, and false otherwise.  In the latter case, the
4838 generic approach will be used by the C++ front end, with the limitations
4839 previously exposed.
4840 @end deftypefn
4841
4842 @node Profiling
4843 @subsection Generating Code for Profiling
4844 @cindex profiling, code generation
4845
4846 These macros will help you generate code for profiling.
4847
4848 @defmac FUNCTION_PROFILER (@var{file}, @var{labelno})
4849 A C statement or compound statement to output to @var{file} some
4850 assembler code to call the profiling subroutine @code{mcount}.
4851
4852 @findex mcount
4853 The details of how @code{mcount} expects to be called are determined by
4854 your operating system environment, not by GCC@.  To figure them out,
4855 compile a small program for profiling using the system's installed C
4856 compiler and look at the assembler code that results.
4857
4858 Older implementations of @code{mcount} expect the address of a counter
4859 variable to be loaded into some register.  The name of this variable is
4860 @samp{LP} followed by the number @var{labelno}, so you would generate
4861 the name using @samp{LP%d} in a @code{fprintf}.
4862 @end defmac
4863
4864 @defmac PROFILE_HOOK
4865 A C statement or compound statement to output to @var{file} some assembly
4866 code to call the profiling subroutine @code{mcount} even the target does
4867 not support profiling.
4868 @end defmac
4869
4870 @defmac NO_PROFILE_COUNTERS
4871 Define this macro to be an expression with a nonzero value if the
4872 @code{mcount} subroutine on your system does not need a counter variable
4873 allocated for each function.  This is true for almost all modern
4874 implementations.  If you define this macro, you must not use the
4875 @var{labelno} argument to @code{FUNCTION_PROFILER}.
4876 @end defmac
4877
4878 @defmac PROFILE_BEFORE_PROLOGUE
4879 Define this macro if the code for function profiling should come before
4880 the function prologue.  Normally, the profiling code comes after.
4881 @end defmac
4882
4883 @node Tail Calls
4884 @subsection Permitting tail calls
4885 @cindex tail calls
4886
4887 @hook TARGET_FUNCTION_OK_FOR_SIBCALL
4888 True if it is ok to do sibling call optimization for the specified
4889 call expression @var{exp}.  @var{decl} will be the called function,
4890 or @code{NULL} if this is an indirect call.
4891
4892 It is not uncommon for limitations of calling conventions to prevent
4893 tail calls to functions outside the current unit of translation, or
4894 during PIC compilation.  The hook is used to enforce these restrictions,
4895 as the @code{sibcall} md pattern can not fail, or fall over to a
4896 ``normal'' call.  The criteria for successful sibling call optimization
4897 may vary greatly between different architectures.
4898 @end deftypefn
4899
4900 @hook TARGET_EXTRA_LIVE_ON_ENTRY
4901 Add any hard registers to @var{regs} that are live on entry to the
4902 function.  This hook only needs to be defined to provide registers that
4903 cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved
4904 registers, STATIC_CHAIN_INCOMING_REGNUM, STATIC_CHAIN_REGNUM,
4905 TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM, EH_USES,
4906 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the PIC_OFFSET_TABLE_REGNUM.
4907 @end deftypefn
4908
4909 @hook TARGET_SET_UP_BY_PROLOGUE
4910
4911 @node Stack Smashing Protection
4912 @subsection Stack smashing protection
4913 @cindex stack smashing protection
4914
4915 @hook TARGET_STACK_PROTECT_GUARD
4916 This hook returns a @code{DECL} node for the external variable to use
4917 for the stack protection guard.  This variable is initialized by the
4918 runtime to some random value and is used to initialize the guard value
4919 that is placed at the top of the local stack frame.  The type of this
4920 variable must be @code{ptr_type_node}.
4921
4922 The default version of this hook creates a variable called
4923 @samp{__stack_chk_guard}, which is normally defined in @file{libgcc2.c}.
4924 @end deftypefn
4925
4926 @hook TARGET_STACK_PROTECT_FAIL
4927 This hook returns a tree expression that alerts the runtime that the
4928 stack protect guard variable has been modified.  This expression should
4929 involve a call to a @code{noreturn} function.
4930
4931 The default version of this hook invokes a function called
4932 @samp{__stack_chk_fail}, taking no arguments.  This function is
4933 normally defined in @file{libgcc2.c}.
4934 @end deftypefn
4935
4936 @hook TARGET_SUPPORTS_SPLIT_STACK
4937
4938 @node Varargs
4939 @section Implementing the Varargs Macros
4940 @cindex varargs implementation
4941
4942 GCC comes with an implementation of @code{<varargs.h>} and
4943 @code{<stdarg.h>} that work without change on machines that pass arguments
4944 on the stack.  Other machines require their own implementations of
4945 varargs, and the two machine independent header files must have
4946 conditionals to include it.
4947
4948 ISO @code{<stdarg.h>} differs from traditional @code{<varargs.h>} mainly in
4949 the calling convention for @code{va_start}.  The traditional
4950 implementation takes just one argument, which is the variable in which
4951 to store the argument pointer.  The ISO implementation of
4952 @code{va_start} takes an additional second argument.  The user is
4953 supposed to write the last named argument of the function here.
4954
4955 However, @code{va_start} should not use this argument.  The way to find
4956 the end of the named arguments is with the built-in functions described
4957 below.
4958
4959 @defmac __builtin_saveregs ()
4960 Use this built-in function to save the argument registers in memory so
4961 that the varargs mechanism can access them.  Both ISO and traditional
4962 versions of @code{va_start} must use @code{__builtin_saveregs}, unless
4963 you use @code{TARGET_SETUP_INCOMING_VARARGS} (see below) instead.
4964
4965 On some machines, @code{__builtin_saveregs} is open-coded under the
4966 control of the target hook @code{TARGET_EXPAND_BUILTIN_SAVEREGS}.  On
4967 other machines, it calls a routine written in assembler language,
4968 found in @file{libgcc2.c}.
4969
4970 Code generated for the call to @code{__builtin_saveregs} appears at the
4971 beginning of the function, as opposed to where the call to
4972 @code{__builtin_saveregs} is written, regardless of what the code is.
4973 This is because the registers must be saved before the function starts
4974 to use them for its own purposes.
4975 @c i rewrote the first sentence above to fix an overfull hbox. --mew
4976 @c 10feb93
4977 @end defmac
4978
4979 @defmac __builtin_next_arg (@var{lastarg})
4980 This builtin returns the address of the first anonymous stack
4981 argument, as type @code{void *}.  If @code{ARGS_GROW_DOWNWARD}, it
4982 returns the address of the location above the first anonymous stack
4983 argument.  Use it in @code{va_start} to initialize the pointer for
4984 fetching arguments from the stack.  Also use it in @code{va_start} to
4985 verify that the second parameter @var{lastarg} is the last named argument
4986 of the current function.
4987 @end defmac
4988
4989 @defmac __builtin_classify_type (@var{object})
4990 Since each machine has its own conventions for which data types are
4991 passed in which kind of register, your implementation of @code{va_arg}
4992 has to embody these conventions.  The easiest way to categorize the
4993 specified data type is to use @code{__builtin_classify_type} together
4994 with @code{sizeof} and @code{__alignof__}.
4995
4996 @code{__builtin_classify_type} ignores the value of @var{object},
4997 considering only its data type.  It returns an integer describing what
4998 kind of type that is---integer, floating, pointer, structure, and so on.
4999
5000 The file @file{typeclass.h} defines an enumeration that you can use to
5001 interpret the values of @code{__builtin_classify_type}.
5002 @end defmac
5003
5004 These machine description macros help implement varargs:
5005
5006 @hook TARGET_EXPAND_BUILTIN_SAVEREGS
5007 If defined, this hook produces the machine-specific code for a call to
5008 @code{__builtin_saveregs}.  This code will be moved to the very
5009 beginning of the function, before any parameter access are made.  The
5010 return value of this function should be an RTX that contains the value
5011 to use as the return of @code{__builtin_saveregs}.
5012 @end deftypefn
5013
5014 @hook TARGET_SETUP_INCOMING_VARARGS
5015 This target hook offers an alternative to using
5016 @code{__builtin_saveregs} and defining the hook
5017 @code{TARGET_EXPAND_BUILTIN_SAVEREGS}.  Use it to store the anonymous
5018 register arguments into the stack so that all the arguments appear to
5019 have been passed consecutively on the stack.  Once this is done, you can
5020 use the standard implementation of varargs that works for machines that
5021 pass all their arguments on the stack.
5022
5023 The argument @var{args_so_far} points to the @code{CUMULATIVE_ARGS} data
5024 structure, containing the values that are obtained after processing the
5025 named arguments.  The arguments @var{mode} and @var{type} describe the
5026 last named argument---its machine mode and its data type as a tree node.
5027
5028 The target hook should do two things: first, push onto the stack all the
5029 argument registers @emph{not} used for the named arguments, and second,
5030 store the size of the data thus pushed into the @code{int}-valued
5031 variable pointed to by @var{pretend_args_size}.  The value that you
5032 store here will serve as additional offset for setting up the stack
5033 frame.
5034
5035 Because you must generate code to push the anonymous arguments at
5036 compile time without knowing their data types,
5037 @code{TARGET_SETUP_INCOMING_VARARGS} is only useful on machines that
5038 have just a single category of argument register and use it uniformly
5039 for all data types.
5040
5041 If the argument @var{second_time} is nonzero, it means that the
5042 arguments of the function are being analyzed for the second time.  This
5043 happens for an inline function, which is not actually compiled until the
5044 end of the source file.  The hook @code{TARGET_SETUP_INCOMING_VARARGS} should
5045 not generate any instructions in this case.
5046 @end deftypefn
5047
5048 @hook TARGET_STRICT_ARGUMENT_NAMING
5049 Define this hook to return @code{true} if the location where a function
5050 argument is passed depends on whether or not it is a named argument.
5051
5052 This hook controls how the @var{named} argument to @code{TARGET_FUNCTION_ARG}
5053 is set for varargs and stdarg functions.  If this hook returns
5054 @code{true}, the @var{named} argument is always true for named
5055 arguments, and false for unnamed arguments.  If it returns @code{false},
5056 but @code{TARGET_PRETEND_OUTGOING_VARARGS_NAMED} returns @code{true},
5057 then all arguments are treated as named.  Otherwise, all named arguments
5058 except the last are treated as named.
5059
5060 You need not define this hook if it always returns @code{false}.
5061 @end deftypefn
5062
5063 @hook TARGET_PRETEND_OUTGOING_VARARGS_NAMED
5064 If you need to conditionally change ABIs so that one works with
5065 @code{TARGET_SETUP_INCOMING_VARARGS}, but the other works like neither
5066 @code{TARGET_SETUP_INCOMING_VARARGS} nor @code{TARGET_STRICT_ARGUMENT_NAMING} was
5067 defined, then define this hook to return @code{true} if
5068 @code{TARGET_SETUP_INCOMING_VARARGS} is used, @code{false} otherwise.
5069 Otherwise, you should not define this hook.
5070 @end deftypefn
5071
5072 @node Trampolines
5073 @section Trampolines for Nested Functions
5074 @cindex trampolines for nested functions
5075 @cindex nested functions, trampolines for
5076
5077 A @dfn{trampoline} is a small piece of code that is created at run time
5078 when the address of a nested function is taken.  It normally resides on
5079 the stack, in the stack frame of the containing function.  These macros
5080 tell GCC how to generate code to allocate and initialize a
5081 trampoline.
5082
5083 The instructions in the trampoline must do two things: load a constant
5084 address into the static chain register, and jump to the real address of
5085 the nested function.  On CISC machines such as the m68k, this requires
5086 two instructions, a move immediate and a jump.  Then the two addresses
5087 exist in the trampoline as word-long immediate operands.  On RISC
5088 machines, it is often necessary to load each address into a register in
5089 two parts.  Then pieces of each address form separate immediate
5090 operands.
5091
5092 The code generated to initialize the trampoline must store the variable
5093 parts---the static chain value and the function address---into the
5094 immediate operands of the instructions.  On a CISC machine, this is
5095 simply a matter of copying each address to a memory reference at the
5096 proper offset from the start of the trampoline.  On a RISC machine, it
5097 may be necessary to take out pieces of the address and store them
5098 separately.
5099
5100 @hook TARGET_ASM_TRAMPOLINE_TEMPLATE
5101 This hook is called by @code{assemble_trampoline_template} to output,
5102 on the stream @var{f}, assembler code for a block of data that contains
5103 the constant parts of a trampoline.  This code should not include a
5104 label---the label is taken care of automatically.
5105
5106 If you do not define this hook, it means no template is needed
5107 for the target.  Do not define this hook on systems where the block move
5108 code to copy the trampoline into place would be larger than the code
5109 to generate it on the spot.
5110 @end deftypefn
5111
5112 @defmac TRAMPOLINE_SECTION
5113 Return the section into which the trampoline template is to be placed
5114 (@pxref{Sections}).  The default value is @code{readonly_data_section}.
5115 @end defmac
5116
5117 @defmac TRAMPOLINE_SIZE
5118 A C expression for the size in bytes of the trampoline, as an integer.
5119 @end defmac
5120
5121 @defmac TRAMPOLINE_ALIGNMENT
5122 Alignment required for trampolines, in bits.
5123
5124 If you don't define this macro, the value of @code{FUNCTION_ALIGNMENT}
5125 is used for aligning trampolines.
5126 @end defmac
5127
5128 @hook TARGET_TRAMPOLINE_INIT
5129 This hook is called to initialize a trampoline.
5130 @var{m_tramp} is an RTX for the memory block for the trampoline; @var{fndecl}
5131 is the @code{FUNCTION_DECL} for the nested function; @var{static_chain} is an
5132 RTX for the static chain value that should be passed to the function
5133 when it is called.
5134
5135 If the target defines @code{TARGET_ASM_TRAMPOLINE_TEMPLATE}, then the
5136 first thing this hook should do is emit a block move into @var{m_tramp}
5137 from the memory block returned by @code{assemble_trampoline_template}.
5138 Note that the block move need only cover the constant parts of the
5139 trampoline.  If the target isolates the variable parts of the trampoline
5140 to the end, not all @code{TRAMPOLINE_SIZE} bytes need be copied.
5141
5142 If the target requires any other actions, such as flushing caches or
5143 enabling stack execution, these actions should be performed after
5144 initializing the trampoline proper.
5145 @end deftypefn
5146
5147 @hook TARGET_TRAMPOLINE_ADJUST_ADDRESS
5148 This hook should perform any machine-specific adjustment in
5149 the address of the trampoline.  Its argument contains the address of the
5150 memory block that was passed to @code{TARGET_TRAMPOLINE_INIT}.  In case
5151 the address to be used for a function call should be different from the
5152 address at which the template was stored, the different address should
5153 be returned; otherwise @var{addr} should be returned unchanged.
5154 If this hook is not defined, @var{addr} will be used for function calls.
5155 @end deftypefn
5156
5157 Implementing trampolines is difficult on many machines because they have
5158 separate instruction and data caches.  Writing into a stack location
5159 fails to clear the memory in the instruction cache, so when the program
5160 jumps to that location, it executes the old contents.
5161
5162 Here are two possible solutions.  One is to clear the relevant parts of
5163 the instruction cache whenever a trampoline is set up.  The other is to
5164 make all trampolines identical, by having them jump to a standard
5165 subroutine.  The former technique makes trampoline execution faster; the
5166 latter makes initialization faster.
5167
5168 To clear the instruction cache when a trampoline is initialized, define
5169 the following macro.
5170
5171 @defmac CLEAR_INSN_CACHE (@var{beg}, @var{end})
5172 If defined, expands to a C expression clearing the @emph{instruction
5173 cache} in the specified interval.  The definition of this macro would
5174 typically be a series of @code{asm} statements.  Both @var{beg} and
5175 @var{end} are both pointer expressions.
5176 @end defmac
5177
5178 To use a standard subroutine, define the following macro.  In addition,
5179 you must make sure that the instructions in a trampoline fill an entire
5180 cache line with identical instructions, or else ensure that the
5181 beginning of the trampoline code is always aligned at the same point in
5182 its cache line.  Look in @file{m68k.h} as a guide.
5183
5184 @defmac TRANSFER_FROM_TRAMPOLINE
5185 Define this macro if trampolines need a special subroutine to do their
5186 work.  The macro should expand to a series of @code{asm} statements
5187 which will be compiled with GCC@.  They go in a library function named
5188 @code{__transfer_from_trampoline}.
5189
5190 If you need to avoid executing the ordinary prologue code of a compiled
5191 C function when you jump to the subroutine, you can do so by placing a
5192 special label of your own in the assembler code.  Use one @code{asm}
5193 statement to generate an assembler label, and another to make the label
5194 global.  Then trampolines can use that label to jump directly to your
5195 special assembler code.
5196 @end defmac
5197
5198 @node Library Calls
5199 @section Implicit Calls to Library Routines
5200 @cindex library subroutine names
5201 @cindex @file{libgcc.a}
5202
5203 @c prevent bad page break with this line
5204 Here is an explanation of implicit calls to library routines.
5205
5206 @defmac DECLARE_LIBRARY_RENAMES
5207 This macro, if defined, should expand to a piece of C code that will get
5208 expanded when compiling functions for libgcc.a.  It can be used to
5209 provide alternate names for GCC's internal library functions if there
5210 are ABI-mandated names that the compiler should provide.
5211 @end defmac
5212
5213 @findex set_optab_libfunc
5214 @findex init_one_libfunc
5215 @hook TARGET_INIT_LIBFUNCS
5216 This hook should declare additional library routines or rename
5217 existing ones, using the functions @code{set_optab_libfunc} and
5218 @code{init_one_libfunc} defined in @file{optabs.c}.
5219 @code{init_optabs} calls this macro after initializing all the normal
5220 library routines.
5221
5222 The default is to do nothing.  Most ports don't need to define this hook.
5223 @end deftypefn
5224
5225 @hook TARGET_LIBFUNC_GNU_PREFIX
5226
5227 @defmac FLOAT_LIB_COMPARE_RETURNS_BOOL (@var{mode}, @var{comparison})
5228 This macro should return @code{true} if the library routine that
5229 implements the floating point comparison operator @var{comparison} in
5230 mode @var{mode} will return a boolean, and @var{false} if it will
5231 return a tristate.
5232
5233 GCC's own floating point libraries return tristates from the
5234 comparison operators, so the default returns false always.  Most ports
5235 don't need to define this macro.
5236 @end defmac
5237
5238 @defmac TARGET_LIB_INT_CMP_BIASED
5239 This macro should evaluate to @code{true} if the integer comparison
5240 functions (like @code{__cmpdi2}) return 0 to indicate that the first
5241 operand is smaller than the second, 1 to indicate that they are equal,
5242 and 2 to indicate that the first operand is greater than the second.
5243 If this macro evaluates to @code{false} the comparison functions return
5244 @minus{}1, 0, and 1 instead of 0, 1, and 2.  If the target uses the routines
5245 in @file{libgcc.a}, you do not need to define this macro.
5246 @end defmac
5247
5248 @cindex @code{EDOM}, implicit usage
5249 @findex matherr
5250 @defmac TARGET_EDOM
5251 The value of @code{EDOM} on the target machine, as a C integer constant
5252 expression.  If you don't define this macro, GCC does not attempt to
5253 deposit the value of @code{EDOM} into @code{errno} directly.  Look in
5254 @file{/usr/include/errno.h} to find the value of @code{EDOM} on your
5255 system.
5256
5257 If you do not define @code{TARGET_EDOM}, then compiled code reports
5258 domain errors by calling the library function and letting it report the
5259 error.  If mathematical functions on your system use @code{matherr} when
5260 there is an error, then you should leave @code{TARGET_EDOM} undefined so
5261 that @code{matherr} is used normally.
5262 @end defmac
5263
5264 @cindex @code{errno}, implicit usage
5265 @defmac GEN_ERRNO_RTX
5266 Define this macro as a C expression to create an rtl expression that
5267 refers to the global ``variable'' @code{errno}.  (On certain systems,
5268 @code{errno} may not actually be a variable.)  If you don't define this
5269 macro, a reasonable default is used.
5270 @end defmac
5271
5272 @cindex C99 math functions, implicit usage
5273 @defmac TARGET_C99_FUNCTIONS
5274 When this macro is nonzero, GCC will implicitly optimize @code{sin} calls into
5275 @code{sinf} and similarly for other functions defined by C99 standard.  The
5276 default is zero because a number of existing systems lack support for these
5277 functions in their runtime so this macro needs to be redefined to one on
5278 systems that do support the C99 runtime.
5279 @end defmac
5280
5281 @cindex sincos math function, implicit usage
5282 @defmac TARGET_HAS_SINCOS
5283 When this macro is nonzero, GCC will implicitly optimize calls to @code{sin}
5284 and @code{cos} with the same argument to a call to @code{sincos}.  The
5285 default is zero.  The target has to provide the following functions:
5286 @smallexample
5287 void sincos(double x, double *sin, double *cos);
5288 void sincosf(float x, float *sin, float *cos);
5289 void sincosl(long double x, long double *sin, long double *cos);
5290 @end smallexample
5291 @end defmac
5292
5293 @defmac NEXT_OBJC_RUNTIME
5294 Set this macro to 1 to use the "NeXT" Objective-C message sending conventions
5295 by default.  This calling convention involves passing the object, the selector
5296 and the method arguments all at once to the method-lookup library function.
5297 This is the usual setting when targeting Darwin/Mac OS X systems, which have
5298 the NeXT runtime installed.
5299
5300 If the macro is set to 0, the "GNU" Objective-C message sending convention
5301 will be used by default.  This convention passes just the object and the
5302 selector to the method-lookup function, which returns a pointer to the method.
5303
5304 In either case, it remains possible to select code-generation for the alternate
5305 scheme, by means of compiler command line switches.
5306 @end defmac
5307
5308 @node Addressing Modes
5309 @section Addressing Modes
5310 @cindex addressing modes
5311
5312 @c prevent bad page break with this line
5313 This is about addressing modes.
5314
5315 @defmac HAVE_PRE_INCREMENT
5316 @defmacx HAVE_PRE_DECREMENT
5317 @defmacx HAVE_POST_INCREMENT
5318 @defmacx HAVE_POST_DECREMENT
5319 A C expression that is nonzero if the machine supports pre-increment,
5320 pre-decrement, post-increment, or post-decrement addressing respectively.
5321 @end defmac
5322
5323 @defmac HAVE_PRE_MODIFY_DISP
5324 @defmacx HAVE_POST_MODIFY_DISP
5325 A C expression that is nonzero if the machine supports pre- or
5326 post-address side-effect generation involving constants other than
5327 the size of the memory operand.
5328 @end defmac
5329
5330 @defmac HAVE_PRE_MODIFY_REG
5331 @defmacx HAVE_POST_MODIFY_REG
5332 A C expression that is nonzero if the machine supports pre- or
5333 post-address side-effect generation involving a register displacement.
5334 @end defmac
5335
5336 @defmac CONSTANT_ADDRESS_P (@var{x})
5337 A C expression that is 1 if the RTX @var{x} is a constant which
5338 is a valid address.  On most machines the default definition of
5339 @code{(CONSTANT_P (@var{x}) && GET_CODE (@var{x}) != CONST_DOUBLE)}
5340 is acceptable, but a few machines are more restrictive as to which
5341 constant addresses are supported.
5342 @end defmac
5343
5344 @defmac CONSTANT_P (@var{x})
5345 @code{CONSTANT_P}, which is defined by target-independent code,
5346 accepts integer-values expressions whose values are not explicitly
5347 known, such as @code{symbol_ref}, @code{label_ref}, and @code{high}
5348 expressions and @code{const} arithmetic expressions, in addition to
5349 @code{const_int} and @code{const_double} expressions.
5350 @end defmac
5351
5352 @defmac MAX_REGS_PER_ADDRESS
5353 A number, the maximum number of registers that can appear in a valid
5354 memory address.  Note that it is up to you to specify a value equal to
5355 the maximum number that @code{TARGET_LEGITIMATE_ADDRESS_P} would ever
5356 accept.
5357 @end defmac
5358
5359 @hook TARGET_LEGITIMATE_ADDRESS_P
5360 A function that returns whether @var{x} (an RTX) is a legitimate memory
5361 address on the target machine for a memory operand of mode @var{mode}.
5362
5363 Legitimate addresses are defined in two variants: a strict variant and a
5364 non-strict one.  The @var{strict} parameter chooses which variant is
5365 desired by the caller.
5366
5367 The strict variant is used in the reload pass.  It must be defined so
5368 that any pseudo-register that has not been allocated a hard register is
5369 considered a memory reference.  This is because in contexts where some
5370 kind of register is required, a pseudo-register with no hard register
5371 must be rejected.  For non-hard registers, the strict variant should look
5372 up the @code{reg_renumber} array; it should then proceed using the hard
5373 register number in the array, or treat the pseudo as a memory reference
5374 if the array holds @code{-1}.
5375
5376 The non-strict variant is used in other passes.  It must be defined to
5377 accept all pseudo-registers in every context where some kind of
5378 register is required.
5379
5380 Normally, constant addresses which are the sum of a @code{symbol_ref}
5381 and an integer are stored inside a @code{const} RTX to mark them as
5382 constant.  Therefore, there is no need to recognize such sums
5383 specifically as legitimate addresses.  Normally you would simply
5384 recognize any @code{const} as legitimate.
5385
5386 Usually @code{PRINT_OPERAND_ADDRESS} is not prepared to handle constant
5387 sums that are not marked with  @code{const}.  It assumes that a naked
5388 @code{plus} indicates indexing.  If so, then you @emph{must} reject such
5389 naked constant sums as illegitimate addresses, so that none of them will
5390 be given to @code{PRINT_OPERAND_ADDRESS}.
5391
5392 @cindex @code{TARGET_ENCODE_SECTION_INFO} and address validation
5393 On some machines, whether a symbolic address is legitimate depends on
5394 the section that the address refers to.  On these machines, define the
5395 target hook @code{TARGET_ENCODE_SECTION_INFO} to store the information
5396 into the @code{symbol_ref}, and then check for it here.  When you see a
5397 @code{const}, you will have to look inside it to find the
5398 @code{symbol_ref} in order to determine the section.  @xref{Assembler
5399 Format}.
5400
5401 @cindex @code{GO_IF_LEGITIMATE_ADDRESS}
5402 Some ports are still using a deprecated legacy substitute for
5403 this hook, the @code{GO_IF_LEGITIMATE_ADDRESS} macro.  This macro
5404 has this syntax:
5405
5406 @example
5407 #define GO_IF_LEGITIMATE_ADDRESS (@var{mode}, @var{x}, @var{label})
5408 @end example
5409
5410 @noindent
5411 and should @code{goto @var{label}} if the address @var{x} is a valid
5412 address on the target machine for a memory operand of mode @var{mode}.
5413
5414 @findex REG_OK_STRICT
5415 Compiler source files that want to use the strict variant of this
5416 macro define the macro @code{REG_OK_STRICT}.  You should use an
5417 @code{#ifdef REG_OK_STRICT} conditional to define the strict variant in
5418 that case and the non-strict variant otherwise.
5419
5420 Using the hook is usually simpler because it limits the number of
5421 files that are recompiled when changes are made.
5422 @end deftypefn
5423
5424 @defmac TARGET_MEM_CONSTRAINT
5425 A single character to be used instead of the default @code{'m'}
5426 character for general memory addresses.  This defines the constraint
5427 letter which matches the memory addresses accepted by
5428 @code{TARGET_LEGITIMATE_ADDRESS_P}.  Define this macro if you want to
5429 support new address formats in your back end without changing the
5430 semantics of the @code{'m'} constraint.  This is necessary in order to
5431 preserve functionality of inline assembly constructs using the
5432 @code{'m'} constraint.
5433 @end defmac
5434
5435 @defmac FIND_BASE_TERM (@var{x})
5436 A C expression to determine the base term of address @var{x},
5437 or to provide a simplified version of @var{x} from which @file{alias.c}
5438 can easily find the base term.  This macro is used in only two places:
5439 @code{find_base_value} and @code{find_base_term} in @file{alias.c}.
5440
5441 It is always safe for this macro to not be defined.  It exists so
5442 that alias analysis can understand machine-dependent addresses.
5443
5444 The typical use of this macro is to handle addresses containing
5445 a label_ref or symbol_ref within an UNSPEC@.
5446 @end defmac
5447
5448 @hook TARGET_LEGITIMIZE_ADDRESS
5449 This hook is given an invalid memory address @var{x} for an
5450 operand of mode @var{mode} and should try to return a valid memory
5451 address.
5452
5453 @findex break_out_memory_refs
5454 @var{x} will always be the result of a call to @code{break_out_memory_refs},
5455 and @var{oldx} will be the operand that was given to that function to produce
5456 @var{x}.
5457
5458 The code of the hook should not alter the substructure of
5459 @var{x}.  If it transforms @var{x} into a more legitimate form, it
5460 should return the new @var{x}.
5461
5462 It is not necessary for this hook to come up with a legitimate address.
5463 The compiler has standard ways of doing so in all cases.  In fact, it
5464 is safe to omit this hook or make it return @var{x} if it cannot find
5465 a valid way to legitimize the address.  But often a machine-dependent
5466 strategy can generate better code.
5467 @end deftypefn
5468
5469 @defmac LEGITIMIZE_RELOAD_ADDRESS (@var{x}, @var{mode}, @var{opnum}, @var{type}, @var{ind_levels}, @var{win})
5470 A C compound statement that attempts to replace @var{x}, which is an address
5471 that needs reloading, with a valid memory address for an operand of mode
5472 @var{mode}.  @var{win} will be a C statement label elsewhere in the code.
5473 It is not necessary to define this macro, but it might be useful for
5474 performance reasons.
5475
5476 For example, on the i386, it is sometimes possible to use a single
5477 reload register instead of two by reloading a sum of two pseudo
5478 registers into a register.  On the other hand, for number of RISC
5479 processors offsets are limited so that often an intermediate address
5480 needs to be generated in order to address a stack slot.  By defining
5481 @code{LEGITIMIZE_RELOAD_ADDRESS} appropriately, the intermediate addresses
5482 generated for adjacent some stack slots can be made identical, and thus
5483 be shared.
5484
5485 @emph{Note}: This macro should be used with caution.  It is necessary
5486 to know something of how reload works in order to effectively use this,
5487 and it is quite easy to produce macros that build in too much knowledge
5488 of reload internals.
5489
5490 @emph{Note}: This macro must be able to reload an address created by a
5491 previous invocation of this macro.  If it fails to handle such addresses
5492 then the compiler may generate incorrect code or abort.
5493
5494 @findex push_reload
5495 The macro definition should use @code{push_reload} to indicate parts that
5496 need reloading; @var{opnum}, @var{type} and @var{ind_levels} are usually
5497 suitable to be passed unaltered to @code{push_reload}.
5498
5499 The code generated by this macro must not alter the substructure of
5500 @var{x}.  If it transforms @var{x} into a more legitimate form, it
5501 should assign @var{x} (which will always be a C variable) a new value.
5502 This also applies to parts that you change indirectly by calling
5503 @code{push_reload}.
5504
5505 @findex strict_memory_address_p
5506 The macro definition may use @code{strict_memory_address_p} to test if
5507 the address has become legitimate.
5508
5509 @findex copy_rtx
5510 If you want to change only a part of @var{x}, one standard way of doing
5511 this is to use @code{copy_rtx}.  Note, however, that it unshares only a
5512 single level of rtl.  Thus, if the part to be changed is not at the
5513 top level, you'll need to replace first the top level.
5514 It is not necessary for this macro to come up with a legitimate
5515 address;  but often a machine-dependent strategy can generate better code.
5516 @end defmac
5517
5518 @hook TARGET_MODE_DEPENDENT_ADDRESS_P
5519 This hook returns @code{true} if memory address @var{addr} can have
5520 different meanings depending on the machine mode of the memory
5521 reference it is used for or if the address is valid for some modes
5522 but not others.
5523
5524 Autoincrement and autodecrement addresses typically have mode-dependent
5525 effects because the amount of the increment or decrement is the size
5526 of the operand being addressed.  Some machines have other mode-dependent
5527 addresses.  Many RISC machines have no mode-dependent addresses.
5528
5529 You may assume that @var{addr} is a valid address for the machine.
5530
5531 The default version of this hook returns @code{false}.
5532 @end deftypefn
5533
5534 @defmac GO_IF_MODE_DEPENDENT_ADDRESS (@var{addr}, @var{label})
5535 A C statement or compound statement with a conditional @code{goto
5536 @var{label};} executed if memory address @var{x} (an RTX) can have
5537 different meanings depending on the machine mode of the memory
5538 reference it is used for or if the address is valid for some modes
5539 but not others.
5540
5541 Autoincrement and autodecrement addresses typically have mode-dependent
5542 effects because the amount of the increment or decrement is the size
5543 of the operand being addressed.  Some machines have other mode-dependent
5544 addresses.  Many RISC machines have no mode-dependent addresses.
5545
5546 You may assume that @var{addr} is a valid address for the machine.
5547
5548 These are obsolete macros, replaced by the
5549 @code{TARGET_MODE_DEPENDENT_ADDRESS_P} target hook.
5550 @end defmac
5551
5552 @hook TARGET_LEGITIMATE_CONSTANT_P
5553 This hook returns true if @var{x} is a legitimate constant for a
5554 @var{mode}-mode immediate operand on the target machine.  You can assume that
5555 @var{x} satisfies @code{CONSTANT_P}, so you need not check this.
5556
5557 The default definition returns true.
5558 @end deftypefn
5559
5560 @hook TARGET_DELEGITIMIZE_ADDRESS
5561 This hook is used to undo the possibly obfuscating effects of the
5562 @code{LEGITIMIZE_ADDRESS} and @code{LEGITIMIZE_RELOAD_ADDRESS} target
5563 macros.  Some backend implementations of these macros wrap symbol
5564 references inside an @code{UNSPEC} rtx to represent PIC or similar
5565 addressing modes.  This target hook allows GCC's optimizers to understand
5566 the semantics of these opaque @code{UNSPEC}s by converting them back
5567 into their original form.
5568 @end deftypefn
5569
5570 @hook TARGET_CONST_NOT_OK_FOR_DEBUG_P
5571 This hook should return true if @var{x} should not be emitted into
5572 debug sections.
5573 @end deftypefn
5574
5575 @hook TARGET_CANNOT_FORCE_CONST_MEM
5576 This hook should return true if @var{x} is of a form that cannot (or
5577 should not) be spilled to the constant pool.  @var{mode} is the mode
5578 of @var{x}.
5579
5580 The default version of this hook returns false.
5581
5582 The primary reason to define this hook is to prevent reload from
5583 deciding that a non-legitimate constant would be better reloaded
5584 from the constant pool instead of spilling and reloading a register
5585 holding the constant.  This restriction is often true of addresses
5586 of TLS symbols for various targets.
5587 @end deftypefn
5588
5589 @hook TARGET_USE_BLOCKS_FOR_CONSTANT_P
5590 This hook should return true if pool entries for constant @var{x} can
5591 be placed in an @code{object_block} structure.  @var{mode} is the mode
5592 of @var{x}.
5593
5594 The default version returns false for all constants.
5595 @end deftypefn
5596
5597 @hook TARGET_BUILTIN_RECIPROCAL
5598 This hook should return the DECL of a function that implements reciprocal of
5599 the builtin function with builtin function code @var{fn}, or
5600 @code{NULL_TREE} if such a function is not available.  @var{md_fn} is true
5601 when @var{fn} is a code of a machine-dependent builtin function.  When
5602 @var{sqrt} is true, additional optimizations that apply only to the reciprocal
5603 of a square root function are performed, and only reciprocals of @code{sqrt}
5604 function are valid.
5605 @end deftypefn
5606
5607 @hook TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
5608 This hook should return the DECL of a function @var{f} that given an
5609 address @var{addr} as an argument returns a mask @var{m} that can be
5610 used to extract from two vectors the relevant data that resides in
5611 @var{addr} in case @var{addr} is not properly aligned.
5612
5613 The autovectorizer, when vectorizing a load operation from an address
5614 @var{addr} that may be unaligned, will generate two vector loads from
5615 the two aligned addresses around @var{addr}. It then generates a
5616 @code{REALIGN_LOAD} operation to extract the relevant data from the
5617 two loaded vectors. The first two arguments to @code{REALIGN_LOAD},
5618 @var{v1} and @var{v2}, are the two vectors, each of size @var{VS}, and
5619 the third argument, @var{OFF}, defines how the data will be extracted
5620 from these two vectors: if @var{OFF} is 0, then the returned vector is
5621 @var{v2}; otherwise, the returned vector is composed from the last
5622 @var{VS}-@var{OFF} elements of @var{v1} concatenated to the first
5623 @var{OFF} elements of @var{v2}.
5624
5625 If this hook is defined, the autovectorizer will generate a call
5626 to @var{f} (using the DECL tree that this hook returns) and will
5627 use the return value of @var{f} as the argument @var{OFF} to
5628 @code{REALIGN_LOAD}. Therefore, the mask @var{m} returned by @var{f}
5629 should comply with the semantics expected by @code{REALIGN_LOAD}
5630 described above.
5631 If this hook is not defined, then @var{addr} will be used as
5632 the argument @var{OFF} to @code{REALIGN_LOAD}, in which case the low
5633 log2(@var{VS}) @minus{} 1 bits of @var{addr} will be considered.
5634 @end deftypefn
5635
5636 @hook TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN
5637 This hook should return the DECL of a function @var{f} that implements
5638 widening multiplication of the even elements of two input vectors of type @var{x}.
5639
5640 If this hook is defined, the autovectorizer will use it along with the
5641 @code{TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD} target hook when vectorizing
5642 widening multiplication in cases that the order of the results does not have to be
5643 preserved (e.g.@: used only by a reduction computation). Otherwise, the
5644 @code{widen_mult_hi/lo} idioms will be used.
5645 @end deftypefn
5646
5647 @hook TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD
5648 This hook should return the DECL of a function @var{f} that implements
5649 widening multiplication of the odd elements of two input vectors of type @var{x}.
5650
5651 If this hook is defined, the autovectorizer will use it along with the
5652 @code{TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN} target hook when vectorizing
5653 widening multiplication in cases that the order of the results does not have to be
5654 preserved (e.g.@: used only by a reduction computation). Otherwise, the
5655 @code{widen_mult_hi/lo} idioms will be used.
5656 @end deftypefn
5657
5658 @hook TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
5659 Returns cost of different scalar or vector statements for vectorization cost model.
5660 For vector memory operations the cost may depend on type (@var{vectype}) and
5661 misalignment value (@var{misalign}).
5662 @end deftypefn
5663
5664 @hook TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
5665 Return true if vector alignment is reachable (by peeling N iterations) for the given type.
5666 @end deftypefn
5667
5668 @hook TARGET_VECTORIZE_VEC_PERM_CONST_OK
5669 Return true if a vector created for @code{vec_perm_const} is valid.
5670 @end deftypefn
5671
5672 @hook TARGET_VECTORIZE_BUILTIN_CONVERSION
5673 This hook should return the DECL of a function that implements conversion of the
5674 input vector of type @var{src_type} to type @var{dest_type}.
5675 The value of @var{code} is one of the enumerators in @code{enum tree_code} and
5676 specifies how the conversion is to be applied
5677 (truncation, rounding, etc.).
5678
5679 If this hook is defined, the autovectorizer will use the
5680 @code{TARGET_VECTORIZE_BUILTIN_CONVERSION} target hook when vectorizing
5681 conversion. Otherwise, it will return @code{NULL_TREE}.
5682 @end deftypefn
5683
5684 @hook TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
5685 This hook should return the decl of a function that implements the
5686 vectorized variant of the builtin function with builtin function code
5687 @var{code} or @code{NULL_TREE} if such a function is not available.
5688 The value of @var{fndecl} is the builtin function declaration.  The
5689 return type of the vectorized function shall be of vector type
5690 @var{vec_type_out} and the argument types should be @var{vec_type_in}.
5691 @end deftypefn
5692
5693 @hook TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
5694 This hook should return true if the target supports misaligned vector
5695 store/load of a specific factor denoted in the @var{misalignment}
5696 parameter.  The vector store/load should be of machine mode @var{mode} and
5697 the elements in the vectors should be of type @var{type}.  @var{is_packed}
5698 parameter is true if the memory access is defined in a packed struct.
5699 @end deftypefn
5700
5701 @hook TARGET_VECTORIZE_PREFERRED_SIMD_MODE
5702 This hook should return the preferred mode for vectorizing scalar
5703 mode @var{mode}.  The default is
5704 equal to @code{word_mode}, because the vectorizer can do some
5705 transformations even in absence of specialized @acronym{SIMD} hardware.
5706 @end deftypefn
5707
5708 @hook TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES
5709 This hook should return a mask of sizes that should be iterated over
5710 after trying to autovectorize using the vector size derived from the
5711 mode returned by @code{TARGET_VECTORIZE_PREFERRED_SIMD_MODE}.
5712 The default is zero which means to not iterate over other vector sizes.
5713 @end deftypefn
5714
5715 @hook TARGET_VECTORIZE_BUILTIN_TM_LOAD
5716
5717 @hook TARGET_VECTORIZE_BUILTIN_TM_STORE
5718
5719 @hook TARGET_VECTORIZE_BUILTIN_GATHER
5720 Target builtin that implements vector gather operation.  @var{mem_vectype}
5721 is the vector type of the load and @var{index_type} is scalar type of
5722 the index, scaled by @var{scale}.
5723 The default is @code{NULL_TREE} which means to not vectorize gather
5724 loads.
5725 @end deftypefn
5726
5727 @node Anchored Addresses
5728 @section Anchored Addresses
5729 @cindex anchored addresses
5730 @cindex @option{-fsection-anchors}
5731
5732 GCC usually addresses every static object as a separate entity.
5733 For example, if we have:
5734
5735 @smallexample
5736 static int a, b, c;
5737 int foo (void) @{ return a + b + c; @}
5738 @end smallexample
5739
5740 the code for @code{foo} will usually calculate three separate symbolic
5741 addresses: those of @code{a}, @code{b} and @code{c}.  On some targets,
5742 it would be better to calculate just one symbolic address and access
5743 the three variables relative to it.  The equivalent pseudocode would
5744 be something like:
5745
5746 @smallexample
5747 int foo (void)
5748 @{
5749   register int *xr = &x;
5750   return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
5751 @}
5752 @end smallexample
5753
5754 (which isn't valid C).  We refer to shared addresses like @code{x} as
5755 ``section anchors''.  Their use is controlled by @option{-fsection-anchors}.
5756
5757 The hooks below describe the target properties that GCC needs to know
5758 in order to make effective use of section anchors.  It won't use
5759 section anchors at all unless either @code{TARGET_MIN_ANCHOR_OFFSET}
5760 or @code{TARGET_MAX_ANCHOR_OFFSET} is set to a nonzero value.
5761
5762 @hook TARGET_MIN_ANCHOR_OFFSET
5763 The minimum offset that should be applied to a section anchor.
5764 On most targets, it should be the smallest offset that can be
5765 applied to a base register while still giving a legitimate address
5766 for every mode.  The default value is 0.
5767 @end deftypevr
5768
5769 @hook TARGET_MAX_ANCHOR_OFFSET
5770 Like @code{TARGET_MIN_ANCHOR_OFFSET}, but the maximum (inclusive)
5771 offset that should be applied to section anchors.  The default
5772 value is 0.
5773 @end deftypevr
5774
5775 @hook TARGET_ASM_OUTPUT_ANCHOR
5776 Write the assembly code to define section anchor @var{x}, which is a
5777 @code{SYMBOL_REF} for which @samp{SYMBOL_REF_ANCHOR_P (@var{x})} is true.
5778 The hook is called with the assembly output position set to the beginning
5779 of @code{SYMBOL_REF_BLOCK (@var{x})}.
5780
5781 If @code{ASM_OUTPUT_DEF} is available, the hook's default definition uses
5782 it to define the symbol as @samp{. + SYMBOL_REF_BLOCK_OFFSET (@var{x})}.
5783 If @code{ASM_OUTPUT_DEF} is not available, the hook's default definition
5784 is @code{NULL}, which disables the use of section anchors altogether.
5785 @end deftypefn
5786
5787 @hook TARGET_USE_ANCHORS_FOR_SYMBOL_P
5788 Return true if GCC should attempt to use anchors to access @code{SYMBOL_REF}
5789 @var{x}.  You can assume @samp{SYMBOL_REF_HAS_BLOCK_INFO_P (@var{x})} and
5790 @samp{!SYMBOL_REF_ANCHOR_P (@var{x})}.
5791
5792 The default version is correct for most targets, but you might need to
5793 intercept this hook to handle things like target-specific attributes
5794 or target-specific sections.
5795 @end deftypefn
5796
5797 @node Condition Code
5798 @section Condition Code Status
5799 @cindex condition code status
5800
5801 The macros in this section can be split in two families, according to the
5802 two ways of representing condition codes in GCC.
5803
5804 The first representation is the so called @code{(cc0)} representation
5805 (@pxref{Jump Patterns}), where all instructions can have an implicit
5806 clobber of the condition codes.  The second is the condition code
5807 register representation, which provides better schedulability for
5808 architectures that do have a condition code register, but on which
5809 most instructions do not affect it.  The latter category includes
5810 most RISC machines.
5811
5812 The implicit clobbering poses a strong restriction on the placement of
5813 the definition and use of the condition code, which need to be in adjacent
5814 insns for machines using @code{(cc0)}.  This can prevent important
5815 optimizations on some machines.  For example, on the IBM RS/6000, there
5816 is a delay for taken branches unless the condition code register is set
5817 three instructions earlier than the conditional branch.  The instruction
5818 scheduler cannot perform this optimization if it is not permitted to
5819 separate the definition and use of the condition code register.
5820
5821 For this reason, it is possible and suggested to use a register to
5822 represent the condition code for new ports.  If there is a specific
5823 condition code register in the machine, use a hard register.  If the
5824 condition code or comparison result can be placed in any general register,
5825 or if there are multiple condition registers, use a pseudo register.
5826 Registers used to store the condition code value will usually have a mode
5827 that is in class @code{MODE_CC}.
5828
5829 Alternatively, you can use @code{BImode} if the comparison operator is
5830 specified already in the compare instruction.  In this case, you are not
5831 interested in most macros in this section.
5832
5833 @menu
5834 * CC0 Condition Codes::      Old style representation of condition codes.
5835 * MODE_CC Condition Codes::  Modern representation of condition codes.
5836 * Cond Exec Macros::         Macros to control conditional execution.
5837 @end menu
5838
5839 @node CC0 Condition Codes
5840 @subsection Representation of condition codes using @code{(cc0)}
5841 @findex cc0
5842
5843 @findex cc_status
5844 The file @file{conditions.h} defines a variable @code{cc_status} to
5845 describe how the condition code was computed (in case the interpretation of
5846 the condition code depends on the instruction that it was set by).  This
5847 variable contains the RTL expressions on which the condition code is
5848 currently based, and several standard flags.
5849
5850 Sometimes additional machine-specific flags must be defined in the machine
5851 description header file.  It can also add additional machine-specific
5852 information by defining @code{CC_STATUS_MDEP}.
5853
5854 @defmac CC_STATUS_MDEP
5855 C code for a data type which is used for declaring the @code{mdep}
5856 component of @code{cc_status}.  It defaults to @code{int}.
5857
5858 This macro is not used on machines that do not use @code{cc0}.
5859 @end defmac
5860
5861 @defmac CC_STATUS_MDEP_INIT
5862 A C expression to initialize the @code{mdep} field to ``empty''.
5863 The default definition does nothing, since most machines don't use
5864 the field anyway.  If you want to use the field, you should probably
5865 define this macro to initialize it.
5866
5867 This macro is not used on machines that do not use @code{cc0}.
5868 @end defmac
5869
5870 @defmac NOTICE_UPDATE_CC (@var{exp}, @var{insn})
5871 A C compound statement to set the components of @code{cc_status}
5872 appropriately for an insn @var{insn} whose body is @var{exp}.  It is
5873 this macro's responsibility to recognize insns that set the condition
5874 code as a byproduct of other activity as well as those that explicitly
5875 set @code{(cc0)}.
5876
5877 This macro is not used on machines that do not use @code{cc0}.
5878
5879 If there are insns that do not set the condition code but do alter
5880 other machine registers, this macro must check to see whether they
5881 invalidate the expressions that the condition code is recorded as
5882 reflecting.  For example, on the 68000, insns that store in address
5883 registers do not set the condition code, which means that usually
5884 @code{NOTICE_UPDATE_CC} can leave @code{cc_status} unaltered for such
5885 insns.  But suppose that the previous insn set the condition code
5886 based on location @samp{a4@@(102)} and the current insn stores a new
5887 value in @samp{a4}.  Although the condition code is not changed by
5888 this, it will no longer be true that it reflects the contents of
5889 @samp{a4@@(102)}.  Therefore, @code{NOTICE_UPDATE_CC} must alter
5890 @code{cc_status} in this case to say that nothing is known about the
5891 condition code value.
5892
5893 The definition of @code{NOTICE_UPDATE_CC} must be prepared to deal
5894 with the results of peephole optimization: insns whose patterns are
5895 @code{parallel} RTXs containing various @code{reg}, @code{mem} or
5896 constants which are just the operands.  The RTL structure of these
5897 insns is not sufficient to indicate what the insns actually do.  What
5898 @code{NOTICE_UPDATE_CC} should do when it sees one is just to run
5899 @code{CC_STATUS_INIT}.
5900
5901 A possible definition of @code{NOTICE_UPDATE_CC} is to call a function
5902 that looks at an attribute (@pxref{Insn Attributes}) named, for example,
5903 @samp{cc}.  This avoids having detailed information about patterns in
5904 two places, the @file{md} file and in @code{NOTICE_UPDATE_CC}.
5905 @end defmac
5906
5907 @node MODE_CC Condition Codes
5908 @subsection Representation of condition codes using registers
5909 @findex CCmode
5910 @findex MODE_CC
5911
5912 @defmac SELECT_CC_MODE (@var{op}, @var{x}, @var{y})
5913 On many machines, the condition code may be produced by other instructions
5914 than compares, for example the branch can use directly the condition
5915 code set by a subtract instruction.  However, on some machines
5916 when the condition code is set this way some bits (such as the overflow
5917 bit) are not set in the same way as a test instruction, so that a different
5918 branch instruction must be used for some conditional branches.  When
5919 this happens, use the machine mode of the condition code register to
5920 record different formats of the condition code register.  Modes can
5921 also be used to record which compare instruction (e.g. a signed or an
5922 unsigned comparison) produced the condition codes.
5923
5924 If other modes than @code{CCmode} are required, add them to
5925 @file{@var{machine}-modes.def} and define @code{SELECT_CC_MODE} to choose
5926 a mode given an operand of a compare.  This is needed because the modes
5927 have to be chosen not only during RTL generation but also, for example,
5928 by instruction combination.  The result of @code{SELECT_CC_MODE} should
5929 be consistent with the mode used in the patterns; for example to support
5930 the case of the add on the SPARC discussed above, we have the pattern
5931
5932 @smallexample
5933 (define_insn ""
5934   [(set (reg:CC_NOOV 0)
5935         (compare:CC_NOOV
5936           (plus:SI (match_operand:SI 0 "register_operand" "%r")
5937                    (match_operand:SI 1 "arith_operand" "rI"))
5938           (const_int 0)))]
5939   ""
5940   "@dots{}")
5941 @end smallexample
5942
5943 @noindent
5944 together with a @code{SELECT_CC_MODE} that returns @code{CC_NOOVmode}
5945 for comparisons whose argument is a @code{plus}:
5946
5947 @smallexample
5948 #define SELECT_CC_MODE(OP,X,Y) \
5949   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT          \
5950    ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode)    \
5951    : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS    \
5952        || GET_CODE (X) == NEG) \
5953       ? CC_NOOVmode : CCmode))
5954 @end smallexample
5955
5956 Another reason to use modes is to retain information on which operands
5957 were used by the comparison; see @code{REVERSIBLE_CC_MODE} later in
5958 this section.
5959
5960 You should define this macro if and only if you define extra CC modes
5961 in @file{@var{machine}-modes.def}.
5962 @end defmac
5963
5964 @defmac CANONICALIZE_COMPARISON (@var{code}, @var{op0}, @var{op1})
5965 On some machines not all possible comparisons are defined, but you can
5966 convert an invalid comparison into a valid one.  For example, the Alpha
5967 does not have a @code{GT} comparison, but you can use an @code{LT}
5968 comparison instead and swap the order of the operands.
5969
5970 On such machines, define this macro to be a C statement to do any
5971 required conversions.  @var{code} is the initial comparison code
5972 and @var{op0} and @var{op1} are the left and right operands of the
5973 comparison, respectively.  You should modify @var{code}, @var{op0}, and
5974 @var{op1} as required.
5975
5976 GCC will not assume that the comparison resulting from this macro is
5977 valid but will see if the resulting insn matches a pattern in the
5978 @file{md} file.
5979
5980 You need not define this macro if it would never change the comparison
5981 code or operands.
5982 @end defmac
5983
5984 @defmac REVERSIBLE_CC_MODE (@var{mode})
5985 A C expression whose value is one if it is always safe to reverse a
5986 comparison whose mode is @var{mode}.  If @code{SELECT_CC_MODE}
5987 can ever return @var{mode} for a floating-point inequality comparison,
5988 then @code{REVERSIBLE_CC_MODE (@var{mode})} must be zero.
5989
5990 You need not define this macro if it would always returns zero or if the
5991 floating-point format is anything other than @code{IEEE_FLOAT_FORMAT}.
5992 For example, here is the definition used on the SPARC, where floating-point
5993 inequality comparisons are always given @code{CCFPEmode}:
5994
5995 @smallexample
5996 #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)
5997 @end smallexample
5998 @end defmac
5999
6000 @defmac REVERSE_CONDITION (@var{code}, @var{mode})
6001 A C expression whose value is reversed condition code of the @var{code} for
6002 comparison done in CC_MODE @var{mode}.  The macro is used only in case
6003 @code{REVERSIBLE_CC_MODE (@var{mode})} is nonzero.  Define this macro in case
6004 machine has some non-standard way how to reverse certain conditionals.  For
6005 instance in case all floating point conditions are non-trapping, compiler may
6006 freely convert unordered compares to ordered one.  Then definition may look
6007 like:
6008
6009 @smallexample
6010 #define REVERSE_CONDITION(CODE, MODE) \
6011    ((MODE) != CCFPmode ? reverse_condition (CODE) \
6012     : reverse_condition_maybe_unordered (CODE))
6013 @end smallexample
6014 @end defmac
6015
6016 @hook TARGET_FIXED_CONDITION_CODE_REGS
6017 On targets which do not use @code{(cc0)}, and which use a hard
6018 register rather than a pseudo-register to hold condition codes, the
6019 regular CSE passes are often not able to identify cases in which the
6020 hard register is set to a common value.  Use this hook to enable a
6021 small pass which optimizes such cases.  This hook should return true
6022 to enable this pass, and it should set the integers to which its
6023 arguments point to the hard register numbers used for condition codes.
6024 When there is only one such register, as is true on most systems, the
6025 integer pointed to by @var{p2} should be set to
6026 @code{INVALID_REGNUM}.
6027
6028 The default version of this hook returns false.
6029 @end deftypefn
6030
6031 @hook TARGET_CC_MODES_COMPATIBLE
6032 On targets which use multiple condition code modes in class
6033 @code{MODE_CC}, it is sometimes the case that a comparison can be
6034 validly done in more than one mode.  On such a system, define this
6035 target hook to take two mode arguments and to return a mode in which
6036 both comparisons may be validly done.  If there is no such mode,
6037 return @code{VOIDmode}.
6038
6039 The default version of this hook checks whether the modes are the
6040 same.  If they are, it returns that mode.  If they are different, it
6041 returns @code{VOIDmode}.
6042 @end deftypefn
6043
6044 @node Cond Exec Macros
6045 @subsection Macros to control conditional execution
6046 @findex conditional execution
6047 @findex predication
6048
6049 There is one macro that may need to be defined for targets
6050 supporting conditional execution, independent of how they
6051 represent conditional branches.
6052
6053 @defmac REVERSE_CONDEXEC_PREDICATES_P (@var{op1}, @var{op2})
6054 A C expression that returns true if the conditional execution predicate
6055 @var{op1}, a comparison operation, is the inverse of @var{op2} and vice
6056 versa.  Define this to return 0 if the target has conditional execution
6057 predicates that cannot be reversed safely.  There is no need to validate
6058 that the arguments of op1 and op2 are the same, this is done separately.
6059 If no expansion is specified, this macro is defined as follows:
6060
6061 @smallexample
6062 #define REVERSE_CONDEXEC_PREDICATES_P (x, y) \
6063    (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
6064 @end smallexample
6065 @end defmac
6066
6067 @node Costs
6068 @section Describing Relative Costs of Operations
6069 @cindex costs of instructions
6070 @cindex relative costs
6071 @cindex speed of instructions
6072
6073 These macros let you describe the relative speed of various operations
6074 on the target machine.
6075
6076 @defmac REGISTER_MOVE_COST (@var{mode}, @var{from}, @var{to})
6077 A C expression for the cost of moving data of mode @var{mode} from a
6078 register in class @var{from} to one in class @var{to}.  The classes are
6079 expressed using the enumeration values such as @code{GENERAL_REGS}.  A
6080 value of 2 is the default; other values are interpreted relative to
6081 that.
6082
6083 It is not required that the cost always equal 2 when @var{from} is the
6084 same as @var{to}; on some machines it is expensive to move between
6085 registers if they are not general registers.
6086
6087 If reload sees an insn consisting of a single @code{set} between two
6088 hard registers, and if @code{REGISTER_MOVE_COST} applied to their
6089 classes returns a value of 2, reload does not check to ensure that the
6090 constraints of the insn are met.  Setting a cost of other than 2 will
6091 allow reload to verify that the constraints are met.  You should do this
6092 if the @samp{mov@var{m}} pattern's constraints do not allow such copying.
6093
6094 These macros are obsolete, new ports should use the target hook
6095 @code{TARGET_REGISTER_MOVE_COST} instead.
6096 @end defmac
6097
6098 @hook TARGET_REGISTER_MOVE_COST
6099 This target hook should return the cost of moving data of mode @var{mode}
6100 from a register in class @var{from} to one in class @var{to}.  The classes
6101 are expressed using the enumeration values such as @code{GENERAL_REGS}.
6102 A value of 2 is the default; other values are interpreted relative to
6103 that.
6104
6105 It is not required that the cost always equal 2 when @var{from} is the
6106 same as @var{to}; on some machines it is expensive to move between
6107 registers if they are not general registers.
6108
6109 If reload sees an insn consisting of a single @code{set} between two
6110 hard registers, and if @code{TARGET_REGISTER_MOVE_COST} applied to their
6111 classes returns a value of 2, reload does not check to ensure that the
6112 constraints of the insn are met.  Setting a cost of other than 2 will
6113 allow reload to verify that the constraints are met.  You should do this
6114 if the @samp{mov@var{m}} pattern's constraints do not allow such copying.
6115
6116 The default version of this function returns 2.
6117 @end deftypefn
6118
6119 @defmac MEMORY_MOVE_COST (@var{mode}, @var{class}, @var{in})
6120 A C expression for the cost of moving data of mode @var{mode} between a
6121 register of class @var{class} and memory; @var{in} is zero if the value
6122 is to be written to memory, nonzero if it is to be read in.  This cost
6123 is relative to those in @code{REGISTER_MOVE_COST}.  If moving between
6124 registers and memory is more expensive than between two registers, you
6125 should define this macro to express the relative cost.
6126
6127 If you do not define this macro, GCC uses a default cost of 4 plus
6128 the cost of copying via a secondary reload register, if one is
6129 needed.  If your machine requires a secondary reload register to copy
6130 between memory and a register of @var{class} but the reload mechanism is
6131 more complex than copying via an intermediate, define this macro to
6132 reflect the actual cost of the move.
6133
6134 GCC defines the function @code{memory_move_secondary_cost} if
6135 secondary reloads are needed.  It computes the costs due to copying via
6136 a secondary register.  If your machine copies from memory using a
6137 secondary register in the conventional way but the default base value of
6138 4 is not correct for your machine, define this macro to add some other
6139 value to the result of that function.  The arguments to that function
6140 are the same as to this macro.
6141
6142 These macros are obsolete, new ports should use the target hook
6143 @code{TARGET_MEMORY_MOVE_COST} instead.
6144 @end defmac
6145
6146 @hook TARGET_MEMORY_MOVE_COST
6147 This target hook should return the cost of moving data of mode @var{mode}
6148 between a register of class @var{rclass} and memory; @var{in} is @code{false}
6149 if the value is to be written to memory, @code{true} if it is to be read in.
6150 This cost is relative to those in @code{TARGET_REGISTER_MOVE_COST}.
6151 If moving between registers and memory is more expensive than between two
6152 registers, you should add this target hook to express the relative cost.
6153
6154 If you do not add this target hook, GCC uses a default cost of 4 plus
6155 the cost of copying via a secondary reload register, if one is
6156 needed.  If your machine requires a secondary reload register to copy
6157 between memory and a register of @var{rclass} but the reload mechanism is
6158 more complex than copying via an intermediate, use this target hook to
6159 reflect the actual cost of the move.
6160
6161 GCC defines the function @code{memory_move_secondary_cost} if
6162 secondary reloads are needed.  It computes the costs due to copying via
6163 a secondary register.  If your machine copies from memory using a
6164 secondary register in the conventional way but the default base value of
6165 4 is not correct for your machine, use this target hook to add some other
6166 value to the result of that function.  The arguments to that function
6167 are the same as to this target hook.
6168 @end deftypefn
6169
6170 @defmac BRANCH_COST (@var{speed_p}, @var{predictable_p})
6171 A C expression for the cost of a branch instruction.  A value of 1 is
6172 the default; other values are interpreted relative to that. Parameter
6173 @var{speed_p} is true when the branch in question should be optimized
6174 for speed.  When it is false, @code{BRANCH_COST} should return a value
6175 optimal for code size rather than performance.  @var{predictable_p} is
6176 true for well-predicted branches. On many architectures the
6177 @code{BRANCH_COST} can be reduced then.
6178 @end defmac
6179
6180 Here are additional macros which do not specify precise relative costs,
6181 but only that certain actions are more expensive than GCC would
6182 ordinarily expect.
6183
6184 @defmac SLOW_BYTE_ACCESS
6185 Define this macro as a C expression which is nonzero if accessing less
6186 than a word of memory (i.e.@: a @code{char} or a @code{short}) is no
6187 faster than accessing a word of memory, i.e., if such access
6188 require more than one instruction or if there is no difference in cost
6189 between byte and (aligned) word loads.
6190
6191 When this macro is not defined, the compiler will access a field by
6192 finding the smallest containing object; when it is defined, a fullword
6193 load will be used if alignment permits.  Unless bytes accesses are
6194 faster than word accesses, using word accesses is preferable since it
6195 may eliminate subsequent memory access if subsequent accesses occur to
6196 other fields in the same word of the structure, but to different bytes.
6197 @end defmac
6198
6199 @defmac SLOW_UNALIGNED_ACCESS (@var{mode}, @var{alignment})
6200 Define this macro to be the value 1 if memory accesses described by the
6201 @var{mode} and @var{alignment} parameters have a cost many times greater
6202 than aligned accesses, for example if they are emulated in a trap
6203 handler.
6204
6205 When this macro is nonzero, the compiler will act as if
6206 @code{STRICT_ALIGNMENT} were nonzero when generating code for block
6207 moves.  This can cause significantly more instructions to be produced.
6208 Therefore, do not set this macro nonzero if unaligned accesses only add a
6209 cycle or two to the time for a memory access.
6210
6211 If the value of this macro is always zero, it need not be defined.  If
6212 this macro is defined, it should produce a nonzero value when
6213 @code{STRICT_ALIGNMENT} is nonzero.
6214 @end defmac
6215
6216 @defmac MOVE_RATIO (@var{speed})
6217 The threshold of number of scalar memory-to-memory move insns, @emph{below}
6218 which a sequence of insns should be generated instead of a
6219 string move insn or a library call.  Increasing the value will always
6220 make code faster, but eventually incurs high cost in increased code size.
6221
6222 Note that on machines where the corresponding move insn is a
6223 @code{define_expand} that emits a sequence of insns, this macro counts
6224 the number of such sequences.
6225
6226 The parameter @var{speed} is true if the code is currently being
6227 optimized for speed rather than size.
6228
6229 If you don't define this, a reasonable default is used.
6230 @end defmac
6231
6232 @defmac MOVE_BY_PIECES_P (@var{size}, @var{alignment})
6233 A C expression used to determine whether @code{move_by_pieces} will be used to
6234 copy a chunk of memory, or whether some other block move mechanism
6235 will be used.  Defaults to 1 if @code{move_by_pieces_ninsns} returns less
6236 than @code{MOVE_RATIO}.
6237 @end defmac
6238
6239 @defmac MOVE_MAX_PIECES
6240 A C expression used by @code{move_by_pieces} to determine the largest unit
6241 a load or store used to copy memory is.  Defaults to @code{MOVE_MAX}.
6242 @end defmac
6243
6244 @defmac CLEAR_RATIO (@var{speed})
6245 The threshold of number of scalar move insns, @emph{below} which a sequence
6246 of insns should be generated to clear memory instead of a string clear insn
6247 or a library call.  Increasing the value will always make code faster, but
6248 eventually incurs high cost in increased code size.
6249
6250 The parameter @var{speed} is true if the code is currently being
6251 optimized for speed rather than size.
6252
6253 If you don't define this, a reasonable default is used.
6254 @end defmac
6255
6256 @defmac CLEAR_BY_PIECES_P (@var{size}, @var{alignment})
6257 A C expression used to determine whether @code{clear_by_pieces} will be used
6258 to clear a chunk of memory, or whether some other block clear mechanism
6259 will be used.  Defaults to 1 if @code{move_by_pieces_ninsns} returns less
6260 than @code{CLEAR_RATIO}.
6261 @end defmac
6262
6263 @defmac SET_RATIO (@var{speed})
6264 The threshold of number of scalar move insns, @emph{below} which a sequence
6265 of insns should be generated to set memory to a constant value, instead of
6266 a block set insn or a library call.
6267 Increasing the value will always make code faster, but
6268 eventually incurs high cost in increased code size.
6269
6270 The parameter @var{speed} is true if the code is currently being
6271 optimized for speed rather than size.
6272
6273 If you don't define this, it defaults to the value of @code{MOVE_RATIO}.
6274 @end defmac
6275
6276 @defmac SET_BY_PIECES_P (@var{size}, @var{alignment})
6277 A C expression used to determine whether @code{store_by_pieces} will be
6278 used to set a chunk of memory to a constant value, or whether some
6279 other mechanism will be used.  Used by @code{__builtin_memset} when
6280 storing values other than constant zero.
6281 Defaults to 1 if @code{move_by_pieces_ninsns} returns less
6282 than @code{SET_RATIO}.
6283 @end defmac
6284
6285 @defmac STORE_BY_PIECES_P (@var{size}, @var{alignment})
6286 A C expression used to determine whether @code{store_by_pieces} will be
6287 used to set a chunk of memory to a constant string value, or whether some
6288 other mechanism will be used.  Used by @code{__builtin_strcpy} when
6289 called with a constant source string.
6290 Defaults to 1 if @code{move_by_pieces_ninsns} returns less
6291 than @code{MOVE_RATIO}.
6292 @end defmac
6293
6294 @defmac USE_LOAD_POST_INCREMENT (@var{mode})
6295 A C expression used to determine whether a load postincrement is a good
6296 thing to use for a given mode.  Defaults to the value of
6297 @code{HAVE_POST_INCREMENT}.
6298 @end defmac
6299
6300 @defmac USE_LOAD_POST_DECREMENT (@var{mode})
6301 A C expression used to determine whether a load postdecrement is a good
6302 thing to use for a given mode.  Defaults to the value of
6303 @code{HAVE_POST_DECREMENT}.
6304 @end defmac
6305
6306 @defmac USE_LOAD_PRE_INCREMENT (@var{mode})
6307 A C expression used to determine whether a load preincrement is a good
6308 thing to use for a given mode.  Defaults to the value of
6309 @code{HAVE_PRE_INCREMENT}.
6310 @end defmac
6311
6312 @defmac USE_LOAD_PRE_DECREMENT (@var{mode})
6313 A C expression used to determine whether a load predecrement is a good
6314 thing to use for a given mode.  Defaults to the value of
6315 @code{HAVE_PRE_DECREMENT}.
6316 @end defmac
6317
6318 @defmac USE_STORE_POST_INCREMENT (@var{mode})
6319 A C expression used to determine whether a store postincrement is a good
6320 thing to use for a given mode.  Defaults to the value of
6321 @code{HAVE_POST_INCREMENT}.
6322 @end defmac
6323
6324 @defmac USE_STORE_POST_DECREMENT (@var{mode})
6325 A C expression used to determine whether a store postdecrement is a good
6326 thing to use for a given mode.  Defaults to the value of
6327 @code{HAVE_POST_DECREMENT}.
6328 @end defmac
6329
6330 @defmac USE_STORE_PRE_INCREMENT (@var{mode})
6331 This macro is used to determine whether a store preincrement is a good
6332 thing to use for a given mode.  Defaults to the value of
6333 @code{HAVE_PRE_INCREMENT}.
6334 @end defmac
6335
6336 @defmac USE_STORE_PRE_DECREMENT (@var{mode})
6337 This macro is used to determine whether a store predecrement is a good
6338 thing to use for a given mode.  Defaults to the value of
6339 @code{HAVE_PRE_DECREMENT}.
6340 @end defmac
6341
6342 @defmac NO_FUNCTION_CSE
6343 Define this macro if it is as good or better to call a constant
6344 function address than to call an address kept in a register.
6345 @end defmac
6346
6347 @defmac RANGE_TEST_NON_SHORT_CIRCUIT
6348 Define this macro if a non-short-circuit operation produced by
6349 @samp{fold_range_test ()} is optimal.  This macro defaults to true if
6350 @code{BRANCH_COST} is greater than or equal to the value 2.
6351 @end defmac
6352
6353 @hook TARGET_RTX_COSTS
6354 This target hook describes the relative costs of RTL expressions.
6355
6356 The cost may depend on the precise form of the expression, which is
6357 available for examination in @var{x}, and the fact that @var{x} appears
6358 as operand @var{opno} of an expression with rtx code @var{outer_code}.
6359 That is, the hook can assume that there is some rtx @var{y} such
6360 that @samp{GET_CODE (@var{y}) == @var{outer_code}} and such that
6361 either (a) @samp{XEXP (@var{y}, @var{opno}) == @var{x}} or
6362 (b) @samp{XVEC (@var{y}, @var{opno})} contains @var{x}.
6363
6364 @var{code} is @var{x}'s expression code---redundant, since it can be
6365 obtained with @code{GET_CODE (@var{x})}.
6366
6367 In implementing this hook, you can use the construct
6368 @code{COSTS_N_INSNS (@var{n})} to specify a cost equal to @var{n} fast
6369 instructions.
6370
6371 On entry to the hook, @code{*@var{total}} contains a default estimate
6372 for the cost of the expression.  The hook should modify this value as
6373 necessary.  Traditionally, the default costs are @code{COSTS_N_INSNS (5)}
6374 for multiplications, @code{COSTS_N_INSNS (7)} for division and modulus
6375 operations, and @code{COSTS_N_INSNS (1)} for all other operations.
6376
6377 When optimizing for code size, i.e.@: when @code{speed} is
6378 false, this target hook should be used to estimate the relative
6379 size cost of an expression, again relative to @code{COSTS_N_INSNS}.
6380
6381 The hook returns true when all subexpressions of @var{x} have been
6382 processed, and false when @code{rtx_cost} should recurse.
6383 @end deftypefn
6384
6385 @hook TARGET_ADDRESS_COST
6386 This hook computes the cost of an addressing mode that contains
6387 @var{address}.  If not defined, the cost is computed from
6388 the @var{address} expression and the @code{TARGET_RTX_COST} hook.
6389
6390 For most CISC machines, the default cost is a good approximation of the
6391 true cost of the addressing mode.  However, on RISC machines, all
6392 instructions normally have the same length and execution time.  Hence
6393 all addresses will have equal costs.
6394
6395 In cases where more than one form of an address is known, the form with
6396 the lowest cost will be used.  If multiple forms have the same, lowest,
6397 cost, the one that is the most complex will be used.
6398
6399 For example, suppose an address that is equal to the sum of a register
6400 and a constant is used twice in the same basic block.  When this macro
6401 is not defined, the address will be computed in a register and memory
6402 references will be indirect through that register.  On machines where
6403 the cost of the addressing mode containing the sum is no higher than
6404 that of a simple indirect reference, this will produce an additional
6405 instruction and possibly require an additional register.  Proper
6406 specification of this macro eliminates this overhead for such machines.
6407
6408 This hook is never called with an invalid address.
6409
6410 On machines where an address involving more than one register is as
6411 cheap as an address computation involving only one register, defining
6412 @code{TARGET_ADDRESS_COST} to reflect this can cause two registers to
6413 be live over a region of code where only one would have been if
6414 @code{TARGET_ADDRESS_COST} were not defined in that manner.  This effect
6415 should be considered in the definition of this macro.  Equivalent costs
6416 should probably only be given to addresses with different numbers of
6417 registers on machines with lots of registers.
6418 @end deftypefn
6419
6420 @node Scheduling
6421 @section Adjusting the Instruction Scheduler
6422
6423 The instruction scheduler may need a fair amount of machine-specific
6424 adjustment in order to produce good code.  GCC provides several target
6425 hooks for this purpose.  It is usually enough to define just a few of
6426 them: try the first ones in this list first.
6427
6428 @hook TARGET_SCHED_ISSUE_RATE
6429 This hook returns the maximum number of instructions that can ever
6430 issue at the same time on the target machine.  The default is one.
6431 Although the insn scheduler can define itself the possibility of issue
6432 an insn on the same cycle, the value can serve as an additional
6433 constraint to issue insns on the same simulated processor cycle (see
6434 hooks @samp{TARGET_SCHED_REORDER} and @samp{TARGET_SCHED_REORDER2}).
6435 This value must be constant over the entire compilation.  If you need
6436 it to vary depending on what the instructions are, you must use
6437 @samp{TARGET_SCHED_VARIABLE_ISSUE}.
6438 @end deftypefn
6439
6440 @hook TARGET_SCHED_VARIABLE_ISSUE
6441 This hook is executed by the scheduler after it has scheduled an insn
6442 from the ready list.  It should return the number of insns which can
6443 still be issued in the current cycle.  The default is
6444 @samp{@w{@var{more} - 1}} for insns other than @code{CLOBBER} and
6445 @code{USE}, which normally are not counted against the issue rate.
6446 You should define this hook if some insns take more machine resources
6447 than others, so that fewer insns can follow them in the same cycle.
6448 @var{file} is either a null pointer, or a stdio stream to write any
6449 debug output to.  @var{verbose} is the verbose level provided by
6450 @option{-fsched-verbose-@var{n}}.  @var{insn} is the instruction that
6451 was scheduled.
6452 @end deftypefn
6453
6454 @hook TARGET_SCHED_ADJUST_COST
6455 This function corrects the value of @var{cost} based on the
6456 relationship between @var{insn} and @var{dep_insn} through the
6457 dependence @var{link}.  It should return the new value.  The default
6458 is to make no adjustment to @var{cost}.  This can be used for example
6459 to specify to the scheduler using the traditional pipeline description
6460 that an output- or anti-dependence does not incur the same cost as a
6461 data-dependence.  If the scheduler using the automaton based pipeline
6462 description, the cost of anti-dependence is zero and the cost of
6463 output-dependence is maximum of one and the difference of latency
6464 times of the first and the second insns.  If these values are not
6465 acceptable, you could use the hook to modify them too.  See also
6466 @pxref{Processor pipeline description}.
6467 @end deftypefn
6468
6469 @hook TARGET_SCHED_ADJUST_PRIORITY
6470 This hook adjusts the integer scheduling priority @var{priority} of
6471 @var{insn}.  It should return the new priority.  Increase the priority to
6472 execute @var{insn} earlier, reduce the priority to execute @var{insn}
6473 later.  Do not define this hook if you do not need to adjust the
6474 scheduling priorities of insns.
6475 @end deftypefn
6476
6477 @hook TARGET_SCHED_REORDER
6478 This hook is executed by the scheduler after it has scheduled the ready
6479 list, to allow the machine description to reorder it (for example to
6480 combine two small instructions together on @samp{VLIW} machines).
6481 @var{file} is either a null pointer, or a stdio stream to write any
6482 debug output to.  @var{verbose} is the verbose level provided by
6483 @option{-fsched-verbose-@var{n}}.  @var{ready} is a pointer to the ready
6484 list of instructions that are ready to be scheduled.  @var{n_readyp} is
6485 a pointer to the number of elements in the ready list.  The scheduler
6486 reads the ready list in reverse order, starting with
6487 @var{ready}[@var{*n_readyp} @minus{} 1] and going to @var{ready}[0].  @var{clock}
6488 is the timer tick of the scheduler.  You may modify the ready list and
6489 the number of ready insns.  The return value is the number of insns that
6490 can issue this cycle; normally this is just @code{issue_rate}.  See also
6491 @samp{TARGET_SCHED_REORDER2}.
6492 @end deftypefn
6493
6494 @hook TARGET_SCHED_REORDER2
6495 Like @samp{TARGET_SCHED_REORDER}, but called at a different time.  That
6496 function is called whenever the scheduler starts a new cycle.  This one
6497 is called once per iteration over a cycle, immediately after
6498 @samp{TARGET_SCHED_VARIABLE_ISSUE}; it can reorder the ready list and
6499 return the number of insns to be scheduled in the same cycle.  Defining
6500 this hook can be useful if there are frequent situations where
6501 scheduling one insn causes other insns to become ready in the same
6502 cycle.  These other insns can then be taken into account properly.
6503 @end deftypefn
6504
6505 @hook TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
6506 This hook is called after evaluation forward dependencies of insns in
6507 chain given by two parameter values (@var{head} and @var{tail}
6508 correspondingly) but before insns scheduling of the insn chain.  For
6509 example, it can be used for better insn classification if it requires
6510 analysis of dependencies.  This hook can use backward and forward
6511 dependencies of the insn scheduler because they are already
6512 calculated.
6513 @end deftypefn
6514
6515 @hook TARGET_SCHED_INIT
6516 This hook is executed by the scheduler at the beginning of each block of
6517 instructions that are to be scheduled.  @var{file} is either a null
6518 pointer, or a stdio stream to write any debug output to.  @var{verbose}
6519 is the verbose level provided by @option{-fsched-verbose-@var{n}}.
6520 @var{max_ready} is the maximum number of insns in the current scheduling
6521 region that can be live at the same time.  This can be used to allocate
6522 scratch space if it is needed, e.g.@: by @samp{TARGET_SCHED_REORDER}.
6523 @end deftypefn
6524
6525 @hook TARGET_SCHED_FINISH
6526 This hook is executed by the scheduler at the end of each block of
6527 instructions that are to be scheduled.  It can be used to perform
6528 cleanup of any actions done by the other scheduling hooks.  @var{file}
6529 is either a null pointer, or a stdio stream to write any debug output
6530 to.  @var{verbose} is the verbose level provided by
6531 @option{-fsched-verbose-@var{n}}.
6532 @end deftypefn
6533
6534 @hook TARGET_SCHED_INIT_GLOBAL
6535 This hook is executed by the scheduler after function level initializations.
6536 @var{file} is either a null pointer, or a stdio stream to write any debug output to.
6537 @var{verbose} is the verbose level provided by @option{-fsched-verbose-@var{n}}.
6538 @var{old_max_uid} is the maximum insn uid when scheduling begins.
6539 @end deftypefn
6540
6541 @hook TARGET_SCHED_FINISH_GLOBAL
6542 This is the cleanup hook corresponding to @code{TARGET_SCHED_INIT_GLOBAL}.
6543 @var{file} is either a null pointer, or a stdio stream to write any debug output to.
6544 @var{verbose} is the verbose level provided by @option{-fsched-verbose-@var{n}}.
6545 @end deftypefn
6546
6547 @hook TARGET_SCHED_DFA_PRE_CYCLE_INSN
6548 The hook returns an RTL insn.  The automaton state used in the
6549 pipeline hazard recognizer is changed as if the insn were scheduled
6550 when the new simulated processor cycle starts.  Usage of the hook may
6551 simplify the automaton pipeline description for some @acronym{VLIW}
6552 processors.  If the hook is defined, it is used only for the automaton
6553 based pipeline description.  The default is not to change the state
6554 when the new simulated processor cycle starts.
6555 @end deftypefn
6556
6557 @hook TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN
6558 The hook can be used to initialize data used by the previous hook.
6559 @end deftypefn
6560
6561 @hook TARGET_SCHED_DFA_POST_CYCLE_INSN
6562 The hook is analogous to @samp{TARGET_SCHED_DFA_PRE_CYCLE_INSN} but used
6563 to changed the state as if the insn were scheduled when the new
6564 simulated processor cycle finishes.
6565 @end deftypefn
6566
6567 @hook TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN
6568 The hook is analogous to @samp{TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN} but
6569 used to initialize data used by the previous hook.
6570 @end deftypefn
6571
6572 @hook TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
6573 The hook to notify target that the current simulated cycle is about to finish.
6574 The hook is analogous to @samp{TARGET_SCHED_DFA_PRE_CYCLE_INSN} but used
6575 to change the state in more complicated situations - e.g., when advancing
6576 state on a single insn is not enough.
6577 @end deftypefn
6578
6579 @hook TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
6580 The hook to notify target that new simulated cycle has just started.
6581 The hook is analogous to @samp{TARGET_SCHED_DFA_POST_CYCLE_INSN} but used
6582 to change the state in more complicated situations - e.g., when advancing
6583 state on a single insn is not enough.
6584 @end deftypefn
6585
6586 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
6587 This hook controls better choosing an insn from the ready insn queue
6588 for the @acronym{DFA}-based insn scheduler.  Usually the scheduler
6589 chooses the first insn from the queue.  If the hook returns a positive
6590 value, an additional scheduler code tries all permutations of
6591 @samp{TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()}
6592 subsequent ready insns to choose an insn whose issue will result in
6593 maximal number of issued insns on the same cycle.  For the
6594 @acronym{VLIW} processor, the code could actually solve the problem of
6595 packing simple insns into the @acronym{VLIW} insn.  Of course, if the
6596 rules of @acronym{VLIW} packing are described in the automaton.
6597
6598 This code also could be used for superscalar @acronym{RISC}
6599 processors.  Let us consider a superscalar @acronym{RISC} processor
6600 with 3 pipelines.  Some insns can be executed in pipelines @var{A} or
6601 @var{B}, some insns can be executed only in pipelines @var{B} or
6602 @var{C}, and one insn can be executed in pipeline @var{B}.  The
6603 processor may issue the 1st insn into @var{A} and the 2nd one into
6604 @var{B}.  In this case, the 3rd insn will wait for freeing @var{B}
6605 until the next cycle.  If the scheduler issues the 3rd insn the first,
6606 the processor could issue all 3 insns per cycle.
6607
6608 Actually this code demonstrates advantages of the automaton based
6609 pipeline hazard recognizer.  We try quickly and easy many insn
6610 schedules to choose the best one.
6611
6612 The default is no multipass scheduling.
6613 @end deftypefn
6614
6615 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
6616
6617 This hook controls what insns from the ready insn queue will be
6618 considered for the multipass insn scheduling.  If the hook returns
6619 zero for @var{insn}, the insn will be not chosen to
6620 be issued.
6621
6622 The default is that any ready insns can be chosen to be issued.
6623 @end deftypefn
6624
6625 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN
6626 This hook prepares the target backend for a new round of multipass
6627 scheduling.
6628 @end deftypefn
6629
6630 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE
6631 This hook is called when multipass scheduling evaluates instruction INSN.
6632 @end deftypefn
6633
6634 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK
6635 This is called when multipass scheduling backtracks from evaluation of
6636 an instruction.
6637 @end deftypefn
6638
6639 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END
6640 This hook notifies the target about the result of the concluded current
6641 round of multipass scheduling.
6642 @end deftypefn
6643
6644 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT
6645 This hook initializes target-specific data used in multipass scheduling.
6646 @end deftypefn
6647
6648 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI
6649 This hook finalizes target-specific data used in multipass scheduling.
6650 @end deftypefn
6651
6652 @hook TARGET_SCHED_DFA_NEW_CYCLE
6653 This hook is called by the insn scheduler before issuing @var{insn}
6654 on cycle @var{clock}.  If the hook returns nonzero,
6655 @var{insn} is not issued on this processor cycle.  Instead,
6656 the processor cycle is advanced.  If *@var{sort_p}
6657 is zero, the insn ready queue is not sorted on the new cycle
6658 start as usually.  @var{dump} and @var{verbose} specify the file and
6659 verbosity level to use for debugging output.
6660 @var{last_clock} and @var{clock} are, respectively, the
6661 processor cycle on which the previous insn has been issued,
6662 and the current processor cycle.
6663 @end deftypefn
6664
6665 @hook TARGET_SCHED_IS_COSTLY_DEPENDENCE
6666 This hook is used to define which dependences are considered costly by
6667 the target, so costly that it is not advisable to schedule the insns that
6668 are involved in the dependence too close to one another.  The parameters
6669 to this hook are as follows:  The first parameter @var{_dep} is the dependence
6670 being evaluated.  The second parameter @var{cost} is the cost of the
6671 dependence as estimated by the scheduler, and the third
6672 parameter @var{distance} is the distance in cycles between the two insns.
6673 The hook returns @code{true} if considering the distance between the two
6674 insns the dependence between them is considered costly by the target,
6675 and @code{false} otherwise.
6676
6677 Defining this hook can be useful in multiple-issue out-of-order machines,
6678 where (a) it's practically hopeless to predict the actual data/resource
6679 delays, however: (b) there's a better chance to predict the actual grouping
6680 that will be formed, and (c) correctly emulating the grouping can be very
6681 important.  In such targets one may want to allow issuing dependent insns
6682 closer to one another---i.e., closer than the dependence distance;  however,
6683 not in cases of ``costly dependences'', which this hooks allows to define.
6684 @end deftypefn
6685
6686 @hook TARGET_SCHED_H_I_D_EXTENDED
6687 This hook is called by the insn scheduler after emitting a new instruction to
6688 the instruction stream.  The hook notifies a target backend to extend its
6689 per instruction data structures.
6690 @end deftypefn
6691
6692 @hook TARGET_SCHED_ALLOC_SCHED_CONTEXT
6693 Return a pointer to a store large enough to hold target scheduling context.
6694 @end deftypefn
6695
6696 @hook TARGET_SCHED_INIT_SCHED_CONTEXT
6697 Initialize store pointed to by @var{tc} to hold target scheduling context.
6698 It @var{clean_p} is true then initialize @var{tc} as if scheduler is at the
6699 beginning of the block.  Otherwise, copy the current context into @var{tc}.
6700 @end deftypefn
6701
6702 @hook TARGET_SCHED_SET_SCHED_CONTEXT
6703 Copy target scheduling context pointed to by @var{tc} to the current context.
6704 @end deftypefn
6705
6706 @hook TARGET_SCHED_CLEAR_SCHED_CONTEXT
6707 Deallocate internal data in target scheduling context pointed to by @var{tc}.
6708 @end deftypefn
6709
6710 @hook TARGET_SCHED_FREE_SCHED_CONTEXT
6711 Deallocate a store for target scheduling context pointed to by @var{tc}.
6712 @end deftypefn
6713
6714 @hook TARGET_SCHED_SPECULATE_INSN
6715 This hook is called by the insn scheduler when @var{insn} has only
6716 speculative dependencies and therefore can be scheduled speculatively.
6717 The hook is used to check if the pattern of @var{insn} has a speculative
6718 version and, in case of successful check, to generate that speculative
6719 pattern.  The hook should return 1, if the instruction has a speculative form,
6720 or @minus{}1, if it doesn't.  @var{request} describes the type of requested
6721 speculation.  If the return value equals 1 then @var{new_pat} is assigned
6722 the generated speculative pattern.
6723 @end deftypefn
6724
6725 @hook TARGET_SCHED_NEEDS_BLOCK_P
6726 This hook is called by the insn scheduler during generation of recovery code
6727 for @var{insn}.  It should return @code{true}, if the corresponding check
6728 instruction should branch to recovery code, or @code{false} otherwise.
6729 @end deftypefn
6730
6731 @hook TARGET_SCHED_GEN_SPEC_CHECK
6732 This hook is called by the insn scheduler to generate a pattern for recovery
6733 check instruction.  If @var{mutate_p} is zero, then @var{insn} is a
6734 speculative instruction for which the check should be generated.
6735 @var{label} is either a label of a basic block, where recovery code should
6736 be emitted, or a null pointer, when requested check doesn't branch to
6737 recovery code (a simple check).  If @var{mutate_p} is nonzero, then
6738 a pattern for a branchy check corresponding to a simple check denoted by
6739 @var{insn} should be generated.  In this case @var{label} can't be null.
6740 @end deftypefn
6741
6742 @hook TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
6743 This hook is used as a workaround for
6744 @samp{TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD} not being
6745 called on the first instruction of the ready list.  The hook is used to
6746 discard speculative instructions that stand first in the ready list from
6747 being scheduled on the current cycle.  If the hook returns @code{false},
6748 @var{insn} will not be chosen to be issued.
6749 For non-speculative instructions,
6750 the hook should always return @code{true}.  For example, in the ia64 backend
6751 the hook is used to cancel data speculative insns when the ALAT table
6752 is nearly full.
6753 @end deftypefn
6754
6755 @hook TARGET_SCHED_SET_SCHED_FLAGS
6756 This hook is used by the insn scheduler to find out what features should be
6757 enabled/used.
6758 The structure *@var{spec_info} should be filled in by the target.
6759 The structure describes speculation types that can be used in the scheduler.
6760 @end deftypefn
6761
6762 @hook TARGET_SCHED_SMS_RES_MII
6763 This hook is called by the swing modulo scheduler to calculate a
6764 resource-based lower bound which is based on the resources available in
6765 the machine and the resources required by each instruction.  The target
6766 backend can use @var{g} to calculate such bound.  A very simple lower
6767 bound will be used in case this hook is not implemented: the total number
6768 of instructions divided by the issue rate.
6769 @end deftypefn
6770
6771 @hook TARGET_SCHED_DISPATCH
6772 This hook is called by Haifa Scheduler.  It returns true if dispatch scheduling
6773 is supported in hardware and the condition specified in the parameter is true.
6774 @end deftypefn
6775
6776 @hook TARGET_SCHED_DISPATCH_DO
6777 This hook is called by Haifa Scheduler.  It performs the operation specified
6778 in its second parameter.
6779 @end deftypefn
6780
6781 @hook TARGET_SCHED_EXPOSED_PIPELINE
6782
6783 @hook TARGET_SCHED_REASSOCIATION_WIDTH
6784
6785 @node Sections
6786 @section Dividing the Output into Sections (Texts, Data, @dots{})
6787 @c the above section title is WAY too long.  maybe cut the part between
6788 @c the (...)?  --mew 10feb93
6789
6790 An object file is divided into sections containing different types of
6791 data.  In the most common case, there are three sections: the @dfn{text
6792 section}, which holds instructions and read-only data; the @dfn{data
6793 section}, which holds initialized writable data; and the @dfn{bss
6794 section}, which holds uninitialized data.  Some systems have other kinds
6795 of sections.
6796
6797 @file{varasm.c} provides several well-known sections, such as
6798 @code{text_section}, @code{data_section} and @code{bss_section}.
6799 The normal way of controlling a @code{@var{foo}_section} variable
6800 is to define the associated @code{@var{FOO}_SECTION_ASM_OP} macro,
6801 as described below.  The macros are only read once, when @file{varasm.c}
6802 initializes itself, so their values must be run-time constants.
6803 They may however depend on command-line flags.
6804
6805 @emph{Note:} Some run-time files, such @file{crtstuff.c}, also make
6806 use of the @code{@var{FOO}_SECTION_ASM_OP} macros, and expect them
6807 to be string literals.
6808
6809 Some assemblers require a different string to be written every time a
6810 section is selected.  If your assembler falls into this category, you
6811 should define the @code{TARGET_ASM_INIT_SECTIONS} hook and use
6812 @code{get_unnamed_section} to set up the sections.
6813
6814 You must always create a @code{text_section}, either by defining
6815 @code{TEXT_SECTION_ASM_OP} or by initializing @code{text_section}
6816 in @code{TARGET_ASM_INIT_SECTIONS}.  The same is true of
6817 @code{data_section} and @code{DATA_SECTION_ASM_OP}.  If you do not
6818 create a distinct @code{readonly_data_section}, the default is to
6819 reuse @code{text_section}.
6820
6821 All the other @file{varasm.c} sections are optional, and are null
6822 if the target does not provide them.
6823
6824 @defmac TEXT_SECTION_ASM_OP
6825 A C expression whose value is a string, including spacing, containing the
6826 assembler operation that should precede instructions and read-only data.
6827 Normally @code{"\t.text"} is right.
6828 @end defmac
6829
6830 @defmac HOT_TEXT_SECTION_NAME
6831 If defined, a C string constant for the name of the section containing most
6832 frequently executed functions of the program.  If not defined, GCC will provide
6833 a default definition if the target supports named sections.
6834 @end defmac
6835
6836 @defmac UNLIKELY_EXECUTED_TEXT_SECTION_NAME
6837 If defined, a C string constant for the name of the section containing unlikely
6838 executed functions in the program.
6839 @end defmac
6840
6841 @defmac DATA_SECTION_ASM_OP
6842 A C expression whose value is a string, including spacing, containing the
6843 assembler operation to identify the following data as writable initialized
6844 data.  Normally @code{"\t.data"} is right.
6845 @end defmac
6846
6847 @defmac SDATA_SECTION_ASM_OP
6848 If defined, a C expression whose value is a string, including spacing,
6849 containing the assembler operation to identify the following data as
6850 initialized, writable small data.
6851 @end defmac
6852
6853 @defmac READONLY_DATA_SECTION_ASM_OP
6854 A C expression whose value is a string, including spacing, containing the
6855 assembler operation to identify the following data as read-only initialized
6856 data.
6857 @end defmac
6858
6859 @defmac BSS_SECTION_ASM_OP
6860 If defined, a C expression whose value is a string, including spacing,
6861 containing the assembler operation to identify the following data as
6862 uninitialized global data.  If not defined, and
6863 @code{ASM_OUTPUT_ALIGNED_BSS} not defined,
6864 uninitialized global data will be output in the data section if
6865 @option{-fno-common} is passed, otherwise @code{ASM_OUTPUT_COMMON} will be
6866 used.
6867 @end defmac
6868
6869 @defmac SBSS_SECTION_ASM_OP
6870 If defined, a C expression whose value is a string, including spacing,
6871 containing the assembler operation to identify the following data as
6872 uninitialized, writable small data.
6873 @end defmac
6874
6875 @defmac TLS_COMMON_ASM_OP
6876 If defined, a C expression whose value is a string containing the
6877 assembler operation to identify the following data as thread-local
6878 common data.  The default is @code{".tls_common"}.
6879 @end defmac
6880
6881 @defmac TLS_SECTION_ASM_FLAG
6882 If defined, a C expression whose value is a character constant
6883 containing the flag used to mark a section as a TLS section.  The
6884 default is @code{'T'}.
6885 @end defmac
6886
6887 @defmac INIT_SECTION_ASM_OP
6888 If defined, a C expression whose value is a string, including spacing,
6889 containing the assembler operation to identify the following data as
6890 initialization code.  If not defined, GCC will assume such a section does
6891 not exist.  This section has no corresponding @code{init_section}
6892 variable; it is used entirely in runtime code.
6893 @end defmac
6894
6895 @defmac FINI_SECTION_ASM_OP
6896 If defined, a C expression whose value is a string, including spacing,
6897 containing the assembler operation to identify the following data as
6898 finalization code.  If not defined, GCC will assume such a section does
6899 not exist.  This section has no corresponding @code{fini_section}
6900 variable; it is used entirely in runtime code.
6901 @end defmac
6902
6903 @defmac INIT_ARRAY_SECTION_ASM_OP
6904 If defined, a C expression whose value is a string, including spacing,
6905 containing the assembler operation to identify the following data as
6906 part of the @code{.init_array} (or equivalent) section.  If not
6907 defined, GCC will assume such a section does not exist.  Do not define
6908 both this macro and @code{INIT_SECTION_ASM_OP}.
6909 @end defmac
6910
6911 @defmac FINI_ARRAY_SECTION_ASM_OP
6912 If defined, a C expression whose value is a string, including spacing,
6913 containing the assembler operation to identify the following data as
6914 part of the @code{.fini_array} (or equivalent) section.  If not
6915 defined, GCC will assume such a section does not exist.  Do not define
6916 both this macro and @code{FINI_SECTION_ASM_OP}.
6917 @end defmac
6918
6919 @defmac CRT_CALL_STATIC_FUNCTION (@var{section_op}, @var{function})
6920 If defined, an ASM statement that switches to a different section
6921 via @var{section_op}, calls @var{function}, and switches back to
6922 the text section.  This is used in @file{crtstuff.c} if
6923 @code{INIT_SECTION_ASM_OP} or @code{FINI_SECTION_ASM_OP} to calls
6924 to initialization and finalization functions from the init and fini
6925 sections.  By default, this macro uses a simple function call.  Some
6926 ports need hand-crafted assembly code to avoid dependencies on
6927 registers initialized in the function prologue or to ensure that
6928 constant pools don't end up too far way in the text section.
6929 @end defmac
6930
6931 @defmac TARGET_LIBGCC_SDATA_SECTION
6932 If defined, a string which names the section into which small
6933 variables defined in crtstuff and libgcc should go.  This is useful
6934 when the target has options for optimizing access to small data, and
6935 you want the crtstuff and libgcc routines to be conservative in what
6936 they expect of your application yet liberal in what your application
6937 expects.  For example, for targets with a @code{.sdata} section (like
6938 MIPS), you could compile crtstuff with @code{-G 0} so that it doesn't
6939 require small data support from your application, but use this macro
6940 to put small data into @code{.sdata} so that your application can
6941 access these variables whether it uses small data or not.
6942 @end defmac
6943
6944 @defmac FORCE_CODE_SECTION_ALIGN
6945 If defined, an ASM statement that aligns a code section to some
6946 arbitrary boundary.  This is used to force all fragments of the
6947 @code{.init} and @code{.fini} sections to have to same alignment
6948 and thus prevent the linker from having to add any padding.
6949 @end defmac
6950
6951 @defmac JUMP_TABLES_IN_TEXT_SECTION
6952 Define this macro to be an expression with a nonzero value if jump
6953 tables (for @code{tablejump} insns) should be output in the text
6954 section, along with the assembler instructions.  Otherwise, the
6955 readonly data section is used.
6956
6957 This macro is irrelevant if there is no separate readonly data section.
6958 @end defmac
6959
6960 @hook TARGET_ASM_INIT_SECTIONS
6961 Define this hook if you need to do something special to set up the
6962 @file{varasm.c} sections, or if your target has some special sections
6963 of its own that you need to create.
6964
6965 GCC calls this hook after processing the command line, but before writing
6966 any assembly code, and before calling any of the section-returning hooks
6967 described below.
6968 @end deftypefn
6969
6970 @hook TARGET_ASM_RELOC_RW_MASK
6971 Return a mask describing how relocations should be treated when
6972 selecting sections.  Bit 1 should be set if global relocations
6973 should be placed in a read-write section; bit 0 should be set if
6974 local relocations should be placed in a read-write section.
6975
6976 The default version of this function returns 3 when @option{-fpic}
6977 is in effect, and 0 otherwise.  The hook is typically redefined
6978 when the target cannot support (some kinds of) dynamic relocations
6979 in read-only sections even in executables.
6980 @end deftypefn
6981
6982 @hook TARGET_ASM_SELECT_SECTION
6983 Return the section into which @var{exp} should be placed.  You can
6984 assume that @var{exp} is either a @code{VAR_DECL} node or a constant of
6985 some sort.  @var{reloc} indicates whether the initial value of @var{exp}
6986 requires link-time relocations.  Bit 0 is set when variable contains
6987 local relocations only, while bit 1 is set for global relocations.
6988 @var{align} is the constant alignment in bits.
6989
6990 The default version of this function takes care of putting read-only
6991 variables in @code{readonly_data_section}.
6992
6993 See also @var{USE_SELECT_SECTION_FOR_FUNCTIONS}.
6994 @end deftypefn
6995
6996 @defmac USE_SELECT_SECTION_FOR_FUNCTIONS
6997 Define this macro if you wish TARGET_ASM_SELECT_SECTION to be called
6998 for @code{FUNCTION_DECL}s as well as for variables and constants.
6999
7000 In the case of a @code{FUNCTION_DECL}, @var{reloc} will be zero if the
7001 function has been determined to be likely to be called, and nonzero if
7002 it is unlikely to be called.
7003 @end defmac
7004
7005 @hook TARGET_ASM_UNIQUE_SECTION
7006 Build up a unique section name, expressed as a @code{STRING_CST} node,
7007 and assign it to @samp{DECL_SECTION_NAME (@var{decl})}.
7008 As with @code{TARGET_ASM_SELECT_SECTION}, @var{reloc} indicates whether
7009 the initial value of @var{exp} requires link-time relocations.
7010
7011 The default version of this function appends the symbol name to the
7012 ELF section name that would normally be used for the symbol.  For
7013 example, the function @code{foo} would be placed in @code{.text.foo}.
7014 Whatever the actual target object format, this is often good enough.
7015 @end deftypefn
7016
7017 @hook TARGET_ASM_FUNCTION_RODATA_SECTION
7018 Return the readonly data section associated with
7019 @samp{DECL_SECTION_NAME (@var{decl})}.
7020 The default version of this function selects @code{.gnu.linkonce.r.name} if
7021 the function's section is @code{.gnu.linkonce.t.name}, @code{.rodata.name}
7022 if function is in @code{.text.name}, and the normal readonly-data section
7023 otherwise.
7024 @end deftypefn
7025
7026 @hook TARGET_ASM_MERGEABLE_RODATA_PREFIX
7027
7028 @hook TARGET_ASM_TM_CLONE_TABLE_SECTION
7029
7030 @hook TARGET_ASM_SELECT_RTX_SECTION
7031 Return the section into which a constant @var{x}, of mode @var{mode},
7032 should be placed.  You can assume that @var{x} is some kind of
7033 constant in RTL@.  The argument @var{mode} is redundant except in the
7034 case of a @code{const_int} rtx.  @var{align} is the constant alignment
7035 in bits.
7036
7037 The default version of this function takes care of putting symbolic
7038 constants in @code{flag_pic} mode in @code{data_section} and everything
7039 else in @code{readonly_data_section}.
7040 @end deftypefn
7041
7042 @hook TARGET_MANGLE_DECL_ASSEMBLER_NAME
7043 Define this hook if you need to postprocess the assembler name generated
7044 by target-independent code.  The @var{id} provided to this hook will be
7045 the computed name (e.g., the macro @code{DECL_NAME} of the @var{decl} in C,
7046 or the mangled name of the @var{decl} in C++).  The return value of the
7047 hook is an @code{IDENTIFIER_NODE} for the appropriate mangled name on
7048 your target system.  The default implementation of this hook just
7049 returns the @var{id} provided.
7050 @end deftypefn
7051
7052 @hook TARGET_ENCODE_SECTION_INFO
7053 Define this hook if references to a symbol or a constant must be
7054 treated differently depending on something about the variable or
7055 function named by the symbol (such as what section it is in).
7056
7057 The hook is executed immediately after rtl has been created for
7058 @var{decl}, which may be a variable or function declaration or
7059 an entry in the constant pool.  In either case, @var{rtl} is the
7060 rtl in question.  Do @emph{not} use @code{DECL_RTL (@var{decl})}
7061 in this hook; that field may not have been initialized yet.
7062
7063 In the case of a constant, it is safe to assume that the rtl is
7064 a @code{mem} whose address is a @code{symbol_ref}.  Most decls
7065 will also have this form, but that is not guaranteed.  Global
7066 register variables, for instance, will have a @code{reg} for their
7067 rtl.  (Normally the right thing to do with such unusual rtl is
7068 leave it alone.)
7069
7070 The @var{new_decl_p} argument will be true if this is the first time
7071 that @code{TARGET_ENCODE_SECTION_INFO} has been invoked on this decl.  It will
7072 be false for subsequent invocations, which will happen for duplicate
7073 declarations.  Whether or not anything must be done for the duplicate
7074 declaration depends on whether the hook examines @code{DECL_ATTRIBUTES}.
7075 @var{new_decl_p} is always true when the hook is called for a constant.
7076
7077 @cindex @code{SYMBOL_REF_FLAG}, in @code{TARGET_ENCODE_SECTION_INFO}
7078 The usual thing for this hook to do is to record flags in the
7079 @code{symbol_ref}, using @code{SYMBOL_REF_FLAG} or @code{SYMBOL_REF_FLAGS}.
7080 Historically, the name string was modified if it was necessary to
7081 encode more than one bit of information, but this practice is now
7082 discouraged; use @code{SYMBOL_REF_FLAGS}.
7083
7084 The default definition of this hook, @code{default_encode_section_info}
7085 in @file{varasm.c}, sets a number of commonly-useful bits in
7086 @code{SYMBOL_REF_FLAGS}.  Check whether the default does what you need
7087 before overriding it.
7088 @end deftypefn
7089
7090 @hook TARGET_STRIP_NAME_ENCODING
7091 Decode @var{name} and return the real name part, sans
7092 the characters that @code{TARGET_ENCODE_SECTION_INFO}
7093 may have added.
7094 @end deftypefn
7095
7096 @hook TARGET_IN_SMALL_DATA_P
7097 Returns true if @var{exp} should be placed into a ``small data'' section.
7098 The default version of this hook always returns false.
7099 @end deftypefn
7100
7101 @hook TARGET_HAVE_SRODATA_SECTION
7102 Contains the value true if the target places read-only
7103 ``small data'' into a separate section.  The default value is false.
7104 @end deftypevr
7105
7106 @hook TARGET_PROFILE_BEFORE_PROLOGUE
7107
7108 @hook TARGET_BINDS_LOCAL_P
7109 Returns true if @var{exp} names an object for which name resolution
7110 rules must resolve to the current ``module'' (dynamic shared library
7111 or executable image).
7112
7113 The default version of this hook implements the name resolution rules
7114 for ELF, which has a looser model of global name binding than other
7115 currently supported object file formats.
7116 @end deftypefn
7117
7118 @hook TARGET_HAVE_TLS
7119 Contains the value true if the target supports thread-local storage.
7120 The default value is false.
7121 @end deftypevr
7122
7123
7124 @node PIC
7125 @section Position Independent Code
7126 @cindex position independent code
7127 @cindex PIC
7128
7129 This section describes macros that help implement generation of position
7130 independent code.  Simply defining these macros is not enough to
7131 generate valid PIC; you must also add support to the hook
7132 @code{TARGET_LEGITIMATE_ADDRESS_P} and to the macro
7133 @code{PRINT_OPERAND_ADDRESS}, as well as @code{LEGITIMIZE_ADDRESS}.  You
7134 must modify the definition of @samp{movsi} to do something appropriate
7135 when the source operand contains a symbolic address.  You may also
7136 need to alter the handling of switch statements so that they use
7137 relative addresses.
7138 @c i rearranged the order of the macros above to try to force one of
7139 @c them to the next line, to eliminate an overfull hbox. --mew 10feb93
7140
7141 @defmac PIC_OFFSET_TABLE_REGNUM
7142 The register number of the register used to address a table of static
7143 data addresses in memory.  In some cases this register is defined by a
7144 processor's ``application binary interface'' (ABI)@.  When this macro
7145 is defined, RTL is generated for this register once, as with the stack
7146 pointer and frame pointer registers.  If this macro is not defined, it
7147 is up to the machine-dependent files to allocate such a register (if
7148 necessary).  Note that this register must be fixed when in use (e.g.@:
7149 when @code{flag_pic} is true).
7150 @end defmac
7151
7152 @defmac PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
7153 A C expression that is nonzero if the register defined by
7154 @code{PIC_OFFSET_TABLE_REGNUM} is clobbered by calls.  If not defined,
7155 the default is zero.  Do not define
7156 this macro if @code{PIC_OFFSET_TABLE_REGNUM} is not defined.
7157 @end defmac
7158
7159 @defmac LEGITIMATE_PIC_OPERAND_P (@var{x})
7160 A C expression that is nonzero if @var{x} is a legitimate immediate
7161 operand on the target machine when generating position independent code.
7162 You can assume that @var{x} satisfies @code{CONSTANT_P}, so you need not
7163 check this.  You can also assume @var{flag_pic} is true, so you need not
7164 check it either.  You need not define this macro if all constants
7165 (including @code{SYMBOL_REF}) can be immediate operands when generating
7166 position independent code.
7167 @end defmac
7168
7169 @node Assembler Format
7170 @section Defining the Output Assembler Language
7171
7172 This section describes macros whose principal purpose is to describe how
7173 to write instructions in assembler language---rather than what the
7174 instructions do.
7175
7176 @menu
7177 * File Framework::       Structural information for the assembler file.
7178 * Data Output::          Output of constants (numbers, strings, addresses).
7179 * Uninitialized Data::   Output of uninitialized variables.
7180 * Label Output::         Output and generation of labels.
7181 * Initialization::       General principles of initialization
7182                          and termination routines.
7183 * Macros for Initialization::
7184                          Specific macros that control the handling of
7185                          initialization and termination routines.
7186 * Instruction Output::   Output of actual instructions.
7187 * Dispatch Tables::      Output of jump tables.
7188 * Exception Region Output:: Output of exception region code.
7189 * Alignment Output::     Pseudo ops for alignment and skipping data.
7190 @end menu
7191
7192 @node File Framework
7193 @subsection The Overall Framework of an Assembler File
7194 @cindex assembler format
7195 @cindex output of assembler code
7196
7197 @c prevent bad page break with this line
7198 This describes the overall framework of an assembly file.
7199
7200 @findex default_file_start
7201 @hook TARGET_ASM_FILE_START
7202 Output to @code{asm_out_file} any text which the assembler expects to
7203 find at the beginning of a file.  The default behavior is controlled
7204 by two flags, documented below.  Unless your target's assembler is
7205 quite unusual, if you override the default, you should call
7206 @code{default_file_start} at some point in your target hook.  This
7207 lets other target files rely on these variables.
7208 @end deftypefn
7209
7210 @hook TARGET_ASM_FILE_START_APP_OFF
7211 If this flag is true, the text of the macro @code{ASM_APP_OFF} will be
7212 printed as the very first line in the assembly file, unless
7213 @option{-fverbose-asm} is in effect.  (If that macro has been defined
7214 to the empty string, this variable has no effect.)  With the normal
7215 definition of @code{ASM_APP_OFF}, the effect is to notify the GNU
7216 assembler that it need not bother stripping comments or extra
7217 whitespace from its input.  This allows it to work a bit faster.
7218
7219 The default is false.  You should not set it to true unless you have
7220 verified that your port does not generate any extra whitespace or
7221 comments that will cause GAS to issue errors in NO_APP mode.
7222 @end deftypevr
7223
7224 @hook TARGET_ASM_FILE_START_FILE_DIRECTIVE
7225 If this flag is true, @code{output_file_directive} will be called
7226 for the primary source file, immediately after printing
7227 @code{ASM_APP_OFF} (if that is enabled).  Most ELF assemblers expect
7228 this to be done.  The default is false.
7229 @end deftypevr
7230
7231 @hook TARGET_ASM_FILE_END
7232 Output to @code{asm_out_file} any text which the assembler expects
7233 to find at the end of a file.  The default is to output nothing.
7234 @end deftypefn
7235
7236 @deftypefun void file_end_indicate_exec_stack ()
7237 Some systems use a common convention, the @samp{.note.GNU-stack}
7238 special section, to indicate whether or not an object file relies on
7239 the stack being executable.  If your system uses this convention, you
7240 should define @code{TARGET_ASM_FILE_END} to this function.  If you
7241 need to do other things in that hook, have your hook function call
7242 this function.
7243 @end deftypefun
7244
7245 @hook TARGET_ASM_LTO_START
7246 Output to @code{asm_out_file} any text which the assembler expects
7247 to find at the start of an LTO section.  The default is to output
7248 nothing.
7249 @end deftypefn
7250
7251 @hook TARGET_ASM_LTO_END
7252 Output to @code{asm_out_file} any text which the assembler expects
7253 to find at the end of an LTO section.  The default is to output
7254 nothing.
7255 @end deftypefn
7256
7257 @hook TARGET_ASM_CODE_END
7258 Output to @code{asm_out_file} any text which is needed before emitting
7259 unwind info and debug info at the end of a file.  Some targets emit
7260 here PIC setup thunks that cannot be emitted at the end of file,
7261 because they couldn't have unwind info then.  The default is to output
7262 nothing.
7263 @end deftypefn
7264
7265 @defmac ASM_COMMENT_START
7266 A C string constant describing how to begin a comment in the target
7267 assembler language.  The compiler assumes that the comment will end at
7268 the end of the line.
7269 @end defmac
7270
7271 @defmac ASM_APP_ON
7272 A C string constant for text to be output before each @code{asm}
7273 statement or group of consecutive ones.  Normally this is
7274 @code{"#APP"}, which is a comment that has no effect on most
7275 assemblers but tells the GNU assembler that it must check the lines
7276 that follow for all valid assembler constructs.
7277 @end defmac
7278
7279 @defmac ASM_APP_OFF
7280 A C string constant for text to be output after each @code{asm}
7281 statement or group of consecutive ones.  Normally this is
7282 @code{"#NO_APP"}, which tells the GNU assembler to resume making the
7283 time-saving assumptions that are valid for ordinary compiler output.
7284 @end defmac
7285
7286 @defmac ASM_OUTPUT_SOURCE_FILENAME (@var{stream}, @var{name})
7287 A C statement to output COFF information or DWARF debugging information
7288 which indicates that filename @var{name} is the current source file to
7289 the stdio stream @var{stream}.
7290
7291 This macro need not be defined if the standard form of output
7292 for the file format in use is appropriate.
7293 @end defmac
7294
7295 @hook TARGET_ASM_OUTPUT_SOURCE_FILENAME
7296
7297 @defmac OUTPUT_QUOTED_STRING (@var{stream}, @var{string})
7298 A C statement to output the string @var{string} to the stdio stream
7299 @var{stream}.  If you do not call the function @code{output_quoted_string}
7300 in your config files, GCC will only call it to output filenames to
7301 the assembler source.  So you can use it to canonicalize the format
7302 of the filename using this macro.
7303 @end defmac
7304
7305 @defmac ASM_OUTPUT_IDENT (@var{stream}, @var{string})
7306 A C statement to output something to the assembler file to handle a
7307 @samp{#ident} directive containing the text @var{string}.  If this
7308 macro is not defined, nothing is output for a @samp{#ident} directive.
7309 @end defmac
7310
7311 @hook TARGET_ASM_NAMED_SECTION
7312 Output assembly directives to switch to section @var{name}.  The section
7313 should have attributes as specified by @var{flags}, which is a bit mask
7314 of the @code{SECTION_*} flags defined in @file{output.h}.  If @var{decl}
7315 is non-NULL, it is the @code{VAR_DECL} or @code{FUNCTION_DECL} with which
7316 this section is associated.
7317 @end deftypefn
7318
7319 @hook TARGET_ASM_FUNCTION_SECTION
7320 Return preferred text (sub)section for function @var{decl}.
7321 Main purpose of this function is to separate cold, normal and hot
7322 functions. @var{startup} is true when function is known to be used only
7323 at startup (from static constructors or it is @code{main()}).
7324 @var{exit} is true when function is known to be used only at exit
7325 (from static destructors).
7326 Return NULL if function should go to default text section.
7327 @end deftypefn
7328
7329 @hook TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS
7330
7331 @hook TARGET_HAVE_NAMED_SECTIONS
7332 This flag is true if the target supports @code{TARGET_ASM_NAMED_SECTION}.
7333 It must not be modified by command-line option processing.
7334 @end deftypevr
7335
7336 @anchor{TARGET_HAVE_SWITCHABLE_BSS_SECTIONS}
7337 @hook TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
7338 This flag is true if we can create zeroed data by switching to a BSS
7339 section and then using @code{ASM_OUTPUT_SKIP} to allocate the space.
7340 This is true on most ELF targets.
7341 @end deftypevr
7342
7343 @hook TARGET_SECTION_TYPE_FLAGS
7344 Choose a set of section attributes for use by @code{TARGET_ASM_NAMED_SECTION}
7345 based on a variable or function decl, a section name, and whether or not the
7346 declaration's initializer may contain runtime relocations.  @var{decl} may be
7347 null, in which case read-write data should be assumed.
7348
7349 The default version of this function handles choosing code vs data,
7350 read-only vs read-write data, and @code{flag_pic}.  You should only
7351 need to override this if your target has special flags that might be
7352 set via @code{__attribute__}.
7353 @end deftypefn
7354
7355 @hook TARGET_ASM_RECORD_GCC_SWITCHES
7356 Provides the target with the ability to record the gcc command line
7357 switches that have been passed to the compiler, and options that are
7358 enabled.  The @var{type} argument specifies what is being recorded.
7359 It can take the following values:
7360
7361 @table @gcctabopt
7362 @item SWITCH_TYPE_PASSED
7363 @var{text} is a command line switch that has been set by the user.
7364
7365 @item SWITCH_TYPE_ENABLED
7366 @var{text} is an option which has been enabled.  This might be as a
7367 direct result of a command line switch, or because it is enabled by
7368 default or because it has been enabled as a side effect of a different
7369 command line switch.  For example, the @option{-O2} switch enables
7370 various different individual optimization passes.
7371
7372 @item SWITCH_TYPE_DESCRIPTIVE
7373 @var{text} is either NULL or some descriptive text which should be
7374 ignored.  If @var{text} is NULL then it is being used to warn the
7375 target hook that either recording is starting or ending.  The first
7376 time @var{type} is SWITCH_TYPE_DESCRIPTIVE and @var{text} is NULL, the
7377 warning is for start up and the second time the warning is for
7378 wind down.  This feature is to allow the target hook to make any
7379 necessary preparations before it starts to record switches and to
7380 perform any necessary tidying up after it has finished recording
7381 switches.
7382
7383 @item SWITCH_TYPE_LINE_START
7384 This option can be ignored by this target hook.
7385
7386 @item  SWITCH_TYPE_LINE_END
7387 This option can be ignored by this target hook.
7388 @end table
7389
7390 The hook's return value must be zero.  Other return values may be
7391 supported in the future.
7392
7393 By default this hook is set to NULL, but an example implementation is
7394 provided for ELF based targets.  Called @var{elf_record_gcc_switches},
7395 it records the switches as ASCII text inside a new, string mergeable
7396 section in the assembler output file.  The name of the new section is
7397 provided by the @code{TARGET_ASM_RECORD_GCC_SWITCHES_SECTION} target
7398 hook.
7399 @end deftypefn
7400
7401 @hook TARGET_ASM_RECORD_GCC_SWITCHES_SECTION
7402 This is the name of the section that will be created by the example
7403 ELF implementation of the @code{TARGET_ASM_RECORD_GCC_SWITCHES} target
7404 hook.
7405 @end deftypevr
7406
7407 @need 2000
7408 @node Data Output
7409 @subsection Output of Data
7410
7411
7412 @hook TARGET_ASM_BYTE_OP
7413 @deftypevrx {Target Hook} {const char *} TARGET_ASM_ALIGNED_HI_OP
7414 @deftypevrx {Target Hook} {const char *} TARGET_ASM_ALIGNED_SI_OP
7415 @deftypevrx {Target Hook} {const char *} TARGET_ASM_ALIGNED_DI_OP
7416 @deftypevrx {Target Hook} {const char *} TARGET_ASM_ALIGNED_TI_OP
7417 @deftypevrx {Target Hook} {const char *} TARGET_ASM_UNALIGNED_HI_OP
7418 @deftypevrx {Target Hook} {const char *} TARGET_ASM_UNALIGNED_SI_OP
7419 @deftypevrx {Target Hook} {const char *} TARGET_ASM_UNALIGNED_DI_OP
7420 @deftypevrx {Target Hook} {const char *} TARGET_ASM_UNALIGNED_TI_OP
7421 These hooks specify assembly directives for creating certain kinds
7422 of integer object.  The @code{TARGET_ASM_BYTE_OP} directive creates a
7423 byte-sized object, the @code{TARGET_ASM_ALIGNED_HI_OP} one creates an
7424 aligned two-byte object, and so on.  Any of the hooks may be
7425 @code{NULL}, indicating that no suitable directive is available.
7426
7427 The compiler will print these strings at the start of a new line,
7428 followed immediately by the object's initial value.  In most cases,
7429 the string should contain a tab, a pseudo-op, and then another tab.
7430 @end deftypevr
7431
7432 @hook TARGET_ASM_INTEGER
7433 The @code{assemble_integer} function uses this hook to output an
7434 integer object.  @var{x} is the object's value, @var{size} is its size
7435 in bytes and @var{aligned_p} indicates whether it is aligned.  The
7436 function should return @code{true} if it was able to output the
7437 object.  If it returns false, @code{assemble_integer} will try to
7438 split the object into smaller parts.
7439
7440 The default implementation of this hook will use the
7441 @code{TARGET_ASM_BYTE_OP} family of strings, returning @code{false}
7442 when the relevant string is @code{NULL}.
7443 @end deftypefn
7444
7445 @hook TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
7446 A target hook to recognize @var{rtx} patterns that @code{output_addr_const}
7447 can't deal with, and output assembly code to @var{file} corresponding to
7448 the pattern @var{x}.  This may be used to allow machine-dependent
7449 @code{UNSPEC}s to appear within constants.
7450
7451 If target hook fails to recognize a pattern, it must return @code{false},
7452 so that a standard error message is printed.  If it prints an error message
7453 itself, by calling, for example, @code{output_operand_lossage}, it may just
7454 return @code{true}.
7455 @end deftypefn
7456
7457 @defmac ASM_OUTPUT_ASCII (@var{stream}, @var{ptr}, @var{len})
7458 A C statement to output to the stdio stream @var{stream} an assembler
7459 instruction to assemble a string constant containing the @var{len}
7460 bytes at @var{ptr}.  @var{ptr} will be a C expression of type
7461 @code{char *} and @var{len} a C expression of type @code{int}.
7462
7463 If the assembler has a @code{.ascii} pseudo-op as found in the
7464 Berkeley Unix assembler, do not define the macro
7465 @code{ASM_OUTPUT_ASCII}.
7466 @end defmac
7467
7468 @defmac ASM_OUTPUT_FDESC (@var{stream}, @var{decl}, @var{n})
7469 A C statement to output word @var{n} of a function descriptor for
7470 @var{decl}.  This must be defined if @code{TARGET_VTABLE_USES_DESCRIPTORS}
7471 is defined, and is otherwise unused.
7472 @end defmac
7473
7474 @defmac CONSTANT_POOL_BEFORE_FUNCTION
7475 You may define this macro as a C expression.  You should define the
7476 expression to have a nonzero value if GCC should output the constant
7477 pool for a function before the code for the function, or a zero value if
7478 GCC should output the constant pool after the function.  If you do
7479 not define this macro, the usual case, GCC will output the constant
7480 pool before the function.
7481 @end defmac
7482
7483 @defmac ASM_OUTPUT_POOL_PROLOGUE (@var{file}, @var{funname}, @var{fundecl}, @var{size})
7484 A C statement to output assembler commands to define the start of the
7485 constant pool for a function.  @var{funname} is a string giving
7486 the name of the function.  Should the return type of the function
7487 be required, it can be obtained via @var{fundecl}.  @var{size}
7488 is the size, in bytes, of the constant pool that will be written
7489 immediately after this call.
7490
7491 If no constant-pool prefix is required, the usual case, this macro need
7492 not be defined.
7493 @end defmac
7494
7495 @defmac ASM_OUTPUT_SPECIAL_POOL_ENTRY (@var{file}, @var{x}, @var{mode}, @var{align}, @var{labelno}, @var{jumpto})
7496 A C statement (with or without semicolon) to output a constant in the
7497 constant pool, if it needs special treatment.  (This macro need not do
7498 anything for RTL expressions that can be output normally.)
7499
7500 The argument @var{file} is the standard I/O stream to output the
7501 assembler code on.  @var{x} is the RTL expression for the constant to
7502 output, and @var{mode} is the machine mode (in case @var{x} is a
7503 @samp{const_int}).  @var{align} is the required alignment for the value
7504 @var{x}; you should output an assembler directive to force this much
7505 alignment.
7506
7507 The argument @var{labelno} is a number to use in an internal label for
7508 the address of this pool entry.  The definition of this macro is
7509 responsible for outputting the label definition at the proper place.
7510 Here is how to do this:
7511
7512 @smallexample
7513 @code{(*targetm.asm_out.internal_label)} (@var{file}, "LC", @var{labelno});
7514 @end smallexample
7515
7516 When you output a pool entry specially, you should end with a
7517 @code{goto} to the label @var{jumpto}.  This will prevent the same pool
7518 entry from being output a second time in the usual manner.
7519
7520 You need not define this macro if it would do nothing.
7521 @end defmac
7522
7523 @defmac ASM_OUTPUT_POOL_EPILOGUE (@var{file} @var{funname} @var{fundecl} @var{size})
7524 A C statement to output assembler commands to at the end of the constant
7525 pool for a function.  @var{funname} is a string giving the name of the
7526 function.  Should the return type of the function be required, you can
7527 obtain it via @var{fundecl}.  @var{size} is the size, in bytes, of the
7528 constant pool that GCC wrote immediately before this call.
7529
7530 If no constant-pool epilogue is required, the usual case, you need not
7531 define this macro.
7532 @end defmac
7533
7534 @defmac IS_ASM_LOGICAL_LINE_SEPARATOR (@var{C}, @var{STR})
7535 Define this macro as a C expression which is nonzero if @var{C} is
7536 used as a logical line separator by the assembler.  @var{STR} points
7537 to the position in the string where @var{C} was found; this can be used if
7538 a line separator uses multiple characters.
7539
7540 If you do not define this macro, the default is that only
7541 the character @samp{;} is treated as a logical line separator.
7542 @end defmac
7543
7544 @hook TARGET_ASM_OPEN_PAREN
7545 These target hooks are C string constants, describing the syntax in the
7546 assembler for grouping arithmetic expressions.  If not overridden, they
7547 default to normal parentheses, which is correct for most assemblers.
7548 @end deftypevr
7549
7550 These macros are provided by @file{real.h} for writing the definitions
7551 of @code{ASM_OUTPUT_DOUBLE} and the like:
7552
7553 @defmac REAL_VALUE_TO_TARGET_SINGLE (@var{x}, @var{l})
7554 @defmacx REAL_VALUE_TO_TARGET_DOUBLE (@var{x}, @var{l})
7555 @defmacx REAL_VALUE_TO_TARGET_LONG_DOUBLE (@var{x}, @var{l})
7556 @defmacx REAL_VALUE_TO_TARGET_DECIMAL32 (@var{x}, @var{l})
7557 @defmacx REAL_VALUE_TO_TARGET_DECIMAL64 (@var{x}, @var{l})
7558 @defmacx REAL_VALUE_TO_TARGET_DECIMAL128 (@var{x}, @var{l})
7559 These translate @var{x}, of type @code{REAL_VALUE_TYPE}, to the
7560 target's floating point representation, and store its bit pattern in
7561 the variable @var{l}.  For @code{REAL_VALUE_TO_TARGET_SINGLE} and
7562 @code{REAL_VALUE_TO_TARGET_DECIMAL32}, this variable should be a
7563 simple @code{long int}.  For the others, it should be an array of
7564 @code{long int}.  The number of elements in this array is determined
7565 by the size of the desired target floating point data type: 32 bits of
7566 it go in each @code{long int} array element.  Each array element holds
7567 32 bits of the result, even if @code{long int} is wider than 32 bits
7568 on the host machine.
7569
7570 The array element values are designed so that you can print them out
7571 using @code{fprintf} in the order they should appear in the target
7572 machine's memory.
7573 @end defmac
7574
7575 @node Uninitialized Data
7576 @subsection Output of Uninitialized Variables
7577
7578 Each of the macros in this section is used to do the whole job of
7579 outputting a single uninitialized variable.
7580
7581 @defmac ASM_OUTPUT_COMMON (@var{stream}, @var{name}, @var{size}, @var{rounded})
7582 A C statement (sans semicolon) to output to the stdio stream
7583 @var{stream} the assembler definition of a common-label named
7584 @var{name} whose size is @var{size} bytes.  The variable @var{rounded}
7585 is the size rounded up to whatever alignment the caller wants.  It is
7586 possible that @var{size} may be zero, for instance if a struct with no
7587 other member than a zero-length array is defined.  In this case, the
7588 backend must output a symbol definition that allocates at least one
7589 byte, both so that the address of the resulting object does not compare
7590 equal to any other, and because some object formats cannot even express
7591 the concept of a zero-sized common symbol, as that is how they represent
7592 an ordinary undefined external.
7593
7594 Use the expression @code{assemble_name (@var{stream}, @var{name})} to
7595 output the name itself; before and after that, output the additional
7596 assembler syntax for defining the name, and a newline.
7597
7598 This macro controls how the assembler definitions of uninitialized
7599 common global variables are output.
7600 @end defmac
7601
7602 @defmac ASM_OUTPUT_ALIGNED_COMMON (@var{stream}, @var{name}, @var{size}, @var{alignment})
7603 Like @code{ASM_OUTPUT_COMMON} except takes the required alignment as a
7604 separate, explicit argument.  If you define this macro, it is used in
7605 place of @code{ASM_OUTPUT_COMMON}, and gives you more flexibility in
7606 handling the required alignment of the variable.  The alignment is specified
7607 as the number of bits.
7608 @end defmac
7609
7610 @defmac ASM_OUTPUT_ALIGNED_DECL_COMMON (@var{stream}, @var{decl}, @var{name}, @var{size}, @var{alignment})
7611 Like @code{ASM_OUTPUT_ALIGNED_COMMON} except that @var{decl} of the
7612 variable to be output, if there is one, or @code{NULL_TREE} if there
7613 is no corresponding variable.  If you define this macro, GCC will use it
7614 in place of both @code{ASM_OUTPUT_COMMON} and
7615 @code{ASM_OUTPUT_ALIGNED_COMMON}.  Define this macro when you need to see
7616 the variable's decl in order to chose what to output.
7617 @end defmac
7618
7619 @defmac ASM_OUTPUT_ALIGNED_BSS (@var{stream}, @var{decl}, @var{name}, @var{size}, @var{alignment})
7620 A C statement (sans semicolon) to output to the stdio stream
7621 @var{stream} the assembler definition of uninitialized global @var{decl} named
7622 @var{name} whose size is @var{size} bytes.  The variable @var{alignment}
7623 is the alignment specified as the number of bits.
7624
7625 Try to use function @code{asm_output_aligned_bss} defined in file
7626 @file{varasm.c} when defining this macro.  If unable, use the expression
7627 @code{assemble_name (@var{stream}, @var{name})} to output the name itself;
7628 before and after that, output the additional assembler syntax for defining
7629 the name, and a newline.
7630
7631 There are two ways of handling global BSS@.  One is to define this macro.
7632 The other is to have @code{TARGET_ASM_SELECT_SECTION} return a
7633 switchable BSS section (@pxref{TARGET_HAVE_SWITCHABLE_BSS_SECTIONS}).
7634 You do not need to do both.
7635
7636 Some languages do not have @code{common} data, and require a
7637 non-common form of global BSS in order to handle uninitialized globals
7638 efficiently.  C++ is one example of this.  However, if the target does
7639 not support global BSS, the front end may choose to make globals
7640 common in order to save space in the object file.
7641 @end defmac
7642
7643 @defmac ASM_OUTPUT_LOCAL (@var{stream}, @var{name}, @var{size}, @var{rounded})
7644 A C statement (sans semicolon) to output to the stdio stream
7645 @var{stream} the assembler definition of a local-common-label named
7646 @var{name} whose size is @var{size} bytes.  The variable @var{rounded}
7647 is the size rounded up to whatever alignment the caller wants.
7648
7649 Use the expression @code{assemble_name (@var{stream}, @var{name})} to
7650 output the name itself; before and after that, output the additional
7651 assembler syntax for defining the name, and a newline.
7652
7653 This macro controls how the assembler definitions of uninitialized
7654 static variables are output.
7655 @end defmac
7656
7657 @defmac ASM_OUTPUT_ALIGNED_LOCAL (@var{stream}, @var{name}, @var{size}, @var{alignment})
7658 Like @code{ASM_OUTPUT_LOCAL} except takes the required alignment as a
7659 separate, explicit argument.  If you define this macro, it is used in
7660 place of @code{ASM_OUTPUT_LOCAL}, and gives you more flexibility in
7661 handling the required alignment of the variable.  The alignment is specified
7662 as the number of bits.
7663 @end defmac
7664
7665 @defmac ASM_OUTPUT_ALIGNED_DECL_LOCAL (@var{stream}, @var{decl}, @var{name}, @var{size}, @var{alignment})
7666 Like @code{ASM_OUTPUT_ALIGNED_DECL} except that @var{decl} of the
7667 variable to be output, if there is one, or @code{NULL_TREE} if there
7668 is no corresponding variable.  If you define this macro, GCC will use it
7669 in place of both @code{ASM_OUTPUT_DECL} and
7670 @code{ASM_OUTPUT_ALIGNED_DECL}.  Define this macro when you need to see
7671 the variable's decl in order to chose what to output.
7672 @end defmac
7673
7674 @node Label Output
7675 @subsection Output and Generation of Labels
7676
7677 @c prevent bad page break with this line
7678 This is about outputting labels.
7679
7680 @findex assemble_name
7681 @defmac ASM_OUTPUT_LABEL (@var{stream}, @var{name})
7682 A C statement (sans semicolon) to output to the stdio stream
7683 @var{stream} the assembler definition of a label named @var{name}.
7684 Use the expression @code{assemble_name (@var{stream}, @var{name})} to
7685 output the name itself; before and after that, output the additional
7686 assembler syntax for defining the name, and a newline.  A default
7687 definition of this macro is provided which is correct for most systems.
7688 @end defmac
7689
7690 @defmac ASM_OUTPUT_FUNCTION_LABEL (@var{stream}, @var{name}, @var{decl})
7691 A C statement (sans semicolon) to output to the stdio stream
7692 @var{stream} the assembler definition of a label named @var{name} of
7693 a function.
7694 Use the expression @code{assemble_name (@var{stream}, @var{name})} to
7695 output the name itself; before and after that, output the additional
7696 assembler syntax for defining the name, and a newline.  A default
7697 definition of this macro is provided which is correct for most systems.
7698
7699 If this macro is not defined, then the function name is defined in the
7700 usual manner as a label (by means of @code{ASM_OUTPUT_LABEL}).
7701 @end defmac
7702
7703 @findex assemble_name_raw
7704 @defmac ASM_OUTPUT_INTERNAL_LABEL (@var{stream}, @var{name})
7705 Identical to @code{ASM_OUTPUT_LABEL}, except that @var{name} is known
7706 to refer to a compiler-generated label.  The default definition uses
7707 @code{assemble_name_raw}, which is like @code{assemble_name} except
7708 that it is more efficient.
7709 @end defmac
7710
7711 @defmac SIZE_ASM_OP
7712 A C string containing the appropriate assembler directive to specify the
7713 size of a symbol, without any arguments.  On systems that use ELF, the
7714 default (in @file{config/elfos.h}) is @samp{"\t.size\t"}; on other
7715 systems, the default is not to define this macro.
7716
7717 Define this macro only if it is correct to use the default definitions
7718 of @code{ASM_OUTPUT_SIZE_DIRECTIVE} and @code{ASM_OUTPUT_MEASURED_SIZE}
7719 for your system.  If you need your own custom definitions of those
7720 macros, or if you do not need explicit symbol sizes at all, do not
7721 define this macro.
7722 @end defmac
7723
7724 @defmac ASM_OUTPUT_SIZE_DIRECTIVE (@var{stream}, @var{name}, @var{size})
7725 A C statement (sans semicolon) to output to the stdio stream
7726 @var{stream} a directive telling the assembler that the size of the
7727 symbol @var{name} is @var{size}.  @var{size} is a @code{HOST_WIDE_INT}.
7728 If you define @code{SIZE_ASM_OP}, a default definition of this macro is
7729 provided.
7730 @end defmac
7731
7732 @defmac ASM_OUTPUT_MEASURED_SIZE (@var{stream}, @var{name})
7733 A C statement (sans semicolon) to output to the stdio stream
7734 @var{stream} a directive telling the assembler to calculate the size of
7735 the symbol @var{name} by subtracting its address from the current
7736 address.
7737
7738 If you define @code{SIZE_ASM_OP}, a default definition of this macro is
7739 provided.  The default assumes that the assembler recognizes a special
7740 @samp{.} symbol as referring to the current address, and can calculate
7741 the difference between this and another symbol.  If your assembler does
7742 not recognize @samp{.} or cannot do calculations with it, you will need
7743 to redefine @code{ASM_OUTPUT_MEASURED_SIZE} to use some other technique.
7744 @end defmac
7745
7746 @defmac TYPE_ASM_OP
7747 A C string containing the appropriate assembler directive to specify the
7748 type of a symbol, without any arguments.  On systems that use ELF, the
7749 default (in @file{config/elfos.h}) is @samp{"\t.type\t"}; on other
7750 systems, the default is not to define this macro.
7751
7752 Define this macro only if it is correct to use the default definition of
7753 @code{ASM_OUTPUT_TYPE_DIRECTIVE} for your system.  If you need your own
7754 custom definition of this macro, or if you do not need explicit symbol
7755 types at all, do not define this macro.
7756 @end defmac
7757
7758 @defmac TYPE_OPERAND_FMT
7759 A C string which specifies (using @code{printf} syntax) the format of
7760 the second operand to @code{TYPE_ASM_OP}.  On systems that use ELF, the
7761 default (in @file{config/elfos.h}) is @samp{"@@%s"}; on other systems,
7762 the default is not to define this macro.
7763
7764 Define this macro only if it is correct to use the default definition of
7765 @code{ASM_OUTPUT_TYPE_DIRECTIVE} for your system.  If you need your own
7766 custom definition of this macro, or if you do not need explicit symbol
7767 types at all, do not define this macro.
7768 @end defmac
7769
7770 @defmac ASM_OUTPUT_TYPE_DIRECTIVE (@var{stream}, @var{type})
7771 A C statement (sans semicolon) to output to the stdio stream
7772 @var{stream} a directive telling the assembler that the type of the
7773 symbol @var{name} is @var{type}.  @var{type} is a C string; currently,
7774 that string is always either @samp{"function"} or @samp{"object"}, but
7775 you should not count on this.
7776
7777 If you define @code{TYPE_ASM_OP} and @code{TYPE_OPERAND_FMT}, a default
7778 definition of this macro is provided.
7779 @end defmac
7780
7781 @defmac ASM_DECLARE_FUNCTION_NAME (@var{stream}, @var{name}, @var{decl})
7782 A C statement (sans semicolon) to output to the stdio stream
7783 @var{stream} any text necessary for declaring the name @var{name} of a
7784 function which is being defined.  This macro is responsible for
7785 outputting the label definition (perhaps using
7786 @code{ASM_OUTPUT_FUNCTION_LABEL}).  The argument @var{decl} is the
7787 @code{FUNCTION_DECL} tree node representing the function.
7788
7789 If this macro is not defined, then the function name is defined in the
7790 usual manner as a label (by means of @code{ASM_OUTPUT_FUNCTION_LABEL}).
7791
7792 You may wish to use @code{ASM_OUTPUT_TYPE_DIRECTIVE} in the definition
7793 of this macro.
7794 @end defmac
7795
7796 @defmac ASM_DECLARE_FUNCTION_SIZE (@var{stream}, @var{name}, @var{decl})
7797 A C statement (sans semicolon) to output to the stdio stream
7798 @var{stream} any text necessary for declaring the size of a function
7799 which is being defined.  The argument @var{name} is the name of the
7800 function.  The argument @var{decl} is the @code{FUNCTION_DECL} tree node
7801 representing the function.
7802
7803 If this macro is not defined, then the function size is not defined.
7804
7805 You may wish to use @code{ASM_OUTPUT_MEASURED_SIZE} in the definition
7806 of this macro.
7807 @end defmac
7808
7809 @defmac ASM_DECLARE_OBJECT_NAME (@var{stream}, @var{name}, @var{decl})
7810 A C statement (sans semicolon) to output to the stdio stream
7811 @var{stream} any text necessary for declaring the name @var{name} of an
7812 initialized variable which is being defined.  This macro must output the
7813 label definition (perhaps using @code{ASM_OUTPUT_LABEL}).  The argument
7814 @var{decl} is the @code{VAR_DECL} tree node representing the variable.
7815
7816 If this macro is not defined, then the variable name is defined in the
7817 usual manner as a label (by means of @code{ASM_OUTPUT_LABEL}).
7818
7819 You may wish to use @code{ASM_OUTPUT_TYPE_DIRECTIVE} and/or
7820 @code{ASM_OUTPUT_SIZE_DIRECTIVE} in the definition of this macro.
7821 @end defmac
7822
7823 @hook TARGET_ASM_DECLARE_CONSTANT_NAME
7824 A target hook to output to the stdio stream @var{file} any text necessary
7825 for declaring the name @var{name} of a constant which is being defined.  This
7826 target hook is responsible for outputting the label definition (perhaps using
7827 @code{assemble_label}).  The argument @var{exp} is the value of the constant,
7828 and @var{size} is the size of the constant in bytes.  The @var{name}
7829 will be an internal label.
7830
7831 The default version of this target hook, define the @var{name} in the
7832 usual manner as a label (by means of @code{assemble_label}).
7833
7834 You may wish to use @code{ASM_OUTPUT_TYPE_DIRECTIVE} in this target hook.
7835 @end deftypefn
7836
7837 @defmac ASM_DECLARE_REGISTER_GLOBAL (@var{stream}, @var{decl}, @var{regno}, @var{name})
7838 A C statement (sans semicolon) to output to the stdio stream
7839 @var{stream} any text necessary for claiming a register @var{regno}
7840 for a global variable @var{decl} with name @var{name}.
7841
7842 If you don't define this macro, that is equivalent to defining it to do
7843 nothing.
7844 @end defmac
7845
7846 @defmac ASM_FINISH_DECLARE_OBJECT (@var{stream}, @var{decl}, @var{toplevel}, @var{atend})
7847 A C statement (sans semicolon) to finish up declaring a variable name
7848 once the compiler has processed its initializer fully and thus has had a
7849 chance to determine the size of an array when controlled by an
7850 initializer.  This is used on systems where it's necessary to declare
7851 something about the size of the object.
7852
7853 If you don't define this macro, that is equivalent to defining it to do
7854 nothing.
7855
7856 You may wish to use @code{ASM_OUTPUT_SIZE_DIRECTIVE} and/or
7857 @code{ASM_OUTPUT_MEASURED_SIZE} in the definition of this macro.
7858 @end defmac
7859
7860 @hook TARGET_ASM_GLOBALIZE_LABEL
7861 This target hook is a function to output to the stdio stream
7862 @var{stream} some commands that will make the label @var{name} global;
7863 that is, available for reference from other files.
7864
7865 The default implementation relies on a proper definition of
7866 @code{GLOBAL_ASM_OP}.
7867 @end deftypefn
7868
7869 @hook TARGET_ASM_GLOBALIZE_DECL_NAME
7870 This target hook is a function to output to the stdio stream
7871 @var{stream} some commands that will make the name associated with @var{decl}
7872 global; that is, available for reference from other files.
7873
7874 The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook.
7875 @end deftypefn
7876
7877 @defmac ASM_WEAKEN_LABEL (@var{stream}, @var{name})
7878 A C statement (sans semicolon) to output to the stdio stream
7879 @var{stream} some commands that will make the label @var{name} weak;
7880 that is, available for reference from other files but only used if
7881 no other definition is available.  Use the expression
7882 @code{assemble_name (@var{stream}, @var{name})} to output the name
7883 itself; before and after that, output the additional assembler syntax
7884 for making that name weak, and a newline.
7885
7886 If you don't define this macro or @code{ASM_WEAKEN_DECL}, GCC will not
7887 support weak symbols and you should not define the @code{SUPPORTS_WEAK}
7888 macro.
7889 @end defmac
7890
7891 @defmac ASM_WEAKEN_DECL (@var{stream}, @var{decl}, @var{name}, @var{value})
7892 Combines (and replaces) the function of @code{ASM_WEAKEN_LABEL} and
7893 @code{ASM_OUTPUT_WEAK_ALIAS}, allowing access to the associated function
7894 or variable decl.  If @var{value} is not @code{NULL}, this C statement
7895 should output to the stdio stream @var{stream} assembler code which
7896 defines (equates) the weak symbol @var{name} to have the value
7897 @var{value}.  If @var{value} is @code{NULL}, it should output commands
7898 to make @var{name} weak.
7899 @end defmac
7900
7901 @defmac ASM_OUTPUT_WEAKREF (@var{stream}, @var{decl}, @var{name}, @var{value})
7902 Outputs a directive that enables @var{name} to be used to refer to
7903 symbol @var{value} with weak-symbol semantics.  @code{decl} is the
7904 declaration of @code{name}.
7905 @end defmac
7906
7907 @defmac SUPPORTS_WEAK
7908 A preprocessor constant expression which evaluates to true if the target
7909 supports weak symbols.
7910
7911 If you don't define this macro, @file{defaults.h} provides a default
7912 definition.  If either @code{ASM_WEAKEN_LABEL} or @code{ASM_WEAKEN_DECL}
7913 is defined, the default definition is @samp{1}; otherwise, it is @samp{0}.
7914 @end defmac
7915
7916 @defmac TARGET_SUPPORTS_WEAK
7917 A C expression which evaluates to true if the target supports weak symbols.
7918
7919 If you don't define this macro, @file{defaults.h} provides a default
7920 definition.  The default definition is @samp{(SUPPORTS_WEAK)}.  Define
7921 this macro if you want to control weak symbol support with a compiler
7922 flag such as @option{-melf}.
7923 @end defmac
7924
7925 @defmac MAKE_DECL_ONE_ONLY (@var{decl})
7926 A C statement (sans semicolon) to mark @var{decl} to be emitted as a
7927 public symbol such that extra copies in multiple translation units will
7928 be discarded by the linker.  Define this macro if your object file
7929 format provides support for this concept, such as the @samp{COMDAT}
7930 section flags in the Microsoft Windows PE/COFF format, and this support
7931 requires changes to @var{decl}, such as putting it in a separate section.
7932 @end defmac
7933
7934 @defmac SUPPORTS_ONE_ONLY
7935 A C expression which evaluates to true if the target supports one-only
7936 semantics.
7937
7938 If you don't define this macro, @file{varasm.c} provides a default
7939 definition.  If @code{MAKE_DECL_ONE_ONLY} is defined, the default
7940 definition is @samp{1}; otherwise, it is @samp{0}.  Define this macro if
7941 you want to control one-only symbol support with a compiler flag, or if
7942 setting the @code{DECL_ONE_ONLY} flag is enough to mark a declaration to
7943 be emitted as one-only.
7944 @end defmac
7945
7946 @hook TARGET_ASM_ASSEMBLE_VISIBILITY
7947 This target hook is a function to output to @var{asm_out_file} some
7948 commands that will make the symbol(s) associated with @var{decl} have
7949 hidden, protected or internal visibility as specified by @var{visibility}.
7950 @end deftypefn
7951
7952 @defmac TARGET_WEAK_NOT_IN_ARCHIVE_TOC
7953 A C expression that evaluates to true if the target's linker expects
7954 that weak symbols do not appear in a static archive's table of contents.
7955 The default is @code{0}.
7956
7957 Leaving weak symbols out of an archive's table of contents means that,
7958 if a symbol will only have a definition in one translation unit and
7959 will have undefined references from other translation units, that
7960 symbol should not be weak.  Defining this macro to be nonzero will
7961 thus have the effect that certain symbols that would normally be weak
7962 (explicit template instantiations, and vtables for polymorphic classes
7963 with noninline key methods) will instead be nonweak.
7964
7965 The C++ ABI requires this macro to be zero.  Define this macro for
7966 targets where full C++ ABI compliance is impossible and where linker
7967 restrictions require weak symbols to be left out of a static archive's
7968 table of contents.
7969 @end defmac
7970
7971 @defmac ASM_OUTPUT_EXTERNAL (@var{stream}, @var{decl}, @var{name})
7972 A C statement (sans semicolon) to output to the stdio stream
7973 @var{stream} any text necessary for declaring the name of an external
7974 symbol named @var{name} which is referenced in this compilation but
7975 not defined.  The value of @var{decl} is the tree node for the
7976 declaration.
7977
7978 This macro need not be defined if it does not need to output anything.
7979 The GNU assembler and most Unix assemblers don't require anything.
7980 @end defmac
7981
7982 @hook TARGET_ASM_EXTERNAL_LIBCALL
7983 This target hook is a function to output to @var{asm_out_file} an assembler
7984 pseudo-op to declare a library function name external.  The name of the
7985 library function is given by @var{symref}, which is a @code{symbol_ref}.
7986 @end deftypefn
7987
7988 @hook TARGET_ASM_MARK_DECL_PRESERVED
7989 This target hook is a function to output to @var{asm_out_file} an assembler
7990 directive to annotate @var{symbol} as used.  The Darwin target uses the
7991 .no_dead_code_strip directive.
7992 @end deftypefn
7993
7994 @defmac ASM_OUTPUT_LABELREF (@var{stream}, @var{name})
7995 A C statement (sans semicolon) to output to the stdio stream
7996 @var{stream} a reference in assembler syntax to a label named
7997 @var{name}.  This should add @samp{_} to the front of the name, if that
7998 is customary on your operating system, as it is in most Berkeley Unix
7999 systems.  This macro is used in @code{assemble_name}.
8000 @end defmac
8001
8002 @hook TARGET_MANGLE_ASSEMBLER_NAME
8003
8004 @defmac ASM_OUTPUT_SYMBOL_REF (@var{stream}, @var{sym})
8005 A C statement (sans semicolon) to output a reference to
8006 @code{SYMBOL_REF} @var{sym}.  If not defined, @code{assemble_name}
8007 will be used to output the name of the symbol.  This macro may be used
8008 to modify the way a symbol is referenced depending on information
8009 encoded by @code{TARGET_ENCODE_SECTION_INFO}.
8010 @end defmac
8011
8012 @defmac ASM_OUTPUT_LABEL_REF (@var{stream}, @var{buf})
8013 A C statement (sans semicolon) to output a reference to @var{buf}, the
8014 result of @code{ASM_GENERATE_INTERNAL_LABEL}.  If not defined,
8015 @code{assemble_name} will be used to output the name of the symbol.
8016 This macro is not used by @code{output_asm_label}, or the @code{%l}
8017 specifier that calls it; the intention is that this macro should be set
8018 when it is necessary to output a label differently when its address is
8019 being taken.
8020 @end defmac
8021
8022 @hook TARGET_ASM_INTERNAL_LABEL
8023 A function to output to the stdio stream @var{stream} a label whose
8024 name is made from the string @var{prefix} and the number @var{labelno}.
8025
8026 It is absolutely essential that these labels be distinct from the labels
8027 used for user-level functions and variables.  Otherwise, certain programs
8028 will have name conflicts with internal labels.
8029
8030 It is desirable to exclude internal labels from the symbol table of the
8031 object file.  Most assemblers have a naming convention for labels that
8032 should be excluded; on many systems, the letter @samp{L} at the
8033 beginning of a label has this effect.  You should find out what
8034 convention your system uses, and follow it.
8035
8036 The default version of this function utilizes @code{ASM_GENERATE_INTERNAL_LABEL}.
8037 @end deftypefn
8038
8039 @defmac ASM_OUTPUT_DEBUG_LABEL (@var{stream}, @var{prefix}, @var{num})
8040 A C statement to output to the stdio stream @var{stream} a debug info
8041 label whose name is made from the string @var{prefix} and the number
8042 @var{num}.  This is useful for VLIW targets, where debug info labels
8043 may need to be treated differently than branch target labels.  On some
8044 systems, branch target labels must be at the beginning of instruction
8045 bundles, but debug info labels can occur in the middle of instruction
8046 bundles.
8047
8048 If this macro is not defined, then @code{(*targetm.asm_out.internal_label)} will be
8049 used.
8050 @end defmac
8051
8052 @defmac ASM_GENERATE_INTERNAL_LABEL (@var{string}, @var{prefix}, @var{num})
8053 A C statement to store into the string @var{string} a label whose name
8054 is made from the string @var{prefix} and the number @var{num}.
8055
8056 This string, when output subsequently by @code{assemble_name}, should
8057 produce the output that @code{(*targetm.asm_out.internal_label)} would produce
8058 with the same @var{prefix} and @var{num}.
8059
8060 If the string begins with @samp{*}, then @code{assemble_name} will
8061 output the rest of the string unchanged.  It is often convenient for
8062 @code{ASM_GENERATE_INTERNAL_LABEL} to use @samp{*} in this way.  If the
8063 string doesn't start with @samp{*}, then @code{ASM_OUTPUT_LABELREF} gets
8064 to output the string, and may change it.  (Of course,
8065 @code{ASM_OUTPUT_LABELREF} is also part of your machine description, so
8066 you should know what it does on your machine.)
8067 @end defmac
8068
8069 @defmac ASM_FORMAT_PRIVATE_NAME (@var{outvar}, @var{name}, @var{number})
8070 A C expression to assign to @var{outvar} (which is a variable of type
8071 @code{char *}) a newly allocated string made from the string
8072 @var{name} and the number @var{number}, with some suitable punctuation
8073 added.  Use @code{alloca} to get space for the string.
8074
8075 The string will be used as an argument to @code{ASM_OUTPUT_LABELREF} to
8076 produce an assembler label for an internal static variable whose name is
8077 @var{name}.  Therefore, the string must be such as to result in valid
8078 assembler code.  The argument @var{number} is different each time this
8079 macro is executed; it prevents conflicts between similarly-named
8080 internal static variables in different scopes.
8081
8082 Ideally this string should not be a valid C identifier, to prevent any
8083 conflict with the user's own symbols.  Most assemblers allow periods
8084 or percent signs in assembler symbols; putting at least one of these
8085 between the name and the number will suffice.
8086
8087 If this macro is not defined, a default definition will be provided
8088 which is correct for most systems.
8089 @end defmac
8090
8091 @defmac ASM_OUTPUT_DEF (@var{stream}, @var{name}, @var{value})
8092 A C statement to output to the stdio stream @var{stream} assembler code
8093 which defines (equates) the symbol @var{name} to have the value @var{value}.
8094
8095 @findex SET_ASM_OP
8096 If @code{SET_ASM_OP} is defined, a default definition is provided which is
8097 correct for most systems.
8098 @end defmac
8099
8100 @defmac ASM_OUTPUT_DEF_FROM_DECLS (@var{stream}, @var{decl_of_name}, @var{decl_of_value})
8101 A C statement to output to the stdio stream @var{stream} assembler code
8102 which defines (equates) the symbol whose tree node is @var{decl_of_name}
8103 to have the value of the tree node @var{decl_of_value}.  This macro will
8104 be used in preference to @samp{ASM_OUTPUT_DEF} if it is defined and if
8105 the tree nodes are available.
8106
8107 @findex SET_ASM_OP
8108 If @code{SET_ASM_OP} is defined, a default definition is provided which is
8109 correct for most systems.
8110 @end defmac
8111
8112 @defmac TARGET_DEFERRED_OUTPUT_DEFS (@var{decl_of_name}, @var{decl_of_value})
8113 A C statement that evaluates to true if the assembler code which defines
8114 (equates) the symbol whose tree node is @var{decl_of_name} to have the value
8115 of the tree node @var{decl_of_value} should be emitted near the end of the
8116 current compilation unit.  The default is to not defer output of defines.
8117 This macro affects defines output by @samp{ASM_OUTPUT_DEF} and
8118 @samp{ASM_OUTPUT_DEF_FROM_DECLS}.
8119 @end defmac
8120
8121 @defmac ASM_OUTPUT_WEAK_ALIAS (@var{stream}, @var{name}, @var{value})
8122 A C statement to output to the stdio stream @var{stream} assembler code
8123 which defines (equates) the weak symbol @var{name} to have the value
8124 @var{value}.  If @var{value} is @code{NULL}, it defines @var{name} as
8125 an undefined weak symbol.
8126
8127 Define this macro if the target only supports weak aliases; define
8128 @code{ASM_OUTPUT_DEF} instead if possible.
8129 @end defmac
8130
8131 @defmac OBJC_GEN_METHOD_LABEL (@var{buf}, @var{is_inst}, @var{class_name}, @var{cat_name}, @var{sel_name})
8132 Define this macro to override the default assembler names used for
8133 Objective-C methods.
8134
8135 The default name is a unique method number followed by the name of the
8136 class (e.g.@: @samp{_1_Foo}).  For methods in categories, the name of
8137 the category is also included in the assembler name (e.g.@:
8138 @samp{_1_Foo_Bar}).
8139
8140 These names are safe on most systems, but make debugging difficult since
8141 the method's selector is not present in the name.  Therefore, particular
8142 systems define other ways of computing names.
8143
8144 @var{buf} is an expression of type @code{char *} which gives you a
8145 buffer in which to store the name; its length is as long as
8146 @var{class_name}, @var{cat_name} and @var{sel_name} put together, plus
8147 50 characters extra.
8148
8149 The argument @var{is_inst} specifies whether the method is an instance
8150 method or a class method; @var{class_name} is the name of the class;
8151 @var{cat_name} is the name of the category (or @code{NULL} if the method is not
8152 in a category); and @var{sel_name} is the name of the selector.
8153
8154 On systems where the assembler can handle quoted names, you can use this
8155 macro to provide more human-readable names.
8156 @end defmac
8157
8158 @defmac ASM_DECLARE_CLASS_REFERENCE (@var{stream}, @var{name})
8159 A C statement (sans semicolon) to output to the stdio stream
8160 @var{stream} commands to declare that the label @var{name} is an
8161 Objective-C class reference.  This is only needed for targets whose
8162 linkers have special support for NeXT-style runtimes.
8163 @end defmac
8164
8165 @defmac ASM_DECLARE_UNRESOLVED_REFERENCE (@var{stream}, @var{name})
8166 A C statement (sans semicolon) to output to the stdio stream
8167 @var{stream} commands to declare that the label @var{name} is an
8168 unresolved Objective-C class reference.  This is only needed for targets
8169 whose linkers have special support for NeXT-style runtimes.
8170 @end defmac
8171
8172 @node Initialization
8173 @subsection How Initialization Functions Are Handled
8174 @cindex initialization routines
8175 @cindex termination routines
8176 @cindex constructors, output of
8177 @cindex destructors, output of
8178
8179 The compiled code for certain languages includes @dfn{constructors}
8180 (also called @dfn{initialization routines})---functions to initialize
8181 data in the program when the program is started.  These functions need
8182 to be called before the program is ``started''---that is to say, before
8183 @code{main} is called.
8184
8185 Compiling some languages generates @dfn{destructors} (also called
8186 @dfn{termination routines}) that should be called when the program
8187 terminates.
8188
8189 To make the initialization and termination functions work, the compiler
8190 must output something in the assembler code to cause those functions to
8191 be called at the appropriate time.  When you port the compiler to a new
8192 system, you need to specify how to do this.
8193
8194 There are two major ways that GCC currently supports the execution of
8195 initialization and termination functions.  Each way has two variants.
8196 Much of the structure is common to all four variations.
8197
8198 @findex __CTOR_LIST__
8199 @findex __DTOR_LIST__
8200 The linker must build two lists of these functions---a list of
8201 initialization functions, called @code{__CTOR_LIST__}, and a list of
8202 termination functions, called @code{__DTOR_LIST__}.
8203
8204 Each list always begins with an ignored function pointer (which may hold
8205 0, @minus{}1, or a count of the function pointers after it, depending on
8206 the environment).  This is followed by a series of zero or more function
8207 pointers to constructors (or destructors), followed by a function
8208 pointer containing zero.
8209
8210 Depending on the operating system and its executable file format, either
8211 @file{crtstuff.c} or @file{libgcc2.c} traverses these lists at startup
8212 time and exit time.  Constructors are called in reverse order of the
8213 list; destructors in forward order.
8214
8215 The best way to handle static constructors works only for object file
8216 formats which provide arbitrarily-named sections.  A section is set
8217 aside for a list of constructors, and another for a list of destructors.
8218 Traditionally these are called @samp{.ctors} and @samp{.dtors}.  Each
8219 object file that defines an initialization function also puts a word in
8220 the constructor section to point to that function.  The linker
8221 accumulates all these words into one contiguous @samp{.ctors} section.
8222 Termination functions are handled similarly.
8223
8224 This method will be chosen as the default by @file{target-def.h} if
8225 @code{TARGET_ASM_NAMED_SECTION} is defined.  A target that does not
8226 support arbitrary sections, but does support special designated
8227 constructor and destructor sections may define @code{CTORS_SECTION_ASM_OP}
8228 and @code{DTORS_SECTION_ASM_OP} to achieve the same effect.
8229
8230 When arbitrary sections are available, there are two variants, depending
8231 upon how the code in @file{crtstuff.c} is called.  On systems that
8232 support a @dfn{.init} section which is executed at program startup,
8233 parts of @file{crtstuff.c} are compiled into that section.  The
8234 program is linked by the @command{gcc} driver like this:
8235
8236 @smallexample
8237 ld -o @var{output_file} crti.o crtbegin.o @dots{} -lgcc crtend.o crtn.o
8238 @end smallexample
8239
8240 The prologue of a function (@code{__init}) appears in the @code{.init}
8241 section of @file{crti.o}; the epilogue appears in @file{crtn.o}.  Likewise
8242 for the function @code{__fini} in the @dfn{.fini} section.  Normally these
8243 files are provided by the operating system or by the GNU C library, but
8244 are provided by GCC for a few targets.
8245
8246 The objects @file{crtbegin.o} and @file{crtend.o} are (for most targets)
8247 compiled from @file{crtstuff.c}.  They contain, among other things, code
8248 fragments within the @code{.init} and @code{.fini} sections that branch
8249 to routines in the @code{.text} section.  The linker will pull all parts
8250 of a section together, which results in a complete @code{__init} function
8251 that invokes the routines we need at startup.
8252
8253 To use this variant, you must define the @code{INIT_SECTION_ASM_OP}
8254 macro properly.
8255
8256 If no init section is available, when GCC compiles any function called
8257 @code{main} (or more accurately, any function designated as a program
8258 entry point by the language front end calling @code{expand_main_function}),
8259 it inserts a procedure call to @code{__main} as the first executable code
8260 after the function prologue.  The @code{__main} function is defined
8261 in @file{libgcc2.c} and runs the global constructors.
8262
8263 In file formats that don't support arbitrary sections, there are again
8264 two variants.  In the simplest variant, the GNU linker (GNU @code{ld})
8265 and an `a.out' format must be used.  In this case,
8266 @code{TARGET_ASM_CONSTRUCTOR} is defined to produce a @code{.stabs}
8267 entry of type @samp{N_SETT}, referencing the name @code{__CTOR_LIST__},
8268 and with the address of the void function containing the initialization
8269 code as its value.  The GNU linker recognizes this as a request to add
8270 the value to a @dfn{set}; the values are accumulated, and are eventually
8271 placed in the executable as a vector in the format described above, with
8272 a leading (ignored) count and a trailing zero element.
8273 @code{TARGET_ASM_DESTRUCTOR} is handled similarly.  Since no init
8274 section is available, the absence of @code{INIT_SECTION_ASM_OP} causes
8275 the compilation of @code{main} to call @code{__main} as above, starting
8276 the initialization process.
8277
8278 The last variant uses neither arbitrary sections nor the GNU linker.
8279 This is preferable when you want to do dynamic linking and when using
8280 file formats which the GNU linker does not support, such as `ECOFF'@.  In
8281 this case, @code{TARGET_HAVE_CTORS_DTORS} is false, initialization and
8282 termination functions are recognized simply by their names.  This requires
8283 an extra program in the linkage step, called @command{collect2}.  This program
8284 pretends to be the linker, for use with GCC; it does its job by running
8285 the ordinary linker, but also arranges to include the vectors of
8286 initialization and termination functions.  These functions are called
8287 via @code{__main} as described above.  In order to use this method,
8288 @code{use_collect2} must be defined in the target in @file{config.gcc}.
8289
8290 @ifinfo
8291 The following section describes the specific macros that control and
8292 customize the handling of initialization and termination functions.
8293 @end ifinfo
8294
8295 @node Macros for Initialization
8296 @subsection Macros Controlling Initialization Routines
8297
8298 Here are the macros that control how the compiler handles initialization
8299 and termination functions:
8300
8301 @defmac INIT_SECTION_ASM_OP
8302 If defined, a C string constant, including spacing, for the assembler
8303 operation to identify the following data as initialization code.  If not
8304 defined, GCC will assume such a section does not exist.  When you are
8305 using special sections for initialization and termination functions, this
8306 macro also controls how @file{crtstuff.c} and @file{libgcc2.c} arrange to
8307 run the initialization functions.
8308 @end defmac
8309
8310 @defmac HAS_INIT_SECTION
8311 If defined, @code{main} will not call @code{__main} as described above.
8312 This macro should be defined for systems that control start-up code
8313 on a symbol-by-symbol basis, such as OSF/1, and should not
8314 be defined explicitly for systems that support @code{INIT_SECTION_ASM_OP}.
8315 @end defmac
8316
8317 @defmac LD_INIT_SWITCH
8318 If defined, a C string constant for a switch that tells the linker that
8319 the following symbol is an initialization routine.
8320 @end defmac
8321
8322 @defmac LD_FINI_SWITCH
8323 If defined, a C string constant for a switch that tells the linker that
8324 the following symbol is a finalization routine.
8325 @end defmac
8326
8327 @defmac COLLECT_SHARED_INIT_FUNC (@var{stream}, @var{func})
8328 If defined, a C statement that will write a function that can be
8329 automatically called when a shared library is loaded.  The function
8330 should call @var{func}, which takes no arguments.  If not defined, and
8331 the object format requires an explicit initialization function, then a
8332 function called @code{_GLOBAL__DI} will be generated.
8333
8334 This function and the following one are used by collect2 when linking a
8335 shared library that needs constructors or destructors, or has DWARF2
8336 exception tables embedded in the code.
8337 @end defmac
8338
8339 @defmac COLLECT_SHARED_FINI_FUNC (@var{stream}, @var{func})
8340 If defined, a C statement that will write a function that can be
8341 automatically called when a shared library is unloaded.  The function
8342 should call @var{func}, which takes no arguments.  If not defined, and
8343 the object format requires an explicit finalization function, then a
8344 function called @code{_GLOBAL__DD} will be generated.
8345 @end defmac
8346
8347 @defmac INVOKE__main
8348 If defined, @code{main} will call @code{__main} despite the presence of
8349 @code{INIT_SECTION_ASM_OP}.  This macro should be defined for systems
8350 where the init section is not actually run automatically, but is still
8351 useful for collecting the lists of constructors and destructors.
8352 @end defmac
8353
8354 @defmac SUPPORTS_INIT_PRIORITY
8355 If nonzero, the C++ @code{init_priority} attribute is supported and the
8356 compiler should emit instructions to control the order of initialization
8357 of objects.  If zero, the compiler will issue an error message upon
8358 encountering an @code{init_priority} attribute.
8359 @end defmac
8360
8361 @hook TARGET_HAVE_CTORS_DTORS
8362 This value is true if the target supports some ``native'' method of
8363 collecting constructors and destructors to be run at startup and exit.
8364 It is false if we must use @command{collect2}.
8365 @end deftypevr
8366
8367 @hook TARGET_ASM_CONSTRUCTOR
8368 If defined, a function that outputs assembler code to arrange to call
8369 the function referenced by @var{symbol} at initialization time.
8370
8371 Assume that @var{symbol} is a @code{SYMBOL_REF} for a function taking
8372 no arguments and with no return value.  If the target supports initialization
8373 priorities, @var{priority} is a value between 0 and @code{MAX_INIT_PRIORITY};
8374 otherwise it must be @code{DEFAULT_INIT_PRIORITY}.
8375
8376 If this macro is not defined by the target, a suitable default will
8377 be chosen if (1) the target supports arbitrary section names, (2) the
8378 target defines @code{CTORS_SECTION_ASM_OP}, or (3) @code{USE_COLLECT2}
8379 is not defined.
8380 @end deftypefn
8381
8382 @hook TARGET_ASM_DESTRUCTOR
8383 This is like @code{TARGET_ASM_CONSTRUCTOR} but used for termination
8384 functions rather than initialization functions.
8385 @end deftypefn
8386
8387 If @code{TARGET_HAVE_CTORS_DTORS} is true, the initialization routine
8388 generated for the generated object file will have static linkage.
8389
8390 If your system uses @command{collect2} as the means of processing
8391 constructors, then that program normally uses @command{nm} to scan
8392 an object file for constructor functions to be called.
8393
8394 On certain kinds of systems, you can define this macro to make
8395 @command{collect2} work faster (and, in some cases, make it work at all):
8396
8397 @defmac OBJECT_FORMAT_COFF
8398 Define this macro if the system uses COFF (Common Object File Format)
8399 object files, so that @command{collect2} can assume this format and scan
8400 object files directly for dynamic constructor/destructor functions.
8401
8402 This macro is effective only in a native compiler; @command{collect2} as
8403 part of a cross compiler always uses @command{nm} for the target machine.
8404 @end defmac
8405
8406 @defmac REAL_NM_FILE_NAME
8407 Define this macro as a C string constant containing the file name to use
8408 to execute @command{nm}.  The default is to search the path normally for
8409 @command{nm}.
8410 @end defmac
8411
8412 @defmac NM_FLAGS
8413 @command{collect2} calls @command{nm} to scan object files for static
8414 constructors and destructors and LTO info.  By default, @option{-n} is
8415 passed.  Define @code{NM_FLAGS} to a C string constant if other options
8416 are needed to get the same output format as GNU @command{nm -n}
8417 produces.
8418 @end defmac
8419
8420 If your system supports shared libraries and has a program to list the
8421 dynamic dependencies of a given library or executable, you can define
8422 these macros to enable support for running initialization and
8423 termination functions in shared libraries:
8424
8425 @defmac LDD_SUFFIX
8426 Define this macro to a C string constant containing the name of the program
8427 which lists dynamic dependencies, like @command{ldd} under SunOS 4.
8428 @end defmac
8429
8430 @defmac PARSE_LDD_OUTPUT (@var{ptr})
8431 Define this macro to be C code that extracts filenames from the output
8432 of the program denoted by @code{LDD_SUFFIX}.  @var{ptr} is a variable
8433 of type @code{char *} that points to the beginning of a line of output
8434 from @code{LDD_SUFFIX}.  If the line lists a dynamic dependency, the
8435 code must advance @var{ptr} to the beginning of the filename on that
8436 line.  Otherwise, it must set @var{ptr} to @code{NULL}.
8437 @end defmac
8438
8439 @defmac SHLIB_SUFFIX
8440 Define this macro to a C string constant containing the default shared
8441 library extension of the target (e.g., @samp{".so"}).  @command{collect2}
8442 strips version information after this suffix when generating global
8443 constructor and destructor names.  This define is only needed on targets
8444 that use @command{collect2} to process constructors and destructors.
8445 @end defmac
8446
8447 @node Instruction Output
8448 @subsection Output of Assembler Instructions
8449
8450 @c prevent bad page break with this line
8451 This describes assembler instruction output.
8452
8453 @defmac REGISTER_NAMES
8454 A C initializer containing the assembler's names for the machine
8455 registers, each one as a C string constant.  This is what translates
8456 register numbers in the compiler into assembler language.
8457 @end defmac
8458
8459 @defmac ADDITIONAL_REGISTER_NAMES
8460 If defined, a C initializer for an array of structures containing a name
8461 and a register number.  This macro defines additional names for hard
8462 registers, thus allowing the @code{asm} option in declarations to refer
8463 to registers using alternate names.
8464 @end defmac
8465
8466 @defmac OVERLAPPING_REGISTER_NAMES
8467 If defined, a C initializer for an array of structures containing a
8468 name, a register number and a count of the number of consecutive
8469 machine registers the name overlaps.  This macro defines additional
8470 names for hard registers, thus allowing the @code{asm} option in
8471 declarations to refer to registers using alternate names.  Unlike
8472 @code{ADDITIONAL_REGISTER_NAMES}, this macro should be used when the
8473 register name implies multiple underlying registers.
8474
8475 This macro should be used when it is important that a clobber in an
8476 @code{asm} statement clobbers all the underlying values implied by the
8477 register name.  For example, on ARM, clobbering the double-precision
8478 VFP register ``d0'' implies clobbering both single-precision registers
8479 ``s0'' and ``s1''.
8480 @end defmac
8481
8482 @defmac ASM_OUTPUT_OPCODE (@var{stream}, @var{ptr})
8483 Define this macro if you are using an unusual assembler that
8484 requires different names for the machine instructions.
8485
8486 The definition is a C statement or statements which output an
8487 assembler instruction opcode to the stdio stream @var{stream}.  The
8488 macro-operand @var{ptr} is a variable of type @code{char *} which
8489 points to the opcode name in its ``internal'' form---the form that is
8490 written in the machine description.  The definition should output the
8491 opcode name to @var{stream}, performing any translation you desire, and
8492 increment the variable @var{ptr} to point at the end of the opcode
8493 so that it will not be output twice.
8494
8495 In fact, your macro definition may process less than the entire opcode
8496 name, or more than the opcode name; but if you want to process text
8497 that includes @samp{%}-sequences to substitute operands, you must take
8498 care of the substitution yourself.  Just be sure to increment
8499 @var{ptr} over whatever text should not be output normally.
8500
8501 @findex recog_data.operand
8502 If you need to look at the operand values, they can be found as the
8503 elements of @code{recog_data.operand}.
8504
8505 If the macro definition does nothing, the instruction is output
8506 in the usual way.
8507 @end defmac
8508
8509 @defmac FINAL_PRESCAN_INSN (@var{insn}, @var{opvec}, @var{noperands})
8510 If defined, a C statement to be executed just prior to the output of
8511 assembler code for @var{insn}, to modify the extracted operands so
8512 they will be output differently.
8513
8514 Here the argument @var{opvec} is the vector containing the operands
8515 extracted from @var{insn}, and @var{noperands} is the number of
8516 elements of the vector which contain meaningful data for this insn.
8517 The contents of this vector are what will be used to convert the insn
8518 template into assembler code, so you can change the assembler output
8519 by changing the contents of the vector.
8520
8521 This macro is useful when various assembler syntaxes share a single
8522 file of instruction patterns; by defining this macro differently, you
8523 can cause a large class of instructions to be output differently (such
8524 as with rearranged operands).  Naturally, variations in assembler
8525 syntax affecting individual insn patterns ought to be handled by
8526 writing conditional output routines in those patterns.
8527
8528 If this macro is not defined, it is equivalent to a null statement.
8529 @end defmac
8530
8531 @hook TARGET_ASM_FINAL_POSTSCAN_INSN
8532 If defined, this target hook is a function which is executed just after the
8533 output of assembler code for @var{insn}, to change the mode of the assembler
8534 if necessary.
8535
8536 Here the argument @var{opvec} is the vector containing the operands
8537 extracted from @var{insn}, and @var{noperands} is the number of
8538 elements of the vector which contain meaningful data for this insn.
8539 The contents of this vector are what was used to convert the insn
8540 template into assembler code, so you can change the assembler mode
8541 by checking the contents of the vector.
8542 @end deftypefn
8543
8544 @defmac PRINT_OPERAND (@var{stream}, @var{x}, @var{code})
8545 A C compound statement to output to stdio stream @var{stream} the
8546 assembler syntax for an instruction operand @var{x}.  @var{x} is an
8547 RTL expression.
8548
8549 @var{code} is a value that can be used to specify one of several ways
8550 of printing the operand.  It is used when identical operands must be
8551 printed differently depending on the context.  @var{code} comes from
8552 the @samp{%} specification that was used to request printing of the
8553 operand.  If the specification was just @samp{%@var{digit}} then
8554 @var{code} is 0; if the specification was @samp{%@var{ltr}
8555 @var{digit}} then @var{code} is the ASCII code for @var{ltr}.
8556
8557 @findex reg_names
8558 If @var{x} is a register, this macro should print the register's name.
8559 The names can be found in an array @code{reg_names} whose type is
8560 @code{char *[]}.  @code{reg_names} is initialized from
8561 @code{REGISTER_NAMES}.
8562
8563 When the machine description has a specification @samp{%@var{punct}}
8564 (a @samp{%} followed by a punctuation character), this macro is called
8565 with a null pointer for @var{x} and the punctuation character for
8566 @var{code}.
8567 @end defmac
8568
8569 @defmac PRINT_OPERAND_PUNCT_VALID_P (@var{code})
8570 A C expression which evaluates to true if @var{code} is a valid
8571 punctuation character for use in the @code{PRINT_OPERAND} macro.  If
8572 @code{PRINT_OPERAND_PUNCT_VALID_P} is not defined, it means that no
8573 punctuation characters (except for the standard one, @samp{%}) are used
8574 in this way.
8575 @end defmac
8576
8577 @defmac PRINT_OPERAND_ADDRESS (@var{stream}, @var{x})
8578 A C compound statement to output to stdio stream @var{stream} the
8579 assembler syntax for an instruction operand that is a memory reference
8580 whose address is @var{x}.  @var{x} is an RTL expression.
8581
8582 @cindex @code{TARGET_ENCODE_SECTION_INFO} usage
8583 On some machines, the syntax for a symbolic address depends on the
8584 section that the address refers to.  On these machines, define the hook
8585 @code{TARGET_ENCODE_SECTION_INFO} to store the information into the
8586 @code{symbol_ref}, and then check for it here.  @xref{Assembler
8587 Format}.
8588 @end defmac
8589
8590 @findex dbr_sequence_length
8591 @defmac DBR_OUTPUT_SEQEND (@var{file})
8592 A C statement, to be executed after all slot-filler instructions have
8593 been output.  If necessary, call @code{dbr_sequence_length} to
8594 determine the number of slots filled in a sequence (zero if not
8595 currently outputting a sequence), to decide how many no-ops to output,
8596 or whatever.
8597
8598 Don't define this macro if it has nothing to do, but it is helpful in
8599 reading assembly output if the extent of the delay sequence is made
8600 explicit (e.g.@: with white space).
8601 @end defmac
8602
8603 @findex final_sequence
8604 Note that output routines for instructions with delay slots must be
8605 prepared to deal with not being output as part of a sequence
8606 (i.e.@: when the scheduling pass is not run, or when no slot fillers could be
8607 found.)  The variable @code{final_sequence} is null when not
8608 processing a sequence, otherwise it contains the @code{sequence} rtx
8609 being output.
8610
8611 @findex asm_fprintf
8612 @defmac REGISTER_PREFIX
8613 @defmacx LOCAL_LABEL_PREFIX
8614 @defmacx USER_LABEL_PREFIX
8615 @defmacx IMMEDIATE_PREFIX
8616 If defined, C string expressions to be used for the @samp{%R}, @samp{%L},
8617 @samp{%U}, and @samp{%I} options of @code{asm_fprintf} (see
8618 @file{final.c}).  These are useful when a single @file{md} file must
8619 support multiple assembler formats.  In that case, the various @file{tm.h}
8620 files can define these macros differently.
8621 @end defmac
8622
8623 @defmac ASM_FPRINTF_EXTENSIONS (@var{file}, @var{argptr}, @var{format})
8624 If defined this macro should expand to a series of @code{case}
8625 statements which will be parsed inside the @code{switch} statement of
8626 the @code{asm_fprintf} function.  This allows targets to define extra
8627 printf formats which may useful when generating their assembler
8628 statements.  Note that uppercase letters are reserved for future
8629 generic extensions to asm_fprintf, and so are not available to target
8630 specific code.  The output file is given by the parameter @var{file}.
8631 The varargs input pointer is @var{argptr} and the rest of the format
8632 string, starting the character after the one that is being switched
8633 upon, is pointed to by @var{format}.
8634 @end defmac
8635
8636 @defmac ASSEMBLER_DIALECT
8637 If your target supports multiple dialects of assembler language (such as
8638 different opcodes), define this macro as a C expression that gives the
8639 numeric index of the assembler language dialect to use, with zero as the
8640 first variant.
8641
8642 If this macro is defined, you may use constructs of the form
8643 @smallexample
8644 @samp{@{option0|option1|option2@dots{}@}}
8645 @end smallexample
8646 @noindent
8647 in the output templates of patterns (@pxref{Output Template}) or in the
8648 first argument of @code{asm_fprintf}.  This construct outputs
8649 @samp{option0}, @samp{option1}, @samp{option2}, etc., if the value of
8650 @code{ASSEMBLER_DIALECT} is zero, one, two, etc.  Any special characters
8651 within these strings retain their usual meaning.  If there are fewer
8652 alternatives within the braces than the value of
8653 @code{ASSEMBLER_DIALECT}, the construct outputs nothing.
8654
8655 If you do not define this macro, the characters @samp{@{}, @samp{|} and
8656 @samp{@}} do not have any special meaning when used in templates or
8657 operands to @code{asm_fprintf}.
8658
8659 Define the macros @code{REGISTER_PREFIX}, @code{LOCAL_LABEL_PREFIX},
8660 @code{USER_LABEL_PREFIX} and @code{IMMEDIATE_PREFIX} if you can express
8661 the variations in assembler language syntax with that mechanism.  Define
8662 @code{ASSEMBLER_DIALECT} and use the @samp{@{option0|option1@}} syntax
8663 if the syntax variant are larger and involve such things as different
8664 opcodes or operand order.
8665 @end defmac
8666
8667 @defmac ASM_OUTPUT_REG_PUSH (@var{stream}, @var{regno})
8668 A C expression to output to @var{stream} some assembler code
8669 which will push hard register number @var{regno} onto the stack.
8670 The code need not be optimal, since this macro is used only when
8671 profiling.
8672 @end defmac
8673
8674 @defmac ASM_OUTPUT_REG_POP (@var{stream}, @var{regno})
8675 A C expression to output to @var{stream} some assembler code
8676 which will pop hard register number @var{regno} off of the stack.
8677 The code need not be optimal, since this macro is used only when
8678 profiling.
8679 @end defmac
8680
8681 @node Dispatch Tables
8682 @subsection Output of Dispatch Tables
8683
8684 @c prevent bad page break with this line
8685 This concerns dispatch tables.
8686
8687 @cindex dispatch table
8688 @defmac ASM_OUTPUT_ADDR_DIFF_ELT (@var{stream}, @var{body}, @var{value}, @var{rel})
8689 A C statement to output to the stdio stream @var{stream} an assembler
8690 pseudo-instruction to generate a difference between two labels.
8691 @var{value} and @var{rel} are the numbers of two internal labels.  The
8692 definitions of these labels are output using
8693 @code{(*targetm.asm_out.internal_label)}, and they must be printed in the same
8694 way here.  For example,
8695
8696 @smallexample
8697 fprintf (@var{stream}, "\t.word L%d-L%d\n",
8698          @var{value}, @var{rel})
8699 @end smallexample
8700
8701 You must provide this macro on machines where the addresses in a
8702 dispatch table are relative to the table's own address.  If defined, GCC
8703 will also use this macro on all machines when producing PIC@.
8704 @var{body} is the body of the @code{ADDR_DIFF_VEC}; it is provided so that the
8705 mode and flags can be read.
8706 @end defmac
8707
8708 @defmac ASM_OUTPUT_ADDR_VEC_ELT (@var{stream}, @var{value})
8709 This macro should be provided on machines where the addresses
8710 in a dispatch table are absolute.
8711
8712 The definition should be a C statement to output to the stdio stream
8713 @var{stream} an assembler pseudo-instruction to generate a reference to
8714 a label.  @var{value} is the number of an internal label whose
8715 definition is output using @code{(*targetm.asm_out.internal_label)}.
8716 For example,
8717
8718 @smallexample
8719 fprintf (@var{stream}, "\t.word L%d\n", @var{value})
8720 @end smallexample
8721 @end defmac
8722
8723 @defmac ASM_OUTPUT_CASE_LABEL (@var{stream}, @var{prefix}, @var{num}, @var{table})
8724 Define this if the label before a jump-table needs to be output
8725 specially.  The first three arguments are the same as for
8726 @code{(*targetm.asm_out.internal_label)}; the fourth argument is the
8727 jump-table which follows (a @code{jump_insn} containing an
8728 @code{addr_vec} or @code{addr_diff_vec}).
8729
8730 This feature is used on system V to output a @code{swbeg} statement
8731 for the table.
8732
8733 If this macro is not defined, these labels are output with
8734 @code{(*targetm.asm_out.internal_label)}.
8735 @end defmac
8736
8737 @defmac ASM_OUTPUT_CASE_END (@var{stream}, @var{num}, @var{table})
8738 Define this if something special must be output at the end of a
8739 jump-table.  The definition should be a C statement to be executed
8740 after the assembler code for the table is written.  It should write
8741 the appropriate code to stdio stream @var{stream}.  The argument
8742 @var{table} is the jump-table insn, and @var{num} is the label-number
8743 of the preceding label.
8744
8745 If this macro is not defined, nothing special is output at the end of
8746 the jump-table.
8747 @end defmac
8748
8749 @hook TARGET_ASM_EMIT_UNWIND_LABEL
8750 This target hook emits a label at the beginning of each FDE@.  It
8751 should be defined on targets where FDEs need special labels, and it
8752 should write the appropriate label, for the FDE associated with the
8753 function declaration @var{decl}, to the stdio stream @var{stream}.
8754 The third argument, @var{for_eh}, is a boolean: true if this is for an
8755 exception table.  The fourth argument, @var{empty}, is a boolean:
8756 true if this is a placeholder label for an omitted FDE@.
8757
8758 The default is that FDEs are not given nonlocal labels.
8759 @end deftypefn
8760
8761 @hook TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL
8762 This target hook emits a label at the beginning of the exception table.
8763 It should be defined on targets where it is desirable for the table
8764 to be broken up according to function.
8765
8766 The default is that no label is emitted.
8767 @end deftypefn
8768
8769 @hook TARGET_ASM_EMIT_EXCEPT_PERSONALITY
8770
8771 @hook TARGET_ASM_UNWIND_EMIT
8772 This target hook emits assembly directives required to unwind the
8773 given instruction.  This is only used when @code{TARGET_EXCEPT_UNWIND_INFO}
8774 returns @code{UI_TARGET}.
8775 @end deftypefn
8776
8777 @hook TARGET_ASM_UNWIND_EMIT_BEFORE_INSN
8778
8779 @node Exception Region Output
8780 @subsection Assembler Commands for Exception Regions
8781
8782 @c prevent bad page break with this line
8783
8784 This describes commands marking the start and the end of an exception
8785 region.
8786
8787 @defmac EH_FRAME_SECTION_NAME
8788 If defined, a C string constant for the name of the section containing
8789 exception handling frame unwind information.  If not defined, GCC will
8790 provide a default definition if the target supports named sections.
8791 @file{crtstuff.c} uses this macro to switch to the appropriate section.
8792
8793 You should define this symbol if your target supports DWARF 2 frame
8794 unwind information and the default definition does not work.
8795 @end defmac
8796
8797 @defmac EH_FRAME_IN_DATA_SECTION
8798 If defined, DWARF 2 frame unwind information will be placed in the
8799 data section even though the target supports named sections.  This
8800 might be necessary, for instance, if the system linker does garbage
8801 collection and sections cannot be marked as not to be collected.
8802
8803 Do not define this macro unless @code{TARGET_ASM_NAMED_SECTION} is
8804 also defined.
8805 @end defmac
8806
8807 @defmac EH_TABLES_CAN_BE_READ_ONLY
8808 Define this macro to 1 if your target is such that no frame unwind
8809 information encoding used with non-PIC code will ever require a
8810 runtime relocation, but the linker may not support merging read-only
8811 and read-write sections into a single read-write section.
8812 @end defmac
8813
8814 @defmac MASK_RETURN_ADDR
8815 An rtx used to mask the return address found via @code{RETURN_ADDR_RTX}, so
8816 that it does not contain any extraneous set bits in it.
8817 @end defmac
8818
8819 @defmac DWARF2_UNWIND_INFO
8820 Define this macro to 0 if your target supports DWARF 2 frame unwind
8821 information, but it does not yet work with exception handling.
8822 Otherwise, if your target supports this information (if it defines
8823 @code{INCOMING_RETURN_ADDR_RTX} and either @code{UNALIGNED_INT_ASM_OP}
8824 or @code{OBJECT_FORMAT_ELF}), GCC will provide a default definition of 1.
8825 @end defmac
8826
8827 @hook TARGET_EXCEPT_UNWIND_INFO
8828 This hook defines the mechanism that will be used for exception handling
8829 by the target.  If the target has ABI specified unwind tables, the hook
8830 should return @code{UI_TARGET}.  If the target is to use the
8831 @code{setjmp}/@code{longjmp}-based exception handling scheme, the hook
8832 should return @code{UI_SJLJ}.  If the target supports DWARF 2 frame unwind
8833 information, the hook should return @code{UI_DWARF2}.
8834
8835 A target may, if exceptions are disabled, choose to return @code{UI_NONE}.
8836 This may end up simplifying other parts of target-specific code.  The
8837 default implementation of this hook never returns @code{UI_NONE}.
8838
8839 Note that the value returned by this hook should be constant.  It should
8840 not depend on anything except the command-line switches described by
8841 @var{opts}.  In particular, the
8842 setting @code{UI_SJLJ} must be fixed at compiler start-up as C pre-processor
8843 macros and builtin functions related to exception handling are set up
8844 depending on this setting.
8845
8846 The default implementation of the hook first honors the
8847 @option{--enable-sjlj-exceptions} configure option, then
8848 @code{DWARF2_UNWIND_INFO}, and finally defaults to @code{UI_SJLJ}.  If
8849 @code{DWARF2_UNWIND_INFO} depends on command-line options, the target
8850 must define this hook so that @var{opts} is used correctly.
8851 @end deftypefn
8852
8853 @hook TARGET_UNWIND_TABLES_DEFAULT
8854 This variable should be set to @code{true} if the target ABI requires unwinding
8855 tables even when exceptions are not used.  It must not be modified by
8856 command-line option processing.
8857 @end deftypevr
8858
8859 @defmac DONT_USE_BUILTIN_SETJMP
8860 Define this macro to 1 if the @code{setjmp}/@code{longjmp}-based scheme
8861 should use the @code{setjmp}/@code{longjmp} functions from the C library
8862 instead of the @code{__builtin_setjmp}/@code{__builtin_longjmp} machinery.
8863 @end defmac
8864
8865 @defmac DWARF_CIE_DATA_ALIGNMENT
8866 This macro need only be defined if the target might save registers in the
8867 function prologue at an offset to the stack pointer that is not aligned to
8868 @code{UNITS_PER_WORD}.  The definition should be the negative minimum
8869 alignment if @code{STACK_GROWS_DOWNWARD} is defined, and the positive
8870 minimum alignment otherwise.  @xref{SDB and DWARF}.  Only applicable if
8871 the target supports DWARF 2 frame unwind information.
8872 @end defmac
8873
8874 @hook TARGET_TERMINATE_DW2_EH_FRAME_INFO
8875 Contains the value true if the target should add a zero word onto the
8876 end of a Dwarf-2 frame info section when used for exception handling.
8877 Default value is false if @code{EH_FRAME_SECTION_NAME} is defined, and
8878 true otherwise.
8879 @end deftypevr
8880
8881 @hook TARGET_DWARF_REGISTER_SPAN
8882 Given a register, this hook should return a parallel of registers to
8883 represent where to find the register pieces.  Define this hook if the
8884 register and its mode are represented in Dwarf in non-contiguous
8885 locations, or if the register should be represented in more than one
8886 register in Dwarf.  Otherwise, this hook should return @code{NULL_RTX}.
8887 If not defined, the default is to return @code{NULL_RTX}.
8888 @end deftypefn
8889
8890 @hook TARGET_INIT_DWARF_REG_SIZES_EXTRA
8891 If some registers are represented in Dwarf-2 unwind information in
8892 multiple pieces, define this hook to fill in information about the
8893 sizes of those pieces in the table used by the unwinder at runtime.
8894 It will be called by @code{expand_builtin_init_dwarf_reg_sizes} after
8895 filling in a single size corresponding to each hard register;
8896 @var{address} is the address of the table.
8897 @end deftypefn
8898
8899 @hook TARGET_ASM_TTYPE
8900 This hook is used to output a reference from a frame unwinding table to
8901 the type_info object identified by @var{sym}.  It should return @code{true}
8902 if the reference was output.  Returning @code{false} will cause the
8903 reference to be output using the normal Dwarf2 routines.
8904 @end deftypefn
8905
8906 @hook TARGET_ARM_EABI_UNWINDER
8907 This flag should be set to @code{true} on targets that use an ARM EABI
8908 based unwinding library, and @code{false} on other targets.  This effects
8909 the format of unwinding tables, and how the unwinder in entered after
8910 running a cleanup.  The default is @code{false}.
8911 @end deftypevr
8912
8913 @node Alignment Output
8914 @subsection Assembler Commands for Alignment
8915
8916 @c prevent bad page break with this line
8917 This describes commands for alignment.
8918
8919 @defmac JUMP_ALIGN (@var{label})
8920 The alignment (log base 2) to put in front of @var{label}, which is
8921 a common destination of jumps and has no fallthru incoming edge.
8922
8923 This macro need not be defined if you don't want any special alignment
8924 to be done at such a time.  Most machine descriptions do not currently
8925 define the macro.
8926
8927 Unless it's necessary to inspect the @var{label} parameter, it is better
8928 to set the variable @var{align_jumps} in the target's
8929 @code{TARGET_OPTION_OVERRIDE}.  Otherwise, you should try to honor the user's
8930 selection in @var{align_jumps} in a @code{JUMP_ALIGN} implementation.
8931 @end defmac
8932
8933 @hook TARGET_ASM_JUMP_ALIGN_MAX_SKIP
8934 The maximum number of bytes to skip before @var{label} when applying
8935 @code{JUMP_ALIGN}.  This works only if
8936 @code{ASM_OUTPUT_MAX_SKIP_ALIGN} is defined.
8937 @end deftypefn
8938
8939 @defmac LABEL_ALIGN_AFTER_BARRIER (@var{label})
8940 The alignment (log base 2) to put in front of @var{label}, which follows
8941 a @code{BARRIER}.
8942
8943 This macro need not be defined if you don't want any special alignment
8944 to be done at such a time.  Most machine descriptions do not currently
8945 define the macro.
8946 @end defmac
8947
8948 @hook TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
8949 The maximum number of bytes to skip before @var{label} when applying
8950 @code{LABEL_ALIGN_AFTER_BARRIER}.  This works only if
8951 @code{ASM_OUTPUT_MAX_SKIP_ALIGN} is defined.
8952 @end deftypefn
8953
8954 @defmac LOOP_ALIGN (@var{label})
8955 The alignment (log base 2) to put in front of @var{label}, which follows
8956 a @code{NOTE_INSN_LOOP_BEG} note.
8957
8958 This macro need not be defined if you don't want any special alignment
8959 to be done at such a time.  Most machine descriptions do not currently
8960 define the macro.
8961
8962 Unless it's necessary to inspect the @var{label} parameter, it is better
8963 to set the variable @code{align_loops} in the target's
8964 @code{TARGET_OPTION_OVERRIDE}.  Otherwise, you should try to honor the user's
8965 selection in @code{align_loops} in a @code{LOOP_ALIGN} implementation.
8966 @end defmac
8967
8968 @hook TARGET_ASM_LOOP_ALIGN_MAX_SKIP
8969 The maximum number of bytes to skip when applying @code{LOOP_ALIGN} to
8970 @var{label}.  This works only if @code{ASM_OUTPUT_MAX_SKIP_ALIGN} is
8971 defined.
8972 @end deftypefn
8973
8974 @defmac LABEL_ALIGN (@var{label})
8975 The alignment (log base 2) to put in front of @var{label}.
8976 If @code{LABEL_ALIGN_AFTER_BARRIER} / @code{LOOP_ALIGN} specify a different alignment,
8977 the maximum of the specified values is used.
8978
8979 Unless it's necessary to inspect the @var{label} parameter, it is better
8980 to set the variable @code{align_labels} in the target's
8981 @code{TARGET_OPTION_OVERRIDE}.  Otherwise, you should try to honor the user's
8982 selection in @code{align_labels} in a @code{LABEL_ALIGN} implementation.
8983 @end defmac
8984
8985 @hook TARGET_ASM_LABEL_ALIGN_MAX_SKIP
8986 The maximum number of bytes to skip when applying @code{LABEL_ALIGN}
8987 to @var{label}.  This works only if @code{ASM_OUTPUT_MAX_SKIP_ALIGN}
8988 is defined.
8989 @end deftypefn
8990
8991 @defmac ASM_OUTPUT_SKIP (@var{stream}, @var{nbytes})
8992 A C statement to output to the stdio stream @var{stream} an assembler
8993 instruction to advance the location counter by @var{nbytes} bytes.
8994 Those bytes should be zero when loaded.  @var{nbytes} will be a C
8995 expression of type @code{unsigned HOST_WIDE_INT}.
8996 @end defmac
8997
8998 @defmac ASM_NO_SKIP_IN_TEXT
8999 Define this macro if @code{ASM_OUTPUT_SKIP} should not be used in the
9000 text section because it fails to put zeros in the bytes that are skipped.
9001 This is true on many Unix systems, where the pseudo--op to skip bytes
9002 produces no-op instructions rather than zeros when used in the text
9003 section.
9004 @end defmac
9005
9006 @defmac ASM_OUTPUT_ALIGN (@var{stream}, @var{power})
9007 A C statement to output to the stdio stream @var{stream} an assembler
9008 command to advance the location counter to a multiple of 2 to the
9009 @var{power} bytes.  @var{power} will be a C expression of type @code{int}.
9010 @end defmac
9011
9012 @defmac ASM_OUTPUT_ALIGN_WITH_NOP (@var{stream}, @var{power})
9013 Like @code{ASM_OUTPUT_ALIGN}, except that the ``nop'' instruction is used
9014 for padding, if necessary.
9015 @end defmac
9016
9017 @defmac ASM_OUTPUT_MAX_SKIP_ALIGN (@var{stream}, @var{power}, @var{max_skip})
9018 A C statement to output to the stdio stream @var{stream} an assembler
9019 command to advance the location counter to a multiple of 2 to the
9020 @var{power} bytes, but only if @var{max_skip} or fewer bytes are needed to
9021 satisfy the alignment request.  @var{power} and @var{max_skip} will be
9022 a C expression of type @code{int}.
9023 @end defmac
9024
9025 @need 3000
9026 @node Debugging Info
9027 @section Controlling Debugging Information Format
9028
9029 @c prevent bad page break with this line
9030 This describes how to specify debugging information.
9031
9032 @menu
9033 * All Debuggers::      Macros that affect all debugging formats uniformly.
9034 * DBX Options::        Macros enabling specific options in DBX format.
9035 * DBX Hooks::          Hook macros for varying DBX format.
9036 * File Names and DBX:: Macros controlling output of file names in DBX format.
9037 * SDB and DWARF::      Macros for SDB (COFF) and DWARF formats.
9038 * VMS Debug::          Macros for VMS debug format.
9039 @end menu
9040
9041 @node All Debuggers
9042 @subsection Macros Affecting All Debugging Formats
9043
9044 @c prevent bad page break with this line
9045 These macros affect all debugging formats.
9046
9047 @defmac DBX_REGISTER_NUMBER (@var{regno})
9048 A C expression that returns the DBX register number for the compiler
9049 register number @var{regno}.  In the default macro provided, the value
9050 of this expression will be @var{regno} itself.  But sometimes there are
9051 some registers that the compiler knows about and DBX does not, or vice
9052 versa.  In such cases, some register may need to have one number in the
9053 compiler and another for DBX@.
9054
9055 If two registers have consecutive numbers inside GCC, and they can be
9056 used as a pair to hold a multiword value, then they @emph{must} have
9057 consecutive numbers after renumbering with @code{DBX_REGISTER_NUMBER}.
9058 Otherwise, debuggers will be unable to access such a pair, because they
9059 expect register pairs to be consecutive in their own numbering scheme.
9060
9061 If you find yourself defining @code{DBX_REGISTER_NUMBER} in way that
9062 does not preserve register pairs, then what you must do instead is
9063 redefine the actual register numbering scheme.
9064 @end defmac
9065
9066 @defmac DEBUGGER_AUTO_OFFSET (@var{x})
9067 A C expression that returns the integer offset value for an automatic
9068 variable having address @var{x} (an RTL expression).  The default
9069 computation assumes that @var{x} is based on the frame-pointer and
9070 gives the offset from the frame-pointer.  This is required for targets
9071 that produce debugging output for DBX or COFF-style debugging output
9072 for SDB and allow the frame-pointer to be eliminated when the
9073 @option{-g} options is used.
9074 @end defmac
9075
9076 @defmac DEBUGGER_ARG_OFFSET (@var{offset}, @var{x})
9077 A C expression that returns the integer offset value for an argument
9078 having address @var{x} (an RTL expression).  The nominal offset is
9079 @var{offset}.
9080 @end defmac
9081
9082 @defmac PREFERRED_DEBUGGING_TYPE
9083 A C expression that returns the type of debugging output GCC should
9084 produce when the user specifies just @option{-g}.  Define
9085 this if you have arranged for GCC to support more than one format of
9086 debugging output.  Currently, the allowable values are @code{DBX_DEBUG},
9087 @code{SDB_DEBUG}, @code{DWARF_DEBUG}, @code{DWARF2_DEBUG},
9088 @code{XCOFF_DEBUG}, @code{VMS_DEBUG}, and @code{VMS_AND_DWARF2_DEBUG}.
9089
9090 When the user specifies @option{-ggdb}, GCC normally also uses the
9091 value of this macro to select the debugging output format, but with two
9092 exceptions.  If @code{DWARF2_DEBUGGING_INFO} is defined, GCC uses the
9093 value @code{DWARF2_DEBUG}.  Otherwise, if @code{DBX_DEBUGGING_INFO} is
9094 defined, GCC uses @code{DBX_DEBUG}.
9095
9096 The value of this macro only affects the default debugging output; the
9097 user can always get a specific type of output by using @option{-gstabs},
9098 @option{-gcoff}, @option{-gdwarf-2}, @option{-gxcoff}, or @option{-gvms}.
9099 @end defmac
9100
9101 @node DBX Options
9102 @subsection Specific Options for DBX Output
9103
9104 @c prevent bad page break with this line
9105 These are specific options for DBX output.
9106
9107 @defmac DBX_DEBUGGING_INFO
9108 Define this macro if GCC should produce debugging output for DBX
9109 in response to the @option{-g} option.
9110 @end defmac
9111
9112 @defmac XCOFF_DEBUGGING_INFO
9113 Define this macro if GCC should produce XCOFF format debugging output
9114 in response to the @option{-g} option.  This is a variant of DBX format.
9115 @end defmac
9116
9117 @defmac DEFAULT_GDB_EXTENSIONS
9118 Define this macro to control whether GCC should by default generate
9119 GDB's extended version of DBX debugging information (assuming DBX-format
9120 debugging information is enabled at all).  If you don't define the
9121 macro, the default is 1: always generate the extended information
9122 if there is any occasion to.
9123 @end defmac
9124
9125 @defmac DEBUG_SYMS_TEXT
9126 Define this macro if all @code{.stabs} commands should be output while
9127 in the text section.
9128 @end defmac
9129
9130 @defmac ASM_STABS_OP
9131 A C string constant, including spacing, naming the assembler pseudo op to
9132 use instead of @code{"\t.stabs\t"} to define an ordinary debugging symbol.
9133 If you don't define this macro, @code{"\t.stabs\t"} is used.  This macro
9134 applies only to DBX debugging information format.
9135 @end defmac
9136
9137 @defmac ASM_STABD_OP
9138 A C string constant, including spacing, naming the assembler pseudo op to
9139 use instead of @code{"\t.stabd\t"} to define a debugging symbol whose
9140 value is the current location.  If you don't define this macro,
9141 @code{"\t.stabd\t"} is used.  This macro applies only to DBX debugging
9142 information format.
9143 @end defmac
9144
9145 @defmac ASM_STABN_OP
9146 A C string constant, including spacing, naming the assembler pseudo op to
9147 use instead of @code{"\t.stabn\t"} to define a debugging symbol with no
9148 name.  If you don't define this macro, @code{"\t.stabn\t"} is used.  This
9149 macro applies only to DBX debugging information format.
9150 @end defmac
9151
9152 @defmac DBX_NO_XREFS
9153 Define this macro if DBX on your system does not support the construct
9154 @samp{xs@var{tagname}}.  On some systems, this construct is used to
9155 describe a forward reference to a structure named @var{tagname}.
9156 On other systems, this construct is not supported at all.
9157 @end defmac
9158
9159 @defmac DBX_CONTIN_LENGTH
9160 A symbol name in DBX-format debugging information is normally
9161 continued (split into two separate @code{.stabs} directives) when it
9162 exceeds a certain length (by default, 80 characters).  On some
9163 operating systems, DBX requires this splitting; on others, splitting
9164 must not be done.  You can inhibit splitting by defining this macro
9165 with the value zero.  You can override the default splitting-length by
9166 defining this macro as an expression for the length you desire.
9167 @end defmac
9168
9169 @defmac DBX_CONTIN_CHAR
9170 Normally continuation is indicated by adding a @samp{\} character to
9171 the end of a @code{.stabs} string when a continuation follows.  To use
9172 a different character instead, define this macro as a character
9173 constant for the character you want to use.  Do not define this macro
9174 if backslash is correct for your system.
9175 @end defmac
9176
9177 @defmac DBX_STATIC_STAB_DATA_SECTION
9178 Define this macro if it is necessary to go to the data section before
9179 outputting the @samp{.stabs} pseudo-op for a non-global static
9180 variable.
9181 @end defmac
9182
9183 @defmac DBX_TYPE_DECL_STABS_CODE
9184 The value to use in the ``code'' field of the @code{.stabs} directive
9185 for a typedef.  The default is @code{N_LSYM}.
9186 @end defmac
9187
9188 @defmac DBX_STATIC_CONST_VAR_CODE
9189 The value to use in the ``code'' field of the @code{.stabs} directive
9190 for a static variable located in the text section.  DBX format does not
9191 provide any ``right'' way to do this.  The default is @code{N_FUN}.
9192 @end defmac
9193
9194 @defmac DBX_REGPARM_STABS_CODE
9195 The value to use in the ``code'' field of the @code{.stabs} directive
9196 for a parameter passed in registers.  DBX format does not provide any
9197 ``right'' way to do this.  The default is @code{N_RSYM}.
9198 @end defmac
9199
9200 @defmac DBX_REGPARM_STABS_LETTER
9201 The letter to use in DBX symbol data to identify a symbol as a parameter
9202 passed in registers.  DBX format does not customarily provide any way to
9203 do this.  The default is @code{'P'}.
9204 @end defmac
9205
9206 @defmac DBX_FUNCTION_FIRST
9207 Define this macro if the DBX information for a function and its
9208 arguments should precede the assembler code for the function.  Normally,
9209 in DBX format, the debugging information entirely follows the assembler
9210 code.
9211 @end defmac
9212
9213 @defmac DBX_BLOCKS_FUNCTION_RELATIVE
9214 Define this macro, with value 1, if the value of a symbol describing
9215 the scope of a block (@code{N_LBRAC} or @code{N_RBRAC}) should be
9216 relative to the start of the enclosing function.  Normally, GCC uses
9217 an absolute address.
9218 @end defmac
9219
9220 @defmac DBX_LINES_FUNCTION_RELATIVE
9221 Define this macro, with value 1, if the value of a symbol indicating
9222 the current line number (@code{N_SLINE}) should be relative to the
9223 start of the enclosing function.  Normally, GCC uses an absolute address.
9224 @end defmac
9225
9226 @defmac DBX_USE_BINCL
9227 Define this macro if GCC should generate @code{N_BINCL} and
9228 @code{N_EINCL} stabs for included header files, as on Sun systems.  This
9229 macro also directs GCC to output a type number as a pair of a file
9230 number and a type number within the file.  Normally, GCC does not
9231 generate @code{N_BINCL} or @code{N_EINCL} stabs, and it outputs a single
9232 number for a type number.
9233 @end defmac
9234
9235 @node DBX Hooks
9236 @subsection Open-Ended Hooks for DBX Format
9237
9238 @c prevent bad page break with this line
9239 These are hooks for DBX format.
9240
9241 @defmac DBX_OUTPUT_LBRAC (@var{stream}, @var{name})
9242 Define this macro to say how to output to @var{stream} the debugging
9243 information for the start of a scope level for variable names.  The
9244 argument @var{name} is the name of an assembler symbol (for use with
9245 @code{assemble_name}) whose value is the address where the scope begins.
9246 @end defmac
9247
9248 @defmac DBX_OUTPUT_RBRAC (@var{stream}, @var{name})
9249 Like @code{DBX_OUTPUT_LBRAC}, but for the end of a scope level.
9250 @end defmac
9251
9252 @defmac DBX_OUTPUT_NFUN (@var{stream}, @var{lscope_label}, @var{decl})
9253 Define this macro if the target machine requires special handling to
9254 output an @code{N_FUN} entry for the function @var{decl}.
9255 @end defmac
9256
9257 @defmac DBX_OUTPUT_SOURCE_LINE (@var{stream}, @var{line}, @var{counter})
9258 A C statement to output DBX debugging information before code for line
9259 number @var{line} of the current source file to the stdio stream
9260 @var{stream}.  @var{counter} is the number of time the macro was
9261 invoked, including the current invocation; it is intended to generate
9262 unique labels in the assembly output.
9263
9264 This macro should not be defined if the default output is correct, or
9265 if it can be made correct by defining @code{DBX_LINES_FUNCTION_RELATIVE}.
9266 @end defmac
9267
9268 @defmac NO_DBX_FUNCTION_END
9269 Some stabs encapsulation formats (in particular ECOFF), cannot handle the
9270 @code{.stabs "",N_FUN,,0,0,Lscope-function-1} gdb dbx extension construct.
9271 On those machines, define this macro to turn this feature off without
9272 disturbing the rest of the gdb extensions.
9273 @end defmac
9274
9275 @defmac NO_DBX_BNSYM_ENSYM
9276 Some assemblers cannot handle the @code{.stabd BNSYM/ENSYM,0,0} gdb dbx
9277 extension construct.  On those machines, define this macro to turn this
9278 feature off without disturbing the rest of the gdb extensions.
9279 @end defmac
9280
9281 @node File Names and DBX
9282 @subsection File Names in DBX Format
9283
9284 @c prevent bad page break with this line
9285 This describes file names in DBX format.
9286
9287 @defmac DBX_OUTPUT_MAIN_SOURCE_FILENAME (@var{stream}, @var{name})
9288 A C statement to output DBX debugging information to the stdio stream
9289 @var{stream}, which indicates that file @var{name} is the main source
9290 file---the file specified as the input file for compilation.
9291 This macro is called only once, at the beginning of compilation.
9292
9293 This macro need not be defined if the standard form of output
9294 for DBX debugging information is appropriate.
9295
9296 It may be necessary to refer to a label equal to the beginning of the
9297 text section.  You can use @samp{assemble_name (stream, ltext_label_name)}
9298 to do so.  If you do this, you must also set the variable
9299 @var{used_ltext_label_name} to @code{true}.
9300 @end defmac
9301
9302 @defmac NO_DBX_MAIN_SOURCE_DIRECTORY
9303 Define this macro, with value 1, if GCC should not emit an indication
9304 of the current directory for compilation and current source language at
9305 the beginning of the file.
9306 @end defmac
9307
9308 @defmac NO_DBX_GCC_MARKER
9309 Define this macro, with value 1, if GCC should not emit an indication
9310 that this object file was compiled by GCC@.  The default is to emit
9311 an @code{N_OPT} stab at the beginning of every source file, with
9312 @samp{gcc2_compiled.} for the string and value 0.
9313 @end defmac
9314
9315 @defmac DBX_OUTPUT_MAIN_SOURCE_FILE_END (@var{stream}, @var{name})
9316 A C statement to output DBX debugging information at the end of
9317 compilation of the main source file @var{name}.  Output should be
9318 written to the stdio stream @var{stream}.
9319
9320 If you don't define this macro, nothing special is output at the end
9321 of compilation, which is correct for most machines.
9322 @end defmac
9323
9324 @defmac DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END
9325 Define this macro @emph{instead of} defining
9326 @code{DBX_OUTPUT_MAIN_SOURCE_FILE_END}, if what needs to be output at
9327 the end of compilation is an @code{N_SO} stab with an empty string,
9328 whose value is the highest absolute text address in the file.
9329 @end defmac
9330
9331 @need 2000
9332 @node SDB and DWARF
9333 @subsection Macros for SDB and DWARF Output
9334
9335 @c prevent bad page break with this line
9336 Here are macros for SDB and DWARF output.
9337
9338 @defmac SDB_DEBUGGING_INFO
9339 Define this macro if GCC should produce COFF-style debugging output
9340 for SDB in response to the @option{-g} option.
9341 @end defmac
9342
9343 @defmac DWARF2_DEBUGGING_INFO
9344 Define this macro if GCC should produce dwarf version 2 format
9345 debugging output in response to the @option{-g} option.
9346
9347 @hook TARGET_DWARF_CALLING_CONVENTION
9348 Define this to enable the dwarf attribute @code{DW_AT_calling_convention} to
9349 be emitted for each function.  Instead of an integer return the enum
9350 value for the @code{DW_CC_} tag.
9351 @end deftypefn
9352
9353 To support optional call frame debugging information, you must also
9354 define @code{INCOMING_RETURN_ADDR_RTX} and either set
9355 @code{RTX_FRAME_RELATED_P} on the prologue insns if you use RTL for the
9356 prologue, or call @code{dwarf2out_def_cfa} and @code{dwarf2out_reg_save}
9357 as appropriate from @code{TARGET_ASM_FUNCTION_PROLOGUE} if you don't.
9358 @end defmac
9359
9360 @defmac DWARF2_FRAME_INFO
9361 Define this macro to a nonzero value if GCC should always output
9362 Dwarf 2 frame information.  If @code{TARGET_EXCEPT_UNWIND_INFO}
9363 (@pxref{Exception Region Output}) returns @code{UI_DWARF2}, and
9364 exceptions are enabled, GCC will output this information not matter
9365 how you define @code{DWARF2_FRAME_INFO}.
9366 @end defmac
9367
9368 @hook TARGET_DEBUG_UNWIND_INFO
9369 This hook defines the mechanism that will be used for describing frame
9370 unwind information to the debugger.  Normally the hook will return
9371 @code{UI_DWARF2} if DWARF 2 debug information is enabled, and
9372 return @code{UI_NONE} otherwise.
9373
9374 A target may return @code{UI_DWARF2} even when DWARF 2 debug information
9375 is disabled in order to always output DWARF 2 frame information.
9376
9377 A target may return @code{UI_TARGET} if it has ABI specified unwind tables.
9378 This will suppress generation of the normal debug frame unwind information.
9379 @end deftypefn
9380
9381 @defmac DWARF2_ASM_LINE_DEBUG_INFO
9382 Define this macro to be a nonzero value if the assembler can generate Dwarf 2
9383 line debug info sections.  This will result in much more compact line number
9384 tables, and hence is desirable if it works.
9385 @end defmac
9386
9387 @hook TARGET_WANT_DEBUG_PUB_SECTIONS
9388
9389 @hook TARGET_DELAY_SCHED2
9390
9391 @hook TARGET_DELAY_VARTRACK
9392
9393 @defmac ASM_OUTPUT_DWARF_DELTA (@var{stream}, @var{size}, @var{label1}, @var{label2})
9394 A C statement to issue assembly directives that create a difference
9395 @var{lab1} minus @var{lab2}, using an integer of the given @var{size}.
9396 @end defmac
9397
9398 @defmac ASM_OUTPUT_DWARF_VMS_DELTA (@var{stream}, @var{size}, @var{label1}, @var{label2})
9399 A C statement to issue assembly directives that create a difference
9400 between the two given labels in system defined units, e.g. instruction
9401 slots on IA64 VMS, using an integer of the given size.
9402 @end defmac
9403
9404 @defmac ASM_OUTPUT_DWARF_OFFSET (@var{stream}, @var{size}, @var{label}, @var{section})
9405 A C statement to issue assembly directives that create a
9406 section-relative reference to the given @var{label}, using an integer of the
9407 given @var{size}.  The label is known to be defined in the given @var{section}.
9408 @end defmac
9409
9410 @defmac ASM_OUTPUT_DWARF_PCREL (@var{stream}, @var{size}, @var{label})
9411 A C statement to issue assembly directives that create a self-relative
9412 reference to the given @var{label}, using an integer of the given @var{size}.
9413 @end defmac
9414
9415 @defmac ASM_OUTPUT_DWARF_TABLE_REF (@var{label})
9416 A C statement to issue assembly directives that create a reference to
9417 the DWARF table identifier @var{label} from the current section.  This
9418 is used on some systems to avoid garbage collecting a DWARF table which
9419 is referenced by a function.
9420 @end defmac
9421
9422 @hook TARGET_ASM_OUTPUT_DWARF_DTPREL
9423 If defined, this target hook is a function which outputs a DTP-relative
9424 reference to the given TLS symbol of the specified size.
9425 @end deftypefn
9426
9427 @defmac PUT_SDB_@dots{}
9428 Define these macros to override the assembler syntax for the special
9429 SDB assembler directives.  See @file{sdbout.c} for a list of these
9430 macros and their arguments.  If the standard syntax is used, you need
9431 not define them yourself.
9432 @end defmac
9433
9434 @defmac SDB_DELIM
9435 Some assemblers do not support a semicolon as a delimiter, even between
9436 SDB assembler directives.  In that case, define this macro to be the
9437 delimiter to use (usually @samp{\n}).  It is not necessary to define
9438 a new set of @code{PUT_SDB_@var{op}} macros if this is the only change
9439 required.
9440 @end defmac
9441
9442 @defmac SDB_ALLOW_UNKNOWN_REFERENCES
9443 Define this macro to allow references to unknown structure,
9444 union, or enumeration tags to be emitted.  Standard COFF does not
9445 allow handling of unknown references, MIPS ECOFF has support for
9446 it.
9447 @end defmac
9448
9449 @defmac SDB_ALLOW_FORWARD_REFERENCES
9450 Define this macro to allow references to structure, union, or
9451 enumeration tags that have not yet been seen to be handled.  Some
9452 assemblers choke if forward tags are used, while some require it.
9453 @end defmac
9454
9455 @defmac SDB_OUTPUT_SOURCE_LINE (@var{stream}, @var{line})
9456 A C statement to output SDB debugging information before code for line
9457 number @var{line} of the current source file to the stdio stream
9458 @var{stream}.  The default is to emit an @code{.ln} directive.
9459 @end defmac
9460
9461 @need 2000
9462 @node VMS Debug
9463 @subsection Macros for VMS Debug Format
9464
9465 @c prevent bad page break with this line
9466 Here are macros for VMS debug format.
9467
9468 @defmac VMS_DEBUGGING_INFO
9469 Define this macro if GCC should produce debugging output for VMS
9470 in response to the @option{-g} option.  The default behavior for VMS
9471 is to generate minimal debug info for a traceback in the absence of
9472 @option{-g} unless explicitly overridden with @option{-g0}.  This
9473 behavior is controlled by @code{TARGET_OPTION_OPTIMIZATION} and
9474 @code{TARGET_OPTION_OVERRIDE}.
9475 @end defmac
9476
9477 @node Floating Point
9478 @section Cross Compilation and Floating Point
9479 @cindex cross compilation and floating point
9480 @cindex floating point and cross compilation
9481
9482 While all modern machines use twos-complement representation for integers,
9483 there are a variety of representations for floating point numbers.  This
9484 means that in a cross-compiler the representation of floating point numbers
9485 in the compiled program may be different from that used in the machine
9486 doing the compilation.
9487
9488 Because different representation systems may offer different amounts of
9489 range and precision, all floating point constants must be represented in
9490 the target machine's format.  Therefore, the cross compiler cannot
9491 safely use the host machine's floating point arithmetic; it must emulate
9492 the target's arithmetic.  To ensure consistency, GCC always uses
9493 emulation to work with floating point values, even when the host and
9494 target floating point formats are identical.
9495
9496 The following macros are provided by @file{real.h} for the compiler to
9497 use.  All parts of the compiler which generate or optimize
9498 floating-point calculations must use these macros.  They may evaluate
9499 their operands more than once, so operands must not have side effects.
9500
9501 @defmac REAL_VALUE_TYPE
9502 The C data type to be used to hold a floating point value in the target
9503 machine's format.  Typically this is a @code{struct} containing an
9504 array of @code{HOST_WIDE_INT}, but all code should treat it as an opaque
9505 quantity.
9506 @end defmac
9507
9508 @deftypefn Macro int REAL_VALUES_EQUAL (REAL_VALUE_TYPE @var{x}, REAL_VALUE_TYPE @var{y})
9509 Compares for equality the two values, @var{x} and @var{y}.  If the target
9510 floating point format supports negative zeroes and/or NaNs,
9511 @samp{REAL_VALUES_EQUAL (-0.0, 0.0)} is true, and
9512 @samp{REAL_VALUES_EQUAL (NaN, NaN)} is false.
9513 @end deftypefn
9514
9515 @deftypefn Macro int REAL_VALUES_LESS (REAL_VALUE_TYPE @var{x}, REAL_VALUE_TYPE @var{y})
9516 Tests whether @var{x} is less than @var{y}.
9517 @end deftypefn
9518
9519 @deftypefn Macro HOST_WIDE_INT REAL_VALUE_FIX (REAL_VALUE_TYPE @var{x})
9520 Truncates @var{x} to a signed integer, rounding toward zero.
9521 @end deftypefn
9522
9523 @deftypefn Macro {unsigned HOST_WIDE_INT} REAL_VALUE_UNSIGNED_FIX (REAL_VALUE_TYPE @var{x})
9524 Truncates @var{x} to an unsigned integer, rounding toward zero.  If
9525 @var{x} is negative, returns zero.
9526 @end deftypefn
9527
9528 @deftypefn Macro REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *@var{string}, enum machine_mode @var{mode})
9529 Converts @var{string} into a floating point number in the target machine's
9530 representation for mode @var{mode}.  This routine can handle both
9531 decimal and hexadecimal floating point constants, using the syntax
9532 defined by the C language for both.
9533 @end deftypefn
9534
9535 @deftypefn Macro int REAL_VALUE_NEGATIVE (REAL_VALUE_TYPE @var{x})
9536 Returns 1 if @var{x} is negative (including negative zero), 0 otherwise.
9537 @end deftypefn
9538
9539 @deftypefn Macro int REAL_VALUE_ISINF (REAL_VALUE_TYPE @var{x})
9540 Determines whether @var{x} represents infinity (positive or negative).
9541 @end deftypefn
9542
9543 @deftypefn Macro int REAL_VALUE_ISNAN (REAL_VALUE_TYPE @var{x})
9544 Determines whether @var{x} represents a ``NaN'' (not-a-number).
9545 @end deftypefn
9546
9547 @deftypefn Macro void REAL_ARITHMETIC (REAL_VALUE_TYPE @var{output}, enum tree_code @var{code}, REAL_VALUE_TYPE @var{x}, REAL_VALUE_TYPE @var{y})
9548 Calculates an arithmetic operation on the two floating point values
9549 @var{x} and @var{y}, storing the result in @var{output} (which must be a
9550 variable).
9551
9552 The operation to be performed is specified by @var{code}.  Only the
9553 following codes are supported: @code{PLUS_EXPR}, @code{MINUS_EXPR},
9554 @code{MULT_EXPR}, @code{RDIV_EXPR}, @code{MAX_EXPR}, @code{MIN_EXPR}.
9555
9556 If @code{REAL_ARITHMETIC} is asked to evaluate division by zero and the
9557 target's floating point format cannot represent infinity, it will call
9558 @code{abort}.  Callers should check for this situation first, using
9559 @code{MODE_HAS_INFINITIES}.  @xref{Storage Layout}.
9560 @end deftypefn
9561
9562 @deftypefn Macro REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE @var{x})
9563 Returns the negative of the floating point value @var{x}.
9564 @end deftypefn
9565
9566 @deftypefn Macro REAL_VALUE_TYPE REAL_VALUE_ABS (REAL_VALUE_TYPE @var{x})
9567 Returns the absolute value of @var{x}.
9568 @end deftypefn
9569
9570 @deftypefn Macro REAL_VALUE_TYPE REAL_VALUE_TRUNCATE (REAL_VALUE_TYPE @var{mode}, enum machine_mode @var{x})
9571 Truncates the floating point value @var{x} to fit in @var{mode}.  The
9572 return value is still a full-size @code{REAL_VALUE_TYPE}, but it has an
9573 appropriate bit pattern to be output as a floating constant whose
9574 precision accords with mode @var{mode}.
9575 @end deftypefn
9576
9577 @deftypefn Macro void REAL_VALUE_TO_INT (HOST_WIDE_INT @var{low}, HOST_WIDE_INT @var{high}, REAL_VALUE_TYPE @var{x})
9578 Converts a floating point value @var{x} into a double-precision integer
9579 which is then stored into @var{low} and @var{high}.  If the value is not
9580 integral, it is truncated.
9581 @end deftypefn
9582
9583 @deftypefn Macro void REAL_VALUE_FROM_INT (REAL_VALUE_TYPE @var{x}, HOST_WIDE_INT @var{low}, HOST_WIDE_INT @var{high}, enum machine_mode @var{mode})
9584 Converts a double-precision integer found in @var{low} and @var{high},
9585 into a floating point value which is then stored into @var{x}.  The
9586 value is truncated to fit in mode @var{mode}.
9587 @end deftypefn
9588
9589 @node Mode Switching
9590 @section Mode Switching Instructions
9591 @cindex mode switching
9592 The following macros control mode switching optimizations:
9593
9594 @defmac OPTIMIZE_MODE_SWITCHING (@var{entity})
9595 Define this macro if the port needs extra instructions inserted for mode
9596 switching in an optimizing compilation.
9597
9598 For an example, the SH4 can perform both single and double precision
9599 floating point operations, but to perform a single precision operation,
9600 the FPSCR PR bit has to be cleared, while for a double precision
9601 operation, this bit has to be set.  Changing the PR bit requires a general
9602 purpose register as a scratch register, hence these FPSCR sets have to
9603 be inserted before reload, i.e.@: you can't put this into instruction emitting
9604 or @code{TARGET_MACHINE_DEPENDENT_REORG}.
9605
9606 You can have multiple entities that are mode-switched, and select at run time
9607 which entities actually need it.  @code{OPTIMIZE_MODE_SWITCHING} should
9608 return nonzero for any @var{entity} that needs mode-switching.
9609 If you define this macro, you also have to define
9610 @code{NUM_MODES_FOR_MODE_SWITCHING}, @code{MODE_NEEDED},
9611 @code{MODE_PRIORITY_TO_MODE} and @code{EMIT_MODE_SET}.
9612 @code{MODE_AFTER}, @code{MODE_ENTRY}, and @code{MODE_EXIT}
9613 are optional.
9614 @end defmac
9615
9616 @defmac NUM_MODES_FOR_MODE_SWITCHING
9617 If you define @code{OPTIMIZE_MODE_SWITCHING}, you have to define this as
9618 initializer for an array of integers.  Each initializer element
9619 N refers to an entity that needs mode switching, and specifies the number
9620 of different modes that might need to be set for this entity.
9621 The position of the initializer in the initializer---starting counting at
9622 zero---determines the integer that is used to refer to the mode-switched
9623 entity in question.
9624 In macros that take mode arguments / yield a mode result, modes are
9625 represented as numbers 0 @dots{} N @minus{} 1.  N is used to specify that no mode
9626 switch is needed / supplied.
9627 @end defmac
9628
9629 @defmac MODE_NEEDED (@var{entity}, @var{insn})
9630 @var{entity} is an integer specifying a mode-switched entity.  If
9631 @code{OPTIMIZE_MODE_SWITCHING} is defined, you must define this macro to
9632 return an integer value not larger than the corresponding element in
9633 @code{NUM_MODES_FOR_MODE_SWITCHING}, to denote the mode that @var{entity} must
9634 be switched into prior to the execution of @var{insn}.
9635 @end defmac
9636
9637 @defmac MODE_AFTER (@var{mode}, @var{insn})
9638 If this macro is defined, it is evaluated for every @var{insn} during
9639 mode switching.  It determines the mode that an insn results in (if
9640 different from the incoming mode).
9641 @end defmac
9642
9643 @defmac MODE_ENTRY (@var{entity})
9644 If this macro is defined, it is evaluated for every @var{entity} that needs
9645 mode switching.  It should evaluate to an integer, which is a mode that
9646 @var{entity} is assumed to be switched to at function entry.  If @code{MODE_ENTRY}
9647 is defined then @code{MODE_EXIT} must be defined.
9648 @end defmac
9649
9650 @defmac MODE_EXIT (@var{entity})
9651 If this macro is defined, it is evaluated for every @var{entity} that needs
9652 mode switching.  It should evaluate to an integer, which is a mode that
9653 @var{entity} is assumed to be switched to at function exit.  If @code{MODE_EXIT}
9654 is defined then @code{MODE_ENTRY} must be defined.
9655 @end defmac
9656
9657 @defmac MODE_PRIORITY_TO_MODE (@var{entity}, @var{n})
9658 This macro specifies the order in which modes for @var{entity} are processed.
9659 0 is the highest priority, @code{NUM_MODES_FOR_MODE_SWITCHING[@var{entity}] - 1} the
9660 lowest.  The value of the macro should be an integer designating a mode
9661 for @var{entity}.  For any fixed @var{entity}, @code{mode_priority_to_mode}
9662 (@var{entity}, @var{n}) shall be a bijection in 0 @dots{}
9663 @code{num_modes_for_mode_switching[@var{entity}] - 1}.
9664 @end defmac
9665
9666 @defmac EMIT_MODE_SET (@var{entity}, @var{mode}, @var{hard_regs_live})
9667 Generate one or more insns to set @var{entity} to @var{mode}.
9668 @var{hard_reg_live} is the set of hard registers live at the point where
9669 the insn(s) are to be inserted.
9670 @end defmac
9671
9672 @node Target Attributes
9673 @section Defining target-specific uses of @code{__attribute__}
9674 @cindex target attributes
9675 @cindex machine attributes
9676 @cindex attributes, target-specific
9677
9678 Target-specific attributes may be defined for functions, data and types.
9679 These are described using the following target hooks; they also need to
9680 be documented in @file{extend.texi}.
9681
9682 @hook TARGET_ATTRIBUTE_TABLE
9683 If defined, this target hook points to an array of @samp{struct
9684 attribute_spec} (defined in @file{tree.h}) specifying the machine
9685 specific attributes for this target and some of the restrictions on the
9686 entities to which these attributes are applied and the arguments they
9687 take.
9688 @end deftypevr
9689
9690 @hook TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P
9691 If defined, this target hook is a function which returns true if the
9692 machine-specific attribute named @var{name} expects an identifier
9693 given as its first argument to be passed on as a plain identifier, not
9694 subjected to name lookup.  If this is not defined, the default is
9695 false for all machine-specific attributes.
9696 @end deftypefn
9697
9698 @hook TARGET_COMP_TYPE_ATTRIBUTES
9699 If defined, this target hook is a function which returns zero if the attributes on
9700 @var{type1} and @var{type2} are incompatible, one if they are compatible,
9701 and two if they are nearly compatible (which causes a warning to be
9702 generated).  If this is not defined, machine-specific attributes are
9703 supposed always to be compatible.
9704 @end deftypefn
9705
9706 @hook TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
9707 If defined, this target hook is a function which assigns default attributes to
9708 the newly defined @var{type}.
9709 @end deftypefn
9710
9711 @hook TARGET_MERGE_TYPE_ATTRIBUTES
9712 Define this target hook if the merging of type attributes needs special
9713 handling.  If defined, the result is a list of the combined
9714 @code{TYPE_ATTRIBUTES} of @var{type1} and @var{type2}.  It is assumed
9715 that @code{comptypes} has already been called and returned 1.  This
9716 function may call @code{merge_attributes} to handle machine-independent
9717 merging.
9718 @end deftypefn
9719
9720 @hook TARGET_MERGE_DECL_ATTRIBUTES
9721 Define this target hook if the merging of decl attributes needs special
9722 handling.  If defined, the result is a list of the combined
9723 @code{DECL_ATTRIBUTES} of @var{olddecl} and @var{newdecl}.
9724 @var{newdecl} is a duplicate declaration of @var{olddecl}.  Examples of
9725 when this is needed are when one attribute overrides another, or when an
9726 attribute is nullified by a subsequent definition.  This function may
9727 call @code{merge_attributes} to handle machine-independent merging.
9728
9729 @findex TARGET_DLLIMPORT_DECL_ATTRIBUTES
9730 If the only target-specific handling you require is @samp{dllimport}
9731 for Microsoft Windows targets, you should define the macro
9732 @code{TARGET_DLLIMPORT_DECL_ATTRIBUTES} to @code{1}.  The compiler
9733 will then define a function called
9734 @code{merge_dllimport_decl_attributes} which can then be defined as
9735 the expansion of @code{TARGET_MERGE_DECL_ATTRIBUTES}.  You can also
9736 add @code{handle_dll_attribute} in the attribute table for your port
9737 to perform initial processing of the @samp{dllimport} and
9738 @samp{dllexport} attributes.  This is done in @file{i386/cygwin.h} and
9739 @file{i386/i386.c}, for example.
9740 @end deftypefn
9741
9742 @hook TARGET_VALID_DLLIMPORT_ATTRIBUTE_P
9743
9744 @defmac TARGET_DECLSPEC
9745 Define this macro to a nonzero value if you want to treat
9746 @code{__declspec(X)} as equivalent to @code{__attribute((X))}.  By
9747 default, this behavior is enabled only for targets that define
9748 @code{TARGET_DLLIMPORT_DECL_ATTRIBUTES}.  The current implementation
9749 of @code{__declspec} is via a built-in macro, but you should not rely
9750 on this implementation detail.
9751 @end defmac
9752
9753 @hook TARGET_INSERT_ATTRIBUTES
9754 Define this target hook if you want to be able to add attributes to a decl
9755 when it is being created.  This is normally useful for back ends which
9756 wish to implement a pragma by using the attributes which correspond to
9757 the pragma's effect.  The @var{node} argument is the decl which is being
9758 created.  The @var{attr_ptr} argument is a pointer to the attribute list
9759 for this decl.  The list itself should not be modified, since it may be
9760 shared with other decls, but attributes may be chained on the head of
9761 the list and @code{*@var{attr_ptr}} modified to point to the new
9762 attributes, or a copy of the list may be made if further changes are
9763 needed.
9764 @end deftypefn
9765
9766 @hook TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
9767 @cindex inlining
9768 This target hook returns @code{true} if it is ok to inline @var{fndecl}
9769 into the current function, despite its having target-specific
9770 attributes, @code{false} otherwise.  By default, if a function has a
9771 target specific attribute attached to it, it will not be inlined.
9772 @end deftypefn
9773
9774 @hook TARGET_OPTION_VALID_ATTRIBUTE_P
9775 This hook is called to parse the @code{attribute(option("..."))}, and
9776 it allows the function to set different target machine compile time
9777 options for the current function that might be different than the
9778 options specified on the command line.  The hook should return
9779 @code{true} if the options are valid.
9780
9781 The hook should set the @var{DECL_FUNCTION_SPECIFIC_TARGET} field in
9782 the function declaration to hold a pointer to a target specific
9783 @var{struct cl_target_option} structure.
9784 @end deftypefn
9785
9786 @hook TARGET_OPTION_SAVE
9787 This hook is called to save any additional target specific information
9788 in the @var{struct cl_target_option} structure for function specific
9789 options.
9790 @xref{Option file format}.
9791 @end deftypefn
9792
9793 @hook TARGET_OPTION_RESTORE
9794 This hook is called to restore any additional target specific
9795 information in the @var{struct cl_target_option} structure for
9796 function specific options.
9797 @end deftypefn
9798
9799 @hook TARGET_OPTION_PRINT
9800 This hook is called to print any additional target specific
9801 information in the @var{struct cl_target_option} structure for
9802 function specific options.
9803 @end deftypefn
9804
9805 @hook TARGET_OPTION_PRAGMA_PARSE
9806 This target hook parses the options for @code{#pragma GCC option} to
9807 set the machine specific options for functions that occur later in the
9808 input stream.  The options should be the same as handled by the
9809 @code{TARGET_OPTION_VALID_ATTRIBUTE_P} hook.
9810 @end deftypefn
9811
9812 @hook TARGET_OPTION_OVERRIDE
9813 Sometimes certain combinations of command options do not make sense on
9814 a particular target machine.  You can override the hook
9815 @code{TARGET_OPTION_OVERRIDE} to take account of this.  This hooks is called
9816 once just after all the command options have been parsed.
9817
9818 Don't use this hook to turn on various extra optimizations for
9819 @option{-O}.  That is what @code{TARGET_OPTION_OPTIMIZATION} is for.
9820
9821 If you need to do something whenever the optimization level is
9822 changed via the optimize attribute or pragma, see
9823 @code{TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE}
9824 @end deftypefn
9825
9826 @hook TARGET_CAN_INLINE_P
9827 This target hook returns @code{false} if the @var{caller} function
9828 cannot inline @var{callee}, based on target specific information.  By
9829 default, inlining is not allowed if the callee function has function
9830 specific target options and the caller does not use the same options.
9831 @end deftypefn
9832
9833 @node Emulated TLS
9834 @section Emulating TLS
9835 @cindex Emulated TLS
9836
9837 For targets whose psABI does not provide Thread Local Storage via
9838 specific relocations and instruction sequences, an emulation layer is
9839 used.  A set of target hooks allows this emulation layer to be
9840 configured for the requirements of a particular target.  For instance
9841 the psABI may in fact specify TLS support in terms of an emulation
9842 layer.
9843
9844 The emulation layer works by creating a control object for every TLS
9845 object.  To access the TLS object, a lookup function is provided
9846 which, when given the address of the control object, will return the
9847 address of the current thread's instance of the TLS object.
9848
9849 @hook TARGET_EMUTLS_GET_ADDRESS
9850 Contains the name of the helper function that uses a TLS control
9851 object to locate a TLS instance.  The default causes libgcc's
9852 emulated TLS helper function to be used.
9853 @end deftypevr
9854
9855 @hook TARGET_EMUTLS_REGISTER_COMMON
9856 Contains the name of the helper function that should be used at
9857 program startup to register TLS objects that are implicitly
9858 initialized to zero.  If this is @code{NULL}, all TLS objects will
9859 have explicit initializers.  The default causes libgcc's emulated TLS
9860 registration function to be used.
9861 @end deftypevr
9862
9863 @hook TARGET_EMUTLS_VAR_SECTION
9864 Contains the name of the section in which TLS control variables should
9865 be placed.  The default of @code{NULL} allows these to be placed in
9866 any section.
9867 @end deftypevr
9868
9869 @hook TARGET_EMUTLS_TMPL_SECTION
9870 Contains the name of the section in which TLS initializers should be
9871 placed.  The default of @code{NULL} allows these to be placed in any
9872 section.
9873 @end deftypevr
9874
9875 @hook TARGET_EMUTLS_VAR_PREFIX
9876 Contains the prefix to be prepended to TLS control variable names.
9877 The default of @code{NULL} uses a target-specific prefix.
9878 @end deftypevr
9879
9880 @hook TARGET_EMUTLS_TMPL_PREFIX
9881 Contains the prefix to be prepended to TLS initializer objects.  The
9882 default of @code{NULL} uses a target-specific prefix.
9883 @end deftypevr
9884
9885 @hook TARGET_EMUTLS_VAR_FIELDS
9886 Specifies a function that generates the FIELD_DECLs for a TLS control
9887 object type.  @var{type} is the RECORD_TYPE the fields are for and
9888 @var{name} should be filled with the structure tag, if the default of
9889 @code{__emutls_object} is unsuitable.  The default creates a type suitable
9890 for libgcc's emulated TLS function.
9891 @end deftypefn
9892
9893 @hook TARGET_EMUTLS_VAR_INIT
9894 Specifies a function that generates the CONSTRUCTOR to initialize a
9895 TLS control object.  @var{var} is the TLS control object, @var{decl}
9896 is the TLS object and @var{tmpl_addr} is the address of the
9897 initializer.  The default initializes libgcc's emulated TLS control object.
9898 @end deftypefn
9899
9900 @hook TARGET_EMUTLS_VAR_ALIGN_FIXED
9901 Specifies whether the alignment of TLS control variable objects is
9902 fixed and should not be increased as some backends may do to optimize
9903 single objects.  The default is false.
9904 @end deftypevr
9905
9906 @hook TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS
9907 Specifies whether a DWARF @code{DW_OP_form_tls_address} location descriptor
9908 may be used to describe emulated TLS control objects.
9909 @end deftypevr
9910
9911 @node MIPS Coprocessors
9912 @section Defining coprocessor specifics for MIPS targets.
9913 @cindex MIPS coprocessor-definition macros
9914
9915 The MIPS specification allows MIPS implementations to have as many as 4
9916 coprocessors, each with as many as 32 private registers.  GCC supports
9917 accessing these registers and transferring values between the registers
9918 and memory using asm-ized variables.  For example:
9919
9920 @smallexample
9921   register unsigned int cp0count asm ("c0r1");
9922   unsigned int d;
9923
9924   d = cp0count + 3;
9925 @end smallexample
9926
9927 (``c0r1'' is the default name of register 1 in coprocessor 0; alternate
9928 names may be added as described below, or the default names may be
9929 overridden entirely in @code{SUBTARGET_CONDITIONAL_REGISTER_USAGE}.)
9930
9931 Coprocessor registers are assumed to be epilogue-used; sets to them will
9932 be preserved even if it does not appear that the register is used again
9933 later in the function.
9934
9935 Another note: according to the MIPS spec, coprocessor 1 (if present) is
9936 the FPU@.  One accesses COP1 registers through standard mips
9937 floating-point support; they are not included in this mechanism.
9938
9939 There is one macro used in defining the MIPS coprocessor interface which
9940 you may want to override in subtargets; it is described below.
9941
9942 @defmac ALL_COP_ADDITIONAL_REGISTER_NAMES
9943 A comma-separated list (with leading comma) of pairs describing the
9944 alternate names of coprocessor registers.  The format of each entry should be
9945 @smallexample
9946 @{ @var{alternatename}, @var{register_number}@}
9947 @end smallexample
9948 Default: empty.
9949 @end defmac
9950
9951 @node PCH Target
9952 @section Parameters for Precompiled Header Validity Checking
9953 @cindex parameters, precompiled headers
9954
9955 @hook TARGET_GET_PCH_VALIDITY
9956 This hook returns a pointer to the data needed by
9957 @code{TARGET_PCH_VALID_P} and sets
9958 @samp{*@var{sz}} to the size of the data in bytes.
9959 @end deftypefn
9960
9961 @hook TARGET_PCH_VALID_P
9962 This hook checks whether the options used to create a PCH file are
9963 compatible with the current settings.  It returns @code{NULL}
9964 if so and a suitable error message if not.  Error messages will
9965 be presented to the user and must be localized using @samp{_(@var{msg})}.
9966
9967 @var{data} is the data that was returned by @code{TARGET_GET_PCH_VALIDITY}
9968 when the PCH file was created and @var{sz} is the size of that data in bytes.
9969 It's safe to assume that the data was created by the same version of the
9970 compiler, so no format checking is needed.
9971
9972 The default definition of @code{default_pch_valid_p} should be
9973 suitable for most targets.
9974 @end deftypefn
9975
9976 @hook TARGET_CHECK_PCH_TARGET_FLAGS
9977 If this hook is nonnull, the default implementation of
9978 @code{TARGET_PCH_VALID_P} will use it to check for compatible values
9979 of @code{target_flags}.  @var{pch_flags} specifies the value that
9980 @code{target_flags} had when the PCH file was created.  The return
9981 value is the same as for @code{TARGET_PCH_VALID_P}.
9982 @end deftypefn
9983
9984 @hook TARGET_PREPARE_PCH_SAVE
9985
9986 @node C++ ABI
9987 @section C++ ABI parameters
9988 @cindex parameters, c++ abi
9989
9990 @hook TARGET_CXX_GUARD_TYPE
9991 Define this hook to override the integer type used for guard variables.
9992 These are used to implement one-time construction of static objects.  The
9993 default is long_long_integer_type_node.
9994 @end deftypefn
9995
9996 @hook TARGET_CXX_GUARD_MASK_BIT
9997 This hook determines how guard variables are used.  It should return
9998 @code{false} (the default) if the first byte should be used.  A return value of
9999 @code{true} indicates that only the least significant bit should be used.
10000 @end deftypefn
10001
10002 @hook TARGET_CXX_GET_COOKIE_SIZE
10003 This hook returns the size of the cookie to use when allocating an array
10004 whose elements have the indicated @var{type}.  Assumes that it is already
10005 known that a cookie is needed.  The default is
10006 @code{max(sizeof (size_t), alignof(type))}, as defined in section 2.7 of the
10007 IA64/Generic C++ ABI@.
10008 @end deftypefn
10009
10010 @hook TARGET_CXX_COOKIE_HAS_SIZE
10011 This hook should return @code{true} if the element size should be stored in
10012 array cookies.  The default is to return @code{false}.
10013 @end deftypefn
10014
10015 @hook TARGET_CXX_IMPORT_EXPORT_CLASS
10016 If defined by a backend this hook allows the decision made to export
10017 class @var{type} to be overruled.  Upon entry @var{import_export}
10018 will contain 1 if the class is going to be exported, @minus{}1 if it is going
10019 to be imported and 0 otherwise.  This function should return the
10020 modified value and perform any other actions necessary to support the
10021 backend's targeted operating system.
10022 @end deftypefn
10023
10024 @hook TARGET_CXX_CDTOR_RETURNS_THIS
10025 This hook should return @code{true} if constructors and destructors return
10026 the address of the object created/destroyed.  The default is to return
10027 @code{false}.
10028 @end deftypefn
10029
10030 @hook TARGET_CXX_KEY_METHOD_MAY_BE_INLINE
10031 This hook returns true if the key method for a class (i.e., the method
10032 which, if defined in the current translation unit, causes the virtual
10033 table to be emitted) may be an inline function.  Under the standard
10034 Itanium C++ ABI the key method may be an inline function so long as
10035 the function is not declared inline in the class definition.  Under
10036 some variants of the ABI, an inline function can never be the key
10037 method.  The default is to return @code{true}.
10038 @end deftypefn
10039
10040 @hook TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY
10041
10042 @hook TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT
10043 This hook returns true (the default) if virtual tables and other
10044 similar implicit class data objects are always COMDAT if they have
10045 external linkage.  If this hook returns false, then class data for
10046 classes whose virtual table will be emitted in only one translation
10047 unit will not be COMDAT.
10048 @end deftypefn
10049
10050 @hook TARGET_CXX_LIBRARY_RTTI_COMDAT
10051 This hook returns true (the default) if the RTTI information for
10052 the basic types which is defined in the C++ runtime should always
10053 be COMDAT, false if it should not be COMDAT.
10054 @end deftypefn
10055
10056 @hook TARGET_CXX_USE_AEABI_ATEXIT
10057 This hook returns true if @code{__aeabi_atexit} (as defined by the ARM EABI)
10058 should be used to register static destructors when @option{-fuse-cxa-atexit}
10059 is in effect.  The default is to return false to use @code{__cxa_atexit}.
10060 @end deftypefn
10061
10062 @hook TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT
10063 This hook returns true if the target @code{atexit} function can be used
10064 in the same manner as @code{__cxa_atexit} to register C++ static
10065 destructors. This requires that @code{atexit}-registered functions in
10066 shared libraries are run in the correct order when the libraries are
10067 unloaded. The default is to return false.
10068 @end deftypefn
10069
10070 @hook TARGET_CXX_ADJUST_CLASS_AT_DEFINITION
10071
10072 @node Named Address Spaces
10073 @section Adding support for named address spaces
10074 @cindex named address spaces
10075
10076 The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275
10077 standards committee, @cite{Programming Languages - C - Extensions to
10078 support embedded processors}, specifies a syntax for embedded
10079 processors to specify alternate address spaces.  You can configure a
10080 GCC port to support section 5.1 of the draft report to add support for
10081 address spaces other than the default address space.  These address
10082 spaces are new keywords that are similar to the @code{volatile} and
10083 @code{const} type attributes.
10084
10085 Pointers to named address spaces can have a different size than
10086 pointers to the generic address space.
10087
10088 For example, the SPU port uses the @code{__ea} address space to refer
10089 to memory in the host processor, rather than memory local to the SPU
10090 processor.  Access to memory in the @code{__ea} address space involves
10091 issuing DMA operations to move data between the host processor and the
10092 local processor memory address space.  Pointers in the @code{__ea}
10093 address space are either 32 bits or 64 bits based on the
10094 @option{-mea32} or @option{-mea64} switches (native SPU pointers are
10095 always 32 bits).
10096
10097 Internally, address spaces are represented as a small integer in the
10098 range 0 to 15 with address space 0 being reserved for the generic
10099 address space.
10100
10101 To register a named address space qualifier keyword with the C front end,
10102 the target may call the @code{c_register_addr_space} routine.  For example,
10103 the SPU port uses the following to declare @code{__ea} as the keyword for
10104 named address space #1:
10105 @smallexample
10106 #define ADDR_SPACE_EA 1
10107 c_register_addr_space ("__ea", ADDR_SPACE_EA);
10108 @end smallexample
10109
10110 @hook TARGET_ADDR_SPACE_POINTER_MODE
10111 Define this to return the machine mode to use for pointers to
10112 @var{address_space} if the target supports named address spaces.
10113 The default version of this hook returns @code{ptr_mode} for the
10114 generic address space only.
10115 @end deftypefn
10116
10117 @hook TARGET_ADDR_SPACE_ADDRESS_MODE
10118 Define this to return the machine mode to use for addresses in
10119 @var{address_space} if the target supports named address spaces.
10120 The default version of this hook returns @code{Pmode} for the
10121 generic address space only.
10122 @end deftypefn
10123
10124 @hook TARGET_ADDR_SPACE_VALID_POINTER_MODE
10125 Define this to return nonzero if the port can handle pointers
10126 with machine mode @var{mode} to address space @var{as}.  This target
10127 hook is the same as the @code{TARGET_VALID_POINTER_MODE} target hook,
10128 except that it includes explicit named address space support.  The default
10129 version of this hook returns true for the modes returned by either the
10130 @code{TARGET_ADDR_SPACE_POINTER_MODE} or @code{TARGET_ADDR_SPACE_ADDRESS_MODE}
10131 target hooks for the given address space.
10132 @end deftypefn
10133
10134 @hook TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
10135 Define this to return true if @var{exp} is a valid address for mode
10136 @var{mode} in the named address space @var{as}.  The @var{strict}
10137 parameter says whether strict addressing is in effect after reload has
10138 finished.  This target hook is the same as the
10139 @code{TARGET_LEGITIMATE_ADDRESS_P} target hook, except that it includes
10140 explicit named address space support.
10141 @end deftypefn
10142
10143 @hook TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
10144 Define this to modify an invalid address @var{x} to be a valid address
10145 with mode @var{mode} in the named address space @var{as}.  This target
10146 hook is the same as the @code{TARGET_LEGITIMIZE_ADDRESS} target hook,
10147 except that it includes explicit named address space support.
10148 @end deftypefn
10149
10150 @hook TARGET_ADDR_SPACE_SUBSET_P
10151 Define this to return whether the @var{subset} named address space is
10152 contained within the @var{superset} named address space.  Pointers to
10153 a named address space that is a subset of another named address space
10154 will be converted automatically without a cast if used together in
10155 arithmetic operations.  Pointers to a superset address space can be
10156 converted to pointers to a subset address space via explicit casts.
10157 @end deftypefn
10158
10159 @hook TARGET_ADDR_SPACE_CONVERT
10160 Define this to convert the pointer expression represented by the RTL
10161 @var{op} with type @var{from_type} that points to a named address
10162 space to a new pointer expression with type @var{to_type} that points
10163 to a different named address space.  When this hook it called, it is
10164 guaranteed that one of the two address spaces is a subset of the other,
10165 as determined by the @code{TARGET_ADDR_SPACE_SUBSET_P} target hook.
10166 @end deftypefn
10167
10168 @node Misc
10169 @section Miscellaneous Parameters
10170 @cindex parameters, miscellaneous
10171
10172 @c prevent bad page break with this line
10173 Here are several miscellaneous parameters.
10174
10175 @defmac HAS_LONG_COND_BRANCH
10176 Define this boolean macro to indicate whether or not your architecture
10177 has conditional branches that can span all of memory.  It is used in
10178 conjunction with an optimization that partitions hot and cold basic
10179 blocks into separate sections of the executable.  If this macro is
10180 set to false, gcc will convert any conditional branches that attempt
10181 to cross between sections into unconditional branches or indirect jumps.
10182 @end defmac
10183
10184 @defmac HAS_LONG_UNCOND_BRANCH
10185 Define this boolean macro to indicate whether or not your architecture
10186 has unconditional branches that can span all of memory.  It is used in
10187 conjunction with an optimization that partitions hot and cold basic
10188 blocks into separate sections of the executable.  If this macro is
10189 set to false, gcc will convert any unconditional branches that attempt
10190 to cross between sections into indirect jumps.
10191 @end defmac
10192
10193 @defmac CASE_VECTOR_MODE
10194 An alias for a machine mode name.  This is the machine mode that
10195 elements of a jump-table should have.
10196 @end defmac
10197
10198 @defmac CASE_VECTOR_SHORTEN_MODE (@var{min_offset}, @var{max_offset}, @var{body})
10199 Optional: return the preferred mode for an @code{addr_diff_vec}
10200 when the minimum and maximum offset are known.  If you define this,
10201 it enables extra code in branch shortening to deal with @code{addr_diff_vec}.
10202 To make this work, you also have to define @code{INSN_ALIGN} and
10203 make the alignment for @code{addr_diff_vec} explicit.
10204 The @var{body} argument is provided so that the offset_unsigned and scale
10205 flags can be updated.
10206 @end defmac
10207
10208 @defmac CASE_VECTOR_PC_RELATIVE
10209 Define this macro to be a C expression to indicate when jump-tables
10210 should contain relative addresses.  You need not define this macro if
10211 jump-tables never contain relative addresses, or jump-tables should
10212 contain relative addresses only when @option{-fPIC} or @option{-fPIC}
10213 is in effect.
10214 @end defmac
10215
10216 @hook TARGET_CASE_VALUES_THRESHOLD
10217 This function return the smallest number of different values for which it
10218 is best to use a jump-table instead of a tree of conditional branches.
10219 The default is four for machines with a @code{casesi} instruction and
10220 five otherwise.  This is best for most machines.
10221 @end deftypefn
10222
10223 @defmac CASE_USE_BIT_TESTS
10224 Define this macro to be a C expression to indicate whether C switch
10225 statements may be implemented by a sequence of bit tests.  This is
10226 advantageous on processors that can efficiently implement left shift
10227 of 1 by the number of bits held in a register, but inappropriate on
10228 targets that would require a loop.  By default, this macro returns
10229 @code{true} if the target defines an @code{ashlsi3} pattern, and
10230 @code{false} otherwise.
10231 @end defmac
10232
10233 @defmac WORD_REGISTER_OPERATIONS
10234 Define this macro if operations between registers with integral mode
10235 smaller than a word are always performed on the entire register.
10236 Most RISC machines have this property and most CISC machines do not.
10237 @end defmac
10238
10239 @defmac LOAD_EXTEND_OP (@var{mem_mode})
10240 Define this macro to be a C expression indicating when insns that read
10241 memory in @var{mem_mode}, an integral mode narrower than a word, set the
10242 bits outside of @var{mem_mode} to be either the sign-extension or the
10243 zero-extension of the data read.  Return @code{SIGN_EXTEND} for values
10244 of @var{mem_mode} for which the
10245 insn sign-extends, @code{ZERO_EXTEND} for which it zero-extends, and
10246 @code{UNKNOWN} for other modes.
10247
10248 This macro is not called with @var{mem_mode} non-integral or with a width
10249 greater than or equal to @code{BITS_PER_WORD}, so you may return any
10250 value in this case.  Do not define this macro if it would always return
10251 @code{UNKNOWN}.  On machines where this macro is defined, you will normally
10252 define it as the constant @code{SIGN_EXTEND} or @code{ZERO_EXTEND}.
10253
10254 You may return a non-@code{UNKNOWN} value even if for some hard registers
10255 the sign extension is not performed, if for the @code{REGNO_REG_CLASS}
10256 of these hard registers @code{CANNOT_CHANGE_MODE_CLASS} returns nonzero
10257 when the @var{from} mode is @var{mem_mode} and the @var{to} mode is any
10258 integral mode larger than this but not larger than @code{word_mode}.
10259
10260 You must return @code{UNKNOWN} if for some hard registers that allow this
10261 mode, @code{CANNOT_CHANGE_MODE_CLASS} says that they cannot change to
10262 @code{word_mode}, but that they can change to another integral mode that
10263 is larger then @var{mem_mode} but still smaller than @code{word_mode}.
10264 @end defmac
10265
10266 @defmac SHORT_IMMEDIATES_SIGN_EXTEND
10267 Define this macro if loading short immediate values into registers sign
10268 extends.
10269 @end defmac
10270
10271 @defmac FIXUNS_TRUNC_LIKE_FIX_TRUNC
10272 Define this macro if the same instructions that convert a floating
10273 point number to a signed fixed point number also convert validly to an
10274 unsigned one.
10275 @end defmac
10276
10277 @hook TARGET_MIN_DIVISIONS_FOR_RECIP_MUL
10278 When @option{-ffast-math} is in effect, GCC tries to optimize
10279 divisions by the same divisor, by turning them into multiplications by
10280 the reciprocal.  This target hook specifies the minimum number of divisions
10281 that should be there for GCC to perform the optimization for a variable
10282 of mode @var{mode}.  The default implementation returns 3 if the machine
10283 has an instruction for the division, and 2 if it does not.
10284 @end deftypefn
10285
10286 @defmac MOVE_MAX
10287 The maximum number of bytes that a single instruction can move quickly
10288 between memory and registers or between two memory locations.
10289 @end defmac
10290
10291 @defmac MAX_MOVE_MAX
10292 The maximum number of bytes that a single instruction can move quickly
10293 between memory and registers or between two memory locations.  If this
10294 is undefined, the default is @code{MOVE_MAX}.  Otherwise, it is the
10295 constant value that is the largest value that @code{MOVE_MAX} can have
10296 at run-time.
10297 @end defmac
10298
10299 @defmac SHIFT_COUNT_TRUNCATED
10300 A C expression that is nonzero if on this machine the number of bits
10301 actually used for the count of a shift operation is equal to the number
10302 of bits needed to represent the size of the object being shifted.  When
10303 this macro is nonzero, the compiler will assume that it is safe to omit
10304 a sign-extend, zero-extend, and certain bitwise `and' instructions that
10305 truncates the count of a shift operation.  On machines that have
10306 instructions that act on bit-fields at variable positions, which may
10307 include `bit test' instructions, a nonzero @code{SHIFT_COUNT_TRUNCATED}
10308 also enables deletion of truncations of the values that serve as
10309 arguments to bit-field instructions.
10310
10311 If both types of instructions truncate the count (for shifts) and
10312 position (for bit-field operations), or if no variable-position bit-field
10313 instructions exist, you should define this macro.
10314
10315 However, on some machines, such as the 80386 and the 680x0, truncation
10316 only applies to shift operations and not the (real or pretended)
10317 bit-field operations.  Define @code{SHIFT_COUNT_TRUNCATED} to be zero on
10318 such machines.  Instead, add patterns to the @file{md} file that include
10319 the implied truncation of the shift instructions.
10320
10321 You need not define this macro if it would always have the value of zero.
10322 @end defmac
10323
10324 @anchor{TARGET_SHIFT_TRUNCATION_MASK}
10325 @hook TARGET_SHIFT_TRUNCATION_MASK
10326 This function describes how the standard shift patterns for @var{mode}
10327 deal with shifts by negative amounts or by more than the width of the mode.
10328 @xref{shift patterns}.
10329
10330 On many machines, the shift patterns will apply a mask @var{m} to the
10331 shift count, meaning that a fixed-width shift of @var{x} by @var{y} is
10332 equivalent to an arbitrary-width shift of @var{x} by @var{y & m}.  If
10333 this is true for mode @var{mode}, the function should return @var{m},
10334 otherwise it should return 0.  A return value of 0 indicates that no
10335 particular behavior is guaranteed.
10336
10337 Note that, unlike @code{SHIFT_COUNT_TRUNCATED}, this function does
10338 @emph{not} apply to general shift rtxes; it applies only to instructions
10339 that are generated by the named shift patterns.
10340
10341 The default implementation of this function returns
10342 @code{GET_MODE_BITSIZE (@var{mode}) - 1} if @code{SHIFT_COUNT_TRUNCATED}
10343 and 0 otherwise.  This definition is always safe, but if
10344 @code{SHIFT_COUNT_TRUNCATED} is false, and some shift patterns
10345 nevertheless truncate the shift count, you may get better code
10346 by overriding it.
10347 @end deftypefn
10348
10349 @defmac TRULY_NOOP_TRUNCATION (@var{outprec}, @var{inprec})
10350 A C expression which is nonzero if on this machine it is safe to
10351 ``convert'' an integer of @var{inprec} bits to one of @var{outprec}
10352 bits (where @var{outprec} is smaller than @var{inprec}) by merely
10353 operating on it as if it had only @var{outprec} bits.
10354
10355 On many machines, this expression can be 1.
10356
10357 @c rearranged this, removed the phrase "it is reported that".  this was
10358 @c to fix an overfull hbox.  --mew 10feb93
10359 When @code{TRULY_NOOP_TRUNCATION} returns 1 for a pair of sizes for
10360 modes for which @code{MODES_TIEABLE_P} is 0, suboptimal code can result.
10361 If this is the case, making @code{TRULY_NOOP_TRUNCATION} return 0 in
10362 such cases may improve things.
10363 @end defmac
10364
10365 @hook TARGET_MODE_REP_EXTENDED
10366 The representation of an integral mode can be such that the values
10367 are always extended to a wider integral mode.  Return
10368 @code{SIGN_EXTEND} if values of @var{mode} are represented in
10369 sign-extended form to @var{rep_mode}.  Return @code{UNKNOWN}
10370 otherwise.  (Currently, none of the targets use zero-extended
10371 representation this way so unlike @code{LOAD_EXTEND_OP},
10372 @code{TARGET_MODE_REP_EXTENDED} is expected to return either
10373 @code{SIGN_EXTEND} or @code{UNKNOWN}.  Also no target extends
10374 @var{mode} to @var{rep_mode} so that @var{rep_mode} is not the next
10375 widest integral mode and currently we take advantage of this fact.)
10376
10377 Similarly to @code{LOAD_EXTEND_OP} you may return a non-@code{UNKNOWN}
10378 value even if the extension is not performed on certain hard registers
10379 as long as for the @code{REGNO_REG_CLASS} of these hard registers
10380 @code{CANNOT_CHANGE_MODE_CLASS} returns nonzero.
10381
10382 Note that @code{TARGET_MODE_REP_EXTENDED} and @code{LOAD_EXTEND_OP}
10383 describe two related properties.  If you define
10384 @code{TARGET_MODE_REP_EXTENDED (mode, word_mode)} you probably also want
10385 to define @code{LOAD_EXTEND_OP (mode)} to return the same type of
10386 extension.
10387
10388 In order to enforce the representation of @code{mode},
10389 @code{TRULY_NOOP_TRUNCATION} should return false when truncating to
10390 @code{mode}.
10391 @end deftypefn
10392
10393 @defmac STORE_FLAG_VALUE
10394 A C expression describing the value returned by a comparison operator
10395 with an integral mode and stored by a store-flag instruction
10396 (@samp{cstore@var{mode}4}) when the condition is true.  This description must
10397 apply to @emph{all} the @samp{cstore@var{mode}4} patterns and all the
10398 comparison operators whose results have a @code{MODE_INT} mode.
10399
10400 A value of 1 or @minus{}1 means that the instruction implementing the
10401 comparison operator returns exactly 1 or @minus{}1 when the comparison is true
10402 and 0 when the comparison is false.  Otherwise, the value indicates
10403 which bits of the result are guaranteed to be 1 when the comparison is
10404 true.  This value is interpreted in the mode of the comparison
10405 operation, which is given by the mode of the first operand in the
10406 @samp{cstore@var{mode}4} pattern.  Either the low bit or the sign bit of
10407 @code{STORE_FLAG_VALUE} be on.  Presently, only those bits are used by
10408 the compiler.
10409
10410 If @code{STORE_FLAG_VALUE} is neither 1 or @minus{}1, the compiler will
10411 generate code that depends only on the specified bits.  It can also
10412 replace comparison operators with equivalent operations if they cause
10413 the required bits to be set, even if the remaining bits are undefined.
10414 For example, on a machine whose comparison operators return an
10415 @code{SImode} value and where @code{STORE_FLAG_VALUE} is defined as
10416 @samp{0x80000000}, saying that just the sign bit is relevant, the
10417 expression
10418
10419 @smallexample
10420 (ne:SI (and:SI @var{x} (const_int @var{power-of-2})) (const_int 0))
10421 @end smallexample
10422
10423 @noindent
10424 can be converted to
10425
10426 @smallexample
10427 (ashift:SI @var{x} (const_int @var{n}))
10428 @end smallexample
10429
10430 @noindent
10431 where @var{n} is the appropriate shift count to move the bit being
10432 tested into the sign bit.
10433
10434 There is no way to describe a machine that always sets the low-order bit
10435 for a true value, but does not guarantee the value of any other bits,
10436 but we do not know of any machine that has such an instruction.  If you
10437 are trying to port GCC to such a machine, include an instruction to
10438 perform a logical-and of the result with 1 in the pattern for the
10439 comparison operators and let us know at @email{gcc@@gcc.gnu.org}.
10440
10441 Often, a machine will have multiple instructions that obtain a value
10442 from a comparison (or the condition codes).  Here are rules to guide the
10443 choice of value for @code{STORE_FLAG_VALUE}, and hence the instructions
10444 to be used:
10445
10446 @itemize @bullet
10447 @item
10448 Use the shortest sequence that yields a valid definition for
10449 @code{STORE_FLAG_VALUE}.  It is more efficient for the compiler to
10450 ``normalize'' the value (convert it to, e.g., 1 or 0) than for the
10451 comparison operators to do so because there may be opportunities to
10452 combine the normalization with other operations.
10453
10454 @item
10455 For equal-length sequences, use a value of 1 or @minus{}1, with @minus{}1 being
10456 slightly preferred on machines with expensive jumps and 1 preferred on
10457 other machines.
10458
10459 @item
10460 As a second choice, choose a value of @samp{0x80000001} if instructions
10461 exist that set both the sign and low-order bits but do not define the
10462 others.
10463
10464 @item
10465 Otherwise, use a value of @samp{0x80000000}.
10466 @end itemize
10467
10468 Many machines can produce both the value chosen for
10469 @code{STORE_FLAG_VALUE} and its negation in the same number of
10470 instructions.  On those machines, you should also define a pattern for
10471 those cases, e.g., one matching
10472
10473 @smallexample
10474 (set @var{A} (neg:@var{m} (ne:@var{m} @var{B} @var{C})))
10475 @end smallexample
10476
10477 Some machines can also perform @code{and} or @code{plus} operations on
10478 condition code values with less instructions than the corresponding
10479 @samp{cstore@var{mode}4} insn followed by @code{and} or @code{plus}.  On those
10480 machines, define the appropriate patterns.  Use the names @code{incscc}
10481 and @code{decscc}, respectively, for the patterns which perform
10482 @code{plus} or @code{minus} operations on condition code values.  See
10483 @file{rs6000.md} for some examples.  The GNU Superoptimizer can be used to
10484 find such instruction sequences on other machines.
10485
10486 If this macro is not defined, the default value, 1, is used.  You need
10487 not define @code{STORE_FLAG_VALUE} if the machine has no store-flag
10488 instructions, or if the value generated by these instructions is 1.
10489 @end defmac
10490
10491 @defmac FLOAT_STORE_FLAG_VALUE (@var{mode})
10492 A C expression that gives a nonzero @code{REAL_VALUE_TYPE} value that is
10493 returned when comparison operators with floating-point results are true.
10494 Define this macro on machines that have comparison operations that return
10495 floating-point values.  If there are no such operations, do not define
10496 this macro.
10497 @end defmac
10498
10499 @defmac VECTOR_STORE_FLAG_VALUE (@var{mode})
10500 A C expression that gives a rtx representing the nonzero true element
10501 for vector comparisons.  The returned rtx should be valid for the inner
10502 mode of @var{mode} which is guaranteed to be a vector mode.  Define
10503 this macro on machines that have vector comparison operations that
10504 return a vector result.  If there are no such operations, do not define
10505 this macro.  Typically, this macro is defined as @code{const1_rtx} or
10506 @code{constm1_rtx}.  This macro may return @code{NULL_RTX} to prevent
10507 the compiler optimizing such vector comparison operations for the
10508 given mode.
10509 @end defmac
10510
10511 @defmac CLZ_DEFINED_VALUE_AT_ZERO (@var{mode}, @var{value})
10512 @defmacx CTZ_DEFINED_VALUE_AT_ZERO (@var{mode}, @var{value})
10513 A C expression that indicates whether the architecture defines a value
10514 for @code{clz} or @code{ctz} with a zero operand.
10515 A result of @code{0} indicates the value is undefined.
10516 If the value is defined for only the RTL expression, the macro should
10517 evaluate to @code{1}; if the value applies also to the corresponding optab
10518 entry (which is normally the case if it expands directly into
10519 the corresponding RTL), then the macro should evaluate to @code{2}.
10520 In the cases where the value is defined, @var{value} should be set to
10521 this value.
10522
10523 If this macro is not defined, the value of @code{clz} or
10524 @code{ctz} at zero is assumed to be undefined.
10525
10526 This macro must be defined if the target's expansion for @code{ffs}
10527 relies on a particular value to get correct results.  Otherwise it
10528 is not necessary, though it may be used to optimize some corner cases, and
10529 to provide a default expansion for the @code{ffs} optab.
10530
10531 Note that regardless of this macro the ``definedness'' of @code{clz}
10532 and @code{ctz} at zero do @emph{not} extend to the builtin functions
10533 visible to the user.  Thus one may be free to adjust the value at will
10534 to match the target expansion of these operations without fear of
10535 breaking the API@.
10536 @end defmac
10537
10538 @defmac Pmode
10539 An alias for the machine mode for pointers.  On most machines, define
10540 this to be the integer mode corresponding to the width of a hardware
10541 pointer; @code{SImode} on 32-bit machine or @code{DImode} on 64-bit machines.
10542 On some machines you must define this to be one of the partial integer
10543 modes, such as @code{PSImode}.
10544
10545 The width of @code{Pmode} must be at least as large as the value of
10546 @code{POINTER_SIZE}.  If it is not equal, you must define the macro
10547 @code{POINTERS_EXTEND_UNSIGNED} to specify how pointers are extended
10548 to @code{Pmode}.
10549 @end defmac
10550
10551 @defmac FUNCTION_MODE
10552 An alias for the machine mode used for memory references to functions
10553 being called, in @code{call} RTL expressions.  On most CISC machines,
10554 where an instruction can begin at any byte address, this should be
10555 @code{QImode}.  On most RISC machines, where all instructions have fixed
10556 size and alignment, this should be a mode with the same size and alignment
10557 as the machine instruction words - typically @code{SImode} or @code{HImode}.
10558 @end defmac
10559
10560 @defmac STDC_0_IN_SYSTEM_HEADERS
10561 In normal operation, the preprocessor expands @code{__STDC__} to the
10562 constant 1, to signify that GCC conforms to ISO Standard C@.  On some
10563 hosts, like Solaris, the system compiler uses a different convention,
10564 where @code{__STDC__} is normally 0, but is 1 if the user specifies
10565 strict conformance to the C Standard.
10566
10567 Defining @code{STDC_0_IN_SYSTEM_HEADERS} makes GNU CPP follows the host
10568 convention when processing system header files, but when processing user
10569 files @code{__STDC__} will always expand to 1.
10570 @end defmac
10571
10572 @defmac NO_IMPLICIT_EXTERN_C
10573 Define this macro if the system header files support C++ as well as C@.
10574 This macro inhibits the usual method of using system header files in
10575 C++, which is to pretend that the file's contents are enclosed in
10576 @samp{extern "C" @{@dots{}@}}.
10577 @end defmac
10578
10579 @findex #pragma
10580 @findex pragma
10581 @defmac REGISTER_TARGET_PRAGMAS ()
10582 Define this macro if you want to implement any target-specific pragmas.
10583 If defined, it is a C expression which makes a series of calls to
10584 @code{c_register_pragma} or @code{c_register_pragma_with_expansion}
10585 for each pragma.  The macro may also do any
10586 setup required for the pragmas.
10587
10588 The primary reason to define this macro is to provide compatibility with
10589 other compilers for the same target.  In general, we discourage
10590 definition of target-specific pragmas for GCC@.
10591
10592 If the pragma can be implemented by attributes then you should consider
10593 defining the target hook @samp{TARGET_INSERT_ATTRIBUTES} as well.
10594
10595 Preprocessor macros that appear on pragma lines are not expanded.  All
10596 @samp{#pragma} directives that do not match any registered pragma are
10597 silently ignored, unless the user specifies @option{-Wunknown-pragmas}.
10598 @end defmac
10599
10600 @deftypefun void c_register_pragma (const char *@var{space}, const char *@var{name}, void (*@var{callback}) (struct cpp_reader *))
10601 @deftypefunx void c_register_pragma_with_expansion (const char *@var{space}, const char *@var{name}, void (*@var{callback}) (struct cpp_reader *))
10602
10603 Each call to @code{c_register_pragma} or
10604 @code{c_register_pragma_with_expansion} establishes one pragma.  The
10605 @var{callback} routine will be called when the preprocessor encounters a
10606 pragma of the form
10607
10608 @smallexample
10609 #pragma [@var{space}] @var{name} @dots{}
10610 @end smallexample
10611
10612 @var{space} is the case-sensitive namespace of the pragma, or
10613 @code{NULL} to put the pragma in the global namespace.  The callback
10614 routine receives @var{pfile} as its first argument, which can be passed
10615 on to cpplib's functions if necessary.  You can lex tokens after the
10616 @var{name} by calling @code{pragma_lex}.  Tokens that are not read by the
10617 callback will be silently ignored.  The end of the line is indicated by
10618 a token of type @code{CPP_EOF}.  Macro expansion occurs on the
10619 arguments of pragmas registered with
10620 @code{c_register_pragma_with_expansion} but not on the arguments of
10621 pragmas registered with @code{c_register_pragma}.
10622
10623 Note that the use of @code{pragma_lex} is specific to the C and C++
10624 compilers.  It will not work in the Java or Fortran compilers, or any
10625 other language compilers for that matter.  Thus if @code{pragma_lex} is going
10626 to be called from target-specific code, it must only be done so when
10627 building the C and C++ compilers.  This can be done by defining the
10628 variables @code{c_target_objs} and @code{cxx_target_objs} in the
10629 target entry in the @file{config.gcc} file.  These variables should name
10630 the target-specific, language-specific object file which contains the
10631 code that uses @code{pragma_lex}.  Note it will also be necessary to add a
10632 rule to the makefile fragment pointed to by @code{tmake_file} that shows
10633 how to build this object file.
10634 @end deftypefun
10635
10636 @defmac HANDLE_PRAGMA_PACK_WITH_EXPANSION
10637 Define this macro if macros should be expanded in the
10638 arguments of @samp{#pragma pack}.
10639 @end defmac
10640
10641 @hook TARGET_HANDLE_PRAGMA_EXTERN_PREFIX
10642
10643 @defmac TARGET_DEFAULT_PACK_STRUCT
10644 If your target requires a structure packing default other than 0 (meaning
10645 the machine default), define this macro to the necessary value (in bytes).
10646 This must be a value that would also be valid to use with
10647 @samp{#pragma pack()} (that is, a small power of two).
10648 @end defmac
10649
10650 @defmac DOLLARS_IN_IDENTIFIERS
10651 Define this macro to control use of the character @samp{$} in
10652 identifier names for the C family of languages.  0 means @samp{$} is
10653 not allowed by default; 1 means it is allowed.  1 is the default;
10654 there is no need to define this macro in that case.
10655 @end defmac
10656
10657 @defmac NO_DOLLAR_IN_LABEL
10658 Define this macro if the assembler does not accept the character
10659 @samp{$} in label names.  By default constructors and destructors in
10660 G++ have @samp{$} in the identifiers.  If this macro is defined,
10661 @samp{.} is used instead.
10662 @end defmac
10663
10664 @defmac NO_DOT_IN_LABEL
10665 Define this macro if the assembler does not accept the character
10666 @samp{.} in label names.  By default constructors and destructors in G++
10667 have names that use @samp{.}.  If this macro is defined, these names
10668 are rewritten to avoid @samp{.}.
10669 @end defmac
10670
10671 @defmac INSN_SETS_ARE_DELAYED (@var{insn})
10672 Define this macro as a C expression that is nonzero if it is safe for the
10673 delay slot scheduler to place instructions in the delay slot of @var{insn},
10674 even if they appear to use a resource set or clobbered in @var{insn}.
10675 @var{insn} is always a @code{jump_insn} or an @code{insn}; GCC knows that
10676 every @code{call_insn} has this behavior.  On machines where some @code{insn}
10677 or @code{jump_insn} is really a function call and hence has this behavior,
10678 you should define this macro.
10679
10680 You need not define this macro if it would always return zero.
10681 @end defmac
10682
10683 @defmac INSN_REFERENCES_ARE_DELAYED (@var{insn})
10684 Define this macro as a C expression that is nonzero if it is safe for the
10685 delay slot scheduler to place instructions in the delay slot of @var{insn},
10686 even if they appear to set or clobber a resource referenced in @var{insn}.
10687 @var{insn} is always a @code{jump_insn} or an @code{insn}.  On machines where
10688 some @code{insn} or @code{jump_insn} is really a function call and its operands
10689 are registers whose use is actually in the subroutine it calls, you should
10690 define this macro.  Doing so allows the delay slot scheduler to move
10691 instructions which copy arguments into the argument registers into the delay
10692 slot of @var{insn}.
10693
10694 You need not define this macro if it would always return zero.
10695 @end defmac
10696
10697 @defmac MULTIPLE_SYMBOL_SPACES
10698 Define this macro as a C expression that is nonzero if, in some cases,
10699 global symbols from one translation unit may not be bound to undefined
10700 symbols in another translation unit without user intervention.  For
10701 instance, under Microsoft Windows symbols must be explicitly imported
10702 from shared libraries (DLLs).
10703
10704 You need not define this macro if it would always evaluate to zero.
10705 @end defmac
10706
10707 @hook TARGET_MD_ASM_CLOBBERS
10708 This target hook should add to @var{clobbers} @code{STRING_CST} trees for
10709 any hard regs the port wishes to automatically clobber for an asm.
10710 It should return the result of the last @code{tree_cons} used to add a
10711 clobber.  The @var{outputs}, @var{inputs} and @var{clobber} lists are the
10712 corresponding parameters to the asm and may be inspected to avoid
10713 clobbering a register that is an input or output of the asm.  You can use
10714 @code{tree_overlaps_hard_reg_set}, declared in @file{tree.h}, to test
10715 for overlap with regards to asm-declared registers.
10716 @end deftypefn
10717
10718 @defmac MATH_LIBRARY
10719 Define this macro as a C string constant for the linker argument to link
10720 in the system math library, minus the initial @samp{"-l"}, or
10721 @samp{""} if the target does not have a
10722 separate math library.
10723
10724 You need only define this macro if the default of @samp{"m"} is wrong.
10725 @end defmac
10726
10727 @defmac LIBRARY_PATH_ENV
10728 Define this macro as a C string constant for the environment variable that
10729 specifies where the linker should look for libraries.
10730
10731 You need only define this macro if the default of @samp{"LIBRARY_PATH"}
10732 is wrong.
10733 @end defmac
10734
10735 @defmac TARGET_POSIX_IO
10736 Define this macro if the target supports the following POSIX@ file
10737 functions, access, mkdir and  file locking with fcntl / F_SETLKW@.
10738 Defining @code{TARGET_POSIX_IO} will enable the test coverage code
10739 to use file locking when exiting a program, which avoids race conditions
10740 if the program has forked. It will also create directories at run-time
10741 for cross-profiling.
10742 @end defmac
10743
10744 @defmac MAX_CONDITIONAL_EXECUTE
10745
10746 A C expression for the maximum number of instructions to execute via
10747 conditional execution instructions instead of a branch.  A value of
10748 @code{BRANCH_COST}+1 is the default if the machine does not use cc0, and
10749 1 if it does use cc0.
10750 @end defmac
10751
10752 @defmac IFCVT_MODIFY_TESTS (@var{ce_info}, @var{true_expr}, @var{false_expr})
10753 Used if the target needs to perform machine-dependent modifications on the
10754 conditionals used for turning basic blocks into conditionally executed code.
10755 @var{ce_info} points to a data structure, @code{struct ce_if_block}, which
10756 contains information about the currently processed blocks.  @var{true_expr}
10757 and @var{false_expr} are the tests that are used for converting the
10758 then-block and the else-block, respectively.  Set either @var{true_expr} or
10759 @var{false_expr} to a null pointer if the tests cannot be converted.
10760 @end defmac
10761
10762 @defmac IFCVT_MODIFY_MULTIPLE_TESTS (@var{ce_info}, @var{bb}, @var{true_expr}, @var{false_expr})
10763 Like @code{IFCVT_MODIFY_TESTS}, but used when converting more complicated
10764 if-statements into conditions combined by @code{and} and @code{or} operations.
10765 @var{bb} contains the basic block that contains the test that is currently
10766 being processed and about to be turned into a condition.
10767 @end defmac
10768
10769 @defmac IFCVT_MODIFY_INSN (@var{ce_info}, @var{pattern}, @var{insn})
10770 A C expression to modify the @var{PATTERN} of an @var{INSN} that is to
10771 be converted to conditional execution format.  @var{ce_info} points to
10772 a data structure, @code{struct ce_if_block}, which contains information
10773 about the currently processed blocks.
10774 @end defmac
10775
10776 @defmac IFCVT_MODIFY_FINAL (@var{ce_info})
10777 A C expression to perform any final machine dependent modifications in
10778 converting code to conditional execution.  The involved basic blocks
10779 can be found in the @code{struct ce_if_block} structure that is pointed
10780 to by @var{ce_info}.
10781 @end defmac
10782
10783 @defmac IFCVT_MODIFY_CANCEL (@var{ce_info})
10784 A C expression to cancel any machine dependent modifications in
10785 converting code to conditional execution.  The involved basic blocks
10786 can be found in the @code{struct ce_if_block} structure that is pointed
10787 to by @var{ce_info}.
10788 @end defmac
10789
10790 @defmac IFCVT_INIT_EXTRA_FIELDS (@var{ce_info})
10791 A C expression to initialize any extra fields in a @code{struct ce_if_block}
10792 structure, which are defined by the @code{IFCVT_EXTRA_FIELDS} macro.
10793 @end defmac
10794
10795 @defmac IFCVT_EXTRA_FIELDS
10796 If defined, it should expand to a set of field declarations that will be
10797 added to the @code{struct ce_if_block} structure.  These should be initialized
10798 by the @code{IFCVT_INIT_EXTRA_FIELDS} macro.
10799 @end defmac
10800
10801 @hook TARGET_MACHINE_DEPENDENT_REORG
10802 If non-null, this hook performs a target-specific pass over the
10803 instruction stream.  The compiler will run it at all optimization levels,
10804 just before the point at which it normally does delayed-branch scheduling.
10805
10806 The exact purpose of the hook varies from target to target.  Some use
10807 it to do transformations that are necessary for correctness, such as
10808 laying out in-function constant pools or avoiding hardware hazards.
10809 Others use it as an opportunity to do some machine-dependent optimizations.
10810
10811 You need not implement the hook if it has nothing to do.  The default
10812 definition is null.
10813 @end deftypefn
10814
10815 @hook TARGET_INIT_BUILTINS
10816 Define this hook if you have any machine-specific built-in functions
10817 that need to be defined.  It should be a function that performs the
10818 necessary setup.
10819
10820 Machine specific built-in functions can be useful to expand special machine
10821 instructions that would otherwise not normally be generated because
10822 they have no equivalent in the source language (for example, SIMD vector
10823 instructions or prefetch instructions).
10824
10825 To create a built-in function, call the function
10826 @code{lang_hooks.builtin_function}
10827 which is defined by the language front end.  You can use any type nodes set
10828 up by @code{build_common_tree_nodes};
10829 only language front ends that use those two functions will call
10830 @samp{TARGET_INIT_BUILTINS}.
10831 @end deftypefn
10832
10833 @hook TARGET_BUILTIN_DECL
10834 Define this hook if you have any machine-specific built-in functions
10835 that need to be defined.  It should be a function that returns the
10836 builtin function declaration for the builtin function code @var{code}.
10837 If there is no such builtin and it cannot be initialized at this time
10838 if @var{initialize_p} is true the function should return @code{NULL_TREE}.
10839 If @var{code} is out of range the function should return
10840 @code{error_mark_node}.
10841 @end deftypefn
10842
10843 @hook TARGET_EXPAND_BUILTIN
10844
10845 Expand a call to a machine specific built-in function that was set up by
10846 @samp{TARGET_INIT_BUILTINS}.  @var{exp} is the expression for the
10847 function call; the result should go to @var{target} if that is
10848 convenient, and have mode @var{mode} if that is convenient.
10849 @var{subtarget} may be used as the target for computing one of
10850 @var{exp}'s operands.  @var{ignore} is nonzero if the value is to be
10851 ignored.  This function should return the result of the call to the
10852 built-in function.
10853 @end deftypefn
10854
10855 @hook TARGET_RESOLVE_OVERLOADED_BUILTIN
10856 Select a replacement for a machine specific built-in function that
10857 was set up by @samp{TARGET_INIT_BUILTINS}.  This is done
10858 @emph{before} regular type checking, and so allows the target to
10859 implement a crude form of function overloading.  @var{fndecl} is the
10860 declaration of the built-in function.  @var{arglist} is the list of
10861 arguments passed to the built-in function.  The result is a
10862 complete expression that implements the operation, usually
10863 another @code{CALL_EXPR}.
10864 @var{arglist} really has type @samp{VEC(tree,gc)*}
10865 @end deftypefn
10866
10867 @hook TARGET_FOLD_BUILTIN
10868 Fold a call to a machine specific built-in function that was set up by
10869 @samp{TARGET_INIT_BUILTINS}.  @var{fndecl} is the declaration of the
10870 built-in function.  @var{n_args} is the number of arguments passed to
10871 the function; the arguments themselves are pointed to by @var{argp}.
10872 The result is another tree containing a simplified expression for the
10873 call's result.  If @var{ignore} is true the value will be ignored.
10874 @end deftypefn
10875
10876 @hook TARGET_INVALID_WITHIN_DOLOOP
10877
10878 Take an instruction in @var{insn} and return NULL if it is valid within a
10879 low-overhead loop, otherwise return a string explaining why doloop
10880 could not be applied.
10881
10882 Many targets use special registers for low-overhead looping. For any
10883 instruction that clobbers these this function should return a string indicating
10884 the reason why the doloop could not be applied.
10885 By default, the RTL loop optimizer does not use a present doloop pattern for
10886 loops containing function calls or branch on table instructions.
10887 @end deftypefn
10888
10889 @defmac MD_CAN_REDIRECT_BRANCH (@var{branch1}, @var{branch2})
10890
10891 Take a branch insn in @var{branch1} and another in @var{branch2}.
10892 Return true if redirecting @var{branch1} to the destination of
10893 @var{branch2} is possible.
10894
10895 On some targets, branches may have a limited range.  Optimizing the
10896 filling of delay slots can result in branches being redirected, and this
10897 may in turn cause a branch offset to overflow.
10898 @end defmac
10899
10900 @hook TARGET_COMMUTATIVE_P
10901 This target hook returns @code{true} if @var{x} is considered to be commutative.
10902 Usually, this is just COMMUTATIVE_P (@var{x}), but the HP PA doesn't consider
10903 PLUS to be commutative inside a MEM@.  @var{outer_code} is the rtx code
10904 of the enclosing rtl, if known, otherwise it is UNKNOWN.
10905 @end deftypefn
10906
10907 @hook TARGET_ALLOCATE_INITIAL_VALUE
10908
10909 When the initial value of a hard register has been copied in a pseudo
10910 register, it is often not necessary to actually allocate another register
10911 to this pseudo register, because the original hard register or a stack slot
10912 it has been saved into can be used.  @code{TARGET_ALLOCATE_INITIAL_VALUE}
10913 is called at the start of register allocation once for each hard register
10914 that had its initial value copied by using
10915 @code{get_func_hard_reg_initial_val} or @code{get_hard_reg_initial_val}.
10916 Possible values are @code{NULL_RTX}, if you don't want
10917 to do any special allocation, a @code{REG} rtx---that would typically be
10918 the hard register itself, if it is known not to be clobbered---or a
10919 @code{MEM}.
10920 If you are returning a @code{MEM}, this is only a hint for the allocator;
10921 it might decide to use another register anyways.
10922 You may use @code{current_function_leaf_function} in the hook, functions
10923 that use @code{REG_N_SETS}, to determine if the hard
10924 register in question will not be clobbered.
10925 The default value of this hook is @code{NULL}, which disables any special
10926 allocation.
10927 @end deftypefn
10928
10929 @hook TARGET_UNSPEC_MAY_TRAP_P
10930 This target hook returns nonzero if @var{x}, an @code{unspec} or
10931 @code{unspec_volatile} operation, might cause a trap.  Targets can use
10932 this hook to enhance precision of analysis for @code{unspec} and
10933 @code{unspec_volatile} operations.  You may call @code{may_trap_p_1}
10934 to analyze inner elements of @var{x} in which case @var{flags} should be
10935 passed along.
10936 @end deftypefn
10937
10938 @hook TARGET_SET_CURRENT_FUNCTION
10939 The compiler invokes this hook whenever it changes its current function
10940 context (@code{cfun}).  You can define this function if
10941 the back end needs to perform any initialization or reset actions on a
10942 per-function basis.  For example, it may be used to implement function
10943 attributes that affect register usage or code generation patterns.
10944 The argument @var{decl} is the declaration for the new function context,
10945 and may be null to indicate that the compiler has left a function context
10946 and is returning to processing at the top level.
10947 The default hook function does nothing.
10948
10949 GCC sets @code{cfun} to a dummy function context during initialization of
10950 some parts of the back end.  The hook function is not invoked in this
10951 situation; you need not worry about the hook being invoked recursively,
10952 or when the back end is in a partially-initialized state.
10953 @code{cfun} might be @code{NULL} to indicate processing at top level,
10954 outside of any function scope.
10955 @end deftypefn
10956
10957 @defmac TARGET_OBJECT_SUFFIX
10958 Define this macro to be a C string representing the suffix for object
10959 files on your target machine.  If you do not define this macro, GCC will
10960 use @samp{.o} as the suffix for object files.
10961 @end defmac
10962
10963 @defmac TARGET_EXECUTABLE_SUFFIX
10964 Define this macro to be a C string representing the suffix to be
10965 automatically added to executable files on your target machine.  If you
10966 do not define this macro, GCC will use the null string as the suffix for
10967 executable files.
10968 @end defmac
10969
10970 @defmac COLLECT_EXPORT_LIST
10971 If defined, @code{collect2} will scan the individual object files
10972 specified on its command line and create an export list for the linker.
10973 Define this macro for systems like AIX, where the linker discards
10974 object files that are not referenced from @code{main} and uses export
10975 lists.
10976 @end defmac
10977
10978 @defmac MODIFY_JNI_METHOD_CALL (@var{mdecl})
10979 Define this macro to a C expression representing a variant of the
10980 method call @var{mdecl}, if Java Native Interface (JNI) methods
10981 must be invoked differently from other methods on your target.
10982 For example, on 32-bit Microsoft Windows, JNI methods must be invoked using
10983 the @code{stdcall} calling convention and this macro is then
10984 defined as this expression:
10985
10986 @smallexample
10987 build_type_attribute_variant (@var{mdecl},
10988                               build_tree_list
10989                               (get_identifier ("stdcall"),
10990                                NULL))
10991 @end smallexample
10992 @end defmac
10993
10994 @hook TARGET_CANNOT_MODIFY_JUMPS_P
10995 This target hook returns @code{true} past the point in which new jump
10996 instructions could be created.  On machines that require a register for
10997 every jump such as the SHmedia ISA of SH5, this point would typically be
10998 reload, so this target hook should be defined to a function such as:
10999
11000 @smallexample
11001 static bool
11002 cannot_modify_jumps_past_reload_p ()
11003 @{
11004   return (reload_completed || reload_in_progress);
11005 @}
11006 @end smallexample
11007 @end deftypefn
11008
11009 @hook TARGET_BRANCH_TARGET_REGISTER_CLASS
11010 This target hook returns a register class for which branch target register
11011 optimizations should be applied.  All registers in this class should be
11012 usable interchangeably.  After reload, registers in this class will be
11013 re-allocated and loads will be hoisted out of loops and be subjected
11014 to inter-block scheduling.
11015 @end deftypefn
11016
11017 @hook TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED
11018 Branch target register optimization will by default exclude callee-saved
11019 registers
11020 that are not already live during the current function; if this target hook
11021 returns true, they will be included.  The target code must than make sure
11022 that all target registers in the class returned by
11023 @samp{TARGET_BRANCH_TARGET_REGISTER_CLASS} that might need saving are
11024 saved.  @var{after_prologue_epilogue_gen} indicates if prologues and
11025 epilogues have already been generated.  Note, even if you only return
11026 true when @var{after_prologue_epilogue_gen} is false, you still are likely
11027 to have to make special provisions in @code{INITIAL_ELIMINATION_OFFSET}
11028 to reserve space for caller-saved target registers.
11029 @end deftypefn
11030
11031 @hook TARGET_HAVE_CONDITIONAL_EXECUTION
11032 This target hook returns true if the target supports conditional execution.
11033 This target hook is required only when the target has several different
11034 modes and they have different conditional execution capability, such as ARM.
11035 @end deftypefn
11036
11037 @hook TARGET_LOOP_UNROLL_ADJUST
11038 This target hook returns a new value for the number of times @var{loop}
11039 should be unrolled. The parameter @var{nunroll} is the number of times
11040 the loop is to be unrolled. The parameter @var{loop} is a pointer to
11041 the loop, which is going to be checked for unrolling. This target hook
11042 is required only when the target has special constraints like maximum
11043 number of memory accesses.
11044 @end deftypefn
11045
11046 @defmac POWI_MAX_MULTS
11047 If defined, this macro is interpreted as a signed integer C expression
11048 that specifies the maximum number of floating point multiplications
11049 that should be emitted when expanding exponentiation by an integer
11050 constant inline.  When this value is defined, exponentiation requiring
11051 more than this number of multiplications is implemented by calling the
11052 system library's @code{pow}, @code{powf} or @code{powl} routines.
11053 The default value places no upper bound on the multiplication count.
11054 @end defmac
11055
11056 @deftypefn Macro void TARGET_EXTRA_INCLUDES (const char *@var{sysroot}, const char *@var{iprefix}, int @var{stdinc})
11057 This target hook should register any extra include files for the
11058 target.  The parameter @var{stdinc} indicates if normal include files
11059 are present.  The parameter @var{sysroot} is the system root directory.
11060 The parameter @var{iprefix} is the prefix for the gcc directory.
11061 @end deftypefn
11062
11063 @deftypefn Macro void TARGET_EXTRA_PRE_INCLUDES (const char *@var{sysroot}, const char *@var{iprefix}, int @var{stdinc})
11064 This target hook should register any extra include files for the
11065 target before any standard headers.  The parameter @var{stdinc}
11066 indicates if normal include files are present.  The parameter
11067 @var{sysroot} is the system root directory.  The parameter
11068 @var{iprefix} is the prefix for the gcc directory.
11069 @end deftypefn
11070
11071 @deftypefn Macro void TARGET_OPTF (char *@var{path})
11072 This target hook should register special include paths for the target.
11073 The parameter @var{path} is the include to register.  On Darwin
11074 systems, this is used for Framework includes, which have semantics
11075 that are different from @option{-I}.
11076 @end deftypefn
11077
11078 @defmac bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree @var{fndecl})
11079 This target macro returns @code{true} if it is safe to use a local alias
11080 for a virtual function @var{fndecl} when constructing thunks,
11081 @code{false} otherwise.  By default, the macro returns @code{true} for all
11082 functions, if a target supports aliases (i.e.@: defines
11083 @code{ASM_OUTPUT_DEF}), @code{false} otherwise,
11084 @end defmac
11085
11086 @defmac TARGET_FORMAT_TYPES
11087 If defined, this macro is the name of a global variable containing
11088 target-specific format checking information for the @option{-Wformat}
11089 option.  The default is to have no target-specific format checks.
11090 @end defmac
11091
11092 @defmac TARGET_N_FORMAT_TYPES
11093 If defined, this macro is the number of entries in
11094 @code{TARGET_FORMAT_TYPES}.
11095 @end defmac
11096
11097 @defmac TARGET_OVERRIDES_FORMAT_ATTRIBUTES
11098 If defined, this macro is the name of a global variable containing
11099 target-specific format overrides for the @option{-Wformat} option. The
11100 default is to have no target-specific format overrides. If defined,
11101 @code{TARGET_FORMAT_TYPES} must be defined, too.
11102 @end defmac
11103
11104 @defmac TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT
11105 If defined, this macro specifies the number of entries in
11106 @code{TARGET_OVERRIDES_FORMAT_ATTRIBUTES}.
11107 @end defmac
11108
11109 @defmac TARGET_OVERRIDES_FORMAT_INIT
11110 If defined, this macro specifies the optional initialization
11111 routine for target specific customizations of the system printf
11112 and scanf formatter settings.
11113 @end defmac
11114
11115 @hook TARGET_RELAXED_ORDERING
11116 If set to @code{true}, means that the target's memory model does not
11117 guarantee that loads which do not depend on one another will access
11118 main memory in the order of the instruction stream; if ordering is
11119 important, an explicit memory barrier must be used.  This is true of
11120 many recent processors which implement a policy of ``relaxed,''
11121 ``weak,'' or ``release'' memory consistency, such as Alpha, PowerPC,
11122 and ia64.  The default is @code{false}.
11123 @end deftypevr
11124
11125 @hook TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
11126 If defined, this macro returns the diagnostic message when it is
11127 illegal to pass argument @var{val} to function @var{funcdecl}
11128 with prototype @var{typelist}.
11129 @end deftypefn
11130
11131 @hook TARGET_INVALID_CONVERSION
11132 If defined, this macro returns the diagnostic message when it is
11133 invalid to convert from @var{fromtype} to @var{totype}, or @code{NULL}
11134 if validity should be determined by the front end.
11135 @end deftypefn
11136
11137 @hook TARGET_INVALID_UNARY_OP
11138 If defined, this macro returns the diagnostic message when it is
11139 invalid to apply operation @var{op} (where unary plus is denoted by
11140 @code{CONVERT_EXPR}) to an operand of type @var{type}, or @code{NULL}
11141 if validity should be determined by the front end.
11142 @end deftypefn
11143
11144 @hook TARGET_INVALID_BINARY_OP
11145 If defined, this macro returns the diagnostic message when it is
11146 invalid to apply operation @var{op} to operands of types @var{type1}
11147 and @var{type2}, or @code{NULL} if validity should be determined by
11148 the front end.
11149 @end deftypefn
11150
11151 @hook TARGET_INVALID_PARAMETER_TYPE
11152 If defined, this macro returns the diagnostic message when it is
11153 invalid for functions to include parameters of type @var{type},
11154 or @code{NULL} if validity should be determined by
11155 the front end.  This is currently used only by the C and C++ front ends.
11156 @end deftypefn
11157
11158 @hook TARGET_INVALID_RETURN_TYPE
11159 If defined, this macro returns the diagnostic message when it is
11160 invalid for functions to have return type @var{type},
11161 or @code{NULL} if validity should be determined by
11162 the front end.  This is currently used only by the C and C++ front ends.
11163 @end deftypefn
11164
11165 @hook TARGET_PROMOTED_TYPE
11166 If defined, this target hook returns the type to which values of
11167 @var{type} should be promoted when they appear in expressions,
11168 analogous to the integer promotions, or @code{NULL_TREE} to use the
11169 front end's normal promotion rules.  This hook is useful when there are
11170 target-specific types with special promotion rules.
11171 This is currently used only by the C and C++ front ends.
11172 @end deftypefn
11173
11174 @hook TARGET_CONVERT_TO_TYPE
11175 If defined, this hook returns the result of converting @var{expr} to
11176 @var{type}.  It should return the converted expression,
11177 or @code{NULL_TREE} to apply the front end's normal conversion rules.
11178 This hook is useful when there are target-specific types with special
11179 conversion rules.
11180 This is currently used only by the C and C++ front ends.
11181 @end deftypefn
11182
11183 @defmac TARGET_USE_JCR_SECTION
11184 This macro determines whether to use the JCR section to register Java
11185 classes. By default, TARGET_USE_JCR_SECTION is defined to 1 if both
11186 SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, else 0.
11187 @end defmac
11188
11189 @defmac OBJC_JBLEN
11190 This macro determines the size of the objective C jump buffer for the
11191 NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value.
11192 @end defmac
11193
11194 @defmac LIBGCC2_UNWIND_ATTRIBUTE
11195 Define this macro if any target-specific attributes need to be attached
11196 to the functions in @file{libgcc} that provide low-level support for
11197 call stack unwinding.  It is used in declarations in @file{unwind-generic.h}
11198 and the associated definitions of those functions.
11199 @end defmac
11200
11201 @hook TARGET_UPDATE_STACK_BOUNDARY
11202 Define this macro to update the current function stack boundary if
11203 necessary.
11204 @end deftypefn
11205
11206 @hook TARGET_GET_DRAP_RTX
11207 This hook should return an rtx for Dynamic Realign Argument Pointer (DRAP) if a
11208 different argument pointer register is needed to access the function's
11209 argument list due to stack realignment.  Return @code{NULL} if no DRAP
11210 is needed.
11211 @end deftypefn
11212
11213 @hook TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
11214 When optimization is disabled, this hook indicates whether or not
11215 arguments should be allocated to stack slots.  Normally, GCC allocates
11216 stacks slots for arguments when not optimizing in order to make
11217 debugging easier.  However, when a function is declared with
11218 @code{__attribute__((naked))}, there is no stack frame, and the compiler
11219 cannot safely move arguments from the registers in which they are passed
11220 to the stack.  Therefore, this hook should return true in general, but
11221 false for naked functions.  The default implementation always returns true.
11222 @end deftypefn
11223
11224 @hook TARGET_CONST_ANCHOR
11225 On some architectures it can take multiple instructions to synthesize
11226 a constant.  If there is another constant already in a register that
11227 is close enough in value then it is preferable that the new constant
11228 is computed from this register using immediate addition or
11229 subtraction.  We accomplish this through CSE.  Besides the value of
11230 the constant we also add a lower and an upper constant anchor to the
11231 available expressions.  These are then queried when encountering new
11232 constants.  The anchors are computed by rounding the constant up and
11233 down to a multiple of the value of @code{TARGET_CONST_ANCHOR}.
11234 @code{TARGET_CONST_ANCHOR} should be the maximum positive value
11235 accepted by immediate-add plus one.  We currently assume that the
11236 value of @code{TARGET_CONST_ANCHOR} is a power of 2.  For example, on
11237 MIPS, where add-immediate takes a 16-bit signed value,
11238 @code{TARGET_CONST_ANCHOR} is set to @samp{0x8000}.  The default value
11239 is zero, which disables this optimization.  @end deftypevr
11240
11241 @hook TARGET_ATOMIC_TEST_AND_SET_TRUEVAL