OSDN Git Service

* read-rtl.c (struct macro_traverse_data): Define.
[pf3gnuchains/gcc-fork.git] / gcc / doc / md.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @ifset INTERNALS
7 @node Machine Desc
8 @chapter Machine Descriptions
9 @cindex machine descriptions
10
11 A machine description has two parts: a file of instruction patterns
12 (@file{.md} file) and a C header file of macro definitions.
13
14 The @file{.md} file for a target machine contains a pattern for each
15 instruction that the target machine supports (or at least each instruction
16 that is worth telling the compiler about).  It may also contain comments.
17 A semicolon causes the rest of the line to be a comment, unless the semicolon
18 is inside a quoted string.
19
20 See the next chapter for information on the C header file.
21
22 @menu
23 * Overview::            How the machine description is used.
24 * Patterns::            How to write instruction patterns.
25 * Example::             An explained example of a @code{define_insn} pattern.
26 * RTL Template::        The RTL template defines what insns match a pattern.
27 * Output Template::     The output template says how to make assembler code
28                           from such an insn.
29 * Output Statement::    For more generality, write C code to output
30                           the assembler code.
31 * Predicates::          Controlling what kinds of operands can be used
32                           for an insn.
33 * Constraints::         Fine-tuning operand selection.
34 * Standard Names::      Names mark patterns to use for code generation.
35 * Pattern Ordering::    When the order of patterns makes a difference.
36 * Dependent Patterns::  Having one pattern may make you need another.
37 * Jump Patterns::       Special considerations for patterns for jump insns.
38 * Looping Patterns::    How to define patterns for special looping insns.
39 * Insn Canonicalizations::Canonicalization of Instructions
40 * Expander Definitions::Generating a sequence of several RTL insns
41                           for a standard operation.
42 * Insn Splitting::      Splitting Instructions into Multiple Instructions.
43 * Including Patterns::      Including Patterns in Machine Descriptions.
44 * Peephole Definitions::Defining machine-specific peephole optimizations.
45 * Insn Attributes::     Specifying the value of attributes for generated insns.
46 * Conditional Execution::Generating @code{define_insn} patterns for
47                            predication.
48 * Constant Definitions::Defining symbolic constants that can be used in the
49                         md file.
50 * Macros::              Using macros to generate patterns from a template.
51 @end menu
52
53 @node Overview
54 @section Overview of How the Machine Description is Used
55
56 There are three main conversions that happen in the compiler:
57
58 @enumerate
59
60 @item
61 The front end reads the source code and builds a parse tree.
62
63 @item
64 The parse tree is used to generate an RTL insn list based on named
65 instruction patterns.
66
67 @item
68 The insn list is matched against the RTL templates to produce assembler
69 code.
70
71 @end enumerate
72
73 For the generate pass, only the names of the insns matter, from either a
74 named @code{define_insn} or a @code{define_expand}.  The compiler will
75 choose the pattern with the right name and apply the operands according
76 to the documentation later in this chapter, without regard for the RTL
77 template or operand constraints.  Note that the names the compiler looks
78 for are hard-coded in the compiler---it will ignore unnamed patterns and
79 patterns with names it doesn't know about, but if you don't provide a
80 named pattern it needs, it will abort.
81
82 If a @code{define_insn} is used, the template given is inserted into the
83 insn list.  If a @code{define_expand} is used, one of three things
84 happens, based on the condition logic.  The condition logic may manually
85 create new insns for the insn list, say via @code{emit_insn()}, and
86 invoke @code{DONE}.  For certain named patterns, it may invoke @code{FAIL} to tell the
87 compiler to use an alternate way of performing that task.  If it invokes
88 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
89 is inserted, as if the @code{define_expand} were a @code{define_insn}.
90
91 Once the insn list is generated, various optimization passes convert,
92 replace, and rearrange the insns in the insn list.  This is where the
93 @code{define_split} and @code{define_peephole} patterns get used, for
94 example.
95
96 Finally, the insn list's RTL is matched up with the RTL templates in the
97 @code{define_insn} patterns, and those patterns are used to emit the
98 final assembly code.  For this purpose, each named @code{define_insn}
99 acts like it's unnamed, since the names are ignored.
100
101 @node Patterns
102 @section Everything about Instruction Patterns
103 @cindex patterns
104 @cindex instruction patterns
105
106 @findex define_insn
107 Each instruction pattern contains an incomplete RTL expression, with pieces
108 to be filled in later, operand constraints that restrict how the pieces can
109 be filled in, and an output pattern or C code to generate the assembler
110 output, all wrapped up in a @code{define_insn} expression.
111
112 A @code{define_insn} is an RTL expression containing four or five operands:
113
114 @enumerate
115 @item
116 An optional name.  The presence of a name indicate that this instruction
117 pattern can perform a certain standard job for the RTL-generation
118 pass of the compiler.  This pass knows certain names and will use
119 the instruction patterns with those names, if the names are defined
120 in the machine description.
121
122 The absence of a name is indicated by writing an empty string
123 where the name should go.  Nameless instruction patterns are never
124 used for generating RTL code, but they may permit several simpler insns
125 to be combined later on.
126
127 Names that are not thus known and used in RTL-generation have no
128 effect; they are equivalent to no name at all.
129
130 For the purpose of debugging the compiler, you may also specify a
131 name beginning with the @samp{*} character.  Such a name is used only
132 for identifying the instruction in RTL dumps; it is entirely equivalent
133 to having a nameless pattern for all other purposes.
134
135 @item
136 The @dfn{RTL template} (@pxref{RTL Template}) is a vector of incomplete
137 RTL expressions which show what the instruction should look like.  It is
138 incomplete because it may contain @code{match_operand},
139 @code{match_operator}, and @code{match_dup} expressions that stand for
140 operands of the instruction.
141
142 If the vector has only one element, that element is the template for the
143 instruction pattern.  If the vector has multiple elements, then the
144 instruction pattern is a @code{parallel} expression containing the
145 elements described.
146
147 @item
148 @cindex pattern conditions
149 @cindex conditions, in patterns
150 A condition.  This is a string which contains a C expression that is
151 the final test to decide whether an insn body matches this pattern.
152
153 @cindex named patterns and conditions
154 For a named pattern, the condition (if present) may not depend on
155 the data in the insn being matched, but only the target-machine-type
156 flags.  The compiler needs to test these conditions during
157 initialization in order to learn exactly which named instructions are
158 available in a particular run.
159
160 @findex operands
161 For nameless patterns, the condition is applied only when matching an
162 individual insn, and only after the insn has matched the pattern's
163 recognition template.  The insn's operands may be found in the vector
164 @code{operands}.  For an insn where the condition has once matched, it
165 can't be used to control register allocation, for example by excluding
166 certain hard registers or hard register combinations.
167
168 @item
169 The @dfn{output template}: a string that says how to output matching
170 insns as assembler code.  @samp{%} in this string specifies where
171 to substitute the value of an operand.  @xref{Output Template}.
172
173 When simple substitution isn't general enough, you can specify a piece
174 of C code to compute the output.  @xref{Output Statement}.
175
176 @item
177 Optionally, a vector containing the values of attributes for insns matching
178 this pattern.  @xref{Insn Attributes}.
179 @end enumerate
180
181 @node Example
182 @section Example of @code{define_insn}
183 @cindex @code{define_insn} example
184
185 Here is an actual example of an instruction pattern, for the 68000/68020.
186
187 @smallexample
188 (define_insn "tstsi"
189   [(set (cc0)
190         (match_operand:SI 0 "general_operand" "rm"))]
191   ""
192   "*
193 @{
194   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
195     return \"tstl %0\";
196   return \"cmpl #0,%0\";
197 @}")
198 @end smallexample
199
200 @noindent
201 This can also be written using braced strings:
202
203 @smallexample
204 (define_insn "tstsi"
205   [(set (cc0)
206         (match_operand:SI 0 "general_operand" "rm"))]
207   ""
208 @{
209   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
210     return "tstl %0";
211   return "cmpl #0,%0";
212 @})
213 @end smallexample
214
215 This is an instruction that sets the condition codes based on the value of
216 a general operand.  It has no condition, so any insn whose RTL description
217 has the form shown may be handled according to this pattern.  The name
218 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL generation
219 pass that, when it is necessary to test such a value, an insn to do so
220 can be constructed using this pattern.
221
222 The output control string is a piece of C code which chooses which
223 output template to return based on the kind of operand and the specific
224 type of CPU for which code is being generated.
225
226 @samp{"rm"} is an operand constraint.  Its meaning is explained below.
227
228 @node RTL Template
229 @section RTL Template
230 @cindex RTL insn template
231 @cindex generating insns
232 @cindex insns, generating
233 @cindex recognizing insns
234 @cindex insns, recognizing
235
236 The RTL template is used to define which insns match the particular pattern
237 and how to find their operands.  For named patterns, the RTL template also
238 says how to construct an insn from specified operands.
239
240 Construction involves substituting specified operands into a copy of the
241 template.  Matching involves determining the values that serve as the
242 operands in the insn being matched.  Both of these activities are
243 controlled by special expression types that direct matching and
244 substitution of the operands.
245
246 @table @code
247 @findex match_operand
248 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
249 This expression is a placeholder for operand number @var{n} of
250 the insn.  When constructing an insn, operand number @var{n}
251 will be substituted at this point.  When matching an insn, whatever
252 appears at this position in the insn will be taken as operand
253 number @var{n}; but it must satisfy @var{predicate} or this instruction
254 pattern will not match at all.
255
256 Operand numbers must be chosen consecutively counting from zero in
257 each instruction pattern.  There may be only one @code{match_operand}
258 expression in the pattern for each operand number.  Usually operands
259 are numbered in the order of appearance in @code{match_operand}
260 expressions.  In the case of a @code{define_expand}, any operand numbers
261 used only in @code{match_dup} expressions have higher values than all
262 other operand numbers.
263
264 @var{predicate} is a string that is the name of a function that
265 accepts two arguments, an expression and a machine mode.
266 @xref{Predicates}.  During matching, the function will be called with
267 the putative operand as the expression and @var{m} as the mode
268 argument (if @var{m} is not specified, @code{VOIDmode} will be used,
269 which normally causes @var{predicate} to accept any mode).  If it
270 returns zero, this instruction pattern fails to match.
271 @var{predicate} may be an empty string; then it means no test is to be
272 done on the operand, so anything which occurs in this position is
273 valid.
274
275 Most of the time, @var{predicate} will reject modes other than @var{m}---but
276 not always.  For example, the predicate @code{address_operand} uses
277 @var{m} as the mode of memory ref that the address should be valid for.
278 Many predicates accept @code{const_int} nodes even though their mode is
279 @code{VOIDmode}.
280
281 @var{constraint} controls reloading and the choice of the best register
282 class to use for a value, as explained later (@pxref{Constraints}).
283 If the constraint would be an empty string, it can be omitted.
284
285 People are often unclear on the difference between the constraint and the
286 predicate.  The predicate helps decide whether a given insn matches the
287 pattern.  The constraint plays no role in this decision; instead, it
288 controls various decisions in the case of an insn which does match.
289
290 @findex match_scratch
291 @item (match_scratch:@var{m} @var{n} @var{constraint})
292 This expression is also a placeholder for operand number @var{n}
293 and indicates that operand must be a @code{scratch} or @code{reg}
294 expression.
295
296 When matching patterns, this is equivalent to
297
298 @smallexample
299 (match_operand:@var{m} @var{n} "scratch_operand" @var{pred})
300 @end smallexample
301
302 but, when generating RTL, it produces a (@code{scratch}:@var{m})
303 expression.
304
305 If the last few expressions in a @code{parallel} are @code{clobber}
306 expressions whose operands are either a hard register or
307 @code{match_scratch}, the combiner can add or delete them when
308 necessary.  @xref{Side Effects}.
309
310 @findex match_dup
311 @item (match_dup @var{n})
312 This expression is also a placeholder for operand number @var{n}.
313 It is used when the operand needs to appear more than once in the
314 insn.
315
316 In construction, @code{match_dup} acts just like @code{match_operand}:
317 the operand is substituted into the insn being constructed.  But in
318 matching, @code{match_dup} behaves differently.  It assumes that operand
319 number @var{n} has already been determined by a @code{match_operand}
320 appearing earlier in the recognition template, and it matches only an
321 identical-looking expression.
322
323 Note that @code{match_dup} should not be used to tell the compiler that
324 a particular register is being used for two operands (example:
325 @code{add} that adds one register to another; the second register is
326 both an input operand and the output operand).  Use a matching
327 constraint (@pxref{Simple Constraints}) for those.  @code{match_dup} is for the cases where one
328 operand is used in two places in the template, such as an instruction
329 that computes both a quotient and a remainder, where the opcode takes
330 two input operands but the RTL template has to refer to each of those
331 twice; once for the quotient pattern and once for the remainder pattern.
332
333 @findex match_operator
334 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
335 This pattern is a kind of placeholder for a variable RTL expression
336 code.
337
338 When constructing an insn, it stands for an RTL expression whose
339 expression code is taken from that of operand @var{n}, and whose
340 operands are constructed from the patterns @var{operands}.
341
342 When matching an expression, it matches an expression if the function
343 @var{predicate} returns nonzero on that expression @emph{and} the
344 patterns @var{operands} match the operands of the expression.
345
346 Suppose that the function @code{commutative_operator} is defined as
347 follows, to match any expression whose operator is one of the
348 commutative arithmetic operators of RTL and whose mode is @var{mode}:
349
350 @smallexample
351 int
352 commutative_integer_operator (x, mode)
353      rtx x;
354      enum machine_mode mode;
355 @{
356   enum rtx_code code = GET_CODE (x);
357   if (GET_MODE (x) != mode)
358     return 0;
359   return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
360           || code == EQ || code == NE);
361 @}
362 @end smallexample
363
364 Then the following pattern will match any RTL expression consisting
365 of a commutative operator applied to two general operands:
366
367 @smallexample
368 (match_operator:SI 3 "commutative_operator"
369   [(match_operand:SI 1 "general_operand" "g")
370    (match_operand:SI 2 "general_operand" "g")])
371 @end smallexample
372
373 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
374 because the expressions to be matched all contain two operands.
375
376 When this pattern does match, the two operands of the commutative
377 operator are recorded as operands 1 and 2 of the insn.  (This is done
378 by the two instances of @code{match_operand}.)  Operand 3 of the insn
379 will be the entire commutative expression: use @code{GET_CODE
380 (operands[3])} to see which commutative operator was used.
381
382 The machine mode @var{m} of @code{match_operator} works like that of
383 @code{match_operand}: it is passed as the second argument to the
384 predicate function, and that function is solely responsible for
385 deciding whether the expression to be matched ``has'' that mode.
386
387 When constructing an insn, argument 3 of the gen-function will specify
388 the operation (i.e.@: the expression code) for the expression to be
389 made.  It should be an RTL expression, whose expression code is copied
390 into a new expression whose operands are arguments 1 and 2 of the
391 gen-function.  The subexpressions of argument 3 are not used;
392 only its expression code matters.
393
394 When @code{match_operator} is used in a pattern for matching an insn,
395 it usually best if the operand number of the @code{match_operator}
396 is higher than that of the actual operands of the insn.  This improves
397 register allocation because the register allocator often looks at
398 operands 1 and 2 of insns to see if it can do register tying.
399
400 There is no way to specify constraints in @code{match_operator}.  The
401 operand of the insn which corresponds to the @code{match_operator}
402 never has any constraints because it is never reloaded as a whole.
403 However, if parts of its @var{operands} are matched by
404 @code{match_operand} patterns, those parts may have constraints of
405 their own.
406
407 @findex match_op_dup
408 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
409 Like @code{match_dup}, except that it applies to operators instead of
410 operands.  When constructing an insn, operand number @var{n} will be
411 substituted at this point.  But in matching, @code{match_op_dup} behaves
412 differently.  It assumes that operand number @var{n} has already been
413 determined by a @code{match_operator} appearing earlier in the
414 recognition template, and it matches only an identical-looking
415 expression.
416
417 @findex match_parallel
418 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
419 This pattern is a placeholder for an insn that consists of a
420 @code{parallel} expression with a variable number of elements.  This
421 expression should only appear at the top level of an insn pattern.
422
423 When constructing an insn, operand number @var{n} will be substituted at
424 this point.  When matching an insn, it matches if the body of the insn
425 is a @code{parallel} expression with at least as many elements as the
426 vector of @var{subpat} expressions in the @code{match_parallel}, if each
427 @var{subpat} matches the corresponding element of the @code{parallel},
428 @emph{and} the function @var{predicate} returns nonzero on the
429 @code{parallel} that is the body of the insn.  It is the responsibility
430 of the predicate to validate elements of the @code{parallel} beyond
431 those listed in the @code{match_parallel}.
432
433 A typical use of @code{match_parallel} is to match load and store
434 multiple expressions, which can contain a variable number of elements
435 in a @code{parallel}.  For example,
436
437 @smallexample
438 (define_insn ""
439   [(match_parallel 0 "load_multiple_operation"
440      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
441            (match_operand:SI 2 "memory_operand" "m"))
442       (use (reg:SI 179))
443       (clobber (reg:SI 179))])]
444   ""
445   "loadm 0,0,%1,%2")
446 @end smallexample
447
448 This example comes from @file{a29k.md}.  The function
449 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
450 that subsequent elements in the @code{parallel} are the same as the
451 @code{set} in the pattern, except that they are referencing subsequent
452 registers and memory locations.
453
454 An insn that matches this pattern might look like:
455
456 @smallexample
457 (parallel
458  [(set (reg:SI 20) (mem:SI (reg:SI 100)))
459   (use (reg:SI 179))
460   (clobber (reg:SI 179))
461   (set (reg:SI 21)
462        (mem:SI (plus:SI (reg:SI 100)
463                         (const_int 4))))
464   (set (reg:SI 22)
465        (mem:SI (plus:SI (reg:SI 100)
466                         (const_int 8))))])
467 @end smallexample
468
469 @findex match_par_dup
470 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
471 Like @code{match_op_dup}, but for @code{match_parallel} instead of
472 @code{match_operator}.
473
474 @end table
475
476 @node Output Template
477 @section Output Templates and Operand Substitution
478 @cindex output templates
479 @cindex operand substitution
480
481 @cindex @samp{%} in template
482 @cindex percent sign
483 The @dfn{output template} is a string which specifies how to output the
484 assembler code for an instruction pattern.  Most of the template is a
485 fixed string which is output literally.  The character @samp{%} is used
486 to specify where to substitute an operand; it can also be used to
487 identify places where different variants of the assembler require
488 different syntax.
489
490 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
491 operand @var{n} at that point in the string.
492
493 @samp{%} followed by a letter and a digit says to output an operand in an
494 alternate fashion.  Four letters have standard, built-in meanings described
495 below.  The machine description macro @code{PRINT_OPERAND} can define
496 additional letters with nonstandard meanings.
497
498 @samp{%c@var{digit}} can be used to substitute an operand that is a
499 constant value without the syntax that normally indicates an immediate
500 operand.
501
502 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
503 the constant is negated before printing.
504
505 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
506 memory reference, with the actual operand treated as the address.  This may
507 be useful when outputting a ``load address'' instruction, because often the
508 assembler syntax for such an instruction requires you to write the operand
509 as if it were a memory reference.
510
511 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
512 instruction.
513
514 @samp{%=} outputs a number which is unique to each instruction in the
515 entire compilation.  This is useful for making local labels to be
516 referred to more than once in a single template that generates multiple
517 assembler instructions.
518
519 @samp{%} followed by a punctuation character specifies a substitution that
520 does not use an operand.  Only one case is standard: @samp{%%} outputs a
521 @samp{%} into the assembler code.  Other nonstandard cases can be
522 defined in the @code{PRINT_OPERAND} macro.  You must also define
523 which punctuation characters are valid with the
524 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
525
526 @cindex \
527 @cindex backslash
528 The template may generate multiple assembler instructions.  Write the text
529 for the instructions, with @samp{\;} between them.
530
531 @cindex matching operands
532 When the RTL contains two operands which are required by constraint to match
533 each other, the output template must refer only to the lower-numbered operand.
534 Matching operands are not always identical, and the rest of the compiler
535 arranges to put the proper RTL expression for printing into the lower-numbered
536 operand.
537
538 One use of nonstandard letters or punctuation following @samp{%} is to
539 distinguish between different assembler languages for the same machine; for
540 example, Motorola syntax versus MIT syntax for the 68000.  Motorola syntax
541 requires periods in most opcode names, while MIT syntax does not.  For
542 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
543 syntax.  The same file of patterns is used for both kinds of output syntax,
544 but the character sequence @samp{%.} is used in each place where Motorola
545 syntax wants a period.  The @code{PRINT_OPERAND} macro for Motorola syntax
546 defines the sequence to output a period; the macro for MIT syntax defines
547 it to do nothing.
548
549 @cindex @code{#} in template
550 As a special case, a template consisting of the single character @code{#}
551 instructs the compiler to first split the insn, and then output the
552 resulting instructions separately.  This helps eliminate redundancy in the
553 output templates.   If you have a @code{define_insn} that needs to emit
554 multiple assembler instructions, and there is an matching @code{define_split}
555 already defined, then you can simply use @code{#} as the output template
556 instead of writing an output template that emits the multiple assembler
557 instructions.
558
559 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
560 of the form @samp{@{option0|option1|option2@}} in the templates.  These
561 describe multiple variants of assembler language syntax.
562 @xref{Instruction Output}.
563
564 @node Output Statement
565 @section C Statements for Assembler Output
566 @cindex output statements
567 @cindex C statements for assembler output
568 @cindex generating assembler output
569
570 Often a single fixed template string cannot produce correct and efficient
571 assembler code for all the cases that are recognized by a single
572 instruction pattern.  For example, the opcodes may depend on the kinds of
573 operands; or some unfortunate combinations of operands may require extra
574 machine instructions.
575
576 If the output control string starts with a @samp{@@}, then it is actually
577 a series of templates, each on a separate line.  (Blank lines and
578 leading spaces and tabs are ignored.)  The templates correspond to the
579 pattern's constraint alternatives (@pxref{Multi-Alternative}).  For example,
580 if a target machine has a two-address add instruction @samp{addr} to add
581 into a register and another @samp{addm} to add a register to memory, you
582 might write this pattern:
583
584 @smallexample
585 (define_insn "addsi3"
586   [(set (match_operand:SI 0 "general_operand" "=r,m")
587         (plus:SI (match_operand:SI 1 "general_operand" "0,0")
588                  (match_operand:SI 2 "general_operand" "g,r")))]
589   ""
590   "@@
591    addr %2,%0
592    addm %2,%0")
593 @end smallexample
594
595 @cindex @code{*} in template
596 @cindex asterisk in template
597 If the output control string starts with a @samp{*}, then it is not an
598 output template but rather a piece of C program that should compute a
599 template.  It should execute a @code{return} statement to return the
600 template-string you want.  Most such templates use C string literals, which
601 require doublequote characters to delimit them.  To include these
602 doublequote characters in the string, prefix each one with @samp{\}.
603
604 If the output control string is written as a brace block instead of a
605 double-quoted string, it is automatically assumed to be C code.  In that
606 case, it is not necessary to put in a leading asterisk, or to escape the
607 doublequotes surrounding C string literals.
608
609 The operands may be found in the array @code{operands}, whose C data type
610 is @code{rtx []}.
611
612 It is very common to select different ways of generating assembler code
613 based on whether an immediate operand is within a certain range.  Be
614 careful when doing this, because the result of @code{INTVAL} is an
615 integer on the host machine.  If the host machine has more bits in an
616 @code{int} than the target machine has in the mode in which the constant
617 will be used, then some of the bits you get from @code{INTVAL} will be
618 superfluous.  For proper results, you must carefully disregard the
619 values of those bits.
620
621 @findex output_asm_insn
622 It is possible to output an assembler instruction and then go on to output
623 or compute more of them, using the subroutine @code{output_asm_insn}.  This
624 receives two arguments: a template-string and a vector of operands.  The
625 vector may be @code{operands}, or it may be another array of @code{rtx}
626 that you declare locally and initialize yourself.
627
628 @findex which_alternative
629 When an insn pattern has multiple alternatives in its constraints, often
630 the appearance of the assembler code is determined mostly by which alternative
631 was matched.  When this is so, the C code can test the variable
632 @code{which_alternative}, which is the ordinal number of the alternative
633 that was actually satisfied (0 for the first, 1 for the second alternative,
634 etc.).
635
636 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
637 for registers and @samp{clrmem} for memory locations.  Here is how
638 a pattern could use @code{which_alternative} to choose between them:
639
640 @smallexample
641 (define_insn ""
642   [(set (match_operand:SI 0 "general_operand" "=r,m")
643         (const_int 0))]
644   ""
645   @{
646   return (which_alternative == 0
647           ? "clrreg %0" : "clrmem %0");
648   @})
649 @end smallexample
650
651 The example above, where the assembler code to generate was
652 @emph{solely} determined by the alternative, could also have been specified
653 as follows, having the output control string start with a @samp{@@}:
654
655 @smallexample
656 @group
657 (define_insn ""
658   [(set (match_operand:SI 0 "general_operand" "=r,m")
659         (const_int 0))]
660   ""
661   "@@
662    clrreg %0
663    clrmem %0")
664 @end group
665 @end smallexample
666
667 @node Predicates
668 @section Predicates
669 @cindex predicates
670 @cindex operand predicates
671 @cindex operator predicates
672
673 A predicate determines whether a @code{match_operand} or
674 @code{match_operator} expression matches, and therefore whether the
675 surrounding instruction pattern will be used for that combination of
676 operands.  GCC has a number of machine-independent predicates, and you
677 can define machine-specific predicates as needed.  By convention,
678 predicates used with @code{match_operand} have names that end in
679 @samp{_operand}, and those used with @code{match_operator} have names
680 that end in @samp{_operator}.
681
682 All predicates are Boolean functions (in the mathematical sense) of
683 two arguments: the RTL expression that is being considered at that
684 position in the instruction pattern, and the machine mode that the
685 @code{match_operand} or @code{match_operator} specifies.  In this
686 section, the first argument is called @var{op} and the second argument
687 @var{mode}.  Predicates can be called from C as ordinary two-argument
688 functions; this can be useful in output templates or other
689 machine-specific code.
690
691 Operand predicates can allow operands that are not actually acceptable
692 to the hardware, as long as the constraints give reload the ability to
693 fix them up (@pxref{Constraints}).  However, GCC will usually generate
694 better code if the predicates specify the requirements of the machine
695 instructions as closely as possible.  Reload cannot fix up operands
696 that must be constants (``immediate operands''); you must use a
697 predicate that allows only constants, or else enforce the requirement
698 in the extra condition.
699
700 @cindex predicates and machine modes
701 @cindex normal predicates
702 @cindex special predicates
703 Most predicates handle their @var{mode} argument in a uniform manner.
704 If @var{mode} is @code{VOIDmode} (unspecified), then @var{op} can have
705 any mode.  If @var{mode} is anything else, then @var{op} must have the
706 same mode, unless @var{op} is a @code{CONST_INT} or integer
707 @code{CONST_DOUBLE}.  These RTL expressions always have
708 @code{VOIDmode}, so it would be counterproductive to check that their
709 mode matches.  Instead, predicates that accept @code{CONST_INT} and/or
710 integer @code{CONST_DOUBLE} check that the value stored in the
711 constant will fit in the requested mode.
712
713 Predicates with this behavior are called @dfn{normal}.
714 @command{genrecog} can optimize the instruction recognizer based on
715 knowledge of how normal predicates treat modes.  It can also diagnose
716 certain kinds of common errors in the use of normal predicates; for
717 instance, it is almost always an error to use a normal predicate
718 without specifying a mode.
719
720 Predicates that do something different with their @var{mode} argument
721 are called @dfn{special}.  The generic predicates
722 @code{address_operand} and @code{pmode_register_operand} are special
723 predicates.  @command{genrecog} does not do any optimizations or
724 diagnosis when special predicates are used.
725
726 @menu
727 * Machine-Independent Predicates::  Predicates available to all back ends.
728 * Defining Predicates::             How to write machine-specific predicate
729                                     functions.
730 @end menu
731
732 @node Machine-Independent Predicates
733 @subsection Machine-Independent Predicates
734 @cindex machine-independent predicates
735 @cindex generic predicates
736
737 These are the generic predicates available to all back ends.  They are
738 defined in @file{recog.c}.  The first category of predicates allow
739 only constant, or @dfn{immediate}, operands.
740
741 @defun immediate_operand
742 This predicate allows any sort of constant that fits in @var{mode}.
743 It is an appropriate choice for instructions that take operands that
744 must be constant.
745 @end defun
746
747 @defun const_int_operand
748 This predicate allows any @code{CONST_INT} expression that fits in
749 @var{mode}.  It is an appropriate choice for an immediate operand that
750 does not allow a symbol or label.
751 @end defun
752
753 @defun const_double_operand
754 This predicate accepts any @code{CONST_DOUBLE} expression that has
755 exactly @var{mode}.  If @var{mode} is @code{VOIDmode}, it will also
756 accept @code{CONST_INT}.  It is intended for immediate floating point
757 constants.
758 @end defun
759
760 @noindent
761 The second category of predicates allow only some kind of machine
762 register.
763
764 @defun register_operand
765 This predicate allows any @code{REG} or @code{SUBREG} expression that
766 is valid for @var{mode}.  It is often suitable for arithmetic
767 instruction operands on a RISC machine.
768 @end defun
769
770 @defun pmode_register_operand
771 This is a slight variant on @code{register_operand} which works around
772 a limitation in the machine-description reader.
773
774 @smallexample
775 (match_operand @var{n} "pmode_register_operand" @var{constraint})
776 @end smallexample
777
778 @noindent
779 means exactly what
780
781 @smallexample
782 (match_operand:P @var{n} "register_operand" @var{constraint})
783 @end smallexample
784
785 @noindent
786 would mean, if the machine-description reader accepted @samp{:P}
787 mode suffixes.  Unfortunately, it cannot, because @code{Pmode} is an
788 alias for some other mode, and might vary with machine-specific
789 options.  @xref{Misc}.
790 @end defun
791
792 @defun scratch_operand
793 This predicate allows hard registers and @code{SCRATCH} expressions,
794 but not pseudo-registers.  It is used internally by @code{match_scratch};
795 it should not be used directly.
796 @end defun
797
798 @noindent
799 The third category of predicates allow only some kind of memory reference.
800
801 @defun memory_operand
802 This predicate allows any valid reference to a quantity of mode
803 @var{mode} in memory, as determined by the weak form of
804 @code{GO_IF_LEGITIMATE_ADDRESS} (@pxref{Addressing Modes}).
805 @end defun
806
807 @defun address_operand
808 This predicate is a little unusual; it allows any operand that is a
809 valid expression for the @emph{address} of a quantity of mode
810 @var{mode}, again determined by the weak form of
811 @code{GO_IF_LEGITIMATE_ADDRESS}.  To first order, if
812 @samp{@w{(mem:@var{mode} (@var{exp}))}} is acceptable to
813 @code{memory_operand}, then @var{exp} is acceptable to
814 @code{address_operand}.  Note that @var{exp} does not necessarily have
815 the mode @var{mode}.
816 @end defun
817
818 @defun indirect_operand
819 This is a stricter form of @code{memory_operand} which allows only
820 memory references with a @code{general_operand} as the address
821 expression.  New uses of this predicate are discouraged, because
822 @code{general_operand} is very permissive, so it's hard to tell what
823 an @code{indirect_operand} does or does not allow.  If a target has
824 different requirements for memory operands for different instructions,
825 it is better to define target-specific predicates which enforce the
826 hardware's requirements explicitly.
827 @end defun
828
829 @defun push_operand
830 This predicate allows a memory reference suitable for pushing a value
831 onto the stack.  This will be a @code{MEM} which refers to
832 @code{stack_pointer_rtx}, with a side-effect in its address expression
833 (@pxref{Incdec}); which one is determined by the
834 @code{STACK_PUSH_CODE} macro (@pxref{Frame Layout}).
835 @end defun
836
837 @defun pop_operand
838 This predicate allows a memory reference suitable for popping a value
839 off the stack.  Again, this will be a @code{MEM} referring to
840 @code{stack_pointer_rtx}, with a side-effect in its address
841 expression.  However, this time @code{STACK_POP_CODE} is expected.
842 @end defun
843
844 @noindent
845 The fourth category of predicates allow some combination of the above
846 operands.
847
848 @defun nonmemory_operand
849 This predicate allows any immediate or register operand valid for @var{mode}.
850 @end defun
851
852 @defun nonimmediate_operand
853 This predicate allows any register or memory operand valid for @var{mode}.
854 @end defun
855
856 @defun general_operand
857 This predicate allows any immediate, register, or memory operand
858 valid for @var{mode}.
859 @end defun
860
861 @noindent
862 Finally, there is one generic operator predicate.
863
864 @defun comparison_operator
865 This predicate matches any expression which performs an arithmetic
866 comparison in @var{mode}; that is, @code{COMPARISON_P} is true for the
867 expression code.
868 @end defun
869
870 @node Defining Predicates
871 @subsection Defining Machine-Specific Predicates
872 @cindex defining predicates
873 @findex define_predicate
874 @findex define_special_predicate
875
876 Many machines have requirements for their operands that cannot be
877 expressed precisely using the generic predicates.  You can define
878 additional predicates using @code{define_predicate} and
879 @code{define_special_predicate} expressions.  These expressions have
880 three operands:
881
882 @itemize @bullet
883 @item
884 The name of the predicate, as it will be referred to in
885 @code{match_operand} or @code{match_operator} expressions.
886
887 @item
888 An RTL expression which evaluates to true if the predicate allows the
889 operand @var{op}, false if it does not.  This expression can only use
890 the following RTL codes:
891
892 @table @code
893 @item MATCH_OPERAND
894 When written inside a predicate expression, a @code{MATCH_OPERAND}
895 expression evaluates to true if the predicate it names would allow
896 @var{op}.  The operand number and constraint are ignored.  Due to
897 limitations in @command{genrecog}, you can only refer to generic
898 predicates and predicates that have already been defined.
899
900 @item MATCH_CODE
901 This expression has one operand, a string constant containing a
902 comma-separated list of RTX code names (in lower case).  It evaluates
903 to true if @var{op} has any of the listed codes.
904
905 @item MATCH_TEST
906 This expression has one operand, a string constant containing a C
907 expression.  The predicate's arguments, @var{op} and @var{mode}, are
908 available with those names in the C expression.  The @code{MATCH_TEST}
909 evaluates to true if the C expression evaluates to a nonzero value.
910 @code{MATCH_TEST} expressions must not have side effects.
911
912 @item  AND
913 @itemx IOR
914 @itemx NOT
915 @itemx IF_THEN_ELSE
916 The basic @samp{MATCH_} expressions can be combined using these
917 logical operators, which have the semantics of the C operators
918 @samp{&&}, @samp{||}, @samp{!}, and @samp{@w{? :}} respectively.
919 @end table
920
921 @item
922 An optional block of C code, which should execute
923 @samp{@w{return true}} if the predicate is found to match and
924 @samp{@w{return false}} if it does not.  It must not have any side
925 effects.  The predicate arguments, @var{op} and @var{mode}, are
926 available with those names.
927
928 If a code block is present in a predicate definition, then the RTL
929 expression must evaluate to true @emph{and} the code block must
930 execute @samp{@w{return true}} for the predicate to allow the operand.
931 The RTL expression is evaluated first; do not re-check anything in the
932 code block that was checked in the RTL expression.
933 @end itemize
934
935 The program @command{genrecog} scans @code{define_predicate} and
936 @code{define_special_predicate} expressions to determine which RTX
937 codes are possibly allowed.  You should always make this explicit in
938 the RTL predicate expression, using @code{MATCH_OPERAND} and
939 @code{MATCH_CODE}.
940
941 Here is an example of a simple predicate definition, from the IA64
942 machine description:
943
944 @smallexample
945 @group
946 ;; @r{True if @var{op} is a @code{SYMBOL_REF} which refers to the sdata section.}
947 (define_predicate "small_addr_symbolic_operand"
948   (and (match_code "symbol_ref")
949        (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
950 @end group
951 @end smallexample
952
953 @noindent
954 And here is another, showing the use of the C block.
955
956 @smallexample
957 @group
958 ;; @r{True if @var{op} is a register operand that is (or could be) a GR reg.}
959 (define_predicate "gr_register_operand"
960   (match_operand 0 "register_operand")
961 @{
962   unsigned int regno;
963   if (GET_CODE (op) == SUBREG)
964     op = SUBREG_REG (op);
965
966   regno = REGNO (op);
967   return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
968 @})
969 @end group
970 @end smallexample
971
972 Predicates written with @code{define_predicate} automatically include
973 a test that @var{mode} is @code{VOIDmode}, or @var{op} has the same
974 mode as @var{mode}, or @var{op} is a @code{CONST_INT} or
975 @code{CONST_DOUBLE}.  They do @emph{not} check specifically for
976 integer @code{CONST_DOUBLE}, nor do they test that the value of either
977 kind of constant fits in the requested mode.  This is because
978 target-specific predicates that take constants usually have to do more
979 stringent value checks anyway.  If you need the exact same treatment
980 of @code{CONST_INT} or @code{CONST_DOUBLE} that the generic predicates
981 provide, use a @code{MATCH_OPERAND} subexpression to call
982 @code{const_int_operand}, @code{const_double_operand}, or
983 @code{immediate_operand}.
984
985 Predicates written with @code{define_special_predicate} do not get any
986 automatic mode checks, and are treated as having special mode handling
987 by @command{genrecog}.
988
989 The program @command{genpreds} is responsible for generating code to
990 test predicates.  It also writes a header file containing function
991 declarations for all machine-specific predicates.  It is not necessary
992 to declare these predicates in @file{@var{cpu}-protos.h}.
993 @end ifset
994
995 @c Most of this node appears by itself (in a different place) even
996 @c when the INTERNALS flag is clear.  Passages that require the internals
997 @c manual's context are conditionalized to appear only in the internals manual.
998 @ifset INTERNALS
999 @node Constraints
1000 @section Operand Constraints
1001 @cindex operand constraints
1002 @cindex constraints
1003
1004 Each @code{match_operand} in an instruction pattern can specify
1005 constraints for the operands allowed.  The constraints allow you to
1006 fine-tune matching within the set of operands allowed by the
1007 predicate.
1008
1009 @end ifset
1010 @ifclear INTERNALS
1011 @node Constraints
1012 @section Constraints for @code{asm} Operands
1013 @cindex operand constraints, @code{asm}
1014 @cindex constraints, @code{asm}
1015 @cindex @code{asm} constraints
1016
1017 Here are specific details on what constraint letters you can use with
1018 @code{asm} operands.
1019 @end ifclear
1020 Constraints can say whether
1021 an operand may be in a register, and which kinds of register; whether the
1022 operand can be a memory reference, and which kinds of address; whether the
1023 operand may be an immediate constant, and which possible values it may
1024 have.  Constraints can also require two operands to match.
1025
1026 @ifset INTERNALS
1027 @menu
1028 * Simple Constraints::  Basic use of constraints.
1029 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1030 * Class Preferences::   Constraints guide which hard register to put things in.
1031 * Modifiers::           More precise control over effects of constraints.
1032 * Machine Constraints:: Existing constraints for some particular machines.
1033 @end menu
1034 @end ifset
1035
1036 @ifclear INTERNALS
1037 @menu
1038 * Simple Constraints::  Basic use of constraints.
1039 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1040 * Modifiers::           More precise control over effects of constraints.
1041 * Machine Constraints:: Special constraints for some particular machines.
1042 @end menu
1043 @end ifclear
1044
1045 @node Simple Constraints
1046 @subsection Simple Constraints
1047 @cindex simple constraints
1048
1049 The simplest kind of constraint is a string full of letters, each of
1050 which describes one kind of operand that is permitted.  Here are
1051 the letters that are allowed:
1052
1053 @table @asis
1054 @item whitespace
1055 Whitespace characters are ignored and can be inserted at any position
1056 except the first.  This enables each alternative for different operands to
1057 be visually aligned in the machine description even if they have different
1058 number of constraints and modifiers.
1059
1060 @cindex @samp{m} in constraint
1061 @cindex memory references in constraints
1062 @item @samp{m}
1063 A memory operand is allowed, with any kind of address that the machine
1064 supports in general.
1065
1066 @cindex offsettable address
1067 @cindex @samp{o} in constraint
1068 @item @samp{o}
1069 A memory operand is allowed, but only if the address is
1070 @dfn{offsettable}.  This means that adding a small integer (actually,
1071 the width in bytes of the operand, as determined by its machine mode)
1072 may be added to the address and the result is also a valid memory
1073 address.
1074
1075 @cindex autoincrement/decrement addressing
1076 For example, an address which is constant is offsettable; so is an
1077 address that is the sum of a register and a constant (as long as a
1078 slightly larger constant is also within the range of address-offsets
1079 supported by the machine); but an autoincrement or autodecrement
1080 address is not offsettable.  More complicated indirect/indexed
1081 addresses may or may not be offsettable depending on the other
1082 addressing modes that the machine supports.
1083
1084 Note that in an output operand which can be matched by another
1085 operand, the constraint letter @samp{o} is valid only when accompanied
1086 by both @samp{<} (if the target machine has predecrement addressing)
1087 and @samp{>} (if the target machine has preincrement addressing).
1088
1089 @cindex @samp{V} in constraint
1090 @item @samp{V}
1091 A memory operand that is not offsettable.  In other words, anything that
1092 would fit the @samp{m} constraint but not the @samp{o} constraint.
1093
1094 @cindex @samp{<} in constraint
1095 @item @samp{<}
1096 A memory operand with autodecrement addressing (either predecrement or
1097 postdecrement) is allowed.
1098
1099 @cindex @samp{>} in constraint
1100 @item @samp{>}
1101 A memory operand with autoincrement addressing (either preincrement or
1102 postincrement) is allowed.
1103
1104 @cindex @samp{r} in constraint
1105 @cindex registers in constraints
1106 @item @samp{r}
1107 A register operand is allowed provided that it is in a general
1108 register.
1109
1110 @cindex constants in constraints
1111 @cindex @samp{i} in constraint
1112 @item @samp{i}
1113 An immediate integer operand (one with constant value) is allowed.
1114 This includes symbolic constants whose values will be known only at
1115 assembly time or later.
1116
1117 @cindex @samp{n} in constraint
1118 @item @samp{n}
1119 An immediate integer operand with a known numeric value is allowed.
1120 Many systems cannot support assembly-time constants for operands less
1121 than a word wide.  Constraints for these operands should use @samp{n}
1122 rather than @samp{i}.
1123
1124 @cindex @samp{I} in constraint
1125 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
1126 Other letters in the range @samp{I} through @samp{P} may be defined in
1127 a machine-dependent fashion to permit immediate integer operands with
1128 explicit integer values in specified ranges.  For example, on the
1129 68000, @samp{I} is defined to stand for the range of values 1 to 8.
1130 This is the range permitted as a shift count in the shift
1131 instructions.
1132
1133 @cindex @samp{E} in constraint
1134 @item @samp{E}
1135 An immediate floating operand (expression code @code{const_double}) is
1136 allowed, but only if the target floating point format is the same as
1137 that of the host machine (on which the compiler is running).
1138
1139 @cindex @samp{F} in constraint
1140 @item @samp{F}
1141 An immediate floating operand (expression code @code{const_double} or
1142 @code{const_vector}) is allowed.
1143
1144 @cindex @samp{G} in constraint
1145 @cindex @samp{H} in constraint
1146 @item @samp{G}, @samp{H}
1147 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
1148 permit immediate floating operands in particular ranges of values.
1149
1150 @cindex @samp{s} in constraint
1151 @item @samp{s}
1152 An immediate integer operand whose value is not an explicit integer is
1153 allowed.
1154
1155 This might appear strange; if an insn allows a constant operand with a
1156 value not known at compile time, it certainly must allow any known
1157 value.  So why use @samp{s} instead of @samp{i}?  Sometimes it allows
1158 better code to be generated.
1159
1160 For example, on the 68000 in a fullword instruction it is possible to
1161 use an immediate operand; but if the immediate value is between @minus{}128
1162 and 127, better code results from loading the value into a register and
1163 using the register.  This is because the load into the register can be
1164 done with a @samp{moveq} instruction.  We arrange for this to happen
1165 by defining the letter @samp{K} to mean ``any integer outside the
1166 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
1167 constraints.
1168
1169 @cindex @samp{g} in constraint
1170 @item @samp{g}
1171 Any register, memory or immediate integer operand is allowed, except for
1172 registers that are not general registers.
1173
1174 @cindex @samp{X} in constraint
1175 @item @samp{X}
1176 @ifset INTERNALS
1177 Any operand whatsoever is allowed, even if it does not satisfy
1178 @code{general_operand}.  This is normally used in the constraint of
1179 a @code{match_scratch} when certain alternatives will not actually
1180 require a scratch register.
1181 @end ifset
1182 @ifclear INTERNALS
1183 Any operand whatsoever is allowed.
1184 @end ifclear
1185
1186 @cindex @samp{0} in constraint
1187 @cindex digits in constraint
1188 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
1189 An operand that matches the specified operand number is allowed.  If a
1190 digit is used together with letters within the same alternative, the
1191 digit should come last.
1192
1193 This number is allowed to be more than a single digit.  If multiple
1194 digits are encountered consecutively, they are interpreted as a single
1195 decimal integer.  There is scant chance for ambiguity, since to-date
1196 it has never been desirable that @samp{10} be interpreted as matching
1197 either operand 1 @emph{or} operand 0.  Should this be desired, one
1198 can use multiple alternatives instead.
1199
1200 @cindex matching constraint
1201 @cindex constraint, matching
1202 This is called a @dfn{matching constraint} and what it really means is
1203 that the assembler has only a single operand that fills two roles
1204 @ifset INTERNALS
1205 considered separate in the RTL insn.  For example, an add insn has two
1206 input operands and one output operand in the RTL, but on most CISC
1207 @end ifset
1208 @ifclear INTERNALS
1209 which @code{asm} distinguishes.  For example, an add instruction uses
1210 two input operands and an output operand, but on most CISC
1211 @end ifclear
1212 machines an add instruction really has only two operands, one of them an
1213 input-output operand:
1214
1215 @smallexample
1216 addl #35,r12
1217 @end smallexample
1218
1219 Matching constraints are used in these circumstances.
1220 More precisely, the two operands that match must include one input-only
1221 operand and one output-only operand.  Moreover, the digit must be a
1222 smaller number than the number of the operand that uses it in the
1223 constraint.
1224
1225 @ifset INTERNALS
1226 For operands to match in a particular case usually means that they
1227 are identical-looking RTL expressions.  But in a few special cases
1228 specific kinds of dissimilarity are allowed.  For example, @code{*x}
1229 as an input operand will match @code{*x++} as an output operand.
1230 For proper results in such cases, the output template should always
1231 use the output-operand's number when printing the operand.
1232 @end ifset
1233
1234 @cindex load address instruction
1235 @cindex push address instruction
1236 @cindex address constraints
1237 @cindex @samp{p} in constraint
1238 @item @samp{p}
1239 An operand that is a valid memory address is allowed.  This is
1240 for ``load address'' and ``push address'' instructions.
1241
1242 @findex address_operand
1243 @samp{p} in the constraint must be accompanied by @code{address_operand}
1244 as the predicate in the @code{match_operand}.  This predicate interprets
1245 the mode specified in the @code{match_operand} as the mode of the memory
1246 reference for which the address would be valid.
1247
1248 @cindex other register constraints
1249 @cindex extensible constraints
1250 @item @var{other-letters}
1251 Other letters can be defined in machine-dependent fashion to stand for
1252 particular classes of registers or other arbitrary operand types.
1253 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
1254 for data, address and floating point registers.
1255
1256 @ifset INTERNALS
1257 The machine description macro @code{REG_CLASS_FROM_LETTER} has first
1258 cut at the otherwise unused letters.  If it evaluates to @code{NO_REGS},
1259 then @code{EXTRA_CONSTRAINT} is evaluated.
1260
1261 A typical use for @code{EXTRA_CONSTRAINT} would be to distinguish certain
1262 types of memory references that affect other insn operands.
1263 @end ifset
1264 @end table
1265
1266 @ifset INTERNALS
1267 In order to have valid assembler code, each operand must satisfy
1268 its constraint.  But a failure to do so does not prevent the pattern
1269 from applying to an insn.  Instead, it directs the compiler to modify
1270 the code so that the constraint will be satisfied.  Usually this is
1271 done by copying an operand into a register.
1272
1273 Contrast, therefore, the two instruction patterns that follow:
1274
1275 @smallexample
1276 (define_insn ""
1277   [(set (match_operand:SI 0 "general_operand" "=r")
1278         (plus:SI (match_dup 0)
1279                  (match_operand:SI 1 "general_operand" "r")))]
1280   ""
1281   "@dots{}")
1282 @end smallexample
1283
1284 @noindent
1285 which has two operands, one of which must appear in two places, and
1286
1287 @smallexample
1288 (define_insn ""
1289   [(set (match_operand:SI 0 "general_operand" "=r")
1290         (plus:SI (match_operand:SI 1 "general_operand" "0")
1291                  (match_operand:SI 2 "general_operand" "r")))]
1292   ""
1293   "@dots{}")
1294 @end smallexample
1295
1296 @noindent
1297 which has three operands, two of which are required by a constraint to be
1298 identical.  If we are considering an insn of the form
1299
1300 @smallexample
1301 (insn @var{n} @var{prev} @var{next}
1302   (set (reg:SI 3)
1303        (plus:SI (reg:SI 6) (reg:SI 109)))
1304   @dots{})
1305 @end smallexample
1306
1307 @noindent
1308 the first pattern would not apply at all, because this insn does not
1309 contain two identical subexpressions in the right place.  The pattern would
1310 say, ``That does not look like an add instruction; try other patterns''.
1311 The second pattern would say, ``Yes, that's an add instruction, but there
1312 is something wrong with it''.  It would direct the reload pass of the
1313 compiler to generate additional insns to make the constraint true.  The
1314 results might look like this:
1315
1316 @smallexample
1317 (insn @var{n2} @var{prev} @var{n}
1318   (set (reg:SI 3) (reg:SI 6))
1319   @dots{})
1320
1321 (insn @var{n} @var{n2} @var{next}
1322   (set (reg:SI 3)
1323        (plus:SI (reg:SI 3) (reg:SI 109)))
1324   @dots{})
1325 @end smallexample
1326
1327 It is up to you to make sure that each operand, in each pattern, has
1328 constraints that can handle any RTL expression that could be present for
1329 that operand.  (When multiple alternatives are in use, each pattern must,
1330 for each possible combination of operand expressions, have at least one
1331 alternative which can handle that combination of operands.)  The
1332 constraints don't need to @emph{allow} any possible operand---when this is
1333 the case, they do not constrain---but they must at least point the way to
1334 reloading any possible operand so that it will fit.
1335
1336 @itemize @bullet
1337 @item
1338 If the constraint accepts whatever operands the predicate permits,
1339 there is no problem: reloading is never necessary for this operand.
1340
1341 For example, an operand whose constraints permit everything except
1342 registers is safe provided its predicate rejects registers.
1343
1344 An operand whose predicate accepts only constant values is safe
1345 provided its constraints include the letter @samp{i}.  If any possible
1346 constant value is accepted, then nothing less than @samp{i} will do;
1347 if the predicate is more selective, then the constraints may also be
1348 more selective.
1349
1350 @item
1351 Any operand expression can be reloaded by copying it into a register.
1352 So if an operand's constraints allow some kind of register, it is
1353 certain to be safe.  It need not permit all classes of registers; the
1354 compiler knows how to copy a register into another register of the
1355 proper class in order to make an instruction valid.
1356
1357 @cindex nonoffsettable memory reference
1358 @cindex memory reference, nonoffsettable
1359 @item
1360 A nonoffsettable memory reference can be reloaded by copying the
1361 address into a register.  So if the constraint uses the letter
1362 @samp{o}, all memory references are taken care of.
1363
1364 @item
1365 A constant operand can be reloaded by allocating space in memory to
1366 hold it as preinitialized data.  Then the memory reference can be used
1367 in place of the constant.  So if the constraint uses the letters
1368 @samp{o} or @samp{m}, constant operands are not a problem.
1369
1370 @item
1371 If the constraint permits a constant and a pseudo register used in an insn
1372 was not allocated to a hard register and is equivalent to a constant,
1373 the register will be replaced with the constant.  If the predicate does
1374 not permit a constant and the insn is re-recognized for some reason, the
1375 compiler will crash.  Thus the predicate must always recognize any
1376 objects allowed by the constraint.
1377 @end itemize
1378
1379 If the operand's predicate can recognize registers, but the constraint does
1380 not permit them, it can make the compiler crash.  When this operand happens
1381 to be a register, the reload pass will be stymied, because it does not know
1382 how to copy a register temporarily into memory.
1383
1384 If the predicate accepts a unary operator, the constraint applies to the
1385 operand.  For example, the MIPS processor at ISA level 3 supports an
1386 instruction which adds two registers in @code{SImode} to produce a
1387 @code{DImode} result, but only if the registers are correctly sign
1388 extended.  This predicate for the input operands accepts a
1389 @code{sign_extend} of an @code{SImode} register.  Write the constraint
1390 to indicate the type of register that is required for the operand of the
1391 @code{sign_extend}.
1392 @end ifset
1393
1394 @node Multi-Alternative
1395 @subsection Multiple Alternative Constraints
1396 @cindex multiple alternative constraints
1397
1398 Sometimes a single instruction has multiple alternative sets of possible
1399 operands.  For example, on the 68000, a logical-or instruction can combine
1400 register or an immediate value into memory, or it can combine any kind of
1401 operand into a register; but it cannot combine one memory location into
1402 another.
1403
1404 These constraints are represented as multiple alternatives.  An alternative
1405 can be described by a series of letters for each operand.  The overall
1406 constraint for an operand is made from the letters for this operand
1407 from the first alternative, a comma, the letters for this operand from
1408 the second alternative, a comma, and so on until the last alternative.
1409 @ifset INTERNALS
1410 Here is how it is done for fullword logical-or on the 68000:
1411
1412 @smallexample
1413 (define_insn "iorsi3"
1414   [(set (match_operand:SI 0 "general_operand" "=m,d")
1415         (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1416                 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1417   @dots{})
1418 @end smallexample
1419
1420 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1421 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1422 2.  The second alternative has @samp{d} (data register) for operand 0,
1423 @samp{0} for operand 1, and @samp{dmKs} for operand 2.  The @samp{=} and
1424 @samp{%} in the constraints apply to all the alternatives; their
1425 meaning is explained in the next section (@pxref{Class Preferences}).
1426 @end ifset
1427
1428 @c FIXME Is this ? and ! stuff of use in asm()?  If not, hide unless INTERNAL
1429 If all the operands fit any one alternative, the instruction is valid.
1430 Otherwise, for each alternative, the compiler counts how many instructions
1431 must be added to copy the operands so that that alternative applies.
1432 The alternative requiring the least copying is chosen.  If two alternatives
1433 need the same amount of copying, the one that comes first is chosen.
1434 These choices can be altered with the @samp{?} and @samp{!} characters:
1435
1436 @table @code
1437 @cindex @samp{?} in constraint
1438 @cindex question mark
1439 @item ?
1440 Disparage slightly the alternative that the @samp{?} appears in,
1441 as a choice when no alternative applies exactly.  The compiler regards
1442 this alternative as one unit more costly for each @samp{?} that appears
1443 in it.
1444
1445 @cindex @samp{!} in constraint
1446 @cindex exclamation point
1447 @item !
1448 Disparage severely the alternative that the @samp{!} appears in.
1449 This alternative can still be used if it fits without reloading,
1450 but if reloading is needed, some other alternative will be used.
1451 @end table
1452
1453 @ifset INTERNALS
1454 When an insn pattern has multiple alternatives in its constraints, often
1455 the appearance of the assembler code is determined mostly by which
1456 alternative was matched.  When this is so, the C code for writing the
1457 assembler code can use the variable @code{which_alternative}, which is
1458 the ordinal number of the alternative that was actually satisfied (0 for
1459 the first, 1 for the second alternative, etc.).  @xref{Output Statement}.
1460 @end ifset
1461
1462 @ifset INTERNALS
1463 @node Class Preferences
1464 @subsection Register Class Preferences
1465 @cindex class preference constraints
1466 @cindex register class preference constraints
1467
1468 @cindex voting between constraint alternatives
1469 The operand constraints have another function: they enable the compiler
1470 to decide which kind of hardware register a pseudo register is best
1471 allocated to.  The compiler examines the constraints that apply to the
1472 insns that use the pseudo register, looking for the machine-dependent
1473 letters such as @samp{d} and @samp{a} that specify classes of registers.
1474 The pseudo register is put in whichever class gets the most ``votes''.
1475 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1476 favor of a general register.  The machine description says which registers
1477 are considered general.
1478
1479 Of course, on some machines all registers are equivalent, and no register
1480 classes are defined.  Then none of this complexity is relevant.
1481 @end ifset
1482
1483 @node Modifiers
1484 @subsection Constraint Modifier Characters
1485 @cindex modifiers in constraints
1486 @cindex constraint modifier characters
1487
1488 @c prevent bad page break with this line
1489 Here are constraint modifier characters.
1490
1491 @table @samp
1492 @cindex @samp{=} in constraint
1493 @item =
1494 Means that this operand is write-only for this instruction: the previous
1495 value is discarded and replaced by output data.
1496
1497 @cindex @samp{+} in constraint
1498 @item +
1499 Means that this operand is both read and written by the instruction.
1500
1501 When the compiler fixes up the operands to satisfy the constraints,
1502 it needs to know which operands are inputs to the instruction and
1503 which are outputs from it.  @samp{=} identifies an output; @samp{+}
1504 identifies an operand that is both input and output; all other operands
1505 are assumed to be input only.
1506
1507 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1508 first character of the constraint string.
1509
1510 @cindex @samp{&} in constraint
1511 @cindex earlyclobber operand
1512 @item &
1513 Means (in a particular alternative) that this operand is an
1514 @dfn{earlyclobber} operand, which is modified before the instruction is
1515 finished using the input operands.  Therefore, this operand may not lie
1516 in a register that is used as an input operand or as part of any memory
1517 address.
1518
1519 @samp{&} applies only to the alternative in which it is written.  In
1520 constraints with multiple alternatives, sometimes one alternative
1521 requires @samp{&} while others do not.  See, for example, the
1522 @samp{movdf} insn of the 68000.
1523
1524 An input operand can be tied to an earlyclobber operand if its only
1525 use as an input occurs before the early result is written.  Adding
1526 alternatives of this form often allows GCC to produce better code
1527 when only some of the inputs can be affected by the earlyclobber.
1528 See, for example, the @samp{mulsi3} insn of the ARM@.
1529
1530 @samp{&} does not obviate the need to write @samp{=}.
1531
1532 @cindex @samp{%} in constraint
1533 @item %
1534 Declares the instruction to be commutative for this operand and the
1535 following operand.  This means that the compiler may interchange the
1536 two operands if that is the cheapest way to make all operands fit the
1537 constraints.
1538 @ifset INTERNALS
1539 This is often used in patterns for addition instructions
1540 that really have only two operands: the result must go in one of the
1541 arguments.  Here for example, is how the 68000 halfword-add
1542 instruction is defined:
1543
1544 @smallexample
1545 (define_insn "addhi3"
1546   [(set (match_operand:HI 0 "general_operand" "=m,r")
1547      (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1548               (match_operand:HI 2 "general_operand" "di,g")))]
1549   @dots{})
1550 @end smallexample
1551 @end ifset
1552 GCC can only handle one commutative pair in an asm; if you use more,
1553 the compiler may fail.  Note that you need not use the modifier if
1554 the two alternatives are strictly identical; this would only waste
1555 time in the reload pass.
1556
1557 @cindex @samp{#} in constraint
1558 @item #
1559 Says that all following characters, up to the next comma, are to be
1560 ignored as a constraint.  They are significant only for choosing
1561 register preferences.
1562
1563 @cindex @samp{*} in constraint
1564 @item *
1565 Says that the following character should be ignored when choosing
1566 register preferences.  @samp{*} has no effect on the meaning of the
1567 constraint as a constraint, and no effect on reloading.
1568
1569 @ifset INTERNALS
1570 Here is an example: the 68000 has an instruction to sign-extend a
1571 halfword in a data register, and can also sign-extend a value by
1572 copying it into an address register.  While either kind of register is
1573 acceptable, the constraints on an address-register destination are
1574 less strict, so it is best if register allocation makes an address
1575 register its goal.  Therefore, @samp{*} is used so that the @samp{d}
1576 constraint letter (for data register) is ignored when computing
1577 register preferences.
1578
1579 @smallexample
1580 (define_insn "extendhisi2"
1581   [(set (match_operand:SI 0 "general_operand" "=*d,a")
1582         (sign_extend:SI
1583          (match_operand:HI 1 "general_operand" "0,g")))]
1584   @dots{})
1585 @end smallexample
1586 @end ifset
1587 @end table
1588
1589 @node Machine Constraints
1590 @subsection Constraints for Particular Machines
1591 @cindex machine specific constraints
1592 @cindex constraints, machine specific
1593
1594 Whenever possible, you should use the general-purpose constraint letters
1595 in @code{asm} arguments, since they will convey meaning more readily to
1596 people reading your code.  Failing that, use the constraint letters
1597 that usually have very similar meanings across architectures.  The most
1598 commonly used constraints are @samp{m} and @samp{r} (for memory and
1599 general-purpose registers respectively; @pxref{Simple Constraints}), and
1600 @samp{I}, usually the letter indicating the most common
1601 immediate-constant format.
1602
1603 For each machine architecture, the
1604 @file{config/@var{machine}/@var{machine}.h} file defines additional
1605 constraints.  These constraints are used by the compiler itself for
1606 instruction generation, as well as for @code{asm} statements; therefore,
1607 some of the constraints are not particularly interesting for @code{asm}.
1608 The constraints are defined through these macros:
1609
1610 @table @code
1611 @item REG_CLASS_FROM_LETTER
1612 Register class constraints (usually lowercase).
1613
1614 @item CONST_OK_FOR_LETTER_P
1615 Immediate constant constraints, for non-floating point constants of
1616 word size or smaller precision (usually uppercase).
1617
1618 @item CONST_DOUBLE_OK_FOR_LETTER_P
1619 Immediate constant constraints, for all floating point constants and for
1620 constants of greater than word size precision (usually uppercase).
1621
1622 @item EXTRA_CONSTRAINT
1623 Special cases of registers or memory.  This macro is not required, and
1624 is only defined for some machines.
1625 @end table
1626
1627 Inspecting these macro definitions in the compiler source for your
1628 machine is the best way to be certain you have the right constraints.
1629 However, here is a summary of the machine-dependent constraints
1630 available on some particular machines.
1631
1632 @table @emph
1633 @item ARM family---@file{arm.h}
1634 @table @code
1635 @item f
1636 Floating-point register
1637
1638 @item w
1639 VFP floating-point register
1640
1641 @item F
1642 One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
1643 or 10.0
1644
1645 @item G
1646 Floating-point constant that would satisfy the constraint @samp{F} if it
1647 were negated
1648
1649 @item I
1650 Integer that is valid as an immediate operand in a data processing
1651 instruction.  That is, an integer in the range 0 to 255 rotated by a
1652 multiple of 2
1653
1654 @item J
1655 Integer in the range @minus{}4095 to 4095
1656
1657 @item K
1658 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1659
1660 @item L
1661 Integer that satisfies constraint @samp{I} when negated (twos complement)
1662
1663 @item M
1664 Integer in the range 0 to 32
1665
1666 @item Q
1667 A memory reference where the exact address is in a single register
1668 (`@samp{m}' is preferable for @code{asm} statements)
1669
1670 @item R
1671 An item in the constant pool
1672
1673 @item S
1674 A symbol in the text segment of the current file
1675 @end table
1676
1677 @item Uv
1678 A memory reference suitable for VFP load/store insns (reg+constant offset)
1679
1680 @item Uy
1681 A memory reference suitable for iWMMXt load/store instructions.
1682
1683 @item Uq
1684 A memory reference suitable for the ARMv4 ldrsb instruction.
1685
1686 @item AVR family---@file{avr.h}
1687 @table @code
1688 @item l
1689 Registers from r0 to r15
1690
1691 @item a
1692 Registers from r16 to r23
1693
1694 @item d
1695 Registers from r16 to r31
1696
1697 @item w
1698 Registers from r24 to r31.  These registers can be used in @samp{adiw} command
1699
1700 @item e
1701 Pointer register (r26--r31)
1702
1703 @item b
1704 Base pointer register (r28--r31)
1705
1706 @item q
1707 Stack pointer register (SPH:SPL)
1708
1709 @item t
1710 Temporary register r0
1711
1712 @item x
1713 Register pair X (r27:r26)
1714
1715 @item y
1716 Register pair Y (r29:r28)
1717
1718 @item z
1719 Register pair Z (r31:r30)
1720
1721 @item I
1722 Constant greater than @minus{}1, less than 64
1723
1724 @item J
1725 Constant greater than @minus{}64, less than 1
1726
1727 @item K
1728 Constant integer 2
1729
1730 @item L
1731 Constant integer 0
1732
1733 @item M
1734 Constant that fits in 8 bits
1735
1736 @item N
1737 Constant integer @minus{}1
1738
1739 @item O
1740 Constant integer 8, 16, or 24
1741
1742 @item P
1743 Constant integer 1
1744
1745 @item G
1746 A floating point constant 0.0
1747 @end table
1748
1749 @item PowerPC and IBM RS6000---@file{rs6000.h}
1750 @table @code
1751 @item b
1752 Address base register
1753
1754 @item f
1755 Floating point register
1756
1757 @item v
1758 Vector register
1759
1760 @item h
1761 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
1762
1763 @item q
1764 @samp{MQ} register
1765
1766 @item c
1767 @samp{CTR} register
1768
1769 @item l
1770 @samp{LINK} register
1771
1772 @item x
1773 @samp{CR} register (condition register) number 0
1774
1775 @item y
1776 @samp{CR} register (condition register)
1777
1778 @item z
1779 @samp{FPMEM} stack memory for FPR-GPR transfers
1780
1781 @item I
1782 Signed 16-bit constant
1783
1784 @item J
1785 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
1786 @code{SImode} constants)
1787
1788 @item K
1789 Unsigned 16-bit constant
1790
1791 @item L
1792 Signed 16-bit constant shifted left 16 bits
1793
1794 @item M
1795 Constant larger than 31
1796
1797 @item N
1798 Exact power of 2
1799
1800 @item O
1801 Zero
1802
1803 @item P
1804 Constant whose negation is a signed 16-bit constant
1805
1806 @item G
1807 Floating point constant that can be loaded into a register with one
1808 instruction per word
1809
1810 @item Q
1811 Memory operand that is an offset from a register (@samp{m} is preferable
1812 for @code{asm} statements)
1813
1814 @item R
1815 AIX TOC entry
1816
1817 @item S
1818 Constant suitable as a 64-bit mask operand
1819
1820 @item T
1821 Constant suitable as a 32-bit mask operand
1822
1823 @item U
1824 System V Release 4 small data area reference
1825 @end table
1826
1827 @item Intel 386---@file{i386.h}
1828 @table @code
1829 @item q
1830 @samp{a}, @code{b}, @code{c}, or @code{d} register for the i386.
1831 For x86-64 it is equivalent to @samp{r} class (for 8-bit instructions that
1832 do not use upper halves).
1833
1834 @item Q
1835 @samp{a}, @code{b}, @code{c}, or @code{d} register (for 8-bit instructions,
1836 that do use upper halves).
1837
1838 @item R
1839 Legacy register---equivalent to @code{r} class in i386 mode.
1840 (for non-8-bit registers used together with 8-bit upper halves in a single
1841 instruction)
1842
1843 @item A
1844 Specifies the @samp{a} or @samp{d} registers.  This is primarily useful
1845 for 64-bit integer values (when in 32-bit mode) intended to be returned
1846 with the @samp{d} register holding the most significant bits and the
1847 @samp{a} register holding the least significant bits.
1848
1849 @item f
1850 Floating point register
1851
1852 @item t
1853 First (top of stack) floating point register
1854
1855 @item u
1856 Second floating point register
1857
1858 @item a
1859 @samp{a} register
1860
1861 @item b
1862 @samp{b} register
1863
1864 @item c
1865 @samp{c} register
1866
1867 @item C
1868 Specifies constant that can be easily constructed in SSE register without
1869 loading it from memory.
1870
1871 @item d
1872 @samp{d} register
1873
1874 @item D
1875 @samp{di} register
1876
1877 @item S
1878 @samp{si} register
1879
1880 @item x
1881 @samp{xmm} SSE register
1882
1883 @item y
1884 MMX register
1885
1886 @item I
1887 Constant in range 0 to 31 (for 32-bit shifts)
1888
1889 @item J
1890 Constant in range 0 to 63 (for 64-bit shifts)
1891
1892 @item K
1893 @samp{0xff}
1894
1895 @item L
1896 @samp{0xffff}
1897
1898 @item M
1899 0, 1, 2, or 3 (shifts for @code{lea} instruction)
1900
1901 @item N
1902 Constant in range 0 to 255 (for @code{out} instruction)
1903
1904 @item Z
1905 Constant in range 0 to @code{0xffffffff} or symbolic reference known to fit specified range.
1906 (for using immediates in zero extending 32-bit to 64-bit x86-64 instructions)
1907
1908 @item e
1909 Constant in range @minus{}2147483648 to 2147483647 or symbolic reference known to fit specified range.
1910 (for using immediates in 64-bit x86-64 instructions)
1911
1912 @item G
1913 Standard 80387 floating point constant
1914 @end table
1915
1916 @item Intel IA-64---@file{ia64.h}
1917 @table @code
1918 @item a
1919 General register @code{r0} to @code{r3} for @code{addl} instruction
1920
1921 @item b
1922 Branch register
1923
1924 @item c
1925 Predicate register (@samp{c} as in ``conditional'')
1926
1927 @item d
1928 Application register residing in M-unit
1929
1930 @item e
1931 Application register residing in I-unit
1932
1933 @item f
1934 Floating-point register
1935
1936 @item m
1937 Memory operand.
1938 Remember that @samp{m} allows postincrement and postdecrement which
1939 require printing with @samp{%Pn} on IA-64.
1940 Use @samp{S} to disallow postincrement and postdecrement.
1941
1942 @item G
1943 Floating-point constant 0.0 or 1.0
1944
1945 @item I
1946 14-bit signed integer constant
1947
1948 @item J
1949 22-bit signed integer constant
1950
1951 @item K
1952 8-bit signed integer constant for logical instructions
1953
1954 @item L
1955 8-bit adjusted signed integer constant for compare pseudo-ops
1956
1957 @item M
1958 6-bit unsigned integer constant for shift counts
1959
1960 @item N
1961 9-bit signed integer constant for load and store postincrements
1962
1963 @item O
1964 The constant zero
1965
1966 @item P
1967 0 or @minus{}1 for @code{dep} instruction
1968
1969 @item Q
1970 Non-volatile memory for floating-point loads and stores
1971
1972 @item R
1973 Integer constant in the range 1 to 4 for @code{shladd} instruction
1974
1975 @item S
1976 Memory operand except postincrement and postdecrement
1977 @end table
1978
1979 @item FRV---@file{frv.h}
1980 @table @code
1981 @item a
1982 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
1983
1984 @item b
1985 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
1986
1987 @item c
1988 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
1989 @code{icc0} to @code{icc3}).
1990
1991 @item d
1992 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
1993
1994 @item e
1995 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
1996 Odd registers are excluded not in the class but through the use of a machine
1997 mode larger than 4 bytes.
1998
1999 @item f
2000 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
2001
2002 @item h
2003 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
2004 Odd registers are excluded not in the class but through the use of a machine
2005 mode larger than 4 bytes.
2006
2007 @item l
2008 Register in the class @code{LR_REG} (the @code{lr} register).
2009
2010 @item q
2011 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
2012 Register numbers not divisible by 4 are excluded not in the class but through
2013 the use of a machine mode larger than 8 bytes.
2014
2015 @item t
2016 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
2017
2018 @item u
2019 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
2020
2021 @item v
2022 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
2023
2024 @item w
2025 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
2026
2027 @item x
2028 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
2029 Register numbers not divisible by 4 are excluded not in the class but through
2030 the use of a machine mode larger than 8 bytes.
2031
2032 @item z
2033 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
2034
2035 @item A
2036 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
2037
2038 @item B
2039 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
2040
2041 @item C
2042 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
2043
2044 @item G
2045 Floating point constant zero
2046
2047 @item I
2048 6-bit signed integer constant
2049
2050 @item J
2051 10-bit signed integer constant
2052
2053 @item L
2054 16-bit signed integer constant
2055
2056 @item M
2057 16-bit unsigned integer constant
2058
2059 @item N
2060 12-bit signed integer constant that is negative---i.e.@: in the
2061 range of @minus{}2048 to @minus{}1
2062
2063 @item O
2064 Constant zero
2065
2066 @item P
2067 12-bit signed integer constant that is greater than zero---i.e.@: in the
2068 range of 1 to 2047.
2069
2070 @end table
2071
2072 @item Blackfin family---@file{bfin.h}
2073 @table @code
2074 @item a
2075 P register
2076
2077 @item d
2078 D register
2079
2080 @item z
2081 A call clobbered P register.
2082
2083 @item D
2084 Even-numbered D register
2085
2086 @item W
2087 Odd-numbered D register
2088
2089 @item e
2090 Accumulator register.
2091
2092 @item A
2093 Even-numbered accumulator register.
2094
2095 @item B
2096 Odd-numbered accumulator register.
2097
2098 @item b
2099 I register
2100
2101 @item B
2102 B register
2103
2104 @item f
2105 M register
2106
2107 @item c
2108 Registers used for circular buffering, i.e. I, B, or L registers.
2109
2110 @item C
2111 The CC register.
2112
2113 @item x
2114 Any D, P, B, M, I or L register.
2115
2116 @item y
2117 Additional registers typically used only in prologues and epilogues: RETS,
2118 RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
2119
2120 @item w
2121 Any register except accumulators or CC.
2122
2123 @item Ksh
2124 Signed 16 bit integer (in the range -32768 to 32767)
2125
2126 @item Kuh
2127 Unsigned 16 bit integer (in the range 0 to 65535)
2128
2129 @item Ks7
2130 Signed 7 bit integer (in the range -64 to 63)
2131
2132 @item Ku7
2133 Unsigned 7 bit integer (in the range 0 to 127)
2134
2135 @item Ku5
2136 Unsigned 5 bit integer (in the range 0 to 31)
2137
2138 @item Ks4
2139 Signed 4 bit integer (in the range -8 to 7)
2140
2141 @item Ks3
2142 Signed 3 bit integer (in the range -3 to 4)
2143
2144 @item Ku3
2145 Unsigned 3 bit integer (in the range 0 to 7)
2146
2147 @item P@var{n}
2148 Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
2149
2150 @item M1
2151 Constant 255.
2152
2153 @item M2
2154 Constant 65535.
2155
2156 @item J
2157 An integer constant with exactly a single bit set.
2158
2159 @item L
2160 An integer constant with all bits set except exactly one.
2161
2162 @item H
2163
2164 @item Q
2165 Any SYMBOL_REF.
2166 @end table
2167
2168 @item IP2K---@file{ip2k.h}
2169 @table @code
2170 @item a
2171 @samp{DP} or @samp{IP} registers (general address)
2172
2173 @item f
2174 @samp{IP} register
2175
2176 @item j
2177 @samp{IPL} register
2178
2179 @item k
2180 @samp{IPH} register
2181
2182 @item b
2183 @samp{DP} register
2184
2185 @item y
2186 @samp{DPH} register
2187
2188 @item z
2189 @samp{DPL} register
2190
2191 @item q
2192 @samp{SP} register
2193
2194 @item c
2195 @samp{DP} or @samp{SP} registers (offsettable address)
2196
2197 @item d
2198 Non-pointer registers (not @samp{SP}, @samp{DP}, @samp{IP})
2199
2200 @item u
2201 Non-SP registers (everything except @samp{SP})
2202
2203 @item R
2204 Indirect through @samp{IP}---Avoid this except for @code{QImode}, since we
2205 can't access extra bytes
2206
2207 @item S
2208 Indirect through @samp{SP} or @samp{DP} with short displacement (0..127)
2209
2210 @item T
2211 Data-section immediate value
2212
2213 @item I
2214 Integers from @minus{}255 to @minus{}1
2215
2216 @item J
2217 Integers from 0 to 7---valid bit number in a register
2218
2219 @item K
2220 Integers from 0 to 127---valid displacement for addressing mode
2221
2222 @item L
2223 Integers from 1 to 127
2224
2225 @item M
2226 Integer @minus{}1
2227
2228 @item N
2229 Integer 1
2230
2231 @item O
2232 Zero
2233
2234 @item P
2235 Integers from 0 to 255
2236 @end table
2237
2238 @item MIPS---@file{mips.h}
2239 @table @code
2240 @item d
2241 General-purpose integer register
2242
2243 @item f
2244 Floating-point register (if available)
2245
2246 @item h
2247 @samp{Hi} register
2248
2249 @item l
2250 @samp{Lo} register
2251
2252 @item x
2253 @samp{Hi} or @samp{Lo} register
2254
2255 @item y
2256 General-purpose integer register
2257
2258 @item z
2259 Floating-point status register
2260
2261 @item I
2262 Signed 16-bit constant (for arithmetic instructions)
2263
2264 @item J
2265 Zero
2266
2267 @item K
2268 Zero-extended 16-bit constant (for logic instructions)
2269
2270 @item L
2271 Constant with low 16 bits zero (can be loaded with @code{lui})
2272
2273 @item M
2274 32-bit constant which requires two instructions to load (a constant
2275 which is not @samp{I}, @samp{K}, or @samp{L})
2276
2277 @item N
2278 Negative 16-bit constant
2279
2280 @item O
2281 Exact power of two
2282
2283 @item P
2284 Positive 16-bit constant
2285
2286 @item G
2287 Floating point zero
2288
2289 @item Q
2290 Memory reference that can be loaded with more than one instruction
2291 (@samp{m} is preferable for @code{asm} statements)
2292
2293 @item R
2294 Memory reference that can be loaded with one instruction
2295 (@samp{m} is preferable for @code{asm} statements)
2296
2297 @item S
2298 Memory reference in external OSF/rose PIC format
2299 (@samp{m} is preferable for @code{asm} statements)
2300 @end table
2301
2302 @item Motorola 680x0---@file{m68k.h}
2303 @table @code
2304 @item a
2305 Address register
2306
2307 @item d
2308 Data register
2309
2310 @item f
2311 68881 floating-point register, if available
2312
2313 @item I
2314 Integer in the range 1 to 8
2315
2316 @item J
2317 16-bit signed number
2318
2319 @item K
2320 Signed number whose magnitude is greater than 0x80
2321
2322 @item L
2323 Integer in the range @minus{}8 to @minus{}1
2324
2325 @item M
2326 Signed number whose magnitude is greater than 0x100
2327
2328 @item G
2329 Floating point constant that is not a 68881 constant
2330 @end table
2331
2332 @item Motorola 68HC11 & 68HC12 families---@file{m68hc11.h}
2333 @table @code
2334 @item a
2335 Register `a'
2336
2337 @item b
2338 Register `b'
2339
2340 @item d
2341 Register `d'
2342
2343 @item q
2344 An 8-bit register
2345
2346 @item t
2347 Temporary soft register _.tmp
2348
2349 @item u
2350 A soft register _.d1 to _.d31
2351
2352 @item w
2353 Stack pointer register
2354
2355 @item x
2356 Register `x'
2357
2358 @item y
2359 Register `y'
2360
2361 @item z
2362 Pseudo register `z' (replaced by `x' or `y' at the end)
2363
2364 @item A
2365 An address register: x, y or z
2366
2367 @item B
2368 An address register: x or y
2369
2370 @item D
2371 Register pair (x:d) to form a 32-bit value
2372
2373 @item L
2374 Constants in the range @minus{}65536 to 65535
2375
2376 @item M
2377 Constants whose 16-bit low part is zero
2378
2379 @item N
2380 Constant integer 1 or @minus{}1
2381
2382 @item O
2383 Constant integer 16
2384
2385 @item P
2386 Constants in the range @minus{}8 to 2
2387
2388 @end table
2389
2390 @need 1000
2391 @item SPARC---@file{sparc.h}
2392 @table @code
2393 @item f
2394 Floating-point register on the SPARC-V8 architecture and
2395 lower floating-point register on the SPARC-V9 architecture.
2396
2397 @item e
2398 Floating-point register.  It is equivalent to @samp{f} on the
2399 SPARC-V8 architecture and contains both lower and upper
2400 floating-point registers on the SPARC-V9 architecture.
2401
2402 @item c
2403 Floating-point condition code register.
2404
2405 @item d
2406 Lower floating-point register.  It is only valid on the SPARC-V9
2407 architecture when the Visual Instruction Set is available.
2408
2409 @item b
2410 Floating-point register.  It is only valid on the SPARC-V9 architecture
2411 when the Visual Instruction Set is available.
2412
2413 @item h
2414 64-bit global or out register for the SPARC-V8+ architecture.
2415
2416 @item I
2417 Signed 13-bit constant
2418
2419 @item J
2420 Zero
2421
2422 @item K
2423 32-bit constant with the low 12 bits clear (a constant that can be
2424 loaded with the @code{sethi} instruction)
2425
2426 @item L
2427 A constant in the range supported by @code{movcc} instructions
2428
2429 @item M
2430 A constant in the range supported by @code{movrcc} instructions
2431
2432 @item N
2433 Same as @samp{K}, except that it verifies that bits that are not in the
2434 lower 32-bit range are all zero.  Must be used instead of @samp{K} for
2435 modes wider than @code{SImode}
2436
2437 @item O
2438 The constant 4096
2439
2440 @item G
2441 Floating-point zero
2442
2443 @item H
2444 Signed 13-bit constant, sign-extended to 32 or 64 bits
2445
2446 @item Q
2447 Floating-point constant whose integral representation can
2448 be moved into an integer register using a single sethi
2449 instruction
2450
2451 @item R
2452 Floating-point constant whose integral representation can
2453 be moved into an integer register using a single mov
2454 instruction
2455
2456 @item S
2457 Floating-point constant whose integral representation can
2458 be moved into an integer register using a high/lo_sum
2459 instruction sequence
2460
2461 @item T
2462 Memory address aligned to an 8-byte boundary
2463
2464 @item U
2465 Even register
2466
2467 @item W
2468 Memory address for @samp{e} constraint registers
2469
2470 @item Y
2471 Vector zero
2472
2473 @end table
2474
2475 @item TMS320C3x/C4x---@file{c4x.h}
2476 @table @code
2477 @item a
2478 Auxiliary (address) register (ar0-ar7)
2479
2480 @item b
2481 Stack pointer register (sp)
2482
2483 @item c
2484 Standard (32-bit) precision integer register
2485
2486 @item f
2487 Extended (40-bit) precision register (r0-r11)
2488
2489 @item k
2490 Block count register (bk)
2491
2492 @item q
2493 Extended (40-bit) precision low register (r0-r7)
2494
2495 @item t
2496 Extended (40-bit) precision register (r0-r1)
2497
2498 @item u
2499 Extended (40-bit) precision register (r2-r3)
2500
2501 @item v
2502 Repeat count register (rc)
2503
2504 @item x
2505 Index register (ir0-ir1)
2506
2507 @item y
2508 Status (condition code) register (st)
2509
2510 @item z
2511 Data page register (dp)
2512
2513 @item G
2514 Floating-point zero
2515
2516 @item H
2517 Immediate 16-bit floating-point constant
2518
2519 @item I
2520 Signed 16-bit constant
2521
2522 @item J
2523 Signed 8-bit constant
2524
2525 @item K
2526 Signed 5-bit constant
2527
2528 @item L
2529 Unsigned 16-bit constant
2530
2531 @item M
2532 Unsigned 8-bit constant
2533
2534 @item N
2535 Ones complement of unsigned 16-bit constant
2536
2537 @item O
2538 High 16-bit constant (32-bit constant with 16 LSBs zero)
2539
2540 @item Q
2541 Indirect memory reference with signed 8-bit or index register displacement
2542
2543 @item R
2544 Indirect memory reference with unsigned 5-bit displacement
2545
2546 @item S
2547 Indirect memory reference with 1 bit or index register displacement
2548
2549 @item T
2550 Direct memory reference
2551
2552 @item U
2553 Symbolic address
2554
2555 @end table
2556
2557 @item S/390 and zSeries---@file{s390.h}
2558 @table @code
2559 @item a
2560 Address register (general purpose register except r0)
2561
2562 @item c
2563 Condition code register
2564
2565 @item d
2566 Data register (arbitrary general purpose register)
2567
2568 @item f
2569 Floating-point register
2570
2571 @item I
2572 Unsigned 8-bit constant (0--255)
2573
2574 @item J
2575 Unsigned 12-bit constant (0--4095)
2576
2577 @item K
2578 Signed 16-bit constant (@minus{}32768--32767)
2579
2580 @item L
2581 Value appropriate as displacement.
2582 @table @code
2583        @item (0..4095)
2584        for short displacement
2585        @item (-524288..524287)
2586        for long displacement
2587 @end table
2588
2589 @item M
2590 Constant integer with a value of 0x7fffffff.
2591
2592 @item N
2593 Multiple letter constraint followed by 4 parameter letters.
2594 @table @code
2595          @item 0..9:
2596          number of the part counting from most to least significant
2597          @item H,Q:
2598          mode of the part
2599          @item D,S,H:
2600          mode of the containing operand
2601          @item 0,F:
2602          value of the other parts (F---all bits set)
2603 @end table
2604 The constraint matches if the specified part of a constant
2605 has a value different from it's other parts.
2606
2607 @item Q
2608 Memory reference without index register and with short displacement.
2609
2610 @item R
2611 Memory reference with index register and short displacement.
2612
2613 @item S
2614 Memory reference without index register but with long displacement.
2615
2616 @item T
2617 Memory reference with index register and long displacement.
2618
2619 @item U
2620 Pointer with short displacement.
2621
2622 @item W
2623 Pointer with long displacement.
2624
2625 @item Y
2626 Shift count operand.
2627
2628 @end table
2629
2630 @item Xstormy16---@file{stormy16.h}
2631 @table @code
2632 @item a
2633 Register r0.
2634
2635 @item b
2636 Register r1.
2637
2638 @item c
2639 Register r2.
2640
2641 @item d
2642 Register r8.
2643
2644 @item e
2645 Registers r0 through r7.
2646
2647 @item t
2648 Registers r0 and r1.
2649
2650 @item y
2651 The carry register.
2652
2653 @item z
2654 Registers r8 and r9.
2655
2656 @item I
2657 A constant between 0 and 3 inclusive.
2658
2659 @item J
2660 A constant that has exactly one bit set.
2661
2662 @item K
2663 A constant that has exactly one bit clear.
2664
2665 @item L
2666 A constant between 0 and 255 inclusive.
2667
2668 @item M
2669 A constant between @minus{}255 and 0 inclusive.
2670
2671 @item N
2672 A constant between @minus{}3 and 0 inclusive.
2673
2674 @item O
2675 A constant between 1 and 4 inclusive.
2676
2677 @item P
2678 A constant between @minus{}4 and @minus{}1 inclusive.
2679
2680 @item Q
2681 A memory reference that is a stack push.
2682
2683 @item R
2684 A memory reference that is a stack pop.
2685
2686 @item S
2687 A memory reference that refers to a constant address of known value.
2688
2689 @item T
2690 The register indicated by Rx (not implemented yet).
2691
2692 @item U
2693 A constant that is not between 2 and 15 inclusive.
2694
2695 @item Z
2696 The constant 0.
2697
2698 @end table
2699
2700 @item Xtensa---@file{xtensa.h}
2701 @table @code
2702 @item a
2703 General-purpose 32-bit register
2704
2705 @item b
2706 One-bit boolean register
2707
2708 @item A
2709 MAC16 40-bit accumulator register
2710
2711 @item I
2712 Signed 12-bit integer constant, for use in MOVI instructions
2713
2714 @item J
2715 Signed 8-bit integer constant, for use in ADDI instructions
2716
2717 @item K
2718 Integer constant valid for BccI instructions
2719
2720 @item L
2721 Unsigned constant valid for BccUI instructions
2722
2723 @end table
2724
2725 @end table
2726
2727 @ifset INTERNALS
2728 @node Standard Names
2729 @section Standard Pattern Names For Generation
2730 @cindex standard pattern names
2731 @cindex pattern names
2732 @cindex names, pattern
2733
2734 Here is a table of the instruction names that are meaningful in the RTL
2735 generation pass of the compiler.  Giving one of these names to an
2736 instruction pattern tells the RTL generation pass that it can use the
2737 pattern to accomplish a certain task.
2738
2739 @table @asis
2740 @cindex @code{mov@var{m}} instruction pattern
2741 @item @samp{mov@var{m}}
2742 Here @var{m} stands for a two-letter machine mode name, in lowercase.
2743 This instruction pattern moves data with that machine mode from operand
2744 1 to operand 0.  For example, @samp{movsi} moves full-word data.
2745
2746 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
2747 own mode is wider than @var{m}, the effect of this instruction is
2748 to store the specified value in the part of the register that corresponds
2749 to mode @var{m}.  Bits outside of @var{m}, but which are within the
2750 same target word as the @code{subreg} are undefined.  Bits which are
2751 outside the target word are left unchanged.
2752
2753 This class of patterns is special in several ways.  First of all, each
2754 of these names up to and including full word size @emph{must} be defined,
2755 because there is no other way to copy a datum from one place to another.
2756 If there are patterns accepting operands in larger modes,
2757 @samp{mov@var{m}} must be defined for integer modes of those sizes.
2758
2759 Second, these patterns are not used solely in the RTL generation pass.
2760 Even the reload pass can generate move insns to copy values from stack
2761 slots into temporary registers.  When it does so, one of the operands is
2762 a hard register and the other is an operand that can need to be reloaded
2763 into a register.
2764
2765 @findex force_reg
2766 Therefore, when given such a pair of operands, the pattern must generate
2767 RTL which needs no reloading and needs no temporary registers---no
2768 registers other than the operands.  For example, if you support the
2769 pattern with a @code{define_expand}, then in such a case the
2770 @code{define_expand} mustn't call @code{force_reg} or any other such
2771 function which might generate new pseudo registers.
2772
2773 This requirement exists even for subword modes on a RISC machine where
2774 fetching those modes from memory normally requires several insns and
2775 some temporary registers.
2776
2777 @findex change_address
2778 During reload a memory reference with an invalid address may be passed
2779 as an operand.  Such an address will be replaced with a valid address
2780 later in the reload pass.  In this case, nothing may be done with the
2781 address except to use it as it stands.  If it is copied, it will not be
2782 replaced with a valid address.  No attempt should be made to make such
2783 an address into a valid address and no routine (such as
2784 @code{change_address}) that will do so may be called.  Note that
2785 @code{general_operand} will fail when applied to such an address.
2786
2787 @findex reload_in_progress
2788 The global variable @code{reload_in_progress} (which must be explicitly
2789 declared if required) can be used to determine whether such special
2790 handling is required.
2791
2792 The variety of operands that have reloads depends on the rest of the
2793 machine description, but typically on a RISC machine these can only be
2794 pseudo registers that did not get hard registers, while on other
2795 machines explicit memory references will get optional reloads.
2796
2797 If a scratch register is required to move an object to or from memory,
2798 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
2799
2800 If there are cases which need scratch registers during or after reload,
2801 you must define @code{SECONDARY_INPUT_RELOAD_CLASS} and/or
2802 @code{SECONDARY_OUTPUT_RELOAD_CLASS} to detect them, and provide
2803 patterns @samp{reload_in@var{m}} or @samp{reload_out@var{m}} to handle
2804 them.  @xref{Register Classes}.
2805
2806 @findex no_new_pseudos
2807 The global variable @code{no_new_pseudos} can be used to determine if it
2808 is unsafe to create new pseudo registers.  If this variable is nonzero, then
2809 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
2810
2811 The constraints on a @samp{mov@var{m}} must permit moving any hard
2812 register to any other hard register provided that
2813 @code{HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
2814 @code{REGISTER_MOVE_COST} applied to their classes returns a value of 2.
2815
2816 It is obligatory to support floating point @samp{mov@var{m}}
2817 instructions into and out of any registers that can hold fixed point
2818 values, because unions and structures (which have modes @code{SImode} or
2819 @code{DImode}) can be in those registers and they may have floating
2820 point members.
2821
2822 There may also be a need to support fixed point @samp{mov@var{m}}
2823 instructions in and out of floating point registers.  Unfortunately, I
2824 have forgotten why this was so, and I don't know whether it is still
2825 true.  If @code{HARD_REGNO_MODE_OK} rejects fixed point values in
2826 floating point registers, then the constraints of the fixed point
2827 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
2828 reload into a floating point register.
2829
2830 @cindex @code{reload_in} instruction pattern
2831 @cindex @code{reload_out} instruction pattern
2832 @item @samp{reload_in@var{m}}
2833 @itemx @samp{reload_out@var{m}}
2834 Like @samp{mov@var{m}}, but used when a scratch register is required to
2835 move between operand 0 and operand 1.  Operand 2 describes the scratch
2836 register.  See the discussion of the @code{SECONDARY_RELOAD_CLASS}
2837 macro in @pxref{Register Classes}.
2838
2839 There are special restrictions on the form of the @code{match_operand}s
2840 used in these patterns.  First, only the predicate for the reload
2841 operand is examined, i.e., @code{reload_in} examines operand 1, but not
2842 the predicates for operand 0 or 2.  Second, there may be only one
2843 alternative in the constraints.  Third, only a single register class
2844 letter may be used for the constraint; subsequent constraint letters
2845 are ignored.  As a special exception, an empty constraint string
2846 matches the @code{ALL_REGS} register class.  This may relieve ports
2847 of the burden of defining an @code{ALL_REGS} constraint letter just
2848 for these patterns.
2849
2850 @cindex @code{movstrict@var{m}} instruction pattern
2851 @item @samp{movstrict@var{m}}
2852 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
2853 with mode @var{m} of a register whose natural mode is wider,
2854 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
2855 any of the register except the part which belongs to mode @var{m}.
2856
2857 @cindex @code{movmisalign@var{m}} instruction pattern
2858 @item @samp{movmisalign@var{m}}
2859 This variant of a move pattern is designed to load or store a value
2860 from a memory address that is not naturally aligned for its mode.
2861 For a store, the memory will be in operand 0; for a load, the memory
2862 will be in operand 1.  The other operand is guaranteed not to be a
2863 memory, so that it's easy to tell whether this is a load or store.
2864
2865 This pattern is used by the autovectorizer, and when expanding a
2866 @code{MISALIGNED_INDIRECT_REF} expression.
2867
2868 @cindex @code{load_multiple} instruction pattern
2869 @item @samp{load_multiple}
2870 Load several consecutive memory locations into consecutive registers.
2871 Operand 0 is the first of the consecutive registers, operand 1
2872 is the first memory location, and operand 2 is a constant: the
2873 number of consecutive registers.
2874
2875 Define this only if the target machine really has such an instruction;
2876 do not define this if the most efficient way of loading consecutive
2877 registers from memory is to do them one at a time.
2878
2879 On some machines, there are restrictions as to which consecutive
2880 registers can be stored into memory, such as particular starting or
2881 ending register numbers or only a range of valid counts.  For those
2882 machines, use a @code{define_expand} (@pxref{Expander Definitions})
2883 and make the pattern fail if the restrictions are not met.
2884
2885 Write the generated insn as a @code{parallel} with elements being a
2886 @code{set} of one register from the appropriate memory location (you may
2887 also need @code{use} or @code{clobber} elements).  Use a
2888 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn.  See
2889 @file{rs6000.md} for examples of the use of this insn pattern.
2890
2891 @cindex @samp{store_multiple} instruction pattern
2892 @item @samp{store_multiple}
2893 Similar to @samp{load_multiple}, but store several consecutive registers
2894 into consecutive memory locations.  Operand 0 is the first of the
2895 consecutive memory locations, operand 1 is the first register, and
2896 operand 2 is a constant: the number of consecutive registers.
2897
2898 @cindex @code{vec_set@var{m}} instruction pattern
2899 @item @samp{vec_set@var{m}}
2900 Set given field in the vector value.  Operand 0 is the vector to modify,
2901 operand 1 is new value of field and operand 2 specify the field index.
2902
2903 @cindex @code{vec_extract@var{m}} instruction pattern
2904 @item @samp{vec_extract@var{m}}
2905 Extract given field from the vector value.  Operand 1 is the vector, operand 2
2906 specify field index and operand 0 place to store value into.
2907
2908 @cindex @code{vec_init@var{m}} instruction pattern
2909 @item @samp{vec_init@var{m}}
2910 Initialize the vector to given values.  Operand 0 is the vector to initialize
2911 and operand 1 is parallel containing values for individual fields.
2912
2913 @cindex @code{push@var{m}} instruction pattern
2914 @item @samp{push@var{m}}
2915 Output a push instruction.  Operand 0 is value to push.  Used only when
2916 @code{PUSH_ROUNDING} is defined.  For historical reason, this pattern may be
2917 missing and in such case an @code{mov} expander is used instead, with a
2918 @code{MEM} expression forming the push operation.  The @code{mov} expander
2919 method is deprecated.
2920
2921 @cindex @code{add@var{m}3} instruction pattern
2922 @item @samp{add@var{m}3}
2923 Add operand 2 and operand 1, storing the result in operand 0.  All operands
2924 must have mode @var{m}.  This can be used even on two-address machines, by
2925 means of constraints requiring operands 1 and 0 to be the same location.
2926
2927 @cindex @code{sub@var{m}3} instruction pattern
2928 @cindex @code{mul@var{m}3} instruction pattern
2929 @cindex @code{div@var{m}3} instruction pattern
2930 @cindex @code{udiv@var{m}3} instruction pattern
2931 @cindex @code{mod@var{m}3} instruction pattern
2932 @cindex @code{umod@var{m}3} instruction pattern
2933 @cindex @code{umin@var{m}3} instruction pattern
2934 @cindex @code{umax@var{m}3} instruction pattern
2935 @cindex @code{and@var{m}3} instruction pattern
2936 @cindex @code{ior@var{m}3} instruction pattern
2937 @cindex @code{xor@var{m}3} instruction pattern
2938 @item @samp{sub@var{m}3}, @samp{mul@var{m}3}
2939 @itemx @samp{div@var{m}3}, @samp{udiv@var{m}3}
2940 @itemx @samp{mod@var{m}3}, @samp{umod@var{m}3}
2941 @itemx @samp{umin@var{m}3}, @samp{umax@var{m}3}
2942 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
2943 Similar, for other arithmetic operations.
2944
2945 @cindex @code{min@var{m}3} instruction pattern
2946 @cindex @code{max@var{m}3} instruction pattern
2947 @item @samp{smin@var{m}3}, @samp{smax@var{m}3}
2948 Signed minimum and maximum operations.  When used with floating point,
2949 if both operands are zeros, or if either operand is @code{NaN}, then
2950 it is unspecified which of the two operands is returned as the result.
2951
2952 @cindex @code{mulhisi3} instruction pattern
2953 @item @samp{mulhisi3}
2954 Multiply operands 1 and 2, which have mode @code{HImode}, and store
2955 a @code{SImode} product in operand 0.
2956
2957 @cindex @code{mulqihi3} instruction pattern
2958 @cindex @code{mulsidi3} instruction pattern
2959 @item @samp{mulqihi3}, @samp{mulsidi3}
2960 Similar widening-multiplication instructions of other widths.
2961
2962 @cindex @code{umulqihi3} instruction pattern
2963 @cindex @code{umulhisi3} instruction pattern
2964 @cindex @code{umulsidi3} instruction pattern
2965 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
2966 Similar widening-multiplication instructions that do unsigned
2967 multiplication.
2968
2969 @cindex @code{smul@var{m}3_highpart} instruction pattern
2970 @item @samp{smul@var{m}3_highpart}
2971 Perform a signed multiplication of operands 1 and 2, which have mode
2972 @var{m}, and store the most significant half of the product in operand 0.
2973 The least significant half of the product is discarded.
2974
2975 @cindex @code{umul@var{m}3_highpart} instruction pattern
2976 @item @samp{umul@var{m}3_highpart}
2977 Similar, but the multiplication is unsigned.
2978
2979 @cindex @code{divmod@var{m}4} instruction pattern
2980 @item @samp{divmod@var{m}4}
2981 Signed division that produces both a quotient and a remainder.
2982 Operand 1 is divided by operand 2 to produce a quotient stored
2983 in operand 0 and a remainder stored in operand 3.
2984
2985 For machines with an instruction that produces both a quotient and a
2986 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
2987 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}.  This
2988 allows optimization in the relatively common case when both the quotient
2989 and remainder are computed.
2990
2991 If an instruction that just produces a quotient or just a remainder
2992 exists and is more efficient than the instruction that produces both,
2993 write the output routine of @samp{divmod@var{m}4} to call
2994 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
2995 quotient or remainder and generate the appropriate instruction.
2996
2997 @cindex @code{udivmod@var{m}4} instruction pattern
2998 @item @samp{udivmod@var{m}4}
2999 Similar, but does unsigned division.
3000
3001 @anchor{shift patterns}
3002 @cindex @code{ashl@var{m}3} instruction pattern
3003 @item @samp{ashl@var{m}3}
3004 Arithmetic-shift operand 1 left by a number of bits specified by operand
3005 2, and store the result in operand 0.  Here @var{m} is the mode of
3006 operand 0 and operand 1; operand 2's mode is specified by the
3007 instruction pattern, and the compiler will convert the operand to that
3008 mode before generating the instruction.  The meaning of out-of-range shift
3009 counts can optionally be specified by @code{TARGET_SHIFT_TRUNCATION_MASK}.
3010 @xref{TARGET_SHIFT_TRUNCATION_MASK}.
3011
3012 @cindex @code{ashr@var{m}3} instruction pattern
3013 @cindex @code{lshr@var{m}3} instruction pattern
3014 @cindex @code{rotl@var{m}3} instruction pattern
3015 @cindex @code{rotr@var{m}3} instruction pattern
3016 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
3017 Other shift and rotate instructions, analogous to the
3018 @code{ashl@var{m}3} instructions.
3019
3020 @cindex @code{neg@var{m}2} instruction pattern
3021 @item @samp{neg@var{m}2}
3022 Negate operand 1 and store the result in operand 0.
3023
3024 @cindex @code{abs@var{m}2} instruction pattern
3025 @item @samp{abs@var{m}2}
3026 Store the absolute value of operand 1 into operand 0.
3027
3028 @cindex @code{sqrt@var{m}2} instruction pattern
3029 @item @samp{sqrt@var{m}2}
3030 Store the square root of operand 1 into operand 0.
3031
3032 The @code{sqrt} built-in function of C always uses the mode which
3033 corresponds to the C data type @code{double} and the @code{sqrtf}
3034 built-in function uses the mode which corresponds to the C data
3035 type @code{float}.
3036
3037 @cindex @code{cos@var{m}2} instruction pattern
3038 @item @samp{cos@var{m}2}
3039 Store the cosine of operand 1 into operand 0.
3040
3041 The @code{cos} built-in function of C always uses the mode which
3042 corresponds to the C data type @code{double} and the @code{cosf}
3043 built-in function uses the mode which corresponds to the C data
3044 type @code{float}.
3045
3046 @cindex @code{sin@var{m}2} instruction pattern
3047 @item @samp{sin@var{m}2}
3048 Store the sine of operand 1 into operand 0.
3049
3050 The @code{sin} built-in function of C always uses the mode which
3051 corresponds to the C data type @code{double} and the @code{sinf}
3052 built-in function uses the mode which corresponds to the C data
3053 type @code{float}.
3054
3055 @cindex @code{exp@var{m}2} instruction pattern
3056 @item @samp{exp@var{m}2}
3057 Store the exponential of operand 1 into operand 0.
3058
3059 The @code{exp} built-in function of C always uses the mode which
3060 corresponds to the C data type @code{double} and the @code{expf}
3061 built-in function uses the mode which corresponds to the C data
3062 type @code{float}.
3063
3064 @cindex @code{log@var{m}2} instruction pattern
3065 @item @samp{log@var{m}2}
3066 Store the natural logarithm of operand 1 into operand 0.
3067
3068 The @code{log} built-in function of C always uses the mode which
3069 corresponds to the C data type @code{double} and the @code{logf}
3070 built-in function uses the mode which corresponds to the C data
3071 type @code{float}.
3072
3073 @cindex @code{pow@var{m}3} instruction pattern
3074 @item @samp{pow@var{m}3}
3075 Store the value of operand 1 raised to the exponent operand 2
3076 into operand 0.
3077
3078 The @code{pow} built-in function of C always uses the mode which
3079 corresponds to the C data type @code{double} and the @code{powf}
3080 built-in function uses the mode which corresponds to the C data
3081 type @code{float}.
3082
3083 @cindex @code{atan2@var{m}3} instruction pattern
3084 @item @samp{atan2@var{m}3}
3085 Store the arc tangent (inverse tangent) of operand 1 divided by
3086 operand 2 into operand 0, using the signs of both arguments to
3087 determine the quadrant of the result.
3088
3089 The @code{atan2} built-in function of C always uses the mode which
3090 corresponds to the C data type @code{double} and the @code{atan2f}
3091 built-in function uses the mode which corresponds to the C data
3092 type @code{float}.
3093
3094 @cindex @code{floor@var{m}2} instruction pattern
3095 @item @samp{floor@var{m}2}
3096 Store the largest integral value not greater than argument.
3097
3098 The @code{floor} built-in function of C always uses the mode which
3099 corresponds to the C data type @code{double} and the @code{floorf}
3100 built-in function uses the mode which corresponds to the C data
3101 type @code{float}.
3102
3103 @cindex @code{trunc@var{m}2} instruction pattern
3104 @item @samp{trunc@var{m}2}
3105 Store the argument rounded to integer towards zero.
3106
3107 The @code{trunc} built-in function of C always uses the mode which
3108 corresponds to the C data type @code{double} and the @code{truncf}
3109 built-in function uses the mode which corresponds to the C data
3110 type @code{float}.
3111
3112 @cindex @code{round@var{m}2} instruction pattern
3113 @item @samp{round@var{m}2}
3114 Store the argument rounded to integer away from zero.
3115
3116 The @code{round} built-in function of C always uses the mode which
3117 corresponds to the C data type @code{double} and the @code{roundf}
3118 built-in function uses the mode which corresponds to the C data
3119 type @code{float}.
3120
3121 @cindex @code{ceil@var{m}2} instruction pattern
3122 @item @samp{ceil@var{m}2}
3123 Store the argument rounded to integer away from zero.
3124
3125 The @code{ceil} built-in function of C always uses the mode which
3126 corresponds to the C data type @code{double} and the @code{ceilf}
3127 built-in function uses the mode which corresponds to the C data
3128 type @code{float}.
3129
3130 @cindex @code{nearbyint@var{m}2} instruction pattern
3131 @item @samp{nearbyint@var{m}2}
3132 Store the argument rounded according to the default rounding mode
3133
3134 The @code{nearbyint} built-in function of C always uses the mode which
3135 corresponds to the C data type @code{double} and the @code{nearbyintf}
3136 built-in function uses the mode which corresponds to the C data
3137 type @code{float}.
3138
3139 @cindex @code{ffs@var{m}2} instruction pattern
3140 @item @samp{ffs@var{m}2}
3141 Store into operand 0 one plus the index of the least significant 1-bit
3142 of operand 1.  If operand 1 is zero, store zero.  @var{m} is the mode
3143 of operand 0; operand 1's mode is specified by the instruction
3144 pattern, and the compiler will convert the operand to that mode before
3145 generating the instruction.
3146
3147 The @code{ffs} built-in function of C always uses the mode which
3148 corresponds to the C data type @code{int}.
3149
3150 @cindex @code{clz@var{m}2} instruction pattern
3151 @item @samp{clz@var{m}2}
3152 Store into operand 0 the number of leading 0-bits in @var{x}, starting
3153 at the most significant bit position.  If @var{x} is 0, the result is
3154 undefined.  @var{m} is the mode of operand 0; operand 1's mode is
3155 specified by the instruction pattern, and the compiler will convert the
3156 operand to that mode before generating the instruction.
3157
3158 @cindex @code{ctz@var{m}2} instruction pattern
3159 @item @samp{ctz@var{m}2}
3160 Store into operand 0 the number of trailing 0-bits in @var{x}, starting
3161 at the least significant bit position.  If @var{x} is 0, the result is
3162 undefined.  @var{m} is the mode of operand 0; operand 1's mode is
3163 specified by the instruction pattern, and the compiler will convert the
3164 operand to that mode before generating the instruction.
3165
3166 @cindex @code{popcount@var{m}2} instruction pattern
3167 @item @samp{popcount@var{m}2}
3168 Store into operand 0 the number of 1-bits in @var{x}.  @var{m} is the
3169 mode of operand 0; operand 1's mode is specified by the instruction
3170 pattern, and the compiler will convert the operand to that mode before
3171 generating the instruction.
3172
3173 @cindex @code{parity@var{m}2} instruction pattern
3174 @item @samp{parity@var{m}2}
3175 Store into operand 0 the parity of @var{x}, i.e.@: the number of 1-bits
3176 in @var{x} modulo 2.  @var{m} is the mode of operand 0; operand 1's mode
3177 is specified by the instruction pattern, and the compiler will convert
3178 the operand to that mode before generating the instruction.
3179
3180 @cindex @code{one_cmpl@var{m}2} instruction pattern
3181 @item @samp{one_cmpl@var{m}2}
3182 Store the bitwise-complement of operand 1 into operand 0.
3183
3184 @cindex @code{cmp@var{m}} instruction pattern
3185 @item @samp{cmp@var{m}}
3186 Compare operand 0 and operand 1, and set the condition codes.
3187 The RTL pattern should look like this:
3188
3189 @smallexample
3190 (set (cc0) (compare (match_operand:@var{m} 0 @dots{})
3191                     (match_operand:@var{m} 1 @dots{})))
3192 @end smallexample
3193
3194 @cindex @code{tst@var{m}} instruction pattern
3195 @item @samp{tst@var{m}}
3196 Compare operand 0 against zero, and set the condition codes.
3197 The RTL pattern should look like this:
3198
3199 @smallexample
3200 (set (cc0) (match_operand:@var{m} 0 @dots{}))
3201 @end smallexample
3202
3203 @samp{tst@var{m}} patterns should not be defined for machines that do
3204 not use @code{(cc0)}.  Doing so would confuse the optimizer since it
3205 would no longer be clear which @code{set} operations were comparisons.
3206 The @samp{cmp@var{m}} patterns should be used instead.
3207
3208 @cindex @code{movmem@var{m}} instruction pattern
3209 @item @samp{movmem@var{m}}
3210 Block move instruction.  The destination and source blocks of memory
3211 are the first two operands, and both are @code{mem:BLK}s with an
3212 address in mode @code{Pmode}.
3213
3214 The number of bytes to move is the third operand, in mode @var{m}.
3215 Usually, you specify @code{word_mode} for @var{m}.  However, if you can
3216 generate better code knowing the range of valid lengths is smaller than
3217 those representable in a full word, you should provide a pattern with a
3218 mode corresponding to the range of values you can handle efficiently
3219 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
3220 that appear negative) and also a pattern with @code{word_mode}.
3221
3222 The fourth operand is the known shared alignment of the source and
3223 destination, in the form of a @code{const_int} rtx.  Thus, if the
3224 compiler knows that both source and destination are word-aligned,
3225 it may provide the value 4 for this operand.
3226
3227 Descriptions of multiple @code{movmem@var{m}} patterns can only be
3228 beneficial if the patterns for smaller modes have fewer restrictions
3229 on their first, second and fourth operands.  Note that the mode @var{m}
3230 in @code{movmem@var{m}} does not impose any restriction on the mode of
3231 individually moved data units in the block.
3232
3233 These patterns need not give special consideration to the possibility
3234 that the source and destination strings might overlap.
3235
3236 @cindex @code{movstr} instruction pattern
3237 @item @samp{movstr}
3238 String copy instruction, with @code{stpcpy} semantics.  Operand 0 is
3239 an output operand in mode @code{Pmode}.  The addresses of the
3240 destination and source strings are operands 1 and 2, and both are
3241 @code{mem:BLK}s with addresses in mode @code{Pmode}.  The execution of
3242 the expansion of this pattern should store in operand 0 the address in
3243 which the @code{NUL} terminator was stored in the destination string.
3244
3245 @cindex @code{clrmem@var{m}} instruction pattern
3246 @item @samp{clrmem@var{m}}
3247 Block clear instruction.  The destination string is the first operand,
3248 given as a @code{mem:BLK} whose address is in mode @code{Pmode}.  The
3249 number of bytes to clear is the second operand, in mode @var{m}.  See
3250 @samp{movmem@var{m}} for a discussion of the choice of mode.
3251
3252 The third operand is the known alignment of the destination, in the form
3253 of a @code{const_int} rtx.  Thus, if the compiler knows that the
3254 destination is word-aligned, it may provide the value 4 for this
3255 operand.
3256
3257 The use for multiple @code{clrmem@var{m}} is as for @code{movmem@var{m}}.
3258
3259 @cindex @code{cmpstr@var{m}} instruction pattern
3260 @item @samp{cmpstr@var{m}}
3261 String compare instruction, with five operands.  Operand 0 is the output;
3262 it has mode @var{m}.  The remaining four operands are like the operands
3263 of @samp{movmem@var{m}}.  The two memory blocks specified are compared
3264 byte by byte in lexicographic order starting at the beginning of each
3265 string.  The instruction is not allowed to prefetch more than one byte
3266 at a time since either string may end in the first byte and reading past
3267 that may access an invalid page or segment and cause a fault.  The
3268 effect of the instruction is to store a value in operand 0 whose sign
3269 indicates the result of the comparison.
3270
3271 @cindex @code{cmpmem@var{m}} instruction pattern
3272 @item @samp{cmpmem@var{m}}
3273 Block compare instruction, with five operands like the operands
3274 of @samp{cmpstr@var{m}}.  The two memory blocks specified are compared
3275 byte by byte in lexicographic order starting at the beginning of each
3276 block.  Unlike @samp{cmpstr@var{m}} the instruction can prefetch
3277 any bytes in the two memory blocks.  The effect of the instruction is
3278 to store a value in operand 0 whose sign indicates the result of the
3279 comparison.
3280
3281 @cindex @code{strlen@var{m}} instruction pattern
3282 @item @samp{strlen@var{m}}
3283 Compute the length of a string, with three operands.
3284 Operand 0 is the result (of mode @var{m}), operand 1 is
3285 a @code{mem} referring to the first character of the string,
3286 operand 2 is the character to search for (normally zero),
3287 and operand 3 is a constant describing the known alignment
3288 of the beginning of the string.
3289
3290 @cindex @code{float@var{mn}2} instruction pattern
3291 @item @samp{float@var{m}@var{n}2}
3292 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
3293 floating point mode @var{n} and store in operand 0 (which has mode
3294 @var{n}).
3295
3296 @cindex @code{floatuns@var{mn}2} instruction pattern
3297 @item @samp{floatuns@var{m}@var{n}2}
3298 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
3299 to floating point mode @var{n} and store in operand 0 (which has mode
3300 @var{n}).
3301
3302 @cindex @code{fix@var{mn}2} instruction pattern
3303 @item @samp{fix@var{m}@var{n}2}
3304 Convert operand 1 (valid for floating point mode @var{m}) to fixed
3305 point mode @var{n} as a signed number and store in operand 0 (which
3306 has mode @var{n}).  This instruction's result is defined only when
3307 the value of operand 1 is an integer.
3308
3309 If the machine description defines this pattern, it also needs to
3310 define the @code{ftrunc} pattern.
3311
3312 @cindex @code{fixuns@var{mn}2} instruction pattern
3313 @item @samp{fixuns@var{m}@var{n}2}
3314 Convert operand 1 (valid for floating point mode @var{m}) to fixed
3315 point mode @var{n} as an unsigned number and store in operand 0 (which
3316 has mode @var{n}).  This instruction's result is defined only when the
3317 value of operand 1 is an integer.
3318
3319 @cindex @code{ftrunc@var{m}2} instruction pattern
3320 @item @samp{ftrunc@var{m}2}
3321 Convert operand 1 (valid for floating point mode @var{m}) to an
3322 integer value, still represented in floating point mode @var{m}, and
3323 store it in operand 0 (valid for floating point mode @var{m}).
3324
3325 @cindex @code{fix_trunc@var{mn}2} instruction pattern
3326 @item @samp{fix_trunc@var{m}@var{n}2}
3327 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
3328 of mode @var{m} by converting the value to an integer.
3329
3330 @cindex @code{fixuns_trunc@var{mn}2} instruction pattern
3331 @item @samp{fixuns_trunc@var{m}@var{n}2}
3332 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
3333 value of mode @var{m} by converting the value to an integer.
3334
3335 @cindex @code{trunc@var{mn}2} instruction pattern
3336 @item @samp{trunc@var{m}@var{n}2}
3337 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
3338 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
3339 point or both floating point.
3340
3341 @cindex @code{extend@var{mn}2} instruction pattern
3342 @item @samp{extend@var{m}@var{n}2}
3343 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
3344 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
3345 point or both floating point.
3346
3347 @cindex @code{zero_extend@var{mn}2} instruction pattern
3348 @item @samp{zero_extend@var{m}@var{n}2}
3349 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
3350 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
3351 point.
3352
3353 @cindex @code{extv} instruction pattern
3354 @item @samp{extv}
3355 Extract a bit-field from operand 1 (a register or memory operand), where
3356 operand 2 specifies the width in bits and operand 3 the starting bit,
3357 and store it in operand 0.  Operand 0 must have mode @code{word_mode}.
3358 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
3359 @code{word_mode} is allowed only for registers.  Operands 2 and 3 must
3360 be valid for @code{word_mode}.
3361
3362 The RTL generation pass generates this instruction only with constants
3363 for operands 2 and 3.
3364
3365 The bit-field value is sign-extended to a full word integer
3366 before it is stored in operand 0.
3367
3368 @cindex @code{extzv} instruction pattern
3369 @item @samp{extzv}
3370 Like @samp{extv} except that the bit-field value is zero-extended.
3371
3372 @cindex @code{insv} instruction pattern
3373 @item @samp{insv}
3374 Store operand 3 (which must be valid for @code{word_mode}) into a
3375 bit-field in operand 0, where operand 1 specifies the width in bits and
3376 operand 2 the starting bit.  Operand 0 may have mode @code{byte_mode} or
3377 @code{word_mode}; often @code{word_mode} is allowed only for registers.
3378 Operands 1 and 2 must be valid for @code{word_mode}.
3379
3380 The RTL generation pass generates this instruction only with constants
3381 for operands 1 and 2.
3382
3383 @cindex @code{mov@var{mode}cc} instruction pattern
3384 @item @samp{mov@var{mode}cc}
3385 Conditionally move operand 2 or operand 3 into operand 0 according to the
3386 comparison in operand 1.  If the comparison is true, operand 2 is moved
3387 into operand 0, otherwise operand 3 is moved.
3388
3389 The mode of the operands being compared need not be the same as the operands
3390 being moved.  Some machines, sparc64 for example, have instructions that
3391 conditionally move an integer value based on the floating point condition
3392 codes and vice versa.
3393
3394 If the machine does not have conditional move instructions, do not
3395 define these patterns.
3396
3397 @cindex @code{add@var{mode}cc} instruction pattern
3398 @item @samp{add@var{mode}cc}
3399 Similar to @samp{mov@var{mode}cc} but for conditional addition.  Conditionally
3400 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
3401 comparison in operand 1.  If the comparison is true, operand 2 is moved into
3402 operand 0, otherwise (operand 2 + operand 3) is moved.
3403
3404 @cindex @code{s@var{cond}} instruction pattern
3405 @item @samp{s@var{cond}}
3406 Store zero or nonzero in the operand according to the condition codes.
3407 Value stored is nonzero iff the condition @var{cond} is true.
3408 @var{cond} is the name of a comparison operation expression code, such
3409 as @code{eq}, @code{lt} or @code{leu}.
3410
3411 You specify the mode that the operand must have when you write the
3412 @code{match_operand} expression.  The compiler automatically sees
3413 which mode you have used and supplies an operand of that mode.
3414
3415 The value stored for a true condition must have 1 as its low bit, or
3416 else must be negative.  Otherwise the instruction is not suitable and
3417 you should omit it from the machine description.  You describe to the
3418 compiler exactly which value is stored by defining the macro
3419 @code{STORE_FLAG_VALUE} (@pxref{Misc}).  If a description cannot be
3420 found that can be used for all the @samp{s@var{cond}} patterns, you
3421 should omit those operations from the machine description.
3422
3423 These operations may fail, but should do so only in relatively
3424 uncommon cases; if they would fail for common cases involving
3425 integer comparisons, it is best to omit these patterns.
3426
3427 If these operations are omitted, the compiler will usually generate code
3428 that copies the constant one to the target and branches around an
3429 assignment of zero to the target.  If this code is more efficient than
3430 the potential instructions used for the @samp{s@var{cond}} pattern
3431 followed by those required to convert the result into a 1 or a zero in
3432 @code{SImode}, you should omit the @samp{s@var{cond}} operations from
3433 the machine description.
3434
3435 @cindex @code{b@var{cond}} instruction pattern
3436 @item @samp{b@var{cond}}
3437 Conditional branch instruction.  Operand 0 is a @code{label_ref} that
3438 refers to the label to jump to.  Jump if the condition codes meet
3439 condition @var{cond}.
3440
3441 Some machines do not follow the model assumed here where a comparison
3442 instruction is followed by a conditional branch instruction.  In that
3443 case, the @samp{cmp@var{m}} (and @samp{tst@var{m}}) patterns should
3444 simply store the operands away and generate all the required insns in a
3445 @code{define_expand} (@pxref{Expander Definitions}) for the conditional
3446 branch operations.  All calls to expand @samp{b@var{cond}} patterns are
3447 immediately preceded by calls to expand either a @samp{cmp@var{m}}
3448 pattern or a @samp{tst@var{m}} pattern.
3449
3450 Machines that use a pseudo register for the condition code value, or
3451 where the mode used for the comparison depends on the condition being
3452 tested, should also use the above mechanism.  @xref{Jump Patterns}.
3453
3454 The above discussion also applies to the @samp{mov@var{mode}cc} and
3455 @samp{s@var{cond}} patterns.
3456
3457 @cindex @code{cbranch@var{mode}4} instruction pattern
3458 @item @samp{cbranch@var{mode}4}
3459 Conditional branch instruction combined with a compare instruction.
3460 Operand 0 is a comparison operator.  Operand 1 and operand 2 are the
3461 first and second operands of the comparison, respectively.  Operand 3
3462 is a @code{label_ref} that refers to the label to jump to.
3463
3464 @cindex @code{jump} instruction pattern
3465 @item @samp{jump}
3466 A jump inside a function; an unconditional branch.  Operand 0 is the
3467 @code{label_ref} of the label to jump to.  This pattern name is mandatory
3468 on all machines.
3469
3470 @cindex @code{call} instruction pattern
3471 @item @samp{call}
3472 Subroutine call instruction returning no value.  Operand 0 is the
3473 function to call; operand 1 is the number of bytes of arguments pushed
3474 as a @code{const_int}; operand 2 is the number of registers used as
3475 operands.
3476
3477 On most machines, operand 2 is not actually stored into the RTL
3478 pattern.  It is supplied for the sake of some RISC machines which need
3479 to put this information into the assembler code; they can put it in
3480 the RTL instead of operand 1.
3481
3482 Operand 0 should be a @code{mem} RTX whose address is the address of the
3483 function.  Note, however, that this address can be a @code{symbol_ref}
3484 expression even if it would not be a legitimate memory address on the
3485 target machine.  If it is also not a valid argument for a call
3486 instruction, the pattern for this operation should be a
3487 @code{define_expand} (@pxref{Expander Definitions}) that places the
3488 address into a register and uses that register in the call instruction.
3489
3490 @cindex @code{call_value} instruction pattern
3491 @item @samp{call_value}
3492 Subroutine call instruction returning a value.  Operand 0 is the hard
3493 register in which the value is returned.  There are three more
3494 operands, the same as the three operands of the @samp{call}
3495 instruction (but with numbers increased by one).
3496
3497 Subroutines that return @code{BLKmode} objects use the @samp{call}
3498 insn.
3499
3500 @cindex @code{call_pop} instruction pattern
3501 @cindex @code{call_value_pop} instruction pattern
3502 @item @samp{call_pop}, @samp{call_value_pop}
3503 Similar to @samp{call} and @samp{call_value}, except used if defined and
3504 if @code{RETURN_POPS_ARGS} is nonzero.  They should emit a @code{parallel}
3505 that contains both the function call and a @code{set} to indicate the
3506 adjustment made to the frame pointer.
3507
3508 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
3509 patterns increases the number of functions for which the frame pointer
3510 can be eliminated, if desired.
3511
3512 @cindex @code{untyped_call} instruction pattern
3513 @item @samp{untyped_call}
3514 Subroutine call instruction returning a value of any type.  Operand 0 is
3515 the function to call; operand 1 is a memory location where the result of
3516 calling the function is to be stored; operand 2 is a @code{parallel}
3517 expression where each element is a @code{set} expression that indicates
3518 the saving of a function return value into the result block.
3519
3520 This instruction pattern should be defined to support
3521 @code{__builtin_apply} on machines where special instructions are needed
3522 to call a subroutine with arbitrary arguments or to save the value
3523 returned.  This instruction pattern is required on machines that have
3524 multiple registers that can hold a return value
3525 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
3526
3527 @cindex @code{return} instruction pattern
3528 @item @samp{return}
3529 Subroutine return instruction.  This instruction pattern name should be
3530 defined only if a single instruction can do all the work of returning
3531 from a function.
3532
3533 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
3534 RTL generation phase.  In this case it is to support machines where
3535 multiple instructions are usually needed to return from a function, but
3536 some class of functions only requires one instruction to implement a
3537 return.  Normally, the applicable functions are those which do not need
3538 to save any registers or allocate stack space.
3539
3540 @findex reload_completed
3541 @findex leaf_function_p
3542 For such machines, the condition specified in this pattern should only
3543 be true when @code{reload_completed} is nonzero and the function's
3544 epilogue would only be a single instruction.  For machines with register
3545 windows, the routine @code{leaf_function_p} may be used to determine if
3546 a register window push is required.
3547
3548 Machines that have conditional return instructions should define patterns
3549 such as
3550
3551 @smallexample
3552 (define_insn ""
3553   [(set (pc)
3554         (if_then_else (match_operator
3555                          0 "comparison_operator"
3556                          [(cc0) (const_int 0)])
3557                       (return)
3558                       (pc)))]
3559   "@var{condition}"
3560   "@dots{}")
3561 @end smallexample
3562
3563 where @var{condition} would normally be the same condition specified on the
3564 named @samp{return} pattern.
3565
3566 @cindex @code{untyped_return} instruction pattern
3567 @item @samp{untyped_return}
3568 Untyped subroutine return instruction.  This instruction pattern should
3569 be defined to support @code{__builtin_return} on machines where special
3570 instructions are needed to return a value of any type.
3571
3572 Operand 0 is a memory location where the result of calling a function
3573 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
3574 expression where each element is a @code{set} expression that indicates
3575 the restoring of a function return value from the result block.
3576
3577 @cindex @code{nop} instruction pattern
3578 @item @samp{nop}
3579 No-op instruction.  This instruction pattern name should always be defined
3580 to output a no-op in assembler code.  @code{(const_int 0)} will do as an
3581 RTL pattern.
3582
3583 @cindex @code{indirect_jump} instruction pattern
3584 @item @samp{indirect_jump}
3585 An instruction to jump to an address which is operand zero.
3586 This pattern name is mandatory on all machines.
3587
3588 @cindex @code{casesi} instruction pattern
3589 @item @samp{casesi}
3590 Instruction to jump through a dispatch table, including bounds checking.
3591 This instruction takes five operands:
3592
3593 @enumerate
3594 @item
3595 The index to dispatch on, which has mode @code{SImode}.
3596
3597 @item
3598 The lower bound for indices in the table, an integer constant.
3599
3600 @item
3601 The total range of indices in the table---the largest index
3602 minus the smallest one (both inclusive).
3603
3604 @item
3605 A label that precedes the table itself.
3606
3607 @item
3608 A label to jump to if the index has a value outside the bounds.
3609 @end enumerate
3610
3611 The table is a @code{addr_vec} or @code{addr_diff_vec} inside of a
3612 @code{jump_insn}.  The number of elements in the table is one plus the
3613 difference between the upper bound and the lower bound.
3614
3615 @cindex @code{tablejump} instruction pattern
3616 @item @samp{tablejump}
3617 Instruction to jump to a variable address.  This is a low-level
3618 capability which can be used to implement a dispatch table when there
3619 is no @samp{casesi} pattern.
3620
3621 This pattern requires two operands: the address or offset, and a label
3622 which should immediately precede the jump table.  If the macro
3623 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
3624 operand is an offset which counts from the address of the table; otherwise,
3625 it is an absolute address to jump to.  In either case, the first operand has
3626 mode @code{Pmode}.
3627
3628 The @samp{tablejump} insn is always the last insn before the jump
3629 table it uses.  Its assembler code normally has no need to use the
3630 second operand, but you should incorporate it in the RTL pattern so
3631 that the jump optimizer will not delete the table as unreachable code.
3632
3633
3634 @cindex @code{decrement_and_branch_until_zero} instruction pattern
3635 @item @samp{decrement_and_branch_until_zero}
3636 Conditional branch instruction that decrements a register and
3637 jumps if the register is nonzero.  Operand 0 is the register to
3638 decrement and test; operand 1 is the label to jump to if the
3639 register is nonzero.  @xref{Looping Patterns}.
3640
3641 This optional instruction pattern is only used by the combiner,
3642 typically for loops reversed by the loop optimizer when strength
3643 reduction is enabled.
3644
3645 @cindex @code{doloop_end} instruction pattern
3646 @item @samp{doloop_end}
3647 Conditional branch instruction that decrements a register and jumps if
3648 the register is nonzero.  This instruction takes five operands: Operand
3649 0 is the register to decrement and test; operand 1 is the number of loop
3650 iterations as a @code{const_int} or @code{const0_rtx} if this cannot be
3651 determined until run-time; operand 2 is the actual or estimated maximum
3652 number of iterations as a @code{const_int}; operand 3 is the number of
3653 enclosed loops as a @code{const_int} (an innermost loop has a value of
3654 1); operand 4 is the label to jump to if the register is nonzero.
3655 @xref{Looping Patterns}.
3656
3657 This optional instruction pattern should be defined for machines with
3658 low-overhead looping instructions as the loop optimizer will try to
3659 modify suitable loops to utilize it.  If nested low-overhead looping is
3660 not supported, use a @code{define_expand} (@pxref{Expander Definitions})
3661 and make the pattern fail if operand 3 is not @code{const1_rtx}.
3662 Similarly, if the actual or estimated maximum number of iterations is
3663 too large for this instruction, make it fail.
3664
3665 @cindex @code{doloop_begin} instruction pattern
3666 @item @samp{doloop_begin}
3667 Companion instruction to @code{doloop_end} required for machines that
3668 need to perform some initialization, such as loading special registers
3669 used by a low-overhead looping instruction.  If initialization insns do
3670 not always need to be emitted, use a @code{define_expand}
3671 (@pxref{Expander Definitions}) and make it fail.
3672
3673
3674 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
3675 @item @samp{canonicalize_funcptr_for_compare}
3676 Canonicalize the function pointer in operand 1 and store the result
3677 into operand 0.
3678
3679 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
3680 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
3681 and also has mode @code{Pmode}.
3682
3683 Canonicalization of a function pointer usually involves computing
3684 the address of the function which would be called if the function
3685 pointer were used in an indirect call.
3686
3687 Only define this pattern if function pointers on the target machine
3688 can have different values but still call the same function when
3689 used in an indirect call.
3690
3691 @cindex @code{save_stack_block} instruction pattern
3692 @cindex @code{save_stack_function} instruction pattern
3693 @cindex @code{save_stack_nonlocal} instruction pattern
3694 @cindex @code{restore_stack_block} instruction pattern
3695 @cindex @code{restore_stack_function} instruction pattern
3696 @cindex @code{restore_stack_nonlocal} instruction pattern
3697 @item @samp{save_stack_block}
3698 @itemx @samp{save_stack_function}
3699 @itemx @samp{save_stack_nonlocal}
3700 @itemx @samp{restore_stack_block}
3701 @itemx @samp{restore_stack_function}
3702 @itemx @samp{restore_stack_nonlocal}
3703 Most machines save and restore the stack pointer by copying it to or
3704 from an object of mode @code{Pmode}.  Do not define these patterns on
3705 such machines.
3706
3707 Some machines require special handling for stack pointer saves and
3708 restores.  On those machines, define the patterns corresponding to the
3709 non-standard cases by using a @code{define_expand} (@pxref{Expander
3710 Definitions}) that produces the required insns.  The three types of
3711 saves and restores are:
3712
3713 @enumerate
3714 @item
3715 @samp{save_stack_block} saves the stack pointer at the start of a block
3716 that allocates a variable-sized object, and @samp{restore_stack_block}
3717 restores the stack pointer when the block is exited.
3718
3719 @item
3720 @samp{save_stack_function} and @samp{restore_stack_function} do a
3721 similar job for the outermost block of a function and are used when the
3722 function allocates variable-sized objects or calls @code{alloca}.  Only
3723 the epilogue uses the restored stack pointer, allowing a simpler save or
3724 restore sequence on some machines.
3725
3726 @item
3727 @samp{save_stack_nonlocal} is used in functions that contain labels
3728 branched to by nested functions.  It saves the stack pointer in such a
3729 way that the inner function can use @samp{restore_stack_nonlocal} to
3730 restore the stack pointer.  The compiler generates code to restore the
3731 frame and argument pointer registers, but some machines require saving
3732 and restoring additional data such as register window information or
3733 stack backchains.  Place insns in these patterns to save and restore any
3734 such required data.
3735 @end enumerate
3736
3737 When saving the stack pointer, operand 0 is the save area and operand 1
3738 is the stack pointer.  The mode used to allocate the save area defaults
3739 to @code{Pmode} but you can override that choice by defining the
3740 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}).  You must
3741 specify an integral mode, or @code{VOIDmode} if no save area is needed
3742 for a particular type of save (either because no save is needed or
3743 because a machine-specific save area can be used).  Operand 0 is the
3744 stack pointer and operand 1 is the save area for restore operations.  If
3745 @samp{save_stack_block} is defined, operand 0 must not be
3746 @code{VOIDmode} since these saves can be arbitrarily nested.
3747
3748 A save area is a @code{mem} that is at a constant offset from
3749 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
3750 nonlocal gotos and a @code{reg} in the other two cases.
3751
3752 @cindex @code{allocate_stack} instruction pattern
3753 @item @samp{allocate_stack}
3754 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
3755 the stack pointer to create space for dynamically allocated data.
3756
3757 Store the resultant pointer to this space into operand 0.  If you
3758 are allocating space from the main stack, do this by emitting a
3759 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
3760 If you are allocating the space elsewhere, generate code to copy the
3761 location of the space to operand 0.  In the latter case, you must
3762 ensure this space gets freed when the corresponding space on the main
3763 stack is free.
3764
3765 Do not define this pattern if all that must be done is the subtraction.
3766 Some machines require other operations such as stack probes or
3767 maintaining the back chain.  Define this pattern to emit those
3768 operations in addition to updating the stack pointer.
3769
3770 @cindex @code{check_stack} instruction pattern
3771 @item @samp{check_stack}
3772 If stack checking cannot be done on your system by probing the stack with
3773 a load or store instruction (@pxref{Stack Checking}), define this pattern
3774 to perform the needed check and signaling an error if the stack
3775 has overflowed.  The single operand is the location in the stack furthest
3776 from the current stack pointer that you need to validate.  Normally,
3777 on machines where this pattern is needed, you would obtain the stack
3778 limit from a global or thread-specific variable or register.
3779
3780 @cindex @code{nonlocal_goto} instruction pattern
3781 @item @samp{nonlocal_goto}
3782 Emit code to generate a non-local goto, e.g., a jump from one function
3783 to a label in an outer function.  This pattern has four arguments,
3784 each representing a value to be used in the jump.  The first
3785 argument is to be loaded into the frame pointer, the second is
3786 the address to branch to (code to dispatch to the actual label),
3787 the third is the address of a location where the stack is saved,
3788 and the last is the address of the label, to be placed in the
3789 location for the incoming static chain.
3790
3791 On most machines you need not define this pattern, since GCC will
3792 already generate the correct code, which is to load the frame pointer
3793 and static chain, restore the stack (using the
3794 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
3795 to the dispatcher.  You need only define this pattern if this code will
3796 not work on your machine.
3797
3798 @cindex @code{nonlocal_goto_receiver} instruction pattern
3799 @item @samp{nonlocal_goto_receiver}
3800 This pattern, if defined, contains code needed at the target of a
3801 nonlocal goto after the code already generated by GCC@.  You will not
3802 normally need to define this pattern.  A typical reason why you might
3803 need this pattern is if some value, such as a pointer to a global table,
3804 must be restored when the frame pointer is restored.  Note that a nonlocal
3805 goto only occurs within a unit-of-translation, so a global table pointer
3806 that is shared by all functions of a given module need not be restored.
3807 There are no arguments.
3808
3809 @cindex @code{exception_receiver} instruction pattern
3810 @item @samp{exception_receiver}
3811 This pattern, if defined, contains code needed at the site of an
3812 exception handler that isn't needed at the site of a nonlocal goto.  You
3813 will not normally need to define this pattern.  A typical reason why you
3814 might need this pattern is if some value, such as a pointer to a global
3815 table, must be restored after control flow is branched to the handler of
3816 an exception.  There are no arguments.
3817
3818 @cindex @code{builtin_setjmp_setup} instruction pattern
3819 @item @samp{builtin_setjmp_setup}
3820 This pattern, if defined, contains additional code needed to initialize
3821 the @code{jmp_buf}.  You will not normally need to define this pattern.
3822 A typical reason why you might need this pattern is if some value, such
3823 as a pointer to a global table, must be restored.  Though it is
3824 preferred that the pointer value be recalculated if possible (given the
3825 address of a label for instance).  The single argument is a pointer to
3826 the @code{jmp_buf}.  Note that the buffer is five words long and that
3827 the first three are normally used by the generic mechanism.
3828
3829 @cindex @code{builtin_setjmp_receiver} instruction pattern
3830 @item @samp{builtin_setjmp_receiver}
3831 This pattern, if defined, contains code needed at the site of an
3832 built-in setjmp that isn't needed at the site of a nonlocal goto.  You
3833 will not normally need to define this pattern.  A typical reason why you
3834 might need this pattern is if some value, such as a pointer to a global
3835 table, must be restored.  It takes one argument, which is the label
3836 to which builtin_longjmp transfered control; this pattern may be emitted
3837 at a small offset from that label.
3838
3839 @cindex @code{builtin_longjmp} instruction pattern
3840 @item @samp{builtin_longjmp}
3841 This pattern, if defined, performs the entire action of the longjmp.
3842 You will not normally need to define this pattern unless you also define
3843 @code{builtin_setjmp_setup}.  The single argument is a pointer to the
3844 @code{jmp_buf}.
3845
3846 @cindex @code{eh_return} instruction pattern
3847 @item @samp{eh_return}
3848 This pattern, if defined, affects the way @code{__builtin_eh_return},
3849 and thence the call frame exception handling library routines, are
3850 built.  It is intended to handle non-trivial actions needed along
3851 the abnormal return path.
3852
3853 The address of the exception handler to which the function should return
3854 is passed as operand to this pattern.  It will normally need to copied by
3855 the pattern to some special register or memory location.
3856 If the pattern needs to determine the location of the target call
3857 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
3858 if defined; it will have already been assigned.
3859
3860 If this pattern is not defined, the default action will be to simply
3861 copy the return address to @code{EH_RETURN_HANDLER_RTX}.  Either
3862 that macro or this pattern needs to be defined if call frame exception
3863 handling is to be used.
3864
3865 @cindex @code{prologue} instruction pattern
3866 @anchor{prologue instruction pattern}
3867 @item @samp{prologue}
3868 This pattern, if defined, emits RTL for entry to a function.  The function
3869 entry is responsible for setting up the stack frame, initializing the frame
3870 pointer register, saving callee saved registers, etc.
3871
3872 Using a prologue pattern is generally preferred over defining
3873 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
3874
3875 The @code{prologue} pattern is particularly useful for targets which perform
3876 instruction scheduling.
3877
3878 @cindex @code{epilogue} instruction pattern
3879 @anchor{epilogue instruction pattern}
3880 @item @samp{epilogue}
3881 This pattern emits RTL for exit from a function.  The function
3882 exit is responsible for deallocating the stack frame, restoring callee saved
3883 registers and emitting the return instruction.
3884
3885 Using an epilogue pattern is generally preferred over defining
3886 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
3887
3888 The @code{epilogue} pattern is particularly useful for targets which perform
3889 instruction scheduling or which have delay slots for their return instruction.
3890
3891 @cindex @code{sibcall_epilogue} instruction pattern
3892 @item @samp{sibcall_epilogue}
3893 This pattern, if defined, emits RTL for exit from a function without the final
3894 branch back to the calling function.  This pattern will be emitted before any
3895 sibling call (aka tail call) sites.
3896
3897 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
3898 parameter passing or any stack slots for arguments passed to the current
3899 function.
3900
3901 @cindex @code{trap} instruction pattern
3902 @item @samp{trap}
3903 This pattern, if defined, signals an error, typically by causing some
3904 kind of signal to be raised.  Among other places, it is used by the Java
3905 front end to signal `invalid array index' exceptions.
3906
3907 @cindex @code{conditional_trap} instruction pattern
3908 @item @samp{conditional_trap}
3909 Conditional trap instruction.  Operand 0 is a piece of RTL which
3910 performs a comparison.  Operand 1 is the trap code, an integer.
3911
3912 A typical @code{conditional_trap} pattern looks like
3913
3914 @smallexample
3915 (define_insn "conditional_trap"
3916   [(trap_if (match_operator 0 "trap_operator"
3917              [(cc0) (const_int 0)])
3918             (match_operand 1 "const_int_operand" "i"))]
3919   ""
3920   "@dots{}")
3921 @end smallexample
3922
3923 @cindex @code{prefetch} instruction pattern
3924 @item @samp{prefetch}
3925
3926 This pattern, if defined, emits code for a non-faulting data prefetch
3927 instruction.  Operand 0 is the address of the memory to prefetch.  Operand 1
3928 is a constant 1 if the prefetch is preparing for a write to the memory
3929 address, or a constant 0 otherwise.  Operand 2 is the expected degree of
3930 temporal locality of the data and is a value between 0 and 3, inclusive; 0
3931 means that the data has no temporal locality, so it need not be left in the
3932 cache after the access; 3 means that the data has a high degree of temporal
3933 locality and should be left in all levels of cache possible;  1 and 2 mean,
3934 respectively, a low or moderate degree of temporal locality.
3935
3936 Targets that do not support write prefetches or locality hints can ignore
3937 the values of operands 1 and 2.
3938
3939 @cindex @code{memory_barrier} instruction pattern
3940 @item @samp{memory_barrier}
3941
3942 If the target memory model is not fully synchronous, then this pattern
3943 should be defined to an instruction that orders both loads and stores
3944 before the instruction with respect to loads and stores after the instruction.
3945 This pattern has no operands.
3946
3947 @cindex @code{sync_compare_and_swap@var{mode}} instruction pattern
3948 @item @samp{sync_compare_and_swap@var{mode}}
3949
3950 This pattern, if defined, emits code for an atomic compare-and-swap
3951 operation.  Operand 1 is the memory on which the atomic operation is
3952 performed.  Operand 2 is the ``old'' value to be compared against the
3953 current contents of the memory location.  Operand 3 is the ``new'' value
3954 to store in the memory if the compare succeeds.  Operand 0 is the result
3955 of the operation; it should contain the contents of the memory
3956 before the operation.  If the compare succeeds, this should obviously be
3957 a copy of operand 2.
3958
3959 This pattern must show that both operand 0 and operand 1 are modified.
3960
3961 This pattern must issue any memory barrier instructions such that all
3962 memory operations before the atomic operation occur before the atomic
3963 operation and all memory operations after the atomic operation occur
3964 after the atomic operation.
3965
3966 @cindex @code{sync_compare_and_swap_cc@var{mode}} instruction pattern
3967 @item @samp{sync_compare_and_swap_cc@var{mode}}
3968
3969 This pattern is just like @code{sync_compare_and_swap@var{mode}}, except
3970 it should act as if compare part of the compare-and-swap were issued via
3971 @code{cmp@var{m}}.  This comparison will only be used with @code{EQ} and
3972 @code{NE} branches and @code{setcc} operations.
3973
3974 Some targets do expose the success or failure of the compare-and-swap
3975 operation via the status flags.  Ideally we wouldn't need a separate
3976 named pattern in order to take advantage of this, but the combine pass
3977 does not handle patterns with multiple sets, which is required by
3978 definition for @code{sync_compare_and_swap@var{mode}}.
3979
3980 @cindex @code{sync_add@var{mode}} instruction pattern
3981 @cindex @code{sync_sub@var{mode}} instruction pattern
3982 @cindex @code{sync_ior@var{mode}} instruction pattern
3983 @cindex @code{sync_and@var{mode}} instruction pattern
3984 @cindex @code{sync_xor@var{mode}} instruction pattern
3985 @cindex @code{sync_nand@var{mode}} instruction pattern
3986 @item @samp{sync_add@var{mode}}, @samp{sync_sub@var{mode}}
3987 @itemx @samp{sync_ior@var{mode}}, @samp{sync_and@var{mode}}
3988 @itemx @samp{sync_xor@var{mode}}, @samp{sync_nand@var{mode}}
3989
3990 These patterns emit code for an atomic operation on memory.
3991 Operand 0 is the memory on which the atomic operation is performed.
3992 Operand 1 is the second operand to the binary operator.
3993
3994 The ``nand'' operation is @code{op0 & ~op1}.
3995
3996 This pattern must issue any memory barrier instructions such that all
3997 memory operations before the atomic operation occur before the atomic
3998 operation and all memory operations after the atomic operation occur
3999 after the atomic operation.
4000
4001 If these patterns are not defined, the operation will be constructed
4002 from a compare-and-swap operation, if defined.
4003
4004 @cindex @code{sync_old_add@var{mode}} instruction pattern
4005 @cindex @code{sync_old_sub@var{mode}} instruction pattern
4006 @cindex @code{sync_old_ior@var{mode}} instruction pattern
4007 @cindex @code{sync_old_and@var{mode}} instruction pattern
4008 @cindex @code{sync_old_xor@var{mode}} instruction pattern
4009 @cindex @code{sync_old_nand@var{mode}} instruction pattern
4010 @item @samp{sync_old_add@var{mode}}, @samp{sync_old_sub@var{mode}}
4011 @itemx @samp{sync_old_ior@var{mode}}, @samp{sync_old_and@var{mode}}
4012 @itemx @samp{sync_old_xor@var{mode}}, @samp{sync_old_nand@var{mode}}
4013
4014 These patterns are emit code for an atomic operation on memory,
4015 and return the value that the memory contained before the operation.
4016 Operand 0 is the result value, operand 1 is the memory on which the
4017 atomic operation is performed, and operand 2 is the second operand
4018 to the binary operator.
4019
4020 This pattern must issue any memory barrier instructions such that all
4021 memory operations before the atomic operation occur before the atomic
4022 operation and all memory operations after the atomic operation occur
4023 after the atomic operation.
4024
4025 If these patterns are not defined, the operation will be constructed
4026 from a compare-and-swap operation, if defined.
4027
4028 @cindex @code{sync_new_add@var{mode}} instruction pattern
4029 @cindex @code{sync_new_sub@var{mode}} instruction pattern
4030 @cindex @code{sync_new_ior@var{mode}} instruction pattern
4031 @cindex @code{sync_new_and@var{mode}} instruction pattern
4032 @cindex @code{sync_new_xor@var{mode}} instruction pattern
4033 @cindex @code{sync_new_nand@var{mode}} instruction pattern
4034 @item @samp{sync_new_add@var{mode}}, @samp{sync_new_sub@var{mode}}
4035 @itemx @samp{sync_new_ior@var{mode}}, @samp{sync_new_and@var{mode}}
4036 @itemx @samp{sync_new_xor@var{mode}}, @samp{sync_new_nand@var{mode}}
4037
4038 These patterns are like their @code{sync_old_@var{op}} counterparts,
4039 except that they return the value that exists in the memory location
4040 after the operation, rather than before the operation.
4041
4042 @cindex @code{sync_lock_test_and_set@var{mode}} instruction pattern
4043 @item @samp{sync_lock_test_and_set@var{mode}}
4044
4045 This pattern takes two forms, based on the capabilities of the target.
4046 In either case, operand 0 is the result of the operand, operand 1 is
4047 the memory on which the atomic operation is performed, and operand 2
4048 is the value to set in the lock.
4049
4050 In the ideal case, this operation is an atomic exchange operation, in
4051 which the previous value in memory operand is copied into the result
4052 operand, and the value operand is stored in the memory operand.
4053
4054 For less capable targets, any value operand that is not the constant 1
4055 should be rejected with @code{FAIL}.  In this case the target may use
4056 an atomic test-and-set bit operation.  The result operand should contain
4057 1 if the bit was previously set and 0 if the bit was previously clear.
4058 The true contents of the memory operand are implementation defined.
4059
4060 This pattern must issue any memory barrier instructions such that the
4061 pattern as a whole acts as an acquire barrier, that is all memory
4062 operations after the pattern do not occur until the lock is acquired.
4063
4064 If this pattern is not defined, the operation will be constructed from
4065 a compare-and-swap operation, if defined.
4066
4067 @cindex @code{sync_lock_release@var{mode}} instruction pattern
4068 @item @samp{sync_lock_release@var{mode}}
4069
4070 This pattern, if defined, releases a lock set by
4071 @code{sync_lock_test_and_set@var{mode}}.  Operand 0 is the memory
4072 that contains the lock; operand 1 is the value to store in the lock.
4073
4074 If the target doesn't implement full semantics for
4075 @code{sync_lock_test_and_set@var{mode}}, any value operand which is not
4076 the constant 0 should be rejected with @code{FAIL}, and the true contents
4077 of the memory operand are implementation defined.
4078
4079 This pattern must issue any memory barrier instructions such that the
4080 pattern as a whole acts as a release barrier, that is the lock is
4081 released only after all previous memory operations have completed.
4082
4083 If this pattern is not defined, then a @code{memory_barrier} pattern
4084 will be emitted, followed by a store of the value to the memory operand.
4085
4086 @end table
4087
4088 @end ifset
4089 @c Each of the following nodes are wrapped in separate
4090 @c "@ifset INTERNALS" to work around memory limits for the default
4091 @c configuration in older tetex distributions.  Known to not work:
4092 @c tetex-1.0.7, known to work: tetex-2.0.2.
4093 @ifset INTERNALS
4094 @node Pattern Ordering
4095 @section When the Order of Patterns Matters
4096 @cindex Pattern Ordering
4097 @cindex Ordering of Patterns
4098
4099 Sometimes an insn can match more than one instruction pattern.  Then the
4100 pattern that appears first in the machine description is the one used.
4101 Therefore, more specific patterns (patterns that will match fewer things)
4102 and faster instructions (those that will produce better code when they
4103 do match) should usually go first in the description.
4104
4105 In some cases the effect of ordering the patterns can be used to hide
4106 a pattern when it is not valid.  For example, the 68000 has an
4107 instruction for converting a fullword to floating point and another
4108 for converting a byte to floating point.  An instruction converting
4109 an integer to floating point could match either one.  We put the
4110 pattern to convert the fullword first to make sure that one will
4111 be used rather than the other.  (Otherwise a large integer might
4112 be generated as a single-byte immediate quantity, which would not work.)
4113 Instead of using this pattern ordering it would be possible to make the
4114 pattern for convert-a-byte smart enough to deal properly with any
4115 constant value.
4116
4117 @end ifset
4118 @ifset INTERNALS
4119 @node Dependent Patterns
4120 @section Interdependence of Patterns
4121 @cindex Dependent Patterns
4122 @cindex Interdependence of Patterns
4123
4124 Every machine description must have a named pattern for each of the
4125 conditional branch names @samp{b@var{cond}}.  The recognition template
4126 must always have the form
4127
4128 @smallexample
4129 (set (pc)
4130      (if_then_else (@var{cond} (cc0) (const_int 0))
4131                    (label_ref (match_operand 0 "" ""))
4132                    (pc)))
4133 @end smallexample
4134
4135 @noindent
4136 In addition, every machine description must have an anonymous pattern
4137 for each of the possible reverse-conditional branches.  Their templates
4138 look like
4139
4140 @smallexample
4141 (set (pc)
4142      (if_then_else (@var{cond} (cc0) (const_int 0))
4143                    (pc)
4144                    (label_ref (match_operand 0 "" ""))))
4145 @end smallexample
4146
4147 @noindent
4148 They are necessary because jump optimization can turn direct-conditional
4149 branches into reverse-conditional branches.
4150
4151 It is often convenient to use the @code{match_operator} construct to
4152 reduce the number of patterns that must be specified for branches.  For
4153 example,
4154
4155 @smallexample
4156 (define_insn ""
4157   [(set (pc)
4158         (if_then_else (match_operator 0 "comparison_operator"
4159                                       [(cc0) (const_int 0)])
4160                       (pc)
4161                       (label_ref (match_operand 1 "" ""))))]
4162   "@var{condition}"
4163   "@dots{}")
4164 @end smallexample
4165
4166 In some cases machines support instructions identical except for the
4167 machine mode of one or more operands.  For example, there may be
4168 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
4169 patterns are
4170
4171 @smallexample
4172 (set (match_operand:SI 0 @dots{})
4173      (extend:SI (match_operand:HI 1 @dots{})))
4174
4175 (set (match_operand:SI 0 @dots{})
4176      (extend:SI (match_operand:QI 1 @dots{})))
4177 @end smallexample
4178
4179 @noindent
4180 Constant integers do not specify a machine mode, so an instruction to
4181 extend a constant value could match either pattern.  The pattern it
4182 actually will match is the one that appears first in the file.  For correct
4183 results, this must be the one for the widest possible mode (@code{HImode},
4184 here).  If the pattern matches the @code{QImode} instruction, the results
4185 will be incorrect if the constant value does not actually fit that mode.
4186
4187 Such instructions to extend constants are rarely generated because they are
4188 optimized away, but they do occasionally happen in nonoptimized
4189 compilations.
4190
4191 If a constraint in a pattern allows a constant, the reload pass may
4192 replace a register with a constant permitted by the constraint in some
4193 cases.  Similarly for memory references.  Because of this substitution,
4194 you should not provide separate patterns for increment and decrement
4195 instructions.  Instead, they should be generated from the same pattern
4196 that supports register-register add insns by examining the operands and
4197 generating the appropriate machine instruction.
4198
4199 @end ifset
4200 @ifset INTERNALS
4201 @node Jump Patterns
4202 @section Defining Jump Instruction Patterns
4203 @cindex jump instruction patterns
4204 @cindex defining jump instruction patterns
4205
4206 For most machines, GCC assumes that the machine has a condition code.
4207 A comparison insn sets the condition code, recording the results of both
4208 signed and unsigned comparison of the given operands.  A separate branch
4209 insn tests the condition code and branches or not according its value.
4210 The branch insns come in distinct signed and unsigned flavors.  Many
4211 common machines, such as the VAX, the 68000 and the 32000, work this
4212 way.
4213
4214 Some machines have distinct signed and unsigned compare instructions, and
4215 only one set of conditional branch instructions.  The easiest way to handle
4216 these machines is to treat them just like the others until the final stage
4217 where assembly code is written.  At this time, when outputting code for the
4218 compare instruction, peek ahead at the following branch using
4219 @code{next_cc0_user (insn)}.  (The variable @code{insn} refers to the insn
4220 being output, in the output-writing code in an instruction pattern.)  If
4221 the RTL says that is an unsigned branch, output an unsigned compare;
4222 otherwise output a signed compare.  When the branch itself is output, you
4223 can treat signed and unsigned branches identically.
4224
4225 The reason you can do this is that GCC always generates a pair of
4226 consecutive RTL insns, possibly separated by @code{note} insns, one to
4227 set the condition code and one to test it, and keeps the pair inviolate
4228 until the end.
4229
4230 To go with this technique, you must define the machine-description macro
4231 @code{NOTICE_UPDATE_CC} to do @code{CC_STATUS_INIT}; in other words, no
4232 compare instruction is superfluous.
4233
4234 Some machines have compare-and-branch instructions and no condition code.
4235 A similar technique works for them.  When it is time to ``output'' a
4236 compare instruction, record its operands in two static variables.  When
4237 outputting the branch-on-condition-code instruction that follows, actually
4238 output a compare-and-branch instruction that uses the remembered operands.
4239
4240 It also works to define patterns for compare-and-branch instructions.
4241 In optimizing compilation, the pair of compare and branch instructions
4242 will be combined according to these patterns.  But this does not happen
4243 if optimization is not requested.  So you must use one of the solutions
4244 above in addition to any special patterns you define.
4245
4246 In many RISC machines, most instructions do not affect the condition
4247 code and there may not even be a separate condition code register.  On
4248 these machines, the restriction that the definition and use of the
4249 condition code be adjacent insns is not necessary and can prevent
4250 important optimizations.  For example, on the IBM RS/6000, there is a
4251 delay for taken branches unless the condition code register is set three
4252 instructions earlier than the conditional branch.  The instruction
4253 scheduler cannot perform this optimization if it is not permitted to
4254 separate the definition and use of the condition code register.
4255
4256 On these machines, do not use @code{(cc0)}, but instead use a register
4257 to represent the condition code.  If there is a specific condition code
4258 register in the machine, use a hard register.  If the condition code or
4259 comparison result can be placed in any general register, or if there are
4260 multiple condition registers, use a pseudo register.
4261
4262 @findex prev_cc0_setter
4263 @findex next_cc0_user
4264 On some machines, the type of branch instruction generated may depend on
4265 the way the condition code was produced; for example, on the 68k and
4266 SPARC, setting the condition code directly from an add or subtract
4267 instruction does not clear the overflow bit the way that a test
4268 instruction does, so a different branch instruction must be used for
4269 some conditional branches.  For machines that use @code{(cc0)}, the set
4270 and use of the condition code must be adjacent (separated only by
4271 @code{note} insns) allowing flags in @code{cc_status} to be used.
4272 (@xref{Condition Code}.)  Also, the comparison and branch insns can be
4273 located from each other by using the functions @code{prev_cc0_setter}
4274 and @code{next_cc0_user}.
4275
4276 However, this is not true on machines that do not use @code{(cc0)}.  On
4277 those machines, no assumptions can be made about the adjacency of the
4278 compare and branch insns and the above methods cannot be used.  Instead,
4279 we use the machine mode of the condition code register to record
4280 different formats of the condition code register.
4281
4282 Registers used to store the condition code value should have a mode that
4283 is in class @code{MODE_CC}.  Normally, it will be @code{CCmode}.  If
4284 additional modes are required (as for the add example mentioned above in
4285 the SPARC), define the macro @code{EXTRA_CC_MODES} to list the
4286 additional modes required (@pxref{Condition Code}).  Also define
4287 @code{SELECT_CC_MODE} to choose a mode given an operand of a compare.
4288
4289 If it is known during RTL generation that a different mode will be
4290 required (for example, if the machine has separate compare instructions
4291 for signed and unsigned quantities, like most IBM processors), they can
4292 be specified at that time.
4293
4294 If the cases that require different modes would be made by instruction
4295 combination, the macro @code{SELECT_CC_MODE} determines which machine
4296 mode should be used for the comparison result.  The patterns should be
4297 written using that mode.  To support the case of the add on the SPARC
4298 discussed above, we have the pattern
4299
4300 @smallexample
4301 (define_insn ""
4302   [(set (reg:CC_NOOV 0)
4303         (compare:CC_NOOV
4304           (plus:SI (match_operand:SI 0 "register_operand" "%r")
4305                    (match_operand:SI 1 "arith_operand" "rI"))
4306           (const_int 0)))]
4307   ""
4308   "@dots{}")
4309 @end smallexample
4310
4311 The @code{SELECT_CC_MODE} macro on the SPARC returns @code{CC_NOOVmode}
4312 for comparisons whose argument is a @code{plus}.
4313
4314 @end ifset
4315 @ifset INTERNALS
4316 @node Looping Patterns
4317 @section Defining Looping Instruction Patterns
4318 @cindex looping instruction patterns
4319 @cindex defining looping instruction patterns
4320
4321 Some machines have special jump instructions that can be utilized to
4322 make loops more efficient.  A common example is the 68000 @samp{dbra}
4323 instruction which performs a decrement of a register and a branch if the
4324 result was greater than zero.  Other machines, in particular digital
4325 signal processors (DSPs), have special block repeat instructions to
4326 provide low-overhead loop support.  For example, the TI TMS320C3x/C4x
4327 DSPs have a block repeat instruction that loads special registers to
4328 mark the top and end of a loop and to count the number of loop
4329 iterations.  This avoids the need for fetching and executing a
4330 @samp{dbra}-like instruction and avoids pipeline stalls associated with
4331 the jump.
4332
4333 GCC has three special named patterns to support low overhead looping.
4334 They are @samp{decrement_and_branch_until_zero}, @samp{doloop_begin},
4335 and @samp{doloop_end}.  The first pattern,
4336 @samp{decrement_and_branch_until_zero}, is not emitted during RTL
4337 generation but may be emitted during the instruction combination phase.
4338 This requires the assistance of the loop optimizer, using information
4339 collected during strength reduction, to reverse a loop to count down to
4340 zero.  Some targets also require the loop optimizer to add a
4341 @code{REG_NONNEG} note to indicate that the iteration count is always
4342 positive.  This is needed if the target performs a signed loop
4343 termination test.  For example, the 68000 uses a pattern similar to the
4344 following for its @code{dbra} instruction:
4345
4346 @smallexample
4347 @group
4348 (define_insn "decrement_and_branch_until_zero"
4349   [(set (pc)
4350         (if_then_else
4351           (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
4352                        (const_int -1))
4353               (const_int 0))
4354           (label_ref (match_operand 1 "" ""))
4355           (pc)))
4356    (set (match_dup 0)
4357         (plus:SI (match_dup 0)
4358                  (const_int -1)))]
4359   "find_reg_note (insn, REG_NONNEG, 0)"
4360   "@dots{}")
4361 @end group
4362 @end smallexample
4363
4364 Note that since the insn is both a jump insn and has an output, it must
4365 deal with its own reloads, hence the `m' constraints.  Also note that
4366 since this insn is generated by the instruction combination phase
4367 combining two sequential insns together into an implicit parallel insn,
4368 the iteration counter needs to be biased by the same amount as the
4369 decrement operation, in this case @minus{}1.  Note that the following similar
4370 pattern will not be matched by the combiner.
4371
4372 @smallexample
4373 @group
4374 (define_insn "decrement_and_branch_until_zero"
4375   [(set (pc)
4376         (if_then_else
4377           (ge (match_operand:SI 0 "general_operand" "+d*am")
4378               (const_int 1))
4379           (label_ref (match_operand 1 "" ""))
4380           (pc)))
4381    (set (match_dup 0)
4382         (plus:SI (match_dup 0)
4383                  (const_int -1)))]
4384   "find_reg_note (insn, REG_NONNEG, 0)"
4385   "@dots{}")
4386 @end group
4387 @end smallexample
4388
4389 The other two special looping patterns, @samp{doloop_begin} and
4390 @samp{doloop_end}, are emitted by the loop optimizer for certain
4391 well-behaved loops with a finite number of loop iterations using
4392 information collected during strength reduction.
4393
4394 The @samp{doloop_end} pattern describes the actual looping instruction
4395 (or the implicit looping operation) and the @samp{doloop_begin} pattern
4396 is an optional companion pattern that can be used for initialization
4397 needed for some low-overhead looping instructions.
4398
4399 Note that some machines require the actual looping instruction to be
4400 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs).  Emitting
4401 the true RTL for a looping instruction at the top of the loop can cause
4402 problems with flow analysis.  So instead, a dummy @code{doloop} insn is
4403 emitted at the end of the loop.  The machine dependent reorg pass checks
4404 for the presence of this @code{doloop} insn and then searches back to
4405 the top of the loop, where it inserts the true looping insn (provided
4406 there are no instructions in the loop which would cause problems).  Any
4407 additional labels can be emitted at this point.  In addition, if the
4408 desired special iteration counter register was not allocated, this
4409 machine dependent reorg pass could emit a traditional compare and jump
4410 instruction pair.
4411
4412 The essential difference between the
4413 @samp{decrement_and_branch_until_zero} and the @samp{doloop_end}
4414 patterns is that the loop optimizer allocates an additional pseudo
4415 register for the latter as an iteration counter.  This pseudo register
4416 cannot be used within the loop (i.e., general induction variables cannot
4417 be derived from it), however, in many cases the loop induction variable
4418 may become redundant and removed by the flow pass.
4419
4420
4421 @end ifset
4422 @ifset INTERNALS
4423 @node Insn Canonicalizations
4424 @section Canonicalization of Instructions
4425 @cindex canonicalization of instructions
4426 @cindex insn canonicalization
4427
4428 There are often cases where multiple RTL expressions could represent an
4429 operation performed by a single machine instruction.  This situation is
4430 most commonly encountered with logical, branch, and multiply-accumulate
4431 instructions.  In such cases, the compiler attempts to convert these
4432 multiple RTL expressions into a single canonical form to reduce the
4433 number of insn patterns required.
4434
4435 In addition to algebraic simplifications, following canonicalizations
4436 are performed:
4437
4438 @itemize @bullet
4439 @item
4440 For commutative and comparison operators, a constant is always made the
4441 second operand.  If a machine only supports a constant as the second
4442 operand, only patterns that match a constant in the second operand need
4443 be supplied.
4444
4445 @item
4446 For associative operators, a sequence of operators will always chain
4447 to the left; for instance, only the left operand of an integer @code{plus}
4448 can itself be a @code{plus}.  @code{and}, @code{ior}, @code{xor},
4449 @code{plus}, @code{mult}, @code{smin}, @code{smax}, @code{umin}, and
4450 @code{umax} are associative when applied to integers, and sometimes to
4451 floating-point.
4452
4453 @item
4454 @cindex @code{neg}, canonicalization of
4455 @cindex @code{not}, canonicalization of
4456 @cindex @code{mult}, canonicalization of
4457 @cindex @code{plus}, canonicalization of
4458 @cindex @code{minus}, canonicalization of
4459 For these operators, if only one operand is a @code{neg}, @code{not},
4460 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
4461 first operand.
4462
4463 @item
4464 In combinations of @code{neg}, @code{mult}, @code{plus}, and
4465 @code{minus}, the @code{neg} operations (if any) will be moved inside
4466 the operations as far as possible.  For instance,
4467 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
4468 @code{(plus (mult (neg A) B) C)} is canonicalized as
4469 @code{(minus A (mult B C))}.
4470
4471 @cindex @code{compare}, canonicalization of
4472 @item
4473 For the @code{compare} operator, a constant is always the second operand
4474 on machines where @code{cc0} is used (@pxref{Jump Patterns}).  On other
4475 machines, there are rare cases where the compiler might want to construct
4476 a @code{compare} with a constant as the first operand.  However, these
4477 cases are not common enough for it to be worthwhile to provide a pattern
4478 matching a constant as the first operand unless the machine actually has
4479 such an instruction.
4480
4481 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
4482 @code{minus} is made the first operand under the same conditions as
4483 above.
4484
4485 @item
4486 @code{(minus @var{x} (const_int @var{n}))} is converted to
4487 @code{(plus @var{x} (const_int @var{-n}))}.
4488
4489 @item
4490 Within address computations (i.e., inside @code{mem}), a left shift is
4491 converted into the appropriate multiplication by a power of two.
4492
4493 @cindex @code{ior}, canonicalization of
4494 @cindex @code{and}, canonicalization of
4495 @cindex De Morgan's law
4496 @item
4497 De Morgan's Law is used to move bitwise negation inside a bitwise
4498 logical-and or logical-or operation.  If this results in only one
4499 operand being a @code{not} expression, it will be the first one.
4500
4501 A machine that has an instruction that performs a bitwise logical-and of one
4502 operand with the bitwise negation of the other should specify the pattern
4503 for that instruction as
4504
4505 @smallexample
4506 (define_insn ""
4507   [(set (match_operand:@var{m} 0 @dots{})
4508         (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
4509                      (match_operand:@var{m} 2 @dots{})))]
4510   "@dots{}"
4511   "@dots{}")
4512 @end smallexample
4513
4514 @noindent
4515 Similarly, a pattern for a ``NAND'' instruction should be written
4516
4517 @smallexample
4518 (define_insn ""
4519   [(set (match_operand:@var{m} 0 @dots{})
4520         (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
4521                      (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
4522   "@dots{}"
4523   "@dots{}")
4524 @end smallexample
4525
4526 In both cases, it is not necessary to include patterns for the many
4527 logically equivalent RTL expressions.
4528
4529 @cindex @code{xor}, canonicalization of
4530 @item
4531 The only possible RTL expressions involving both bitwise exclusive-or
4532 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
4533 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
4534
4535 @item
4536 The sum of three items, one of which is a constant, will only appear in
4537 the form
4538
4539 @smallexample
4540 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
4541 @end smallexample
4542
4543 @item
4544 On machines that do not use @code{cc0},
4545 @code{(compare @var{x} (const_int 0))} will be converted to
4546 @var{x}.
4547
4548 @cindex @code{zero_extract}, canonicalization of
4549 @cindex @code{sign_extract}, canonicalization of
4550 @item
4551 Equality comparisons of a group of bits (usually a single bit) with zero
4552 will be written using @code{zero_extract} rather than the equivalent
4553 @code{and} or @code{sign_extract} operations.
4554
4555 @end itemize
4556
4557 @end ifset
4558 @ifset INTERNALS
4559 @node Expander Definitions
4560 @section Defining RTL Sequences for Code Generation
4561 @cindex expander definitions
4562 @cindex code generation RTL sequences
4563 @cindex defining RTL sequences for code generation
4564
4565 On some target machines, some standard pattern names for RTL generation
4566 cannot be handled with single insn, but a sequence of RTL insns can
4567 represent them.  For these target machines, you can write a
4568 @code{define_expand} to specify how to generate the sequence of RTL@.
4569
4570 @findex define_expand
4571 A @code{define_expand} is an RTL expression that looks almost like a
4572 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
4573 only for RTL generation and it can produce more than one RTL insn.
4574
4575 A @code{define_expand} RTX has four operands:
4576
4577 @itemize @bullet
4578 @item
4579 The name.  Each @code{define_expand} must have a name, since the only
4580 use for it is to refer to it by name.
4581
4582 @item
4583 The RTL template.  This is a vector of RTL expressions representing
4584 a sequence of separate instructions.  Unlike @code{define_insn}, there
4585 is no implicit surrounding @code{PARALLEL}.
4586
4587 @item
4588 The condition, a string containing a C expression.  This expression is
4589 used to express how the availability of this pattern depends on
4590 subclasses of target machine, selected by command-line options when GCC
4591 is run.  This is just like the condition of a @code{define_insn} that
4592 has a standard name.  Therefore, the condition (if present) may not
4593 depend on the data in the insn being matched, but only the
4594 target-machine-type flags.  The compiler needs to test these conditions
4595 during initialization in order to learn exactly which named instructions
4596 are available in a particular run.
4597
4598 @item
4599 The preparation statements, a string containing zero or more C
4600 statements which are to be executed before RTL code is generated from
4601 the RTL template.
4602
4603 Usually these statements prepare temporary registers for use as
4604 internal operands in the RTL template, but they can also generate RTL
4605 insns directly by calling routines such as @code{emit_insn}, etc.
4606 Any such insns precede the ones that come from the RTL template.
4607 @end itemize
4608
4609 Every RTL insn emitted by a @code{define_expand} must match some
4610 @code{define_insn} in the machine description.  Otherwise, the compiler
4611 will crash when trying to generate code for the insn or trying to optimize
4612 it.
4613
4614 The RTL template, in addition to controlling generation of RTL insns,
4615 also describes the operands that need to be specified when this pattern
4616 is used.  In particular, it gives a predicate for each operand.
4617
4618 A true operand, which needs to be specified in order to generate RTL from
4619 the pattern, should be described with a @code{match_operand} in its first
4620 occurrence in the RTL template.  This enters information on the operand's
4621 predicate into the tables that record such things.  GCC uses the
4622 information to preload the operand into a register if that is required for
4623 valid RTL code.  If the operand is referred to more than once, subsequent
4624 references should use @code{match_dup}.
4625
4626 The RTL template may also refer to internal ``operands'' which are
4627 temporary registers or labels used only within the sequence made by the
4628 @code{define_expand}.  Internal operands are substituted into the RTL
4629 template with @code{match_dup}, never with @code{match_operand}.  The
4630 values of the internal operands are not passed in as arguments by the
4631 compiler when it requests use of this pattern.  Instead, they are computed
4632 within the pattern, in the preparation statements.  These statements
4633 compute the values and store them into the appropriate elements of
4634 @code{operands} so that @code{match_dup} can find them.
4635
4636 There are two special macros defined for use in the preparation statements:
4637 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
4638 as a statement.
4639
4640 @table @code
4641
4642 @findex DONE
4643 @item DONE
4644 Use the @code{DONE} macro to end RTL generation for the pattern.  The
4645 only RTL insns resulting from the pattern on this occasion will be
4646 those already emitted by explicit calls to @code{emit_insn} within the
4647 preparation statements; the RTL template will not be generated.
4648
4649 @findex FAIL
4650 @item FAIL
4651 Make the pattern fail on this occasion.  When a pattern fails, it means
4652 that the pattern was not truly available.  The calling routines in the
4653 compiler will try other strategies for code generation using other patterns.
4654
4655 Failure is currently supported only for binary (addition, multiplication,
4656 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
4657 operations.
4658 @end table
4659
4660 If the preparation falls through (invokes neither @code{DONE} nor
4661 @code{FAIL}), then the @code{define_expand} acts like a
4662 @code{define_insn} in that the RTL template is used to generate the
4663 insn.
4664
4665 The RTL template is not used for matching, only for generating the
4666 initial insn list.  If the preparation statement always invokes
4667 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
4668 list of operands, such as this example:
4669
4670 @smallexample
4671 @group
4672 (define_expand "addsi3"
4673   [(match_operand:SI 0 "register_operand" "")
4674    (match_operand:SI 1 "register_operand" "")
4675    (match_operand:SI 2 "register_operand" "")]
4676 @end group
4677 @group
4678   ""
4679   "
4680 @{
4681   handle_add (operands[0], operands[1], operands[2]);
4682   DONE;
4683 @}")
4684 @end group
4685 @end smallexample
4686
4687 Here is an example, the definition of left-shift for the SPUR chip:
4688
4689 @smallexample
4690 @group
4691 (define_expand "ashlsi3"
4692   [(set (match_operand:SI 0 "register_operand" "")
4693         (ashift:SI
4694 @end group
4695 @group
4696           (match_operand:SI 1 "register_operand" "")
4697           (match_operand:SI 2 "nonmemory_operand" "")))]
4698   ""
4699   "
4700 @end group
4701 @end smallexample
4702
4703 @smallexample
4704 @group
4705 @{
4706   if (GET_CODE (operands[2]) != CONST_INT
4707       || (unsigned) INTVAL (operands[2]) > 3)
4708     FAIL;
4709 @}")
4710 @end group
4711 @end smallexample
4712
4713 @noindent
4714 This example uses @code{define_expand} so that it can generate an RTL insn
4715 for shifting when the shift-count is in the supported range of 0 to 3 but
4716 fail in other cases where machine insns aren't available.  When it fails,
4717 the compiler tries another strategy using different patterns (such as, a
4718 library call).
4719
4720 If the compiler were able to handle nontrivial condition-strings in
4721 patterns with names, then it would be possible to use a
4722 @code{define_insn} in that case.  Here is another case (zero-extension
4723 on the 68000) which makes more use of the power of @code{define_expand}:
4724
4725 @smallexample
4726 (define_expand "zero_extendhisi2"
4727   [(set (match_operand:SI 0 "general_operand" "")
4728         (const_int 0))
4729    (set (strict_low_part
4730           (subreg:HI
4731             (match_dup 0)
4732             0))
4733         (match_operand:HI 1 "general_operand" ""))]
4734   ""
4735   "operands[1] = make_safe_from (operands[1], operands[0]);")
4736 @end smallexample
4737
4738 @noindent
4739 @findex make_safe_from
4740 Here two RTL insns are generated, one to clear the entire output operand
4741 and the other to copy the input operand into its low half.  This sequence
4742 is incorrect if the input operand refers to [the old value of] the output
4743 operand, so the preparation statement makes sure this isn't so.  The
4744 function @code{make_safe_from} copies the @code{operands[1]} into a
4745 temporary register if it refers to @code{operands[0]}.  It does this
4746 by emitting another RTL insn.
4747
4748 Finally, a third example shows the use of an internal operand.
4749 Zero-extension on the SPUR chip is done by @code{and}-ing the result
4750 against a halfword mask.  But this mask cannot be represented by a
4751 @code{const_int} because the constant value is too large to be legitimate
4752 on this machine.  So it must be copied into a register with
4753 @code{force_reg} and then the register used in the @code{and}.
4754
4755 @smallexample
4756 (define_expand "zero_extendhisi2"
4757   [(set (match_operand:SI 0 "register_operand" "")
4758         (and:SI (subreg:SI
4759                   (match_operand:HI 1 "register_operand" "")
4760                   0)
4761                 (match_dup 2)))]
4762   ""
4763   "operands[2]
4764      = force_reg (SImode, GEN_INT (65535)); ")
4765 @end smallexample
4766
4767 @emph{Note:} If the @code{define_expand} is used to serve a
4768 standard binary or unary arithmetic operation or a bit-field operation,
4769 then the last insn it generates must not be a @code{code_label},
4770 @code{barrier} or @code{note}.  It must be an @code{insn},
4771 @code{jump_insn} or @code{call_insn}.  If you don't need a real insn
4772 at the end, emit an insn to copy the result of the operation into
4773 itself.  Such an insn will generate no code, but it can avoid problems
4774 in the compiler.
4775
4776 @end ifset
4777 @ifset INTERNALS
4778 @node Insn Splitting
4779 @section Defining How to Split Instructions
4780 @cindex insn splitting
4781 @cindex instruction splitting
4782 @cindex splitting instructions
4783
4784 There are two cases where you should specify how to split a pattern
4785 into multiple insns.  On machines that have instructions requiring
4786 delay slots (@pxref{Delay Slots}) or that have instructions whose
4787 output is not available for multiple cycles (@pxref{Processor pipeline
4788 description}), the compiler phases that optimize these cases need to
4789 be able to move insns into one-instruction delay slots.  However, some
4790 insns may generate more than one machine instruction.  These insns
4791 cannot be placed into a delay slot.
4792
4793 Often you can rewrite the single insn as a list of individual insns,
4794 each corresponding to one machine instruction.  The disadvantage of
4795 doing so is that it will cause the compilation to be slower and require
4796 more space.  If the resulting insns are too complex, it may also
4797 suppress some optimizations.  The compiler splits the insn if there is a
4798 reason to believe that it might improve instruction or delay slot
4799 scheduling.
4800
4801 The insn combiner phase also splits putative insns.  If three insns are
4802 merged into one insn with a complex expression that cannot be matched by
4803 some @code{define_insn} pattern, the combiner phase attempts to split
4804 the complex pattern into two insns that are recognized.  Usually it can
4805 break the complex pattern into two patterns by splitting out some
4806 subexpression.  However, in some other cases, such as performing an
4807 addition of a large constant in two insns on a RISC machine, the way to
4808 split the addition into two insns is machine-dependent.
4809
4810 @findex define_split
4811 The @code{define_split} definition tells the compiler how to split a
4812 complex insn into several simpler insns.  It looks like this:
4813
4814 @smallexample
4815 (define_split
4816   [@var{insn-pattern}]
4817   "@var{condition}"
4818   [@var{new-insn-pattern-1}
4819    @var{new-insn-pattern-2}
4820    @dots{}]
4821   "@var{preparation-statements}")
4822 @end smallexample
4823
4824 @var{insn-pattern} is a pattern that needs to be split and
4825 @var{condition} is the final condition to be tested, as in a
4826 @code{define_insn}.  When an insn matching @var{insn-pattern} and
4827 satisfying @var{condition} is found, it is replaced in the insn list
4828 with the insns given by @var{new-insn-pattern-1},
4829 @var{new-insn-pattern-2}, etc.
4830
4831 The @var{preparation-statements} are similar to those statements that
4832 are specified for @code{define_expand} (@pxref{Expander Definitions})
4833 and are executed before the new RTL is generated to prepare for the
4834 generated code or emit some insns whose pattern is not fixed.  Unlike
4835 those in @code{define_expand}, however, these statements must not
4836 generate any new pseudo-registers.  Once reload has completed, they also
4837 must not allocate any space in the stack frame.
4838
4839 Patterns are matched against @var{insn-pattern} in two different
4840 circumstances.  If an insn needs to be split for delay slot scheduling
4841 or insn scheduling, the insn is already known to be valid, which means
4842 that it must have been matched by some @code{define_insn} and, if
4843 @code{reload_completed} is nonzero, is known to satisfy the constraints
4844 of that @code{define_insn}.  In that case, the new insn patterns must
4845 also be insns that are matched by some @code{define_insn} and, if
4846 @code{reload_completed} is nonzero, must also satisfy the constraints
4847 of those definitions.
4848
4849 As an example of this usage of @code{define_split}, consider the following
4850 example from @file{a29k.md}, which splits a @code{sign_extend} from
4851 @code{HImode} to @code{SImode} into a pair of shift insns:
4852
4853 @smallexample
4854 (define_split
4855   [(set (match_operand:SI 0 "gen_reg_operand" "")
4856         (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
4857   ""
4858   [(set (match_dup 0)
4859         (ashift:SI (match_dup 1)
4860                    (const_int 16)))
4861    (set (match_dup 0)
4862         (ashiftrt:SI (match_dup 0)
4863                      (const_int 16)))]
4864   "
4865 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
4866 @end smallexample
4867
4868 When the combiner phase tries to split an insn pattern, it is always the
4869 case that the pattern is @emph{not} matched by any @code{define_insn}.
4870 The combiner pass first tries to split a single @code{set} expression
4871 and then the same @code{set} expression inside a @code{parallel}, but
4872 followed by a @code{clobber} of a pseudo-reg to use as a scratch
4873 register.  In these cases, the combiner expects exactly two new insn
4874 patterns to be generated.  It will verify that these patterns match some
4875 @code{define_insn} definitions, so you need not do this test in the
4876 @code{define_split} (of course, there is no point in writing a
4877 @code{define_split} that will never produce insns that match).
4878
4879 Here is an example of this use of @code{define_split}, taken from
4880 @file{rs6000.md}:
4881
4882 @smallexample
4883 (define_split
4884   [(set (match_operand:SI 0 "gen_reg_operand" "")
4885         (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
4886                  (match_operand:SI 2 "non_add_cint_operand" "")))]
4887   ""
4888   [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
4889    (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
4890 "
4891 @{
4892   int low = INTVAL (operands[2]) & 0xffff;
4893   int high = (unsigned) INTVAL (operands[2]) >> 16;
4894
4895   if (low & 0x8000)
4896     high++, low |= 0xffff0000;
4897
4898   operands[3] = GEN_INT (high << 16);
4899   operands[4] = GEN_INT (low);
4900 @}")
4901 @end smallexample
4902
4903 Here the predicate @code{non_add_cint_operand} matches any
4904 @code{const_int} that is @emph{not} a valid operand of a single add
4905 insn.  The add with the smaller displacement is written so that it
4906 can be substituted into the address of a subsequent operation.
4907
4908 An example that uses a scratch register, from the same file, generates
4909 an equality comparison of a register and a large constant:
4910
4911 @smallexample
4912 (define_split
4913   [(set (match_operand:CC 0 "cc_reg_operand" "")
4914         (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
4915                     (match_operand:SI 2 "non_short_cint_operand" "")))
4916    (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
4917   "find_single_use (operands[0], insn, 0)
4918    && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
4919        || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
4920   [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
4921    (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
4922   "
4923 @{
4924   /* @r{Get the constant we are comparing against, C, and see what it
4925      looks like sign-extended to 16 bits.  Then see what constant
4926      could be XOR'ed with C to get the sign-extended value.}  */
4927
4928   int c = INTVAL (operands[2]);
4929   int sextc = (c << 16) >> 16;
4930   int xorv = c ^ sextc;
4931
4932   operands[4] = GEN_INT (xorv);
4933   operands[5] = GEN_INT (sextc);
4934 @}")
4935 @end smallexample
4936
4937 To avoid confusion, don't write a single @code{define_split} that
4938 accepts some insns that match some @code{define_insn} as well as some
4939 insns that don't.  Instead, write two separate @code{define_split}
4940 definitions, one for the insns that are valid and one for the insns that
4941 are not valid.
4942
4943 The splitter is allowed to split jump instructions into sequence of
4944 jumps or create new jumps in while splitting non-jump instructions.  As
4945 the central flowgraph and branch prediction information needs to be updated,
4946 several restriction apply.
4947
4948 Splitting of jump instruction into sequence that over by another jump
4949 instruction is always valid, as compiler expect identical behavior of new
4950 jump.  When new sequence contains multiple jump instructions or new labels,
4951 more assistance is needed.  Splitter is required to create only unconditional
4952 jumps, or simple conditional jump instructions.  Additionally it must attach a
4953 @code{REG_BR_PROB} note to each conditional jump.  A global variable
4954 @code{split_branch_probability} hold the probability of original branch in case
4955 it was an simple conditional jump, @minus{}1 otherwise.  To simplify
4956 recomputing of edge frequencies, new sequence is required to have only
4957 forward jumps to the newly created labels.
4958
4959 @findex define_insn_and_split
4960 For the common case where the pattern of a define_split exactly matches the
4961 pattern of a define_insn, use @code{define_insn_and_split}.  It looks like
4962 this:
4963
4964 @smallexample
4965 (define_insn_and_split
4966   [@var{insn-pattern}]
4967   "@var{condition}"
4968   "@var{output-template}"
4969   "@var{split-condition}"
4970   [@var{new-insn-pattern-1}
4971    @var{new-insn-pattern-2}
4972    @dots{}]
4973   "@var{preparation-statements}"
4974   [@var{insn-attributes}])
4975
4976 @end smallexample
4977
4978 @var{insn-pattern}, @var{condition}, @var{output-template}, and
4979 @var{insn-attributes} are used as in @code{define_insn}.  The
4980 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
4981 in a @code{define_split}.  The @var{split-condition} is also used as in
4982 @code{define_split}, with the additional behavior that if the condition starts
4983 with @samp{&&}, the condition used for the split will be the constructed as a
4984 logical ``and'' of the split condition with the insn condition.  For example,
4985 from i386.md:
4986
4987 @smallexample
4988 (define_insn_and_split "zero_extendhisi2_and"
4989   [(set (match_operand:SI 0 "register_operand" "=r")
4990      (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
4991    (clobber (reg:CC 17))]
4992   "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
4993   "#"
4994   "&& reload_completed"
4995   [(parallel [(set (match_dup 0)
4996                    (and:SI (match_dup 0) (const_int 65535)))
4997               (clobber (reg:CC 17))])]
4998   ""
4999   [(set_attr "type" "alu1")])
5000
5001 @end smallexample
5002
5003 In this case, the actual split condition will be
5004 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
5005
5006 The @code{define_insn_and_split} construction provides exactly the same
5007 functionality as two separate @code{define_insn} and @code{define_split}
5008 patterns.  It exists for compactness, and as a maintenance tool to prevent
5009 having to ensure the two patterns' templates match.
5010
5011 @end ifset
5012 @ifset INTERNALS
5013 @node Including Patterns
5014 @section Including Patterns in Machine Descriptions.
5015 @cindex insn includes
5016
5017 @findex include
5018 The @code{include} pattern tells the compiler tools where to
5019 look for patterns that are in files other than in the file
5020 @file{.md}.  This is used only at build time and there is no preprocessing allowed.
5021
5022 It looks like:
5023
5024 @smallexample
5025
5026 (include
5027   @var{pathname})
5028 @end smallexample
5029
5030 For example:
5031
5032 @smallexample
5033
5034 (include "filestuff")
5035
5036 @end smallexample
5037
5038 Where @var{pathname} is a string that specifies the location of the file,
5039 specifies the include file to be in @file{gcc/config/target/filestuff}.  The
5040 directory @file{gcc/config/target} is regarded as the default directory.
5041
5042
5043 Machine descriptions may be split up into smaller more manageable subsections
5044 and placed into subdirectories.
5045
5046 By specifying:
5047
5048 @smallexample
5049
5050 (include "BOGUS/filestuff")
5051
5052 @end smallexample
5053
5054 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
5055
5056 Specifying an absolute path for the include file such as;
5057 @smallexample
5058
5059 (include "/u2/BOGUS/filestuff")
5060
5061 @end smallexample
5062 is permitted but is not encouraged.
5063
5064 @subsection RTL Generation Tool Options for Directory Search
5065 @cindex directory options .md
5066 @cindex options, directory search
5067 @cindex search options
5068
5069 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
5070 For example:
5071
5072 @smallexample
5073
5074 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
5075
5076 @end smallexample
5077
5078
5079 Add the directory @var{dir} to the head of the list of directories to be
5080 searched for header files.  This can be used to override a system machine definition
5081 file, substituting your own version, since these directories are
5082 searched before the default machine description file directories.  If you use more than
5083 one @option{-I} option, the directories are scanned in left-to-right
5084 order; the standard default directory come after.
5085
5086
5087 @end ifset
5088 @ifset INTERNALS
5089 @node Peephole Definitions
5090 @section Machine-Specific Peephole Optimizers
5091 @cindex peephole optimizer definitions
5092 @cindex defining peephole optimizers
5093
5094 In addition to instruction patterns the @file{md} file may contain
5095 definitions of machine-specific peephole optimizations.
5096
5097 The combiner does not notice certain peephole optimizations when the data
5098 flow in the program does not suggest that it should try them.  For example,
5099 sometimes two consecutive insns related in purpose can be combined even
5100 though the second one does not appear to use a register computed in the
5101 first one.  A machine-specific peephole optimizer can detect such
5102 opportunities.
5103
5104 There are two forms of peephole definitions that may be used.  The
5105 original @code{define_peephole} is run at assembly output time to
5106 match insns and substitute assembly text.  Use of @code{define_peephole}
5107 is deprecated.
5108
5109 A newer @code{define_peephole2} matches insns and substitutes new
5110 insns.  The @code{peephole2} pass is run after register allocation
5111 but before scheduling, which may result in much better code for
5112 targets that do scheduling.
5113
5114 @menu
5115 * define_peephole::     RTL to Text Peephole Optimizers
5116 * define_peephole2::    RTL to RTL Peephole Optimizers
5117 @end menu
5118
5119 @end ifset
5120 @ifset INTERNALS
5121 @node define_peephole
5122 @subsection RTL to Text Peephole Optimizers
5123 @findex define_peephole
5124
5125 @need 1000
5126 A definition looks like this:
5127
5128 @smallexample
5129 (define_peephole
5130   [@var{insn-pattern-1}
5131    @var{insn-pattern-2}
5132    @dots{}]
5133   "@var{condition}"
5134   "@var{template}"
5135   "@var{optional-insn-attributes}")
5136 @end smallexample
5137
5138 @noindent
5139 The last string operand may be omitted if you are not using any
5140 machine-specific information in this machine description.  If present,
5141 it must obey the same rules as in a @code{define_insn}.
5142
5143 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
5144 consecutive insns.  The optimization applies to a sequence of insns when
5145 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
5146 the next, and so on.
5147
5148 Each of the insns matched by a peephole must also match a
5149 @code{define_insn}.  Peepholes are checked only at the last stage just
5150 before code generation, and only optionally.  Therefore, any insn which
5151 would match a peephole but no @code{define_insn} will cause a crash in code
5152 generation in an unoptimized compilation, or at various optimization
5153 stages.
5154
5155 The operands of the insns are matched with @code{match_operands},
5156 @code{match_operator}, and @code{match_dup}, as usual.  What is not
5157 usual is that the operand numbers apply to all the insn patterns in the
5158 definition.  So, you can check for identical operands in two insns by
5159 using @code{match_operand} in one insn and @code{match_dup} in the
5160 other.
5161
5162 The operand constraints used in @code{match_operand} patterns do not have
5163 any direct effect on the applicability of the peephole, but they will
5164 be validated afterward, so make sure your constraints are general enough
5165 to apply whenever the peephole matches.  If the peephole matches
5166 but the constraints are not satisfied, the compiler will crash.
5167
5168 It is safe to omit constraints in all the operands of the peephole; or
5169 you can write constraints which serve as a double-check on the criteria
5170 previously tested.
5171
5172 Once a sequence of insns matches the patterns, the @var{condition} is
5173 checked.  This is a C expression which makes the final decision whether to
5174 perform the optimization (we do so if the expression is nonzero).  If
5175 @var{condition} is omitted (in other words, the string is empty) then the
5176 optimization is applied to every sequence of insns that matches the
5177 patterns.
5178
5179 The defined peephole optimizations are applied after register allocation
5180 is complete.  Therefore, the peephole definition can check which
5181 operands have ended up in which kinds of registers, just by looking at
5182 the operands.
5183
5184 @findex prev_active_insn
5185 The way to refer to the operands in @var{condition} is to write
5186 @code{operands[@var{i}]} for operand number @var{i} (as matched by
5187 @code{(match_operand @var{i} @dots{})}).  Use the variable @code{insn}
5188 to refer to the last of the insns being matched; use
5189 @code{prev_active_insn} to find the preceding insns.
5190
5191 @findex dead_or_set_p
5192 When optimizing computations with intermediate results, you can use
5193 @var{condition} to match only when the intermediate results are not used
5194 elsewhere.  Use the C expression @code{dead_or_set_p (@var{insn},
5195 @var{op})}, where @var{insn} is the insn in which you expect the value
5196 to be used for the last time (from the value of @code{insn}, together
5197 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
5198 value (from @code{operands[@var{i}]}).
5199
5200 Applying the optimization means replacing the sequence of insns with one
5201 new insn.  The @var{template} controls ultimate output of assembler code
5202 for this combined insn.  It works exactly like the template of a
5203 @code{define_insn}.  Operand numbers in this template are the same ones
5204 used in matching the original sequence of insns.
5205
5206 The result of a defined peephole optimizer does not need to match any of
5207 the insn patterns in the machine description; it does not even have an
5208 opportunity to match them.  The peephole optimizer definition itself serves
5209 as the insn pattern to control how the insn is output.
5210
5211 Defined peephole optimizers are run as assembler code is being output,
5212 so the insns they produce are never combined or rearranged in any way.
5213
5214 Here is an example, taken from the 68000 machine description:
5215
5216 @smallexample
5217 (define_peephole
5218   [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
5219    (set (match_operand:DF 0 "register_operand" "=f")
5220         (match_operand:DF 1 "register_operand" "ad"))]
5221   "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
5222 @{
5223   rtx xoperands[2];
5224   xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
5225 #ifdef MOTOROLA
5226   output_asm_insn ("move.l %1,(sp)", xoperands);
5227   output_asm_insn ("move.l %1,-(sp)", operands);
5228   return "fmove.d (sp)+,%0";
5229 #else
5230   output_asm_insn ("movel %1,sp@@", xoperands);
5231   output_asm_insn ("movel %1,sp@@-", operands);
5232   return "fmoved sp@@+,%0";
5233 #endif
5234 @})
5235 @end smallexample
5236
5237 @need 1000
5238 The effect of this optimization is to change
5239
5240 @smallexample
5241 @group
5242 jbsr _foobar
5243 addql #4,sp
5244 movel d1,sp@@-
5245 movel d0,sp@@-
5246 fmoved sp@@+,fp0
5247 @end group
5248 @end smallexample
5249
5250 @noindent
5251 into
5252
5253 @smallexample
5254 @group
5255 jbsr _foobar
5256 movel d1,sp@@
5257 movel d0,sp@@-
5258 fmoved sp@@+,fp0
5259 @end group
5260 @end smallexample
5261
5262 @ignore
5263 @findex CC_REVERSED
5264 If a peephole matches a sequence including one or more jump insns, you must
5265 take account of the flags such as @code{CC_REVERSED} which specify that the
5266 condition codes are represented in an unusual manner.  The compiler
5267 automatically alters any ordinary conditional jumps which occur in such
5268 situations, but the compiler cannot alter jumps which have been replaced by
5269 peephole optimizations.  So it is up to you to alter the assembler code
5270 that the peephole produces.  Supply C code to write the assembler output,
5271 and in this C code check the condition code status flags and change the
5272 assembler code as appropriate.
5273 @end ignore
5274
5275 @var{insn-pattern-1} and so on look @emph{almost} like the second
5276 operand of @code{define_insn}.  There is one important difference: the
5277 second operand of @code{define_insn} consists of one or more RTX's
5278 enclosed in square brackets.  Usually, there is only one: then the same
5279 action can be written as an element of a @code{define_peephole}.  But
5280 when there are multiple actions in a @code{define_insn}, they are
5281 implicitly enclosed in a @code{parallel}.  Then you must explicitly
5282 write the @code{parallel}, and the square brackets within it, in the
5283 @code{define_peephole}.  Thus, if an insn pattern looks like this,
5284
5285 @smallexample
5286 (define_insn "divmodsi4"
5287   [(set (match_operand:SI 0 "general_operand" "=d")
5288         (div:SI (match_operand:SI 1 "general_operand" "0")
5289                 (match_operand:SI 2 "general_operand" "dmsK")))
5290    (set (match_operand:SI 3 "general_operand" "=d")
5291         (mod:SI (match_dup 1) (match_dup 2)))]
5292   "TARGET_68020"
5293   "divsl%.l %2,%3:%0")
5294 @end smallexample
5295
5296 @noindent
5297 then the way to mention this insn in a peephole is as follows:
5298
5299 @smallexample
5300 (define_peephole
5301   [@dots{}
5302    (parallel
5303     [(set (match_operand:SI 0 "general_operand" "=d")
5304           (div:SI (match_operand:SI 1 "general_operand" "0")
5305                   (match_operand:SI 2 "general_operand" "dmsK")))
5306      (set (match_operand:SI 3 "general_operand" "=d")
5307           (mod:SI (match_dup 1) (match_dup 2)))])
5308    @dots{}]
5309   @dots{})
5310 @end smallexample
5311
5312 @end ifset
5313 @ifset INTERNALS
5314 @node define_peephole2
5315 @subsection RTL to RTL Peephole Optimizers
5316 @findex define_peephole2
5317
5318 The @code{define_peephole2} definition tells the compiler how to
5319 substitute one sequence of instructions for another sequence,
5320 what additional scratch registers may be needed and what their
5321 lifetimes must be.
5322
5323 @smallexample
5324 (define_peephole2
5325   [@var{insn-pattern-1}
5326    @var{insn-pattern-2}
5327    @dots{}]
5328   "@var{condition}"
5329   [@var{new-insn-pattern-1}
5330    @var{new-insn-pattern-2}
5331    @dots{}]
5332   "@var{preparation-statements}")
5333 @end smallexample
5334
5335 The definition is almost identical to @code{define_split}
5336 (@pxref{Insn Splitting}) except that the pattern to match is not a
5337 single instruction, but a sequence of instructions.
5338
5339 It is possible to request additional scratch registers for use in the
5340 output template.  If appropriate registers are not free, the pattern
5341 will simply not match.
5342
5343 @findex match_scratch
5344 @findex match_dup
5345 Scratch registers are requested with a @code{match_scratch} pattern at
5346 the top level of the input pattern.  The allocated register (initially) will
5347 be dead at the point requested within the original sequence.  If the scratch
5348 is used at more than a single point, a @code{match_dup} pattern at the
5349 top level of the input pattern marks the last position in the input sequence
5350 at which the register must be available.
5351
5352 Here is an example from the IA-32 machine description:
5353
5354 @smallexample
5355 (define_peephole2
5356   [(match_scratch:SI 2 "r")
5357    (parallel [(set (match_operand:SI 0 "register_operand" "")
5358                    (match_operator:SI 3 "arith_or_logical_operator"
5359                      [(match_dup 0)
5360                       (match_operand:SI 1 "memory_operand" "")]))
5361               (clobber (reg:CC 17))])]
5362   "! optimize_size && ! TARGET_READ_MODIFY"
5363   [(set (match_dup 2) (match_dup 1))
5364    (parallel [(set (match_dup 0)
5365                    (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
5366               (clobber (reg:CC 17))])]
5367   "")
5368 @end smallexample
5369
5370 @noindent
5371 This pattern tries to split a load from its use in the hopes that we'll be
5372 able to schedule around the memory load latency.  It allocates a single
5373 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
5374 to be live only at the point just before the arithmetic.
5375
5376 A real example requiring extended scratch lifetimes is harder to come by,
5377 so here's a silly made-up example:
5378
5379 @smallexample
5380 (define_peephole2
5381   [(match_scratch:SI 4 "r")
5382    (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
5383    (set (match_operand:SI 2 "" "") (match_dup 1))
5384    (match_dup 4)
5385    (set (match_operand:SI 3 "" "") (match_dup 1))]
5386   "/* @r{determine 1 does not overlap 0 and 2} */"
5387   [(set (match_dup 4) (match_dup 1))
5388    (set (match_dup 0) (match_dup 4))
5389    (set (match_dup 2) (match_dup 4))]
5390    (set (match_dup 3) (match_dup 4))]
5391   "")
5392 @end smallexample
5393
5394 @noindent
5395 If we had not added the @code{(match_dup 4)} in the middle of the input
5396 sequence, it might have been the case that the register we chose at the
5397 beginning of the sequence is killed by the first or second @code{set}.
5398
5399 @end ifset
5400 @ifset INTERNALS
5401 @node Insn Attributes
5402 @section Instruction Attributes
5403 @cindex insn attributes
5404 @cindex instruction attributes
5405
5406 In addition to describing the instruction supported by the target machine,
5407 the @file{md} file also defines a group of @dfn{attributes} and a set of
5408 values for each.  Every generated insn is assigned a value for each attribute.
5409 One possible attribute would be the effect that the insn has on the machine's
5410 condition code.  This attribute can then be used by @code{NOTICE_UPDATE_CC}
5411 to track the condition codes.
5412
5413 @menu
5414 * Defining Attributes:: Specifying attributes and their values.
5415 * Expressions::         Valid expressions for attribute values.
5416 * Tagging Insns::       Assigning attribute values to insns.
5417 * Attr Example::        An example of assigning attributes.
5418 * Insn Lengths::        Computing the length of insns.
5419 * Constant Attributes:: Defining attributes that are constant.
5420 * Delay Slots::         Defining delay slots required for a machine.
5421 * Processor pipeline description:: Specifying information for insn scheduling.
5422 @end menu
5423
5424 @end ifset
5425 @ifset INTERNALS
5426 @node Defining Attributes
5427 @subsection Defining Attributes and their Values
5428 @cindex defining attributes and their values
5429 @cindex attributes, defining
5430
5431 @findex define_attr
5432 The @code{define_attr} expression is used to define each attribute required
5433 by the target machine.  It looks like:
5434
5435 @smallexample
5436 (define_attr @var{name} @var{list-of-values} @var{default})
5437 @end smallexample
5438
5439 @var{name} is a string specifying the name of the attribute being defined.
5440
5441 @var{list-of-values} is either a string that specifies a comma-separated
5442 list of values that can be assigned to the attribute, or a null string to
5443 indicate that the attribute takes numeric values.
5444
5445 @var{default} is an attribute expression that gives the value of this
5446 attribute for insns that match patterns whose definition does not include
5447 an explicit value for this attribute.  @xref{Attr Example}, for more
5448 information on the handling of defaults.  @xref{Constant Attributes},
5449 for information on attributes that do not depend on any particular insn.
5450
5451 @findex insn-attr.h
5452 For each defined attribute, a number of definitions are written to the
5453 @file{insn-attr.h} file.  For cases where an explicit set of values is
5454 specified for an attribute, the following are defined:
5455
5456 @itemize @bullet
5457 @item
5458 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
5459
5460 @item
5461 An enumerated class is defined for @samp{attr_@var{name}} with
5462 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
5463 the attribute name and value are first converted to uppercase.
5464
5465 @item
5466 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
5467 returns the attribute value for that insn.
5468 @end itemize
5469
5470 For example, if the following is present in the @file{md} file:
5471
5472 @smallexample
5473 (define_attr "type" "branch,fp,load,store,arith" @dots{})
5474 @end smallexample
5475
5476 @noindent
5477 the following lines will be written to the file @file{insn-attr.h}.
5478
5479 @smallexample
5480 #define HAVE_ATTR_type
5481 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
5482                  TYPE_STORE, TYPE_ARITH@};
5483 extern enum attr_type get_attr_type ();
5484 @end smallexample
5485
5486 If the attribute takes numeric values, no @code{enum} type will be
5487 defined and the function to obtain the attribute's value will return
5488 @code{int}.
5489
5490 @end ifset
5491 @ifset INTERNALS
5492 @node Expressions
5493 @subsection Attribute Expressions
5494 @cindex attribute expressions
5495
5496 RTL expressions used to define attributes use the codes described above
5497 plus a few specific to attribute definitions, to be discussed below.
5498 Attribute value expressions must have one of the following forms:
5499
5500 @table @code
5501 @cindex @code{const_int} and attributes
5502 @item (const_int @var{i})
5503 The integer @var{i} specifies the value of a numeric attribute.  @var{i}
5504 must be non-negative.
5505
5506 The value of a numeric attribute can be specified either with a
5507 @code{const_int}, or as an integer represented as a string in
5508 @code{const_string}, @code{eq_attr} (see below), @code{attr},
5509 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
5510 overrides on specific instructions (@pxref{Tagging Insns}).
5511
5512 @cindex @code{const_string} and attributes
5513 @item (const_string @var{value})
5514 The string @var{value} specifies a constant attribute value.
5515 If @var{value} is specified as @samp{"*"}, it means that the default value of
5516 the attribute is to be used for the insn containing this expression.
5517 @samp{"*"} obviously cannot be used in the @var{default} expression
5518 of a @code{define_attr}.
5519
5520 If the attribute whose value is being specified is numeric, @var{value}
5521 must be a string containing a non-negative integer (normally
5522 @code{const_int} would be used in this case).  Otherwise, it must
5523 contain one of the valid values for the attribute.
5524
5525 @cindex @code{if_then_else} and attributes
5526 @item (if_then_else @var{test} @var{true-value} @var{false-value})
5527 @var{test} specifies an attribute test, whose format is defined below.
5528 The value of this expression is @var{true-value} if @var{test} is true,
5529 otherwise it is @var{false-value}.
5530
5531 @cindex @code{cond} and attributes
5532 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
5533 The first operand of this expression is a vector containing an even
5534 number of expressions and consisting of pairs of @var{test} and @var{value}
5535 expressions.  The value of the @code{cond} expression is that of the
5536 @var{value} corresponding to the first true @var{test} expression.  If
5537 none of the @var{test} expressions are true, the value of the @code{cond}
5538 expression is that of the @var{default} expression.
5539 @end table
5540
5541 @var{test} expressions can have one of the following forms:
5542
5543 @table @code
5544 @cindex @code{const_int} and attribute tests
5545 @item (const_int @var{i})
5546 This test is true if @var{i} is nonzero and false otherwise.
5547
5548 @cindex @code{not} and attributes
5549 @cindex @code{ior} and attributes
5550 @cindex @code{and} and attributes
5551 @item (not @var{test})
5552 @itemx (ior @var{test1} @var{test2})
5553 @itemx (and @var{test1} @var{test2})
5554 These tests are true if the indicated logical function is true.
5555
5556 @cindex @code{match_operand} and attributes
5557 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
5558 This test is true if operand @var{n} of the insn whose attribute value
5559 is being determined has mode @var{m} (this part of the test is ignored
5560 if @var{m} is @code{VOIDmode}) and the function specified by the string
5561 @var{pred} returns a nonzero value when passed operand @var{n} and mode
5562 @var{m} (this part of the test is ignored if @var{pred} is the null
5563 string).
5564
5565 The @var{constraints} operand is ignored and should be the null string.
5566
5567 @cindex @code{le} and attributes
5568 @cindex @code{leu} and attributes
5569 @cindex @code{lt} and attributes
5570 @cindex @code{gt} and attributes
5571 @cindex @code{gtu} and attributes
5572 @cindex @code{ge} and attributes
5573 @cindex @code{geu} and attributes
5574 @cindex @code{ne} and attributes
5575 @cindex @code{eq} and attributes
5576 @cindex @code{plus} and attributes
5577 @cindex @code{minus} and attributes
5578 @cindex @code{mult} and attributes
5579 @cindex @code{div} and attributes
5580 @cindex @code{mod} and attributes
5581 @cindex @code{abs} and attributes
5582 @cindex @code{neg} and attributes
5583 @cindex @code{ashift} and attributes
5584 @cindex @code{lshiftrt} and attributes
5585 @cindex @code{ashiftrt} and attributes
5586 @item (le @var{arith1} @var{arith2})
5587 @itemx (leu @var{arith1} @var{arith2})
5588 @itemx (lt @var{arith1} @var{arith2})
5589 @itemx (ltu @var{arith1} @var{arith2})
5590 @itemx (gt @var{arith1} @var{arith2})
5591 @itemx (gtu @var{arith1} @var{arith2})
5592 @itemx (ge @var{arith1} @var{arith2})
5593 @itemx (geu @var{arith1} @var{arith2})
5594 @itemx (ne @var{arith1} @var{arith2})
5595 @itemx (eq @var{arith1} @var{arith2})
5596 These tests are true if the indicated comparison of the two arithmetic
5597 expressions is true.  Arithmetic expressions are formed with
5598 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
5599 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
5600 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
5601
5602 @findex get_attr
5603 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
5604 Lengths},for additional forms).  @code{symbol_ref} is a string
5605 denoting a C expression that yields an @code{int} when evaluated by the
5606 @samp{get_attr_@dots{}} routine.  It should normally be a global
5607 variable.
5608
5609 @findex eq_attr
5610 @item (eq_attr @var{name} @var{value})
5611 @var{name} is a string specifying the name of an attribute.
5612
5613 @var{value} is a string that is either a valid value for attribute
5614 @var{name}, a comma-separated list of values, or @samp{!} followed by a
5615 value or list.  If @var{value} does not begin with a @samp{!}, this
5616 test is true if the value of the @var{name} attribute of the current
5617 insn is in the list specified by @var{value}.  If @var{value} begins
5618 with a @samp{!}, this test is true if the attribute's value is
5619 @emph{not} in the specified list.
5620
5621 For example,
5622
5623 @smallexample
5624 (eq_attr "type" "load,store")
5625 @end smallexample
5626
5627 @noindent
5628 is equivalent to
5629
5630 @smallexample
5631 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
5632 @end smallexample
5633
5634 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
5635 value of the compiler variable @code{which_alternative}
5636 (@pxref{Output Statement}) and the values must be small integers.  For
5637 example,
5638
5639 @smallexample
5640 (eq_attr "alternative" "2,3")
5641 @end smallexample
5642
5643 @noindent
5644 is equivalent to
5645
5646 @smallexample
5647 (ior (eq (symbol_ref "which_alternative") (const_int 2))
5648      (eq (symbol_ref "which_alternative") (const_int 3)))
5649 @end smallexample
5650
5651 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
5652 where the value of the attribute being tested is known for all insns matching
5653 a particular pattern.  This is by far the most common case.
5654
5655 @findex attr_flag
5656 @item (attr_flag @var{name})
5657 The value of an @code{attr_flag} expression is true if the flag
5658 specified by @var{name} is true for the @code{insn} currently being
5659 scheduled.
5660
5661 @var{name} is a string specifying one of a fixed set of flags to test.
5662 Test the flags @code{forward} and @code{backward} to determine the
5663 direction of a conditional branch.  Test the flags @code{very_likely},
5664 @code{likely}, @code{very_unlikely}, and @code{unlikely} to determine
5665 if a conditional branch is expected to be taken.
5666
5667 If the @code{very_likely} flag is true, then the @code{likely} flag is also
5668 true.  Likewise for the @code{very_unlikely} and @code{unlikely} flags.
5669
5670 This example describes a conditional branch delay slot which
5671 can be nullified for forward branches that are taken (annul-true) or
5672 for backward branches which are not taken (annul-false).
5673
5674 @smallexample
5675 (define_delay (eq_attr "type" "cbranch")
5676   [(eq_attr "in_branch_delay" "true")
5677    (and (eq_attr "in_branch_delay" "true")
5678         (attr_flag "forward"))
5679    (and (eq_attr "in_branch_delay" "true")
5680         (attr_flag "backward"))])
5681 @end smallexample
5682
5683 The @code{forward} and @code{backward} flags are false if the current
5684 @code{insn} being scheduled is not a conditional branch.
5685
5686 The @code{very_likely} and @code{likely} flags are true if the
5687 @code{insn} being scheduled is not a conditional branch.
5688 The @code{very_unlikely} and @code{unlikely} flags are false if the
5689 @code{insn} being scheduled is not a conditional branch.
5690
5691 @code{attr_flag} is only used during delay slot scheduling and has no
5692 meaning to other passes of the compiler.
5693
5694 @findex attr
5695 @item (attr @var{name})
5696 The value of another attribute is returned.  This is most useful
5697 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
5698 produce more efficient code for non-numeric attributes.
5699 @end table
5700
5701 @end ifset
5702 @ifset INTERNALS
5703 @node Tagging Insns
5704 @subsection Assigning Attribute Values to Insns
5705 @cindex tagging insns
5706 @cindex assigning attribute values to insns
5707
5708 The value assigned to an attribute of an insn is primarily determined by
5709 which pattern is matched by that insn (or which @code{define_peephole}
5710 generated it).  Every @code{define_insn} and @code{define_peephole} can
5711 have an optional last argument to specify the values of attributes for
5712 matching insns.  The value of any attribute not specified in a particular
5713 insn is set to the default value for that attribute, as specified in its
5714 @code{define_attr}.  Extensive use of default values for attributes
5715 permits the specification of the values for only one or two attributes
5716 in the definition of most insn patterns, as seen in the example in the
5717 next section.
5718
5719 The optional last argument of @code{define_insn} and
5720 @code{define_peephole} is a vector of expressions, each of which defines
5721 the value for a single attribute.  The most general way of assigning an
5722 attribute's value is to use a @code{set} expression whose first operand is an
5723 @code{attr} expression giving the name of the attribute being set.  The
5724 second operand of the @code{set} is an attribute expression
5725 (@pxref{Expressions}) giving the value of the attribute.
5726
5727 When the attribute value depends on the @samp{alternative} attribute
5728 (i.e., which is the applicable alternative in the constraint of the
5729 insn), the @code{set_attr_alternative} expression can be used.  It
5730 allows the specification of a vector of attribute expressions, one for
5731 each alternative.
5732
5733 @findex set_attr
5734 When the generality of arbitrary attribute expressions is not required,
5735 the simpler @code{set_attr} expression can be used, which allows
5736 specifying a string giving either a single attribute value or a list
5737 of attribute values, one for each alternative.
5738
5739 The form of each of the above specifications is shown below.  In each case,
5740 @var{name} is a string specifying the attribute to be set.
5741
5742 @table @code
5743 @item (set_attr @var{name} @var{value-string})
5744 @var{value-string} is either a string giving the desired attribute value,
5745 or a string containing a comma-separated list giving the values for
5746 succeeding alternatives.  The number of elements must match the number
5747 of alternatives in the constraint of the insn pattern.
5748
5749 Note that it may be useful to specify @samp{*} for some alternative, in
5750 which case the attribute will assume its default value for insns matching
5751 that alternative.
5752
5753 @findex set_attr_alternative
5754 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
5755 Depending on the alternative of the insn, the value will be one of the
5756 specified values.  This is a shorthand for using a @code{cond} with
5757 tests on the @samp{alternative} attribute.
5758
5759 @findex attr
5760 @item (set (attr @var{name}) @var{value})
5761 The first operand of this @code{set} must be the special RTL expression
5762 @code{attr}, whose sole operand is a string giving the name of the
5763 attribute being set.  @var{value} is the value of the attribute.
5764 @end table
5765
5766 The following shows three different ways of representing the same
5767 attribute value specification:
5768
5769 @smallexample
5770 (set_attr "type" "load,store,arith")
5771
5772 (set_attr_alternative "type"
5773                       [(const_string "load") (const_string "store")
5774                        (const_string "arith")])
5775
5776 (set (attr "type")
5777      (cond [(eq_attr "alternative" "1") (const_string "load")
5778             (eq_attr "alternative" "2") (const_string "store")]
5779            (const_string "arith")))
5780 @end smallexample
5781
5782 @need 1000
5783 @findex define_asm_attributes
5784 The @code{define_asm_attributes} expression provides a mechanism to
5785 specify the attributes assigned to insns produced from an @code{asm}
5786 statement.  It has the form:
5787
5788 @smallexample
5789 (define_asm_attributes [@var{attr-sets}])
5790 @end smallexample
5791
5792 @noindent
5793 where @var{attr-sets} is specified the same as for both the
5794 @code{define_insn} and the @code{define_peephole} expressions.
5795
5796 These values will typically be the ``worst case'' attribute values.  For
5797 example, they might indicate that the condition code will be clobbered.
5798
5799 A specification for a @code{length} attribute is handled specially.  The
5800 way to compute the length of an @code{asm} insn is to multiply the
5801 length specified in the expression @code{define_asm_attributes} by the
5802 number of machine instructions specified in the @code{asm} statement,
5803 determined by counting the number of semicolons and newlines in the
5804 string.  Therefore, the value of the @code{length} attribute specified
5805 in a @code{define_asm_attributes} should be the maximum possible length
5806 of a single machine instruction.
5807
5808 @end ifset
5809 @ifset INTERNALS
5810 @node Attr Example
5811 @subsection Example of Attribute Specifications
5812 @cindex attribute specifications example
5813 @cindex attribute specifications
5814
5815 The judicious use of defaulting is important in the efficient use of
5816 insn attributes.  Typically, insns are divided into @dfn{types} and an
5817 attribute, customarily called @code{type}, is used to represent this
5818 value.  This attribute is normally used only to define the default value
5819 for other attributes.  An example will clarify this usage.
5820
5821 Assume we have a RISC machine with a condition code and in which only
5822 full-word operations are performed in registers.  Let us assume that we
5823 can divide all insns into loads, stores, (integer) arithmetic
5824 operations, floating point operations, and branches.
5825
5826 Here we will concern ourselves with determining the effect of an insn on
5827 the condition code and will limit ourselves to the following possible
5828 effects:  The condition code can be set unpredictably (clobbered), not
5829 be changed, be set to agree with the results of the operation, or only
5830 changed if the item previously set into the condition code has been
5831 modified.
5832
5833 Here is part of a sample @file{md} file for such a machine:
5834
5835 @smallexample
5836 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
5837
5838 (define_attr "cc" "clobber,unchanged,set,change0"
5839              (cond [(eq_attr "type" "load")
5840                         (const_string "change0")
5841                     (eq_attr "type" "store,branch")
5842                         (const_string "unchanged")
5843                     (eq_attr "type" "arith")
5844                         (if_then_else (match_operand:SI 0 "" "")
5845                                       (const_string "set")
5846                                       (const_string "clobber"))]
5847                    (const_string "clobber")))
5848
5849 (define_insn ""
5850   [(set (match_operand:SI 0 "general_operand" "=r,r,m")
5851         (match_operand:SI 1 "general_operand" "r,m,r"))]
5852   ""
5853   "@@
5854    move %0,%1
5855    load %0,%1
5856    store %0,%1"
5857   [(set_attr "type" "arith,load,store")])
5858 @end smallexample
5859
5860 Note that we assume in the above example that arithmetic operations
5861 performed on quantities smaller than a machine word clobber the condition
5862 code since they will set the condition code to a value corresponding to the
5863 full-word result.
5864
5865 @end ifset
5866 @ifset INTERNALS
5867 @node Insn Lengths
5868 @subsection Computing the Length of an Insn
5869 @cindex insn lengths, computing
5870 @cindex computing the length of an insn
5871
5872 For many machines, multiple types of branch instructions are provided, each
5873 for different length branch displacements.  In most cases, the assembler
5874 will choose the correct instruction to use.  However, when the assembler
5875 cannot do so, GCC can when a special attribute, the @code{length}
5876 attribute, is defined.  This attribute must be defined to have numeric
5877 values by specifying a null string in its @code{define_attr}.
5878
5879 In the case of the @code{length} attribute, two additional forms of
5880 arithmetic terms are allowed in test expressions:
5881
5882 @table @code
5883 @cindex @code{match_dup} and attributes
5884 @item (match_dup @var{n})
5885 This refers to the address of operand @var{n} of the current insn, which
5886 must be a @code{label_ref}.
5887
5888 @cindex @code{pc} and attributes
5889 @item (pc)
5890 This refers to the address of the @emph{current} insn.  It might have
5891 been more consistent with other usage to make this the address of the
5892 @emph{next} insn but this would be confusing because the length of the
5893 current insn is to be computed.
5894 @end table
5895
5896 @cindex @code{addr_vec}, length of
5897 @cindex @code{addr_diff_vec}, length of
5898 For normal insns, the length will be determined by value of the
5899 @code{length} attribute.  In the case of @code{addr_vec} and
5900 @code{addr_diff_vec} insn patterns, the length is computed as
5901 the number of vectors multiplied by the size of each vector.
5902
5903 Lengths are measured in addressable storage units (bytes).
5904
5905 The following macros can be used to refine the length computation:
5906
5907 @table @code
5908 @findex ADJUST_INSN_LENGTH
5909 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
5910 If defined, modifies the length assigned to instruction @var{insn} as a
5911 function of the context in which it is used.  @var{length} is an lvalue
5912 that contains the initially computed length of the insn and should be
5913 updated with the correct length of the insn.
5914
5915 This macro will normally not be required.  A case in which it is
5916 required is the ROMP@.  On this machine, the size of an @code{addr_vec}
5917 insn must be increased by two to compensate for the fact that alignment
5918 may be required.
5919 @end table
5920
5921 @findex get_attr_length
5922 The routine that returns @code{get_attr_length} (the value of the
5923 @code{length} attribute) can be used by the output routine to
5924 determine the form of the branch instruction to be written, as the
5925 example below illustrates.
5926
5927 As an example of the specification of variable-length branches, consider
5928 the IBM 360.  If we adopt the convention that a register will be set to
5929 the starting address of a function, we can jump to labels within 4k of
5930 the start using a four-byte instruction.  Otherwise, we need a six-byte
5931 sequence to load the address from memory and then branch to it.
5932
5933 On such a machine, a pattern for a branch instruction might be specified
5934 as follows:
5935
5936 @smallexample
5937 (define_insn "jump"
5938   [(set (pc)
5939         (label_ref (match_operand 0 "" "")))]
5940   ""
5941 @{
5942    return (get_attr_length (insn) == 4
5943            ? "b %l0" : "l r15,=a(%l0); br r15");
5944 @}
5945   [(set (attr "length")
5946         (if_then_else (lt (match_dup 0) (const_int 4096))
5947                       (const_int 4)
5948                       (const_int 6)))])
5949 @end smallexample
5950
5951 @end ifset
5952 @ifset INTERNALS
5953 @node Constant Attributes
5954 @subsection Constant Attributes
5955 @cindex constant attributes
5956
5957 A special form of @code{define_attr}, where the expression for the
5958 default value is a @code{const} expression, indicates an attribute that
5959 is constant for a given run of the compiler.  Constant attributes may be
5960 used to specify which variety of processor is used.  For example,
5961
5962 @smallexample
5963 (define_attr "cpu" "m88100,m88110,m88000"
5964  (const
5965   (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
5966          (symbol_ref "TARGET_88110") (const_string "m88110")]
5967         (const_string "m88000"))))
5968
5969 (define_attr "memory" "fast,slow"
5970  (const
5971   (if_then_else (symbol_ref "TARGET_FAST_MEM")
5972                 (const_string "fast")
5973                 (const_string "slow"))))
5974 @end smallexample
5975
5976 The routine generated for constant attributes has no parameters as it
5977 does not depend on any particular insn.  RTL expressions used to define
5978 the value of a constant attribute may use the @code{symbol_ref} form,
5979 but may not use either the @code{match_operand} form or @code{eq_attr}
5980 forms involving insn attributes.
5981
5982 @end ifset
5983 @ifset INTERNALS
5984 @node Delay Slots
5985 @subsection Delay Slot Scheduling
5986 @cindex delay slots, defining
5987
5988 The insn attribute mechanism can be used to specify the requirements for
5989 delay slots, if any, on a target machine.  An instruction is said to
5990 require a @dfn{delay slot} if some instructions that are physically
5991 after the instruction are executed as if they were located before it.
5992 Classic examples are branch and call instructions, which often execute
5993 the following instruction before the branch or call is performed.
5994
5995 On some machines, conditional branch instructions can optionally
5996 @dfn{annul} instructions in the delay slot.  This means that the
5997 instruction will not be executed for certain branch outcomes.  Both
5998 instructions that annul if the branch is true and instructions that
5999 annul if the branch is false are supported.
6000
6001 Delay slot scheduling differs from instruction scheduling in that
6002 determining whether an instruction needs a delay slot is dependent only
6003 on the type of instruction being generated, not on data flow between the
6004 instructions.  See the next section for a discussion of data-dependent
6005 instruction scheduling.
6006
6007 @findex define_delay
6008 The requirement of an insn needing one or more delay slots is indicated
6009 via the @code{define_delay} expression.  It has the following form:
6010
6011 @smallexample
6012 (define_delay @var{test}
6013               [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
6014                @var{delay-2} @var{annul-true-2} @var{annul-false-2}
6015                @dots{}])
6016 @end smallexample
6017
6018 @var{test} is an attribute test that indicates whether this
6019 @code{define_delay} applies to a particular insn.  If so, the number of
6020 required delay slots is determined by the length of the vector specified
6021 as the second argument.  An insn placed in delay slot @var{n} must
6022 satisfy attribute test @var{delay-n}.  @var{annul-true-n} is an
6023 attribute test that specifies which insns may be annulled if the branch
6024 is true.  Similarly, @var{annul-false-n} specifies which insns in the
6025 delay slot may be annulled if the branch is false.  If annulling is not
6026 supported for that delay slot, @code{(nil)} should be coded.
6027
6028 For example, in the common case where branch and call insns require
6029 a single delay slot, which may contain any insn other than a branch or
6030 call, the following would be placed in the @file{md} file:
6031
6032 @smallexample
6033 (define_delay (eq_attr "type" "branch,call")
6034               [(eq_attr "type" "!branch,call") (nil) (nil)])
6035 @end smallexample
6036
6037 Multiple @code{define_delay} expressions may be specified.  In this
6038 case, each such expression specifies different delay slot requirements
6039 and there must be no insn for which tests in two @code{define_delay}
6040 expressions are both true.
6041
6042 For example, if we have a machine that requires one delay slot for branches
6043 but two for calls,  no delay slot can contain a branch or call insn,
6044 and any valid insn in the delay slot for the branch can be annulled if the
6045 branch is true, we might represent this as follows:
6046
6047 @smallexample
6048 (define_delay (eq_attr "type" "branch")
6049    [(eq_attr "type" "!branch,call")
6050     (eq_attr "type" "!branch,call")
6051     (nil)])
6052
6053 (define_delay (eq_attr "type" "call")
6054               [(eq_attr "type" "!branch,call") (nil) (nil)
6055                (eq_attr "type" "!branch,call") (nil) (nil)])
6056 @end smallexample
6057 @c the above is *still* too long.  --mew 4feb93
6058
6059 @end ifset
6060 @ifset INTERNALS
6061 @node Processor pipeline description
6062 @subsection Specifying processor pipeline description
6063 @cindex processor pipeline description
6064 @cindex processor functional units
6065 @cindex instruction latency time
6066 @cindex interlock delays
6067 @cindex data dependence delays
6068 @cindex reservation delays
6069 @cindex pipeline hazard recognizer
6070 @cindex automaton based pipeline description
6071 @cindex regular expressions
6072 @cindex deterministic finite state automaton
6073 @cindex automaton based scheduler
6074 @cindex RISC
6075 @cindex VLIW
6076
6077 To achieve better performance, most modern processors
6078 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
6079 processors) have many @dfn{functional units} on which several
6080 instructions can be executed simultaneously.  An instruction starts
6081 execution if its issue conditions are satisfied.  If not, the
6082 instruction is stalled until its conditions are satisfied.  Such
6083 @dfn{interlock (pipeline) delay} causes interruption of the fetching
6084 of successor instructions (or demands nop instructions, e.g.@: for some
6085 MIPS processors).
6086
6087 There are two major kinds of interlock delays in modern processors.
6088 The first one is a data dependence delay determining @dfn{instruction
6089 latency time}.  The instruction execution is not started until all
6090 source data have been evaluated by prior instructions (there are more
6091 complex cases when the instruction execution starts even when the data
6092 are not available but will be ready in given time after the
6093 instruction execution start).  Taking the data dependence delays into
6094 account is simple.  The data dependence (true, output, and
6095 anti-dependence) delay between two instructions is given by a
6096 constant.  In most cases this approach is adequate.  The second kind
6097 of interlock delays is a reservation delay.  The reservation delay
6098 means that two instructions under execution will be in need of shared
6099 processors resources, i.e.@: buses, internal registers, and/or
6100 functional units, which are reserved for some time.  Taking this kind
6101 of delay into account is complex especially for modern @acronym{RISC}
6102 processors.
6103
6104 The task of exploiting more processor parallelism is solved by an
6105 instruction scheduler.  For a better solution to this problem, the
6106 instruction scheduler has to have an adequate description of the
6107 processor parallelism (or @dfn{pipeline description}).  GCC
6108 machine descriptions describe processor parallelism and functional
6109 unit reservations for groups of instructions with the aid of
6110 @dfn{regular expressions}.
6111
6112 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
6113 figure out the possibility of the instruction issue by the processor
6114 on a given simulated processor cycle.  The pipeline hazard recognizer is
6115 automatically generated from the processor pipeline description.  The
6116 pipeline hazard recognizer generated from the machine description
6117 is based on a deterministic finite state automaton (@acronym{DFA}):
6118 the instruction issue is possible if there is a transition from one
6119 automaton state to another one.  This algorithm is very fast, and
6120 furthermore, its speed is not dependent on processor
6121 complexity@footnote{However, the size of the automaton depends on
6122   processor complexity.  To limit this effect, machine descriptions
6123   can split orthogonal parts of the machine description among several
6124   automata: but then, since each of these must be stepped independently,
6125   this does cause a small decrease in the algorithm's performance.}.
6126
6127 @cindex automaton based pipeline description
6128 The rest of this section describes the directives that constitute
6129 an automaton-based processor pipeline description.  The order of
6130 these constructions within the machine description file is not
6131 important.
6132
6133 @findex define_automaton
6134 @cindex pipeline hazard recognizer
6135 The following optional construction describes names of automata
6136 generated and used for the pipeline hazards recognition.  Sometimes
6137 the generated finite state automaton used by the pipeline hazard
6138 recognizer is large.  If we use more than one automaton and bind functional
6139 units to the automata, the total size of the automata is usually
6140 less than the size of the single automaton.  If there is no one such
6141 construction, only one finite state automaton is generated.
6142
6143 @smallexample
6144 (define_automaton @var{automata-names})
6145 @end smallexample
6146
6147 @var{automata-names} is a string giving names of the automata.  The
6148 names are separated by commas.  All the automata should have unique names.
6149 The automaton name is used in the constructions @code{define_cpu_unit} and
6150 @code{define_query_cpu_unit}.
6151
6152 @findex define_cpu_unit
6153 @cindex processor functional units
6154 Each processor functional unit used in the description of instruction
6155 reservations should be described by the following construction.
6156
6157 @smallexample
6158 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
6159 @end smallexample
6160
6161 @var{unit-names} is a string giving the names of the functional units
6162 separated by commas.  Don't use name @samp{nothing}, it is reserved
6163 for other goals.
6164
6165 @var{automaton-name} is a string giving the name of the automaton with
6166 which the unit is bound.  The automaton should be described in
6167 construction @code{define_automaton}.  You should give
6168 @dfn{automaton-name}, if there is a defined automaton.
6169
6170 The assignment of units to automata are constrained by the uses of the
6171 units in insn reservations.  The most important constraint is: if a
6172 unit reservation is present on a particular cycle of an alternative
6173 for an insn reservation, then some unit from the same automaton must
6174 be present on the same cycle for the other alternatives of the insn
6175 reservation.  The rest of the constraints are mentioned in the
6176 description of the subsequent constructions.
6177
6178 @findex define_query_cpu_unit
6179 @cindex querying function unit reservations
6180 The following construction describes CPU functional units analogously
6181 to @code{define_cpu_unit}.  The reservation of such units can be
6182 queried for an automaton state.  The instruction scheduler never
6183 queries reservation of functional units for given automaton state.  So
6184 as a rule, you don't need this construction.  This construction could
6185 be used for future code generation goals (e.g.@: to generate
6186 @acronym{VLIW} insn templates).
6187
6188 @smallexample
6189 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
6190 @end smallexample
6191
6192 @var{unit-names} is a string giving names of the functional units
6193 separated by commas.
6194
6195 @var{automaton-name} is a string giving the name of the automaton with
6196 which the unit is bound.
6197
6198 @findex define_insn_reservation
6199 @cindex instruction latency time
6200 @cindex regular expressions
6201 @cindex data bypass
6202 The following construction is the major one to describe pipeline
6203 characteristics of an instruction.
6204
6205 @smallexample
6206 (define_insn_reservation @var{insn-name} @var{default_latency}
6207                          @var{condition} @var{regexp})
6208 @end smallexample
6209
6210 @var{default_latency} is a number giving latency time of the
6211 instruction.  There is an important difference between the old
6212 description and the automaton based pipeline description.  The latency
6213 time is used for all dependencies when we use the old description.  In
6214 the automaton based pipeline description, the given latency time is only
6215 used for true dependencies.  The cost of anti-dependencies is always
6216 zero and the cost of output dependencies is the difference between
6217 latency times of the producing and consuming insns (if the difference
6218 is negative, the cost is considered to be zero).  You can always
6219 change the default costs for any description by using the target hook
6220 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
6221
6222 @var{insn-name} is a string giving the internal name of the insn.  The
6223 internal names are used in constructions @code{define_bypass} and in
6224 the automaton description file generated for debugging.  The internal
6225 name has nothing in common with the names in @code{define_insn}.  It is a
6226 good practice to use insn classes described in the processor manual.
6227
6228 @var{condition} defines what RTL insns are described by this
6229 construction.  You should remember that you will be in trouble if
6230 @var{condition} for two or more different
6231 @code{define_insn_reservation} constructions is TRUE for an insn.  In
6232 this case what reservation will be used for the insn is not defined.
6233 Such cases are not checked during generation of the pipeline hazards
6234 recognizer because in general recognizing that two conditions may have
6235 the same value is quite difficult (especially if the conditions
6236 contain @code{symbol_ref}).  It is also not checked during the
6237 pipeline hazard recognizer work because it would slow down the
6238 recognizer considerably.
6239
6240 @var{regexp} is a string describing the reservation of the cpu's functional
6241 units by the instruction.  The reservations are described by a regular
6242 expression according to the following syntax:
6243
6244 @smallexample
6245        regexp = regexp "," oneof
6246               | oneof
6247
6248        oneof = oneof "|" allof
6249              | allof
6250
6251        allof = allof "+" repeat
6252              | repeat
6253
6254        repeat = element "*" number
6255               | element
6256
6257        element = cpu_function_unit_name
6258                | reservation_name
6259                | result_name
6260                | "nothing"
6261                | "(" regexp ")"
6262 @end smallexample
6263
6264 @itemize @bullet
6265 @item
6266 @samp{,} is used for describing the start of the next cycle in
6267 the reservation.
6268
6269 @item
6270 @samp{|} is used for describing a reservation described by the first
6271 regular expression @strong{or} a reservation described by the second
6272 regular expression @strong{or} etc.
6273
6274 @item
6275 @samp{+} is used for describing a reservation described by the first
6276 regular expression @strong{and} a reservation described by the
6277 second regular expression @strong{and} etc.
6278
6279 @item
6280 @samp{*} is used for convenience and simply means a sequence in which
6281 the regular expression are repeated @var{number} times with cycle
6282 advancing (see @samp{,}).
6283
6284 @item
6285 @samp{cpu_function_unit_name} denotes reservation of the named
6286 functional unit.
6287
6288 @item
6289 @samp{reservation_name} --- see description of construction
6290 @samp{define_reservation}.
6291
6292 @item
6293 @samp{nothing} denotes no unit reservations.
6294 @end itemize
6295
6296 @findex define_reservation
6297 Sometimes unit reservations for different insns contain common parts.
6298 In such case, you can simplify the pipeline description by describing
6299 the common part by the following construction
6300
6301 @smallexample
6302 (define_reservation @var{reservation-name} @var{regexp})
6303 @end smallexample
6304
6305 @var{reservation-name} is a string giving name of @var{regexp}.
6306 Functional unit names and reservation names are in the same name
6307 space.  So the reservation names should be different from the
6308 functional unit names and can not be the reserved name @samp{nothing}.
6309
6310 @findex define_bypass
6311 @cindex instruction latency time
6312 @cindex data bypass
6313 The following construction is used to describe exceptions in the
6314 latency time for given instruction pair.  This is so called bypasses.
6315
6316 @smallexample
6317 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
6318                [@var{guard}])
6319 @end smallexample
6320
6321 @var{number} defines when the result generated by the instructions
6322 given in string @var{out_insn_names} will be ready for the
6323 instructions given in string @var{in_insn_names}.  The instructions in
6324 the string are separated by commas.
6325
6326 @var{guard} is an optional string giving the name of a C function which
6327 defines an additional guard for the bypass.  The function will get the
6328 two insns as parameters.  If the function returns zero the bypass will
6329 be ignored for this case.  The additional guard is necessary to
6330 recognize complicated bypasses, e.g.@: when the consumer is only an address
6331 of insn @samp{store} (not a stored value).
6332
6333 @findex exclusion_set
6334 @findex presence_set
6335 @findex final_presence_set
6336 @findex absence_set
6337 @findex final_absence_set
6338 @cindex VLIW
6339 @cindex RISC
6340 The following five constructions are usually used to describe
6341 @acronym{VLIW} processors, or more precisely, to describe a placement
6342 of small instructions into @acronym{VLIW} instruction slots.  They
6343 can be used for @acronym{RISC} processors, too.
6344
6345 @smallexample
6346 (exclusion_set @var{unit-names} @var{unit-names})
6347 (presence_set @var{unit-names} @var{patterns})
6348 (final_presence_set @var{unit-names} @var{patterns})
6349 (absence_set @var{unit-names} @var{patterns})
6350 (final_absence_set @var{unit-names} @var{patterns})
6351 @end smallexample
6352
6353 @var{unit-names} is a string giving names of functional units
6354 separated by commas.
6355
6356 @var{patterns} is a string giving patterns of functional units
6357 separated by comma.  Currently pattern is one unit or units
6358 separated by white-spaces.
6359
6360 The first construction (@samp{exclusion_set}) means that each
6361 functional unit in the first string can not be reserved simultaneously
6362 with a unit whose name is in the second string and vice versa.  For
6363 example, the construction is useful for describing processors
6364 (e.g.@: some SPARC processors) with a fully pipelined floating point
6365 functional unit which can execute simultaneously only single floating
6366 point insns or only double floating point insns.
6367
6368 The second construction (@samp{presence_set}) means that each
6369 functional unit in the first string can not be reserved unless at
6370 least one of pattern of units whose names are in the second string is
6371 reserved.  This is an asymmetric relation.  For example, it is useful
6372 for description that @acronym{VLIW} @samp{slot1} is reserved after
6373 @samp{slot0} reservation.  We could describe it by the following
6374 construction
6375
6376 @smallexample
6377 (presence_set "slot1" "slot0")
6378 @end smallexample
6379
6380 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
6381 reservation.  In this case we could write
6382
6383 @smallexample
6384 (presence_set "slot1" "slot0 b0")
6385 @end smallexample
6386
6387 The third construction (@samp{final_presence_set}) is analogous to
6388 @samp{presence_set}.  The difference between them is when checking is
6389 done.  When an instruction is issued in given automaton state
6390 reflecting all current and planned unit reservations, the automaton
6391 state is changed.  The first state is a source state, the second one
6392 is a result state.  Checking for @samp{presence_set} is done on the
6393 source state reservation, checking for @samp{final_presence_set} is
6394 done on the result reservation.  This construction is useful to
6395 describe a reservation which is actually two subsequent reservations.
6396 For example, if we use
6397
6398 @smallexample
6399 (presence_set "slot1" "slot0")
6400 @end smallexample
6401
6402 the following insn will be never issued (because @samp{slot1} requires
6403 @samp{slot0} which is absent in the source state).
6404
6405 @smallexample
6406 (define_reservation "insn_and_nop" "slot0 + slot1")
6407 @end smallexample
6408
6409 but it can be issued if we use analogous @samp{final_presence_set}.
6410
6411 The forth construction (@samp{absence_set}) means that each functional
6412 unit in the first string can be reserved only if each pattern of units
6413 whose names are in the second string is not reserved.  This is an
6414 asymmetric relation (actually @samp{exclusion_set} is analogous to
6415 this one but it is symmetric).  For example, it is useful for
6416 description that @acronym{VLIW} @samp{slot0} can not be reserved after
6417 @samp{slot1} or @samp{slot2} reservation.  We could describe it by the
6418 following construction
6419
6420 @smallexample
6421 (absence_set "slot2" "slot0, slot1")
6422 @end smallexample
6423
6424 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
6425 are reserved or @samp{slot1} and unit @samp{b1} are reserved.  In
6426 this case we could write
6427
6428 @smallexample
6429 (absence_set "slot2" "slot0 b0, slot1 b1")
6430 @end smallexample
6431
6432 All functional units mentioned in a set should belong to the same
6433 automaton.
6434
6435 The last construction (@samp{final_absence_set}) is analogous to
6436 @samp{absence_set} but checking is done on the result (state)
6437 reservation.  See comments for @samp{final_presence_set}.
6438
6439 @findex automata_option
6440 @cindex deterministic finite state automaton
6441 @cindex nondeterministic finite state automaton
6442 @cindex finite state automaton minimization
6443 You can control the generator of the pipeline hazard recognizer with
6444 the following construction.
6445
6446 @smallexample
6447 (automata_option @var{options})
6448 @end smallexample
6449
6450 @var{options} is a string giving options which affect the generated
6451 code.  Currently there are the following options:
6452
6453 @itemize @bullet
6454 @item
6455 @dfn{no-minimization} makes no minimization of the automaton.  This is
6456 only worth to do when we are debugging the description and need to
6457 look more accurately at reservations of states.
6458
6459 @item
6460 @dfn{time} means printing additional time statistics about
6461 generation of automata.
6462
6463 @item
6464 @dfn{v} means a generation of the file describing the result automata.
6465 The file has suffix @samp{.dfa} and can be used for the description
6466 verification and debugging.
6467
6468 @item
6469 @dfn{w} means a generation of warning instead of error for
6470 non-critical errors.
6471
6472 @item
6473 @dfn{ndfa} makes nondeterministic finite state automata.  This affects
6474 the treatment of operator @samp{|} in the regular expressions.  The
6475 usual treatment of the operator is to try the first alternative and,
6476 if the reservation is not possible, the second alternative.  The
6477 nondeterministic treatment means trying all alternatives, some of them
6478 may be rejected by reservations in the subsequent insns.
6479
6480 @item
6481 @dfn{progress} means output of a progress bar showing how many states
6482 were generated so far for automaton being processed.  This is useful
6483 during debugging a @acronym{DFA} description.  If you see too many
6484 generated states, you could interrupt the generator of the pipeline
6485 hazard recognizer and try to figure out a reason for generation of the
6486 huge automaton.
6487 @end itemize
6488
6489 As an example, consider a superscalar @acronym{RISC} machine which can
6490 issue three insns (two integer insns and one floating point insn) on
6491 the cycle but can finish only two insns.  To describe this, we define
6492 the following functional units.
6493
6494 @smallexample
6495 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
6496 (define_cpu_unit "port0, port1")
6497 @end smallexample
6498
6499 All simple integer insns can be executed in any integer pipeline and
6500 their result is ready in two cycles.  The simple integer insns are
6501 issued into the first pipeline unless it is reserved, otherwise they
6502 are issued into the second pipeline.  Integer division and
6503 multiplication insns can be executed only in the second integer
6504 pipeline and their results are ready correspondingly in 8 and 4
6505 cycles.  The integer division is not pipelined, i.e.@: the subsequent
6506 integer division insn can not be issued until the current division
6507 insn finished.  Floating point insns are fully pipelined and their
6508 results are ready in 3 cycles.  Where the result of a floating point
6509 insn is used by an integer insn, an additional delay of one cycle is
6510 incurred.  To describe all of this we could specify
6511
6512 @smallexample
6513 (define_cpu_unit "div")
6514
6515 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
6516                          "(i0_pipeline | i1_pipeline), (port0 | port1)")
6517
6518 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
6519                          "i1_pipeline, nothing*2, (port0 | port1)")
6520
6521 (define_insn_reservation "div" 8 (eq_attr "type" "div")
6522                          "i1_pipeline, div*7, div + (port0 | port1)")
6523
6524 (define_insn_reservation "float" 3 (eq_attr "type" "float")
6525                          "f_pipeline, nothing, (port0 | port1))
6526
6527 (define_bypass 4 "float" "simple,mult,div")
6528 @end smallexample
6529
6530 To simplify the description we could describe the following reservation
6531
6532 @smallexample
6533 (define_reservation "finish" "port0|port1")
6534 @end smallexample
6535
6536 and use it in all @code{define_insn_reservation} as in the following
6537 construction
6538
6539 @smallexample
6540 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
6541                          "(i0_pipeline | i1_pipeline), finish")
6542 @end smallexample
6543
6544
6545 @end ifset
6546 @ifset INTERNALS
6547 @node Conditional Execution
6548 @section Conditional Execution
6549 @cindex conditional execution
6550 @cindex predication
6551
6552 A number of architectures provide for some form of conditional
6553 execution, or predication.  The hallmark of this feature is the
6554 ability to nullify most of the instructions in the instruction set.
6555 When the instruction set is large and not entirely symmetric, it
6556 can be quite tedious to describe these forms directly in the
6557 @file{.md} file.  An alternative is the @code{define_cond_exec} template.
6558
6559 @findex define_cond_exec
6560 @smallexample
6561 (define_cond_exec
6562   [@var{predicate-pattern}]
6563   "@var{condition}"
6564   "@var{output-template}")
6565 @end smallexample
6566
6567 @var{predicate-pattern} is the condition that must be true for the
6568 insn to be executed at runtime and should match a relational operator.
6569 One can use @code{match_operator} to match several relational operators
6570 at once.  Any @code{match_operand} operands must have no more than one
6571 alternative.
6572
6573 @var{condition} is a C expression that must be true for the generated
6574 pattern to match.
6575
6576 @findex current_insn_predicate
6577 @var{output-template} is a string similar to the @code{define_insn}
6578 output template (@pxref{Output Template}), except that the @samp{*}
6579 and @samp{@@} special cases do not apply.  This is only useful if the
6580 assembly text for the predicate is a simple prefix to the main insn.
6581 In order to handle the general case, there is a global variable
6582 @code{current_insn_predicate} that will contain the entire predicate
6583 if the current insn is predicated, and will otherwise be @code{NULL}.
6584
6585 When @code{define_cond_exec} is used, an implicit reference to
6586 the @code{predicable} instruction attribute is made.
6587 @xref{Insn Attributes}.  This attribute must be boolean (i.e.@: have
6588 exactly two elements in its @var{list-of-values}).  Further, it must
6589 not be used with complex expressions.  That is, the default and all
6590 uses in the insns must be a simple constant, not dependent on the
6591 alternative or anything else.
6592
6593 For each @code{define_insn} for which the @code{predicable}
6594 attribute is true, a new @code{define_insn} pattern will be
6595 generated that matches a predicated version of the instruction.
6596 For example,
6597
6598 @smallexample
6599 (define_insn "addsi"
6600   [(set (match_operand:SI 0 "register_operand" "r")
6601         (plus:SI (match_operand:SI 1 "register_operand" "r")
6602                  (match_operand:SI 2 "register_operand" "r")))]
6603   "@var{test1}"
6604   "add %2,%1,%0")
6605
6606 (define_cond_exec
6607   [(ne (match_operand:CC 0 "register_operand" "c")
6608        (const_int 0))]
6609   "@var{test2}"
6610   "(%0)")
6611 @end smallexample
6612
6613 @noindent
6614 generates a new pattern
6615
6616 @smallexample
6617 (define_insn ""
6618   [(cond_exec
6619      (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
6620      (set (match_operand:SI 0 "register_operand" "r")
6621           (plus:SI (match_operand:SI 1 "register_operand" "r")
6622                    (match_operand:SI 2 "register_operand" "r"))))]
6623   "(@var{test2}) && (@var{test1})"
6624   "(%3) add %2,%1,%0")
6625 @end smallexample
6626
6627 @end ifset
6628 @ifset INTERNALS
6629 @node Constant Definitions
6630 @section Constant Definitions
6631 @cindex constant definitions
6632 @findex define_constants
6633
6634 Using literal constants inside instruction patterns reduces legibility and
6635 can be a maintenance problem.
6636
6637 To overcome this problem, you may use the @code{define_constants}
6638 expression.  It contains a vector of name-value pairs.  From that
6639 point on, wherever any of the names appears in the MD file, it is as
6640 if the corresponding value had been written instead.  You may use
6641 @code{define_constants} multiple times; each appearance adds more
6642 constants to the table.  It is an error to redefine a constant with
6643 a different value.
6644
6645 To come back to the a29k load multiple example, instead of
6646
6647 @smallexample
6648 (define_insn ""
6649   [(match_parallel 0 "load_multiple_operation"
6650      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
6651            (match_operand:SI 2 "memory_operand" "m"))
6652       (use (reg:SI 179))
6653       (clobber (reg:SI 179))])]
6654   ""
6655   "loadm 0,0,%1,%2")
6656 @end smallexample
6657
6658 You could write:
6659
6660 @smallexample
6661 (define_constants [
6662     (R_BP 177)
6663     (R_FC 178)
6664     (R_CR 179)
6665     (R_Q  180)
6666 ])
6667
6668 (define_insn ""
6669   [(match_parallel 0 "load_multiple_operation"
6670      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
6671            (match_operand:SI 2 "memory_operand" "m"))
6672       (use (reg:SI R_CR))
6673       (clobber (reg:SI R_CR))])]
6674   ""
6675   "loadm 0,0,%1,%2")
6676 @end smallexample
6677
6678 The constants that are defined with a define_constant are also output
6679 in the insn-codes.h header file as #defines.
6680 @end ifset
6681 @ifset INTERNALS
6682 @node Macros
6683 @section Macros
6684 @cindex macros in @file{.md} files
6685
6686 Ports often need to define similar patterns for more than one machine
6687 mode or for more than one rtx code.  GCC provides some simple macro
6688 facilities to make this process easier.
6689
6690 @menu
6691 * Mode Macros::         Generating variations of patterns for different modes.
6692 * Code Macros::         Doing the same for codes.
6693 @end menu
6694
6695 @node Mode Macros
6696 @subsection Mode Macros
6697 @cindex mode macros in @file{.md} files
6698
6699 Ports often need to define similar patterns for two or more different modes.
6700 For example:
6701
6702 @itemize @bullet
6703 @item
6704 If a processor has hardware support for both single and double
6705 floating-point arithmetic, the @code{SFmode} patterns tend to be
6706 very similar to the @code{DFmode} ones.
6707
6708 @item
6709 If a port uses @code{SImode} pointers in one configuration and
6710 @code{DImode} pointers in another, it will usually have very similar
6711 @code{SImode} and @code{DImode} patterns for manipulating pointers.
6712 @end itemize
6713
6714 Mode macros allow several patterns to be instantiated from one
6715 @file{.md} file template.  They can be used with any type of
6716 rtx-based construct, such as a @code{define_insn},
6717 @code{define_split}, or @code{define_peephole2}.
6718
6719 @menu
6720 * Defining Mode Macros:: Defining a new mode macro.
6721 * Substitutions::        Combining mode macros with substitutions
6722 * Examples::             Examples
6723 @end menu
6724
6725 @node Defining Mode Macros
6726 @subsubsection Defining Mode Macros
6727 @findex define_mode_macro
6728
6729 The syntax for defining a mode macro is:
6730
6731 @smallexample
6732 (define_mode_macro @var{name} [(@var{mode1} "@var{cond1}") ... (@var{moden} "@var{condn}")])
6733 @end smallexample
6734
6735 This allows subsequent @file{.md} file constructs to use the mode suffix
6736 @code{:@var{name}}.  Every construct that does so will be expanded
6737 @var{n} times, once with every use of @code{:@var{name}} replaced by
6738 @code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
6739 and so on.  In the expansion for a particular @var{modei}, every
6740 C condition will also require that @var{condi} be true.
6741
6742 For example:
6743
6744 @smallexample
6745 (define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
6746 @end smallexample
6747
6748 defines a new mode suffix @code{:P}.  Every construct that uses
6749 @code{:P} will be expanded twice, once with every @code{:P} replaced
6750 by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
6751 The @code{:SI} version will only apply if @code{Pmode == SImode} and
6752 the @code{:DI} version will only apply if @code{Pmode == DImode}.
6753
6754 As with other @file{.md} conditions, an empty string is treated
6755 as ``always true''.  @code{(@var{mode} "")} can also be abbreviated
6756 to @code{@var{mode}}.  For example:
6757
6758 @smallexample
6759 (define_mode_macro GPR [SI (DI "TARGET_64BIT")])
6760 @end smallexample
6761
6762 means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
6763 but that the @code{:SI} expansion has no such constraint.
6764
6765 Macros are applied in the order they are defined.  This can be
6766 significant if two macros are used in a construct that requires
6767 substitutions.  @xref{Substitutions}.
6768
6769 @node Substitutions
6770 @subsubsection Substitution in Mode Macros
6771 @findex define_mode_attr
6772
6773 If an @file{.md} file construct uses mode macros, each version of the
6774 construct will often need slightly different strings or modes.  For
6775 example:
6776
6777 @itemize @bullet
6778 @item
6779 When a @code{define_expand} defines several @code{add@var{m}3} patterns
6780 (@pxref{Standard Names}), each expander will need to use the
6781 appropriate mode name for @var{m}.
6782
6783 @item
6784 When a @code{define_insn} defines several instruction patterns,
6785 each instruction will often use a different assembler mnemonic.
6786
6787 @item
6788 When a @code{define_insn} requires operands with different modes,
6789 using a macro for one of the operand modes usually requires a specific
6790 mode for the other operand(s).
6791 @end itemize
6792
6793 GCC supports such variations through a system of ``mode attributes''.
6794 There are two standard attributes: @code{mode}, which is the name of
6795 the mode in lower case, and @code{MODE}, which is the same thing in
6796 upper case.  You can define other attributes using:
6797
6798 @smallexample
6799 (define_mode_attr @var{name} [(@var{mode1} "@var{value1}") ... (@var{moden} "@var{valuen}")])
6800 @end smallexample
6801
6802 where @var{name} is the name of the attribute and @var{valuei}
6803 is the value associated with @var{modei}.
6804
6805 When GCC replaces some @var{:macro} with @var{:mode}, it will scan
6806 each string and mode in the pattern for sequences of the form
6807 @code{<@var{macro}:@var{attr}>}, where @var{attr} is the name of a
6808 mode attribute.  If the attribute is defined for @var{mode}, the whole
6809 @code{<...>} sequence will be replaced by the appropriate attribute
6810 value.
6811
6812 For example, suppose an @file{.md} file has:
6813
6814 @smallexample
6815 (define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
6816 (define_mode_attr load [(SI "lw") (DI "ld")])
6817 @end smallexample
6818
6819 If one of the patterns that uses @code{:P} contains the string
6820 @code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
6821 will use @code{"lw\t%0,%1"} and the @code{DI} version will use
6822 @code{"ld\t%0,%1"}.
6823
6824 Here is an example of using an attribute for a mode:
6825
6826 @smallexample
6827 (define_mode_macro LONG [SI DI])
6828 (define_mode_attr SHORT [(SI "HI") (DI "SI")])
6829 (define_insn ...
6830   (sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)
6831 @end smallexample
6832
6833 The @code{@var{macro}:} prefix may be omitted, in which case the
6834 substitution will be attempted for every macro expansion.
6835
6836 @node Examples
6837 @subsubsection Mode Macro Examples
6838
6839 Here is an example from the MIPS port.  It defines the following
6840 modes and attributes (among others):
6841
6842 @smallexample
6843 (define_mode_macro GPR [SI (DI "TARGET_64BIT")])
6844 (define_mode_attr d [(SI "") (DI "d")])
6845 @end smallexample
6846
6847 and uses the following template to define both @code{subsi3}
6848 and @code{subdi3}:
6849
6850 @smallexample
6851 (define_insn "sub<mode>3"
6852   [(set (match_operand:GPR 0 "register_operand" "=d")
6853         (minus:GPR (match_operand:GPR 1 "register_operand" "d")
6854                    (match_operand:GPR 2 "register_operand" "d")))]
6855   ""
6856   "<d>subu\t%0,%1,%2"
6857   [(set_attr "type" "arith")
6858    (set_attr "mode" "<MODE>")])
6859 @end smallexample
6860
6861 This is exactly equivalent to:
6862
6863 @smallexample
6864 (define_insn "subsi3"
6865   [(set (match_operand:SI 0 "register_operand" "=d")
6866         (minus:SI (match_operand:SI 1 "register_operand" "d")
6867                   (match_operand:SI 2 "register_operand" "d")))]
6868   ""
6869   "subu\t%0,%1,%2"
6870   [(set_attr "type" "arith")
6871    (set_attr "mode" "SI")])
6872
6873 (define_insn "subdi3"
6874   [(set (match_operand:DI 0 "register_operand" "=d")
6875         (minus:DI (match_operand:DI 1 "register_operand" "d")
6876                   (match_operand:DI 2 "register_operand" "d")))]
6877   ""
6878   "dsubu\t%0,%1,%2"
6879   [(set_attr "type" "arith")
6880    (set_attr "mode" "DI")])
6881 @end smallexample
6882
6883 @node Code Macros
6884 @subsection Code Macros
6885 @cindex code macros in @file{.md} files
6886 @findex define_code_macro
6887 @findex define_code_attr
6888
6889 Code macros operate in a similar way to mode macros.  @xref{Mode Macros}.
6890
6891 The construct:
6892
6893 @smallexample
6894 (define_code_macro @var{name} [(@var{code1} "@var{cond1}") ... (@var{coden} "@var{condn}")])
6895 @end smallexample
6896
6897 defines a pseudo rtx code @var{name} that can be instantiated as
6898 @var{codei} if condition @var{condi} is true.  Each @var{codei}
6899 must have the same rtx format.  @xref{RTL Classes}.
6900
6901 As with mode macros, each pattern that uses @var{name} will be
6902 expanded @var{n} times, once with all uses of @var{name} replaced by
6903 @var{code1}, once with all uses replaced by @var{code2}, and so on.
6904 @xref{Defining Mode Macros}.
6905
6906 It is possible to define attributes for codes as well as for modes.
6907 There are two standard code attributes: @code{code}, the name of the
6908 code in lower case, and @code{CODE}, the name of the code in upper case.
6909 Other attributes are defined using:
6910
6911 @smallexample
6912 (define_code_attr @var{name} [(@var{code1} "@var{value1}") ... (@var{coden} "@var{valuen}")])
6913 @end smallexample
6914
6915 Here's an example of code macros in action, taken from the MIPS port:
6916
6917 @smallexample
6918 (define_code_macro any_cond [unordered ordered unlt unge uneq ltgt unle ungt
6919                              eq ne gt ge lt le gtu geu ltu leu])
6920
6921 (define_expand "b<code>"
6922   [(set (pc)
6923         (if_then_else (any_cond:CC (cc0)
6924                                    (const_int 0))
6925                       (label_ref (match_operand 0 ""))
6926                       (pc)))]
6927   ""
6928 @{
6929   gen_conditional_branch (operands, <CODE>);
6930   DONE;
6931 @})
6932 @end smallexample
6933
6934 This is equivalent to:
6935
6936 @smallexample
6937 (define_expand "bunordered"
6938   [(set (pc)
6939         (if_then_else (unordered:CC (cc0)
6940                                     (const_int 0))
6941                       (label_ref (match_operand 0 ""))
6942                       (pc)))]
6943   ""
6944 @{
6945   gen_conditional_branch (operands, UNORDERED);
6946   DONE;
6947 @})
6948
6949 (define_expand "bordered"
6950   [(set (pc)
6951         (if_then_else (ordered:CC (cc0)
6952                                   (const_int 0))
6953                       (label_ref (match_operand 0 ""))
6954                       (pc)))]
6955   ""
6956 @{
6957   gen_conditional_branch (operands, ORDERED);
6958   DONE;
6959 @})
6960
6961 ...
6962 @end smallexample
6963
6964 @end ifset