OSDN Git Service

b87d3102a93866920f18083572b92e7af47a3894
[pf3gnuchains/gcc-fork.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2 @c 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @ignore
7 @c man begin COPYRIGHT
8 Copyright @copyright{} 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
9 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
10
11 Permission is granted to copy, distribute and/or modify this document
12 under the terms of the GNU Free Documentation License, Version 1.2 or
13 any later version published by the Free Software Foundation; with the
14 Invariant Sections being ``GNU General Public License'' and ``Funding
15 Free Software'', the Front-Cover texts being (a) (see below), and with
16 the Back-Cover Texts being (b) (see below).  A copy of the license is
17 included in the gfdl(7) man page.
18
19 (a) The FSF's Front-Cover Text is:
20
21      A GNU Manual
22
23 (b) The FSF's Back-Cover Text is:
24
25      You have freedom to copy and modify this GNU Manual, like GNU
26      software.  Copies published by the Free Software Foundation raise
27      funds for GNU development.
28 @c man end
29 @c Set file name and title for the man page.
30 @setfilename gcc
31 @settitle GNU project C and C++ compiler
32 @c man begin SYNOPSIS
33 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
34     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
35     [@option{-W}@var{warn}@dots{}] [@option{-pedantic}]
36     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
37     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
38     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
39     [@option{-o} @var{outfile}] @var{infile}@dots{}
40
41 Only the most useful options are listed here; see below for the
42 remainder.  @samp{g++} accepts mostly the same options as @samp{gcc}.
43 @c man end
44 @c man begin SEEALSO
45 gpl(7), gfdl(7), fsf-funding(7),
46 cpp(1), gcov(1), g77(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
47 and the Info entries for @file{gcc}, @file{cpp}, @file{g77}, @file{as},
48 @file{ld}, @file{binutils} and @file{gdb}.
49 @c man end
50 @c man begin BUGS
51 For instructions on reporting bugs, see
52 @w{@uref{http://gcc.gnu.org/bugs.html}}.  Use of the @command{gccbug}
53 script to report bugs is recommended.
54 @c man end
55 @c man begin AUTHOR
56 See the Info entry for @command{gcc}, or
57 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
58 for contributors to GCC@.
59 @c man end
60 @end ignore
61
62 @node Invoking GCC
63 @chapter GCC Command Options
64 @cindex GCC command options
65 @cindex command options
66 @cindex options, GCC command
67
68 @c man begin DESCRIPTION
69 When you invoke GCC, it normally does preprocessing, compilation,
70 assembly and linking.  The ``overall options'' allow you to stop this
71 process at an intermediate stage.  For example, the @option{-c} option
72 says not to run the linker.  Then the output consists of object files
73 output by the assembler.
74
75 Other options are passed on to one stage of processing.  Some options
76 control the preprocessor and others the compiler itself.  Yet other
77 options control the assembler and linker; most of these are not
78 documented here, since you rarely need to use any of them.
79
80 @cindex C compilation options
81 Most of the command line options that you can use with GCC are useful
82 for C programs; when an option is only useful with another language
83 (usually C++), the explanation says so explicitly.  If the description
84 for a particular option does not mention a source language, you can use
85 that option with all supported languages.
86
87 @cindex C++ compilation options
88 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
89 options for compiling C++ programs.
90
91 @cindex grouping options
92 @cindex options, grouping
93 The @command{gcc} program accepts options and file names as operands.  Many
94 options have multi-letter names; therefore multiple single-letter options
95 may @emph{not} be grouped: @option{-dr} is very different from @w{@samp{-d
96 -r}}.
97
98 @cindex order of options
99 @cindex options, order
100 You can mix options and other arguments.  For the most part, the order
101 you use doesn't matter.  Order does matter when you use several options
102 of the same kind; for example, if you specify @option{-L} more than once,
103 the directories are searched in the order specified.
104
105 Many options have long names starting with @samp{-f} or with
106 @samp{-W}---for example, @option{-fforce-mem},
107 @option{-fstrength-reduce}, @option{-Wformat} and so on.  Most of
108 these have both positive and negative forms; the negative form of
109 @option{-ffoo} would be @option{-fno-foo}.  This manual documents
110 only one of these two forms, whichever one is not the default.
111
112 @c man end
113
114 @xref{Option Index}, for an index to GCC's options.
115
116 @menu
117 * Option Summary::      Brief list of all options, without explanations.
118 * Overall Options::     Controlling the kind of output:
119                         an executable, object files, assembler files,
120                         or preprocessed source.
121 * Invoking G++::        Compiling C++ programs.
122 * C Dialect Options::   Controlling the variant of C language compiled.
123 * C++ Dialect Options:: Variations on C++.
124 * Objective-C Dialect Options:: Variations on Objective-C.
125 * Language Independent Options:: Controlling how diagnostics should be
126                         formatted.
127 * Warning Options::     How picky should the compiler be?
128 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
129 * Optimize Options::    How much optimization?
130 * Preprocessor Options:: Controlling header files and macro definitions.
131                          Also, getting dependency information for Make.
132 * Assembler Options::   Passing options to the assembler.
133 * Link Options::        Specifying libraries and so on.
134 * Directory Options::   Where to find header files and libraries.
135                         Where to find the compiler executable files.
136 * Spec Files::          How to pass switches to sub-processes.
137 * Target Options::      Running a cross-compiler, or an old version of GCC.
138 * Submodel Options::    Specifying minor hardware or convention variations,
139                         such as 68010 vs 68020.
140 * Code Gen Options::    Specifying conventions for function calls, data layout
141                         and register usage.
142 * Environment Variables:: Env vars that affect GCC.
143 * Precompiled Headers:: Compiling a header once, and using it many times.
144 * Running Protoize::    Automatically adding or removing function prototypes.
145 @end menu
146
147 @c man begin OPTIONS
148
149 @node Option Summary
150 @section Option Summary
151
152 Here is a summary of all the options, grouped by type.  Explanations are
153 in the following sections.
154
155 @table @emph
156 @item Overall Options
157 @xref{Overall Options,,Options Controlling the Kind of Output}.
158 @gccoptlist{-c  -S  -E  -o @var{file}  -pipe  -pass-exit-codes  @gol
159 -x @var{language}  -v  -###  --help  --target-help  --version}
160
161 @item C Language Options
162 @xref{C Dialect Options,,Options Controlling C Dialect}.
163 @gccoptlist{-ansi  -std=@var{standard}  -aux-info @var{filename} @gol
164 -fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
165 -fhosted  -ffreestanding  -fms-extensions @gol
166 -trigraphs  -no-integrated-cpp  -traditional  -traditional-cpp @gol
167 -fallow-single-precision  -fcond-mismatch @gol
168 -fsigned-bitfields  -fsigned-char @gol
169 -funsigned-bitfields  -funsigned-char @gol
170 -fwritable-strings}
171
172 @item C++ Language Options
173 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
174 @gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
175 -fconserve-space  -fno-const-strings @gol
176 -fno-elide-constructors @gol
177 -fno-enforce-eh-specs  -fexternal-templates @gol
178 -falt-external-templates @gol
179 -ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
180 -fno-implicit-templates @gol
181 -fno-implicit-inline-templates @gol
182 -fno-implement-inlines  -fms-extensions @gol
183 -fno-nonansi-builtins  -fno-operator-names @gol
184 -fno-optional-diags  -fpermissive @gol
185 -frepo  -fno-rtti  -fstats  -ftemplate-depth-@var{n} @gol
186 -fuse-cxa-atexit  -fvtable-gc  -fno-weak  -nostdinc++ @gol
187 -fno-default-inline  -Wabi  -Wctor-dtor-privacy @gol
188 -Wnon-virtual-dtor  -Wreorder @gol
189 -Weffc++  -Wno-deprecated @gol
190 -Wno-non-template-friend  -Wold-style-cast @gol
191 -Woverloaded-virtual  -Wno-pmf-conversions @gol
192 -Wsign-promo  -Wsynth}
193
194 @item Objective-C Language Options
195 @xref{Objective-C Dialect Options,,Options Controlling Objective-C Dialect}.
196 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
197 -fgnu-runtime  -fnext-runtime  -gen-decls @gol
198 -Wno-protocol  -Wselector -Wundeclared-selector}
199
200 @item Language Independent Options
201 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
202 @gccoptlist{-fmessage-length=@var{n}  @gol
203 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}}
204
205 @item Warning Options
206 @xref{Warning Options,,Options to Request or Suppress Warnings}.
207 @gccoptlist{-fsyntax-only  -pedantic  -pedantic-errors @gol
208 -w  -Wextra  -Wall  -Waggregate-return @gol
209 -Wcast-align  -Wcast-qual  -Wchar-subscripts  -Wcomment @gol
210 -Wconversion  -Wno-deprecated-declarations @gol
211 -Wdisabled-optimization  -Wno-div-by-zero  -Werror @gol
212 -Wfloat-equal  -Wformat  -Wformat=2 @gol
213 -Wformat-nonliteral  -Wformat-security @gol
214 -Wimplicit  -Wimplicit-int  @gol
215 -Wimplicit-function-declaration @gol
216 -Werror-implicit-function-declaration @gol
217 -Wimport  -Winline  -Winvalid-pch  -Wno-endif-labels @gol
218 -Wno-invalid-offsetof @gol
219 -Wlarger-than-@var{len}  -Wlong-long @gol
220 -Wmain  -Wmissing-braces @gol
221 -Wmissing-format-attribute  -Wmissing-noreturn @gol
222 -Wno-multichar  -Wno-format-extra-args  -Wno-format-y2k @gol
223 -Wno-import  -Wnonnull  -Wpacked  -Wpadded @gol
224 -Wparentheses  -Wpointer-arith  -Wredundant-decls @gol
225 -Wreturn-type  -Wsequence-point  -Wshadow @gol
226 -Wsign-compare  -Wstrict-aliasing @gol
227 -Wswitch  -Wswitch-default  -Wswitch-enum @gol
228 -Wsystem-headers  -Wtrigraphs  -Wundef  -Wuninitialized @gol
229 -Wunknown-pragmas  -Wunreachable-code @gol
230 -Wunused  -Wunused-function  -Wunused-label  -Wunused-parameter @gol
231 -Wunused-value  -Wunused-variable  -Wwrite-strings}
232
233 @item C-only Warning Options
234 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
235 -Wmissing-prototypes  -Wnested-externs @gol
236 -Wstrict-prototypes  -Wtraditional}
237
238 @item Debugging Options
239 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
240 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
241 -fdump-unnumbered  -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
242 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
243 -fdump-tree-original@r{[}-@var{n}@r{]}  @gol
244 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
245 -fdump-tree-inlined@r{[}-@var{n}@r{]} @gol
246 -feliminate-dwarf2-dups -feliminate-unused-debug-types @gol
247 -fmem-report -fprofile-arcs @gol
248 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
249 -ftest-coverage  -ftime-report @gol
250 -g  -g@var{level}  -gcoff  -gdwarf  -gdwarf-1  -gdwarf-1+  -gdwarf-2 @gol
251 -ggdb  -gstabs  -gstabs+  -gvms  -gxcoff  -gxcoff+ @gol
252 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
253 -print-multi-directory  -print-multi-lib @gol
254 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
255 -save-temps  -time}
256
257 @item Optimization Options
258 @xref{Optimize Options,,Options that Control Optimization}.
259 @gccoptlist{-falign-functions=@var{n}  -falign-jumps=@var{n} @gol
260 -falign-labels=@var{n}  -falign-loops=@var{n}  @gol
261 -fbranch-probabilities  -fcaller-saves  -fcprop-registers @gol
262 -fcse-follow-jumps  -fcse-skip-blocks  -fdata-sections @gol
263 -fdelayed-branch  -fdelete-null-pointer-checks @gol
264 -fexpensive-optimizations  -ffast-math  -ffloat-store @gol
265 -fforce-addr  -fforce-mem  -ffunction-sections @gol
266 -fgcse  -fgcse-lm  -fgcse-sm  -floop-optimize  -fcrossjumping @gol
267 -fif-conversion  -fif-conversion2 @gol
268 -finline-functions  -finline-limit=@var{n}  -fkeep-inline-functions @gol
269 -fkeep-static-consts  -fmerge-constants  -fmerge-all-constants @gol
270 -fmove-all-movables  -fnew-ra  -fno-branch-count-reg @gol
271 -fno-default-inline  -fno-defer-pop @gol
272 -fno-function-cse  -fno-guess-branch-probability @gol
273 -fno-inline  -fno-math-errno  -fno-peephole  -fno-peephole2 @gol
274 -funsafe-math-optimizations  -ffinite-math-only @gol
275 -fno-trapping-math  -fno-zero-initialized-in-bss @gol
276 -fomit-frame-pointer  -foptimize-register-move @gol
277 -foptimize-sibling-calls  -fprefetch-loop-arrays @gol
278 -freduce-all-givs  -fregmove  -frename-registers @gol
279 -freorder-blocks  -freorder-functions @gol
280 -frerun-cse-after-loop  -frerun-loop-opt @gol
281 -fschedule-insns  -fschedule-insns2 @gol
282 -fno-sched-interblock  -fno-sched-spec  -fsched-spec-load @gol
283 -fsched-spec-load-dangerous  -fsched2-use-superblocks @gol
284 -fsched2-use-traces  -fsignaling-nans @gol
285 -fsingle-precision-constant  -fssa  -fssa-ccp  -fssa-dce @gol
286 -fstrength-reduce  -fstrict-aliasing  -ftracer  -fthread-jumps @gol
287 -funroll-all-loops  -funroll-loops  -fpeel-loops @gol
288 -funswitch-loops  -fold-unroll-loops  -fold-unroll-all-loops @gol
289 --param @var{name}=@var{value}
290 -O  -O0  -O1  -O2  -O3  -Os}
291
292 @item Preprocessor Options
293 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
294 @gccoptlist{-A@var{question}=@var{answer} @gol
295 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
296 -C  -dD  -dI  -dM  -dN @gol
297 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
298 -idirafter @var{dir} @gol
299 -include @var{file}  -imacros @var{file} @gol
300 -iprefix @var{file}  -iwithprefix @var{dir} @gol
301 -iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
302 -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  -P  -remap @gol
303 -trigraphs  -undef  -U@var{macro}  -Wp,@var{option} @gol
304 -Xpreprocessor @var{option}}
305
306 @item Assembler Option
307 @xref{Assembler Options,,Passing Options to the Assembler}.
308 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
309
310 @item Linker Options
311 @xref{Link Options,,Options for Linking}.
312 @gccoptlist{@var{object-file-name}  -l@var{library} @gol
313 -nostartfiles  -nodefaultlibs  -nostdlib -pie @gol
314 -s  -static  -static-libgcc  -shared  -shared-libgcc  -symbolic @gol
315 -Wl,@var{option}  -Xlinker @var{option} @gol
316 -u @var{symbol}}
317
318 @item Directory Options
319 @xref{Directory Options,,Options for Directory Search}.
320 @gccoptlist{-B@var{prefix}  -I@var{dir}  -I-  -L@var{dir}  -specs=@var{file}}
321
322 @item Target Options
323 @c I wrote this xref this way to avoid overfull hbox. -- rms
324 @xref{Target Options}.
325 @gccoptlist{-V @var{version}  -b @var{machine}}
326
327 @item Machine Dependent Options
328 @xref{Submodel Options,,Hardware Models and Configurations}.
329
330 @emph{M680x0 Options}
331 @gccoptlist{-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
332 -m68060  -mcpu32  -m5200  -m68881  -mbitfield  -mc68000  -mc68020   @gol
333 -mnobitfield  -mrtd  -mshort  -msoft-float  -mpcrel @gol
334 -malign-int  -mstrict-align}
335
336 @emph{M68hc1x Options}
337 @gccoptlist{-m6811  -m6812  -m68hc11  -m68hc12   -m68hcs12 @gol
338 -mauto-incdec  -minmax  -mlong-calls  -mshort @gol
339 -msoft-reg-count=@var{count}}
340
341 @emph{VAX Options}
342 @gccoptlist{-mg  -mgnu  -munix}
343
344 @emph{SPARC Options}
345 @gccoptlist{-mcpu=@var{cpu-type} @gol
346 -mtune=@var{cpu-type} @gol
347 -mcmodel=@var{code-model} @gol
348 -m32  -m64 @gol
349 -mapp-regs  -mbroken-saverestore  -mcypress @gol
350 -mfaster-structs  -mflat @gol
351 -mfpu  -mhard-float  -mhard-quad-float @gol
352 -mimpure-text  -mlive-g0  -mno-app-regs @gol
353 -mno-faster-structs  -mno-flat  -mno-fpu @gol
354 -mno-impure-text  -mno-stack-bias  -mno-unaligned-doubles @gol
355 -msoft-float  -msoft-quad-float  -msparclite  -mstack-bias @gol
356 -msupersparc  -munaligned-doubles  -mv8}
357
358 @emph{ARM Options}
359 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
360 -mapcs-26  -mapcs-32 @gol
361 -mapcs-stack-check  -mno-apcs-stack-check @gol
362 -mapcs-float  -mno-apcs-float @gol
363 -mapcs-reentrant  -mno-apcs-reentrant @gol
364 -msched-prolog  -mno-sched-prolog @gol
365 -mlittle-endian  -mbig-endian  -mwords-little-endian @gol
366 -malignment-traps  -mno-alignment-traps @gol
367 -msoft-float  -mhard-float  -mfpe @gol
368 -mthumb-interwork  -mno-thumb-interwork @gol
369 -mcpu=@var{name}  -march=@var{name}  -mfpe=@var{name}  @gol
370 -mstructure-size-boundary=@var{n} @gol
371 -mabort-on-noreturn @gol
372 -mlong-calls  -mno-long-calls @gol
373 -msingle-pic-base  -mno-single-pic-base @gol
374 -mpic-register=@var{reg} @gol
375 -mnop-fun-dllimport @gol
376 -mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns @gol
377 -mpoke-function-name @gol
378 -mthumb  -marm @gol
379 -mtpcs-frame  -mtpcs-leaf-frame @gol
380 -mcaller-super-interworking  -mcallee-super-interworking}
381
382 @emph{MN10200 Options}
383 @gccoptlist{-mrelax}
384
385 @emph{MN10300 Options}
386 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
387 -mam33  -mno-am33 @gol
388 -mno-crt0  -mrelax}
389
390 @emph{M32R/D Options}
391 @gccoptlist{-m32rx  -m32r  -mcode-model=@var{model-type} @gol
392 -msdata=@var{sdata-type}  -G @var{num}}
393
394 @emph{M88K Options}
395 @gccoptlist{-m88000  -m88100  -m88110  -mbig-pic @gol
396 -mcheck-zero-division  -mhandle-large-shift @gol
397 -midentify-revision  -mno-check-zero-division @gol
398 -mno-ocs-debug-info  -mno-ocs-frame-position @gol
399 -mno-optimize-arg-area  -mno-serialize-volatile @gol
400 -mno-underscores  -mocs-debug-info @gol
401 -mocs-frame-position  -moptimize-arg-area @gol
402 -mserialize-volatile  -mshort-data-@var{num}  -msvr3 @gol
403 -msvr4  -mtrap-large-shift  -muse-div-instruction @gol
404 -mversion-03.00  -mwarn-passed-structs}
405
406 @emph{RS/6000 and PowerPC Options}
407 @gccoptlist{-mcpu=@var{cpu-type} @gol
408 -mtune=@var{cpu-type} @gol
409 -mpower  -mno-power  -mpower2  -mno-power2 @gol
410 -mpowerpc  -mpowerpc64  -mno-powerpc @gol
411 -maltivec  -mno-altivec @gol
412 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
413 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
414 -mnew-mnemonics  -mold-mnemonics @gol
415 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
416 -m64  -m32  -mxl-call  -mno-xl-call  -mpe @gol
417 -malign-power  -malign-natural @gol
418 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
419 -mstring  -mno-string  -mupdate  -mno-update @gol
420 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
421 -mstrict-align  -mno-strict-align  -mrelocatable @gol
422 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
423 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
424 -mdynamic-no-pic @gol
425 -mcall-sysv  -mcall-netbsd @gol
426 -maix-struct-return  -msvr4-struct-return @gol
427 -mabi=altivec  -mabi=no-altivec @gol
428 -mabi=spe  -mabi=no-spe @gol
429 -misel=yes  -misel=no @gol
430 -mspe=yes  -mspe=no @gol
431 -mfloat-gprs=yes  -mfloat-gprs=no @gol
432 -mprototype  -mno-prototype @gol
433 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
434 -msdata=@var{opt}  -mvxworks  -mwindiss  -G @var{num}  -pthread}
435
436 @emph{Darwin Options}
437 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
438 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
439 -client_name  -compatibility_version  -current_version @gol
440 -dependency-file  -dylib_file  -dylinker_install_name @gol
441 -dynamic  -dynamiclib  -exported_symbols_list @gol
442 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
443 -force_flat_namespace  -headerpad_max_install_names @gol
444 -image_base  -init  -install_name  -keep_private_externs @gol
445 -multi_module  -multiply_defined  -multiply_defined_unused @gol
446 -noall_load  -nomultidefs  -noprebind  -noseglinkedit @gol
447 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
448 -private_bundle  -read_only_relocs  -sectalign @gol
449 -sectobjectsymbols  -whyload  -seg1addr @gol
450 -sectcreate  -sectobjectsymbols  -sectorder @gol
451 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
452 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
453 -single_module  -static  -sub_library  -sub_umbrella @gol
454 -twolevel_namespace  -umbrella  -undefined @gol
455 -unexported_symbols_list  -weak_reference_mismatches @gol
456 -whatsloaded}
457
458 @emph{RT Options}
459 @gccoptlist{-mcall-lib-mul  -mfp-arg-in-fpregs  -mfp-arg-in-gregs @gol
460 -mfull-fp-blocks  -mhc-struct-return  -min-line-mul @gol
461 -mminimum-fp-blocks  -mnohc-struct-return}
462
463 @emph{MIPS Options}
464 @gccoptlist{-mabicalls  -march=@var{cpu-type}  -mtune=@var{cpu=type} @gol
465 -mcpu=@var{cpu-type}  -membedded-data  -muninit-const-in-rodata @gol
466 -membedded-pic  -mfp32  -mfp64  -mfused-madd  -mno-fused-madd @gol
467 -mgas  -mgp32  -mgp64 @gol
468 -mgpopt  -mhalf-pic  -mhard-float  -mint64  -mips1 @gol
469 -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips64 @gol
470 -mlong64  -mlong32  -mlong-calls  -mmemcpy @gol
471 -mmips-as  -mmips-tfile  -mno-abicalls @gol
472 -mno-embedded-data  -mno-uninit-const-in-rodata @gol
473 -mno-embedded-pic  -mno-gpopt  -mno-long-calls @gol
474 -mno-memcpy  -mno-mips-tfile  -mno-rnames  -mno-stats @gol
475 -mrnames  -msoft-float @gol
476 -m4650  -msingle-float  -mmad @gol
477 -EL  -EB  -G @var{num}  -nocpp @gol
478 -mabi=32  -mabi=n32  -mabi=64  -mabi=eabi  -mabi-fake-default @gol
479 -mfix7000  -mno-crt0 -mflush-func=@var{func} -mno-flush-func @gol
480 -mbranch-likely -mno-branch-likely}
481
482 @emph{i386 and x86-64 Options}
483 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
484 -mfpmath=@var{unit} @gol
485 -masm=@var{dialect}  -mno-fancy-math-387 @gol
486 -mno-fp-ret-in-387  -msoft-float  -msvr3-shlib @gol
487 -mno-wide-multiply  -mrtd  -malign-double @gol
488 -mpreferred-stack-boundary=@var{num} @gol
489 -mmmx  -msse  -msse2  -m3dnow @gol
490 -mthreads  -mno-align-stringops  -minline-all-stringops @gol
491 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
492 -m96bit-long-double  -mregparm=@var{num}  -momit-leaf-frame-pointer @gol
493 -mno-red-zone -mno-tls-direct-seg-refs @gol
494 -mcmodel=@var{code-model} @gol
495 -m32  -m64}
496
497 @emph{HPPA Options}
498 @gccoptlist{-march=@var{architecture-type} @gol
499 -mbig-switch  -mdisable-fpregs  -mdisable-indexing @gol
500 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
501 -mjump-in-delay -mlinker-opt -mlong-calls @gol
502 -mlong-load-store  -mno-big-switch  -mno-disable-fpregs @gol
503 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
504 -mno-jump-in-delay  -mno-long-load-store @gol
505 -mno-portable-runtime  -mno-soft-float @gol
506 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
507 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
508 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
509 -nolibdld  -static  -threads}
510
511 @emph{Intel 960 Options}
512 @gccoptlist{-m@var{cpu-type}  -masm-compat  -mclean-linkage @gol
513 -mcode-align  -mcomplex-addr  -mleaf-procedures @gol
514 -mic-compat  -mic2.0-compat  -mic3.0-compat @gol
515 -mintel-asm  -mno-clean-linkage  -mno-code-align @gol
516 -mno-complex-addr  -mno-leaf-procedures @gol
517 -mno-old-align  -mno-strict-align  -mno-tail-call @gol
518 -mnumerics  -mold-align  -msoft-float  -mstrict-align @gol
519 -mtail-call}
520
521 @emph{DEC Alpha Options}
522 @gccoptlist{-mno-fp-regs  -msoft-float  -malpha-as  -mgas @gol
523 -mieee  -mieee-with-inexact  -mieee-conformant @gol
524 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
525 -mtrap-precision=@var{mode}  -mbuild-constants @gol
526 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
527 -mbwx  -mmax  -mfix  -mcix @gol
528 -mfloat-vax  -mfloat-ieee @gol
529 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
530 -msmall-text  -mlarge-text @gol
531 -mmemory-latency=@var{time}}
532
533 @emph{DEC Alpha/VMS Options}
534 @gccoptlist{-mvms-return-codes}
535
536 @emph{H8/300 Options}
537 @gccoptlist{-mrelax  -mh  -ms  -mn  -mint32  -malign-300}
538
539 @emph{SH Options}
540 @gccoptlist{-m1  -m2  -m2e  -m3  -m3e @gol
541 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
542 -m5-64media  -m5-64media-nofpu @gol
543 -m5-32media  -m5-32media-nofpu @gol
544 -m5-compact  -m5-compact-nofpu @gol
545 -mb  -ml  -mdalign  -mrelax @gol
546 -mbigtable  -mfmovd  -mhitachi  -mnomacsave @gol
547 -mieee  -misize  -mpadstruct  -mspace @gol
548 -mprefergot  -musermode}
549
550 @emph{System V Options}
551 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
552
553 @emph{ARC Options}
554 @gccoptlist{-EB  -EL @gol
555 -mmangle-cpu  -mcpu=@var{cpu}  -mtext=@var{text-section} @gol
556 -mdata=@var{data-section}  -mrodata=@var{readonly-data-section}}
557
558 @emph{TMS320C3x/C4x Options}
559 @gccoptlist{-mcpu=@var{cpu}  -mbig  -msmall  -mregparm  -mmemparm @gol
560 -mfast-fix  -mmpyi  -mbk  -mti  -mdp-isr-reload @gol
561 -mrpts=@var{count}  -mrptb  -mdb  -mloop-unsigned @gol
562 -mparallel-insns  -mparallel-mpy  -mpreserve-float}
563
564 @emph{V850 Options}
565 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
566 -mprolog-function  -mno-prolog-function  -mspace @gol
567 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
568 -mapp-regs  -mno-app-regs @gol
569 -mdisable-callt  -mno-disable-callt @gol
570 -mv850e @gol
571 -mv850  -mbig-switch}
572
573 @emph{NS32K Options}
574 @gccoptlist{-m32032  -m32332  -m32532  -m32081  -m32381 @gol
575 -mmult-add  -mnomult-add  -msoft-float  -mrtd  -mnortd @gol
576 -mregparam  -mnoregparam  -msb  -mnosb @gol
577 -mbitfield  -mnobitfield  -mhimem  -mnohimem}
578
579 @emph{AVR Options}
580 @gccoptlist{-mmcu=@var{mcu}  -msize  -minit-stack=@var{n}  -mno-interrupts @gol
581 -mcall-prologues  -mno-tablejump  -mtiny-stack}
582
583 @emph{MCore Options}
584 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
585 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
586 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
587 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
588 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
589
590 @emph{MMIX Options}
591 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
592 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
593 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
594 -mno-base-addresses  -msingle-exit  -mno-single-exit}
595
596 @emph{IA-64 Options}
597 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
598 -mvolatile-asm-stop  -mb-step  -mregister-names  -mno-sdata @gol
599 -mconstant-gp  -mauto-pic  -minline-float-divide-min-latency @gol
600 -minline-float-divide-max-throughput @gol
601 -minline-int-divide-min-latency @gol
602 -minline-int-divide-max-throughput  -mno-dwarf2-asm @gol
603 -mfixed-range=@var{register-range}}
604
605 @emph{D30V Options}
606 @gccoptlist{-mextmem  -mextmemory  -monchip  -mno-asm-optimize @gol
607 -masm-optimize  -mbranch-cost=@var{n}  -mcond-exec=@var{n}}
608
609 @emph{S/390 and zSeries Options}
610 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
611 -mhard-float  -msoft-float  -mbackchain  -mno-backchain @gol
612 -msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
613 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch}
614
615 @emph{CRIS Options}
616 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
617 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
618 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
619 -mstack-align  -mdata-align  -mconst-align @gol
620 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
621 -melf  -maout  -melinux  -mlinux  -sim  -sim2}
622
623 @emph{PDP-11 Options}
624 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
625 -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
626 -mint16  -mno-int32  -mfloat32  -mno-float64 @gol
627 -mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
628 -mbranch-expensive  -mbranch-cheap @gol
629 -msplit  -mno-split  -munix-asm  -mdec-asm}
630
631 @emph{Xstormy16 Options}
632 @gccoptlist{-msim}
633
634 @emph{Xtensa Options}
635 @gccoptlist{-mbig-endian  -mlittle-endian @gol
636 -mdensity  -mno-density @gol
637 -mconst16 -mno-const16 @gol
638 -mabs -mno-abs @gol
639 -maddx -mno-addx @gol
640 -mmac16  -mno-mac16 @gol
641 -mmul16  -mno-mul16 @gol
642 -mmul32  -mno-mul32 @gol
643 -mnsa  -mno-nsa @gol
644 -mminmax  -mno-minmax @gol
645 -msext  -mno-sext @gol
646 -mbooleans  -mno-booleans @gol
647 -mhard-float  -msoft-float @gol
648 -mfused-madd  -mno-fused-madd @gol
649 -mtext-section-literals  -mno-text-section-literals @gol
650 -mtarget-align  -mno-target-align @gol
651 -mlongcalls  -mno-longcalls}
652
653 @emph{FRV Options}
654 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
655 -mhard-float  -msoft-float @gol
656 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
657 -mdouble  -mno-double @gol
658 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
659 -mlibrary-pic  -macc-4 -macc-8 @gol
660 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
661 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
662 -mvliw-branch  -mno-vliw-branch @gol
663 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
664 -mno-nested-cond-exec  -mtomcat-stats @gol
665 -mcpu=@var{cpu}}
666
667 @item Code Generation Options
668 @xref{Code Gen Options,,Options for Code Generation Conventions}.
669 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
670 -ffixed-@var{reg}  -fexceptions @gol
671 -fnon-call-exceptions  -funwind-tables @gol
672 -fasynchronous-unwind-tables @gol
673 -finhibit-size-directive  -finstrument-functions @gol
674 -fno-common  -fno-ident  -fno-gnu-linker @gol
675 -fpcc-struct-return  -fpic  -fPIC -fpie -fPIE @gol
676 -freg-struct-return  -fshared-data  -fshort-enums @gol
677 -fshort-double  -fshort-wchar @gol
678 -fverbose-asm  -fpack-struct  -fstack-check @gol
679 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
680 -fargument-alias  -fargument-noalias @gol
681 -fargument-noalias-global  -fleading-underscore @gol
682 -ftls-model=@var{model} @gol
683 -ftrapv  -fwrapv  -fbounds-check}
684 @end table
685
686 @menu
687 * Overall Options::     Controlling the kind of output:
688                         an executable, object files, assembler files,
689                         or preprocessed source.
690 * C Dialect Options::   Controlling the variant of C language compiled.
691 * C++ Dialect Options:: Variations on C++.
692 * Objective-C Dialect Options:: Variations on Objective-C.
693 * Language Independent Options:: Controlling how diagnostics should be
694                         formatted.
695 * Warning Options::     How picky should the compiler be?
696 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
697 * Optimize Options::    How much optimization?
698 * Preprocessor Options:: Controlling header files and macro definitions.
699                          Also, getting dependency information for Make.
700 * Assembler Options::   Passing options to the assembler.
701 * Link Options::        Specifying libraries and so on.
702 * Directory Options::   Where to find header files and libraries.
703                         Where to find the compiler executable files.
704 * Spec Files::          How to pass switches to sub-processes.
705 * Target Options::      Running a cross-compiler, or an old version of GCC.
706 @end menu
707
708 @node Overall Options
709 @section Options Controlling the Kind of Output
710
711 Compilation can involve up to four stages: preprocessing, compilation
712 proper, assembly and linking, always in that order.  The first three
713 stages apply to an individual source file, and end by producing an
714 object file; linking combines all the object files (those newly
715 compiled, and those specified as input) into an executable file.
716
717 @cindex file name suffix
718 For any given input file, the file name suffix determines what kind of
719 compilation is done:
720
721 @table @gcctabopt
722 @item @var{file}.c
723 C source code which must be preprocessed.
724
725 @item @var{file}.i
726 C source code which should not be preprocessed.
727
728 @item @var{file}.ii
729 C++ source code which should not be preprocessed.
730
731 @item @var{file}.m
732 Objective-C source code.  Note that you must link with the library
733 @file{libobjc.a} to make an Objective-C program work.
734
735 @item @var{file}.mi
736 Objective-C source code which should not be preprocessed.
737
738 @item @var{file}.h
739 C or C++ header file to be turned into a precompiled header.
740
741 @item @var{file}.cc
742 @itemx @var{file}.cp
743 @itemx @var{file}.cxx
744 @itemx @var{file}.cpp
745 @itemx @var{file}.CPP
746 @itemx @var{file}.c++
747 @itemx @var{file}.C
748 C++ source code which must be preprocessed.  Note that in @samp{.cxx},
749 the last two letters must both be literally @samp{x}.  Likewise,
750 @samp{.C} refers to a literal capital C@.
751
752 @item @var{file}.hh
753 @itemx @var{file}.H
754 C++ header file to be turned into a precompiled header.
755
756 @item @var{file}.f
757 @itemx @var{file}.for
758 @itemx @var{file}.FOR
759 Fortran source code which should not be preprocessed.
760
761 @item @var{file}.F
762 @itemx @var{file}.fpp
763 @itemx @var{file}.FPP
764 Fortran source code which must be preprocessed (with the traditional
765 preprocessor).
766
767 @item @var{file}.r
768 Fortran source code which must be preprocessed with a RATFOR
769 preprocessor (not included with GCC)@.
770
771 @xref{Overall Options,,Options Controlling the Kind of Output, g77,
772 Using and Porting GNU Fortran}, for more details of the handling of
773 Fortran input files.
774
775 @c FIXME: Descriptions of Java file types.
776 @c @var{file}.java
777 @c @var{file}.class
778 @c @var{file}.zip
779 @c @var{file}.jar
780
781 @item @var{file}.ads
782 Ada source code file which contains a library unit declaration (a
783 declaration of a package, subprogram, or generic, or a generic
784 instantiation), or a library unit renaming declaration (a package,
785 generic, or subprogram renaming declaration).  Such files are also
786 called @dfn{specs}.
787
788 @itemx @var{file}.adb
789 Ada source code file containing a library unit body (a subprogram or
790 package body).  Such files are also called @dfn{bodies}.
791
792 @c GCC also knows about some suffixes for languages not yet included:
793 @c Pascal:
794 @c @var{file}.p
795 @c @var{file}.pas
796
797 @item @var{file}.s
798 Assembler code.
799
800 @item @var{file}.S
801 Assembler code which must be preprocessed.
802
803 @item @var{other}
804 An object file to be fed straight into linking.
805 Any file name with no recognized suffix is treated this way.
806 @end table
807
808 @opindex x
809 You can specify the input language explicitly with the @option{-x} option:
810
811 @table @gcctabopt
812 @item -x @var{language}
813 Specify explicitly the @var{language} for the following input files
814 (rather than letting the compiler choose a default based on the file
815 name suffix).  This option applies to all following input files until
816 the next @option{-x} option.  Possible values for @var{language} are:
817 @example
818 c  c-header  cpp-output
819 c++  c++-header  c++-cpp-output
820 objective-c  objective-c-header  objc-cpp-output
821 assembler  assembler-with-cpp
822 ada
823 f77  f77-cpp-input  ratfor
824 java
825 treelang
826 @end example
827
828 @item -x none
829 Turn off any specification of a language, so that subsequent files are
830 handled according to their file name suffixes (as they are if @option{-x}
831 has not been used at all).
832
833 @item -pass-exit-codes
834 @opindex pass-exit-codes
835 Normally the @command{gcc} program will exit with the code of 1 if any
836 phase of the compiler returns a non-success return code.  If you specify
837 @option{-pass-exit-codes}, the @command{gcc} program will instead return with
838 numerically highest error produced by any phase that returned an error
839 indication.
840 @end table
841
842 If you only want some of the stages of compilation, you can use
843 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
844 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
845 @command{gcc} is to stop.  Note that some combinations (for example,
846 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
847
848 @table @gcctabopt
849 @item -c
850 @opindex c
851 Compile or assemble the source files, but do not link.  The linking
852 stage simply is not done.  The ultimate output is in the form of an
853 object file for each source file.
854
855 By default, the object file name for a source file is made by replacing
856 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
857
858 Unrecognized input files, not requiring compilation or assembly, are
859 ignored.
860
861 @item -S
862 @opindex S
863 Stop after the stage of compilation proper; do not assemble.  The output
864 is in the form of an assembler code file for each non-assembler input
865 file specified.
866
867 By default, the assembler file name for a source file is made by
868 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
869
870 Input files that don't require compilation are ignored.
871
872 @item -E
873 @opindex E
874 Stop after the preprocessing stage; do not run the compiler proper.  The
875 output is in the form of preprocessed source code, which is sent to the
876 standard output.
877
878 Input files which don't require preprocessing are ignored.
879
880 @cindex output file option
881 @item -o @var{file}
882 @opindex o
883 Place output in file @var{file}.  This applies regardless to whatever
884 sort of output is being produced, whether it be an executable file,
885 an object file, an assembler file or preprocessed C code.
886
887 Since only one output file can be specified, it does not make sense to
888 use @option{-o} when compiling more than one input file, unless you are
889 producing an executable file as output.
890
891 If @option{-o} is not specified, the default is to put an executable file
892 in @file{a.out}, the object file for @file{@var{source}.@var{suffix}} in
893 @file{@var{source}.o}, its assembler file in @file{@var{source}.s}, and
894 all preprocessed C source on standard output.
895
896 @item -v
897 @opindex v
898 Print (on standard error output) the commands executed to run the stages
899 of compilation.  Also print the version number of the compiler driver
900 program and of the preprocessor and the compiler proper.
901
902 @item -###
903 @opindex ###
904 Like @option{-v} except the commands are not executed and all command
905 arguments are quoted.  This is useful for shell scripts to capture the
906 driver-generated command lines.
907
908 @item -pipe
909 @opindex pipe
910 Use pipes rather than temporary files for communication between the
911 various stages of compilation.  This fails to work on some systems where
912 the assembler is unable to read from a pipe; but the GNU assembler has
913 no trouble.
914
915 @item --help
916 @opindex help
917 Print (on the standard output) a description of the command line options
918 understood by @command{gcc}.  If the @option{-v} option is also specified
919 then @option{--help} will also be passed on to the various processes
920 invoked by @command{gcc}, so that they can display the command line options
921 they accept.  If the @option{-Wextra} option is also specified then command
922 line options which have no documentation associated with them will also
923 be displayed.
924
925 @item --target-help
926 @opindex target-help
927 Print (on the standard output) a description of target specific command
928 line options for each tool.
929
930 @item --version
931 @opindex version
932 Display the version number and copyrights of the invoked GCC.
933 @end table
934
935 @node Invoking G++
936 @section Compiling C++ Programs
937
938 @cindex suffixes for C++ source
939 @cindex C++ source file suffixes
940 C++ source files conventionally use one of the suffixes @samp{.C},
941 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
942 @samp{.cxx}; C++ header files often use @samp{.hh} or @samp{.H}; and
943 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
944 files with these names and compiles them as C++ programs even if you
945 call the compiler the same way as for compiling C programs (usually
946 with the name @command{gcc}).
947
948 @findex g++
949 @findex c++
950 However, C++ programs often require class libraries as well as a
951 compiler that understands the C++ language---and under some
952 circumstances, you might want to compile programs or header files from
953 standard input, or otherwise without a suffix that flags them as C++
954 programs.  You might also like to precompile a C header file with a
955 @samp{.h} extension to be used in C++ compilations.  @command{g++} is a
956 program that calls GCC with the default language set to C++, and
957 automatically specifies linking against the C++ library.  On many
958 systems, @command{g++} is also installed with the name @command{c++}.
959
960 @cindex invoking @command{g++}
961 When you compile C++ programs, you may specify many of the same
962 command-line options that you use for compiling programs in any
963 language; or command-line options meaningful for C and related
964 languages; or options that are meaningful only for C++ programs.
965 @xref{C Dialect Options,,Options Controlling C Dialect}, for
966 explanations of options for languages related to C@.
967 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
968 explanations of options that are meaningful only for C++ programs.
969
970 @node C Dialect Options
971 @section Options Controlling C Dialect
972 @cindex dialect options
973 @cindex language dialect options
974 @cindex options, dialect
975
976 The following options control the dialect of C (or languages derived
977 from C, such as C++ and Objective-C) that the compiler accepts:
978
979 @table @gcctabopt
980 @cindex ANSI support
981 @cindex ISO support
982 @item -ansi
983 @opindex ansi
984 In C mode, support all ISO C90 programs.  In C++ mode,
985 remove GNU extensions that conflict with ISO C++.
986
987 This turns off certain features of GCC that are incompatible with ISO
988 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
989 such as the @code{asm} and @code{typeof} keywords, and
990 predefined macros such as @code{unix} and @code{vax} that identify the
991 type of system you are using.  It also enables the undesirable and
992 rarely used ISO trigraph feature.  For the C compiler,
993 it disables recognition of C++ style @samp{//} comments as well as
994 the @code{inline} keyword.
995
996 The alternate keywords @code{__asm__}, @code{__extension__},
997 @code{__inline__} and @code{__typeof__} continue to work despite
998 @option{-ansi}.  You would not want to use them in an ISO C program, of
999 course, but it is useful to put them in header files that might be included
1000 in compilations done with @option{-ansi}.  Alternate predefined macros
1001 such as @code{__unix__} and @code{__vax__} are also available, with or
1002 without @option{-ansi}.
1003
1004 The @option{-ansi} option does not cause non-ISO programs to be
1005 rejected gratuitously.  For that, @option{-pedantic} is required in
1006 addition to @option{-ansi}.  @xref{Warning Options}.
1007
1008 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1009 option is used.  Some header files may notice this macro and refrain
1010 from declaring certain functions or defining certain macros that the
1011 ISO standard doesn't call for; this is to avoid interfering with any
1012 programs that might use these names for other things.
1013
1014 Functions which would normally be built in but do not have semantics
1015 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1016 functions with @option{-ansi} is used.  @xref{Other Builtins,,Other
1017 built-in functions provided by GCC}, for details of the functions
1018 affected.
1019
1020 @item -std=
1021 @opindex std
1022 Determine the language standard.  This option is currently only
1023 supported when compiling C or C++.  A value for this option must be
1024 provided; possible values are
1025
1026 @table @samp
1027 @item c89
1028 @itemx iso9899:1990
1029 ISO C90 (same as @option{-ansi}).
1030
1031 @item iso9899:199409
1032 ISO C90 as modified in amendment 1.
1033
1034 @item c99
1035 @itemx c9x
1036 @itemx iso9899:1999
1037 @itemx iso9899:199x
1038 ISO C99.  Note that this standard is not yet fully supported; see
1039 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1040 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1041
1042 @item gnu89
1043 Default, ISO C90 plus GNU extensions (including some C99 features).
1044
1045 @item gnu99
1046 @item gnu9x
1047 ISO C99 plus GNU extensions.  When ISO C99 is fully implemented in GCC,
1048 this will become the default.  The name @samp{gnu9x} is deprecated.
1049
1050 @item c++98
1051 The 1998 ISO C++ standard plus amendments.
1052
1053 @item gnu++98
1054 The same as @option{-std=c++98} plus GNU extensions.  This is the
1055 default for C++ code.
1056 @end table
1057
1058 Even when this option is not specified, you can still use some of the
1059 features of newer standards in so far as they do not conflict with
1060 previous C standards.  For example, you may use @code{__restrict__} even
1061 when @option{-std=c99} is not specified.
1062
1063 The @option{-std} options specifying some version of ISO C have the same
1064 effects as @option{-ansi}, except that features that were not in ISO C90
1065 but are in the specified version (for example, @samp{//} comments and
1066 the @code{inline} keyword in ISO C99) are not disabled.
1067
1068 @xref{Standards,,Language Standards Supported by GCC}, for details of
1069 these standard versions.
1070
1071 @item -aux-info @var{filename}
1072 @opindex aux-info
1073 Output to the given filename prototyped declarations for all functions
1074 declared and/or defined in a translation unit, including those in header
1075 files.  This option is silently ignored in any language other than C@.
1076
1077 Besides declarations, the file indicates, in comments, the origin of
1078 each declaration (source file and line), whether the declaration was
1079 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1080 @samp{O} for old, respectively, in the first character after the line
1081 number and the colon), and whether it came from a declaration or a
1082 definition (@samp{C} or @samp{F}, respectively, in the following
1083 character).  In the case of function definitions, a K&R-style list of
1084 arguments followed by their declarations is also provided, inside
1085 comments, after the declaration.
1086
1087 @item -fno-asm
1088 @opindex fno-asm
1089 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1090 keyword, so that code can use these words as identifiers.  You can use
1091 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1092 instead.  @option{-ansi} implies @option{-fno-asm}.
1093
1094 In C++, this switch only affects the @code{typeof} keyword, since
1095 @code{asm} and @code{inline} are standard keywords.  You may want to
1096 use the @option{-fno-gnu-keywords} flag instead, which has the same
1097 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1098 switch only affects the @code{asm} and @code{typeof} keywords, since
1099 @code{inline} is a standard keyword in ISO C99.
1100
1101 @item -fno-builtin
1102 @itemx -fno-builtin-@var{function}
1103 @opindex fno-builtin
1104 @cindex built-in functions
1105 Don't recognize built-in functions that do not begin with
1106 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1107 functions provided by GCC}, for details of the functions affected,
1108 including those which are not built-in functions when @option{-ansi} or
1109 @option{-std} options for strict ISO C conformance are used because they
1110 do not have an ISO standard meaning.
1111
1112 GCC normally generates special code to handle certain built-in functions
1113 more efficiently; for instance, calls to @code{alloca} may become single
1114 instructions that adjust the stack directly, and calls to @code{memcpy}
1115 may become inline copy loops.  The resulting code is often both smaller
1116 and faster, but since the function calls no longer appear as such, you
1117 cannot set a breakpoint on those calls, nor can you change the behavior
1118 of the functions by linking with a different library.
1119
1120 With the @option{-fno-builtin-@var{function}} option
1121 only the built-in function @var{function} is
1122 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1123 function is named this is not built-in in this version of GCC, this
1124 option is ignored.  There is no corresponding
1125 @option{-fbuiltin-@var{function}} option; if you wish to enable
1126 built-in functions selectively when using @option{-fno-builtin} or
1127 @option{-ffreestanding}, you may define macros such as:
1128
1129 @smallexample
1130 #define abs(n)          __builtin_abs ((n))
1131 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
1132 @end smallexample
1133
1134 @item -fhosted
1135 @opindex fhosted
1136 @cindex hosted environment
1137
1138 Assert that compilation takes place in a hosted environment.  This implies
1139 @option{-fbuiltin}.  A hosted environment is one in which the
1140 entire standard library is available, and in which @code{main} has a return
1141 type of @code{int}.  Examples are nearly everything except a kernel.
1142 This is equivalent to @option{-fno-freestanding}.
1143
1144 @item -ffreestanding
1145 @opindex ffreestanding
1146 @cindex hosted environment
1147
1148 Assert that compilation takes place in a freestanding environment.  This
1149 implies @option{-fno-builtin}.  A freestanding environment
1150 is one in which the standard library may not exist, and program startup may
1151 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1152 This is equivalent to @option{-fno-hosted}.
1153
1154 @xref{Standards,,Language Standards Supported by GCC}, for details of
1155 freestanding and hosted environments.
1156
1157 @item -fms-extensions
1158 @opindex fms-extensions
1159 Accept some non-standard constructs used in Microsoft header files.
1160
1161 @item -trigraphs
1162 @opindex trigraphs
1163 Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
1164 options for strict ISO C conformance) implies @option{-trigraphs}.
1165
1166 @item -no-integrated-cpp
1167 @opindex no-integrated-cpp
1168 Performs a compilation in two passes: preprocessing and compiling.  This
1169 option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the
1170 @option{-B} option. The user supplied compilation step can then add in
1171 an additional preprocessing step after normal preprocessing but before
1172 compiling. The default is to use the integrated cpp (internal cpp)
1173
1174 The semantics of this option will change if "cc1", "cc1plus", and
1175 "cc1obj" are merged.
1176
1177 @cindex traditional C language
1178 @cindex C language, traditional
1179 @item -traditional
1180 @itemx -traditional-cpp
1181 @opindex traditional-cpp
1182 @opindex traditional
1183 Formerly, these options caused GCC to attempt to emulate a pre-standard
1184 C compiler.  They are now only supported with the @option{-E} switch.
1185 The preprocessor continues to support a pre-standard mode.  See the GNU
1186 CPP manual for details.
1187
1188 @item -fcond-mismatch
1189 @opindex fcond-mismatch
1190 Allow conditional expressions with mismatched types in the second and
1191 third arguments.  The value of such an expression is void.  This option
1192 is not supported for C++.
1193
1194 @item -funsigned-char
1195 @opindex funsigned-char
1196 Let the type @code{char} be unsigned, like @code{unsigned char}.
1197
1198 Each kind of machine has a default for what @code{char} should
1199 be.  It is either like @code{unsigned char} by default or like
1200 @code{signed char} by default.
1201
1202 Ideally, a portable program should always use @code{signed char} or
1203 @code{unsigned char} when it depends on the signedness of an object.
1204 But many programs have been written to use plain @code{char} and
1205 expect it to be signed, or expect it to be unsigned, depending on the
1206 machines they were written for.  This option, and its inverse, let you
1207 make such a program work with the opposite default.
1208
1209 The type @code{char} is always a distinct type from each of
1210 @code{signed char} or @code{unsigned char}, even though its behavior
1211 is always just like one of those two.
1212
1213 @item -fsigned-char
1214 @opindex fsigned-char
1215 Let the type @code{char} be signed, like @code{signed char}.
1216
1217 Note that this is equivalent to @option{-fno-unsigned-char}, which is
1218 the negative form of @option{-funsigned-char}.  Likewise, the option
1219 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
1220
1221 @item -fsigned-bitfields
1222 @itemx -funsigned-bitfields
1223 @itemx -fno-signed-bitfields
1224 @itemx -fno-unsigned-bitfields
1225 @opindex fsigned-bitfields
1226 @opindex funsigned-bitfields
1227 @opindex fno-signed-bitfields
1228 @opindex fno-unsigned-bitfields
1229 These options control whether a bit-field is signed or unsigned, when the
1230 declaration does not use either @code{signed} or @code{unsigned}.  By
1231 default, such a bit-field is signed, because this is consistent: the
1232 basic integer types such as @code{int} are signed types.
1233
1234 @item -fwritable-strings
1235 @opindex fwritable-strings
1236 Store string constants in the writable data segment and don't uniquize
1237 them.  This is for compatibility with old programs which assume they can
1238 write into string constants.
1239
1240 Writing into string constants is a very bad idea; ``constants'' should
1241 be constant.
1242 @end table
1243
1244 @node C++ Dialect Options
1245 @section Options Controlling C++ Dialect
1246
1247 @cindex compiler options, C++
1248 @cindex C++ options, command line
1249 @cindex options, C++
1250 This section describes the command-line options that are only meaningful
1251 for C++ programs; but you can also use most of the GNU compiler options
1252 regardless of what language your program is in.  For example, you
1253 might compile a file @code{firstClass.C} like this:
1254
1255 @example
1256 g++ -g -frepo -O -c firstClass.C
1257 @end example
1258
1259 @noindent
1260 In this example, only @option{-frepo} is an option meant
1261 only for C++ programs; you can use the other options with any
1262 language supported by GCC@.
1263
1264 Here is a list of options that are @emph{only} for compiling C++ programs:
1265
1266 @table @gcctabopt
1267
1268 @item -fabi-version=@var{n}
1269 @opindex fabi-version
1270 Use version @var{n} of the C++ ABI.  Version 1 is the version of the C++
1271 ABI that first appeared in G++ 3.2.  Version 0 will always be the
1272 version that conforms most closely to the C++ ABI specification.
1273 Therefore, the ABI obtained using version 0 will change as ABI bugs are
1274 fixed.
1275
1276 The default is version 1.
1277
1278 @item -fno-access-control
1279 @opindex fno-access-control
1280 Turn off all access checking.  This switch is mainly useful for working
1281 around bugs in the access control code.
1282
1283 @item -fcheck-new
1284 @opindex fcheck-new
1285 Check that the pointer returned by @code{operator new} is non-null
1286 before attempting to modify the storage allocated.  This check is
1287 normally unnecessary because the C++ standard specifies that
1288 @code{operator new} will only return @code{0} if it is declared
1289 @samp{throw()}, in which case the compiler will always check the
1290 return value even without this option.  In all other cases, when
1291 @code{operator new} has a non-empty exception specification, memory
1292 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
1293 @samp{new (nothrow)}.
1294
1295 @item -fconserve-space
1296 @opindex fconserve-space
1297 Put uninitialized or runtime-initialized global variables into the
1298 common segment, as C does.  This saves space in the executable at the
1299 cost of not diagnosing duplicate definitions.  If you compile with this
1300 flag and your program mysteriously crashes after @code{main()} has
1301 completed, you may have an object that is being destroyed twice because
1302 two definitions were merged.
1303
1304 This option is no longer useful on most targets, now that support has
1305 been added for putting variables into BSS without making them common.
1306
1307 @item -fno-const-strings
1308 @opindex fno-const-strings
1309 Give string constants type @code{char *} instead of type @code{const
1310 char *}.  By default, G++ uses type @code{const char *} as required by
1311 the standard.  Even if you use @option{-fno-const-strings}, you cannot
1312 actually modify the value of a string constant, unless you also use
1313 @option{-fwritable-strings}.
1314
1315 This option might be removed in a future release of G++.  For maximum
1316 portability, you should structure your code so that it works with
1317 string constants that have type @code{const char *}.
1318
1319 @item -fno-elide-constructors
1320 @opindex fno-elide-constructors
1321 The C++ standard allows an implementation to omit creating a temporary
1322 which is only used to initialize another object of the same type.
1323 Specifying this option disables that optimization, and forces G++ to
1324 call the copy constructor in all cases.
1325
1326 @item -fno-enforce-eh-specs
1327 @opindex fno-enforce-eh-specs
1328 Don't check for violation of exception specifications at runtime.  This
1329 option violates the C++ standard, but may be useful for reducing code
1330 size in production builds, much like defining @samp{NDEBUG}.  The compiler
1331 will still optimize based on the exception specifications.
1332
1333 @item -fexternal-templates
1334 @opindex fexternal-templates
1335
1336 Cause @samp{#pragma interface} and @samp{implementation} to apply to
1337 template instantiation; template instances are emitted or not according
1338 to the location of the template definition.  @xref{Template
1339 Instantiation}, for more information.
1340
1341 This option is deprecated.
1342
1343 @item -falt-external-templates
1344 @opindex falt-external-templates
1345 Similar to @option{-fexternal-templates}, but template instances are
1346 emitted or not according to the place where they are first instantiated.
1347 @xref{Template Instantiation}, for more information.
1348
1349 This option is deprecated.
1350
1351 @item -ffor-scope
1352 @itemx -fno-for-scope
1353 @opindex ffor-scope
1354 @opindex fno-for-scope
1355 If @option{-ffor-scope} is specified, the scope of variables declared in
1356 a @i{for-init-statement} is limited to the @samp{for} loop itself,
1357 as specified by the C++ standard.
1358 If @option{-fno-for-scope} is specified, the scope of variables declared in
1359 a @i{for-init-statement} extends to the end of the enclosing scope,
1360 as was the case in old versions of G++, and other (traditional)
1361 implementations of C++.
1362
1363 The default if neither flag is given to follow the standard,
1364 but to allow and give a warning for old-style code that would
1365 otherwise be invalid, or have different behavior.
1366
1367 @item -fno-gnu-keywords
1368 @opindex fno-gnu-keywords
1369 Do not recognize @code{typeof} as a keyword, so that code can use this
1370 word as an identifier.  You can use the keyword @code{__typeof__} instead.
1371 @option{-ansi} implies @option{-fno-gnu-keywords}.
1372
1373 @item -fno-implicit-templates
1374 @opindex fno-implicit-templates
1375 Never emit code for non-inline templates which are instantiated
1376 implicitly (i.e.@: by use); only emit code for explicit instantiations.
1377 @xref{Template Instantiation}, for more information.
1378
1379 @item -fno-implicit-inline-templates
1380 @opindex fno-implicit-inline-templates
1381 Don't emit code for implicit instantiations of inline templates, either.
1382 The default is to handle inlines differently so that compiles with and
1383 without optimization will need the same set of explicit instantiations.
1384
1385 @item -fno-implement-inlines
1386 @opindex fno-implement-inlines
1387 To save space, do not emit out-of-line copies of inline functions
1388 controlled by @samp{#pragma implementation}.  This will cause linker
1389 errors if these functions are not inlined everywhere they are called.
1390
1391 @item -fms-extensions
1392 @opindex fms-extensions
1393 Disable pedantic warnings about constructs used in MFC, such as implicit
1394 int and getting a pointer to member function via non-standard syntax.
1395
1396 @item -fno-nonansi-builtins
1397 @opindex fno-nonansi-builtins
1398 Disable built-in declarations of functions that are not mandated by
1399 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
1400 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
1401
1402 @item -fno-operator-names
1403 @opindex fno-operator-names
1404 Do not treat the operator name keywords @code{and}, @code{bitand},
1405 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
1406 synonyms as keywords.
1407
1408 @item -fno-optional-diags
1409 @opindex fno-optional-diags
1410 Disable diagnostics that the standard says a compiler does not need to
1411 issue.  Currently, the only such diagnostic issued by G++ is the one for
1412 a name having multiple meanings within a class.
1413
1414 @item -fpermissive
1415 @opindex fpermissive
1416 Downgrade messages about nonconformant code from errors to warnings.  By
1417 default, G++ effectively sets @option{-pedantic-errors} without
1418 @option{-pedantic}; this option reverses that.  This behavior and this
1419 option are superseded by @option{-pedantic}, which works as it does for GNU C@.
1420
1421 @item -frepo
1422 @opindex frepo
1423 Enable automatic template instantiation at link time.  This option also
1424 implies @option{-fno-implicit-templates}.  @xref{Template
1425 Instantiation}, for more information.
1426
1427 @item -fno-rtti
1428 @opindex fno-rtti
1429 Disable generation of information about every class with virtual
1430 functions for use by the C++ runtime type identification features
1431 (@samp{dynamic_cast} and @samp{typeid}).  If you don't use those parts
1432 of the language, you can save some space by using this flag.  Note that
1433 exception handling uses the same information, but it will generate it as
1434 needed.
1435
1436 @item -fstats
1437 @opindex fstats
1438 Emit statistics about front-end processing at the end of the compilation.
1439 This information is generally only useful to the G++ development team.
1440
1441 @item -ftemplate-depth-@var{n}
1442 @opindex ftemplate-depth
1443 Set the maximum instantiation depth for template classes to @var{n}.
1444 A limit on the template instantiation depth is needed to detect
1445 endless recursions during template class instantiation.  ANSI/ISO C++
1446 conforming programs must not rely on a maximum depth greater than 17.
1447
1448 @item -fuse-cxa-atexit
1449 @opindex fuse-cxa-atexit
1450 Register destructors for objects with static storage duration with the
1451 @code{__cxa_atexit} function rather than the @code{atexit} function.
1452 This option is required for fully standards-compliant handling of static
1453 destructors, but will only work if your C library supports
1454 @code{__cxa_atexit}.
1455
1456 @item -fvtable-gc
1457 @opindex fvtable-gc
1458 Emit special relocations for vtables and virtual function references
1459 so that the linker can identify unused virtual functions and zero out
1460 vtable slots that refer to them.  This is most useful with
1461 @option{-ffunction-sections} and @option{-Wl,--gc-sections}, in order to
1462 also discard the functions themselves.
1463
1464 This optimization requires GNU as and GNU ld.  Not all systems support
1465 this option.  @option{-Wl,--gc-sections} is ignored without @option{-static}.
1466
1467 @item -fno-weak
1468 @opindex fno-weak
1469 Do not use weak symbol support, even if it is provided by the linker.
1470 By default, G++ will use weak symbols if they are available.  This
1471 option exists only for testing, and should not be used by end-users;
1472 it will result in inferior code and has no benefits.  This option may
1473 be removed in a future release of G++.
1474
1475 @item -nostdinc++
1476 @opindex nostdinc++
1477 Do not search for header files in the standard directories specific to
1478 C++, but do still search the other standard directories.  (This option
1479 is used when building the C++ library.)
1480 @end table
1481
1482 In addition, these optimization, warning, and code generation options
1483 have meanings only for C++ programs:
1484
1485 @table @gcctabopt
1486 @item -fno-default-inline
1487 @opindex fno-default-inline
1488 Do not assume @samp{inline} for functions defined inside a class scope.
1489 @xref{Optimize Options,,Options That Control Optimization}.  Note that these
1490 functions will have linkage like inline functions; they just won't be
1491 inlined by default.
1492
1493 @item -Wabi @r{(C++ only)}
1494 @opindex Wabi
1495 Warn when G++ generates code that is probably not compatible with the
1496 vendor-neutral C++ ABI.  Although an effort has been made to warn about
1497 all such cases, there are probably some cases that are not warned about, 
1498 even though G++ is generating incompatible code.  There may also be
1499 cases where warnings are emitted even though the code that is generated
1500 will be compatible.
1501
1502 You should rewrite your code to avoid these warnings if you are
1503 concerned about the fact that code generated by G++ may not be binary
1504 compatible with code generated by other compilers.
1505
1506 The known incompatibilities at this point include:
1507
1508 @itemize @bullet
1509
1510 @item
1511 Incorrect handling of tail-padding for bit-fields.  G++ may attempt to
1512 pack data into the same byte as a base class.  For example:
1513
1514 @smallexample
1515 struct A @{ virtual void f(); int f1 : 1; @};
1516 struct B : public A @{ int f2 : 1; @};
1517 @end smallexample
1518
1519 @noindent
1520 In this case, G++ will place @code{B::f2} into the same byte
1521 as@code{A::f1}; other compilers will not.  You can avoid this problem 
1522 by explicitly padding @code{A} so that its size is a multiple of the
1523 byte size on your platform; that will cause G++ and other compilers to
1524 layout @code{B} identically.
1525
1526 @item
1527 Incorrect handling of tail-padding for virtual bases.  G++ does not use
1528 tail padding when laying out virtual bases.  For example:
1529
1530 @smallexample
1531 struct A @{ virtual void f(); char c1; @};
1532 struct B @{ B(); char c2; @};
1533 struct C : public A, public virtual B @{@};
1534 @end smallexample
1535
1536 @noindent
1537 In this case, G++ will not place @code{B} into the tail-padding for
1538 @code{A}; other compilers will.  You can avoid this problem by
1539 explicitly padding @code{A} so that its size is a multiple of its
1540 alignment (ignoring virtual base classes); that will cause G++ and other
1541 compilers to layout @code{C} identically.
1542
1543 @item
1544 Incorrect handling of bit-fields with declared widths greater than that
1545 of their underlying types, when the bit-fields appear in a union.  For
1546 example:
1547
1548 @smallexample
1549 union U @{ int i : 4096; @};
1550 @end smallexample
1551
1552 @noindent
1553 Assuming that an @code{int} does not have 4096 bits, G++ will make the
1554 union too small by the number of bits in an @code{int}.
1555
1556 @item
1557 Empty classes can be placed at incorrect offsets.  For example:
1558  
1559 @smallexample
1560 struct A @{@};
1561
1562 struct B @{
1563   A a;
1564   virtual void f ();
1565 @};
1566
1567 struct C : public B, public A @{@};
1568 @end smallexample
1569
1570 @noindent
1571 G++ will place the @code{A} base class of @code{C} at a nonzero offset;
1572 it should be placed at offset zero.  G++ mistakenly believes that the
1573 @code{A} data member of @code{B} is already at offset zero.
1574
1575 @item
1576 Names of template functions whose types involve @code{typename} or
1577 template template parameters can be mangled incorrectly.
1578
1579 @smallexample
1580 template <typename Q>
1581 void f(typename Q::X) @{@}
1582
1583 template <template <typename> class Q>
1584 void f(typename Q<int>::X) @{@}
1585 @end smallexample
1586
1587 @noindent
1588 Instantiations of these templates may be mangled incorrectly.
1589
1590 @end itemize
1591
1592 @item -Wctor-dtor-privacy @r{(C++ only)}
1593 @opindex Wctor-dtor-privacy
1594 Warn when a class seems unusable, because all the constructors or
1595 destructors in a class are private and the class has no friends or
1596 public static member functions.
1597
1598 @item -Wnon-virtual-dtor @r{(C++ only)}
1599 @opindex Wnon-virtual-dtor
1600 Warn when a class declares a non-virtual destructor that should probably
1601 be virtual, because it looks like the class will be used polymorphically.
1602 This warning is enabled by @option{-Wall}.
1603
1604 @item -Wreorder @r{(C++ only)}
1605 @opindex Wreorder
1606 @cindex reordering, warning
1607 @cindex warning for reordering of member initializers
1608 Warn when the order of member initializers given in the code does not
1609 match the order in which they must be executed.  For instance:
1610
1611 @smallexample
1612 struct A @{
1613   int i;
1614   int j;
1615   A(): j (0), i (1) @{ @}
1616 @};
1617 @end smallexample
1618
1619 Here the compiler will warn that the member initializers for @samp{i}
1620 and @samp{j} will be rearranged to match the declaration order of the
1621 members.  This warning is enabled by @option{-Wall}.
1622 @end table
1623
1624 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
1625
1626 @table @gcctabopt
1627 @item -Weffc++ @r{(C++ only)}
1628 @opindex Weffc++
1629 Warn about violations of the following style guidelines from Scott Meyers'
1630 @cite{Effective C++} book:
1631
1632 @itemize @bullet
1633 @item
1634 Item 11:  Define a copy constructor and an assignment operator for classes
1635 with dynamically allocated memory.
1636
1637 @item
1638 Item 12:  Prefer initialization to assignment in constructors.
1639
1640 @item
1641 Item 14:  Make destructors virtual in base classes.
1642
1643 @item
1644 Item 15:  Have @code{operator=} return a reference to @code{*this}.
1645
1646 @item
1647 Item 23:  Don't try to return a reference when you must return an object.
1648
1649 @end itemize
1650
1651 and about violations of the following style guidelines from Scott Meyers'
1652 @cite{More Effective C++} book:
1653
1654 @itemize @bullet
1655 @item
1656 Item 6:  Distinguish between prefix and postfix forms of increment and
1657 decrement operators.
1658
1659 @item
1660 Item 7:  Never overload @code{&&}, @code{||}, or @code{,}.
1661
1662 @end itemize
1663
1664 If you use this option, you should be aware that the standard library
1665 headers do not obey all of these guidelines; you can use @samp{grep -v}
1666 to filter out those warnings.
1667
1668 @item -Wno-deprecated @r{(C++ only)}
1669 @opindex Wno-deprecated
1670 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
1671
1672 @item -Wno-non-template-friend @r{(C++ only)}
1673 @opindex Wno-non-template-friend
1674 Disable warnings when non-templatized friend functions are declared
1675 within a template.  With the advent of explicit template specification
1676 support in G++, if the name of the friend is an unqualified-id (i.e.,
1677 @samp{friend foo(int)}), the C++ language specification demands that the
1678 friend declare or define an ordinary, nontemplate function.  (Section
1679 14.5.3).  Before G++ implemented explicit specification, unqualified-ids
1680 could be interpreted as a particular specialization of a templatized
1681 function.  Because this non-conforming behavior is no longer the default
1682 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
1683 check existing code for potential trouble spots, and is on by default.
1684 This new compiler behavior can be turned off with
1685 @option{-Wno-non-template-friend} which keeps the conformant compiler code
1686 but disables the helpful warning.
1687
1688 @item -Wold-style-cast @r{(C++ only)}
1689 @opindex Wold-style-cast
1690 Warn if an old-style (C-style) cast to a non-void type is used within
1691 a C++ program.  The new-style casts (@samp{static_cast},
1692 @samp{reinterpret_cast}, and @samp{const_cast}) are less vulnerable to
1693 unintended effects, and much easier to grep for.
1694
1695 @item -Woverloaded-virtual @r{(C++ only)}
1696 @opindex Woverloaded-virtual
1697 @cindex overloaded virtual fn, warning
1698 @cindex warning for overloaded virtual fn
1699 Warn when a function declaration hides virtual functions from a
1700 base class.  For example, in:
1701
1702 @smallexample
1703 struct A @{
1704   virtual void f();
1705 @};
1706
1707 struct B: public A @{
1708   void f(int);
1709 @};
1710 @end smallexample
1711
1712 the @code{A} class version of @code{f} is hidden in @code{B}, and code
1713 like this:
1714
1715 @smallexample
1716 B* b;
1717 b->f();
1718 @end smallexample
1719
1720 will fail to compile.
1721
1722 @item -Wno-pmf-conversions @r{(C++ only)}
1723 @opindex Wno-pmf-conversions
1724 Disable the diagnostic for converting a bound pointer to member function
1725 to a plain pointer.
1726
1727 @item -Wsign-promo @r{(C++ only)}
1728 @opindex Wsign-promo
1729 Warn when overload resolution chooses a promotion from unsigned or
1730 enumeral type to a signed type over a conversion to an unsigned type of
1731 the same size.  Previous versions of G++ would try to preserve
1732 unsignedness, but the standard mandates the current behavior.
1733
1734 @item -Wsynth @r{(C++ only)}
1735 @opindex Wsynth
1736 @cindex warning for synthesized methods
1737 @cindex synthesized methods, warning
1738 Warn when G++'s synthesis behavior does not match that of cfront.  For
1739 instance:
1740
1741 @smallexample
1742 struct A @{
1743   operator int ();
1744   A& operator = (int);
1745 @};
1746
1747 main ()
1748 @{
1749   A a,b;
1750   a = b;
1751 @}
1752 @end smallexample
1753
1754 In this example, G++ will synthesize a default @samp{A& operator =
1755 (const A&);}, while cfront will use the user-defined @samp{operator =}.
1756 @end table
1757
1758 @node Objective-C Dialect Options
1759 @section Options Controlling Objective-C Dialect
1760
1761 @cindex compiler options, Objective-C
1762 @cindex Objective-C options, command line
1763 @cindex options, Objective-C
1764 This section describes the command-line options that are only meaningful
1765 for Objective-C programs; but you can also use most of the GNU compiler
1766 options regardless of what language your program is in.  For example,
1767 you might compile a file @code{some_class.m} like this:
1768
1769 @example
1770 gcc -g -fgnu-runtime -O -c some_class.m
1771 @end example
1772
1773 @noindent
1774 In this example, only @option{-fgnu-runtime} is an option meant only for
1775 Objective-C programs; you can use the other options with any language
1776 supported by GCC@.
1777
1778 Here is a list of options that are @emph{only} for compiling Objective-C
1779 programs:
1780
1781 @table @gcctabopt
1782 @item -fconstant-string-class=@var{class-name}
1783 @opindex fconstant-string-class
1784 Use @var{class-name} as the name of the class to instantiate for each
1785 literal string specified with the syntax @code{@@"@dots{}"}.  The default
1786 class name is @code{NXConstantString}.
1787
1788 @item -fgnu-runtime
1789 @opindex fgnu-runtime
1790 Generate object code compatible with the standard GNU Objective-C
1791 runtime.  This is the default for most types of systems.
1792
1793 @item -fnext-runtime
1794 @opindex fnext-runtime
1795 Generate output compatible with the NeXT runtime.  This is the default
1796 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
1797 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
1798 used.
1799
1800 @item -gen-decls
1801 @opindex gen-decls
1802 Dump interface declarations for all classes seen in the source file to a
1803 file named @file{@var{sourcename}.decl}.
1804
1805 @item -Wno-protocol
1806 @opindex Wno-protocol
1807 If a class is declared to implement a protocol, a warning is issued for
1808 every method in the protocol that is not implemented by the class.  The
1809 default behavior is to issue a warning for every method not explicitly
1810 implemented in the class, even if a method implementation is inherited
1811 from the superclass.  If you use the @code{-Wno-protocol} option, then
1812 methods inherited from the superclass are considered to be implemented,
1813 and no warning is issued for them.
1814
1815 @item -Wselector
1816 @opindex Wselector
1817 Warn if multiple methods of different types for the same selector are
1818 found during compilation.  The check is performed on the list of methods
1819 in the final stage of compilation.  Additionally, a check is performed
1820 that for each selector appearing in a @code{@@selector(@dots{})}
1821 expression, a corresponding method with that selector has been found
1822 during compilation.  Because these checks scan the method table only at
1823 the end of compilation, these warnings are not produced if the final
1824 stage of compilation is not reached, for example because an error is
1825 found during compilation, or because the @code{-fsyntax-only} option is
1826 being used.
1827
1828 @item -Wundeclared-selector
1829 @opindex Wundeclared-selector
1830 Warn if a @code{@@selector(@dots{})} expression referring to an
1831 undeclared selector is found.  A selector is considered undeclared if no
1832 method with that name has been declared (explicitly, in an
1833 @code{@@interface} or @code{@@protocol} declaration, or implicitly, in
1834 an @code{@@implementation} section) before the
1835 @code{@@selector(@dots{})} expression.  This option always performs its
1836 checks as soon as a @code{@@selector(@dots{})} expression is found
1837 (while @code{-Wselector} only performs its checks in the final stage of
1838 compilation), and so additionally enforces the coding style convention
1839 that methods and selectors must be declared before being used.
1840
1841 @c not documented because only avail via -Wp
1842 @c @item -print-objc-runtime-info
1843
1844 @end table
1845
1846 @node Language Independent Options
1847 @section Options to Control Diagnostic Messages Formatting
1848 @cindex options to control diagnostics formatting
1849 @cindex diagnostic messages
1850 @cindex message formatting
1851
1852 Traditionally, diagnostic messages have been formatted irrespective of
1853 the output device's aspect (e.g.@: its width, @dots{}).  The options described
1854 below can be used to control the diagnostic messages formatting
1855 algorithm, e.g.@: how many characters per line, how often source location
1856 information should be reported.  Right now, only the C++ front end can
1857 honor these options.  However it is expected, in the near future, that
1858 the remaining front ends would be able to digest them correctly.
1859
1860 @table @gcctabopt
1861 @item -fmessage-length=@var{n}
1862 @opindex fmessage-length
1863 Try to format error messages so that they fit on lines of about @var{n}
1864 characters.  The default is 72 characters for @command{g++} and 0 for the rest of
1865 the front ends supported by GCC@.  If @var{n} is zero, then no
1866 line-wrapping will be done; each error message will appear on a single
1867 line.
1868
1869 @opindex fdiagnostics-show-location
1870 @item -fdiagnostics-show-location=once
1871 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
1872 reporter to emit @emph{once} source location information; that is, in
1873 case the message is too long to fit on a single physical line and has to
1874 be wrapped, the source location won't be emitted (as prefix) again,
1875 over and over, in subsequent continuation lines.  This is the default
1876 behavior.
1877
1878 @item -fdiagnostics-show-location=every-line
1879 Only meaningful in line-wrapping mode.  Instructs the diagnostic
1880 messages reporter to emit the same source location information (as
1881 prefix) for physical lines that result from the process of breaking
1882 a message which is too long to fit on a single line.
1883
1884 @end table
1885
1886 @node Warning Options
1887 @section Options to Request or Suppress Warnings
1888 @cindex options to control warnings
1889 @cindex warning messages
1890 @cindex messages, warning
1891 @cindex suppressing warnings
1892
1893 Warnings are diagnostic messages that report constructions which
1894 are not inherently erroneous but which are risky or suggest there
1895 may have been an error.
1896
1897 You can request many specific warnings with options beginning @samp{-W},
1898 for example @option{-Wimplicit} to request warnings on implicit
1899 declarations.  Each of these specific warning options also has a
1900 negative form beginning @samp{-Wno-} to turn off warnings;
1901 for example, @option{-Wno-implicit}.  This manual lists only one of the
1902 two forms, whichever is not the default.
1903
1904 The following options control the amount and kinds of warnings produced
1905 by GCC; for further, language-specific options also refer to
1906 @ref{C++ Dialect Options} and @ref{Objective-C Dialect Options}.
1907
1908 @table @gcctabopt
1909 @cindex syntax checking
1910 @item -fsyntax-only
1911 @opindex fsyntax-only
1912 Check the code for syntax errors, but don't do anything beyond that.
1913
1914 @item -pedantic
1915 @opindex pedantic
1916 Issue all the warnings demanded by strict ISO C and ISO C++;
1917 reject all programs that use forbidden extensions, and some other
1918 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
1919 version of the ISO C standard specified by any @option{-std} option used.
1920
1921 Valid ISO C and ISO C++ programs should compile properly with or without
1922 this option (though a rare few will require @option{-ansi} or a
1923 @option{-std} option specifying the required version of ISO C)@.  However,
1924 without this option, certain GNU extensions and traditional C and C++
1925 features are supported as well.  With this option, they are rejected.
1926
1927 @option{-pedantic} does not cause warning messages for use of the
1928 alternate keywords whose names begin and end with @samp{__}.  Pedantic
1929 warnings are also disabled in the expression that follows
1930 @code{__extension__}.  However, only system header files should use
1931 these escape routes; application programs should avoid them.
1932 @xref{Alternate Keywords}.
1933
1934 Some users try to use @option{-pedantic} to check programs for strict ISO
1935 C conformance.  They soon find that it does not do quite what they want:
1936 it finds some non-ISO practices, but not all---only those for which
1937 ISO C @emph{requires} a diagnostic, and some others for which
1938 diagnostics have been added.
1939
1940 A feature to report any failure to conform to ISO C might be useful in
1941 some instances, but would require considerable additional work and would
1942 be quite different from @option{-pedantic}.  We don't have plans to
1943 support such a feature in the near future.
1944
1945 Where the standard specified with @option{-std} represents a GNU
1946 extended dialect of C, such as @samp{gnu89} or @samp{gnu99}, there is a
1947 corresponding @dfn{base standard}, the version of ISO C on which the GNU
1948 extended dialect is based.  Warnings from @option{-pedantic} are given
1949 where they are required by the base standard.  (It would not make sense
1950 for such warnings to be given only for features not in the specified GNU
1951 C dialect, since by definition the GNU dialects of C include all
1952 features the compiler supports with the given option, and there would be
1953 nothing to warn about.)
1954
1955 @item -pedantic-errors
1956 @opindex pedantic-errors
1957 Like @option{-pedantic}, except that errors are produced rather than
1958 warnings.
1959
1960 @item -w
1961 @opindex w
1962 Inhibit all warning messages.
1963
1964 @item -Wno-import
1965 @opindex Wno-import
1966 Inhibit warning messages about the use of @samp{#import}.
1967
1968 @item -Wchar-subscripts
1969 @opindex Wchar-subscripts
1970 Warn if an array subscript has type @code{char}.  This is a common cause
1971 of error, as programmers often forget that this type is signed on some
1972 machines.
1973
1974 @item -Wcomment
1975 @opindex Wcomment
1976 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
1977 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
1978
1979 @item -Wformat
1980 @opindex Wformat
1981 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
1982 the arguments supplied have types appropriate to the format string
1983 specified, and that the conversions specified in the format string make
1984 sense.  This includes standard functions, and others specified by format
1985 attributes (@pxref{Function Attributes}), in the @code{printf},
1986 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
1987 not in the C standard) families.
1988
1989 The formats are checked against the format features supported by GNU
1990 libc version 2.2.  These include all ISO C90 and C99 features, as well
1991 as features from the Single Unix Specification and some BSD and GNU
1992 extensions.  Other library implementations may not support all these
1993 features; GCC does not support warning about features that go beyond a
1994 particular library's limitations.  However, if @option{-pedantic} is used
1995 with @option{-Wformat}, warnings will be given about format features not
1996 in the selected standard version (but not for @code{strfmon} formats,
1997 since those are not in any version of the C standard).  @xref{C Dialect
1998 Options,,Options Controlling C Dialect}.
1999
2000 Since @option{-Wformat} also checks for null format arguments for
2001 several functions, @option{-Wformat} also implies @option{-Wnonnull}.
2002
2003 @option{-Wformat} is included in @option{-Wall}.  For more control over some
2004 aspects of format checking, the options @option{-Wno-format-y2k},
2005 @option{-Wno-format-extra-args}, @option{-Wno-format-zero-length},
2006 @option{-Wformat-nonliteral}, @option{-Wformat-security}, and
2007 @option{-Wformat=2} are available, but are not included in @option{-Wall}.
2008
2009 @item -Wno-format-y2k
2010 @opindex Wno-format-y2k
2011 If @option{-Wformat} is specified, do not warn about @code{strftime}
2012 formats which may yield only a two-digit year.
2013
2014 @item -Wno-format-extra-args
2015 @opindex Wno-format-extra-args
2016 If @option{-Wformat} is specified, do not warn about excess arguments to a
2017 @code{printf} or @code{scanf} format function.  The C standard specifies
2018 that such arguments are ignored.
2019
2020 Where the unused arguments lie between used arguments that are
2021 specified with @samp{$} operand number specifications, normally
2022 warnings are still given, since the implementation could not know what
2023 type to pass to @code{va_arg} to skip the unused arguments.  However,
2024 in the case of @code{scanf} formats, this option will suppress the
2025 warning if the unused arguments are all pointers, since the Single
2026 Unix Specification says that such unused arguments are allowed.
2027
2028 @item -Wno-format-zero-length
2029 @opindex Wno-format-zero-length
2030 If @option{-Wformat} is specified, do not warn about zero-length formats.
2031 The C standard specifies that zero-length formats are allowed.
2032
2033 @item -Wformat-nonliteral
2034 @opindex Wformat-nonliteral
2035 If @option{-Wformat} is specified, also warn if the format string is not a
2036 string literal and so cannot be checked, unless the format function
2037 takes its format arguments as a @code{va_list}.
2038
2039 @item -Wformat-security
2040 @opindex Wformat-security
2041 If @option{-Wformat} is specified, also warn about uses of format
2042 functions that represent possible security problems.  At present, this
2043 warns about calls to @code{printf} and @code{scanf} functions where the
2044 format string is not a string literal and there are no format arguments,
2045 as in @code{printf (foo);}.  This may be a security hole if the format
2046 string came from untrusted input and contains @samp{%n}.  (This is
2047 currently a subset of what @option{-Wformat-nonliteral} warns about, but
2048 in future warnings may be added to @option{-Wformat-security} that are not
2049 included in @option{-Wformat-nonliteral}.)
2050
2051 @item -Wformat=2
2052 @opindex Wformat=2
2053 Enable @option{-Wformat} plus format checks not included in
2054 @option{-Wformat}.  Currently equivalent to @samp{-Wformat
2055 -Wformat-nonliteral -Wformat-security}.
2056
2057 @item -Wnonnull
2058 @opindex Wnonnull
2059 Enable warning about passing a null pointer for arguments marked as
2060 requiring a non-null value by the @code{nonnull} function attribute.
2061
2062 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
2063 can be disabled with the @option{-Wno-nonnull} option.
2064
2065 @item -Wimplicit-int
2066 @opindex Wimplicit-int
2067 Warn when a declaration does not specify a type.
2068
2069 @item -Wimplicit-function-declaration
2070 @itemx -Werror-implicit-function-declaration
2071 @opindex Wimplicit-function-declaration
2072 @opindex Werror-implicit-function-declaration
2073 Give a warning (or error) whenever a function is used before being
2074 declared.
2075
2076 @item -Wimplicit
2077 @opindex Wimplicit
2078 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
2079
2080 @item -Wmain
2081 @opindex Wmain
2082 Warn if the type of @samp{main} is suspicious.  @samp{main} should be a
2083 function with external linkage, returning int, taking either zero
2084 arguments, two, or three arguments of appropriate types.
2085
2086 @item -Wmissing-braces
2087 @opindex Wmissing-braces
2088 Warn if an aggregate or union initializer is not fully bracketed.  In
2089 the following example, the initializer for @samp{a} is not fully
2090 bracketed, but that for @samp{b} is fully bracketed.
2091
2092 @smallexample
2093 int a[2][2] = @{ 0, 1, 2, 3 @};
2094 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
2095 @end smallexample
2096
2097 @item -Wparentheses
2098 @opindex Wparentheses
2099 Warn if parentheses are omitted in certain contexts, such
2100 as when there is an assignment in a context where a truth value
2101 is expected, or when operators are nested whose precedence people
2102 often get confused about.
2103
2104 Also warn about constructions where there may be confusion to which
2105 @code{if} statement an @code{else} branch belongs.  Here is an example of
2106 such a case:
2107
2108 @smallexample
2109 @group
2110 @{
2111   if (a)
2112     if (b)
2113       foo ();
2114   else
2115     bar ();
2116 @}
2117 @end group
2118 @end smallexample
2119
2120 In C, every @code{else} branch belongs to the innermost possible @code{if}
2121 statement, which in this example is @code{if (b)}.  This is often not
2122 what the programmer expected, as illustrated in the above example by
2123 indentation the programmer chose.  When there is the potential for this
2124 confusion, GCC will issue a warning when this flag is specified.
2125 To eliminate the warning, add explicit braces around the innermost
2126 @code{if} statement so there is no way the @code{else} could belong to
2127 the enclosing @code{if}.  The resulting code would look like this:
2128
2129 @smallexample
2130 @group
2131 @{
2132   if (a)
2133     @{
2134       if (b)
2135         foo ();
2136       else
2137         bar ();
2138     @}
2139 @}
2140 @end group
2141 @end smallexample
2142
2143 @item -Wsequence-point
2144 @opindex Wsequence-point
2145 Warn about code that may have undefined semantics because of violations
2146 of sequence point rules in the C standard.
2147
2148 The C standard defines the order in which expressions in a C program are
2149 evaluated in terms of @dfn{sequence points}, which represent a partial
2150 ordering between the execution of parts of the program: those executed
2151 before the sequence point, and those executed after it.  These occur
2152 after the evaluation of a full expression (one which is not part of a
2153 larger expression), after the evaluation of the first operand of a
2154 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
2155 function is called (but after the evaluation of its arguments and the
2156 expression denoting the called function), and in certain other places.
2157 Other than as expressed by the sequence point rules, the order of
2158 evaluation of subexpressions of an expression is not specified.  All
2159 these rules describe only a partial order rather than a total order,
2160 since, for example, if two functions are called within one expression
2161 with no sequence point between them, the order in which the functions
2162 are called is not specified.  However, the standards committee have
2163 ruled that function calls do not overlap.
2164
2165 It is not specified when between sequence points modifications to the
2166 values of objects take effect.  Programs whose behavior depends on this
2167 have undefined behavior; the C standard specifies that ``Between the
2168 previous and next sequence point an object shall have its stored value
2169 modified at most once by the evaluation of an expression.  Furthermore,
2170 the prior value shall be read only to determine the value to be
2171 stored.''.  If a program breaks these rules, the results on any
2172 particular implementation are entirely unpredictable.
2173
2174 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
2175 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
2176 diagnosed by this option, and it may give an occasional false positive
2177 result, but in general it has been found fairly effective at detecting
2178 this sort of problem in programs.
2179
2180 The present implementation of this option only works for C programs.  A
2181 future implementation may also work for C++ programs.
2182
2183 The C standard is worded confusingly, therefore there is some debate
2184 over the precise meaning of the sequence point rules in subtle cases.
2185 Links to discussions of the problem, including proposed formal
2186 definitions, may be found on our readings page, at
2187 @w{@uref{http://gcc.gnu.org/readings.html}}.
2188
2189 @item -Wreturn-type
2190 @opindex Wreturn-type
2191 Warn whenever a function is defined with a return-type that defaults to
2192 @code{int}.  Also warn about any @code{return} statement with no
2193 return-value in a function whose return-type is not @code{void}.
2194
2195 For C++, a function without return type always produces a diagnostic
2196 message, even when @option{-Wno-return-type} is specified.  The only
2197 exceptions are @samp{main} and functions defined in system headers.
2198
2199 @item -Wswitch
2200 @opindex Wswitch
2201 Warn whenever a @code{switch} statement has an index of enumeral type
2202 and lacks a @code{case} for one or more of the named codes of that
2203 enumeration.  (The presence of a @code{default} label prevents this
2204 warning.)  @code{case} labels outside the enumeration range also
2205 provoke warnings when this option is used.
2206
2207 @item -Wswitch-default
2208 @opindex Wswitch-switch
2209 Warn whenever a @code{switch} statement does not have a @code{default}
2210 case.
2211
2212 @item -Wswitch-enum
2213 @opindex Wswitch-enum
2214 Warn whenever a @code{switch} statement has an index of enumeral type
2215 and lacks a @code{case} for one or more of the named codes of that
2216 enumeration.  @code{case} labels outside the enumeration range also
2217 provoke warnings when this option is used.
2218
2219 @item -Wtrigraphs
2220 @opindex Wtrigraphs
2221 Warn if any trigraphs are encountered that might change the meaning of
2222 the program (trigraphs within comments are not warned about).
2223
2224 @item -Wunused-function
2225 @opindex Wunused-function
2226 Warn whenever a static function is declared but not defined or a
2227 non\-inline static function is unused.
2228
2229 @item -Wunused-label
2230 @opindex Wunused-label
2231 Warn whenever a label is declared but not used.
2232
2233 To suppress this warning use the @samp{unused} attribute
2234 (@pxref{Variable Attributes}).
2235
2236 @item -Wunused-parameter
2237 @opindex Wunused-parameter
2238 Warn whenever a function parameter is unused aside from its declaration.
2239
2240 To suppress this warning use the @samp{unused} attribute
2241 (@pxref{Variable Attributes}).
2242
2243 @item -Wunused-variable
2244 @opindex Wunused-variable
2245 Warn whenever a local variable or non-constant static variable is unused
2246 aside from its declaration
2247
2248 To suppress this warning use the @samp{unused} attribute
2249 (@pxref{Variable Attributes}).
2250
2251 @item -Wunused-value
2252 @opindex Wunused-value
2253 Warn whenever a statement computes a result that is explicitly not used.
2254
2255 To suppress this warning cast the expression to @samp{void}.
2256
2257 @item -Wunused
2258 @opindex Wunused
2259 All the above @option{-Wunused} options combined.
2260
2261 In order to get a warning about an unused function parameter, you must
2262 either specify @samp{-Wextra -Wunused} (note that @samp{-Wall} implies
2263 @samp{-Wunused}), or separately specify @option{-Wunused-parameter}.
2264
2265 @item -Wuninitialized
2266 @opindex Wuninitialized
2267 Warn if an automatic variable is used without first being initialized or
2268 if a variable may be clobbered by a @code{setjmp} call.
2269
2270 These warnings are possible only in optimizing compilation,
2271 because they require data flow information that is computed only
2272 when optimizing.  If you don't specify @option{-O}, you simply won't
2273 get these warnings.
2274
2275 These warnings occur only for variables that are candidates for
2276 register allocation.  Therefore, they do not occur for a variable that
2277 is declared @code{volatile}, or whose address is taken, or whose size
2278 is other than 1, 2, 4 or 8 bytes.  Also, they do not occur for
2279 structures, unions or arrays, even when they are in registers.
2280
2281 Note that there may be no warning about a variable that is used only
2282 to compute a value that itself is never used, because such
2283 computations may be deleted by data flow analysis before the warnings
2284 are printed.
2285
2286 These warnings are made optional because GCC is not smart
2287 enough to see all the reasons why the code might be correct
2288 despite appearing to have an error.  Here is one example of how
2289 this can happen:
2290
2291 @smallexample
2292 @group
2293 @{
2294   int x;
2295   switch (y)
2296     @{
2297     case 1: x = 1;
2298       break;
2299     case 2: x = 4;
2300       break;
2301     case 3: x = 5;
2302     @}
2303   foo (x);
2304 @}
2305 @end group
2306 @end smallexample
2307
2308 @noindent
2309 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
2310 always initialized, but GCC doesn't know this.  Here is
2311 another common case:
2312
2313 @smallexample
2314 @{
2315   int save_y;
2316   if (change_y) save_y = y, y = new_y;
2317   @dots{}
2318   if (change_y) y = save_y;
2319 @}
2320 @end smallexample
2321
2322 @noindent
2323 This has no bug because @code{save_y} is used only if it is set.
2324
2325 @cindex @code{longjmp} warnings
2326 This option also warns when a non-volatile automatic variable might be
2327 changed by a call to @code{longjmp}.  These warnings as well are possible
2328 only in optimizing compilation.
2329
2330 The compiler sees only the calls to @code{setjmp}.  It cannot know
2331 where @code{longjmp} will be called; in fact, a signal handler could
2332 call it at any point in the code.  As a result, you may get a warning
2333 even when there is in fact no problem because @code{longjmp} cannot
2334 in fact be called at the place which would cause a problem.
2335
2336 Some spurious warnings can be avoided if you declare all the functions
2337 you use that never return as @code{noreturn}.  @xref{Function
2338 Attributes}.
2339
2340 @item -Wunknown-pragmas
2341 @opindex Wunknown-pragmas
2342 @cindex warning for unknown pragmas
2343 @cindex unknown pragmas, warning
2344 @cindex pragmas, warning of unknown
2345 Warn when a #pragma directive is encountered which is not understood by
2346 GCC@.  If this command line option is used, warnings will even be issued
2347 for unknown pragmas in system header files.  This is not the case if
2348 the warnings were only enabled by the @option{-Wall} command line option.
2349
2350 @item -Wstrict-aliasing
2351 @opindex Wstrict-aliasing
2352 This option is only active when @option{-fstrict-aliasing} is active.
2353 It warns about code which might break the strict aliasing rules that the
2354 compiler is using for optimization. The warning does not catch all
2355 cases, but does attempt to catch the more common pitfalls. It is
2356 included in @option{-Wall}.
2357
2358 @item -Wall
2359 @opindex Wall
2360 All of the above @samp{-W} options combined.  This enables all the
2361 warnings about constructions that some users consider questionable, and
2362 that are easy to avoid (or modify to prevent the warning), even in
2363 conjunction with macros.  This also enables some language-specific
2364 warnings described in @ref{C++ Dialect Options} and
2365 @ref{Objective-C Dialect Options}.
2366 @end table
2367
2368 The following @option{-W@dots{}} options are not implied by @option{-Wall}.
2369 Some of them warn about constructions that users generally do not
2370 consider questionable, but which occasionally you might wish to check
2371 for; others warn about constructions that are necessary or hard to avoid
2372 in some cases, and there is no simple way to modify the code to suppress
2373 the warning.
2374
2375 @table @gcctabopt
2376 @item -Wextra
2377 @opindex W
2378 @opindex Wextra
2379 (This option used to be called @option{-W}.  The older name is still
2380 supported, but the newer name is more descriptive.)  Print extra warning
2381 messages for these events:
2382
2383 @itemize @bullet
2384 @item
2385 A function can return either with or without a value.  (Falling
2386 off the end of the function body is considered returning without
2387 a value.)  For example, this function would evoke such a
2388 warning:
2389
2390 @smallexample
2391 @group
2392 foo (a)
2393 @{
2394   if (a > 0)
2395     return a;
2396 @}
2397 @end group
2398 @end smallexample
2399
2400 @item
2401 An expression-statement or the left-hand side of a comma expression
2402 contains no side effects.
2403 To suppress the warning, cast the unused expression to void.
2404 For example, an expression such as @samp{x[i,j]} will cause a warning,
2405 but @samp{x[(void)i,j]} will not.
2406
2407 @item
2408 An unsigned value is compared against zero with @samp{<} or @samp{>=}.
2409
2410 @item
2411 A comparison like @samp{x<=y<=z} appears; this is equivalent to
2412 @samp{(x<=y ? 1 : 0) <= z}, which is a different interpretation from
2413 that of ordinary mathematical notation.
2414
2415 @item
2416 Storage-class specifiers like @code{static} are not the first things in
2417 a declaration.  According to the C Standard, this usage is obsolescent.
2418
2419 @item
2420 The return type of a function has a type qualifier such as @code{const}.
2421 Such a type qualifier has no effect, since the value returned by a
2422 function is not an lvalue.  (But don't warn about the GNU extension of
2423 @code{volatile void} return types.  That extension will be warned about
2424 if @option{-pedantic} is specified.)
2425
2426 @item
2427 If @option{-Wall} or @option{-Wunused} is also specified, warn about unused
2428 arguments.
2429
2430 @item
2431 A comparison between signed and unsigned values could produce an
2432 incorrect result when the signed value is converted to unsigned.
2433 (But don't warn if @option{-Wno-sign-compare} is also specified.)
2434
2435 @item
2436 An aggregate has an initializer which does not initialize all members.
2437 For example, the following code would cause such a warning, because
2438 @code{x.h} would be implicitly initialized to zero:
2439
2440 @smallexample
2441 struct s @{ int f, g, h; @};
2442 struct s x = @{ 3, 4 @};
2443 @end smallexample
2444
2445 @item
2446 A function parameter is declared without a type specifier in K&R-style
2447 functions:
2448
2449 @smallexample
2450 void foo(bar) @{ @}
2451 @end smallexample
2452
2453 @item
2454 An empty body occurs in an @samp{if} or @samp{else} statement.
2455
2456 @item
2457 A pointer is compared against integer zero with @samp{<}, @samp{<=},
2458 @samp{>}, or @samp{>=}.
2459
2460 @item
2461 A variable might be changed by @samp{longjmp} or @samp{vfork}.
2462
2463 @item
2464 Any of several floating-point events that often indicate errors, such as
2465 overflow, underflow, loss of precision, etc.
2466
2467 @item @r{(C++ only)}
2468 An enumerator and a non-enumerator both appear in a conditional expression.
2469
2470 @item @r{(C++ only)}
2471 A non-static reference or non-static @samp{const} member appears in a
2472 class without constructors.
2473
2474 @item @r{(C++ only)}
2475 Ambiguous virtual bases.
2476
2477 @item @r{(C++ only)}
2478 Subscripting an array which has been declared @samp{register}.
2479
2480 @item @r{(C++ only)}
2481 Taking the address of a variable which has been declared @samp{register}.
2482
2483 @item @r{(C++ only)}
2484 A base class is not initialized in a derived class' copy constructor.
2485 @end itemize
2486
2487 @item -Wno-div-by-zero
2488 @opindex Wno-div-by-zero
2489 @opindex Wdiv-by-zero
2490 Do not warn about compile-time integer division by zero.  Floating point
2491 division by zero is not warned about, as it can be a legitimate way of
2492 obtaining infinities and NaNs.
2493
2494 @item -Wsystem-headers
2495 @opindex Wsystem-headers
2496 @cindex warnings from system headers
2497 @cindex system headers, warnings from
2498 Print warning messages for constructs found in system header files.
2499 Warnings from system headers are normally suppressed, on the assumption
2500 that they usually do not indicate real problems and would only make the
2501 compiler output harder to read.  Using this command line option tells
2502 GCC to emit warnings from system headers as if they occurred in user
2503 code.  However, note that using @option{-Wall} in conjunction with this
2504 option will @emph{not} warn about unknown pragmas in system
2505 headers---for that, @option{-Wunknown-pragmas} must also be used.
2506
2507 @item -Wfloat-equal
2508 @opindex Wfloat-equal
2509 Warn if floating point values are used in equality comparisons.
2510
2511 The idea behind this is that sometimes it is convenient (for the
2512 programmer) to consider floating-point values as approximations to
2513 infinitely precise real numbers.  If you are doing this, then you need
2514 to compute (by analyzing the code, or in some other way) the maximum or
2515 likely maximum error that the computation introduces, and allow for it
2516 when performing comparisons (and when producing output, but that's a
2517 different problem).  In particular, instead of testing for equality, you
2518 would check to see whether the two values have ranges that overlap; and
2519 this is done with the relational operators, so equality comparisons are
2520 probably mistaken.
2521
2522 @item -Wtraditional @r{(C only)}
2523 @opindex Wtraditional
2524 Warn about certain constructs that behave differently in traditional and
2525 ISO C@.  Also warn about ISO C constructs that have no traditional C
2526 equivalent, and/or problematic constructs which should be avoided.
2527
2528 @itemize @bullet
2529 @item
2530 Macro parameters that appear within string literals in the macro body.
2531 In traditional C macro replacement takes place within string literals,
2532 but does not in ISO C@.
2533
2534 @item
2535 In traditional C, some preprocessor directives did not exist.
2536 Traditional preprocessors would only consider a line to be a directive
2537 if the @samp{#} appeared in column 1 on the line.  Therefore
2538 @option{-Wtraditional} warns about directives that traditional C
2539 understands but would ignore because the @samp{#} does not appear as the
2540 first character on the line.  It also suggests you hide directives like
2541 @samp{#pragma} not understood by traditional C by indenting them.  Some
2542 traditional implementations would not recognize @samp{#elif}, so it
2543 suggests avoiding it altogether.
2544
2545 @item
2546 A function-like macro that appears without arguments.
2547
2548 @item
2549 The unary plus operator.
2550
2551 @item
2552 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating point
2553 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
2554 constants.)  Note, these suffixes appear in macros defined in the system
2555 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
2556 Use of these macros in user code might normally lead to spurious
2557 warnings, however gcc's integrated preprocessor has enough context to
2558 avoid warning in these cases.
2559
2560 @item
2561 A function declared external in one block and then used after the end of
2562 the block.
2563
2564 @item
2565 A @code{switch} statement has an operand of type @code{long}.
2566
2567 @item
2568 A non-@code{static} function declaration follows a @code{static} one.
2569 This construct is not accepted by some traditional C compilers.
2570
2571 @item
2572 The ISO type of an integer constant has a different width or
2573 signedness from its traditional type.  This warning is only issued if
2574 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
2575 typically represent bit patterns, are not warned about.
2576
2577 @item
2578 Usage of ISO string concatenation is detected.
2579
2580 @item
2581 Initialization of automatic aggregates.
2582
2583 @item
2584 Identifier conflicts with labels.  Traditional C lacks a separate
2585 namespace for labels.
2586
2587 @item
2588 Initialization of unions.  If the initializer is zero, the warning is
2589 omitted.  This is done under the assumption that the zero initializer in
2590 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
2591 initializer warnings and relies on default initialization to zero in the
2592 traditional C case.
2593
2594 @item
2595 Conversions by prototypes between fixed/floating point values and vice
2596 versa.  The absence of these prototypes when compiling with traditional
2597 C would cause serious problems.  This is a subset of the possible
2598 conversion warnings, for the full set use @option{-Wconversion}.
2599
2600 @item
2601 Use of ISO C style function definitions.  This warning intentionally is
2602 @emph{not} issued for prototype declarations or variadic functions
2603 because these ISO C features will appear in your code when using
2604 libiberty's traditional C compatibility macros, @code{PARAMS} and
2605 @code{VPARAMS}.  This warning is also bypassed for nested functions
2606 because that feature is already a gcc extension and thus not relevant to
2607 traditional C compatibility.
2608 @end itemize
2609
2610 @item -Wundef
2611 @opindex Wundef
2612 Warn if an undefined identifier is evaluated in an @samp{#if} directive.
2613
2614 @item -Wendif-labels
2615 @opindex Wendif-labels
2616 Warn whenever an @samp{#else} or an @samp{#endif} are followed by text.
2617
2618 @item -Wshadow
2619 @opindex Wshadow
2620 Warn whenever a local variable shadows another local variable, parameter or
2621 global variable or whenever a built-in function is shadowed.
2622
2623 @item -Wlarger-than-@var{len}
2624 @opindex Wlarger-than
2625 Warn whenever an object of larger than @var{len} bytes is defined.
2626
2627 @item -Wpointer-arith
2628 @opindex Wpointer-arith
2629 Warn about anything that depends on the ``size of'' a function type or
2630 of @code{void}.  GNU C assigns these types a size of 1, for
2631 convenience in calculations with @code{void *} pointers and pointers
2632 to functions.
2633
2634 @item -Wbad-function-cast @r{(C only)}
2635 @opindex Wbad-function-cast
2636 Warn whenever a function call is cast to a non-matching type.
2637 For example, warn if @code{int malloc()} is cast to @code{anything *}.
2638
2639 @item -Wcast-qual
2640 @opindex Wcast-qual
2641 Warn whenever a pointer is cast so as to remove a type qualifier from
2642 the target type.  For example, warn if a @code{const char *} is cast
2643 to an ordinary @code{char *}.
2644
2645 @item -Wcast-align
2646 @opindex Wcast-align
2647 Warn whenever a pointer is cast such that the required alignment of the
2648 target is increased.  For example, warn if a @code{char *} is cast to
2649 an @code{int *} on machines where integers can only be accessed at
2650 two- or four-byte boundaries.
2651
2652 @item -Wwrite-strings
2653 @opindex Wwrite-strings
2654 When compiling C, give string constants the type @code{const
2655 char[@var{length}]} so that
2656 copying the address of one into a non-@code{const} @code{char *}
2657 pointer will get a warning; when compiling C++, warn about the
2658 deprecated conversion from string constants to @code{char *}.
2659 These warnings will help you find at
2660 compile time code that can try to write into a string constant, but
2661 only if you have been very careful about using @code{const} in
2662 declarations and prototypes.  Otherwise, it will just be a nuisance;
2663 this is why we did not make @option{-Wall} request these warnings.
2664
2665 @item -Wconversion
2666 @opindex Wconversion
2667 Warn if a prototype causes a type conversion that is different from what
2668 would happen to the same argument in the absence of a prototype.  This
2669 includes conversions of fixed point to floating and vice versa, and
2670 conversions changing the width or signedness of a fixed point argument
2671 except when the same as the default promotion.
2672
2673 Also, warn if a negative integer constant expression is implicitly
2674 converted to an unsigned type.  For example, warn about the assignment
2675 @code{x = -1} if @code{x} is unsigned.  But do not warn about explicit
2676 casts like @code{(unsigned) -1}.
2677
2678 @item -Wsign-compare
2679 @opindex Wsign-compare
2680 @cindex warning for comparison of signed and unsigned values
2681 @cindex comparison of signed and unsigned values, warning
2682 @cindex signed and unsigned values, comparison warning
2683 Warn when a comparison between signed and unsigned values could produce
2684 an incorrect result when the signed value is converted to unsigned.
2685 This warning is also enabled by @option{-Wextra}; to get the other warnings
2686 of @option{-Wextra} without this warning, use @samp{-Wextra -Wno-sign-compare}.
2687
2688 @item -Waggregate-return
2689 @opindex Waggregate-return
2690 Warn if any functions that return structures or unions are defined or
2691 called.  (In languages where you can return an array, this also elicits
2692 a warning.)
2693
2694 @item -Wstrict-prototypes @r{(C only)}
2695 @opindex Wstrict-prototypes
2696 Warn if a function is declared or defined without specifying the
2697 argument types.  (An old-style function definition is permitted without
2698 a warning if preceded by a declaration which specifies the argument
2699 types.)
2700
2701 @item -Wmissing-prototypes @r{(C only)}
2702 @opindex Wmissing-prototypes
2703 Warn if a global function is defined without a previous prototype
2704 declaration.  This warning is issued even if the definition itself
2705 provides a prototype.  The aim is to detect global functions that fail
2706 to be declared in header files.
2707
2708 @item -Wmissing-declarations @r{(C only)}
2709 @opindex Wmissing-declarations
2710 Warn if a global function is defined without a previous declaration.
2711 Do so even if the definition itself provides a prototype.
2712 Use this option to detect global functions that are not declared in
2713 header files.
2714
2715 @item -Wmissing-noreturn
2716 @opindex Wmissing-noreturn
2717 Warn about functions which might be candidates for attribute @code{noreturn}.
2718 Note these are only possible candidates, not absolute ones.  Care should
2719 be taken to manually verify functions actually do not ever return before
2720 adding the @code{noreturn} attribute, otherwise subtle code generation
2721 bugs could be introduced.  You will not get a warning for @code{main} in
2722 hosted C environments.
2723
2724 @item -Wmissing-format-attribute
2725 @opindex Wmissing-format-attribute
2726 @opindex Wformat
2727 If @option{-Wformat} is enabled, also warn about functions which might be
2728 candidates for @code{format} attributes.  Note these are only possible
2729 candidates, not absolute ones.  GCC will guess that @code{format}
2730 attributes might be appropriate for any function that calls a function
2731 like @code{vprintf} or @code{vscanf}, but this might not always be the
2732 case, and some functions for which @code{format} attributes are
2733 appropriate may not be detected.  This option has no effect unless
2734 @option{-Wformat} is enabled (possibly by @option{-Wall}).
2735
2736 @item -Wno-multichar
2737 @opindex Wno-multichar
2738 @opindex Wmultichar
2739 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
2740 Usually they indicate a typo in the user's code, as they have
2741 implementation-defined values, and should not be used in portable code.
2742
2743 @item -Wno-deprecated-declarations
2744 @opindex Wno-deprecated-declarations
2745 Do not warn about uses of functions, variables, and types marked as
2746 deprecated by using the @code{deprecated} attribute.
2747 (@pxref{Function Attributes}, @pxref{Variable Attributes},
2748 @pxref{Type Attributes}.)
2749
2750 @item -Wpacked
2751 @opindex Wpacked
2752 Warn if a structure is given the packed attribute, but the packed
2753 attribute has no effect on the layout or size of the structure.
2754 Such structures may be mis-aligned for little benefit.  For
2755 instance, in this code, the variable @code{f.x} in @code{struct bar}
2756 will be misaligned even though @code{struct bar} does not itself
2757 have the packed attribute:
2758
2759 @smallexample
2760 @group
2761 struct foo @{
2762   int x;
2763   char a, b, c, d;
2764 @} __attribute__((packed));
2765 struct bar @{
2766   char z;
2767   struct foo f;
2768 @};
2769 @end group
2770 @end smallexample
2771
2772 @item -Wpadded
2773 @opindex Wpadded
2774 Warn if padding is included in a structure, either to align an element
2775 of the structure or to align the whole structure.  Sometimes when this
2776 happens it is possible to rearrange the fields of the structure to
2777 reduce the padding and so make the structure smaller.
2778
2779 @item -Wredundant-decls
2780 @opindex Wredundant-decls
2781 Warn if anything is declared more than once in the same scope, even in
2782 cases where multiple declaration is valid and changes nothing.
2783
2784 @item -Wnested-externs @r{(C only)}
2785 @opindex Wnested-externs
2786 Warn if an @code{extern} declaration is encountered within a function.
2787
2788 @item -Wunreachable-code
2789 @opindex Wunreachable-code
2790 Warn if the compiler detects that code will never be executed.
2791
2792 This option is intended to warn when the compiler detects that at
2793 least a whole line of source code will never be executed, because
2794 some condition is never satisfied or because it is after a
2795 procedure that never returns.
2796
2797 It is possible for this option to produce a warning even though there
2798 are circumstances under which part of the affected line can be executed,
2799 so care should be taken when removing apparently-unreachable code.
2800
2801 For instance, when a function is inlined, a warning may mean that the
2802 line is unreachable in only one inlined copy of the function.
2803
2804 This option is not made part of @option{-Wall} because in a debugging
2805 version of a program there is often substantial code which checks
2806 correct functioning of the program and is, hopefully, unreachable
2807 because the program does work.  Another common use of unreachable
2808 code is to provide behavior which is selectable at compile-time.
2809
2810 @item -Winline
2811 @opindex Winline
2812 Warn if a function can not be inlined and it was declared as inline.
2813
2814 @item -Wno-invalid-offsetof @r{(C++ only)}
2815 @opindex Wno-invalid-offsetof
2816 Suppress warnings from applying the @samp{offsetof} macro to a non-POD
2817 type.  According to the 1998 ISO C++ standard, applying @samp{offsetof}
2818 to a non-POD type is undefined.  In existing C++ implementations,
2819 however, @samp{offsetof} typically gives meaningful results even when
2820 applied to certain kinds of non-POD types. (Such as a simple
2821 @samp{struct} that fails to be a POD type only by virtue of having a
2822 constructor.)  This flag is for users who are aware that they are
2823 writing nonportable code and who have deliberately chosen to ignore the
2824 warning about it.
2825
2826 The restrictions on @samp{offsetof} may be relaxed in a future version
2827 of the C++ standard.
2828
2829 @item -Winvalid-pch
2830 @opindex Winvalid-pch
2831 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
2832 the search path but can't be used.
2833
2834 @item -Wlong-long
2835 @opindex Wlong-long
2836 @opindex Wno-long-long
2837 Warn if @samp{long long} type is used.  This is default.  To inhibit
2838 the warning messages, use @option{-Wno-long-long}.  Flags
2839 @option{-Wlong-long} and @option{-Wno-long-long} are taken into account
2840 only when @option{-pedantic} flag is used.
2841
2842 @item -Wdisabled-optimization
2843 @opindex Wdisabled-optimization
2844 Warn if a requested optimization pass is disabled.  This warning does
2845 not generally indicate that there is anything wrong with your code; it
2846 merely indicates that GCC's optimizers were unable to handle the code
2847 effectively.  Often, the problem is that your code is too big or too
2848 complex; GCC will refuse to optimize programs when the optimization
2849 itself is likely to take inordinate amounts of time.
2850
2851 @item -Werror
2852 @opindex Werror
2853 Make all warnings into errors.
2854 @end table
2855
2856 @node Debugging Options
2857 @section Options for Debugging Your Program or GCC
2858 @cindex options, debugging
2859 @cindex debugging information options
2860
2861 GCC has various special options that are used for debugging
2862 either your program or GCC:
2863
2864 @table @gcctabopt
2865 @item -g
2866 @opindex g
2867 Produce debugging information in the operating system's native format
2868 (stabs, COFF, XCOFF, or DWARF)@.  GDB can work with this debugging
2869 information.
2870
2871 On most systems that use stabs format, @option{-g} enables use of extra
2872 debugging information that only GDB can use; this extra information
2873 makes debugging work better in GDB but will probably make other debuggers
2874 crash or
2875 refuse to read the program.  If you want to control for certain whether
2876 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
2877 @option{-gxcoff+}, @option{-gxcoff}, @option{-gdwarf-1+}, @option{-gdwarf-1},
2878 or @option{-gvms} (see below).
2879
2880 Unlike most other C compilers, GCC allows you to use @option{-g} with
2881 @option{-O}.  The shortcuts taken by optimized code may occasionally
2882 produce surprising results: some variables you declared may not exist
2883 at all; flow of control may briefly move where you did not expect it;
2884 some statements may not be executed because they compute constant
2885 results or their values were already at hand; some statements may
2886 execute in different places because they were moved out of loops.
2887
2888 Nevertheless it proves possible to debug optimized output.  This makes
2889 it reasonable to use the optimizer for programs that might have bugs.
2890
2891 The following options are useful when GCC is generated with the
2892 capability for more than one debugging format.
2893
2894 @item -ggdb
2895 @opindex ggdb
2896 Produce debugging information for use by GDB@.  This means to use the
2897 most expressive format available (DWARF 2, stabs, or the native format
2898 if neither of those are supported), including GDB extensions if at all
2899 possible.
2900
2901 @item -gstabs
2902 @opindex gstabs
2903 Produce debugging information in stabs format (if that is supported),
2904 without GDB extensions.  This is the format used by DBX on most BSD
2905 systems.  On MIPS, Alpha and System V Release 4 systems this option
2906 produces stabs debugging output which is not understood by DBX or SDB@.
2907 On System V Release 4 systems this option requires the GNU assembler.
2908
2909 @item -gstabs+
2910 @opindex gstabs+
2911 Produce debugging information in stabs format (if that is supported),
2912 using GNU extensions understood only by the GNU debugger (GDB)@.  The
2913 use of these extensions is likely to make other debuggers crash or
2914 refuse to read the program.
2915
2916 @item -gcoff
2917 @opindex gcoff
2918 Produce debugging information in COFF format (if that is supported).
2919 This is the format used by SDB on most System V systems prior to
2920 System V Release 4.
2921
2922 @item -gxcoff
2923 @opindex gxcoff
2924 Produce debugging information in XCOFF format (if that is supported).
2925 This is the format used by the DBX debugger on IBM RS/6000 systems.
2926
2927 @item -gxcoff+
2928 @opindex gxcoff+
2929 Produce debugging information in XCOFF format (if that is supported),
2930 using GNU extensions understood only by the GNU debugger (GDB)@.  The
2931 use of these extensions is likely to make other debuggers crash or
2932 refuse to read the program, and may cause assemblers other than the GNU
2933 assembler (GAS) to fail with an error.
2934
2935 @item -gdwarf
2936 @opindex gdwarf
2937 Produce debugging information in DWARF version 1 format (if that is
2938 supported).  This is the format used by SDB on most System V Release 4
2939 systems.
2940
2941 This option is deprecated.
2942
2943 @item -gdwarf+
2944 @opindex gdwarf+
2945 Produce debugging information in DWARF version 1 format (if that is
2946 supported), using GNU extensions understood only by the GNU debugger
2947 (GDB)@.  The use of these extensions is likely to make other debuggers
2948 crash or refuse to read the program.
2949
2950 This option is deprecated.
2951
2952 @item -gdwarf-2
2953 @opindex gdwarf-2
2954 Produce debugging information in DWARF version 2 format (if that is
2955 supported).  This is the format used by DBX on IRIX 6.
2956
2957 @item -gvms
2958 @opindex gvms
2959 Produce debugging information in VMS debug format (if that is
2960 supported).  This is the format used by DEBUG on VMS systems.
2961
2962 @item -g@var{level}
2963 @itemx -ggdb@var{level}
2964 @itemx -gstabs@var{level}
2965 @itemx -gcoff@var{level}
2966 @itemx -gxcoff@var{level}
2967 @itemx -gvms@var{level}
2968 Request debugging information and also use @var{level} to specify how
2969 much information.  The default level is 2.
2970
2971 Level 1 produces minimal information, enough for making backtraces in
2972 parts of the program that you don't plan to debug.  This includes
2973 descriptions of functions and external variables, but no information
2974 about local variables and no line numbers.
2975
2976 Level 3 includes extra information, such as all the macro definitions
2977 present in the program.  Some debuggers support macro expansion when
2978 you use @option{-g3}.
2979
2980 Note that in order to avoid confusion between DWARF1 debug level 2,
2981 and DWARF2, neither @option{-gdwarf} nor @option{-gdwarf-2} accept
2982 a concatenated debug level.  Instead use an additional @option{-g@var{level}}
2983 option to change the debug level for DWARF1 or DWARF2.
2984
2985 @item -feliminate-dwarf2-dups
2986 @opindex feliminate-dwarf2-dups
2987 Compress DWARF2 debugging information by eliminating duplicated
2988 information about each symbol.  This option only makes sense when
2989 generating DWARF2 debugging information with @option{-gdwarf-2}.
2990
2991 @cindex @command{prof}
2992 @item -p
2993 @opindex p
2994 Generate extra code to write profile information suitable for the
2995 analysis program @command{prof}.  You must use this option when compiling
2996 the source files you want data about, and you must also use it when
2997 linking.
2998
2999 @cindex @command{gprof}
3000 @item -pg
3001 @opindex pg
3002 Generate extra code to write profile information suitable for the
3003 analysis program @command{gprof}.  You must use this option when compiling
3004 the source files you want data about, and you must also use it when
3005 linking.
3006
3007 @item -Q
3008 @opindex Q
3009 Makes the compiler print out each function name as it is compiled, and
3010 print some statistics about each pass when it finishes.
3011
3012 @item -ftime-report
3013 @opindex ftime-report
3014 Makes the compiler print some statistics about the time consumed by each
3015 pass when it finishes.
3016
3017 @item -fmem-report
3018 @opindex fmem-report
3019 Makes the compiler print some statistics about permanent memory
3020 allocation when it finishes.
3021
3022 @item -fprofile-arcs
3023 @opindex fprofile-arcs
3024 Add code so that program flow @dfn{arcs} are instrumented.  During
3025 execution the program records how many times each branch and call is
3026 executed and how many times it is taken or returns.  When the compiled
3027 program exits it saves this data to a file called
3028 @file{@var{auxname}.da} for each source file. The data may be used for
3029 profile-directed optimizations (@option{-fbranch-probabilities}), or for
3030 test coverage analysis (@option{-ftest-coverage}). Each object file's
3031 @var{auxname} is generated from the name of the output file, if
3032 explicitly specified and it is not the final executable, otherwise it is
3033 the basename of the source file. In both cases any suffix is removed
3034 (e.g.  @file{foo.da} for input file @file{dir/foo.c}, or
3035 @file{dir/foo.da} for output file specified as @option{-o dir/foo.o}).
3036
3037 @itemize
3038
3039 @item
3040 Compile the source files with @option{-fprofile-arcs} plus optimization
3041 and code generation options. For test coverage analysis, use the
3042 additional @option{-ftest-coverage} option. You do not need to profile
3043 every source file in a program.
3044
3045 @item
3046 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
3047 (the latter implies the former).
3048
3049 @item
3050 Run the program on a representative workload to generate the arc profile
3051 information. This may be repeated any number of times. You can run
3052 concurrent instances of your program, and provided that the file system
3053 supports locking, the data files will be correctly updated. Also
3054 @code{fork} calls are detected and correctly handled (double counting
3055 will not happen).
3056
3057 @item
3058 For profile-directed optimizations, compile the source files again with
3059 the same optimization and code generation options plus
3060 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
3061 Control Optimization}).
3062
3063 @item
3064 For test coverage analysis, use @command{gcov} to produce human readable
3065 information from the @file{.bbg} and @file{.da} files. Refer to the
3066 @command{gcov} documentation for further information.
3067
3068 @end itemize
3069
3070 With @option{-fprofile-arcs}, for each function of your program GCC
3071 creates a program flow graph, then finds a spanning tree for the graph.
3072 Only arcs that are not on the spanning tree have to be instrumented: the
3073 compiler adds code to count the number of times that these arcs are
3074 executed.  When an arc is the only exit or only entrance to a block, the
3075 instrumentation code can be added to the block; otherwise, a new basic
3076 block must be created to hold the instrumentation code.
3077
3078 @need 2000
3079 @item -ftest-coverage
3080 @opindex ftest-coverage
3081 Produce a graph file that the @command{gcov} code-coverage utility
3082 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
3083 show program coverage. Each source file's data file is called
3084 @file{@var{auxname}.bbg}. Refer to the @option{-fprofile-arcs} option
3085 above for a description of @var{auxname} and instructions on how to
3086 generate test coverage data. Coverage data will match the source files
3087 more closely, if you do not optimize.
3088
3089 @item -d@var{letters}
3090 @opindex d
3091 Says to make debugging dumps during compilation at times specified by
3092 @var{letters}.  This is used for debugging the compiler.  The file names
3093 for most of the dumps are made by appending a pass number and a word to
3094 the @var{dumpname}. @var{dumpname} is generated from the name of the
3095 output file, if explicitly specified and it is not an executable,
3096 otherwise it is the basename of the source file. In both cases any
3097 suffix is removed (e.g.  @file{foo.00.rtl} or @file{foo.01.sibling}).
3098 Here are the possible letters for use in @var{letters}, and their
3099 meanings:
3100
3101 @table @samp
3102 @item A
3103 @opindex dA
3104 Annotate the assembler output with miscellaneous debugging information.
3105 @item b
3106 @opindex db
3107 Dump after computing branch probabilities, to @file{@var{file}.15.bp}.
3108 @item B
3109 @opindex dB
3110 Dump after block reordering, to @file{@var{file}.31.bbro}.
3111 @item c
3112 @opindex dc
3113 Dump after instruction combination, to the file @file{@var{file}.21.combine}.
3114 @item C
3115 @opindex dC
3116 Dump after the first if conversion, to the file @file{@var{file}.16.ce1}.
3117 @item d
3118 @opindex dd
3119 Dump after delayed branch scheduling, to @file{@var{file}.36.dbr}.
3120 @item D
3121 @opindex dD
3122 Dump all macro definitions, at the end of preprocessing, in addition to
3123 normal output.
3124 @item e
3125 @opindex de
3126 Dump after SSA optimizations, to @file{@var{file}.04.ssa} and
3127 @file{@var{file}.07.ussa}.
3128 @item E
3129 @opindex dE
3130 Dump after the second if conversion, to @file{@var{file}.32.ce3}.
3131 @item f
3132 @opindex df
3133 Dump after life analysis, to @file{@var{file}.20.life}.
3134 @item F
3135 @opindex dF
3136 Dump after purging @code{ADDRESSOF} codes, to @file{@var{file}.10.addressof}.
3137 @item g
3138 @opindex dg
3139 Dump after global register allocation, to @file{@var{file}.26.greg}.
3140 @item h
3141 @opindex dh
3142 Dump after finalization of EH handling code, to @file{@var{file}.02.eh}.
3143 @item k
3144 @opindex dk
3145 Dump after reg-to-stack conversion, to @file{@var{file}.34.stack}.
3146 @item o
3147 @opindex do
3148 Dump after post-reload optimizations, to @file{@var{file}.27.postreload}.
3149 @item G
3150 @opindex dG
3151 Dump after GCSE, to @file{@var{file}.11.gcse}.
3152 @item i
3153 @opindex di
3154 Dump after sibling call optimizations, to @file{@var{file}.01.sibling}.
3155 @item j
3156 @opindex dj
3157 Dump after the first jump optimization, to @file{@var{file}.03.jump}.
3158 @item k
3159 @opindex dk
3160 Dump after conversion from registers to stack, to @file{@var{file}.34.stack}.
3161 @item l
3162 @opindex dl
3163 Dump after local register allocation, to @file{@var{file}.25.lreg}.
3164 @item L
3165 @opindex dL
3166 Dump after loop optimization passes, to @file{@var{file}.12.loop} and
3167 @file{@var{file}.18.loop2}.
3168 @item M
3169 @opindex dM
3170 Dump after performing the machine dependent reorganization pass, to
3171 @file{@var{file}.35.mach}.
3172 @item n
3173 @opindex dn
3174 Dump after register renumbering, to @file{@var{file}.30.rnreg}.
3175 @item N
3176 @opindex dN
3177 Dump after the register move pass, to @file{@var{file}.23.regmove}.
3178 @item r
3179 @opindex dr
3180 Dump after RTL generation, to @file{@var{file}.00.rtl}.
3181 @item R
3182 @opindex dR
3183 Dump after the second scheduling pass, to @file{@var{file}.33.sched2}.
3184 @item s
3185 @opindex ds
3186 Dump after CSE (including the jump optimization that sometimes follows
3187 CSE), to @file{@var{file}.09.cse}.
3188 @item S
3189 @opindex dS
3190 Dump after the first scheduling pass, to @file{@var{file}.24.sched}.
3191 @item t
3192 @opindex dt
3193 Dump after the second CSE pass (including the jump optimization that
3194 sometimes follows CSE), to @file{@var{file}.19.cse2}.
3195 @item u
3196 @opindex du
3197 Dump after null pointer elimination pass to @file{@var{file}.08.null}.
3198 @item w
3199 @opindex dw
3200 Dump after the second flow pass, to @file{@var{file}.28.flow2}.
3201 @item X
3202 @opindex dX
3203 Dump after SSA dead code elimination, to @file{@var{file}.06.ssadce}.
3204 @item z
3205 @opindex dz
3206 Dump after the peephole pass, to @file{@var{file}.29.peephole2}.
3207 @item a
3208 @opindex da
3209 Produce all the dumps listed above.
3210 @item H
3211 @opindex dH
3212 Produce a core dump whenever an error occurs.
3213 @item m
3214 @opindex dm
3215 Print statistics on memory usage, at the end of the run, to
3216 standard error.
3217 @item p
3218 @opindex dp
3219 Annotate the assembler output with a comment indicating which
3220 pattern and alternative was used.  The length of each instruction is
3221 also printed.
3222 @item P
3223 @opindex dP
3224 Dump the RTL in the assembler output as a comment before each instruction.
3225 Also turns on @option{-dp} annotation.
3226 @item v
3227 @opindex dv
3228 For each of the other indicated dump files (except for
3229 @file{@var{file}.00.rtl}), dump a representation of the control flow graph
3230 suitable for viewing with VCG to @file{@var{file}.@var{pass}.vcg}.
3231 @item x
3232 @opindex dx
3233 Just generate RTL for a function instead of compiling it.  Usually used
3234 with @samp{r}.
3235 @item y
3236 @opindex dy
3237 Dump debugging information during parsing, to standard error.
3238 @end table
3239
3240 @item -fdump-unnumbered
3241 @opindex fdump-unnumbered
3242 When doing debugging dumps (see @option{-d} option above), suppress instruction
3243 numbers and line number note output.  This makes it more feasible to
3244 use diff on debugging dumps for compiler invocations with different
3245 options, in particular with and without @option{-g}.
3246
3247 @item -fdump-translation-unit @r{(C and C++ only)}
3248 @itemx -fdump-translation-unit-@var{options} @r{(C and C++ only)}
3249 @opindex fdump-translation-unit
3250 Dump a representation of the tree structure for the entire translation
3251 unit to a file.  The file name is made by appending @file{.tu} to the
3252 source file name.  If the @samp{-@var{options}} form is used, @var{options}
3253 controls the details of the dump as described for the
3254 @option{-fdump-tree} options.
3255
3256 @item -fdump-class-hierarchy @r{(C++ only)}
3257 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
3258 @opindex fdump-class-hierarchy
3259 Dump a representation of each class's hierarchy and virtual function
3260 table layout to a file.  The file name is made by appending @file{.class}
3261 to the source file name.  If the @samp{-@var{options}} form is used,
3262 @var{options} controls the details of the dump as described for the
3263 @option{-fdump-tree} options.
3264
3265 @item -fdump-tree-@var{switch} @r{(C++ only)}
3266 @itemx -fdump-tree-@var{switch}-@var{options} @r{(C++ only)}
3267 @opindex fdump-tree
3268 Control the dumping at various stages of processing the intermediate
3269 language tree to a file.  The file name is generated by appending a switch
3270 specific suffix to the source file name.  If the @samp{-@var{options}}
3271 form is used, @var{options} is a list of @samp{-} separated options that
3272 control the details of the dump. Not all options are applicable to all
3273 dumps, those which are not meaningful will be ignored. The following
3274 options are available
3275
3276 @table @samp
3277 @item address
3278 Print the address of each node.  Usually this is not meaningful as it
3279 changes according to the environment and source file. Its primary use
3280 is for tying up a dump file with a debug environment.
3281 @item slim
3282 Inhibit dumping of members of a scope or body of a function merely
3283 because that scope has been reached. Only dump such items when they
3284 are directly reachable by some other path.
3285 @item all
3286 Turn on all options.
3287 @end table
3288
3289 The following tree dumps are possible:
3290 @table @samp
3291 @item original
3292 Dump before any tree based optimization, to @file{@var{file}.original}.
3293 @item optimized
3294 Dump after all tree based optimization, to @file{@var{file}.optimized}.
3295 @item inlined
3296 Dump after function inlining, to @file{@var{file}.inlined}.
3297 @end table
3298
3299 @item -frandom-seed=@var{string}
3300 @opindex frandom-string
3301 This option provides a seed that GCC uses when it would otherwise use
3302 random numbers.  At present, this is used to generate certain symbol names
3303 that have to be different in every compiled file.
3304
3305 The @var{string} should be different for every file you compile.
3306
3307 @item -fsched-verbose=@var{n}
3308 @opindex fsched-verbose
3309 On targets that use instruction scheduling, this option controls the
3310 amount of debugging output the scheduler prints.  This information is
3311 written to standard error, unless @option{-dS} or @option{-dR} is
3312 specified, in which case it is output to the usual dump
3313 listing file, @file{.sched} or @file{.sched2} respectively.  However
3314 for @var{n} greater than nine, the output is always printed to standard
3315 error.
3316
3317 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
3318 same information as @option{-dRS}.  For @var{n} greater than one, it
3319 also output basic block probabilities, detailed ready list information
3320 and unit/insn info.  For @var{n} greater than two, it includes RTL
3321 at abort point, control-flow and regions info.  And for @var{n} over
3322 four, @option{-fsched-verbose} also includes dependence info.
3323
3324 @item -save-temps
3325 @opindex save-temps
3326 Store the usual ``temporary'' intermediate files permanently; place them
3327 in the current directory and name them based on the source file.  Thus,
3328 compiling @file{foo.c} with @samp{-c -save-temps} would produce files
3329 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
3330 preprocessed @file{foo.i} output file even though the compiler now
3331 normally uses an integrated preprocessor.
3332
3333 @item -time
3334 @opindex time
3335 Report the CPU time taken by each subprocess in the compilation
3336 sequence.  For C source files, this is the compiler proper and assembler
3337 (plus the linker if linking is done).  The output looks like this:
3338
3339 @smallexample
3340 # cc1 0.12 0.01
3341 # as 0.00 0.01
3342 @end smallexample
3343
3344 The first number on each line is the ``user time,'' that is time spent
3345 executing the program itself.  The second number is ``system time,''
3346 time spent executing operating system routines on behalf of the program.
3347 Both numbers are in seconds.
3348
3349 @item -print-file-name=@var{library}
3350 @opindex print-file-name
3351 Print the full absolute name of the library file @var{library} that
3352 would be used when linking---and don't do anything else.  With this
3353 option, GCC does not compile or link anything; it just prints the
3354 file name.
3355
3356 @item -print-multi-directory
3357 @opindex print-multi-directory
3358 Print the directory name corresponding to the multilib selected by any
3359 other switches present in the command line.  This directory is supposed
3360 to exist in @env{GCC_EXEC_PREFIX}.
3361
3362 @item -print-multi-lib
3363 @opindex print-multi-lib
3364 Print the mapping from multilib directory names to compiler switches
3365 that enable them.  The directory name is separated from the switches by
3366 @samp{;}, and each switch starts with an @samp{@@} instead of the
3367 @samp{-}, without spaces between multiple switches.  This is supposed to
3368 ease shell-processing.
3369
3370 @item -print-prog-name=@var{program}
3371 @opindex print-prog-name
3372 Like @option{-print-file-name}, but searches for a program such as @samp{cpp}.
3373
3374 @item -print-libgcc-file-name
3375 @opindex print-libgcc-file-name
3376 Same as @option{-print-file-name=libgcc.a}.
3377
3378 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
3379 but you do want to link with @file{libgcc.a}.  You can do
3380
3381 @example
3382 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
3383 @end example
3384
3385 @item -print-search-dirs
3386 @opindex print-search-dirs
3387 Print the name of the configured installation directory and a list of
3388 program and library directories gcc will search---and don't do anything else.
3389
3390 This is useful when gcc prints the error message
3391 @samp{installation problem, cannot exec cpp0: No such file or directory}.
3392 To resolve this you either need to put @file{cpp0} and the other compiler
3393 components where gcc expects to find them, or you can set the environment
3394 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
3395 Don't forget the trailing '/'.
3396 @xref{Environment Variables}.
3397
3398 @item -dumpmachine
3399 @opindex dumpmachine
3400 Print the compiler's target machine (for example,
3401 @samp{i686-pc-linux-gnu})---and don't do anything else.
3402
3403 @item -dumpversion
3404 @opindex dumpversion
3405 Print the compiler version (for example, @samp{3.0})---and don't do
3406 anything else.
3407
3408 @item -dumpspecs
3409 @opindex dumpspecs
3410 Print the compiler's built-in specs---and don't do anything else.  (This
3411 is used when GCC itself is being built.)  @xref{Spec Files}.
3412
3413 @item -feliminate-unused-debug-types
3414 @opindex feliminate-unused-debug-types
3415 Normally, when producing DWARF2 output, GCC will emit debugging
3416 information for all types declared in a compilation
3417 unit, regardless of whether or not they are actually used
3418 in that compilation unit.  Sometimes this is useful, such as
3419 if, in the debugger, you want to cast a value to a type that is
3420 not actually used in your program (but is declared).  More often,
3421 however, this results in a significant amount of wasted space.
3422 With this option, GCC will avoid producing debug symbol output
3423 for types that are nowhere used in the source file being compiled.
3424 @end table
3425
3426 @node Optimize Options
3427 @section Options That Control Optimization
3428 @cindex optimize options
3429 @cindex options, optimization
3430
3431 These options control various sorts of optimizations.
3432
3433 Without any optimization option, the compiler's goal is to reduce the
3434 cost of compilation and to make debugging produce the expected
3435 results.  Statements are independent: if you stop the program with a
3436 breakpoint between statements, you can then assign a new value to any
3437 variable or change the program counter to any other statement in the
3438 function and get exactly the results you would expect from the source
3439 code.
3440
3441 Turning on optimization flags makes the compiler attempt to improve
3442 the performance and/or code size at the expense of compilation time
3443 and possibly the ability to debug the program.
3444
3445 Not all optimizations are controlled directly by a flag.  Only
3446 optimizations that have a flag are listed.
3447
3448 @table @gcctabopt
3449 @item -O
3450 @itemx -O1
3451 @opindex O
3452 @opindex O1
3453 Optimize.  Optimizing compilation takes somewhat more time, and a lot
3454 more memory for a large function.
3455
3456 With @option{-O}, the compiler tries to reduce code size and execution
3457 time, without performing any optimizations that take a great deal of
3458 compilation time.
3459
3460 @option{-O} turns on the following optimization flags: 
3461 @gccoptlist{-fdefer-pop @gol
3462 -fmerge-constants @gol
3463 -fthread-jumps @gol
3464 -floop-optimize @gol
3465 -fcrossjumping @gol
3466 -fif-conversion @gol
3467 -fif-conversion2 @gol
3468 -fdelayed-branch @gol
3469 -fguess-branch-probability @gol
3470 -fcprop-registers}
3471
3472 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
3473 where doing so does not interfere with debugging.
3474
3475 @item -O2
3476 @opindex O2
3477 Optimize even more.  GCC performs nearly all supported optimizations
3478 that do not involve a space-speed tradeoff.  The compiler does not
3479 perform loop unrolling or function inlining when you specify @option{-O2}.
3480 As compared to @option{-O}, this option increases both compilation time
3481 and the performance of the generated code.
3482
3483 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
3484 also turns on the following optimization flags:
3485 @gccoptlist{-fforce-mem @gol
3486 -foptimize-sibling-calls @gol
3487 -fstrength-reduce @gol
3488 -fcse-follow-jumps  -fcse-skip-blocks @gol
3489 -frerun-cse-after-loop  -frerun-loop-opt @gol
3490 -fgcse   -fgcse-lm   -fgcse-sm @gol
3491 -fdelete-null-pointer-checks @gol
3492 -fexpensive-optimizations @gol
3493 -fregmove @gol
3494 -fschedule-insns  -fschedule-insns2 @gol
3495 -fsched-interblock  -fsched-spec @gol
3496 -fcaller-saves @gol
3497 -fpeephole2 @gol
3498 -freorder-blocks  -freorder-functions @gol
3499 -fstrict-aliasing @gol
3500 -falign-functions  -falign-jumps @gol
3501 -falign-loops  -falign-labels}
3502
3503 Please note the warning under @option{-fgcse} about
3504 invoking @option{-O2} on programs that use computed gotos.
3505
3506 @item -O3
3507 @opindex O3
3508 Optimize yet more.  @option{-O3} turns on all optimizations specified by
3509 @option{-O2} and also turns on the @option{-finline-functions},
3510 @option{-funit-at-a-time} and @option{-frename-registers} options.
3511
3512 @item -O0
3513 @opindex O0
3514 Do not optimize.  This is the default.
3515
3516 @item -Os
3517 @opindex Os
3518 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
3519 do not typically increase code size.  It also performs further
3520 optimizations designed to reduce code size.
3521
3522 @option{-Os} disables the following optimization flags:
3523 @gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
3524 -falign-labels  -freorder-blocks  -fprefetch-loop-arrays}
3525
3526 If you use multiple @option{-O} options, with or without level numbers,
3527 the last such option is the one that is effective.
3528 @end table
3529
3530 Options of the form @option{-f@var{flag}} specify machine-independent
3531 flags.  Most flags have both positive and negative forms; the negative
3532 form of @option{-ffoo} would be @option{-fno-foo}.  In the table
3533 below, only one of the forms is listed---the one you typically will
3534 use.  You can figure out the other form by either removing @samp{no-}
3535 or adding it.
3536
3537 The following options control specific optimizations.  They are either
3538 activated by @option{-O} options or are related to ones that are.  You
3539 can use the following flags in the rare cases when ``fine-tuning'' of
3540 optimizations to be performed is desired.
3541
3542 @table @gcctabopt
3543 @item -fno-default-inline
3544 @opindex fno-default-inline
3545 Do not make member functions inline by default merely because they are
3546 defined inside the class scope (C++ only).  Otherwise, when you specify
3547 @w{@option{-O}}, member functions defined inside class scope are compiled
3548 inline by default; i.e., you don't need to add @samp{inline} in front of
3549 the member function name.
3550
3551 @item -fno-defer-pop
3552 @opindex fno-defer-pop
3553 Always pop the arguments to each function call as soon as that function
3554 returns.  For machines which must pop arguments after a function call,
3555 the compiler normally lets arguments accumulate on the stack for several
3556 function calls and pops them all at once.
3557
3558 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3559
3560 @item -fforce-mem
3561 @opindex fforce-mem
3562 Force memory operands to be copied into registers before doing
3563 arithmetic on them.  This produces better code by making all memory
3564 references potential common subexpressions.  When they are not common
3565 subexpressions, instruction combination should eliminate the separate
3566 register-load.
3567
3568 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3569
3570 @item -fforce-addr
3571 @opindex fforce-addr
3572 Force memory address constants to be copied into registers before
3573 doing arithmetic on them.  This may produce better code just as
3574 @option{-fforce-mem} may.
3575
3576 @item -fomit-frame-pointer
3577 @opindex fomit-frame-pointer
3578 Don't keep the frame pointer in a register for functions that
3579 don't need one.  This avoids the instructions to save, set up and
3580 restore frame pointers; it also makes an extra register available
3581 in many functions.  @strong{It also makes debugging impossible on
3582 some machines.}
3583
3584 On some machines, such as the VAX, this flag has no effect, because
3585 the standard calling sequence automatically handles the frame pointer
3586 and nothing is saved by pretending it doesn't exist.  The
3587 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
3588 whether a target machine supports this flag.  @xref{Registers,,Register
3589 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
3590
3591 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3592
3593 @item -foptimize-sibling-calls
3594 @opindex foptimize-sibling-calls
3595 Optimize sibling and tail recursive calls.
3596
3597 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3598
3599 @item -fno-inline
3600 @opindex fno-inline
3601 Don't pay attention to the @code{inline} keyword.  Normally this option
3602 is used to keep the compiler from expanding any functions inline.
3603 Note that if you are not optimizing, no functions can be expanded inline.
3604
3605 @item -finline-functions
3606 @opindex finline-functions
3607 Integrate all simple functions into their callers.  The compiler
3608 heuristically decides which functions are simple enough to be worth
3609 integrating in this way.
3610
3611 If all calls to a given function are integrated, and the function is
3612 declared @code{static}, then the function is normally not output as
3613 assembler code in its own right.
3614
3615 Enabled at level @option{-O3}.
3616
3617 @item -finline-limit=@var{n}
3618 @opindex finline-limit
3619 By default, gcc limits the size of functions that can be inlined.  This flag
3620 allows the control of this limit for functions that are explicitly marked as
3621 inline (i.e., marked with the inline keyword or defined within the class
3622 definition in c++).  @var{n} is the size of functions that can be inlined in
3623 number of pseudo instructions (not counting parameter handling).  The default
3624 value of @var{n} is 600.
3625 Increasing this value can result in more inlined code at
3626 the cost of compilation time and memory consumption.  Decreasing usually makes
3627 the compilation faster and less code will be inlined (which presumably
3628 means slower programs).  This option is particularly useful for programs that
3629 use inlining heavily such as those based on recursive templates with C++.
3630
3631 Inlining is actually controlled by a number of parameters, which may be
3632 specified individually by using @option{--param @var{name}=@var{value}}.
3633 The @option{-finline-limit=@var{n}} option sets some of these parameters 
3634 as follows:
3635
3636 @table @gcctabopt
3637  @item max-inline-insns
3638   is set to @var{n}.
3639  @item max-inline-insns-single
3640   is set to @var{n}/2.
3641  @item max-inline-insns-auto
3642   is set to @var{n}/2.
3643  @item min-inline-insns
3644   is set to 130 or @var{n}/4, whichever is smaller.
3645  @item max-inline-insns-rtl
3646   is set to @var{n}.
3647 @end table
3648
3649 Using @option{-finline-limit=600} thus results in the default settings
3650 for these parameters.  See below for a documentation of the individual
3651 parameters controlling inlining.
3652
3653 @emph{Note:} pseudo instruction represents, in this particular context, an
3654 abstract measurement of function's size.  In no way, it represents a count
3655 of assembly instructions and as such its exact meaning might change from one
3656 release to an another.
3657
3658 @item -fkeep-inline-functions
3659 @opindex fkeep-inline-functions
3660 Even if all calls to a given function are integrated, and the function
3661 is declared @code{static}, nevertheless output a separate run-time
3662 callable version of the function.  This switch does not affect
3663 @code{extern inline} functions.
3664
3665 @item -fkeep-static-consts
3666 @opindex fkeep-static-consts
3667 Emit variables declared @code{static const} when optimization isn't turned
3668 on, even if the variables aren't referenced.
3669
3670 GCC enables this option by default.  If you want to force the compiler to
3671 check if the variable was referenced, regardless of whether or not
3672 optimization is turned on, use the @option{-fno-keep-static-consts} option.
3673
3674 @item -fmerge-constants
3675 Attempt to merge identical constants (string constants and floating point
3676 constants) across compilation units.
3677
3678 This option is the default for optimized compilation if the assembler and
3679 linker support it.  Use @option{-fno-merge-constants} to inhibit this
3680 behavior.
3681
3682 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3683
3684 @item -fmerge-all-constants
3685 Attempt to merge identical constants and identical variables.
3686
3687 This option implies @option{-fmerge-constants}.  In addition to
3688 @option{-fmerge-constants} this considers e.g. even constant initialized
3689 arrays or initialized constant variables with integral or floating point
3690 types.  Languages like C or C++ require each non-automatic variable to
3691 have distinct location, so using this option will result in non-conforming
3692 behavior.
3693
3694 @item -fnew-ra
3695 @opindex fnew-ra
3696 Use a graph coloring register allocator.  Currently this option is meant
3697 for testing, so we are interested to hear about miscompilations with
3698 @option{-fnew-ra}.
3699
3700 @item -fno-branch-count-reg
3701 @opindex fno-branch-count-reg
3702 Do not use ``decrement and branch'' instructions on a count register,
3703 but instead generate a sequence of instructions that decrement a
3704 register, compare it against zero, then branch based upon the result.
3705 This option is only meaningful on architectures that support such
3706 instructions, which include x86, PowerPC, IA-64 and S/390.
3707
3708 The default is @option{-fbranch-count-reg}, enabled when
3709 @option{-fstrength-reduce} is enabled.
3710
3711 @item -fno-function-cse
3712 @opindex fno-function-cse
3713 Do not put function addresses in registers; make each instruction that
3714 calls a constant function contain the function's address explicitly.
3715
3716 This option results in less efficient code, but some strange hacks
3717 that alter the assembler output may be confused by the optimizations
3718 performed when this option is not used.
3719
3720 The default is @option{-ffunction-cse}
3721
3722 @item -fno-zero-initialized-in-bss
3723 @opindex fno-zero-initialized-in-bss
3724 If the target supports a BSS section, GCC by default puts variables that
3725 are initialized to zero into BSS@.  This can save space in the resulting
3726 code.
3727
3728 This option turns off this behavior because some programs explicitly
3729 rely on variables going to the data section.  E.g., so that the
3730 resulting executable can find the beginning of that section and/or make
3731 assumptions based on that.
3732
3733 The default is @option{-fzero-initialized-in-bss}.
3734
3735 @item -fstrength-reduce
3736 @opindex fstrength-reduce
3737 Perform the optimizations of loop strength reduction and
3738 elimination of iteration variables.
3739
3740 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3741
3742 @item -fthread-jumps
3743 @opindex fthread-jumps
3744 Perform optimizations where we check to see if a jump branches to a
3745 location where another comparison subsumed by the first is found.  If
3746 so, the first branch is redirected to either the destination of the
3747 second branch or a point immediately following it, depending on whether
3748 the condition is known to be true or false.
3749
3750 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3751
3752 @item -fcse-follow-jumps
3753 @opindex fcse-follow-jumps
3754 In common subexpression elimination, scan through jump instructions
3755 when the target of the jump is not reached by any other path.  For
3756 example, when CSE encounters an @code{if} statement with an
3757 @code{else} clause, CSE will follow the jump when the condition
3758 tested is false.
3759
3760 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3761
3762 @item -fcse-skip-blocks
3763 @opindex fcse-skip-blocks
3764 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
3765 follow jumps which conditionally skip over blocks.  When CSE
3766 encounters a simple @code{if} statement with no else clause,
3767 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
3768 body of the @code{if}.
3769
3770 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3771
3772 @item -frerun-cse-after-loop
3773 @opindex frerun-cse-after-loop
3774 Re-run common subexpression elimination after loop optimizations has been
3775 performed.
3776
3777 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3778
3779 @item -frerun-loop-opt
3780 @opindex frerun-loop-opt
3781 Run the loop optimizer twice.
3782
3783 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3784
3785 @item -fgcse
3786 @opindex fgcse
3787 Perform a global common subexpression elimination pass.
3788 This pass also performs global constant and copy propagation.
3789
3790 @emph{Note:} When compiling a program using computed gotos, a GCC
3791 extension, you may get better runtime performance if you disable
3792 the global common subexpression elimination pass by adding
3793 @option{-fno-gcse} to the command line.
3794
3795 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3796
3797 @item -fgcse-lm
3798 @opindex fgcse-lm
3799 When @option{-fgcse-lm} is enabled, global common subexpression elimination will
3800 attempt to move loads which are only killed by stores into themselves.  This
3801 allows a loop containing a load/store sequence to be changed to a load outside
3802 the loop, and a copy/store within the loop.
3803
3804 Enabled by default when gcse is enabled.
3805
3806 @item -fgcse-sm
3807 @opindex fgcse-sm
3808 When @option{-fgcse-sm} is enabled, A store motion pass is run after global common
3809 subexpression elimination.  This pass will attempt to move stores out of loops.
3810 When used in conjunction with @option{-fgcse-lm}, loops containing a load/store sequence
3811 can be changed to a load before the loop and a store after the loop.
3812
3813 Enabled by default when gcse is enabled.
3814
3815 @item -floop-optimize
3816 @opindex floop-optimize
3817 Perform loop optimizations: move constant expressions out of loops, simplify
3818 exit test conditions and optionally do strength-reduction and loop unrolling as
3819 well.
3820
3821 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3822
3823 @item -fcrossjumping
3824 @opindex crossjumping
3825 Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The
3826 resulting code may or may not perform better than without cross-jumping.
3827
3828 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3829
3830 @item -fif-conversion
3831 @opindex if-conversion
3832 Attempt to transform conditional jumps into branch-less equivalents.  This
3833 include use of conditional moves, min, max, set flags and abs instructions, and
3834 some tricks doable by standard arithmetics.  The use of conditional execution
3835 on chips where it is available is controlled by @code{if-conversion2}.
3836
3837 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3838
3839 @item -fif-conversion2
3840 @opindex if-conversion2
3841 Use conditional execution (where available) to transform conditional jumps into
3842 branch-less equivalents.
3843
3844 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3845
3846 @item -fdelete-null-pointer-checks
3847 @opindex fdelete-null-pointer-checks
3848 Use global dataflow analysis to identify and eliminate useless checks
3849 for null pointers.  The compiler assumes that dereferencing a null
3850 pointer would have halted the program.  If a pointer is checked after
3851 it has already been dereferenced, it cannot be null.
3852
3853 In some environments, this assumption is not true, and programs can
3854 safely dereference null pointers.  Use
3855 @option{-fno-delete-null-pointer-checks} to disable this optimization
3856 for programs which depend on that behavior.
3857
3858 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3859
3860 @item -fexpensive-optimizations
3861 @opindex fexpensive-optimizations
3862 Perform a number of minor optimizations that are relatively expensive.
3863
3864 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3865
3866 @item -foptimize-register-move
3867 @itemx -fregmove
3868 @opindex foptimize-register-move
3869 @opindex fregmove
3870 Attempt to reassign register numbers in move instructions and as
3871 operands of other simple instructions in order to maximize the amount of
3872 register tying.  This is especially helpful on machines with two-operand
3873 instructions.
3874
3875 Note @option{-fregmove} and @option{-foptimize-register-move} are the same
3876 optimization.
3877
3878 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3879
3880 @item -fdelayed-branch
3881 @opindex fdelayed-branch
3882 If supported for the target machine, attempt to reorder instructions
3883 to exploit instruction slots available after delayed branch
3884 instructions.
3885
3886 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
3887
3888 @item -fschedule-insns
3889 @opindex fschedule-insns
3890 If supported for the target machine, attempt to reorder instructions to
3891 eliminate execution stalls due to required data being unavailable.  This
3892 helps machines that have slow floating point or memory load instructions
3893 by allowing other instructions to be issued until the result of the load
3894 or floating point instruction is required.
3895
3896 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3897
3898 @item -fschedule-insns2
3899 @opindex fschedule-insns2
3900 Similar to @option{-fschedule-insns}, but requests an additional pass of
3901 instruction scheduling after register allocation has been done.  This is
3902 especially useful on machines with a relatively small number of
3903 registers and where memory load instructions take more than one cycle.
3904
3905 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3906
3907 @item -fno-sched-interblock
3908 @opindex fno-sched-interblock
3909 Don't schedule instructions across basic blocks.  This is normally
3910 enabled by default when scheduling before register allocation, i.e.@:
3911 with @option{-fschedule-insns} or at @option{-O2} or higher.
3912
3913 @item -fno-sched-spec
3914 @opindex fno-sched-spec
3915 Don't allow speculative motion of non-load instructions.  This is normally
3916 enabled by default when scheduling before register allocation, i.e.@:
3917 with @option{-fschedule-insns} or at @option{-O2} or higher.
3918
3919 @item -fsched-spec-load
3920 @opindex fsched-spec-load
3921 Allow speculative motion of some load instructions.  This only makes
3922 sense when scheduling before register allocation, i.e.@: with
3923 @option{-fschedule-insns} or at @option{-O2} or higher.
3924
3925 @item -fsched-spec-load-dangerous
3926 @opindex fsched-spec-load-dangerous
3927 Allow speculative motion of more load instructions.  This only makes
3928 sense when scheduling before register allocation, i.e.@: with
3929 @option{-fschedule-insns} or at @option{-O2} or higher.
3930
3931 @item -fsched2-use-superblocks
3932 @opindex fsched2-use-superblocks
3933 When schedulilng after register allocation, do use superblock scheduling
3934 algorithm.  Superblock scheduling allows motion across basic block boundaries
3935 resulting on faster schedules.  This option is experimental, as not all machine
3936 descriptions used by GCC model the CPU closely enough to avoid unreliable
3937 results from the algorithm. 
3938
3939 This only makes sense when scheduling after register allocation, i.e.@: with
3940 @option{-fschedule-insns2} or at @option{-O2} or higher.
3941
3942 @item -fsched2-use-traces
3943 @opindex fsched2-use-traces
3944 Use @option{-fsched2-use-superblocks} algorithm when scheduling after register
3945 allocation and additionally perform code duplication in order to increase the
3946 size of superblocks using tracer pass.  See @option{-ftracer} for details on
3947 trace formation.
3948
3949 This mode should produce faster but significantly longer programs.  Also
3950 without @code{-fbranch-probabilities} the traces constructed may not match the
3951 reality and hurt the performance.  This only makes
3952 sense when scheduling after register allocation, i.e.@: with
3953 @option{-fschedule-insns2} or at @option{-O2} or higher.
3954
3955 @item -fcaller-saves
3956 @opindex fcaller-saves
3957 Enable values to be allocated in registers that will be clobbered by
3958 function calls, by emitting extra instructions to save and restore the
3959 registers around such calls.  Such allocation is done only when it
3960 seems to result in better code than would otherwise be produced.
3961
3962 This option is always enabled by default on certain machines, usually
3963 those which have no call-preserved registers to use instead.
3964
3965 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
3966
3967 @item -fmove-all-movables
3968 @opindex fmove-all-movables
3969 Forces all invariant computations in loops to be moved
3970 outside the loop.
3971
3972 @item -freduce-all-givs
3973 @opindex freduce-all-givs
3974 Forces all general-induction variables in loops to be
3975 strength-reduced.
3976
3977 @emph{Note:} When compiling programs written in Fortran,
3978 @option{-fmove-all-movables} and @option{-freduce-all-givs} are enabled
3979 by default when you use the optimizer.
3980
3981 These options may generate better or worse code; results are highly
3982 dependent on the structure of loops within the source code.
3983
3984 These two options are intended to be removed someday, once
3985 they have helped determine the efficacy of various
3986 approaches to improving loop optimizations.
3987
3988 Please let us (@w{@email{gcc@@gcc.gnu.org}} and @w{@email{fortran@@gnu.org}})
3989 know how use of these options affects
3990 the performance of your production code.
3991 We're very interested in code that runs @emph{slower}
3992 when these options are @emph{enabled}.
3993
3994 @item -fno-peephole
3995 @itemx -fno-peephole2
3996 @opindex fno-peephole
3997 @opindex fno-peephole2
3998 Disable any machine-specific peephole optimizations.  The difference
3999 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
4000 are implemented in the compiler; some targets use one, some use the
4001 other, a few use both.
4002
4003 @option{-fpeephole} is enabled by default.
4004 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4005
4006 @item -fno-guess-branch-probability
4007 @opindex fno-guess-branch-probability
4008 Do not guess branch probabilities using a randomized model.
4009
4010 Sometimes gcc will opt to use a randomized model to guess branch
4011 probabilities, when none are available from either profiling feedback
4012 (@option{-fprofile-arcs}) or @samp{__builtin_expect}.  This means that
4013 different runs of the compiler on the same program may produce different
4014 object code.
4015
4016 In a hard real-time system, people don't want different runs of the
4017 compiler to produce code that has different behavior; minimizing
4018 non-determinism is of paramount import.  This switch allows users to
4019 reduce non-determinism, possibly at the expense of inferior
4020 optimization.
4021
4022 The default is @option{-fguess-branch-probability} at levels
4023 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4024
4025 @item -freorder-blocks
4026 @opindex freorder-blocks
4027 Reorder basic blocks in the compiled function in order to reduce number of
4028 taken branches and improve code locality.
4029
4030 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4031
4032 @item -freorder-functions
4033 @opindex freorder-functions
4034 Reorder basic blocks in the compiled function in order to reduce number of
4035 taken branches and improve code locality. This is implemented by using special
4036 subsections @code{text.hot} for most frequently executed functions and
4037 @code{text.unlikely} for unlikely executed functions.  Reordering is done by
4038 the linker so object file format must support named sections and linker must
4039 place them in a reasonable way.
4040
4041 Also profile feedback must be available in to make this option effective.  See
4042 @option{-fprofile-arcs} for details.
4043
4044 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4045
4046 @item -fstrict-aliasing
4047 @opindex fstrict-aliasing
4048 Allows the compiler to assume the strictest aliasing rules applicable to
4049 the language being compiled.  For C (and C++), this activates
4050 optimizations based on the type of expressions.  In particular, an
4051 object of one type is assumed never to reside at the same address as an
4052 object of a different type, unless the types are almost the same.  For
4053 example, an @code{unsigned int} can alias an @code{int}, but not a
4054 @code{void*} or a @code{double}.  A character type may alias any other
4055 type.
4056
4057 Pay special attention to code like this:
4058 @example
4059 union a_union @{
4060   int i;
4061   double d;
4062 @};
4063
4064 int f() @{
4065   a_union t;
4066   t.d = 3.0;
4067   return t.i;
4068 @}
4069 @end example
4070 The practice of reading from a different union member than the one most
4071 recently written to (called ``type-punning'') is common.  Even with
4072 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
4073 is accessed through the union type.  So, the code above will work as
4074 expected.  However, this code might not:
4075 @example
4076 int f() @{
4077   a_union t;
4078   int* ip;
4079   t.d = 3.0;
4080   ip = &t.i;
4081   return *ip;
4082 @}
4083 @end example
4084
4085 Every language that wishes to perform language-specific alias analysis
4086 should define a function that computes, given an @code{tree}
4087 node, an alias set for the node.  Nodes in different alias sets are not
4088 allowed to alias.  For an example, see the C front-end function
4089 @code{c_get_alias_set}.
4090
4091 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
4092
4093 @item -falign-functions
4094 @itemx -falign-functions=@var{n}
4095 @opindex falign-functions
4096 Align the start of functions to the next power-of-two greater than
4097 @var{n}, skipping up to @var{n} bytes.  For instance,
4098 @option{-falign-functions=32} aligns functions to the next 32-byte
4099 boundary, but @option{-falign-functions=24} would align to the next
4100 32-byte boundary only if this can be done by skipping 23 bytes or less.
4101
4102 @option{-fno-align-functions} and @option{-falign-functions=1} are
4103 equivalent and mean that functions will not be aligned.
4104
4105 Some assemblers only support this flag when @var{n} is a power of two;
4106 in that case, it is rounded up.
4107
4108 If @var{n} is not specified, use a machine-dependent default.
4109
4110 Enabled at levels @option{-O2}, @option{-O3}.
4111
4112 @item -falign-labels
4113 @itemx -falign-labels=@var{n}
4114 @opindex falign-labels
4115 Align all branch targets to a power-of-two boundary, skipping up to
4116 @var{n} bytes like @option{-falign-functions}.  This option can easily
4117 make code slower, because it must insert dummy operations for when the
4118 branch target is reached in the usual flow of the code.
4119
4120 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
4121 are greater than this value, then their values are used instead.
4122
4123 If @var{n} is not specified, use a machine-dependent default which is
4124 very likely to be @samp{1}, meaning no alignment.
4125
4126 Enabled at levels @option{-O2}, @option{-O3}.
4127
4128 @item -falign-loops
4129 @itemx -falign-loops=@var{n}
4130 @opindex falign-loops
4131 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
4132 like @option{-falign-functions}.  The hope is that the loop will be
4133 executed many times, which will make up for any execution of the dummy
4134 operations.
4135
4136 If @var{n} is not specified, use a machine-dependent default.
4137
4138 Enabled at levels @option{-O2}, @option{-O3}.
4139
4140 @item -falign-jumps
4141 @itemx -falign-jumps=@var{n}
4142 @opindex falign-jumps
4143 Align branch targets to a power-of-two boundary, for branch targets
4144 where the targets can only be reached by jumping, skipping up to @var{n}
4145 bytes like @option{-falign-functions}.  In this case, no dummy operations
4146 need be executed.
4147
4148 If @var{n} is not specified, use a machine-dependent default.
4149
4150 Enabled at levels @option{-O2}, @option{-O3}.
4151
4152 @item -frename-registers
4153 @opindex frename-registers
4154 Attempt to avoid false dependencies in scheduled code by making use
4155 of registers left over after register allocation.  This optimization
4156 will most benefit processors with lots of registers.  It can, however,
4157 make debugging impossible, since variables will no longer stay in
4158 a ``home register''.
4159
4160 Enabled at levels @option{-O3}.
4161
4162 @item -fno-cprop-registers
4163 @opindex fno-cprop-registers
4164 After register allocation and post-register allocation instruction splitting,
4165 we perform a copy-propagation pass to try to reduce scheduling dependencies
4166 and occasionally eliminate the copy.
4167
4168 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
4169
4170 @end table
4171
4172 The following options control compiler behavior regarding floating
4173 point arithmetic.  These options trade off between speed and
4174 correctness.  All must be specifically enabled.
4175
4176 @table @gcctabopt
4177 @item -ffloat-store
4178 @opindex ffloat-store
4179 Do not store floating point variables in registers, and inhibit other
4180 options that might change whether a floating point value is taken from a
4181 register or memory.
4182
4183 @cindex floating point precision
4184 This option prevents undesirable excess precision on machines such as
4185 the 68000 where the floating registers (of the 68881) keep more
4186 precision than a @code{double} is supposed to have.  Similarly for the
4187 x86 architecture.  For most programs, the excess precision does only
4188 good, but a few programs rely on the precise definition of IEEE floating
4189 point.  Use @option{-ffloat-store} for such programs, after modifying
4190 them to store all pertinent intermediate computations into variables.
4191
4192 @item -ffast-math
4193 @opindex ffast-math
4194 Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations}, @*
4195 @option{-fno-trapping-math}, @option{-ffinite-math-only} and @*
4196 @option{-fno-signaling-nans}.
4197
4198 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
4199
4200 This option should never be turned on by any @option{-O} option since
4201 it can result in incorrect output for programs which depend on
4202 an exact implementation of IEEE or ISO rules/specifications for
4203 math functions.
4204
4205 @item -fno-math-errno
4206 @opindex fno-math-errno
4207 Do not set ERRNO after calling math functions that are executed
4208 with a single instruction, e.g., sqrt.  A program that relies on
4209 IEEE exceptions for math error handling may want to use this flag
4210 for speed while maintaining IEEE arithmetic compatibility.
4211
4212 This option should never be turned on by any @option{-O} option since
4213 it can result in incorrect output for programs which depend on
4214 an exact implementation of IEEE or ISO rules/specifications for
4215 math functions.
4216
4217 The default is @option{-fmath-errno}.
4218
4219 @item -funsafe-math-optimizations
4220 @opindex funsafe-math-optimizations
4221 Allow optimizations for floating-point arithmetic that (a) assume
4222 that arguments and results are valid and (b) may violate IEEE or
4223 ANSI standards.  When used at link-time, it may include libraries
4224 or startup files that change the default FPU control word or other
4225 similar optimizations.
4226
4227 This option should never be turned on by any @option{-O} option since
4228 it can result in incorrect output for programs which depend on
4229 an exact implementation of IEEE or ISO rules/specifications for
4230 math functions.
4231
4232 The default is @option{-fno-unsafe-math-optimizations}.
4233
4234 @item -ffinite-math-only
4235 @opindex ffinite-math-only
4236 Allow optimizations for floating-point arithmetic that assume
4237 that arguments and results are not NaNs or +-Infs.
4238
4239 This option should never be turned on by any @option{-O} option since
4240 it can result in incorrect output for programs which depend on
4241 an exact implementation of IEEE or ISO rules/specifications.
4242
4243 The default is @option{-fno-finite-math-only}.
4244
4245 @item -fno-trapping-math
4246 @opindex fno-trapping-math
4247 Compile code assuming that floating-point operations cannot generate
4248 user-visible traps.  These traps include division by zero, overflow,
4249 underflow, inexact result and invalid operation.  This option implies
4250 @option{-fno-signaling-nans}.  Setting this option may allow faster
4251 code if one relies on ``non-stop'' IEEE arithmetic, for example.
4252
4253 This option should never be turned on by any @option{-O} option since
4254 it can result in incorrect output for programs which depend on
4255 an exact implementation of IEEE or ISO rules/specifications for
4256 math functions.
4257
4258 The default is @option{-ftrapping-math}.
4259
4260 @item -fsignaling-nans
4261 @opindex fsignaling-nans
4262 Compile code assuming that IEEE signaling NaNs may generate user-visible
4263 traps during floating-point operations.  Setting this option disables
4264 optimizations that may change the number of exceptions visible with
4265 signaling NaNs.  This option implies @option{-ftrapping-math}.
4266
4267 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
4268 be defined.
4269
4270 The default is @option{-fno-signaling-nans}.
4271
4272 This option is experimental and does not currently guarantee to
4273 disable all GCC optimizations that affect signaling NaN behavior.
4274
4275 @item -fsingle-precision-constant
4276 @opindex fsingle-precision-constant
4277 Treat floating point constant as single precision constant instead of
4278 implicitly converting it to double precision constant.
4279
4280
4281 @end table
4282
4283 The following options control optimizations that may improve
4284 performance, but are not enabled by any @option{-O} options.  This
4285 section includes experimental options that may produce broken code.
4286
4287 @table @gcctabopt
4288 @item -fbranch-probabilities
4289 @opindex fbranch-probabilities
4290 After running a program compiled with @option{-fprofile-arcs}
4291 (@pxref{Debugging Options,, Options for Debugging Your Program or
4292 @command{gcc}}), you can compile it a second time using
4293 @option{-fbranch-probabilities}, to improve optimizations based on
4294 the number of times each branch was taken.  When the program
4295 compiled with @option{-fprofile-arcs} exits it saves arc execution
4296 counts to a file called @file{@var{sourcename}.da} for each source
4297 file  The information in this data file is very dependent on the
4298 structure of the generated code, so you must use the same source code
4299 and the same optimization options for both compilations.
4300
4301 With @option{-fbranch-probabilities}, GCC puts a 
4302 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
4303 These can be used to improve optimization.  Currently, they are only
4304 used in one place: in @file{reorg.c}, instead of guessing which path a
4305 branch is mostly to take, the @samp{REG_BR_PROB} values are used to
4306 exactly determine which path is taken more often.
4307
4308 @item -fnew-ra
4309 @opindex fnew-ra
4310 Use a graph coloring register allocator.  Currently this option is meant
4311 for testing, so we are interested to hear about miscompilations with
4312 @option{-fnew-ra}.
4313
4314 @item -ftracer
4315 @opindex ftracer
4316 Perform tail duplication to enlarge superblock size. This transformation
4317 simplifies the control flow of the function allowing other optimizations to do
4318 better job.
4319
4320 @item -funit-at-a-time
4321 @opindex funit-at-a-time
4322 Parse the whole compilation unit before starting to produce code.  This allows some
4323 extra optimizations to take place but consumes more memory.
4324
4325 @item -funroll-loops
4326 @opindex funroll-loops
4327 Unroll loops whose number of iterations can be determined at compile time or
4328 upon entry to the loop.  @option{-funroll-loops} implies
4329 @option{-frerun-cse-after-loop}.  It also turns on complete loop peeling
4330 (i.e. complete removal of loops with small constant number of iterations).
4331 This option makes code larger, and may or may not make it run faster.
4332
4333 @item -funroll-all-loops
4334 @opindex funroll-all-loops
4335 Unroll all loops, even if their number of iterations is uncertain when
4336 the loop is entered.  This usually makes programs run more slowly.
4337 @option{-funroll-all-loops} implies the same options as
4338 @option{-funroll-loops}.
4339
4340 @item -fpeel-loops
4341 @opindex fpeel-loops
4342 Peels the loops for that there is enough information that they do not
4343 roll much (from profile feedback).  It also turns on complete loop peeling
4344 (i.e. complete removal of loops with small constant number of iterations).
4345
4346 @item -funswitch-loops
4347 @opindex funswitch-loops
4348 Move branches with loop invariant conditions out of the loop, with duplicates
4349 of the loop on both branches (modified according to result of the condition).
4350
4351 @item -fold-unroll-loops
4352 @opindex fold-unroll-loops
4353 Unroll loops whose number of iterations can be determined at compile
4354 time or upon entry to the loop, using the old loop unroller whose loop
4355 recognition is based on notes from frontend.  @option{-fold-unroll-loops} implies
4356 both @option{-fstrength-reduce} and @option{-frerun-cse-after-loop}.  This
4357 option makes code larger, and may or may not make it run faster.
4358
4359 @item -fold-unroll-all-loops
4360 @opindex fold-unroll-all-loops
4361 Unroll all loops, even if their number of iterations is uncertain when
4362 the loop is entered. This is done using the old loop unroller whose loop
4363 recognition is based on notes from frontend.  This usually makes programs run more slowly.
4364 @option{-fold-unroll-all-loops} implies the same options as
4365 @option{-fold-unroll-loops}.
4366  
4367 @item -funswitch-loops
4368 @opindex funswitch-loops
4369 Move branches with loop invariant conditions out of the loop, with duplicates
4370 of the loop on both branches (modified according to result of the condition).
4371
4372 @item -funswitch-loops
4373 @opindex funswitch-loops
4374 Move branches with loop invariant conditions out of the loop, with duplicates
4375 of the loop on both branches (modified according to result of the condition).
4376
4377 @item -fprefetch-loop-arrays
4378 @opindex fprefetch-loop-arrays
4379 If supported by the target machine, generate instructions to prefetch
4380 memory to improve the performance of loops that access large arrays.
4381
4382 Disabled at level @option{-Os}.
4383
4384 @item -ffunction-sections
4385 @itemx -fdata-sections
4386 @opindex ffunction-sections
4387 @opindex fdata-sections
4388 Place each function or data item into its own section in the output
4389 file if the target supports arbitrary sections.  The name of the
4390 function or the name of the data item determines the section's name
4391 in the output file.
4392
4393 Use these options on systems where the linker can perform optimizations
4394 to improve locality of reference in the instruction space.  Most systems
4395 using the ELF object format and SPARC processors running Solaris 2 have
4396 linkers with such optimizations.  AIX may have these optimizations in
4397 the future.
4398
4399 Only use these options when there are significant benefits from doing
4400 so.  When you specify these options, the assembler and linker will
4401 create larger object and executable files and will also be slower.
4402 You will not be able to use @code{gprof} on all systems if you
4403 specify this option and you may have problems with debugging if
4404 you specify both this option and @option{-g}.
4405
4406 @item -fssa
4407 @opindex fssa
4408 Perform optimizations in static single assignment form.  Each function's
4409 flow graph is translated into SSA form, optimizations are performed, and
4410 the flow graph is translated back from SSA form.  Users should not
4411 specify this option, since it is not yet ready for production use.
4412
4413 @item -fssa-ccp
4414 @opindex fssa-ccp
4415 Perform Sparse Conditional Constant Propagation in SSA form.  Requires
4416 @option{-fssa}.  Like @option{-fssa}, this is an experimental feature.
4417
4418 @item -fssa-dce
4419 @opindex fssa-dce
4420 Perform aggressive dead-code elimination in SSA form.  Requires @option{-fssa}.
4421 Like @option{-fssa}, this is an experimental feature.
4422
4423
4424
4425
4426 @item --param @var{name}=@var{value}
4427 @opindex param
4428 In some places, GCC uses various constants to control the amount of
4429 optimization that is done.  For example, GCC will not inline functions
4430 that contain more that a certain number of instructions.  You can
4431 control some of these constants on the command-line using the
4432 @option{--param} option.
4433
4434 In each case, the @var{value} is an integer.  The allowable choices for
4435 @var{name} are given in the following table:
4436
4437 @table @gcctabopt
4438 @item max-crossjump-edges
4439 The maximum number of incoming edges to consider for crossjumping.
4440 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
4441 the number of edges incoming to each block.  Increasing values mean
4442 more aggressive optimization, making the compile time increase with
4443 probably small improvement in executable size.
4444
4445 @item max-delay-slot-insn-search
4446 The maximum number of instructions to consider when looking for an
4447 instruction to fill a delay slot.  If more than this arbitrary number of
4448 instructions is searched, the time savings from filling the delay slot
4449 will be minimal so stop searching.  Increasing values mean more
4450 aggressive optimization, making the compile time increase with probably
4451 small improvement in executable run time.
4452
4453 @item max-delay-slot-live-search
4454 When trying to fill delay slots, the maximum number of instructions to
4455 consider when searching for a block with valid live register
4456 information.  Increasing this arbitrarily chosen value means more
4457 aggressive optimization, increasing the compile time.  This parameter
4458 should be removed when the delay slot code is rewritten to maintain the
4459 control-flow graph.
4460
4461 @item max-gcse-memory
4462 The approximate maximum amount of memory that will be allocated in
4463 order to perform the global common subexpression elimination
4464 optimization.  If more memory than specified is required, the
4465 optimization will not be done.
4466
4467 @item max-gcse-passes
4468 The maximum number of passes of GCSE to run.
4469
4470 @item max-pending-list-length
4471 The maximum number of pending dependencies scheduling will allow
4472 before flushing the current state and starting over.  Large functions
4473 with few branches or calls can create excessively large lists which
4474 needlessly consume memory and resources.
4475
4476 @item max-inline-insns-single
4477 Several parameters control the tree inliner used in gcc.
4478 This number sets the maximum number of instructions (counted in gcc's
4479 internal representation) in a single function that the tree inliner 
4480 will consider for inlining.  This only affects functions declared
4481 inline and methods implemented in a class declaration (C++).
4482 The default value is 300.
4483
4484 @item max-inline-insns-auto
4485 When you use @option{-finline-functions} (included in @option{-O3}),
4486 a lot of functions that would otherwise not be considered for inlining
4487 by the compiler will be investigated.  To those functions, a different
4488 (more restrictive) limit compared to functions declared inline can
4489 be applied.
4490 The default value is 300.
4491
4492 @item max-inline-insns
4493 The tree inliner does decrease the allowable size for single functions 
4494 to be inlined after we already inlined the number of instructions
4495 given here by repeated inlining.  This number should be a factor of 
4496 two or more larger than the single function limit.
4497 Higher numbers result in better runtime performance, but incur higher
4498 compile-time resource (CPU time, memory) requirements and result in
4499 larger binaries.  Very high values are not advisable, as too large
4500 binaries may adversely affect runtime performance.
4501 The default value is 600.
4502
4503 @item max-inline-slope
4504 After exceeding the maximum number of inlined instructions by repeated
4505 inlining, a linear function is used to decrease the allowable size
4506 for single functions.  The slope of that function is the negative
4507 reciprocal of the number specified here.
4508 The default value is 32.
4509
4510 @item min-inline-insns
4511 The repeated inlining is throttled more and more by the linear function
4512 after exceeding the limit.  To avoid too much throttling, a minimum for
4513 this function is specified here to allow repeated inlining for very small
4514 functions even when a lot of repeated inlining already has been done.
4515 The default value is 130.
4516
4517 @item max-inline-insns-rtl
4518 For languages that use the RTL inliner (this happens at a later stage
4519 than tree inlining), you can set the maximum allowable size (counted 
4520 in RTL instructions) for the RTL inliner with this parameter.
4521 The default value is 600.
4522
4523
4524 @item max-unrolled-insns
4525 The maximum number of instructions that a loop should have if that loop
4526 is unrolled, and if the loop is unrolled, it determines how many times
4527 the loop code is unrolled.
4528
4529 @item max-average-unrolled-insns
4530 The maximum number of instructions biased by probabilities of their execution
4531 that a loop should have if that loop is unrolled, and if the loop is unrolled,
4532 it determines how many times the loop code is unrolled.
4533
4534 @item max-unroll-times
4535 The maximum number of unrollings of a single loop.
4536
4537 @item max-peeled-insns
4538 The maximum number of instructions that a loop should have if that loop
4539 is peeled, and if the loop is peeled, it determines how many times
4540 the loop code is peeled.
4541
4542 @item max-peel-times
4543 The maximum number of peelings of a single loop.
4544
4545 @item max-completely-peeled-insns
4546 The maximum number of insns of a completely peeled loop.
4547
4548 @item max-completely-peel-times
4549 The maximum number of iterations of a loop to be suitable for complete peeling.
4550
4551 @item max-unswitch-insns
4552 The maximum number of insns of an unswitched loop.
4553
4554 @item max-unswitch-level
4555 The maximum number of branches unswitched in a single loop.
4556
4557 @item hot-bb-count-fraction
4558 Select fraction of the maximal count of repetitions of basic block in program
4559 given basic block needs to have to be considered hot.
4560
4561 @item hot-bb-frequency-fraction
4562 Select fraction of the maximal frequency of executions of basic block in
4563 function given basic block needs to have to be considered hot
4564
4565 @item tracer-dynamic-coverage
4566 @itemx tracer-dynamic-coverage-feedback
4567
4568 This value is used to limit superblock formation once the given percentage of
4569 executed instructions is covered.  This limits unnecessary code size
4570 expansion.
4571
4572 The @option{tracer-dynamic-coverage-feedback} is used only when profile
4573 feedback is available.  The real profiles (as opposed to statically estimated
4574 ones) are much less balanced allowing the threshold to be larger value.
4575
4576 @item tracer-max-code-growth
4577 Stop tail duplication once code growth has reached given percentage.  This is
4578 rather hokey argument, as most of the duplicates will be eliminated later in
4579 cross jumping, so it may be set to much higher values than is the desired code
4580 growth.
4581
4582 @item tracer-min-branch-ratio
4583
4584 Stop reverse growth when the reverse probability of best edge is less than this
4585 threshold (in percent).
4586
4587 @item tracer-min-branch-ratio
4588 @itemx tracer-min-branch-ratio-feedback
4589
4590 Stop forward growth if the best edge do have probability lower than this
4591 threshold.
4592
4593 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
4594 compilation for profile feedback and one for compilation without.  The value
4595 for compilation with profile feedback needs to be more conservative (higher) in
4596 order to make tracer effective.
4597
4598 @item max-cse-path-length
4599
4600 Maximum number of basic blocks on path that cse considers.
4601
4602 @item ggc-min-expand
4603
4604 GCC uses a garbage collector to manage its own memory allocation.  This
4605 parameter specifies the minimum percentage by which the garbage
4606 collector's heap should be allowed to expand between collections.
4607 Tuning this may improve compilation speed; it has no effect on code
4608 generation.
4609
4610 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
4611 RAM >= 1GB.  If @code{getrlimit} is available, the notion of "RAM" is
4612 the smallest of actual RAM, RLIMIT_RSS, RLIMIT_DATA and RLIMIT_AS.  If
4613 GCC is not able to calculate RAM on a particular platform, the lower
4614 bound of 30% is used.  Setting this parameter and
4615 @option{ggc-min-heapsize} to zero causes a full collection to occur at
4616 every opportunity.  This is extremely slow, but can be useful for
4617 debugging.
4618
4619 @item ggc-min-heapsize
4620
4621 Minimum size of the garbage collector's heap before it begins bothering
4622 to collect garbage.  The first collection occurs after the heap expands
4623 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
4624 tuning this may improve compilation speed, and has no effect on code
4625 generation.
4626
4627 The default is RAM/8, with a lower bound of 4096 (four megabytes) and an
4628 upper bound of 131072 (128 megabytes).  If @code{getrlimit} is
4629 available, the notion of "RAM" is the smallest of actual RAM,
4630 RLIMIT_RSS, RLIMIT_DATA and RLIMIT_AS.  If GCC is not able to calculate
4631 RAM on a particular platform, the lower bound is used.  Setting this
4632 parameter very large effectively disables garbage collection.  Setting
4633 this parameter and @option{ggc-min-expand} to zero causes a full
4634 collection to occur at every opportunity.
4635
4636 @item reorder-blocks-duplicate
4637 @itemx reorder-blocks-duplicate-feedback
4638
4639 Used by basic block reordering pass to decide whether to use unconditional
4640 branch or duplicate the code on it's destination.  Code is duplicated when it's
4641 estimated size is smaller than this value multiplied by the estimated size of
4642 unconditional jump in the hot spots of the program.
4643
4644 The @option{reorder-block-duplicate-feedback} is used only when profile
4645 feedback is available and may be set to higher values than
4646 @option{reorder-block-duplicate} since information about the hot spots is more
4647 accurate.
4648 @end table
4649 @end table
4650
4651 @node Preprocessor Options
4652 @section Options Controlling the Preprocessor
4653 @cindex preprocessor options
4654 @cindex options, preprocessor
4655
4656 These options control the C preprocessor, which is run on each C source
4657 file before actual compilation.
4658
4659 If you use the @option{-E} option, nothing is done except preprocessing.
4660 Some of these options make sense only together with @option{-E} because
4661 they cause the preprocessor output to be unsuitable for actual
4662 compilation.
4663
4664 @table @gcctabopt
4665 @opindex Wp
4666 You can use @option{-Wp,@var{option}} to bypass the compiler driver
4667 and pass @var{option} directly through to the preprocessor.  If
4668 @var{option} contains commas, it is split into multiple options at the
4669 commas.  However, many options are modified, translated or interpreted
4670 by the compiler driver before being passed to the preprocessor, and
4671 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
4672 interface is undocumented and subject to change, so whenever possible
4673 you should avoid using @option{-Wp} and let the driver handle the
4674 options instead.
4675
4676 @item -Xpreprocessor @var{option}
4677 @opindex preprocessor
4678 Pass @var{option} as an option to the preprocessor.  You can use this to
4679 supply system-specific preprocessor options which GCC does not know how to
4680 recognize.
4681
4682 If you want to pass an option that takes an argument, you must use
4683 @option{-Xpreprocessor} twice, once for the option and once for the argument.
4684 @end table
4685
4686 @include cppopts.texi
4687
4688 @node Assembler Options
4689 @section Passing Options to the Assembler
4690
4691 @c prevent bad page break with this line
4692 You can pass options to the assembler.
4693
4694 @table @gcctabopt
4695 @item -Wa,@var{option}
4696 @opindex Wa
4697 Pass @var{option} as an option to the assembler.  If @var{option}
4698 contains commas, it is split into multiple options at the commas.
4699
4700 @item -Xassembler @var{option}
4701 @opindex Xassembler
4702 Pass @var{option} as an option to the assembler.  You can use this to
4703 supply system-specific assembler options which GCC does not know how to
4704 recognize.
4705
4706 If you want to pass an option that takes an argument, you must use
4707 @option{-Xassembler} twice, once for the option and once for the argument.
4708
4709 @end table
4710
4711 @node Link Options
4712 @section Options for Linking
4713 @cindex link options
4714 @cindex options, linking
4715
4716 These options come into play when the compiler links object files into
4717 an executable output file.  They are meaningless if the compiler is
4718 not doing a link step.
4719
4720 @table @gcctabopt
4721 @cindex file names
4722 @item @var{object-file-name}
4723 A file name that does not end in a special recognized suffix is
4724 considered to name an object file or library.  (Object files are
4725 distinguished from libraries by the linker according to the file
4726 contents.)  If linking is done, these object files are used as input
4727 to the linker.
4728
4729 @item -c
4730 @itemx -S
4731 @itemx -E
4732 @opindex c
4733 @opindex S
4734 @opindex E
4735 If any of these options is used, then the linker is not run, and
4736 object file names should not be used as arguments.  @xref{Overall
4737 Options}.
4738
4739 @cindex Libraries
4740 @item -l@var{library}
4741 @itemx -l @var{library}
4742 @opindex l
4743 Search the library named @var{library} when linking.  (The second
4744 alternative with the library as a separate argument is only for
4745 POSIX compliance and is not recommended.)
4746
4747 It makes a difference where in the command you write this option; the
4748 linker searches and processes libraries and object files in the order they
4749 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
4750 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
4751 to functions in @samp{z}, those functions may not be loaded.
4752
4753 The linker searches a standard list of directories for the library,
4754 which is actually a file named @file{lib@var{library}.a}.  The linker
4755 then uses this file as if it had been specified precisely by name.
4756
4757 The directories searched include several standard system directories
4758 plus any that you specify with @option{-L}.
4759
4760 Normally the files found this way are library files---archive files
4761 whose members are object files.  The linker handles an archive file by
4762 scanning through it for members which define symbols that have so far
4763 been referenced but not defined.  But if the file that is found is an
4764 ordinary object file, it is linked in the usual fashion.  The only
4765 difference between using an @option{-l} option and specifying a file name
4766 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
4767 and searches several directories.
4768
4769 @item -lobjc
4770 @opindex lobjc
4771 You need this special case of the @option{-l} option in order to
4772 link an Objective-C program.
4773
4774 @item -nostartfiles
4775 @opindex nostartfiles
4776 Do not use the standard system startup files when linking.
4777 The standard system libraries are used normally, unless @option{-nostdlib}
4778 or @option{-nodefaultlibs} is used.
4779
4780 @item -nodefaultlibs
4781 @opindex nodefaultlibs
4782 Do not use the standard system libraries when linking.
4783 Only the libraries you specify will be passed to the linker.
4784 The standard startup files are used normally, unless @option{-nostartfiles}
4785 is used.  The compiler may generate calls to memcmp, memset, and memcpy
4786 for System V (and ISO C) environments or to bcopy and bzero for
4787 BSD environments.  These entries are usually resolved by entries in
4788 libc.  These entry points should be supplied through some other
4789 mechanism when this option is specified.
4790
4791 @item -nostdlib
4792 @opindex nostdlib
4793 Do not use the standard system startup files or libraries when linking.
4794 No startup files and only the libraries you specify will be passed to
4795 the linker.  The compiler may generate calls to memcmp, memset, and memcpy
4796 for System V (and ISO C) environments or to bcopy and bzero for
4797 BSD environments.  These entries are usually resolved by entries in
4798 libc.  These entry points should be supplied through some other
4799 mechanism when this option is specified.
4800
4801 @cindex @option{-lgcc}, use with @option{-nostdlib}
4802 @cindex @option{-nostdlib} and unresolved references
4803 @cindex unresolved references and @option{-nostdlib}
4804 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
4805 @cindex @option{-nodefaultlibs} and unresolved references
4806 @cindex unresolved references and @option{-nodefaultlibs}
4807 One of the standard libraries bypassed by @option{-nostdlib} and
4808 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
4809 that GCC uses to overcome shortcomings of particular machines, or special
4810 needs for some languages.
4811 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
4812 Collection (GCC) Internals},
4813 for more discussion of @file{libgcc.a}.)
4814 In most cases, you need @file{libgcc.a} even when you want to avoid
4815 other standard libraries.  In other words, when you specify @option{-nostdlib}
4816 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
4817 This ensures that you have no unresolved references to internal GCC
4818 library subroutines.  (For example, @samp{__main}, used to ensure C++
4819 constructors will be called; @pxref{Collect2,,@code{collect2}, gccint,
4820 GNU Compiler Collection (GCC) Internals}.)
4821
4822 @item -pie
4823 @opindex pie
4824 Produce a position independent executable on targets which support it.
4825 For predictable results, you must also specify the same set of options
4826 that were used to generate code (@option{-fpie}, @option{-fPIE},
4827 or model suboptions) when you specify this option.
4828
4829 @item -s
4830 @opindex s
4831 Remove all symbol table and relocation information from the executable.
4832
4833 @item -static
4834 @opindex static
4835 On systems that support dynamic linking, this prevents linking with the shared
4836 libraries.  On other systems, this option has no effect.
4837
4838 @item -shared
4839 @opindex shared
4840 Produce a shared object which can then be linked with other objects to
4841 form an executable.  Not all systems support this option.  For predictable
4842 results, you must also specify the same set of options that were used to
4843 generate code (@option{-fpic}, @option{-fPIC}, or model suboptions)
4844 when you specify this option.@footnote{On some systems, @samp{gcc -shared}
4845 needs to build supplementary stub code for constructors to work.  On
4846 multi-libbed systems, @samp{gcc -shared} must select the correct support
4847 libraries to link against.  Failing to supply the correct flags may lead
4848 to subtle defects.  Supplying them in cases where they are not necessary
4849 is innocuous.}
4850
4851 @item -shared-libgcc
4852 @itemx -static-libgcc
4853 @opindex shared-libgcc
4854 @opindex static-libgcc
4855 On systems that provide @file{libgcc} as a shared library, these options
4856 force the use of either the shared or static version respectively.
4857 If no shared version of @file{libgcc} was built when the compiler was
4858 configured, these options have no effect.
4859
4860 There are several situations in which an application should use the
4861 shared @file{libgcc} instead of the static version.  The most common
4862 of these is when the application wishes to throw and catch exceptions
4863 across different shared libraries.  In that case, each of the libraries
4864 as well as the application itself should use the shared @file{libgcc}.
4865
4866 Therefore, the G++ and GCJ drivers automatically add
4867 @option{-shared-libgcc} whenever you build a shared library or a main
4868 executable, because C++ and Java programs typically use exceptions, so
4869 this is the right thing to do.
4870
4871 If, instead, you use the GCC driver to create shared libraries, you may
4872 find that they will not always be linked with the shared @file{libgcc}.
4873 If GCC finds, at its configuration time, that you have a GNU linker that
4874 does not support option @option{--eh-frame-hdr}, it will link the shared
4875 version of @file{libgcc} into shared libraries by default.  Otherwise,
4876 it will take advantage of the linker and optimize away the linking with
4877 the shared version of @file{libgcc}, linking with the static version of
4878 libgcc by default.  This allows exceptions to propagate through such
4879 shared libraries, without incurring relocation costs at library load
4880 time.
4881
4882 However, if a library or main executable is supposed to throw or catch
4883 exceptions, you must link it using the G++ or GCJ driver, as appropriate
4884 for the languages used in the program, or using the option
4885 @option{-shared-libgcc}, such that it is linked with the shared
4886 @file{libgcc}.
4887
4888 @item -symbolic
4889 @opindex symbolic
4890 Bind references to global symbols when building a shared object.  Warn
4891 about any unresolved references (unless overridden by the link editor
4892 option @samp{-Xlinker -z -Xlinker defs}).  Only a few systems support
4893 this option.
4894
4895 @item -Xlinker @var{option}
4896 @opindex Xlinker
4897 Pass @var{option} as an option to the linker.  You can use this to
4898 supply system-specific linker options which GCC does not know how to
4899 recognize.
4900
4901 If you want to pass an option that takes an argument, you must use
4902 @option{-Xlinker} twice, once for the option and once for the argument.
4903 For example, to pass @option{-assert definitions}, you must write
4904 @samp{-Xlinker -assert -Xlinker definitions}.  It does not work to write
4905 @option{-Xlinker "-assert definitions"}, because this passes the entire
4906 string as a single argument, which is not what the linker expects.
4907
4908 @item -Wl,@var{option}
4909 @opindex Wl
4910 Pass @var{option} as an option to the linker.  If @var{option} contains
4911 commas, it is split into multiple options at the commas.
4912
4913 @item -u @var{symbol}
4914 @opindex u
4915 Pretend the symbol @var{symbol} is undefined, to force linking of
4916 library modules to define it.  You can use @option{-u} multiple times with
4917 different symbols to force loading of additional library modules.
4918 @end table
4919
4920 @node Directory Options
4921 @section Options for Directory Search
4922 @cindex directory options
4923 @cindex options, directory search
4924 @cindex search path
4925
4926 These options specify directories to search for header files, for
4927 libraries and for parts of the compiler:
4928
4929 @table @gcctabopt
4930 @item -I@var{dir}
4931 @opindex I
4932 Add the directory @var{dir} to the head of the list of directories to be
4933 searched for header files.  This can be used to override a system header
4934 file, substituting your own version, since these directories are
4935 searched before the system header file directories.  However, you should
4936 not use this option to add directories that contain vendor-supplied
4937 system header files (use @option{-isystem} for that).  If you use more than
4938 one @option{-I} option, the directories are scanned in left-to-right
4939 order; the standard system directories come after.
4940
4941 If a standard system include directory, or a directory specified with
4942 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
4943 option will be ignored.  The directory will still be searched but as a
4944 system directory at its normal position in the system include chain.
4945 This is to ensure that GCC's procedure to fix buggy system headers and
4946 the ordering for the include_next directive are not inadvertently changed.
4947 If you really need to change the search order for system directories,
4948 use the @option{-nostdinc} and/or @option{-isystem} options.
4949
4950 @item -I-
4951 @opindex I-
4952 Any directories you specify with @option{-I} options before the @option{-I-}
4953 option are searched only for the case of @samp{#include "@var{file}"};
4954 they are not searched for @samp{#include <@var{file}>}.
4955
4956 If additional directories are specified with @option{-I} options after
4957 the @option{-I-}, these directories are searched for all @samp{#include}
4958 directives.  (Ordinarily @emph{all} @option{-I} directories are used
4959 this way.)
4960
4961 In addition, the @option{-I-} option inhibits the use of the current
4962 directory (where the current input file came from) as the first search
4963 directory for @samp{#include "@var{file}"}.  There is no way to
4964 override this effect of @option{-I-}.  With @option{-I.} you can specify
4965 searching the directory which was current when the compiler was
4966 invoked.  That is not exactly the same as what the preprocessor does
4967 by default, but it is often satisfactory.
4968
4969 @option{-I-} does not inhibit the use of the standard system directories
4970 for header files.  Thus, @option{-I-} and @option{-nostdinc} are
4971 independent.
4972
4973 @item -L@var{dir}
4974 @opindex L
4975 Add directory @var{dir} to the list of directories to be searched
4976 for @option{-l}.
4977
4978 @item -B@var{prefix}
4979 @opindex B
4980 This option specifies where to find the executables, libraries,
4981 include files, and data files of the compiler itself.
4982
4983 The compiler driver program runs one or more of the subprograms
4984 @file{cpp}, @file{cc1}, @file{as} and @file{ld}.  It tries
4985 @var{prefix} as a prefix for each program it tries to run, both with and
4986 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
4987
4988 For each subprogram to be run, the compiler driver first tries the
4989 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
4990 was not specified, the driver tries two standard prefixes, which are
4991 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc-lib/}.  If neither of
4992 those results in a file name that is found, the unmodified program
4993 name is searched for using the directories specified in your
4994 @env{PATH} environment variable.
4995
4996 The compiler will check to see if the path provided by the @option{-B}
4997 refers to a directory, and if necessary it will add a directory
4998 separator character at the end of the path.
4999
5000 @option{-B} prefixes that effectively specify directory names also apply
5001 to libraries in the linker, because the compiler translates these
5002 options into @option{-L} options for the linker.  They also apply to
5003 includes files in the preprocessor, because the compiler translates these
5004 options into @option{-isystem} options for the preprocessor.  In this case,
5005 the compiler appends @samp{include} to the prefix.
5006
5007 The run-time support file @file{libgcc.a} can also be searched for using
5008 the @option{-B} prefix, if needed.  If it is not found there, the two
5009 standard prefixes above are tried, and that is all.  The file is left
5010 out of the link if it is not found by those means.
5011
5012 Another way to specify a prefix much like the @option{-B} prefix is to use
5013 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
5014 Variables}.
5015
5016 As a special kludge, if the path provided by @option{-B} is
5017 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
5018 9, then it will be replaced by @file{[dir/]include}.  This is to help
5019 with boot-strapping the compiler.
5020
5021 @item -specs=@var{file}
5022 @opindex specs
5023 Process @var{file} after the compiler reads in the standard @file{specs}
5024 file, in order to override the defaults that the @file{gcc} driver
5025 program uses when determining what switches to pass to @file{cc1},
5026 @file{cc1plus}, @file{as}, @file{ld}, etc.  More than one
5027 @option{-specs=@var{file}} can be specified on the command line, and they
5028 are processed in order, from left to right.
5029 @end table
5030
5031 @c man end
5032
5033 @node Spec Files
5034 @section Specifying subprocesses and the switches to pass to them
5035 @cindex Spec Files
5036
5037 @command{gcc} is a driver program.  It performs its job by invoking a
5038 sequence of other programs to do the work of compiling, assembling and
5039 linking.  GCC interprets its command-line parameters and uses these to
5040 deduce which programs it should invoke, and which command-line options
5041 it ought to place on their command lines.  This behavior is controlled
5042 by @dfn{spec strings}.  In most cases there is one spec string for each
5043 program that GCC can invoke, but a few programs have multiple spec
5044 strings to control their behavior.  The spec strings built into GCC can
5045 be overridden by using the @option{-specs=} command-line switch to specify
5046 a spec file.
5047
5048 @dfn{Spec files} are plaintext files that are used to construct spec
5049 strings.  They consist of a sequence of directives separated by blank
5050 lines.  The type of directive is determined by the first non-whitespace
5051 character on the line and it can be one of the following:
5052
5053 @table @code
5054 @item %@var{command}
5055 Issues a @var{command} to the spec file processor.  The commands that can
5056 appear here are:
5057
5058 @table @code
5059 @item %include <@var{file}>
5060 @cindex %include
5061 Search for @var{file} and insert its text at the current point in the
5062 specs file.
5063
5064 @item %include_noerr <@var{file}>
5065 @cindex %include_noerr
5066 Just like @samp{%include}, but do not generate an error message if the include
5067 file cannot be found.
5068
5069 @item %rename @var{old_name} @var{new_name}
5070 @cindex %rename
5071 Rename the spec string @var{old_name} to @var{new_name}.
5072
5073 @end table
5074
5075 @item *[@var{spec_name}]:
5076 This tells the compiler to create, override or delete the named spec
5077 string.  All lines after this directive up to the next directive or
5078 blank line are considered to be the text for the spec string.  If this
5079 results in an empty string then the spec will be deleted.  (Or, if the
5080 spec did not exist, then nothing will happened.)  Otherwise, if the spec
5081 does not currently exist a new spec will be created.  If the spec does
5082 exist then its contents will be overridden by the text of this
5083 directive, unless the first character of that text is the @samp{+}
5084 character, in which case the text will be appended to the spec.
5085
5086 @item [@var{suffix}]:
5087 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
5088 and up to the next directive or blank line are considered to make up the
5089 spec string for the indicated suffix.  When the compiler encounters an
5090 input file with the named suffix, it will processes the spec string in
5091 order to work out how to compile that file.  For example:
5092
5093 @smallexample
5094 .ZZ:
5095 z-compile -input %i
5096 @end smallexample
5097
5098 This says that any input file whose name ends in @samp{.ZZ} should be
5099 passed to the program @samp{z-compile}, which should be invoked with the
5100 command-line switch @option{-input} and with the result of performing the
5101 @samp{%i} substitution.  (See below.)
5102
5103 As an alternative to providing a spec string, the text that follows a
5104 suffix directive can be one of the following:
5105
5106 @table @code
5107 @item @@@var{language}
5108 This says that the suffix is an alias for a known @var{language}.  This is
5109 similar to using the @option{-x} command-line switch to GCC to specify a
5110 language explicitly.  For example:
5111
5112 @smallexample
5113 .ZZ:
5114 @@c++
5115 @end smallexample
5116
5117 Says that .ZZ files are, in fact, C++ source files.
5118
5119 @item #@var{name}
5120 This causes an error messages saying:
5121
5122 @smallexample
5123 @var{name} compiler not installed on this system.
5124 @end smallexample
5125 @end table
5126
5127 GCC already has an extensive list of suffixes built into it.
5128 This directive will add an entry to the end of the list of suffixes, but
5129 since the list is searched from the end backwards, it is effectively
5130 possible to override earlier entries using this technique.
5131
5132 @end table
5133
5134 GCC has the following spec strings built into it.  Spec files can
5135 override these strings or create their own.  Note that individual
5136 targets can also add their own spec strings to this list.
5137
5138 @smallexample
5139 asm          Options to pass to the assembler
5140 asm_final    Options to pass to the assembler post-processor
5141 cpp          Options to pass to the C preprocessor
5142 cc1          Options to pass to the C compiler
5143 cc1plus      Options to pass to the C++ compiler
5144 endfile      Object files to include at the end of the link
5145 link         Options to pass to the linker
5146 lib          Libraries to include on the command line to the linker
5147 libgcc       Decides which GCC support library to pass to the linker
5148 linker       Sets the name of the linker
5149 predefines   Defines to be passed to the C preprocessor
5150 signed_char  Defines to pass to CPP to say whether @code{char} is signed
5151              by default
5152 startfile    Object files to include at the start of the link
5153 @end smallexample
5154
5155 Here is a small example of a spec file:
5156
5157 @smallexample
5158 %rename lib                 old_lib
5159
5160 *lib:
5161 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
5162 @end smallexample
5163
5164 This example renames the spec called @samp{lib} to @samp{old_lib} and
5165 then overrides the previous definition of @samp{lib} with a new one.
5166 The new definition adds in some extra command-line options before
5167 including the text of the old definition.
5168
5169 @dfn{Spec strings} are a list of command-line options to be passed to their
5170 corresponding program.  In addition, the spec strings can contain
5171 @samp{%}-prefixed sequences to substitute variable text or to
5172 conditionally insert text into the command line.  Using these constructs
5173 it is possible to generate quite complex command lines.
5174
5175 Here is a table of all defined @samp{%}-sequences for spec
5176 strings.  Note that spaces are not generated automatically around the
5177 results of expanding these sequences.  Therefore you can concatenate them
5178 together or combine them with constant text in a single argument.
5179
5180 @table @code
5181 @item %%
5182 Substitute one @samp{%} into the program name or argument.
5183
5184 @item %i
5185 Substitute the name of the input file being processed.
5186
5187 @item %b
5188 Substitute the basename of the input file being processed.
5189 This is the substring up to (and not including) the last period
5190 and not including the directory.
5191
5192 @item %B
5193 This is the same as @samp{%b}, but include the file suffix (text after
5194 the last period).
5195
5196 @item %d
5197 Marks the argument containing or following the @samp{%d} as a
5198 temporary file name, so that that file will be deleted if GCC exits
5199 successfully.  Unlike @samp{%g}, this contributes no text to the
5200 argument.
5201
5202 @item %g@var{suffix}
5203 Substitute a file name that has suffix @var{suffix} and is chosen
5204 once per compilation, and mark the argument in the same way as
5205 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
5206 name is now chosen in a way that is hard to predict even when previously
5207 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
5208 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
5209 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
5210 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
5211 was simply substituted with a file name chosen once per compilation,
5212 without regard to any appended suffix (which was therefore treated
5213 just like ordinary text), making such attacks more likely to succeed.
5214
5215 @item %u@var{suffix}
5216 Like @samp{%g}, but generates a new temporary file name even if
5217 @samp{%u@var{suffix}} was already seen.
5218
5219 @item %U@var{suffix}
5220 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
5221 new one if there is no such last file name.  In the absence of any
5222 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
5223 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
5224 would involve the generation of two distinct file names, one
5225 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
5226 simply substituted with a file name chosen for the previous @samp{%u},
5227 without regard to any appended suffix.
5228
5229 @item %j@var{suffix}
5230 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
5231 writable, and if save-temps is off; otherwise, substitute the name
5232 of a temporary file, just like @samp{%u}.  This temporary file is not
5233 meant for communication between processes, but rather as a junk
5234 disposal mechanism.
5235
5236 @item %|@var{suffix}
5237 @itemx %m@var{suffix}
5238 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
5239 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
5240 all.  These are the two most common ways to instruct a program that it
5241 should read from standard input or write to standard output.  If you
5242 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
5243 construct: see for example @file{f/lang-specs.h}.
5244
5245 @item %.@var{SUFFIX}
5246 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
5247 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
5248 terminated by the next space or %.
5249
5250 @item %w
5251 Marks the argument containing or following the @samp{%w} as the
5252 designated output file of this compilation.  This puts the argument
5253 into the sequence of arguments that @samp{%o} will substitute later.
5254
5255 @item %o
5256 Substitutes the names of all the output files, with spaces
5257 automatically placed around them.  You should write spaces
5258 around the @samp{%o} as well or the results are undefined.
5259 @samp{%o} is for use in the specs for running the linker.
5260 Input files whose names have no recognized suffix are not compiled
5261 at all, but they are included among the output files, so they will
5262 be linked.
5263
5264 @item %O
5265 Substitutes the suffix for object files.  Note that this is
5266 handled specially when it immediately follows @samp{%g, %u, or %U},
5267 because of the need for those to form complete file names.  The
5268 handling is such that @samp{%O} is treated exactly as if it had already
5269 been substituted, except that @samp{%g, %u, and %U} do not currently
5270 support additional @var{suffix} characters following @samp{%O} as they would
5271 following, for example, @samp{.o}.
5272
5273 @item %p
5274 Substitutes the standard macro predefinitions for the
5275 current target machine.  Use this when running @code{cpp}.
5276
5277 @item %P
5278 Like @samp{%p}, but puts @samp{__} before and after the name of each
5279 predefined macro, except for macros that start with @samp{__} or with
5280 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
5281 C@.
5282
5283 @item %I
5284 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
5285 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}), and
5286 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
5287 as necessary.
5288
5289 @item %s
5290 Current argument is the name of a library or startup file of some sort.
5291 Search for that file in a standard list of directories and substitute
5292 the full name found.
5293
5294 @item %e@var{str}
5295 Print @var{str} as an error message.  @var{str} is terminated by a newline.
5296 Use this when inconsistent options are detected.
5297
5298 @item %(@var{name})
5299 Substitute the contents of spec string @var{name} at this point.
5300
5301 @item %[@var{name}]
5302 Like @samp{%(@dots{})} but put @samp{__} around @option{-D} arguments.
5303
5304 @item %x@{@var{option}@}
5305 Accumulate an option for @samp{%X}.
5306
5307 @item %X
5308 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
5309 spec string.
5310
5311 @item %Y
5312 Output the accumulated assembler options specified by @option{-Wa}.
5313
5314 @item %Z
5315 Output the accumulated preprocessor options specified by @option{-Wp}.
5316
5317 @item %a
5318 Process the @code{asm} spec.  This is used to compute the
5319 switches to be passed to the assembler.
5320
5321 @item %A
5322 Process the @code{asm_final} spec.  This is a spec string for
5323 passing switches to an assembler post-processor, if such a program is
5324 needed.
5325
5326 @item %l
5327 Process the @code{link} spec.  This is the spec for computing the
5328 command line passed to the linker.  Typically it will make use of the
5329 @samp{%L %G %S %D and %E} sequences.
5330
5331 @item %D
5332 Dump out a @option{-L} option for each directory that GCC believes might
5333 contain startup files.  If the target supports multilibs then the
5334 current multilib directory will be prepended to each of these paths.
5335
5336 @item %M
5337 Output the multilib directory with directory separators replaced with
5338 @samp{_}.  If multilib directories are not set, or the multilib directory is
5339 @file{.} then this option emits nothing.
5340
5341 @item %L
5342 Process the @code{lib} spec.  This is a spec string for deciding which
5343 libraries should be included on the command line to the linker.
5344
5345 @item %G
5346 Process the @code{libgcc} spec.  This is a spec string for deciding
5347 which GCC support library should be included on the command line to the linker.
5348
5349 @item %S
5350 Process the @code{startfile} spec.  This is a spec for deciding which
5351 object files should be the first ones passed to the linker.  Typically
5352 this might be a file named @file{crt0.o}.
5353
5354 @item %E
5355 Process the @code{endfile} spec.  This is a spec string that specifies
5356 the last object files that will be passed to the linker.
5357
5358 @item %C
5359 Process the @code{cpp} spec.  This is used to construct the arguments
5360 to be passed to the C preprocessor.
5361
5362 @item %c
5363 Process the @code{signed_char} spec.  This is intended to be used
5364 to tell cpp whether a char is signed.  It typically has the definition:
5365 @smallexample
5366 %@{funsigned-char:-D__CHAR_UNSIGNED__@}
5367 @end smallexample
5368
5369 @item %1
5370 Process the @code{cc1} spec.  This is used to construct the options to be
5371 passed to the actual C compiler (@samp{cc1}).
5372
5373 @item %2
5374 Process the @code{cc1plus} spec.  This is used to construct the options to be
5375 passed to the actual C++ compiler (@samp{cc1plus}).
5376
5377 @item %*
5378 Substitute the variable part of a matched option.  See below.
5379 Note that each comma in the substituted string is replaced by
5380 a single space.
5381
5382 @item %<@code{S}
5383 Remove all occurrences of @code{-S} from the command line.  Note---this
5384 command is position dependent.  @samp{%} commands in the spec string
5385 before this one will see @code{-S}, @samp{%} commands in the spec string
5386 after this one will not.
5387
5388 @item %:@var{function}(@var{args})
5389 Call the named function @var{function}, passing it @var{args}.
5390 @var{args} is first processed as a nested spec string, then split
5391 into an argument vector in the usual fashion.  The function returns
5392 a string which is processed as if it had appeared literally as part
5393 of the current spec.
5394
5395 The following built-in spec functions are provided:
5396
5397 @table @code
5398 @item @code{if-exists}
5399 The @code{if-exists} spec function takes one argument, an absolute
5400 pathname to a file.  If the file exists, @code{if-exists} returns the
5401 pathname.  Here is a small example of its usage:
5402
5403 @smallexample
5404 *startfile:
5405 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
5406 @end smallexample
5407
5408 @item @code{if-exists-else}
5409 The @code{if-exists-else} spec function is similar to the @code{if-exists}
5410 spec function, except that it takes two arguments.  The first argument is
5411 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
5412 returns the pathname.  If it does not exist, it returns the second argument.
5413 This way, @code{if-exists-else} can be used to select one file or another,
5414 based on the existence of the first.  Here is a small example of its usage:
5415
5416 @smallexample 
5417 *startfile:
5418 crt0%O%s %:if-exists(crti%O%s) \
5419 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
5420 @end smallexample
5421 @end table 
5422
5423 @item %@{@code{S}@}
5424 Substitutes the @code{-S} switch, if that switch was given to GCC@.
5425 If that switch was not specified, this substitutes nothing.  Note that
5426 the leading dash is omitted when specifying this option, and it is
5427 automatically inserted if the substitution is performed.  Thus the spec
5428 string @samp{%@{foo@}} would match the command-line option @option{-foo}
5429 and would output the command line option @option{-foo}.
5430
5431 @item %W@{@code{S}@}
5432 Like %@{@code{S}@} but mark last argument supplied within as a file to be
5433 deleted on failure.
5434
5435 @item %@{@code{S}*@}
5436 Substitutes all the switches specified to GCC whose names start
5437 with @code{-S}, but which also take an argument.  This is used for
5438 switches like @option{-o}, @option{-D}, @option{-I}, etc.
5439 GCC considers @option{-o foo} as being
5440 one switch whose names starts with @samp{o}.  %@{o*@} would substitute this
5441 text, including the space.  Thus two arguments would be generated.
5442
5443 @item %@{@code{S}*&@code{T}*@}
5444 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
5445 (the order of @code{S} and @code{T} in the spec is not significant).
5446 There can be any number of ampersand-separated variables; for each the
5447 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
5448
5449 @item %@{@code{S}:@code{X}@}
5450 Substitutes @code{X}, if the @samp{-S} switch was given to GCC@.
5451
5452 @item %@{!@code{S}:@code{X}@}
5453 Substitutes @code{X}, if the @samp{-S} switch was @emph{not} given to GCC@.
5454
5455 @item %@{@code{S}*:@code{X}@}
5456 Substitutes @code{X} if one or more switches whose names start with
5457 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
5458 once, no matter how many such switches appeared.  However, if @code{%*}
5459 appears somewhere in @code{X}, then @code{X} will be substituted once
5460 for each matching switch, with the @code{%*} replaced by the part of
5461 that switch that matched the @code{*}.
5462
5463 @item %@{.@code{S}:@code{X}@}
5464 Substitutes @code{X}, if processing a file with suffix @code{S}.
5465
5466 @item %@{!.@code{S}:@code{X}@}
5467 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
5468
5469 @item %@{@code{S}|@code{P}:@code{X}@}
5470 Substitutes @code{X} if either @code{-S} or @code{-P} was given to GCC@.
5471 This may be combined with @samp{!}, @samp{.}, and @code{*} sequences as well,
5472 although they have a stronger binding than the @samp{|}.  If @code{%*}
5473 appears in @code{X}, all of the alternatives must be starred, and only
5474 the first matching alternative is substituted.
5475
5476 For example, a spec string like this:
5477
5478 @smallexample
5479 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
5480 @end smallexample
5481
5482 will output the following command-line options from the following input
5483 command-line options:
5484
5485 @smallexample
5486 fred.c        -foo -baz
5487 jim.d         -bar -boggle
5488 -d fred.c     -foo -baz -boggle
5489 -d jim.d      -bar -baz -boggle
5490 @end smallexample
5491
5492 @item %@{S:X; T:Y; :D@}
5493
5494 If @code{S} was given to GCC, substitues @code{X}; else if @code{T} was
5495 given to GCC, substitues @code{Y}; else substitutes @code{D}.  There can
5496 be as many clauses as you need.  This may be combined with @code{.}, 
5497 @code{!}, @code{|}, and @code{*} as needed.
5498
5499
5500 @end table
5501
5502 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
5503 construct may contain other nested @samp{%} constructs or spaces, or
5504 even newlines.  They are processed as usual, as described above.
5505 Trailing white space in @code{X} is ignored.  White space may also
5506 appear anywhere on the left side of the colon in these constructs,
5507 except between @code{.} or @code{*} and the corresponding word.
5508
5509 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
5510 handled specifically in these constructs.  If another value of
5511 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
5512 @option{-W} switch is found later in the command line, the earlier
5513 switch value is ignored, except with @{@code{S}*@} where @code{S} is
5514 just one letter, which passes all matching options.
5515
5516 The character @samp{|} at the beginning of the predicate text is used to
5517 indicate that a command should be piped to the following command, but
5518 only if @option{-pipe} is specified.
5519
5520 It is built into GCC which switches take arguments and which do not.
5521 (You might think it would be useful to generalize this to allow each
5522 compiler's spec to say which switches take arguments.  But this cannot
5523 be done in a consistent fashion.  GCC cannot even decide which input
5524 files have been specified without knowing which switches take arguments,
5525 and it must know which input files to compile in order to tell which
5526 compilers to run).
5527
5528 GCC also knows implicitly that arguments starting in @option{-l} are to be
5529 treated as compiler output files, and passed to the linker in their
5530 proper position among the other output files.
5531
5532 @c man begin OPTIONS
5533
5534 @node Target Options
5535 @section Specifying Target Machine and Compiler Version
5536 @cindex target options
5537 @cindex cross compiling
5538 @cindex specifying machine version
5539 @cindex specifying compiler version and target machine
5540 @cindex compiler version, specifying
5541 @cindex target machine, specifying
5542
5543 The usual way to run GCC is to run the executable called @file{gcc}, or
5544 @file{<machine>-gcc} when cross-compiling, or
5545 @file{<machine>-gcc-<version>} to run a version other than the one that
5546 was installed last.  Sometimes this is inconvenient, so GCC provides
5547 options that will switch to another cross-compiler or version.
5548
5549 @table @gcctabopt
5550 @item -b @var{machine}
5551 @opindex b
5552 The argument @var{machine} specifies the target machine for compilation.
5553
5554 The value to use for @var{machine} is the same as was specified as the
5555 machine type when configuring GCC as a cross-compiler.  For
5556 example, if a cross-compiler was configured with @samp{configure
5557 i386v}, meaning to compile for an 80386 running System V, then you
5558 would specify @option{-b i386v} to run that cross compiler.
5559
5560 @item -V @var{version}
5561 @opindex V
5562 The argument @var{version} specifies which version of GCC to run.
5563 This is useful when multiple versions are installed.  For example,
5564 @var{version} might be @samp{2.0}, meaning to run GCC version 2.0.
5565 @end table
5566
5567 The @option{-V} and @option{-b} options work by running the
5568 @file{<machine>-gcc-<version>} executable, so there's no real reason to
5569 use them if you can just run that directly.
5570
5571 @node Submodel Options
5572 @section Hardware Models and Configurations
5573 @cindex submodel options
5574 @cindex specifying hardware config
5575 @cindex hardware models and configurations, specifying
5576 @cindex machine dependent options
5577
5578 Earlier we discussed the standard option @option{-b} which chooses among
5579 different installed compilers for completely different target
5580 machines, such as VAX vs.@: 68000 vs.@: 80386.
5581
5582 In addition, each of these target machine types can have its own
5583 special options, starting with @samp{-m}, to choose among various
5584 hardware models or configurations---for example, 68010 vs 68020,
5585 floating coprocessor or none.  A single installed version of the
5586 compiler can compile for any model or configuration, according to the
5587 options specified.
5588
5589 Some configurations of the compiler also support additional special
5590 options, usually for compatibility with other compilers on the same
5591 platform.
5592
5593 These options are defined by the macro @code{TARGET_SWITCHES} in the
5594 machine description.  The default for the options is also defined by
5595 that macro, which enables you to change the defaults.
5596
5597 @menu
5598 * M680x0 Options::
5599 * M68hc1x Options::
5600 * VAX Options::
5601 * SPARC Options::
5602 * ARM Options::
5603 * MN10200 Options::
5604 * MN10300 Options::
5605 * M32R/D Options::
5606 * M88K Options::
5607 * RS/6000 and PowerPC Options::
5608 * Darwin Options::
5609 * RT Options::
5610 * MIPS Options::
5611 * i386 and x86-64 Options::
5612 * HPPA Options::
5613 * Intel 960 Options::
5614 * DEC Alpha Options::
5615 * DEC Alpha/VMS Options::
5616 * H8/300 Options::
5617 * SH Options::
5618 * System V Options::
5619 * TMS320C3x/C4x Options::
5620 * V850 Options::
5621 * ARC Options::
5622 * NS32K Options::
5623 * AVR Options::
5624 * MCore Options::
5625 * IA-64 Options::
5626 * D30V Options::
5627 * S/390 and zSeries Options::
5628 * CRIS Options::
5629 * MMIX Options::
5630 * PDP-11 Options::
5631 * Xstormy16 Options::
5632 * Xtensa Options::
5633 * FRV Options::
5634 @end menu
5635
5636 @node M680x0 Options
5637 @subsection M680x0 Options
5638 @cindex M680x0 options
5639
5640 These are the @samp{-m} options defined for the 68000 series.  The default
5641 values for these options depends on which style of 68000 was selected when
5642 the compiler was configured; the defaults for the most common choices are
5643 given below.
5644
5645 @table @gcctabopt
5646 @item -m68000
5647 @itemx -mc68000
5648 @opindex m68000
5649 @opindex mc68000
5650 Generate output for a 68000.  This is the default
5651 when the compiler is configured for 68000-based systems.
5652
5653 Use this option for microcontrollers with a 68000 or EC000 core,
5654 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
5655
5656 @item -m68020
5657 @itemx -mc68020
5658 @opindex m68020
5659 @opindex mc68020
5660 Generate output for a 68020.  This is the default
5661 when the compiler is configured for 68020-based systems.
5662
5663 @item -m68881
5664 @opindex m68881
5665 Generate output containing 68881 instructions for floating point.
5666 This is the default for most 68020 systems unless @option{--nfp} was
5667 specified when the compiler was configured.
5668
5669 @item -m68030
5670 @opindex m68030
5671 Generate output for a 68030.  This is the default when the compiler is
5672 configured for 68030-based systems.
5673
5674 @item -m68040
5675 @opindex m68040
5676 Generate output for a 68040.  This is the default when the compiler is
5677 configured for 68040-based systems.
5678
5679 This option inhibits the use of 68881/68882 instructions that have to be
5680 emulated by software on the 68040.  Use this option if your 68040 does not
5681 have code to emulate those instructions.
5682
5683 @item -m68060
5684 @opindex m68060
5685 Generate output for a 68060.  This is the default when the compiler is
5686 configured for 68060-based systems.
5687
5688 This option inhibits the use of 68020 and 68881/68882 instructions that
5689 have to be emulated by software on the 68060.  Use this option if your 68060
5690 does not have code to emulate those instructions.
5691
5692 @item -mcpu32
5693 @opindex mcpu32
5694 Generate output for a CPU32.  This is the default
5695 when the compiler is configured for CPU32-based systems.
5696
5697 Use this option for microcontrollers with a
5698 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
5699 68336, 68340, 68341, 68349 and 68360.
5700
5701 @item -m5200
5702 @opindex m5200
5703 Generate output for a 520X ``coldfire'' family cpu.  This is the default
5704 when the compiler is configured for 520X-based systems.
5705
5706 Use this option for microcontroller with a 5200 core, including
5707 the MCF5202, MCF5203, MCF5204 and MCF5202.
5708
5709
5710 @item -m68020-40
5711 @opindex m68020-40
5712 Generate output for a 68040, without using any of the new instructions.
5713 This results in code which can run relatively efficiently on either a
5714 68020/68881 or a 68030 or a 68040.  The generated code does use the
5715 68881 instructions that are emulated on the 68040.
5716
5717 @item -m68020-60
5718 @opindex m68020-60
5719 Generate output for a 68060, without using any of the new instructions.
5720 This results in code which can run relatively efficiently on either a
5721 68020/68881 or a 68030 or a 68040.  The generated code does use the
5722 68881 instructions that are emulated on the 68060.
5723
5724 @item -msoft-float
5725 @opindex msoft-float
5726 Generate output containing library calls for floating point.
5727 @strong{Warning:} the requisite libraries are not available for all m68k
5728 targets.  Normally the facilities of the machine's usual C compiler are
5729 used, but this can't be done directly in cross-compilation.  You must
5730 make your own arrangements to provide suitable library functions for
5731 cross-compilation.  The embedded targets @samp{m68k-*-aout} and
5732 @samp{m68k-*-coff} do provide software floating point support.
5733
5734 @item -mshort
5735 @opindex mshort
5736 Consider type @code{int} to be 16 bits wide, like @code{short int}.
5737
5738 @item -mnobitfield
5739 @opindex mnobitfield
5740 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
5741 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
5742
5743 @item -mbitfield
5744 @opindex mbitfield
5745 Do use the bit-field instructions.  The @option{-m68020} option implies
5746 @option{-mbitfield}.  This is the default if you use a configuration
5747 designed for a 68020.
5748
5749 @item -mrtd
5750 @opindex mrtd
5751 Use a different function-calling convention, in which functions
5752 that take a fixed number of arguments return with the @code{rtd}
5753 instruction, which pops their arguments while returning.  This
5754 saves one instruction in the caller since there is no need to pop
5755 the arguments there.
5756
5757 This calling convention is incompatible with the one normally
5758 used on Unix, so you cannot use it if you need to call libraries
5759 compiled with the Unix compiler.
5760
5761 Also, you must provide function prototypes for all functions that
5762 take variable numbers of arguments (including @code{printf});
5763 otherwise incorrect code will be generated for calls to those
5764 functions.
5765
5766 In addition, seriously incorrect code will result if you call a
5767 function with too many arguments.  (Normally, extra arguments are
5768 harmlessly ignored.)
5769
5770 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
5771 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
5772
5773 @item -malign-int
5774 @itemx -mno-align-int
5775 @opindex malign-int
5776 @opindex mno-align-int
5777 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
5778 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
5779 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
5780 Aligning variables on 32-bit boundaries produces code that runs somewhat
5781 faster on processors with 32-bit busses at the expense of more memory.
5782
5783 @strong{Warning:} if you use the @option{-malign-int} switch, GCC will
5784 align structures containing the above types  differently than
5785 most published application binary interface specifications for the m68k.
5786
5787 @item -mpcrel
5788 @opindex mpcrel
5789 Use the pc-relative addressing mode of the 68000 directly, instead of
5790 using a global offset table.  At present, this option implies @option{-fpic},
5791 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
5792 not presently supported with @option{-mpcrel}, though this could be supported for
5793 68020 and higher processors.
5794
5795 @item -mno-strict-align
5796 @itemx -mstrict-align
5797 @opindex mno-strict-align
5798 @opindex mstrict-align
5799 Do not (do) assume that unaligned memory references will be handled by
5800 the system.
5801
5802 @end table
5803
5804 @node M68hc1x Options
5805 @subsection M68hc1x Options
5806 @cindex M68hc1x options
5807
5808 These are the @samp{-m} options defined for the 68hc11 and 68hc12
5809 microcontrollers.  The default values for these options depends on
5810 which style of microcontroller was selected when the compiler was configured;
5811 the defaults for the most common choices are given below.
5812
5813 @table @gcctabopt
5814 @item -m6811
5815 @itemx -m68hc11
5816 @opindex m6811
5817 @opindex m68hc11
5818 Generate output for a 68HC11.  This is the default
5819 when the compiler is configured for 68HC11-based systems.
5820
5821 @item -m6812
5822 @itemx -m68hc12
5823 @opindex m6812
5824 @opindex m68hc12
5825 Generate output for a 68HC12.  This is the default
5826 when the compiler is configured for 68HC12-based systems.
5827
5828 @item -m68S12
5829 @itemx -m68hcs12
5830 @opindex m68S12
5831 @opindex m68hcs12
5832 Generate output for a 68HCS12.  
5833
5834 @item -mauto-incdec
5835 @opindex mauto-incdec
5836 Enable the use of 68HC12 pre and post auto-increment and auto-decrement
5837 addressing modes.
5838
5839 @item -minmax
5840 @itemx -nominmax
5841 @opindex minmax
5842 @opindex mnominmax
5843 Enable the use of 68HC12 min and max instructions.
5844
5845 @item -mlong-calls
5846 @itemx -mno-long-calls
5847 @opindex mlong-calls
5848 @opindex mno-long-calls
5849 Treat all calls as being far away (near).  If calls are assumed to be
5850 far away, the compiler will use the @code{call} instruction to
5851 call a function and the @code{rtc} instruction for returning.
5852
5853 @item -mshort
5854 @opindex mshort
5855 Consider type @code{int} to be 16 bits wide, like @code{short int}.
5856
5857 @item -msoft-reg-count=@var{count}
5858 @opindex msoft-reg-count
5859 Specify the number of pseudo-soft registers which are used for the
5860 code generation.  The maximum number is 32.  Using more pseudo-soft
5861 register may or may not result in better code depending on the program.
5862 The default is 4 for 68HC11 and 2 for 68HC12.
5863
5864 @end table
5865
5866 @node VAX Options
5867 @subsection VAX Options
5868 @cindex VAX options
5869
5870 These @samp{-m} options are defined for the VAX:
5871
5872 @table @gcctabopt
5873 @item -munix
5874 @opindex munix
5875 Do not output certain jump instructions (@code{aobleq} and so on)
5876 that the Unix assembler for the VAX cannot handle across long
5877 ranges.
5878
5879 @item -mgnu
5880 @opindex mgnu
5881 Do output those jump instructions, on the assumption that you
5882 will assemble with the GNU assembler.
5883
5884 @item -mg
5885 @opindex mg
5886 Output code for g-format floating point numbers instead of d-format.
5887 @end table
5888
5889 @node SPARC Options
5890 @subsection SPARC Options
5891 @cindex SPARC options
5892
5893 These @samp{-m} switches are supported on the SPARC:
5894
5895 @table @gcctabopt
5896 @item -mno-app-regs
5897 @itemx -mapp-regs
5898 @opindex mno-app-regs
5899 @opindex mapp-regs
5900 Specify @option{-mapp-regs} to generate output using the global registers
5901 2 through 4, which the SPARC SVR4 ABI reserves for applications.  This
5902 is the default.
5903
5904 To be fully SVR4 ABI compliant at the cost of some performance loss,
5905 specify @option{-mno-app-regs}.  You should compile libraries and system
5906 software with this option.
5907
5908 @item -mfpu
5909 @itemx -mhard-float
5910 @opindex mfpu
5911 @opindex mhard-float
5912 Generate output containing floating point instructions.  This is the
5913 default.
5914
5915 @item -mno-fpu
5916 @itemx -msoft-float
5917 @opindex mno-fpu
5918 @opindex msoft-float
5919 Generate output containing library calls for floating point.
5920 @strong{Warning:} the requisite libraries are not available for all SPARC
5921 targets.  Normally the facilities of the machine's usual C compiler are
5922 used, but this cannot be done directly in cross-compilation.  You must make
5923 your own arrangements to provide suitable library functions for
5924 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
5925 @samp{sparclite-*-*} do provide software floating point support.
5926
5927 @option{-msoft-float} changes the calling convention in the output file;
5928 therefore, it is only useful if you compile @emph{all} of a program with
5929 this option.  In particular, you need to compile @file{libgcc.a}, the
5930 library that comes with GCC, with @option{-msoft-float} in order for
5931 this to work.
5932
5933 @item -mhard-quad-float
5934 @opindex mhard-quad-float
5935 Generate output containing quad-word (long double) floating point
5936 instructions.
5937
5938 @item -msoft-quad-float
5939 @opindex msoft-quad-float
5940 Generate output containing library calls for quad-word (long double)
5941 floating point instructions.  The functions called are those specified
5942 in the SPARC ABI@.  This is the default.
5943
5944 As of this writing, there are no sparc implementations that have hardware
5945 support for the quad-word floating point instructions.  They all invoke
5946 a trap handler for one of these instructions, and then the trap handler
5947 emulates the effect of the instruction.  Because of the trap handler overhead,
5948 this is much slower than calling the ABI library routines.  Thus the
5949 @option{-msoft-quad-float} option is the default.
5950
5951 @item -mno-flat
5952 @itemx -mflat
5953 @opindex mno-flat
5954 @opindex mflat
5955 With @option{-mflat}, the compiler does not generate save/restore instructions
5956 and will use a ``flat'' or single register window calling convention.
5957 This model uses %i7 as the frame pointer and is compatible with the normal
5958 register window model.  Code from either may be intermixed.
5959 The local registers and the input registers (0--5) are still treated as
5960 ``call saved'' registers and will be saved on the stack as necessary.
5961
5962 With @option{-mno-flat} (the default), the compiler emits save/restore
5963 instructions (except for leaf functions) and is the normal mode of operation.
5964
5965 @item -mno-unaligned-doubles
5966 @itemx -munaligned-doubles
5967 @opindex mno-unaligned-doubles
5968 @opindex munaligned-doubles
5969 Assume that doubles have 8 byte alignment.  This is the default.
5970
5971 With @option{-munaligned-doubles}, GCC assumes that doubles have 8 byte
5972 alignment only if they are contained in another type, or if they have an
5973 absolute address.  Otherwise, it assumes they have 4 byte alignment.
5974 Specifying this option avoids some rare compatibility problems with code
5975 generated by other compilers.  It is not the default because it results
5976 in a performance loss, especially for floating point code.
5977
5978 @item -mno-faster-structs
5979 @itemx -mfaster-structs
5980 @opindex mno-faster-structs
5981 @opindex mfaster-structs
5982 With @option{-mfaster-structs}, the compiler assumes that structures
5983 should have 8 byte alignment.  This enables the use of pairs of
5984 @code{ldd} and @code{std} instructions for copies in structure
5985 assignment, in place of twice as many @code{ld} and @code{st} pairs.
5986 However, the use of this changed alignment directly violates the SPARC
5987 ABI@.  Thus, it's intended only for use on targets where the developer
5988 acknowledges that their resulting code will not be directly in line with
5989 the rules of the ABI@.
5990
5991 @item -mv8
5992 @itemx -msparclite
5993 @opindex mv8
5994 @opindex msparclite
5995 These two options select variations on the SPARC architecture.
5996
5997 By default (unless specifically configured for the Fujitsu SPARClite),
5998 GCC generates code for the v7 variant of the SPARC architecture.
5999
6000 @option{-mv8} will give you SPARC v8 code.  The only difference from v7
6001 code is that the compiler emits the integer multiply and integer
6002 divide instructions which exist in SPARC v8 but not in SPARC v7.
6003
6004 @option{-msparclite} will give you SPARClite code.  This adds the integer
6005 multiply, integer divide step and scan (@code{ffs}) instructions which
6006 exist in SPARClite but not in SPARC v7.
6007
6008 These options are deprecated and will be deleted in a future GCC release.
6009 They have been replaced with @option{-mcpu=xxx}.
6010
6011 @item -mcypress
6012 @itemx -msupersparc
6013 @opindex mcypress
6014 @opindex msupersparc
6015 These two options select the processor for which the code is optimized.
6016
6017 With @option{-mcypress} (the default), the compiler optimizes code for the
6018 Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series.
6019 This is also appropriate for the older SPARCStation 1, 2, IPX etc.
6020
6021 With @option{-msupersparc} the compiler optimizes code for the SuperSPARC cpu, as
6022 used in the SPARCStation 10, 1000 and 2000 series.  This flag also enables use
6023 of the full SPARC v8 instruction set.
6024
6025 These options are deprecated and will be deleted in a future GCC release.
6026 They have been replaced with @option{-mcpu=xxx}.
6027
6028 @item -mcpu=@var{cpu_type}
6029 @opindex mcpu
6030 Set the instruction set, register set, and instruction scheduling parameters
6031 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
6032 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite},
6033 @samp{hypersparc}, @samp{sparclite86x}, @samp{f930}, @samp{f934},
6034 @samp{sparclet}, @samp{tsc701}, @samp{v9}, @samp{ultrasparc}, and
6035 @samp{ultrasparc3}.
6036
6037 Default instruction scheduling parameters are used for values that select
6038 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
6039 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
6040
6041 Here is a list of each supported architecture and their supported
6042 implementations.
6043
6044 @smallexample
6045     v7:             cypress
6046     v8:             supersparc, hypersparc
6047     sparclite:      f930, f934, sparclite86x
6048     sparclet:       tsc701
6049     v9:             ultrasparc, ultrasparc3
6050 @end smallexample
6051
6052 @item -mtune=@var{cpu_type}
6053 @opindex mtune
6054 Set the instruction scheduling parameters for machine type
6055 @var{cpu_type}, but do not set the instruction set or register set that the
6056 option @option{-mcpu=@var{cpu_type}} would.
6057
6058 The same values for @option{-mcpu=@var{cpu_type}} can be used for
6059 @option{-mtune=@var{cpu_type}}, but the only useful values are those
6060 that select a particular cpu implementation.  Those are @samp{cypress},
6061 @samp{supersparc}, @samp{hypersparc}, @samp{f930}, @samp{f934},
6062 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc}, and
6063 @samp{ultrasparc3}.
6064
6065 @end table
6066
6067 These @samp{-m} switches are supported in addition to the above
6068 on the SPARCLET processor.
6069
6070 @table @gcctabopt
6071 @item -mlittle-endian
6072 @opindex mlittle-endian
6073 Generate code for a processor running in little-endian mode.
6074
6075 @item -mlive-g0
6076 @opindex mlive-g0
6077 Treat register @code{%g0} as a normal register.
6078 GCC will continue to clobber it as necessary but will not assume
6079 it always reads as 0.
6080
6081 @item -mbroken-saverestore
6082 @opindex mbroken-saverestore
6083 Generate code that does not use non-trivial forms of the @code{save} and
6084 @code{restore} instructions.  Early versions of the SPARCLET processor do
6085 not correctly handle @code{save} and @code{restore} instructions used with
6086 arguments.  They correctly handle them used without arguments.  A @code{save}
6087 instruction used without arguments increments the current window pointer
6088 but does not allocate a new stack frame.  It is assumed that the window
6089 overflow trap handler will properly handle this case as will interrupt
6090 handlers.
6091 @end table
6092
6093 These @samp{-m} switches are supported in addition to the above
6094 on SPARC V9 processors in 64-bit environments.
6095
6096 @table @gcctabopt
6097 @item -mlittle-endian
6098 @opindex mlittle-endian
6099 Generate code for a processor running in little-endian mode.
6100
6101 @item -m32
6102 @itemx -m64
6103 @opindex m32
6104 @opindex m64
6105 Generate code for a 32-bit or 64-bit environment.
6106 The 32-bit environment sets int, long and pointer to 32 bits.
6107 The 64-bit environment sets int to 32 bits and long and pointer
6108 to 64 bits.
6109
6110 @item -mcmodel=medlow
6111 @opindex mcmodel=medlow
6112 Generate code for the Medium/Low code model: the program must be linked
6113 in the low 32 bits of the address space.  Pointers are 64 bits.
6114 Programs can be statically or dynamically linked.
6115
6116 @item -mcmodel=medmid
6117 @opindex mcmodel=medmid
6118 Generate code for the Medium/Middle code model: the program must be linked
6119 in the low 44 bits of the address space, the text segment must be less than
6120 2G bytes, and data segment must be within 2G of the text segment.
6121 Pointers are 64 bits.
6122
6123 @item -mcmodel=medany
6124 @opindex mcmodel=medany
6125 Generate code for the Medium/Anywhere code model: the program may be linked
6126 anywhere in the address space, the text segment must be less than
6127 2G bytes, and data segment must be within 2G of the text segment.
6128 Pointers are 64 bits.
6129
6130 @item -mcmodel=embmedany
6131 @opindex mcmodel=embmedany
6132 Generate code for the Medium/Anywhere code model for embedded systems:
6133 assume a 32-bit text and a 32-bit data segment, both starting anywhere
6134 (determined at link time).  Register %g4 points to the base of the
6135 data segment.  Pointers are still 64 bits.
6136 Programs are statically linked, PIC is not supported.
6137
6138 @item -mstack-bias
6139 @itemx -mno-stack-bias
6140 @opindex mstack-bias
6141 @opindex mno-stack-bias
6142 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
6143 frame pointer if present, are offset by @minus{}2047 which must be added back
6144 when making stack frame references.
6145 Otherwise, assume no such offset is present.
6146 @end table
6147
6148 @node ARM Options
6149 @subsection ARM Options
6150 @cindex ARM options
6151
6152 These @samp{-m} options are defined for Advanced RISC Machines (ARM)
6153 architectures:
6154
6155 @table @gcctabopt
6156 @item -mapcs-frame
6157 @opindex mapcs-frame
6158 Generate a stack frame that is compliant with the ARM Procedure Call
6159 Standard for all functions, even if this is not strictly necessary for
6160 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
6161 with this option will cause the stack frames not to be generated for
6162 leaf functions.  The default is @option{-mno-apcs-frame}.
6163
6164 @item -mapcs
6165 @opindex mapcs
6166 This is a synonym for @option{-mapcs-frame}.
6167
6168 @item -mapcs-26
6169 @opindex mapcs-26
6170 Generate code for a processor running with a 26-bit program counter,
6171 and conforming to the function calling standards for the APCS 26-bit
6172 option.  This option replaces the @option{-m2} and @option{-m3} options
6173 of previous releases of the compiler.
6174
6175 @item -mapcs-32
6176 @opindex mapcs-32
6177 Generate code for a processor running with a 32-bit program counter,
6178 and conforming to the function calling standards for the APCS 32-bit
6179 option.  This option replaces the @option{-m6} option of previous releases
6180 of the compiler.
6181
6182 @ignore
6183 @c not currently implemented
6184 @item -mapcs-stack-check
6185 @opindex mapcs-stack-check
6186 Generate code to check the amount of stack space available upon entry to
6187 every function (that actually uses some stack space).  If there is
6188 insufficient space available then either the function
6189 @samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be
6190 called, depending upon the amount of stack space required.  The run time
6191 system is required to provide these functions.  The default is
6192 @option{-mno-apcs-stack-check}, since this produces smaller code.
6193
6194 @c not currently implemented
6195 @item -mapcs-float
6196 @opindex mapcs-float
6197 Pass floating point arguments using the float point registers.  This is
6198 one of the variants of the APCS@.  This option is recommended if the
6199 target hardware has a floating point unit or if a lot of floating point
6200 arithmetic is going to be performed by the code.  The default is
6201 @option{-mno-apcs-float}, since integer only code is slightly increased in
6202 size if @option{-mapcs-float} is used.
6203
6204 @c not currently implemented
6205 @item -mapcs-reentrant
6206 @opindex mapcs-reentrant
6207 Generate reentrant, position independent code.  The default is
6208 @option{-mno-apcs-reentrant}.
6209 @end ignore
6210
6211 @item -mthumb-interwork
6212 @opindex mthumb-interwork
6213 Generate code which supports calling between the ARM and Thumb
6214 instruction sets.  Without this option the two instruction sets cannot
6215 be reliably used inside one program.  The default is
6216 @option{-mno-thumb-interwork}, since slightly larger code is generated
6217 when @option{-mthumb-interwork} is specified.
6218
6219 @item -mno-sched-prolog
6220 @opindex mno-sched-prolog
6221 Prevent the reordering of instructions in the function prolog, or the
6222 merging of those instruction with the instructions in the function's
6223 body.  This means that all functions will start with a recognizable set
6224 of instructions (or in fact one of a choice from a small set of
6225 different function prologues), and this information can be used to
6226 locate the start if functions inside an executable piece of code.  The
6227 default is @option{-msched-prolog}.
6228
6229 @item -mhard-float
6230 @opindex mhard-float
6231 Generate output containing floating point instructions.  This is the
6232 default.
6233
6234 @item -msoft-float
6235 @opindex msoft-float
6236 Generate output containing library calls for floating point.
6237 @strong{Warning:} the requisite libraries are not available for all ARM
6238 targets.  Normally the facilities of the machine's usual C compiler are
6239 used, but this cannot be done directly in cross-compilation.  You must make
6240 your own arrangements to provide suitable library functions for
6241 cross-compilation.
6242
6243 @option{-msoft-float} changes the calling convention in the output file;
6244 therefore, it is only useful if you compile @emph{all} of a program with
6245 this option.  In particular, you need to compile @file{libgcc.a}, the
6246 library that comes with GCC, with @option{-msoft-float} in order for
6247 this to work.
6248
6249 @item -mlittle-endian
6250 @opindex mlittle-endian
6251 Generate code for a processor running in little-endian mode.  This is
6252 the default for all standard configurations.
6253
6254 @item -mbig-endian
6255 @opindex mbig-endian
6256 Generate code for a processor running in big-endian mode; the default is
6257 to compile code for a little-endian processor.
6258
6259 @item -mwords-little-endian
6260 @opindex mwords-little-endian
6261 This option only applies when generating code for big-endian processors.
6262 Generate code for a little-endian word order but a big-endian byte
6263 order.  That is, a byte order of the form @samp{32107654}.  Note: this
6264 option should only be used if you require compatibility with code for
6265 big-endian ARM processors generated by versions of the compiler prior to
6266 2.8.
6267
6268 @item -malignment-traps
6269 @opindex malignment-traps
6270 Generate code that will not trap if the MMU has alignment traps enabled.
6271 On ARM architectures prior to ARMv4, there were no instructions to
6272 access half-word objects stored in memory.  However, when reading from
6273 memory a feature of the ARM architecture allows a word load to be used,
6274 even if the address is unaligned, and the processor core will rotate the
6275 data as it is being loaded.  This option tells the compiler that such
6276 misaligned accesses will cause a MMU trap and that it should instead
6277 synthesize the access as a series of byte accesses.  The compiler can
6278 still use word accesses to load half-word data if it knows that the
6279 address is aligned to a word boundary.
6280
6281 This option is ignored when compiling for ARM architecture 4 or later,
6282 since these processors have instructions to directly access half-word
6283 objects in memory.
6284
6285 @item -mno-alignment-traps
6286 @opindex mno-alignment-traps
6287 Generate code that assumes that the MMU will not trap unaligned
6288 accesses.  This produces better code when the target instruction set
6289 does not have half-word memory operations (i.e.@: implementations prior to
6290 ARMv4).
6291
6292 Note that you cannot use this option to access unaligned word objects,
6293 since the processor will only fetch one 32-bit aligned object from
6294 memory.
6295
6296 The default setting for most targets is @option{-mno-alignment-traps}, since
6297 this produces better code when there are no half-word memory
6298 instructions available.
6299
6300 @item -mshort-load-bytes
6301 @itemx -mno-short-load-words
6302 @opindex mshort-load-bytes
6303 @opindex mno-short-load-words
6304 These are deprecated aliases for @option{-malignment-traps}.
6305
6306 @item -mno-short-load-bytes
6307 @itemx -mshort-load-words
6308 @opindex mno-short-load-bytes
6309 @opindex mshort-load-words
6310 This are deprecated aliases for @option{-mno-alignment-traps}.
6311
6312 @item -mcpu=@var{name}
6313 @opindex mcpu
6314 This specifies the name of the target ARM processor.  GCC uses this name
6315 to determine what kind of instructions it can emit when generating
6316 assembly code.  Permissible names are: @samp{arm2}, @samp{arm250},
6317 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
6318 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
6319 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
6320 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
6321 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm8},
6322 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
6323 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
6324 @samp{arm920t}, @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi},
6325 @samp{arm1020t}, @samp{xscale}, @samp{ep9312}.
6326
6327 @itemx -mtune=@var{name}
6328 @opindex mtune
6329 This option is very similar to the @option{-mcpu=} option, except that
6330 instead of specifying the actual target processor type, and hence
6331 restricting which instructions can be used, it specifies that GCC should
6332 tune the performance of the code as if the target were of the type
6333 specified in this option, but still choosing the instructions that it
6334 will generate based on the cpu specified by a @option{-mcpu=} option.
6335 For some ARM implementations better performance can be obtained by using
6336 this option.
6337
6338 @item -march=@var{name}
6339 @opindex march
6340 This specifies the name of the target ARM architecture.  GCC uses this
6341 name to determine what kind of instructions it can emit when generating
6342 assembly code.  This option can be used in conjunction with or instead
6343 of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
6344 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
6345 @samp{armv5}, @samp{armv5t}, @samp{armv5te}, @samp{ep9312}.
6346
6347 @item -mfpe=@var{number}
6348 @itemx -mfp=@var{number}
6349 @opindex mfpe
6350 @opindex mfp
6351 This specifies the version of the floating point emulation available on
6352 the target.  Permissible values are 2 and 3.  @option{-mfp=} is a synonym
6353 for @option{-mfpe=}, for compatibility with older versions of GCC@.
6354
6355 @item -mstructure-size-boundary=@var{n}
6356 @opindex mstructure-size-boundary
6357 The size of all structures and unions will be rounded up to a multiple
6358 of the number of bits set by this option.  Permissible values are 8 and
6359 32.  The default value varies for different toolchains.  For the COFF
6360 targeted toolchain the default value is 8.  Specifying the larger number
6361 can produce faster, more efficient code, but can also increase the size
6362 of the program.  The two values are potentially incompatible.  Code
6363 compiled with one value cannot necessarily expect to work with code or
6364 libraries compiled with the other value, if they exchange information
6365 using structures or unions.
6366
6367 @item -mabort-on-noreturn
6368 @opindex mabort-on-noreturn
6369 Generate a call to the function @code{abort} at the end of a
6370 @code{noreturn} function.  It will be executed if the function tries to
6371 return.
6372
6373 @item -mlong-calls
6374 @itemx -mno-long-calls
6375 @opindex mlong-calls
6376 @opindex mno-long-calls
6377 Tells the compiler to perform function calls by first loading the
6378 address of the function into a register and then performing a subroutine
6379 call on this register.  This switch is needed if the target function
6380 will lie outside of the 64 megabyte addressing range of the offset based
6381 version of subroutine call instruction.
6382
6383 Even if this switch is enabled, not all function calls will be turned
6384 into long calls.  The heuristic is that static functions, functions
6385 which have the @samp{short-call} attribute, functions that are inside
6386 the scope of a @samp{#pragma no_long_calls} directive and functions whose
6387 definitions have already been compiled within the current compilation
6388 unit, will not be turned into long calls.  The exception to this rule is
6389 that weak function definitions, functions with the @samp{long-call}
6390 attribute or the @samp{section} attribute, and functions that are within
6391 the scope of a @samp{#pragma long_calls} directive, will always be
6392 turned into long calls.
6393
6394 This feature is not enabled by default.  Specifying
6395 @option{-mno-long-calls} will restore the default behavior, as will
6396 placing the function calls within the scope of a @samp{#pragma
6397 long_calls_off} directive.  Note these switches have no effect on how
6398 the compiler generates code to handle function calls via function
6399 pointers.
6400
6401 @item -mnop-fun-dllimport
6402 @opindex mnop-fun-dllimport
6403 Disable support for the @code{dllimport} attribute.
6404
6405 @item -msingle-pic-base
6406 @opindex msingle-pic-base
6407 Treat the register used for PIC addressing as read-only, rather than
6408 loading it in the prologue for each function.  The run-time system is
6409 responsible for initializing this register with an appropriate value
6410 before execution begins.
6411
6412 @item -mpic-register=@var{reg}
6413 @opindex mpic-register
6414 Specify the register to be used for PIC addressing.  The default is R10
6415 unless stack-checking is enabled, when R9 is used.
6416
6417 @item -mcirrus-fix-invalid-insns
6418 @opindex -mcirrus-fix-invalid-insns
6419 @opindex -mno-cirrus-fix-invalid-insns
6420 Insert NOPs into the instruction stream to in order to work around
6421 problems with invalid Maverick instruction combinations.  This option
6422 is only valid if the @option{-mcpu=ep9312} option has been used to
6423 enable generation of instructions for the Cirrus Maverick floating
6424 point co-processor.  This option is not enabled by default, since the
6425 problem is only present in older Maverick implementations.  The default
6426 can be re-enabled by use of the @option{-mno-cirrus-fix-invalid-insns}
6427 switch.
6428
6429 @item -mpoke-function-name
6430 @opindex mpoke-function-name
6431 Write the name of each function into the text section, directly
6432 preceding the function prologue.  The generated code is similar to this:
6433
6434 @smallexample
6435      t0
6436          .ascii "arm_poke_function_name", 0
6437          .align
6438      t1
6439          .word 0xff000000 + (t1 - t0)
6440      arm_poke_function_name
6441          mov     ip, sp
6442          stmfd   sp!, @{fp, ip, lr, pc@}
6443          sub     fp, ip, #4
6444 @end smallexample
6445
6446 When performing a stack backtrace, code can inspect the value of
6447 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
6448 location @code{pc - 12} and the top 8 bits are set, then we know that
6449 there is a function name embedded immediately preceding this location
6450 and has length @code{((pc[-3]) & 0xff000000)}.
6451
6452 @item -mthumb
6453 @opindex mthumb
6454 Generate code for the 16-bit Thumb instruction set.  The default is to
6455 use the 32-bit ARM instruction set.
6456
6457 @item -mtpcs-frame
6458 @opindex mtpcs-frame
6459 Generate a stack frame that is compliant with the Thumb Procedure Call
6460 Standard for all non-leaf functions.  (A leaf function is one that does
6461 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
6462
6463 @item -mtpcs-leaf-frame
6464 @opindex mtpcs-leaf-frame
6465 Generate a stack frame that is compliant with the Thumb Procedure Call
6466 Standard for all leaf functions.  (A leaf function is one that does
6467 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
6468
6469 @item -mcallee-super-interworking
6470 @opindex mcallee-super-interworking
6471 Gives all externally visible functions in the file being compiled an ARM
6472 instruction set header which switches to Thumb mode before executing the
6473 rest of the function.  This allows these functions to be called from
6474 non-interworking code.
6475
6476 @item -mcaller-super-interworking
6477 @opindex mcaller-super-interworking
6478 Allows calls via function pointers (including virtual functions) to
6479 execute correctly regardless of whether the target code has been
6480 compiled for interworking or not.  There is a small overhead in the cost
6481 of executing a function pointer if this option is enabled.
6482
6483 @end table
6484
6485 @node MN10200 Options
6486 @subsection MN10200 Options
6487 @cindex MN10200 options
6488
6489 These @option{-m} options are defined for Matsushita MN10200 architectures:
6490 @table @gcctabopt
6491
6492 @item -mrelax
6493 @opindex mrelax
6494 Indicate to the linker that it should perform a relaxation optimization pass
6495 to shorten branches, calls and absolute memory addresses.  This option only
6496 has an effect when used on the command line for the final link step.
6497
6498 This option makes symbolic debugging impossible.
6499 @end table
6500
6501 @node MN10300 Options
6502 @subsection MN10300 Options
6503 @cindex MN10300 options
6504
6505 These @option{-m} options are defined for Matsushita MN10300 architectures:
6506
6507 @table @gcctabopt
6508 @item -mmult-bug
6509 @opindex mmult-bug
6510 Generate code to avoid bugs in the multiply instructions for the MN10300
6511 processors.  This is the default.
6512
6513 @item -mno-mult-bug
6514 @opindex mno-mult-bug
6515 Do not generate code to avoid bugs in the multiply instructions for the
6516 MN10300 processors.
6517
6518 @item -mam33
6519 @opindex mam33
6520 Generate code which uses features specific to the AM33 processor.
6521
6522 @item -mno-am33
6523 @opindex mno-am33
6524 Do not generate code which uses features specific to the AM33 processor.  This
6525 is the default.
6526
6527 @item -mno-crt0
6528 @opindex mno-crt0
6529 Do not link in the C run-time initialization object file.
6530
6531 @item -mrelax
6532 @opindex mrelax
6533 Indicate to the linker that it should perform a relaxation optimization pass
6534 to shorten branches, calls and absolute memory addresses.  This option only
6535 has an effect when used on the command line for the final link step.
6536
6537 This option makes symbolic debugging impossible.
6538 @end table
6539
6540
6541 @node M32R/D Options
6542 @subsection M32R/D Options
6543 @cindex M32R/D options
6544
6545 These @option{-m} options are defined for Mitsubishi M32R/D architectures:
6546
6547 @table @gcctabopt
6548 @item -m32rx
6549 @opindex m32rx
6550 Generate code for the M32R/X@.
6551
6552 @item -m32r
6553 @opindex m32r
6554 Generate code for the M32R@.  This is the default.
6555
6556 @item -mcode-model=small
6557 @opindex mcode-model=small
6558 Assume all objects live in the lower 16MB of memory (so that their addresses
6559 can be loaded with the @code{ld24} instruction), and assume all subroutines
6560 are reachable with the @code{bl} instruction.
6561 This is the default.
6562
6563 The addressability of a particular object can be set with the
6564 @code{model} attribute.
6565
6566 @item -mcode-model=medium
6567 @opindex mcode-model=medium
6568 Assume objects may be anywhere in the 32-bit address space (the compiler
6569 will generate @code{seth/add3} instructions to load their addresses), and
6570 assume all subroutines are reachable with the @code{bl} instruction.
6571
6572 @item -mcode-model=large
6573 @opindex mcode-model=large
6574 Assume objects may be anywhere in the 32-bit address space (the compiler
6575 will generate @code{seth/add3} instructions to load their addresses), and
6576 assume subroutines may not be reachable with the @code{bl} instruction
6577 (the compiler will generate the much slower @code{seth/add3/jl}
6578 instruction sequence).
6579
6580 @item -msdata=none
6581 @opindex msdata=none
6582 Disable use of the small data area.  Variables will be put into
6583 one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the
6584 @code{section} attribute has been specified).
6585 This is the default.
6586
6587 The small data area consists of sections @samp{.sdata} and @samp{.sbss}.
6588 Objects may be explicitly put in the small data area with the
6589 @code{section} attribute using one of these sections.
6590
6591 @item -msdata=sdata
6592 @opindex msdata=sdata
6593 Put small global and static data in the small data area, but do not
6594 generate special code to reference them.
6595
6596 @item -msdata=use
6597 @opindex msdata=use
6598 Put small global and static data in the small data area, and generate
6599 special instructions to reference them.
6600
6601 @item -G @var{num}
6602 @opindex G
6603 @cindex smaller data references
6604 Put global and static objects less than or equal to @var{num} bytes
6605 into the small data or bss sections instead of the normal data or bss
6606 sections.  The default value of @var{num} is 8.
6607 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
6608 for this option to have any effect.
6609
6610 All modules should be compiled with the same @option{-G @var{num}} value.
6611 Compiling with different values of @var{num} may or may not work; if it
6612 doesn't the linker will give an error message---incorrect code will not be
6613 generated.
6614
6615 @end table
6616
6617 @node M88K Options
6618 @subsection M88K Options
6619 @cindex M88k options
6620
6621 These @samp{-m} options are defined for Motorola 88k architectures:
6622
6623 @table @gcctabopt
6624 @item -m88000
6625 @opindex m88000
6626 Generate code that works well on both the m88100 and the
6627 m88110.
6628
6629 @item -m88100
6630 @opindex m88100
6631 Generate code that works best for the m88100, but that also
6632 runs on the m88110.
6633
6634 @item -m88110
6635 @opindex m88110
6636 Generate code that works best for the m88110, and may not run
6637 on the m88100.
6638
6639 @item -mbig-pic
6640 @opindex mbig-pic
6641 Obsolete option to be removed from the next revision.
6642 Use @option{-fPIC}.
6643
6644 @item -midentify-revision
6645 @opindex midentify-revision
6646 @cindex identifying source, compiler (88k)
6647 Include an @code{ident} directive in the assembler output recording the
6648 source file name, compiler name and version, timestamp, and compilation
6649 flags used.
6650
6651 @item -mno-underscores
6652 @opindex mno-underscores
6653 @cindex underscores, avoiding (88k)
6654 In assembler output, emit symbol names without adding an underscore
6655 character at the beginning of each name.  The default is to use an
6656 underscore as prefix on each name.
6657
6658 @item -mocs-debug-info
6659 @itemx -mno-ocs-debug-info
6660 @opindex mocs-debug-info
6661 @opindex mno-ocs-debug-info
6662 @cindex OCS (88k)
6663 @cindex debugging, 88k OCS
6664 Include (or omit) additional debugging information (about registers used
6665 in each stack frame) as specified in the 88open Object Compatibility
6666 Standard, ``OCS''@.  This extra information allows debugging of code that
6667 has had the frame pointer eliminated.  The default for SVr4 and Delta 88
6668 SVr3.2 is to include this information; other 88k configurations omit this
6669 information by default.
6670
6671 @item -mocs-frame-position
6672 @opindex mocs-frame-position
6673 @cindex register positions in frame (88k)
6674 When emitting COFF debugging information for automatic variables and
6675 parameters stored on the stack, use the offset from the canonical frame
6676 address, which is the stack pointer (register 31) on entry to the
6677 function.  The SVr4 and Delta88 SVr3.2, and BCS configurations use
6678 @option{-mocs-frame-position}; other 88k configurations have the default
6679 @option{-mno-ocs-frame-position}.
6680
6681 @item -mno-ocs-frame-position
6682 @opindex mno-ocs-frame-position
6683 @cindex register positions in frame (88k)
6684 When emitting COFF debugging information for automatic variables and
6685 parameters stored on the stack, use the offset from the frame pointer
6686 register (register 30).  When this option is in effect, the frame
6687 pointer is not eliminated when debugging information is selected by the
6688 -g switch.
6689
6690 @item -moptimize-arg-area
6691 @opindex moptimize-arg-area
6692 @cindex arguments in frame (88k)
6693 Save space by reorganizing the stack frame.  This option generates code
6694 that does not agree with the 88open specifications, but uses less
6695 memory.
6696
6697 @itemx -mno-optimize-arg-area
6698 @opindex mno-optimize-arg-area
6699 Do not reorganize the stack frame to save space.  This is the default.
6700 The generated conforms to the specification, but uses more memory.
6701
6702 @item -mshort-data-@var{num}
6703 @opindex mshort-data
6704 @cindex smaller data references (88k)
6705 @cindex r0-relative references (88k)
6706 Generate smaller data references by making them relative to @code{r0},
6707 which allows loading a value using a single instruction (rather than the
6708 usual two).  You control which data references are affected by
6709 specifying @var{num} with this option.  For example, if you specify
6710 @option{-mshort-data-512}, then the data references affected are those
6711 involving displacements of less than 512 bytes.
6712 @option{-mshort-data-@var{num}} is not effective for @var{num} greater
6713 than 64k.
6714
6715 @item -mserialize-volatile
6716 @opindex mserialize-volatile
6717 @itemx -mno-serialize-volatile
6718 @opindex mno-serialize-volatile
6719 @cindex sequential consistency on 88k
6720 Do, or don't, generate code to guarantee sequential consistency
6721 of volatile memory references.  By default, consistency is
6722 guaranteed.
6723
6724 The order of memory references made by the MC88110 processor does
6725 not always match the order of the instructions requesting those
6726 references.  In particular, a load instruction may execute before
6727 a preceding store instruction.  Such reordering violates
6728 sequential consistency of volatile memory references, when there
6729 are multiple processors.   When consistency must be guaranteed,
6730 GCC generates special instructions, as needed, to force
6731 execution in the proper order.
6732
6733 The MC88100 processor does not reorder memory references and so
6734 always provides sequential consistency.  However, by default, GCC
6735 generates the special instructions to guarantee consistency
6736 even when you use @option{-m88100}, so that the code may be run on an
6737 MC88110 processor.  If you intend to run your code only on the
6738 MC88100 processor, you may use @option{-mno-serialize-volatile}.
6739
6740 The extra code generated to guarantee consistency may affect the
6741 performance of your application.  If you know that you can safely
6742 forgo this guarantee, you may use @option{-mno-serialize-volatile}.
6743
6744 @item -msvr4
6745 @itemx -msvr3
6746 @opindex msvr4
6747 @opindex msvr3
6748 @cindex assembler syntax, 88k
6749 @cindex SVr4
6750 Turn on (@option{-msvr4}) or off (@option{-msvr3}) compiler extensions
6751 related to System V release 4 (SVr4).  This controls the following:
6752
6753 @enumerate
6754 @item
6755 Which variant of the assembler syntax to emit.
6756 @item
6757 @option{-msvr4} makes the C preprocessor recognize @samp{#pragma weak}
6758 that is used on System V release 4.
6759 @item
6760 @option{-msvr4} makes GCC issue additional declaration directives used in
6761 SVr4.
6762 @end enumerate
6763
6764 @option{-msvr4} is the default for the m88k-motorola-sysv4 configuration.
6765 @option{-msvr3} is the default for all other m88k configurations.
6766
6767 @item -mversion-03.00
6768 @opindex mversion-03.00
6769 This option is obsolete, and is ignored.
6770 @c ??? which asm syntax better for GAS?  option there too?
6771
6772 @item -mno-check-zero-division
6773 @itemx -mcheck-zero-division
6774 @opindex mno-check-zero-division
6775 @opindex mcheck-zero-division
6776 @cindex zero division on 88k
6777 Do, or don't, generate code to guarantee that integer division by
6778 zero will be detected.  By default, detection is guaranteed.
6779
6780 Some models of the MC88100 processor fail to trap upon integer
6781 division by zero under certain conditions.  By default, when
6782 compiling code that might be run on such a processor, GCC
6783 generates code that explicitly checks for zero-valued divisors
6784 and traps with exception number 503 when one is detected.  Use of
6785 @option{-mno-check-zero-division} suppresses such checking for code
6786 generated to run on an MC88100 processor.
6787
6788 GCC assumes that the MC88110 processor correctly detects all instances
6789 of integer division by zero.  When @option{-m88110} is specified, no
6790 explicit checks for zero-valued divisors are generated, and both
6791 @option{-mcheck-zero-division} and @option{-mno-check-zero-division} are
6792 ignored.
6793
6794 @item -muse-div-instruction
6795 @opindex muse-div-instruction
6796 @cindex divide instruction, 88k
6797 Use the div instruction for signed integer division on the
6798 MC88100 processor.  By default, the div instruction is not used.
6799
6800 On the MC88100 processor the signed integer division instruction
6801 div) traps to the operating system on a negative operand.  The
6802 operating system transparently completes the operation, but at a
6803 large cost in execution time.  By default, when compiling code
6804 that might be run on an MC88100 processor, GCC emulates signed
6805 integer division using the unsigned integer division instruction
6806 divu), thereby avoiding the large penalty of a trap to the
6807 operating system.  Such emulation has its own, smaller, execution
6808 cost in both time and space.  To the extent that your code's
6809 important signed integer division operations are performed on two
6810 nonnegative operands, it may be desirable to use the div
6811 instruction directly.
6812
6813 On the MC88110 processor the div instruction (also known as the
6814 divs instruction) processes negative operands without trapping to
6815 the operating system.  When @option{-m88110} is specified,
6816 @option{-muse-div-instruction} is ignored, and the div instruction is used
6817 for signed integer division.
6818
6819 Note that the result of dividing @code{INT_MIN} by @minus{}1 is undefined.  In
6820 particular, the behavior of such a division with and without
6821 @option{-muse-div-instruction} may differ.
6822
6823 @item -mtrap-large-shift
6824 @itemx -mhandle-large-shift
6825 @opindex mtrap-large-shift
6826 @opindex mhandle-large-shift
6827 @cindex bit shift overflow (88k)
6828 @cindex large bit shifts (88k)
6829 Include code to detect bit-shifts of more than 31 bits; respectively,
6830 trap such shifts or emit code to handle them properly.  By default GCC
6831 makes no special provision for large bit shifts.
6832
6833 @item -mwarn-passed-structs
6834 @opindex mwarn-passed-structs
6835 @cindex structure passing (88k)
6836 Warn when a function passes a struct as an argument or result.
6837 Structure-passing conventions have changed during the evolution of the C
6838 language, and are often the source of portability problems.  By default,
6839 GCC issues no such warning.
6840 @end table
6841
6842 @c break page here to avoid unsightly interparagraph stretch.
6843 @c -zw, 2001-8-17
6844 @page
6845
6846 @node RS/6000 and PowerPC Options
6847 @subsection IBM RS/6000 and PowerPC Options
6848 @cindex RS/6000 and PowerPC Options
6849 @cindex IBM RS/6000 and PowerPC Options
6850
6851 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
6852 @table @gcctabopt
6853 @item -mpower
6854 @itemx -mno-power
6855 @itemx -mpower2
6856 @itemx -mno-power2
6857 @itemx -mpowerpc
6858 @itemx -mno-powerpc
6859 @itemx -mpowerpc-gpopt
6860 @itemx -mno-powerpc-gpopt
6861 @itemx -mpowerpc-gfxopt
6862 @itemx -mno-powerpc-gfxopt
6863 @itemx -mpowerpc64
6864 @itemx -mno-powerpc64
6865 @opindex mpower
6866 @opindex mno-power
6867 @opindex mpower2
6868 @opindex mno-power2
6869 @opindex mpowerpc
6870 @opindex mno-powerpc
6871 @opindex mpowerpc-gpopt
6872 @opindex mno-powerpc-gpopt
6873 @opindex mpowerpc-gfxopt
6874 @opindex mno-powerpc-gfxopt
6875 @opindex mpowerpc64
6876 @opindex mno-powerpc64
6877 GCC supports two related instruction set architectures for the
6878 RS/6000 and PowerPC@.  The @dfn{POWER} instruction set are those
6879 instructions supported by the @samp{rios} chip set used in the original
6880 RS/6000 systems and the @dfn{PowerPC} instruction set is the
6881 architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
6882 the IBM 4xx microprocessors.
6883
6884 Neither architecture is a subset of the other.  However there is a
6885 large common subset of instructions supported by both.  An MQ
6886 register is included in processors supporting the POWER architecture.
6887
6888 You use these options to specify which instructions are available on the
6889 processor you are using.  The default value of these options is
6890 determined when configuring GCC@.  Specifying the
6891 @option{-mcpu=@var{cpu_type}} overrides the specification of these
6892 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
6893 rather than the options listed above.
6894
6895 The @option{-mpower} option allows GCC to generate instructions that
6896 are found only in the POWER architecture and to use the MQ register.
6897 Specifying @option{-mpower2} implies @option{-power} and also allows GCC
6898 to generate instructions that are present in the POWER2 architecture but
6899 not the original POWER architecture.
6900
6901 The @option{-mpowerpc} option allows GCC to generate instructions that
6902 are found only in the 32-bit subset of the PowerPC architecture.
6903 Specifying @option{-mpowerpc-gpopt} implies @option{-mpowerpc} and also allows
6904 GCC to use the optional PowerPC architecture instructions in the
6905 General Purpose group, including floating-point square root.  Specifying
6906 @option{-mpowerpc-gfxopt} implies @option{-mpowerpc} and also allows GCC to
6907 use the optional PowerPC architecture instructions in the Graphics
6908 group, including floating-point select.
6909
6910 The @option{-mpowerpc64} option allows GCC to generate the additional
6911 64-bit instructions that are found in the full PowerPC64 architecture
6912 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
6913 @option{-mno-powerpc64}.
6914
6915 If you specify both @option{-mno-power} and @option{-mno-powerpc}, GCC
6916 will use only the instructions in the common subset of both
6917 architectures plus some special AIX common-mode calls, and will not use
6918 the MQ register.  Specifying both @option{-mpower} and @option{-mpowerpc}
6919 permits GCC to use any instruction from either architecture and to
6920 allow use of the MQ register; specify this for the Motorola MPC601.
6921
6922 @item -mnew-mnemonics
6923 @itemx -mold-mnemonics
6924 @opindex mnew-mnemonics
6925 @opindex mold-mnemonics
6926 Select which mnemonics to use in the generated assembler code.  With
6927 @option{-mnew-mnemonics}, GCC uses the assembler mnemonics defined for
6928 the PowerPC architecture.  With @option{-mold-mnemonics} it uses the
6929 assembler mnemonics defined for the POWER architecture.  Instructions
6930 defined in only one architecture have only one mnemonic; GCC uses that
6931 mnemonic irrespective of which of these options is specified.
6932
6933 GCC defaults to the mnemonics appropriate for the architecture in
6934 use.  Specifying @option{-mcpu=@var{cpu_type}} sometimes overrides the
6935 value of these option.  Unless you are building a cross-compiler, you
6936 should normally not specify either @option{-mnew-mnemonics} or
6937 @option{-mold-mnemonics}, but should instead accept the default.
6938
6939 @item -mcpu=@var{cpu_type}
6940 @opindex mcpu
6941 Set architecture type, register usage, choice of mnemonics, and
6942 instruction scheduling parameters for machine type @var{cpu_type}.
6943 Supported values for @var{cpu_type} are @samp{rios}, @samp{rios1},
6944 @samp{rsc}, @samp{rios2}, @samp{rs64a}, @samp{601}, @samp{602},
6945 @samp{603}, @samp{603e}, @samp{604}, @samp{604e}, @samp{620},
6946 @samp{630}, @samp{740}, @samp{7400}, @samp{7450}, @samp{750},
6947 @samp{power}, @samp{power2}, @samp{powerpc}, @samp{403}, @samp{505},
6948 @samp{801}, @samp{821}, @samp{823}, and @samp{860} and @samp{common}.
6949
6950 @option{-mcpu=common} selects a completely generic processor.  Code
6951 generated under this option will run on any POWER or PowerPC processor.
6952 GCC will use only the instructions in the common subset of both
6953 architectures, and will not use the MQ register.  GCC assumes a generic
6954 processor model for scheduling purposes.
6955
6956 @option{-mcpu=power}, @option{-mcpu=power2}, @option{-mcpu=powerpc}, and
6957 @option{-mcpu=powerpc64} specify generic POWER, POWER2, pure 32-bit
6958 PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine
6959 types, with an appropriate, generic processor model assumed for
6960 scheduling purposes.
6961
6962 The other options specify a specific processor.  Code generated under
6963 those options will run best on that processor, and may not run at all on
6964 others.
6965
6966 The @option{-mcpu} options automatically enable or disable other
6967 @option{-m} options as follows:
6968
6969 @table @samp
6970 @item common
6971 @option{-mno-power}, @option{-mno-powerpc}
6972
6973 @item power
6974 @itemx power2
6975 @itemx rios1
6976 @itemx rios2
6977 @itemx rsc
6978 @option{-mpower}, @option{-mno-powerpc}, @option{-mno-new-mnemonics}
6979
6980 @item powerpc
6981 @itemx rs64a
6982 @itemx 602
6983 @itemx 603
6984 @itemx 603e
6985 @itemx 604
6986 @itemx 620
6987 @itemx 630
6988 @itemx 740
6989 @itemx 7400
6990 @itemx 7450
6991 @itemx 750
6992 @itemx 505
6993 @option{-mno-power}, @option{-mpowerpc}, @option{-mnew-mnemonics}
6994
6995 @item 601
6996 @option{-mpower}, @option{-mpowerpc}, @option{-mnew-mnemonics}
6997
6998 @item 403
6999 @itemx 821
7000 @itemx 860
7001 @option{-mno-power}, @option{-mpowerpc}, @option{-mnew-mnemonics}, @option{-msoft-float}
7002 @end table
7003
7004 @item -mtune=@var{cpu_type}
7005 @opindex mtune
7006 Set the instruction scheduling parameters for machine type
7007 @var{cpu_type}, but do not set the architecture type, register usage, or
7008 choice of mnemonics, as @option{-mcpu=@var{cpu_type}} would.  The same
7009 values for @var{cpu_type} are used for @option{-mtune} as for
7010 @option{-mcpu}.  If both are specified, the code generated will use the
7011 architecture, registers, and mnemonics set by @option{-mcpu}, but the
7012 scheduling parameters set by @option{-mtune}.
7013
7014 @item -maltivec
7015 @itemx -mno-altivec
7016 @opindex maltivec
7017 @opindex mno-altivec
7018 These switches enable or disable the use of built-in functions that
7019 allow access to the AltiVec instruction set.  You may also need to set
7020 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
7021 enhancements.
7022
7023 @item -mabi=spe
7024 @opindex mabi=spe
7025 Extend the current ABI with SPE ABI extensions.  This does not change
7026 the default ABI, instead it adds the SPE ABI extensions to the current
7027 ABI@.
7028
7029 @item -mabi=no-spe
7030 @opindex mabi=no-spe
7031 Disable Booke SPE ABI extensions for the current ABI.
7032
7033 @item -misel=@var{yes/no}
7034 @itemx -misel
7035 @opindex misel
7036 This switch enables or disables the generation of ISEL instructions.
7037
7038 @item -mspe=@var{yes/no}
7039 @itemx -mspe
7040 @opindex mspe
7041 This switch enables or disables the generation of SPE simd
7042 instructions.
7043
7044 @item -mfloat-gprs=@var{yes/no}
7045 @itemx -mfloat-gprs
7046 @opindex mfloat-gprs
7047 This switch enables or disables the generation of floating point
7048 operations on the general purpose registers for architectures that
7049 support it.  This option is currently only available on the MPC8540.
7050
7051 @item -mfull-toc
7052 @itemx -mno-fp-in-toc
7053 @itemx -mno-sum-in-toc
7054 @itemx -mminimal-toc
7055 @opindex mfull-toc
7056 @opindex mno-fp-in-toc
7057 @opindex mno-sum-in-toc
7058 @opindex mminimal-toc
7059 Modify generation of the TOC (Table Of Contents), which is created for
7060 every executable file.  The @option{-mfull-toc} option is selected by
7061 default.  In that case, GCC will allocate at least one TOC entry for
7062 each unique non-automatic variable reference in your program.  GCC
7063 will also place floating-point constants in the TOC@.  However, only
7064 16,384 entries are available in the TOC@.
7065
7066 If you receive a linker error message that saying you have overflowed
7067 the available TOC space, you can reduce the amount of TOC space used
7068 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
7069 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
7070 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
7071 generate code to calculate the sum of an address and a constant at
7072 run-time instead of putting that sum into the TOC@.  You may specify one
7073 or both of these options.  Each causes GCC to produce very slightly
7074 slower and larger code at the expense of conserving TOC space.
7075
7076 If you still run out of space in the TOC even when you specify both of
7077 these options, specify @option{-mminimal-toc} instead.  This option causes
7078 GCC to make only one TOC entry for every file.  When you specify this
7079 option, GCC will produce code that is slower and larger but which
7080 uses extremely little TOC space.  You may wish to use this option
7081 only on files that contain less frequently executed code.
7082
7083 @item -maix64
7084 @itemx -maix32
7085 @opindex maix64
7086 @opindex maix32
7087 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
7088 @code{long} type, and the infrastructure needed to support them.
7089 Specifying @option{-maix64} implies @option{-mpowerpc64} and
7090 @option{-mpowerpc}, while @option{-maix32} disables the 64-bit ABI and
7091 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
7092
7093 @item -mxl-call
7094 @itemx -mno-xl-call
7095 @opindex mxl-call
7096 @opindex mno-xl-call
7097 On AIX, pass floating-point arguments to prototyped functions beyond the
7098 register save area (RSA) on the stack in addition to argument FPRs.  The
7099 AIX calling convention was extended but not initially documented to
7100 handle an obscure K&R C case of calling a function that takes the
7101 address of its arguments with fewer arguments than declared.  AIX XL
7102 compilers access floating point arguments which do not fit in the
7103 RSA from the stack when a subroutine is compiled without
7104 optimization.  Because always storing floating-point arguments on the
7105 stack is inefficient and rarely needed, this option is not enabled by
7106 default and only is necessary when calling subroutines compiled by AIX
7107 XL compilers without optimization.
7108
7109 @item -mpe
7110 @opindex mpe
7111 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
7112 application written to use message passing with special startup code to
7113 enable the application to run.  The system must have PE installed in the
7114 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
7115 must be overridden with the @option{-specs=} option to specify the
7116 appropriate directory location.  The Parallel Environment does not
7117 support threads, so the @option{-mpe} option and the @option{-pthread}
7118 option are incompatible.
7119
7120 @item -malign-natural
7121 @itemx -malign-power
7122 @opindex malign-natural
7123 @opindex malign-power
7124 On AIX, Darwin, and 64-bit PowerPC Linux, the option
7125 @option{-malign-natural} overrides the ABI-defined alignment of larger
7126 types, such as floating-point doubles, on their natural size-based boundary.
7127 The option @option{-malign-power} instructs GCC to follow the ABI-specified
7128 alignment rules.  GCC defaults to the standard alignment defined in the ABI.
7129
7130 @item -msoft-float
7131 @itemx -mhard-float
7132 @opindex msoft-float
7133 @opindex mhard-float
7134 Generate code that does not use (uses) the floating-point register set.
7135 Software floating point emulation is provided if you use the
7136 @option{-msoft-float} option, and pass the option to GCC when linking.
7137
7138 @item -mmultiple
7139 @itemx -mno-multiple
7140 @opindex mmultiple
7141 @opindex mno-multiple
7142 Generate code that uses (does not use) the load multiple word
7143 instructions and the store multiple word instructions.  These
7144 instructions are generated by default on POWER systems, and not
7145 generated on PowerPC systems.  Do not use @option{-mmultiple} on little
7146 endian PowerPC systems, since those instructions do not work when the
7147 processor is in little endian mode.  The exceptions are PPC740 and
7148 PPC750 which permit the instructions usage in little endian mode.
7149
7150 @item -mstring
7151 @itemx -mno-string
7152 @opindex mstring
7153 @opindex mno-string
7154 Generate code that uses (does not use) the load string instructions
7155 and the store string word instructions to save multiple registers and
7156 do small block moves.  These instructions are generated by default on
7157 POWER systems, and not generated on PowerPC systems.  Do not use
7158 @option{-mstring} on little endian PowerPC systems, since those
7159 instructions do not work when the processor is in little endian mode.
7160 The exceptions are PPC740 and PPC750 which permit the instructions
7161 usage in little endian mode.
7162
7163 @item -mupdate
7164 @itemx -mno-update
7165 @opindex mupdate
7166 @opindex mno-update
7167 Generate code that uses (does not use) the load or store instructions
7168 that update the base register to the address of the calculated memory
7169 location.  These instructions are generated by default.  If you use
7170 @option{-mno-update}, there is a small window between the time that the
7171 stack pointer is updated and the address of the previous frame is
7172 stored, which means code that walks the stack frame across interrupts or
7173 signals may get corrupted data.
7174
7175 @item -mfused-madd
7176 @itemx -mno-fused-madd
7177 @opindex mfused-madd
7178 @opindex mno-fused-madd
7179 Generate code that uses (does not use) the floating point multiply and
7180 accumulate instructions.  These instructions are generated by default if
7181 hardware floating is used.
7182
7183 @item -mno-bit-align
7184 @itemx -mbit-align
7185 @opindex mno-bit-align
7186 @opindex mbit-align
7187 On System V.4 and embedded PowerPC systems do not (do) force structures
7188 and unions that contain bit-fields to be aligned to the base type of the
7189 bit-field.
7190
7191 For example, by default a structure containing nothing but 8
7192 @code{unsigned} bit-fields of length 1 would be aligned to a 4 byte
7193 boundary and have a size of 4 bytes.  By using @option{-mno-bit-align},
7194 the structure would be aligned to a 1 byte boundary and be one byte in
7195 size.
7196
7197 @item -mno-strict-align
7198 @itemx -mstrict-align
7199 @opindex mno-strict-align
7200 @opindex mstrict-align
7201 On System V.4 and embedded PowerPC systems do not (do) assume that
7202 unaligned memory references will be handled by the system.
7203
7204 @item -mrelocatable
7205 @itemx -mno-relocatable
7206 @opindex mrelocatable
7207 @opindex mno-relocatable
7208 On embedded PowerPC systems generate code that allows (does not allow)
7209 the program to be relocated to a different address at runtime.  If you
7210 use @option{-mrelocatable} on any module, all objects linked together must
7211 be compiled with @option{-mrelocatable} or @option{-mrelocatable-lib}.
7212
7213 @item -mrelocatable-lib
7214 @itemx -mno-relocatable-lib
7215 @opindex mrelocatable-lib
7216 @opindex mno-relocatable-lib
7217 On embedded PowerPC systems generate code that allows (does not allow)
7218 the program to be relocated to a different address at runtime.  Modules
7219 compiled with @option{-mrelocatable-lib} can be linked with either modules
7220 compiled without @option{-mrelocatable} and @option{-mrelocatable-lib} or
7221 with modules compiled with the @option{-mrelocatable} options.
7222
7223 @item -mno-toc
7224 @itemx -mtoc
7225 @opindex mno-toc
7226 @opindex mtoc
7227 On System V.4 and embedded PowerPC systems do not (do) assume that
7228 register 2 contains a pointer to a global area pointing to the addresses
7229 used in the program.
7230
7231 @item -mlittle
7232 @itemx -mlittle-endian
7233 @opindex mlittle
7234 @opindex mlittle-endian
7235 On System V.4 and embedded PowerPC systems compile code for the
7236 processor in little endian mode.  The @option{-mlittle-endian} option is
7237 the same as @option{-mlittle}.
7238
7239 @item -mbig
7240 @itemx -mbig-endian
7241 @opindex mbig
7242 @opindex mbig-endian
7243 On System V.4 and embedded PowerPC systems compile code for the
7244 processor in big endian mode.  The @option{-mbig-endian} option is
7245 the same as @option{-mbig}.
7246
7247 @item -mdynamic-no-pic
7248 @opindex mdynamic-no-pic
7249 On Darwin and Mac OS X systems, compile code so that it is not
7250 relocatable, but that its external references are relocatable.  The
7251 resulting code is suitable for applications, but not shared
7252 libraries.
7253
7254 @item -mcall-sysv
7255 @opindex mcall-sysv
7256 On System V.4 and embedded PowerPC systems compile code using calling
7257 conventions that adheres to the March 1995 draft of the System V
7258 Application Binary Interface, PowerPC processor supplement.  This is the
7259 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
7260
7261 @item -mcall-sysv-eabi
7262 @opindex mcall-sysv-eabi
7263 Specify both @option{-mcall-sysv} and @option{-meabi} options.
7264
7265 @item -mcall-sysv-noeabi
7266 @opindex mcall-sysv-noeabi
7267 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
7268
7269 @item -mcall-solaris
7270 @opindex mcall-solaris
7271 On System V.4 and embedded PowerPC systems compile code for the Solaris
7272 operating system.
7273
7274 @item -mcall-linux
7275 @opindex mcall-linux
7276 On System V.4 and embedded PowerPC systems compile code for the
7277 Linux-based GNU system.
7278
7279 @item -mcall-gnu
7280 @opindex mcall-gnu
7281 On System V.4 and embedded PowerPC systems compile code for the
7282 Hurd-based GNU system.
7283
7284 @item -mcall-netbsd
7285 @opindex mcall-netbsd
7286 On System V.4 and embedded PowerPC systems compile code for the
7287 NetBSD operating system.
7288
7289 @item -maix-struct-return
7290 @opindex maix-struct-return
7291 Return all structures in memory (as specified by the AIX ABI)@.
7292
7293 @item -msvr4-struct-return
7294 @opindex msvr4-struct-return
7295 Return structures smaller than 8 bytes in registers (as specified by the
7296 SVR4 ABI)@.
7297
7298 @item -mabi=altivec
7299 @opindex mabi=altivec
7300 Extend the current ABI with AltiVec ABI extensions.  This does not
7301 change the default ABI, instead it adds the AltiVec ABI extensions to
7302 the current ABI@.
7303
7304 @item -mabi=no-altivec
7305 @opindex mabi=no-altivec
7306 Disable AltiVec ABI extensions for the current ABI.
7307
7308 @item -mprototype
7309 @itemx -mno-prototype
7310 @opindex mprototype
7311 @opindex mno-prototype
7312 On System V.4 and embedded PowerPC systems assume that all calls to
7313 variable argument functions are properly prototyped.  Otherwise, the
7314 compiler must insert an instruction before every non prototyped call to
7315 set or clear bit 6 of the condition code register (@var{CR}) to
7316 indicate whether floating point values were passed in the floating point
7317 registers in case the function takes a variable arguments.  With
7318 @option{-mprototype}, only calls to prototyped variable argument functions
7319 will set or clear the bit.
7320
7321 @item -msim
7322 @opindex msim
7323 On embedded PowerPC systems, assume that the startup module is called
7324 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
7325 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}.
7326 configurations.
7327
7328 @item -mmvme
7329 @opindex mmvme
7330 On embedded PowerPC systems, assume that the startup module is called
7331 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
7332 @file{libc.a}.
7333
7334 @item -mads
7335 @opindex mads
7336 On embedded PowerPC systems, assume that the startup module is called
7337 @file{crt0.o} and the standard C libraries are @file{libads.a} and
7338 @file{libc.a}.
7339
7340 @item -myellowknife
7341 @opindex myellowknife
7342 On embedded PowerPC systems, assume that the startup module is called
7343 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
7344 @file{libc.a}.
7345
7346 @item -mvxworks
7347 @opindex mvxworks
7348 On System V.4 and embedded PowerPC systems, specify that you are
7349 compiling for a VxWorks system.
7350
7351 @item -mwindiss
7352 @opindex mwindiss
7353 Specify that you are compiling for the WindISS simulation environment.
7354
7355 @item -memb
7356 @opindex memb
7357 On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags
7358 header to indicate that @samp{eabi} extended relocations are used.
7359
7360 @item -meabi
7361 @itemx -mno-eabi
7362 @opindex meabi
7363 @opindex mno-eabi
7364 On System V.4 and embedded PowerPC systems do (do not) adhere to the
7365 Embedded Applications Binary Interface (eabi) which is a set of
7366 modifications to the System V.4 specifications.  Selecting @option{-meabi}
7367 means that the stack is aligned to an 8 byte boundary, a function
7368 @code{__eabi} is called to from @code{main} to set up the eabi
7369 environment, and the @option{-msdata} option can use both @code{r2} and
7370 @code{r13} to point to two separate small data areas.  Selecting
7371 @option{-mno-eabi} means that the stack is aligned to a 16 byte boundary,
7372 do not call an initialization function from @code{main}, and the
7373 @option{-msdata} option will only use @code{r13} to point to a single
7374 small data area.  The @option{-meabi} option is on by default if you
7375 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
7376
7377 @item -msdata=eabi
7378 @opindex msdata=eabi
7379 On System V.4 and embedded PowerPC systems, put small initialized
7380 @code{const} global and static data in the @samp{.sdata2} section, which
7381 is pointed to by register @code{r2}.  Put small initialized
7382 non-@code{const} global and static data in the @samp{.sdata} section,
7383 which is pointed to by register @code{r13}.  Put small uninitialized
7384 global and static data in the @samp{.sbss} section, which is adjacent to
7385 the @samp{.sdata} section.  The @option{-msdata=eabi} option is
7386 incompatible with the @option{-mrelocatable} option.  The
7387 @option{-msdata=eabi} option also sets the @option{-memb} option.
7388
7389 @item -msdata=sysv
7390 @opindex msdata=sysv
7391 On System V.4 and embedded PowerPC systems, put small global and static
7392 data in the @samp{.sdata} section, which is pointed to by register
7393 @code{r13}.  Put small uninitialized global and static data in the
7394 @samp{.sbss} section, which is adjacent to the @samp{.sdata} section.
7395 The @option{-msdata=sysv} option is incompatible with the
7396 @option{-mrelocatable} option.
7397
7398 @item -msdata=default
7399 @itemx -msdata
7400 @opindex msdata=default
7401 @opindex msdata
7402 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
7403 compile code the same as @option{-msdata=eabi}, otherwise compile code the
7404 same as @option{-msdata=sysv}.
7405
7406 @item -msdata-data
7407 @opindex msdata-data
7408 On System V.4 and embedded PowerPC systems, put small global and static
7409 data in the @samp{.sdata} section.  Put small uninitialized global and
7410 static data in the @samp{.sbss} section.  Do not use register @code{r13}
7411 to address small data however.  This is the default behavior unless
7412 other @option{-msdata} options are used.
7413
7414 @item -msdata=none
7415 @itemx -mno-sdata
7416 @opindex msdata=none
7417 @opindex mno-sdata
7418 On embedded PowerPC systems, put all initialized global and static data
7419 in the @samp{.data} section, and all uninitialized data in the
7420 @samp{.bss} section.
7421
7422 @item -G @var{num}
7423 @opindex G
7424 @cindex smaller data references (PowerPC)
7425 @cindex .sdata/.sdata2 references (PowerPC)
7426 On embedded PowerPC systems, put global and static items less than or
7427 equal to @var{num} bytes into the small data or bss sections instead of
7428 the normal data or bss section.  By default, @var{num} is 8.  The
7429 @option{-G @var{num}} switch is also passed to the linker.
7430 All modules should be compiled with the same @option{-G @var{num}} value.
7431
7432 @item -mregnames
7433 @itemx -mno-regnames
7434 @opindex mregnames
7435 @opindex mno-regnames
7436 On System V.4 and embedded PowerPC systems do (do not) emit register
7437 names in the assembly language output using symbolic forms.
7438
7439 @item -mlongcall
7440 @itemx -mno-longcall
7441 @opindex mlongcall
7442 @opindex mno-longcall
7443 Default to making all function calls via pointers, so that functions
7444 which reside further than 64 megabytes (67,108,864 bytes) from the
7445 current location can be called.  This setting can be overridden by the
7446 @code{shortcall} function attribute, or by @code{#pragma longcall(0)}.
7447
7448 Some linkers are capable of detecting out-of-range calls and generating
7449 glue code on the fly.  On these systems, long calls are unnecessary and
7450 generate slower code.  As of this writing, the AIX linker can do this,
7451 as can the GNU linker for PowerPC/64.  It is planned to add this feature
7452 to the GNU linker for 32-bit PowerPC systems as well.
7453
7454 In the future, we may cause GCC to ignore all longcall specifications
7455 when the linker is known to generate glue.
7456
7457 @item -pthread
7458 @opindex pthread
7459 Adds support for multithreading with the @dfn{pthreads} library.
7460 This option sets flags for both the preprocessor and linker.
7461
7462 @end table
7463
7464 @node Darwin Options
7465 @subsection Darwin Options
7466 @cindex Darwin options
7467
7468 These options are defined for all architectures running the Darwin operating
7469 system.  They are useful for compatibility with other Mac OS compilers.
7470
7471 @table @gcctabopt
7472 @item -all_load    
7473 @opindex all_load   
7474 Loads all members of static archive libraries.
7475 See man ld(1) for more information.
7476
7477 @item -arch_errors_fatal
7478 @opindex arch_errors_fatal
7479 Cause the errors having to do with files that have the wrong architecture
7480 to be fatal.
7481
7482 @item -bind_at_load
7483 @opindex bind_at_load
7484 Causes the output file to be marked such that the dynamic linker will
7485 bind all undefined references when the file is loaded or launched.
7486
7487 @item -bundle     
7488 @opindex bundle
7489 Produce a Mach-o bundle format file.
7490 See man ld(1) for more information.
7491
7492 @item -bundle_loader @var{executable}
7493 @opindex bundle_loader
7494 This specifies the @var{executable} that will be loading the build
7495 output file being linked. See man ld(1) for more information.
7496
7497 @item -allowable_client  @var{client_name}
7498 @item -arch_only
7499
7500 @item -client_name       
7501 @item -compatibility_version
7502 @item -current_version    
7503 @item -dependency-file
7504 @item -dylib_file    
7505 @item -dylinker_install_name
7506 @item -dynamic
7507 @item -dynamiclib   
7508 @item -exported_symbols_list  
7509 @item -filelist
7510 @item -flat_namespace   
7511 @item -force_cpusubtype_ALL
7512 @item -force_flat_namespace   
7513 @item -headerpad_max_install_names
7514 @item -image_base  
7515 @item -init
7516 @item -install_name
7517 @item -keep_private_externs
7518 @item -multi_module
7519 @item -multiply_defined      
7520 @item -multiply_defined_unused      
7521 @item -noall_load  
7522 @item -nomultidefs
7523 @item -noprebind     
7524 @item -noseglinkedit
7525 @item -pagezero_size    
7526 @item -prebind
7527 @item -prebind_all_twolevel_modules
7528 @item -private_bundle
7529 @item -read_only_relocs
7530 @item -sectalign  
7531 @item -sectobjectsymbols    
7532 @item -whyload
7533 @item -seg1addr 
7534 @item -sectcreate
7535 @item -sectobjectsymbols
7536 @item -sectorder
7537 @item -seg_addr_table
7538 @item -seg_addr_table_filename
7539 @item -seglinkedit
7540 @item -segprot   
7541 @item -segs_read_only_addr
7542 @item -segs_read_write_addr
7543 @item -single_module   
7544 @item -static
7545 @item -sub_library
7546 @item -sub_umbrella 
7547 @item -twolevel_namespace
7548 @item -umbrella
7549 @item -undefined
7550 @item -unexported_symbols_list
7551 @item -weak_reference_mismatches
7552 @item -whatsloaded  
7553
7554 @opindex allowable_client
7555 @opindex arch_only    
7556 @opindex client_name
7557 @opindex compatibility_version
7558 @opindex current_version
7559 @opindex dependency-file
7560 @opindex dylib_file
7561 @opindex dylinker_install_name
7562 @opindex dynamic
7563 @opindex dynamiclib
7564 @opindex exported_symbols_list
7565 @opindex filelist  
7566 @opindex flat_namespace    
7567 @opindex force_cpusubtype_ALL
7568 @opindex force_flat_namespace
7569 @opindex headerpad_max_install_names
7570 @opindex image_base
7571 @opindex init     
7572 @opindex install_name
7573 @opindex keep_private_externs
7574 @opindex multi_module   
7575 @opindex multiply_defined
7576 @opindex multiply_defined_unused   
7577 @opindex noall_load  
7578 @opindex nomultidefs   
7579 @opindex noprebind
7580 @opindex noseglinkedit      
7581 @opindex pagezero_size
7582 @opindex prebind
7583 @opindex prebind_all_twolevel_modules
7584 @opindex private_bundle 
7585 @opindex read_only_relocs
7586 @opindex sectalign   
7587 @opindex sectobjectsymbols    
7588 @opindex whyload  
7589 @opindex seg1addr
7590 @opindex sectcreate       
7591 @opindex sectobjectsymbols 
7592 @opindex sectorder     
7593 @opindex seg_addr_table
7594 @opindex seg_addr_table_filename
7595 @opindex seglinkedit
7596 @opindex segprot
7597 @opindex segs_read_only_addr
7598 @opindex segs_read_write_addr
7599 @opindex single_module
7600 @opindex static
7601 @opindex sub_library
7602 @opindex sub_umbrella
7603 @opindex twolevel_namespace
7604 @opindex umbrella
7605 @opindex undefined
7606 @opindex unexported_symbols_list
7607 @opindex weak_reference_mismatches
7608 @opindex whatsloaded
7609
7610 This options are available for Darwin linker. Darwin linker man page
7611 describes them in detail.
7612 @end table
7613
7614
7615 @node RT Options
7616 @subsection IBM RT Options
7617 @cindex RT options
7618 @cindex IBM RT options
7619
7620 These @samp{-m} options are defined for the IBM RT PC:
7621
7622 @table @gcctabopt
7623 @item -min-line-mul
7624 @opindex min-line-mul
7625 Use an in-line code sequence for integer multiplies.  This is the
7626 default.
7627
7628 @item -mcall-lib-mul
7629 @opindex mcall-lib-mul
7630 Call @code{lmul$$} for integer multiples.
7631
7632 @item -mfull-fp-blocks
7633 @opindex mfull-fp-blocks
7634 Generate full-size floating point data blocks, including the minimum
7635 amount of scratch space recommended by IBM@.  This is the default.
7636
7637 @item -mminimum-fp-blocks
7638 @opindex mminimum-fp-blocks
7639 Do not include extra scratch space in floating point data blocks.  This
7640 results in smaller code, but slower execution, since scratch space must
7641 be allocated dynamically.
7642
7643 @cindex @file{stdarg.h} and RT PC
7644 @item -mfp-arg-in-fpregs
7645 @opindex mfp-arg-in-fpregs
7646 Use a calling sequence incompatible with the IBM calling convention in
7647 which floating point arguments are passed in floating point registers.
7648 Note that @code{stdarg.h} will not work with floating point operands
7649 if this option is specified.
7650
7651 @item -mfp-arg-in-gregs
7652 @opindex mfp-arg-in-gregs
7653 Use the normal calling convention for floating point arguments.  This is
7654 the default.
7655
7656 @item -mhc-struct-return
7657 @opindex mhc-struct-return
7658 Return structures of more than one word in memory, rather than in a
7659 register.  This provides compatibility with the MetaWare HighC (hc)
7660 compiler.  Use the option @option{-fpcc-struct-return} for compatibility
7661 with the Portable C Compiler (pcc).
7662
7663 @item -mnohc-struct-return
7664 @opindex mnohc-struct-return
7665 Return some structures of more than one word in registers, when
7666 convenient.  This is the default.  For compatibility with the
7667 IBM-supplied compilers, use the option @option{-fpcc-struct-return} or the
7668 option @option{-mhc-struct-return}.
7669 @end table
7670
7671 @node MIPS Options
7672 @subsection MIPS Options
7673 @cindex MIPS options
7674
7675 These @samp{-m} options are defined for the MIPS family of computers:
7676
7677 @table @gcctabopt
7678
7679 @item -march=@var{arch}
7680 @opindex march
7681 Generate code that will run on @var{arch}, which can be the name of a
7682 generic MIPS ISA, or the name of a particular processor.
7683 The ISA names are:
7684 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
7685 @samp{mips32}, @samp{mips32r2}, and @samp{mips64}.
7686 The processor names are:
7687 @samp{4kc}, @samp{4kp}, @samp{5kc}, @samp{20kc},
7688 @samp{m4k},
7689 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
7690 @samp{r4600}, @samp{r4650}, @samp{r6000}, @samp{r8000},
7691 @samp{orion},
7692 @samp{sb1},
7693 @samp{vr4100}, @samp{vr4300}, and @samp{vr5000}.
7694 The special value @samp{from-abi} selects the
7695 most compatible architecture for the selected ABI (that is,
7696 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
7697
7698 In processor names, a final @samp{000} can be abbreviated as @samp{k}
7699 (for example, @samp{-march=r2k}).  Prefixes are optional, and
7700 @samp{vr} may be written @samp{r}.
7701
7702 GCC defines two macros based on the value of this option.  The first
7703 is @samp{_MIPS_ARCH}, which gives the name of target architecture, as
7704 a string.  The second has the form @samp{_MIPS_ARCH_@var{foo}},
7705 where @var{foo} is the capitalized value of @samp{_MIPS_ARCH}@.
7706 For example, @samp{-march=r2000} will set @samp{_MIPS_ARCH}
7707 to @samp{"r2000"} and define the macro @samp{_MIPS_ARCH_R2000}.
7708
7709 Note that the @samp{_MIPS_ARCH} macro uses the processor names given
7710 above.  In other words, it will have the full prefix and will not
7711 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
7712 the macro names the resolved architecture (either @samp{"mips1"} or
7713 @samp{"mips3"}).  It names the default architecture when no
7714 @option{-march} option is given.
7715
7716 @item -mtune=@var{arch}
7717 @opindex mtune
7718 Optimize for @var{arch}.  Among other things, this option controls
7719 the way instructions are scheduled, and the perceived cost of arithmetic
7720 operations.  The list of @var{arch} values is the same as for
7721 @option{-march}.
7722
7723 When this option is not used, GCC will optimize for the processor
7724 specified by @option{-march}.  By using @option{-march} and
7725 @option{-mtune} together, it is possible to generate code that will
7726 run on a family of processors, but optimize the code for one
7727 particular member of that family.
7728
7729 @samp{-mtune} defines the macros @samp{_MIPS_TUNE} and
7730 @samp{_MIPS_TUNE_@var{foo}}, which work in the same way as the
7731 @samp{-march} ones described above.
7732
7733 @item -mips1
7734 @opindex mips1
7735 Equivalent to @samp{-march=mips1}.
7736
7737 @item -mips2
7738 @opindex mips2
7739 Equivalent to @samp{-march=mips2}.
7740
7741 @item -mips3
7742 @opindex mips3
7743 Equivalent to @samp{-march=mips3}.
7744
7745 @item -mips4
7746 @opindex mips4
7747 Equivalent to @samp{-march=mips4}.
7748
7749 @item -mips32
7750 @opindex mips32
7751 Equivalent to @samp{-march=mips32}.
7752
7753 @item -mips32r2
7754 @opindex mips32r2
7755 Equivalent to @samp{-march=mips32r2}.
7756
7757 @item -mips64
7758 @opindex mips64
7759 Equivalent to @samp{-march=mips64}.
7760
7761 @item -mfused-madd
7762 @itemx -mno-fused-madd
7763 @opindex mfused-madd
7764 @opindex mno-fused-madd
7765 Generate code that uses (does not use) the floating point multiply and
7766 accumulate instructions, when they are available.  These instructions
7767 are generated by default if they are available, but this may be
7768 undesirable if the extra precision causes problems or on certain chips
7769 in the mode where denormals are rounded to zero where denormals
7770 generated by multiply and accumulate instructions cause exceptions
7771 anyway.
7772
7773 @item -mfp32
7774 @opindex mfp32
7775 Assume that floating point registers are 32 bits wide.
7776
7777 @item -mfp64
7778 @opindex mfp64
7779 Assume that floating point registers are 64 bits wide.
7780
7781 @item -mgp32
7782 @opindex mgp32
7783 Assume that general purpose registers are 32 bits wide.
7784
7785 @item -mgp64
7786 @opindex mgp64
7787 Assume that general purpose registers are 64 bits wide.
7788
7789 @item -mint64
7790 @opindex mint64
7791 Force int and long types to be 64 bits wide.  See @option{-mlong32} for an
7792 explanation of the default, and the width of pointers.
7793
7794 @item -mlong64
7795 @opindex mlong64
7796 Force long types to be 64 bits wide.  See @option{-mlong32} for an
7797 explanation of the default, and the width of pointers.
7798
7799 @item -mlong32
7800 @opindex mlong32
7801 Force long, int, and pointer types to be 32 bits wide.
7802
7803 The default size of ints, longs and pointers depends on the ABI@.  All
7804 the supported ABIs use 32-bit ints.  The n64 ABI uses 64-bit longs, as
7805 does the 64-bit Cygnus EABI; the others use 32-bit longs.  Pointers
7806 are the same size as longs, or the same size as integer registers,
7807 whichever is smaller.
7808
7809 @item -mabi=32
7810 @itemx -mabi=o64
7811 @itemx -mabi=n32
7812 @itemx -mabi=64
7813 @itemx -mabi=eabi
7814 @itemx -mabi=meabi
7815 @opindex mabi=32
7816 @opindex mabi=o64
7817 @opindex mabi=n32
7818 @opindex mabi=64
7819 @opindex mabi=eabi
7820 @opindex mabi=meabi
7821 Generate code for the given ABI@.
7822
7823 Note that there are two embedded ABIs: @option{-mabi=eabi}
7824 selects the one defined by Cygnus while @option{-meabi=meabi}
7825 selects the one defined by MIPS@.  Both these ABIs have
7826 32-bit and 64-bit variants.  Normally, GCC will generate
7827 64-bit code when you select a 64-bit architecture, but you
7828 can use @option{-mgp32} to get 32-bit code instead.
7829
7830 @item -mabi-fake-default
7831 @opindex mabi-fake-default
7832 You don't want to know what this option does.  No, really.  I mean
7833 it.  Move on to the next option.
7834
7835 What?  You're still here?  Oh, well@enddots{}  Ok, here's the deal.  GCC
7836 wants the default set of options to get the root of the multilib tree,
7837 and the shared library SONAMEs without any multilib-indicating
7838 suffixes.  This is not convenience for @samp{mips64-linux-gnu}, since
7839 we want to default to the N32 ABI, while still being binary-compatible
7840 with @samp{mips-linux-gnu} if you stick to the O32 ABI@.  Being
7841 binary-compatible means shared libraries should have the same SONAMEs,
7842 and libraries should live in the same location.  Having O32 libraries
7843 in a sub-directory named say @file{o32} is not acceptable.
7844
7845 So we trick GCC into believing that O32 is the default ABI, except
7846 that we override the default with some internal command-line
7847 processing magic.  Problem is, if we stopped at that, and you then
7848 created a multilib-aware package that used the output of @command{gcc
7849 -print-multi-lib} to decide which multilibs to build, and how, and
7850 you'd find yourself in an awkward situation when you found out that
7851 some of the options listed ended up mapping to the same multilib, and
7852 none of your libraries was actually built for the multilib that
7853 @option{-print-multi-lib} claims to be the default.  So we added this
7854 option that disables the default switcher, falling back to GCC's
7855 original notion of the default library.  Confused yet?
7856
7857 For short: don't ever use this option, unless you find it in the list
7858 of additional options to be used when building for multilibs, in the
7859 output of @option{gcc -print-multi-lib}.
7860
7861 @item -mmips-as
7862 @opindex mmips-as
7863 Generate code for the MIPS assembler, and invoke @file{mips-tfile} to
7864 add normal debug information.  This is the default for all
7865 platforms except for the OSF/1 reference platform, using the OSF/rose
7866 object format.  If the either of the @option{-gstabs} or @option{-gstabs+}
7867 switches are used, the @file{mips-tfile} program will encapsulate the
7868 stabs within MIPS ECOFF@.
7869
7870 @item -mgas
7871 @opindex mgas
7872 Generate code for the GNU assembler.  This is the default on the OSF/1
7873 reference platform, using the OSF/rose object format.  Also, this is
7874 the default if the configure option @option{--with-gnu-as} is used.
7875
7876 @item -msplit-addresses
7877 @itemx -mno-split-addresses
7878 @opindex msplit-addresses
7879 @opindex mno-split-addresses
7880 Generate code to load the high and low parts of address constants separately.
7881 This allows GCC to optimize away redundant loads of the high order
7882 bits of addresses.  This optimization requires GNU as and GNU ld.
7883 This optimization is enabled by default for some embedded targets where
7884 GNU as and GNU ld are standard.
7885
7886 @item -mrnames
7887 @itemx -mno-rnames
7888 @opindex mrnames
7889 @opindex mno-rnames
7890 The @option{-mrnames} switch says to output code using the MIPS software
7891 names for the registers, instead of the hardware names (ie, @var{a0}
7892 instead of @var{$4}).  The only known assembler that supports this option
7893 is the Algorithmics assembler.
7894
7895 @item -mgpopt
7896 @itemx -mno-gpopt
7897 @opindex mgpopt
7898 @opindex mno-gpopt
7899 The @option{-mgpopt} switch says to write all of the data declarations
7900 before the instructions in the text section, this allows the MIPS
7901 assembler to generate one word memory references instead of using two
7902 words for short global or static data items.  This is on by default if
7903 optimization is selected.
7904
7905 @item -mmemcpy
7906 @itemx -mno-memcpy
7907 @opindex mmemcpy
7908 @opindex mno-memcpy
7909 The @option{-mmemcpy} switch makes all block moves call the appropriate
7910 string function (@samp{memcpy} or @samp{bcopy}) instead of possibly
7911 generating inline code.
7912
7913 @item -mmips-tfile
7914 @itemx -mno-mips-tfile
7915 @opindex mmips-tfile
7916 @opindex mno-mips-tfile
7917 The @option{-mno-mips-tfile} switch causes the compiler not
7918 postprocess the object file with the @file{mips-tfile} program,
7919 after the MIPS assembler has generated it to add debug support.  If
7920 @file{mips-tfile} is not run, then no local variables will be
7921 available to the debugger.  In addition, @file{stage2} and
7922 @file{stage3} objects will have the temporary file names passed to the
7923 assembler embedded in the object file, which means the objects will
7924 not compare the same.  The @option{-mno-mips-tfile} switch should only
7925 be used when there are bugs in the @file{mips-tfile} program that
7926 prevents compilation.
7927
7928 @item -msoft-float
7929 @opindex msoft-float
7930 Generate output containing library calls for floating point.
7931 @strong{Warning:} the requisite libraries are not part of GCC@.
7932 Normally the facilities of the machine's usual C compiler are used, but
7933 this can't be done directly in cross-compilation.  You must make your
7934 own arrangements to provide suitable library functions for
7935 cross-compilation.
7936
7937 @item -mhard-float
7938 @opindex mhard-float
7939 Generate output containing floating point instructions.  This is the
7940 default if you use the unmodified sources.
7941
7942 @item -mabicalls
7943 @itemx -mno-abicalls
7944 @opindex mabicalls
7945 @opindex mno-abicalls
7946 Emit (or do not emit) the pseudo operations @samp{.abicalls},
7947 @samp{.cpload}, and @samp{.cprestore} that some System V.4 ports use for
7948 position independent code.
7949
7950 @item -mlong-calls
7951 @itemx -mno-long-calls
7952 @opindex mlong-calls
7953 @opindex mno-long-calls
7954 Do all calls with the @samp{JALR} instruction, which requires
7955 loading up a function's address into a register before the call.
7956 You need to use this switch, if you call outside of the current
7957 512 megabyte segment to functions that are not through pointers.
7958
7959 @item -mhalf-pic
7960 @itemx -mno-half-pic
7961 @opindex mhalf-pic
7962 @opindex mno-half-pic
7963 Put pointers to extern references into the data section and load them
7964 up, rather than put the references in the text section.
7965
7966 @item -membedded-pic
7967 @itemx -mno-embedded-pic
7968 @opindex membedded-pic
7969 @opindex mno-embedded-pic
7970 Generate PIC code suitable for some embedded systems.  All calls are
7971 made using PC relative address, and all data is addressed using the $gp
7972 register.  No more than 65536 bytes of global data may be used.  This
7973 requires GNU as and GNU ld which do most of the work.  This currently
7974 only works on targets which use ECOFF; it does not work with ELF@.
7975
7976 @item -membedded-data
7977 @itemx -mno-embedded-data
7978 @opindex membedded-data
7979 @opindex mno-embedded-data
7980 Allocate variables to the read-only data section first if possible, then
7981 next in the small data section if possible, otherwise in data.  This gives
7982 slightly slower code than the default, but reduces the amount of RAM required
7983 when executing, and thus may be preferred for some embedded systems.
7984
7985 @item -muninit-const-in-rodata
7986 @itemx -mno-uninit-const-in-rodata
7987 @opindex muninit-const-in-rodata
7988 @opindex mno-uninit-const-in-rodata
7989 When used together with @option{-membedded-data}, it will always store uninitialized
7990 const variables in the read-only data section.
7991
7992 @item -msingle-float
7993 @itemx -mdouble-float
7994 @opindex msingle-float
7995 @opindex mdouble-float
7996 The @option{-msingle-float} switch tells gcc to assume that the floating
7997 point coprocessor only supports single precision operations, as on the
7998 @samp{r4650} chip.  The @option{-mdouble-float} switch permits gcc to use
7999 double precision operations.  This is the default.
8000
8001 @item -mmad
8002 @itemx -mno-mad
8003 @opindex mmad
8004 @opindex mno-mad
8005 Permit use of the @samp{mad}, @samp{madu} and @samp{mul} instructions,
8006 as on the @samp{r4650} chip.
8007
8008 @item -m4650
8009 @opindex m4650
8010 Turns on @option{-msingle-float}, @option{-mmad}, and, at least for now,
8011 @option{-mcpu=r4650}.
8012
8013 @item -mips16
8014 @itemx -mno-mips16
8015 @opindex mips16
8016 @opindex mno-mips16
8017 Enable 16-bit instructions.
8018
8019 @item -mentry
8020 @opindex mentry
8021 Use the entry and exit pseudo ops.  This option can only be used with
8022 @option{-mips16}.
8023
8024 @item -EL
8025 @opindex EL
8026 Compile code for the processor in little endian mode.
8027 The requisite libraries are assumed to exist.
8028
8029 @item -EB
8030 @opindex EB
8031 Compile code for the processor in big endian mode.
8032 The requisite libraries are assumed to exist.
8033
8034 @item -G @var{num}
8035 @opindex G
8036 @cindex smaller data references (MIPS)
8037 @cindex gp-relative references (MIPS)
8038 Put global and static items less than or equal to @var{num} bytes into
8039 the small data or bss sections instead of the normal data or bss
8040 section.  This allows the assembler to emit one word memory reference
8041 instructions based on the global pointer (@var{gp} or @var{$28}),
8042 instead of the normal two words used.  By default, @var{num} is 8 when
8043 the MIPS assembler is used, and 0 when the GNU assembler is used.  The
8044 @option{-G @var{num}} switch is also passed to the assembler and linker.
8045 All modules should be compiled with the same @option{-G @var{num}}
8046 value.
8047
8048 @item -nocpp
8049 @opindex nocpp
8050 Tell the MIPS assembler to not run its preprocessor over user
8051 assembler files (with a @samp{.s} suffix) when assembling them.
8052
8053 @item -mfix7000
8054 @opindex mfix7000
8055 Pass an option to gas which will cause nops to be inserted if
8056 the read of the destination register of an mfhi or mflo instruction
8057 occurs in the following two instructions.
8058
8059 @item -no-crt0
8060 @opindex no-crt0
8061 Do not include the default crt0.
8062
8063 @item -mflush-func=@var{func}
8064 @itemx -mno-flush-func
8065 @opindex mflush-func
8066 Specifies the function to call to flush the I and D caches, or to not
8067 call any such function.  If called, the function must take the same
8068 arguments as the common @code{_flush_func()}, that is, the address of the
8069 memory range for which the cache is being flushed, the size of the
8070 memory range, and the number 3 (to flush both caches).  The default
8071 depends on the target gcc was configured for, but commonly is either
8072 @samp{_flush_func} or @samp{__cpu_flush}.
8073
8074 @item -mbranch-likely
8075 @itemx -mno-branch-likely
8076 @opindex mbranch-likely
8077 @opindex mno-branch-likely
8078 Enable or disable use of Branch Likely instructions, regardless of the
8079 default for the selected architecture.  By default, Branch Likely
8080 instructions may be generated if they are supported by the selected
8081 architecture.  An exception is for the MIPS32 and MIPS64 architectures
8082 and processors which implement those architectures; for those, Branch
8083 Likely instructions will not be generated by default because the MIPS32
8084 and MIPS64 architectures specifically deprecate their use.
8085 @end table
8086
8087 @node i386 and x86-64 Options
8088 @subsection Intel 386 and AMD x86-64 Options
8089 @cindex i386 Options
8090 @cindex x86-64 Options
8091 @cindex Intel 386 Options
8092 @cindex AMD x86-64 Options
8093
8094 These @samp{-m} options are defined for the i386 and x86-64 family of
8095 computers:
8096
8097 @table @gcctabopt
8098 @item -mtune=@var{cpu-type}
8099 @opindex mtune
8100 Tune to @var{cpu-type} everything applicable about the generated code, except
8101 for the ABI and the set of available instructions.  The choices for
8102 @var{cpu-type} are @samp{i386}, @samp{i486}, @samp{i586}, @samp{i686},
8103 @samp{pentium}, @samp{pentium-mmx}, @samp{pentiumpro}, @samp{pentium2},
8104 @samp{pentium3}, @samp{pentium4}, @samp{k6}, @samp{k6-2}, @samp{k6-3},
8105 @samp{athlon}, @samp{athlon-tbird}, @samp{athlon-4}, @samp{athlon-xp},
8106 @samp{athlon-mp}, @samp{winchip-c6}, @samp{winchip2}, @samp{k8}, @samp{c3}
8107 and @samp{c3-2}.
8108
8109 While picking a specific @var{cpu-type} will schedule things appropriately
8110 for that particular chip, the compiler will not generate any code that
8111 does not run on the i386 without the @option{-march=@var{cpu-type}} option
8112 being used.  @samp{i586} is equivalent to @samp{pentium} and @samp{i686}
8113 is equivalent to @samp{pentiumpro}.  @samp{k6} and @samp{athlon} are the
8114 AMD chips as opposed to the Intel ones.
8115
8116 @item -march=@var{cpu-type}
8117 @opindex march
8118 Generate instructions for the machine type @var{cpu-type}.  The choices
8119 for @var{cpu-type} are the same as for @option{-mtune}.  Moreover,
8120 specifying @option{-march=@var{cpu-type}} implies @option{-mtune=@var{cpu-type}}.
8121
8122 @item -mcpu=@var{cpu-type}
8123 @opindex mcpu
8124 A deprecated synonym for @option{-mtune}.
8125
8126 @item -m386
8127 @itemx -m486
8128 @itemx -mpentium
8129 @itemx -mpentiumpro
8130 @opindex m386
8131 @opindex m486
8132 @opindex mpentium
8133 @opindex mpentiumpro
8134 These options are synonyms for @option{-mtune=i386}, @option{-mtune=i486},
8135 @option{-mtune=pentium}, and @option{-mtune=pentiumpro} respectively.
8136 These synonyms are deprecated.
8137
8138 @item -mfpmath=@var{unit}
8139 @opindex march
8140 generate floating point arithmetics for selected unit @var{unit}.  the choices
8141 for @var{unit} are:
8142
8143 @table @samp
8144 @item 387
8145 Use the standard 387 floating point coprocessor present majority of chips and
8146 emulated otherwise.  Code compiled with this option will run almost everywhere.
8147 The temporary results are computed in 80bit precision instead of precision
8148 specified by the type resulting in slightly different results compared to most
8149 of other chips. See @option{-ffloat-store} for more detailed description.
8150
8151 This is the default choice for i386 compiler.
8152
8153 @item sse
8154 Use scalar floating point instructions present in the SSE instruction set.
8155 This instruction set is supported by Pentium3 and newer chips, in the AMD line
8156 by Athlon-4, Athlon-xp and Athlon-mp chips.  The earlier version of SSE
8157 instruction set supports only single precision arithmetics, thus the double and
8158 extended precision arithmetics is still done using 387.  Later version, present
8159 only in Pentium4 and the future AMD x86-64 chips supports double precision
8160 arithmetics too.
8161
8162 For i387 you need to use @option{-march=@var{cpu-type}}, @option{-msse} or
8163 @option{-msse2} switches to enable SSE extensions and make this option
8164 effective.  For x86-64 compiler, these extensions are enabled by default.
8165
8166 The resulting code should be considerably faster in majority of cases and avoid
8167 the numerical instability problems of 387 code, but may break some existing
8168 code that expects temporaries to be 80bit.
8169
8170 This is the default choice for x86-64 compiler.
8171
8172 @item sse,387
8173 Attempt to utilize both instruction sets at once.  This effectively double the
8174 amount of available registers and on chips with separate execution units for
8175 387 and SSE the execution resources too.  Use this option with care, as it is
8176 still experimental, because gcc register allocator does not model separate
8177 functional units well resulting in instable performance.
8178 @end table
8179
8180 @item -masm=@var{dialect}
8181 @opindex masm=@var{dialect}
8182 Output asm instructions using selected @var{dialect}. Supported choices are
8183 @samp{intel} or @samp{att} (the default one).
8184
8185 @item -mieee-fp
8186 @itemx -mno-ieee-fp
8187 @opindex mieee-fp
8188 @opindex mno-ieee-fp
8189 Control whether or not the compiler uses IEEE floating point
8190 comparisons.  These handle correctly the case where the result of a
8191 comparison is unordered.
8192
8193 @item -msoft-float
8194 @opindex msoft-float
8195 Generate output containing library calls for floating point.
8196 @strong{Warning:} the requisite libraries are not part of GCC@.
8197 Normally the facilities of the machine's usual C compiler are used, but
8198 this can't be done directly in cross-compilation.  You must make your
8199 own arrangements to provide suitable library functions for
8200 cross-compilation.
8201
8202 On machines where a function returns floating point results in the 80387
8203 register stack, some floating point opcodes may be emitted even if
8204 @option{-msoft-float} is used.
8205
8206 @item -mno-fp-ret-in-387
8207 @opindex mno-fp-ret-in-387
8208 Do not use the FPU registers for return values of functions.
8209
8210 The usual calling convention has functions return values of types
8211 @code{float} and @code{double} in an FPU register, even if there
8212 is no FPU@.  The idea is that the operating system should emulate
8213 an FPU@.
8214
8215 The option @option{-mno-fp-ret-in-387} causes such values to be returned
8216 in ordinary CPU registers instead.
8217
8218 @item -mno-fancy-math-387
8219 @opindex mno-fancy-math-387
8220 Some 387 emulators do not support the @code{sin}, @code{cos} and
8221 @code{sqrt} instructions for the 387.  Specify this option to avoid
8222 generating those instructions.  This option is the default on FreeBSD,
8223 OpenBSD and NetBSD@.  This option is overridden when @option{-march}
8224 indicates that the target cpu will always have an FPU and so the
8225 instruction will not need emulation.  As of revision 2.6.1, these
8226 instructions are not generated unless you also use the
8227 @option{-funsafe-math-optimizations} switch.
8228
8229 @item -malign-double
8230 @itemx -mno-align-double
8231 @opindex malign-double
8232 @opindex mno-align-double
8233 Control whether GCC aligns @code{double}, @code{long double}, and
8234 @code{long long} variables on a two word boundary or a one word
8235 boundary.  Aligning @code{double} variables on a two word boundary will
8236 produce code that runs somewhat faster on a @samp{Pentium} at the
8237 expense of more memory.
8238
8239 @strong{Warning:} if you use the @option{-malign-double} switch,
8240 structures containing the above types will be aligned differently than
8241 the published application binary interface specifications for the 386
8242 and will not be binary compatible with structures in code compiled
8243 without that switch.
8244
8245 @item -m128bit-long-double
8246 @opindex m128bit-long-double
8247 Control the size of @code{long double} type. i386 application binary interface
8248 specify the size to be 12 bytes, while modern architectures (Pentium and newer)
8249 prefer @code{long double} aligned to 8 or 16 byte boundary.  This is
8250 impossible to reach with 12 byte long doubles in the array accesses.
8251
8252 @strong{Warning:} if you use the @option{-m128bit-long-double} switch, the
8253 structures and arrays containing @code{long double} will change their size as
8254 well as function calling convention for function taking @code{long double}
8255 will be modified.
8256
8257 @item -m96bit-long-double
8258 @opindex m96bit-long-double
8259 Set the size of @code{long double} to 96 bits as required by the i386
8260 application binary interface.  This is the default.
8261
8262 @item -msvr3-shlib
8263 @itemx -mno-svr3-shlib
8264 @opindex msvr3-shlib
8265 @opindex mno-svr3-shlib
8266 Control whether GCC places uninitialized local variables into the
8267 @code{bss} or @code{data} segments.  @option{-msvr3-shlib} places them
8268 into @code{bss}.  These options are meaningful only on System V Release 3.
8269
8270 @item -mrtd
8271 @opindex mrtd
8272 Use a different function-calling convention, in which functions that
8273 take a fixed number of arguments return with the @code{ret} @var{num}
8274 instruction, which pops their arguments while returning.  This saves one
8275 instruction in the caller since there is no need to pop the arguments
8276 there.
8277
8278 You can specify that an individual function is called with this calling
8279 sequence with the function attribute @samp{stdcall}.  You can also
8280 override the @option{-mrtd} option by using the function attribute
8281 @samp{cdecl}.  @xref{Function Attributes}.
8282
8283 @strong{Warning:} this calling convention is incompatible with the one
8284 normally used on Unix, so you cannot use it if you need to call
8285 libraries compiled with the Unix compiler.
8286
8287 Also, you must provide function prototypes for all functions that
8288 take variable numbers of arguments (including @code{printf});
8289 otherwise incorrect code will be generated for calls to those
8290 functions.
8291
8292 In addition, seriously incorrect code will result if you call a
8293 function with too many arguments.  (Normally, extra arguments are
8294 harmlessly ignored.)
8295
8296 @item -mregparm=@var{num}
8297 @opindex mregparm
8298 Control how many registers are used to pass integer arguments.  By
8299 default, no registers are used to pass arguments, and at most 3
8300 registers can be used.  You can control this behavior for a specific
8301 function by using the function attribute @samp{regparm}.
8302 @xref{Function Attributes}.
8303
8304 @strong{Warning:} if you use this switch, and
8305 @var{num} is nonzero, then you must build all modules with the same
8306 value, including any libraries.  This includes the system libraries and
8307 startup modules.
8308
8309 @item -mpreferred-stack-boundary=@var{num}
8310 @opindex mpreferred-stack-boundary
8311 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
8312 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
8313 the default is 4 (16 bytes or 128 bits), except when optimizing for code
8314 size (@option{-Os}), in which case the default is the minimum correct
8315 alignment (4 bytes for x86, and 8 bytes for x86-64).
8316
8317 On Pentium and PentiumPro, @code{double} and @code{long double} values
8318 should be aligned to an 8 byte boundary (see @option{-malign-double}) or
8319 suffer significant run time performance penalties.  On Pentium III, the
8320 Streaming SIMD Extension (SSE) data type @code{__m128} suffers similar
8321 penalties if it is not 16 byte aligned.
8322
8323 To ensure proper alignment of this values on the stack, the stack boundary
8324 must be as aligned as that required by any value stored on the stack.
8325 Further, every function must be generated such that it keeps the stack
8326 aligned.  Thus calling a function compiled with a higher preferred
8327 stack boundary from a function compiled with a lower preferred stack
8328 boundary will most likely misalign the stack.  It is recommended that
8329 libraries that use callbacks always use the default setting.
8330
8331 This extra alignment does consume extra stack space, and generally
8332 increases code size.  Code that is sensitive to stack space usage, such
8333 as embedded systems and operating system kernels, may want to reduce the
8334 preferred alignment to @option{-mpreferred-stack-boundary=2}.
8335
8336 @item -mmmx
8337 @itemx -mno-mmx
8338 @item -msse
8339 @itemx -mno-sse
8340 @item -msse2
8341 @itemx -mno-sse2
8342 @item -m3dnow
8343 @itemx -mno-3dnow
8344 @opindex mmmx
8345 @opindex mno-mmx
8346 @opindex msse
8347 @opindex mno-sse
8348 @opindex m3dnow
8349 @opindex mno-3dnow
8350 These switches enable or disable the use of built-in functions that allow
8351 direct access to the MMX, SSE and 3Dnow extensions of the instruction set.
8352
8353 @xref{X86 Built-in Functions}, for details of the functions enabled
8354 and disabled by these switches.
8355
8356 To have SSE/SSE2 instructions generated automatically from floating-point
8357 code, see @option{-mfpmath=sse}.
8358
8359 @item -mpush-args
8360 @itemx -mno-push-args
8361 @opindex mpush-args
8362 @opindex mno-push-args
8363 Use PUSH operations to store outgoing parameters.  This method is shorter
8364 and usually equally fast as method using SUB/MOV operations and is enabled
8365 by default.  In some cases disabling it may improve performance because of
8366 improved scheduling and reduced dependencies.
8367
8368 @item -maccumulate-outgoing-args
8369 @opindex maccumulate-outgoing-args
8370 If enabled, the maximum amount of space required for outgoing arguments will be
8371 computed in the function prologue.  This is faster on most modern CPUs
8372 because of reduced dependencies, improved scheduling and reduced stack usage
8373 when preferred stack boundary is not equal to 2.  The drawback is a notable
8374 increase in code size.  This switch implies @option{-mno-push-args}.
8375
8376 @item -mthreads
8377 @opindex mthreads
8378 Support thread-safe exception handling on @samp{Mingw32}.  Code that relies
8379 on thread-safe exception handling must compile and link all code with the
8380 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
8381 @option{-D_MT}; when linking, it links in a special thread helper library
8382 @option{-lmingwthrd} which cleans up per thread exception handling data.
8383
8384 @item -mno-align-stringops
8385 @opindex mno-align-stringops
8386 Do not align destination of inlined string operations.  This switch reduces
8387 code size and improves performance in case the destination is already aligned,
8388 but gcc don't know about it.
8389
8390 @item -minline-all-stringops
8391 @opindex minline-all-stringops
8392 By default GCC inlines string operations only when destination is known to be
8393 aligned at least to 4 byte boundary.  This enables more inlining, increase code
8394 size, but may improve performance of code that depends on fast memcpy, strlen
8395 and memset for short lengths.
8396
8397 @item -momit-leaf-frame-pointer
8398 @opindex momit-leaf-frame-pointer
8399 Don't keep the frame pointer in a register for leaf functions.  This
8400 avoids the instructions to save, set up and restore frame pointers and
8401 makes an extra register available in leaf functions.  The option
8402 @option{-fomit-frame-pointer} removes the frame pointer for all functions
8403 which might make debugging harder.
8404
8405 @item -mtls-direct-seg-refs
8406 @itemx -mno-tls-direct-seg-refs
8407 @opindex mtls-direct-seg-refs
8408 Controls whether TLS variables may be accessed with offsets from the
8409 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
8410 or whether the thread base pointer must be added.  Whether or not this
8411 is legal depends on the operating system, and whether it maps the
8412 segment to cover the entire TLS area.
8413
8414 For systems that use GNU libc, the default is on.
8415 @end table
8416
8417 These @samp{-m} switches are supported in addition to the above
8418 on AMD x86-64 processors in 64-bit environments.
8419
8420 @table @gcctabopt
8421 @item -m32
8422 @itemx -m64
8423 @opindex m32
8424 @opindex m64
8425 Generate code for a 32-bit or 64-bit environment.
8426 The 32-bit environment sets int, long and pointer to 32 bits and
8427 generates code that runs on any i386 system.
8428 The 64-bit environment sets int to 32 bits and long and pointer
8429 to 64 bits and generates code for AMD's x86-64 architecture.
8430
8431 @item -mno-red-zone
8432 @opindex no-red-zone
8433 Do not use a so called red zone for x86-64 code.  The red zone is mandated
8434 by the x86-64 ABI, it is a 128-byte area beyond the location of the
8435 stack pointer that will not be modified by signal or interrupt handlers
8436 and therefore can be used for temporary data without adjusting the stack
8437 pointer.  The flag @option{-mno-red-zone} disables this red zone.
8438
8439 @item -mcmodel=small
8440 @opindex mcmodel=small
8441 Generate code for the small code model: the program and its symbols must
8442 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
8443 Programs can be statically or dynamically linked.  This is the default
8444 code model.
8445
8446 @item -mcmodel=kernel
8447 @opindex mcmodel=kernel
8448 Generate code for the kernel code model.  The kernel runs in the
8449 negative 2 GB of the address space.
8450 This model has to be used for Linux kernel code.
8451
8452 @item -mcmodel=medium
8453 @opindex mcmodel=medium
8454 Generate code for the medium model: The program is linked in the lower 2
8455 GB of the address space but symbols can be located anywhere in the
8456 address space.  Programs can be statically or dynamically linked, but
8457 building of shared libraries are not supported with the medium model.
8458
8459 @item -mcmodel=large
8460 @opindex mcmodel=large
8461 Generate code for the large model: This model makes no assumptions
8462 about addresses and sizes of sections.  Currently GCC does not implement
8463 this model.
8464 @end table
8465
8466 @node HPPA Options
8467 @subsection HPPA Options
8468 @cindex HPPA Options
8469
8470 These @samp{-m} options are defined for the HPPA family of computers:
8471
8472 @table @gcctabopt
8473 @item -march=@var{architecture-type}
8474 @opindex march
8475 Generate code for the specified architecture.  The choices for
8476 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
8477 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
8478 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
8479 architecture option for your machine.  Code compiled for lower numbered
8480 architectures will run on higher numbered architectures, but not the
8481 other way around.
8482
8483 PA 2.0 support currently requires gas snapshot 19990413 or later.  The
8484 next release of binutils (current is 2.9.1) will probably contain PA 2.0
8485 support.
8486
8487 @item -mpa-risc-1-0
8488 @itemx -mpa-risc-1-1
8489 @itemx -mpa-risc-2-0
8490 @opindex mpa-risc-1-0
8491 @opindex mpa-risc-1-1
8492 @opindex mpa-risc-2-0
8493 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
8494
8495 @item -mbig-switch
8496 @opindex mbig-switch
8497 Generate code suitable for big switch tables.  Use this option only if
8498 the assembler/linker complain about out of range branches within a switch
8499 table.
8500
8501 @item -mjump-in-delay
8502 @opindex mjump-in-delay
8503 Fill delay slots of function calls with unconditional jump instructions
8504 by modifying the return pointer for the function call to be the target
8505 of the conditional jump.
8506
8507 @item -mdisable-fpregs
8508 @opindex mdisable-fpregs
8509 Prevent floating point registers from being used in any manner.  This is
8510 necessary for compiling kernels which perform lazy context switching of
8511 floating point registers.  If you use this option and attempt to perform
8512 floating point operations, the compiler will abort.
8513
8514 @item -mdisable-indexing
8515 @opindex mdisable-indexing
8516 Prevent the compiler from using indexing address modes.  This avoids some
8517 rather obscure problems when compiling MIG generated code under MACH@.
8518
8519 @item -mno-space-regs
8520 @opindex mno-space-regs
8521 Generate code that assumes the target has no space registers.  This allows
8522 GCC to generate faster indirect calls and use unscaled index address modes.
8523
8524 Such code is suitable for level 0 PA systems and kernels.
8525
8526 @item -mfast-indirect-calls
8527 @opindex mfast-indirect-calls
8528 Generate code that assumes calls never cross space boundaries.  This
8529 allows GCC to emit code which performs faster indirect calls.
8530
8531 This option will not work in the presence of shared libraries or nested
8532 functions.
8533
8534 @item -mlong-load-store
8535 @opindex mlong-load-store
8536 Generate 3-instruction load and store sequences as sometimes required by
8537 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
8538 the HP compilers.
8539
8540 @item -mportable-runtime
8541 @opindex mportable-runtime
8542 Use the portable calling conventions proposed by HP for ELF systems.
8543
8544 @item -mgas
8545 @opindex mgas
8546 Enable the use of assembler directives only GAS understands.
8547
8548 @item -mschedule=@var{cpu-type}
8549 @opindex mschedule
8550 Schedule code according to the constraints for the machine type
8551 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
8552 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
8553 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
8554 proper scheduling option for your machine.  The default scheduling is
8555 @samp{8000}.
8556
8557 @item -mlinker-opt
8558 @opindex mlinker-opt
8559 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
8560 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
8561 linkers in which they give bogus error messages when linking some programs.
8562
8563 @item -msoft-float
8564 @opindex msoft-float
8565 Generate output containing library calls for floating point.
8566 @strong{Warning:} the requisite libraries are not available for all HPPA
8567 targets.  Normally the facilities of the machine's usual C compiler are
8568 used, but this cannot be done directly in cross-compilation.  You must make
8569 your own arrangements to provide suitable library functions for
8570 cross-compilation.  The embedded target @samp{hppa1.1-*-pro}
8571 does provide software floating point support.
8572
8573 @option{-msoft-float} changes the calling convention in the output file;
8574 therefore, it is only useful if you compile @emph{all} of a program with
8575 this option.  In particular, you need to compile @file{libgcc.a}, the
8576 library that comes with GCC, with @option{-msoft-float} in order for
8577 this to work.
8578
8579 @item -msio
8580 @opindex msio
8581 Generate the predefine, @code{_SIO}, for server IO.  The default is
8582 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
8583 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO.  These
8584 options are available under HP-UX and HI-UX.
8585
8586 @item -mgnu-ld
8587 @opindex gnu-ld
8588 Use GNU ld specific options.  This passes @option{-shared} to ld when
8589 building a shared library.  It is the default when GCC is configured,
8590 explicitly or implicitly, with the GNU linker.  This option does not
8591 have any affect on which ld is called, it only changes what parameters
8592 are passed to that ld.  The ld that is called is determined by the
8593 @option{--with-ld} configure option, gcc's program search path, and
8594 finally by the user's @env{PATH}.  The linker used by GCC can be printed
8595 using @samp{which `gcc -print-prog-name=ld`}.
8596
8597 @item -mhp-ld
8598 @opindex hp-ld
8599 Use HP ld specific options.  This passes @option{-b} to ld when building
8600 a shared library and passes @option{+Accept TypeMismatch} to ld on all
8601 links.  It is the default when GCC is configured, explicitly or
8602 implicitly, with the HP linker.  This option does not have any affect on
8603 which ld is called, it only changes what parameters are passed to that
8604 ld.  The ld that is called is determined by the @option{--with-ld}
8605 configure option, gcc's program search path, and finally by the user's
8606 @env{PATH}.  The linker used by GCC can be printed using @samp{which
8607 `gcc -print-prog-name=ld`}.
8608
8609 @item -mlong-calls
8610 @opindex mno-long-calls
8611 Generate code that uses long call sequences.  This ensures that a call
8612 is always able to reach linker generated stubs.  The default is to generate
8613 long calls only when the distance from the call site to the beginning
8614 of the function or translation unit, as the case may be, exceeds a
8615 predefined limit set by the branch type being used.  The limits for
8616 normal calls are 7,600,000 and 240,000 bytes, respectively for the
8617 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
8618 240,000 bytes.
8619
8620 Distances are measured from the beginning of functions when using the
8621 @option{-ffunction-sections} option, or when using the @option{-mgas}
8622 and @option{-mno-portable-runtime} options together under HP-UX with
8623 the SOM linker.
8624
8625 It is normally not desirable to use this option as it will degrade
8626 performance.  However, it may be useful in large applications,
8627 particularly when partial linking is used to build the application.
8628
8629 The types of long calls used depends on the capabilities of the
8630 assembler and linker, and the type of code being generated.  The
8631 impact on systems that support long absolute calls, and long pic
8632 symbol-difference or pc-relative calls should be relatively small.
8633 However, an indirect call is used on 32-bit ELF systems in pic code
8634 and it is quite long.
8635
8636 @item -nolibdld
8637 @opindex nolibdld
8638 Suppress the generation of link options to search libdld.sl when the
8639 @option{-static} option is specified on HP-UX 10 and later.
8640
8641 @item -static
8642 @opindex static
8643 The HP-UX implementation of setlocale in libc has a dependency on
8644 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
8645 when the @option{-static} option is specified, special link options
8646 are needed to resolve this dependency.
8647
8648 On HP-UX 10 and later, the GCC driver adds the necessary options to
8649 link with libdld.sl when the @option{-static} option is specified.
8650 This causes the resulting binary to be dynamic.  On the 64-bit port,
8651 the linkers generate dynamic binaries by default in any case.  The
8652 @option{-nolibdld} option can be used to prevent the GCC driver from
8653 adding these link options.
8654
8655 @item -threads
8656 @opindex threads
8657 Add support for multithreading with the @dfn{dce thread} library
8658 under HP-UX.  This option sets flags for both the preprocessor and
8659 linker.
8660 @end table
8661
8662 @node Intel 960 Options
8663 @subsection Intel 960 Options
8664
8665 These @samp{-m} options are defined for the Intel 960 implementations:
8666
8667 @table @gcctabopt
8668 @item -m@var{cpu-type}
8669 @opindex mka
8670 @opindex mkb
8671 @opindex mmc
8672 @opindex mca
8673 @opindex mcf
8674 @opindex msa
8675 @opindex msb
8676 Assume the defaults for the machine type @var{cpu-type} for some of
8677 the other options, including instruction scheduling, floating point
8678 support, and addressing modes.  The choices for @var{cpu-type} are
8679 @samp{ka}, @samp{kb}, @samp{mc}, @samp{ca}, @samp{cf},
8680 @samp{sa}, and @samp{sb}.
8681 The default is
8682 @samp{kb}.
8683
8684 @item -mnumerics
8685 @itemx -msoft-float
8686 @opindex mnumerics
8687 @opindex msoft-float
8688 The @option{-mnumerics} option indicates that the processor does support
8689 floating-point instructions.  The @option{-msoft-float} option indicates
8690 that floating-point support should not be assumed.
8691
8692 @item -mleaf-procedures
8693 @itemx -mno-leaf-procedures
8694 @opindex mleaf-procedures
8695 @opindex mno-leaf-procedures
8696 Do (or do not) attempt to alter leaf procedures to be callable with the
8697 @code{bal} instruction as well as @code{call}.  This will result in more
8698 efficient code for explicit calls when the @code{bal} instruction can be
8699 substituted by the assembler or linker, but less efficient code in other
8700 cases, such as calls via function pointers, or using a linker that doesn't
8701 support this optimization.
8702
8703 @item -mtail-call
8704 @itemx -mno-tail-call
8705 @opindex mtail-call
8706 @opindex mno-tail-call
8707 Do (or do not) make additional attempts (beyond those of the
8708 machine-independent portions of the compiler) to optimize tail-recursive
8709 calls into branches.  You may not want to do this because the detection of
8710 cases where this is not valid is not totally complete.  The default is
8711 @option{-mno-tail-call}.
8712
8713 @item -mcomplex-addr
8714 @itemx -mno-complex-addr
8715 @opindex mcomplex-addr
8716 @opindex mno-complex-addr
8717 Assume (or do not assume) that the use of a complex addressing mode is a
8718 win on this implementation of the i960.  Complex addressing modes may not
8719 be worthwhile on the K-series, but they definitely are on the C-series.
8720 The default is currently @option{-mcomplex-addr} for all processors except
8721 the CB and CC@.
8722
8723 @item -mcode-align
8724 @itemx -mno-code-align
8725 @opindex mcode-align
8726 @opindex mno-code-align
8727 Align code to 8-byte boundaries for faster fetching (or don't bother).
8728 Currently turned on by default for C-series implementations only.
8729
8730 @ignore
8731 @item -mclean-linkage
8732 @itemx -mno-clean-linkage
8733 @opindex mclean-linkage
8734 @opindex mno-clean-linkage
8735 These options are not fully implemented.
8736 @end ignore
8737
8738 @item -mic-compat
8739 @itemx -mic2.0-compat
8740 @itemx -mic3.0-compat
8741 @opindex mic-compat
8742 @opindex mic2.0-compat
8743 @opindex mic3.0-compat
8744 Enable compatibility with iC960 v2.0 or v3.0.
8745
8746 @item -masm-compat
8747 @itemx -mintel-asm
8748 @opindex masm-compat
8749 @opindex mintel-asm
8750 Enable compatibility with the iC960 assembler.
8751
8752 @item -mstrict-align
8753 @itemx -mno-strict-align
8754 @opindex mstrict-align
8755 @opindex mno-strict-align
8756 Do not permit (do permit) unaligned accesses.
8757
8758 @item -mold-align
8759 @opindex mold-align
8760 Enable structure-alignment compatibility with Intel's gcc release version
8761 1.3 (based on gcc 1.37).  This option implies @option{-mstrict-align}.
8762
8763 @item -mlong-double-64
8764 @opindex mlong-double-64
8765 Implement type @samp{long double} as 64-bit floating point numbers.
8766 Without the option @samp{long double} is implemented by 80-bit
8767 floating point numbers.  The only reason we have it because there is
8768 no 128-bit @samp{long double} support in @samp{fp-bit.c} yet.  So it
8769 is only useful for people using soft-float targets.  Otherwise, we
8770 should recommend against use of it.
8771
8772 @end table
8773
8774 @node DEC Alpha Options
8775 @subsection DEC Alpha Options
8776
8777 These @samp{-m} options are defined for the DEC Alpha implementations:
8778
8779 @table @gcctabopt
8780 @item -mno-soft-float
8781 @itemx -msoft-float
8782 @opindex mno-soft-float
8783 @opindex msoft-float
8784 Use (do not use) the hardware floating-point instructions for
8785 floating-point operations.  When @option{-msoft-float} is specified,
8786 functions in @file{libgcc.a} will be used to perform floating-point
8787 operations.  Unless they are replaced by routines that emulate the
8788 floating-point operations, or compiled in such a way as to call such
8789 emulations routines, these routines will issue floating-point
8790 operations.   If you are compiling for an Alpha without floating-point
8791 operations, you must ensure that the library is built so as not to call
8792 them.
8793
8794 Note that Alpha implementations without floating-point operations are
8795 required to have floating-point registers.
8796
8797 @item -mfp-reg
8798 @itemx -mno-fp-regs
8799 @opindex mfp-reg
8800 @opindex mno-fp-regs
8801 Generate code that uses (does not use) the floating-point register set.
8802 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
8803 register set is not used, floating point operands are passed in integer
8804 registers as if they were integers and floating-point results are passed
8805 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
8806 so any function with a floating-point argument or return value called by code
8807 compiled with @option{-mno-fp-regs} must also be compiled with that
8808 option.
8809
8810 A typical use of this option is building a kernel that does not use,
8811 and hence need not save and restore, any floating-point registers.
8812
8813 @item -mieee
8814 @opindex mieee
8815 The Alpha architecture implements floating-point hardware optimized for
8816 maximum performance.  It is mostly compliant with the IEEE floating
8817 point standard.  However, for full compliance, software assistance is
8818 required.  This option generates code fully IEEE compliant code
8819 @emph{except} that the @var{inexact-flag} is not maintained (see below).
8820 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
8821 defined during compilation.  The resulting code is less efficient but is
8822 able to correctly support denormalized numbers and exceptional IEEE
8823 values such as not-a-number and plus/minus infinity.  Other Alpha
8824 compilers call this option @option{-ieee_with_no_inexact}.
8825
8826 @item -mieee-with-inexact
8827 @opindex mieee-with-inexact
8828 This is like @option{-mieee} except the generated code also maintains
8829 the IEEE @var{inexact-flag}.  Turning on this option causes the
8830 generated code to implement fully-compliant IEEE math.  In addition to
8831 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
8832 macro.  On some Alpha implementations the resulting code may execute
8833 significantly slower than the code generated by default.  Since there is
8834 very little code that depends on the @var{inexact-flag}, you should
8835 normally not specify this option.  Other Alpha compilers call this
8836 option @option{-ieee_with_inexact}.
8837
8838 @item -mfp-trap-mode=@var{trap-mode}
8839 @opindex mfp-trap-mode
8840 This option controls what floating-point related traps are enabled.
8841 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
8842 The trap mode can be set to one of four values:
8843
8844 @table @samp
8845 @item n
8846 This is the default (normal) setting.  The only traps that are enabled
8847 are the ones that cannot be disabled in software (e.g., division by zero
8848 trap).
8849
8850 @item u
8851 In addition to the traps enabled by @samp{n}, underflow traps are enabled
8852 as well.
8853
8854 @item su
8855 Like @samp{su}, but the instructions are marked to be safe for software
8856 completion (see Alpha architecture manual for details).
8857
8858 @item sui
8859 Like @samp{su}, but inexact traps are enabled as well.
8860 @end table
8861
8862 @item -mfp-rounding-mode=@var{rounding-mode}
8863 @opindex mfp-rounding-mode
8864 Selects the IEEE rounding mode.  Other Alpha compilers call this option
8865 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
8866 of:
8867
8868 @table @samp
8869 @item n
8870 Normal IEEE rounding mode.  Floating point numbers are rounded towards
8871 the nearest machine number or towards the even machine number in case
8872 of a tie.
8873
8874 @item m
8875 Round towards minus infinity.
8876
8877 @item c
8878 Chopped rounding mode.  Floating point numbers are rounded towards zero.
8879
8880 @item d
8881 Dynamic rounding mode.  A field in the floating point control register
8882 (@var{fpcr}, see Alpha architecture reference manual) controls the
8883 rounding mode in effect.  The C library initializes this register for
8884 rounding towards plus infinity.  Thus, unless your program modifies the
8885 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
8886 @end table
8887
8888 @item -mtrap-precision=@var{trap-precision}
8889 @opindex mtrap-precision
8890 In the Alpha architecture, floating point traps are imprecise.  This
8891 means without software assistance it is impossible to recover from a
8892 floating trap and program execution normally needs to be terminated.
8893 GCC can generate code that can assist operating system trap handlers
8894 in determining the exact location that caused a floating point trap.
8895 Depending on the requirements of an application, different levels of
8896 precisions can be selected:
8897
8898 @table @samp
8899 @item p
8900 Program precision.  This option is the default and means a trap handler
8901 can only identify which program caused a floating point exception.
8902
8903 @item f
8904 Function precision.  The trap handler can determine the function that
8905 caused a floating point exception.
8906
8907 @item i
8908 Instruction precision.  The trap handler can determine the exact
8909 instruction that caused a floating point exception.
8910 @end table
8911
8912 Other Alpha compilers provide the equivalent options called
8913 @option{-scope_safe} and @option{-resumption_safe}.
8914
8915 @item -mieee-conformant
8916 @opindex mieee-conformant
8917 This option marks the generated code as IEEE conformant.  You must not
8918 use this option unless you also specify @option{-mtrap-precision=i} and either
8919 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
8920 is to emit the line @samp{.eflag 48} in the function prologue of the
8921 generated assembly file.  Under DEC Unix, this has the effect that
8922 IEEE-conformant math library routines will be linked in.
8923
8924 @item -mbuild-constants
8925 @opindex mbuild-constants
8926 Normally GCC examines a 32- or 64-bit integer constant to
8927 see if it can construct it from smaller constants in two or three
8928 instructions.  If it cannot, it will output the constant as a literal and
8929 generate code to load it from the data segment at runtime.
8930
8931 Use this option to require GCC to construct @emph{all} integer constants
8932 using code, even if it takes more instructions (the maximum is six).
8933
8934 You would typically use this option to build a shared library dynamic
8935 loader.  Itself a shared library, it must relocate itself in memory
8936 before it can find the variables and constants in its own data segment.
8937
8938 @item -malpha-as
8939 @itemx -mgas
8940 @opindex malpha-as
8941 @opindex mgas
8942 Select whether to generate code to be assembled by the vendor-supplied
8943 assembler (@option{-malpha-as}) or by the GNU assembler @option{-mgas}.
8944
8945 @item -mbwx
8946 @itemx -mno-bwx
8947 @itemx -mcix
8948 @itemx -mno-cix
8949 @itemx -mfix
8950 @itemx -mno-fix
8951 @itemx -mmax
8952 @itemx -mno-max
8953 @opindex mbwx
8954 @opindex mno-bwx
8955 @opindex mcix
8956 @opindex mno-cix
8957 @opindex mfix
8958 @opindex mno-fix
8959 @opindex mmax
8960 @opindex mno-max
8961 Indicate whether GCC should generate code to use the optional BWX,
8962 CIX, FIX and MAX instruction sets.  The default is to use the instruction
8963 sets supported by the CPU type specified via @option{-mcpu=} option or that
8964 of the CPU on which GCC was built if none was specified.
8965
8966 @item -mfloat-vax
8967 @itemx -mfloat-ieee
8968 @opindex mfloat-vax
8969 @opindex mfloat-ieee
8970 Generate code that uses (does not use) VAX F and G floating point
8971 arithmetic instead of IEEE single and double precision.
8972
8973 @item -mexplicit-relocs
8974 @itemx -mno-explicit-relocs
8975 @opindex mexplicit-relocs
8976 @opindex mno-explicit-relocs
8977 Older Alpha assemblers provided no way to generate symbol relocations
8978 except via assembler macros.  Use of these macros does not allow
8979 optimal instruction scheduling.  GNU binutils as of version 2.12
8980 supports a new syntax that allows the compiler to explicitly mark
8981 which relocations should apply to which instructions.  This option
8982 is mostly useful for debugging, as GCC detects the capabilities of
8983 the assembler when it is built and sets the default accordingly.
8984
8985 @item -msmall-data
8986 @itemx -mlarge-data
8987 @opindex msmall-data
8988 @opindex mlarge-data
8989 When @option{-mexplicit-relocs} is in effect, static data is
8990 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
8991 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
8992 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
8993 16-bit relocations off of the @code{$gp} register.  This limits the
8994 size of the small data area to 64KB, but allows the variables to be
8995 directly accessed via a single instruction.
8996
8997 The default is @option{-mlarge-data}.  With this option the data area
8998 is limited to just below 2GB.  Programs that require more than 2GB of
8999 data must use @code{malloc} or @code{mmap} to allocate the data in the
9000 heap instead of in the program's data segment.
9001
9002 When generating code for shared libraries, @option{-fpic} implies
9003 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
9004
9005 @item -msmall-text
9006 @itemx -mlarge-text
9007 @opindex msmall-text
9008 @opindex mlarge-text
9009 When @option{-msmall-text} is used, the compiler assumes that the
9010 code of the entire program (or shared library) fits in 4MB, and is
9011 thus reachable with a branch instruction.  When @option{-msmall-data}
9012 is used, the compiler can assume that all local symbols share the
9013 same @code{$gp} value, and thus reduce the number of instructions
9014 required for a function call from 4 to 1.
9015
9016 The default is @option{-mlarge-text}.
9017
9018 @item -mcpu=@var{cpu_type}
9019 @opindex mcpu
9020 Set the instruction set and instruction scheduling parameters for
9021 machine type @var{cpu_type}.  You can specify either the @samp{EV}
9022 style name or the corresponding chip number.  GCC supports scheduling
9023 parameters for the EV4, EV5 and EV6 family of processors and will
9024 choose the default values for the instruction set from the processor
9025 you specify.  If you do not specify a processor type, GCC will default
9026 to the processor on which the compiler was built.
9027
9028 Supported values for @var{cpu_type} are
9029
9030 @table @samp
9031 @item ev4
9032 @item ev45
9033 @itemx 21064
9034 Schedules as an EV4 and has no instruction set extensions.
9035
9036 @item ev5
9037 @itemx 21164
9038 Schedules as an EV5 and has no instruction set extensions.
9039
9040 @item ev56
9041 @itemx 21164a
9042 Schedules as an EV5 and supports the BWX extension.
9043
9044 @item pca56
9045 @itemx 21164pc
9046 @itemx 21164PC
9047 Schedules as an EV5 and supports the BWX and MAX extensions.
9048
9049 @item ev6
9050 @itemx 21264
9051 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
9052
9053 @item ev67
9054 @item 21264a
9055 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
9056 @end table
9057
9058 @item -mtune=@var{cpu_type}
9059 @opindex mtune
9060 Set only the instruction scheduling parameters for machine type
9061 @var{cpu_type}.  The instruction set is not changed.
9062
9063 @item -mmemory-latency=@var{time}
9064 @opindex mmemory-latency
9065 Sets the latency the scheduler should assume for typical memory
9066 references as seen by the application.  This number is highly
9067 dependent on the memory access patterns used by the application
9068 and the size of the external cache on the machine.
9069
9070 Valid options for @var{time} are
9071
9072 @table @samp
9073 @item @var{number}
9074 A decimal number representing clock cycles.
9075
9076 @item L1
9077 @itemx L2
9078 @itemx L3
9079 @itemx main
9080 The compiler contains estimates of the number of clock cycles for
9081 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
9082 (also called Dcache, Scache, and Bcache), as well as to main memory.
9083 Note that L3 is only valid for EV5.
9084
9085 @end table
9086 @end table
9087
9088 @node DEC Alpha/VMS Options
9089 @subsection DEC Alpha/VMS Options
9090
9091 These @samp{-m} options are defined for the DEC Alpha/VMS implementations:
9092
9093 @table @gcctabopt
9094 @item -mvms-return-codes
9095 @opindex mvms-return-codes
9096 Return VMS condition codes from main.  The default is to return POSIX
9097 style condition (e.g.@ error) codes.
9098 @end table
9099
9100 @node H8/300 Options
9101 @subsection H8/300 Options
9102
9103 These @samp{-m} options are defined for the H8/300 implementations:
9104
9105 @table @gcctabopt
9106 @item -mrelax
9107 @opindex mrelax
9108 Shorten some address references at link time, when possible; uses the
9109 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
9110 ld.info, Using ld}, for a fuller description.
9111
9112 @item -mh
9113 @opindex mh
9114 Generate code for the H8/300H@.
9115
9116 @item -ms
9117 @opindex ms
9118 Generate code for the H8S@.
9119
9120 @item -mn
9121 @opindex mn
9122 Generate code for the H8S and H8/300H in the normal mode.  This switch
9123 must be used either with -mh or -ms.
9124
9125 @item -ms2600
9126 @opindex ms2600
9127 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
9128
9129 @item -mint32
9130 @opindex mint32
9131 Make @code{int} data 32 bits by default.
9132
9133 @item -malign-300
9134 @opindex malign-300
9135 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
9136 The default for the H8/300H and H8S is to align longs and floats on 4
9137 byte boundaries.
9138 @option{-malign-300} causes them to be aligned on 2 byte boundaries.
9139 This option has no effect on the H8/300.
9140 @end table
9141
9142 @node SH Options
9143 @subsection SH Options
9144
9145 These @samp{-m} options are defined for the SH implementations:
9146
9147 @table @gcctabopt
9148 @item -m1
9149 @opindex m1
9150 Generate code for the SH1.
9151
9152 @item -m2
9153 @opindex m2
9154 Generate code for the SH2.
9155
9156 @item -m2e
9157 Generate code for the SH2e.
9158
9159 @item -m3
9160 @opindex m3
9161 Generate code for the SH3.
9162
9163 @item -m3e
9164 @opindex m3e
9165 Generate code for the SH3e.
9166
9167 @item -m4-nofpu
9168 @opindex m4-nofpu
9169 Generate code for the SH4 without a floating-point unit.
9170
9171 @item -m4-single-only
9172 @opindex m4-single-only
9173 Generate code for the SH4 with a floating-point unit that only
9174 supports single-precision arithmetic.
9175
9176 @item -m4-single
9177 @opindex m4-single
9178 Generate code for the SH4 assuming the floating-point unit is in
9179 single-precision mode by default.
9180
9181 @item -m4
9182 @opindex m4
9183 Generate code for the SH4.
9184
9185 @item -mb
9186 @opindex mb
9187 Compile code for the processor in big endian mode.
9188
9189 @item -ml
9190 @opindex ml
9191 Compile code for the processor in little endian mode.
9192
9193 @item -mdalign
9194 @opindex mdalign
9195 Align doubles at 64-bit boundaries.  Note that this changes the calling
9196 conventions, and thus some functions from the standard C library will
9197 not work unless you recompile it first with @option{-mdalign}.
9198
9199 @item -mrelax
9200 @opindex mrelax
9201 Shorten some address references at link time, when possible; uses the
9202 linker option @option{-relax}.
9203
9204 @item -mbigtable
9205 @opindex mbigtable
9206 Use 32-bit offsets in @code{switch} tables.  The default is to use
9207 16-bit offsets.
9208
9209 @item -mfmovd
9210 @opindex mfmovd
9211 Enable the use of the instruction @code{fmovd}.
9212
9213 @item -mhitachi
9214 @opindex mhitachi
9215 Comply with the calling conventions defined by Hitachi.
9216
9217 @item -mnomacsave
9218 @opindex mnomacsave
9219 Mark the @code{MAC} register as call-clobbered, even if
9220 @option{-mhitachi} is given.
9221
9222 @item -mieee
9223 @opindex mieee
9224 Increase IEEE-compliance of floating-point code.
9225
9226 @item -misize
9227 @opindex misize
9228 Dump instruction size and location in the assembly code.
9229
9230 @item -mpadstruct
9231 @opindex mpadstruct
9232 This option is deprecated.  It pads structures to multiple of 4 bytes,
9233 which is incompatible with the SH ABI@.
9234
9235 @item -mspace
9236 @opindex mspace
9237 Optimize for space instead of speed.  Implied by @option{-Os}.
9238
9239 @item -mprefergot
9240 @opindex mprefergot
9241 When generating position-independent code, emit function calls using
9242 the Global Offset Table instead of the Procedure Linkage Table.
9243
9244 @item -musermode
9245 @opindex musermode
9246 Generate a library function call to invalidate instruction cache
9247 entries, after fixing up a trampoline.  This library function call
9248 doesn't assume it can write to the whole memory address space.  This
9249 is the default when the target is @code{sh-*-linux*}.
9250 @end table
9251
9252 @node System V Options
9253 @subsection Options for System V
9254
9255 These additional options are available on System V Release 4 for
9256 compatibility with other compilers on those systems:
9257
9258 @table @gcctabopt
9259 @item -G
9260 @opindex G
9261 Create a shared object.
9262 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
9263
9264 @item -Qy
9265 @opindex Qy
9266 Identify the versions of each tool used by the compiler, in a
9267 @code{.ident} assembler directive in the output.
9268
9269 @item -Qn
9270 @opindex Qn
9271 Refrain from adding @code{.ident} directives to the output file (this is
9272 the default).
9273
9274 @item -YP,@var{dirs}
9275 @opindex YP
9276 Search the directories @var{dirs}, and no others, for libraries
9277 specified with @option{-l}.
9278
9279 @item -Ym,@var{dir}
9280 @opindex Ym
9281 Look in the directory @var{dir} to find the M4 preprocessor.
9282 The assembler uses this option.
9283 @c This is supposed to go with a -Yd for predefined M4 macro files, but
9284 @c the generic assembler that comes with Solaris takes just -Ym.
9285 @end table
9286
9287 @node TMS320C3x/C4x Options
9288 @subsection TMS320C3x/C4x Options
9289 @cindex TMS320C3x/C4x Options
9290
9291 These @samp{-m} options are defined for TMS320C3x/C4x implementations:
9292
9293 @table @gcctabopt
9294
9295 @item -mcpu=@var{cpu_type}
9296 @opindex mcpu
9297 Set the instruction set, register set, and instruction scheduling
9298 parameters for machine type @var{cpu_type}.  Supported values for
9299 @var{cpu_type} are @samp{c30}, @samp{c31}, @samp{c32}, @samp{c40}, and
9300 @samp{c44}.  The default is @samp{c40} to generate code for the
9301 TMS320C40.
9302
9303 @item -mbig-memory
9304 @item -mbig
9305 @itemx -msmall-memory
9306 @itemx -msmall
9307 @opindex mbig-memory
9308 @opindex mbig
9309 @opindex msmall-memory
9310 @opindex msmall
9311 Generates code for the big or small memory model.  The small memory
9312 model assumed that all data fits into one 64K word page.  At run-time
9313 the data page (DP) register must be set to point to the 64K page
9314 containing the .bss and .data program sections.  The big memory model is
9315 the default and requires reloading of the DP register for every direct
9316 memory access.
9317
9318 @item -mbk
9319 @itemx -mno-bk
9320 @opindex mbk
9321 @opindex mno-bk
9322 Allow (disallow) allocation of general integer operands into the block
9323 count register BK@.
9324
9325 @item -mdb
9326 @itemx -mno-db
9327 @opindex mdb
9328 @opindex mno-db
9329 Enable (disable) generation of code using decrement and branch,
9330 DBcond(D), instructions.  This is enabled by default for the C4x.  To be
9331 on the safe side, this is disabled for the C3x, since the maximum
9332 iteration count on the C3x is @math{2^{23} + 1} (but who iterates loops more than
9333 @math{2^{23}} times on the C3x?).  Note that GCC will try to reverse a loop so
9334 that it can utilize the decrement and branch instruction, but will give
9335 up if there is more than one memory reference in the loop.  Thus a loop
9336 where the loop counter is decremented can generate slightly more
9337 efficient code, in cases where the RPTB instruction cannot be utilized.
9338
9339 @item -mdp-isr-reload
9340 @itemx -mparanoid
9341 @opindex mdp-isr-reload
9342 @opindex mparanoid
9343 Force the DP register to be saved on entry to an interrupt service
9344 routine (ISR), reloaded to point to the data section, and restored on
9345 exit from the ISR@.  This should not be required unless someone has
9346 violated the small memory model by modifying the DP register, say within
9347 an object library.
9348
9349 @item -mmpyi
9350 @itemx -mno-mpyi
9351 @opindex mmpyi
9352 @opindex mno-mpyi
9353 For the C3x use the 24-bit MPYI instruction for integer multiplies
9354 instead of a library call to guarantee 32-bit results.  Note that if one
9355 of the operands is a constant, then the multiplication will be performed
9356 using shifts and adds.  If the @option{-mmpyi} option is not specified for the C3x,
9357 then squaring operations are performed inline instead of a library call.
9358
9359 @item -mfast-fix
9360 @itemx -mno-fast-fix
9361 @opindex mfast-fix
9362 @opindex mno-fast-fix
9363 The C3x/C4x FIX instruction to convert a floating point value to an
9364 integer value chooses the nearest integer less than or equal to the
9365 floating point value rather than to the nearest integer.  Thus if the
9366 floating point number is negative, the result will be incorrectly
9367 truncated an additional code is necessary to detect and correct this
9368 case.  This option can be used to disable generation of the additional
9369 code required to correct the result.
9370
9371 @item -mrptb
9372 @itemx -mno-rptb
9373 @opindex mrptb
9374 @opindex mno-rptb
9375 Enable (disable) generation of repeat block sequences using the RPTB
9376 instruction for zero overhead looping.  The RPTB construct is only used
9377 for innermost loops that do not call functions or jump across the loop
9378 boundaries.  There is no advantage having nested RPTB loops due to the
9379 overhead required to save and restore the RC, RS, and RE registers.
9380 This is enabled by default with @option{-O2}.
9381
9382 @item -mrpts=@var{count}
9383 @itemx -mno-rpts
9384 @opindex mrpts
9385 @opindex mno-rpts
9386 Enable (disable) the use of the single instruction repeat instruction
9387 RPTS@.  If a repeat block contains a single instruction, and the loop
9388 count can be guaranteed to be less than the value @var{count}, GCC will
9389 emit a RPTS instruction instead of a RPTB@.  If no value is specified,
9390 then a RPTS will be emitted even if the loop count cannot be determined
9391 at compile time.  Note that the repeated instruction following RPTS does
9392 not have to be reloaded from memory each iteration, thus freeing up the
9393 CPU buses for operands.  However, since interrupts are blocked by this
9394 instruction, it is disabled by default.
9395
9396 @item -mloop-unsigned
9397 @itemx -mno-loop-unsigned
9398 @opindex mloop-unsigned
9399 @opindex mno-loop-unsigned
9400 The maximum iteration count when using RPTS and RPTB (and DB on the C40)
9401 is @math{2^{31} + 1} since these instructions test if the iteration count is
9402 negative to terminate the loop.  If the iteration count is unsigned
9403 there is a possibility than the @math{2^{31} + 1} maximum iteration count may be
9404 exceeded.  This switch allows an unsigned iteration count.
9405
9406 @item -mti
9407 @opindex mti
9408 Try to emit an assembler syntax that the TI assembler (asm30) is happy
9409 with.  This also enforces compatibility with the API employed by the TI
9410 C3x C compiler.  For example, long doubles are passed as structures
9411 rather than in floating point registers.
9412
9413 @item -mregparm
9414 @itemx -mmemparm
9415 @opindex mregparm
9416 @opindex mmemparm
9417 Generate code that uses registers (stack) for passing arguments to functions.
9418 By default, arguments are passed in registers where possible rather
9419 than by pushing arguments on to the stack.
9420
9421 @item -mparallel-insns
9422 @itemx -mno-parallel-insns
9423 @opindex mparallel-insns
9424 @opindex mno-parallel-insns
9425 Allow the generation of parallel instructions.  This is enabled by
9426 default with @option{-O2}.
9427
9428 @item -mparallel-mpy
9429 @itemx -mno-parallel-mpy
9430 @opindex mparallel-mpy
9431 @opindex mno-parallel-mpy
9432 Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
9433 provided @option{-mparallel-insns} is also specified.  These instructions have
9434 tight register constraints which can pessimize the code generation
9435 of large functions.
9436
9437 @end table
9438
9439 @node V850 Options
9440 @subsection V850 Options
9441 @cindex V850 Options
9442
9443 These @samp{-m} options are defined for V850 implementations:
9444
9445 @table @gcctabopt
9446 @item -mlong-calls
9447 @itemx -mno-long-calls
9448 @opindex mlong-calls
9449 @opindex mno-long-calls
9450 Treat all calls as being far away (near).  If calls are assumed to be
9451 far away, the compiler will always load the functions address up into a
9452 register, and call indirect through the pointer.
9453
9454 @item -mno-ep
9455 @itemx -mep
9456 @opindex mno-ep
9457 @opindex mep
9458 Do not optimize (do optimize) basic blocks that use the same index
9459 pointer 4 or more times to copy pointer into the @code{ep} register, and
9460 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
9461 option is on by default if you optimize.
9462
9463 @item -mno-prolog-function
9464 @itemx -mprolog-function
9465 @opindex mno-prolog-function
9466 @opindex mprolog-function
9467 Do not use (do use) external functions to save and restore registers at
9468 the prolog and epilog of a function.  The external functions are slower,
9469 but use less code space if more than one function saves the same number
9470 of registers.  The @option{-mprolog-function} option is on by default if
9471 you optimize.
9472
9473 @item -mspace
9474 @opindex mspace
9475 Try to make the code as small as possible.  At present, this just turns
9476 on the @option{-mep} and @option{-mprolog-function} options.
9477
9478 @item -mtda=@var{n}
9479 @opindex mtda
9480 Put static or global variables whose size is @var{n} bytes or less into
9481 the tiny data area that register @code{ep} points to.  The tiny data
9482 area can hold up to 256 bytes in total (128 bytes for byte references).
9483
9484 @item -msda=@var{n}
9485 @opindex msda
9486 Put static or global variables whose size is @var{n} bytes or less into
9487 the small data area that register @code{gp} points to.  The small data
9488 area can hold up to 64 kilobytes.
9489
9490 @item -mzda=@var{n}
9491 @opindex mzda
9492 Put static or global variables whose size is @var{n} bytes or less into
9493 the first 32 kilobytes of memory.
9494
9495 @item -mv850
9496 @opindex mv850
9497 Specify that the target processor is the V850.
9498
9499 @item -mbig-switch
9500 @opindex mbig-switch
9501 Generate code suitable for big switch tables.  Use this option only if
9502 the assembler/linker complain about out of range branches within a switch
9503 table.
9504
9505 @item -mapp-regs
9506 @opindex -mapp-regs
9507 This option will cause r2 and r5 to be used in the code generated by
9508 the compiler.  This setting is the default.
9509
9510 @item -mno-app-regs
9511 @opindex -mno-app-regs
9512 This option will cause r2 and r5 to be treated as fixed registers.
9513   
9514 @item -mv850e
9515 @opindex -mv850e
9516 Specify that the target processor is the V850E.  The preprocessor
9517 constant @samp{__v850e__} will be defined if this option is used.
9518
9519 If neither @option{-mv850} nor @option{-mv850e} are defined
9520 then a default target processor will be chosen and the relevant
9521 @samp{__v850*__} preprocessor constant will be defined.
9522
9523 The preprocessor constants @samp{__v850} and @samp{__v851__} are always
9524 defined, regardless of which processor variant is the target.
9525
9526 @item -mdisable-callt
9527 @opindex -mdisable-callt
9528 This option will suppress generation of the CALLT instruction for the
9529 v850e flavors of the v850 architecture.  The default is
9530 @option{-mno-disable-callt} which allows the CALLT instruction to be used.
9531
9532 @end table
9533
9534 @node ARC Options
9535 @subsection ARC Options
9536 @cindex ARC Options
9537
9538 These options are defined for ARC implementations:
9539
9540 @table @gcctabopt
9541 @item -EL
9542 @opindex EL
9543 Compile code for little endian mode.  This is the default.
9544
9545 @item -EB
9546 @opindex EB
9547 Compile code for big endian mode.
9548
9549 @item -mmangle-cpu
9550 @opindex mmangle-cpu
9551 Prepend the name of the cpu to all public symbol names.
9552 In multiple-processor systems, there are many ARC variants with different
9553 instruction and register set characteristics.  This flag prevents code
9554 compiled for one cpu to be linked with code compiled for another.
9555 No facility exists for handling variants that are ``almost identical''.
9556 This is an all or nothing option.
9557
9558 @item -mcpu=@var{cpu}
9559 @opindex mcpu
9560 Compile code for ARC variant @var{cpu}.
9561 Which variants are supported depend on the configuration.
9562 All variants support @option{-mcpu=base}, this is the default.
9563
9564 @item -mtext=@var{text-section}
9565 @itemx -mdata=@var{data-section}
9566 @itemx -mrodata=@var{readonly-data-section}
9567 @opindex mtext
9568 @opindex mdata
9569 @opindex mrodata
9570 Put functions, data, and readonly data in @var{text-section},
9571 @var{data-section}, and @var{readonly-data-section} respectively
9572 by default.  This can be overridden with the @code{section} attribute.
9573 @xref{Variable Attributes}.
9574
9575 @end table
9576
9577 @node NS32K Options
9578 @subsection NS32K Options
9579 @cindex NS32K options
9580
9581 These are the @samp{-m} options defined for the 32000 series.  The default
9582 values for these options depends on which style of 32000 was selected when
9583 the compiler was configured; the defaults for the most common choices are
9584 given below.
9585
9586 @table @gcctabopt
9587 @item -m32032
9588 @itemx -m32032
9589 @opindex m32032
9590 @opindex m32032
9591 Generate output for a 32032.  This is the default
9592 when the compiler is configured for 32032 and 32016 based systems.
9593
9594 @item -m32332
9595 @itemx -m32332
9596 @opindex m32332
9597 @opindex m32332
9598 Generate output for a 32332.  This is the default
9599 when the compiler is configured for 32332-based systems.
9600
9601 @item -m32532
9602 @itemx -m32532
9603 @opindex m32532
9604 @opindex m32532
9605 Generate output for a 32532.  This is the default
9606 when the compiler is configured for 32532-based systems.
9607
9608 @item -m32081
9609 @opindex m32081
9610 Generate output containing 32081 instructions for floating point.
9611 This is the default for all systems.
9612
9613 @item -m32381
9614 @opindex m32381
9615 Generate output containing 32381 instructions for floating point.  This
9616 also implies @option{-m32081}.  The 32381 is only compatible with the 32332
9617 and 32532 cpus.  This is the default for the pc532-netbsd configuration.
9618
9619 @item -mmulti-add
9620 @opindex mmulti-add
9621 Try and generate multiply-add floating point instructions @code{polyF}
9622 and @code{dotF}.  This option is only available if the @option{-m32381}
9623 option is in effect.  Using these instructions requires changes to
9624 register allocation which generally has a negative impact on
9625 performance.  This option should only be enabled when compiling code
9626 particularly likely to make heavy use of multiply-add instructions.
9627
9628 @item -mnomulti-add
9629 @opindex mnomulti-add
9630 Do not try and generate multiply-add floating point instructions
9631 @code{polyF} and @code{dotF}.  This is the default on all platforms.
9632
9633 @item -msoft-float
9634 @opindex msoft-float
9635 Generate output containing library calls for floating point.
9636 @strong{Warning:} the requisite libraries may not be available.
9637
9638 @item -mieee-compare
9639 @itemx -mno-ieee-compare
9640 @opindex mieee-compare
9641 @opindex mno-ieee-compare
9642 Control whether or not the compiler uses IEEE floating point
9643 comparisons.  These handle correctly the case where the result of a
9644 comparison is unordered.
9645 @strong{Warning:} the requisite kernel support may not be available.
9646
9647 @item -mnobitfield
9648 @opindex mnobitfield
9649 Do not use the bit-field instructions.  On some machines it is faster to
9650 use shifting and masking operations.  This is the default for the pc532.
9651
9652 @item -mbitfield
9653 @opindex mbitfield
9654 Do use the bit-field instructions.  This is the default for all platforms
9655 except the pc532.
9656
9657 @item -mrtd
9658 @opindex mrtd
9659 Use a different function-calling convention, in which functions
9660 that take a fixed number of arguments return pop their
9661 arguments on return with the @code{ret} instruction.
9662
9663 This calling convention is incompatible with the one normally
9664 used on Unix, so you cannot use it if you need to call libraries
9665 compiled with the Unix compiler.
9666
9667 Also, you must provide function prototypes for all functions that
9668 take variable numbers of arguments (including @code{printf});
9669 otherwise incorrect code will be generated for calls to those
9670 functions.
9671
9672 In addition, seriously incorrect code will result if you call a
9673 function with too many arguments.  (Normally, extra arguments are
9674 harmlessly ignored.)
9675
9676 This option takes its name from the 680x0 @code{rtd} instruction.
9677
9678
9679 @item -mregparam
9680 @opindex mregparam
9681 Use a different function-calling convention where the first two arguments
9682 are passed in registers.
9683
9684 This calling convention is incompatible with the one normally
9685 used on Unix, so you cannot use it if you need to call libraries
9686 compiled with the Unix compiler.
9687
9688 @item -mnoregparam
9689 @opindex mnoregparam
9690 Do not pass any arguments in registers.  This is the default for all
9691 targets.
9692
9693 @item -msb
9694 @opindex msb
9695 It is OK to use the sb as an index register which is always loaded with
9696 zero.  This is the default for the pc532-netbsd target.
9697
9698 @item -mnosb
9699 @opindex mnosb
9700 The sb register is not available for use or has not been initialized to
9701 zero by the run time system.  This is the default for all targets except
9702 the pc532-netbsd.  It is also implied whenever @option{-mhimem} or
9703 @option{-fpic} is set.
9704
9705 @item -mhimem
9706 @opindex mhimem
9707 Many ns32000 series addressing modes use displacements of up to 512MB@.
9708 If an address is above 512MB then displacements from zero can not be used.
9709 This option causes code to be generated which can be loaded above 512MB@.
9710 This may be useful for operating systems or ROM code.
9711
9712 @item -mnohimem
9713 @opindex mnohimem
9714 Assume code will be loaded in the first 512MB of virtual address space.
9715 This is the default for all platforms.
9716
9717
9718 @end table
9719
9720 @node AVR Options
9721 @subsection AVR Options
9722 @cindex AVR Options
9723
9724 These options are defined for AVR implementations:
9725
9726 @table @gcctabopt
9727 @item -mmcu=@var{mcu}
9728 @opindex mmcu
9729 Specify ATMEL AVR instruction set or MCU type.
9730
9731 Instruction set avr1 is for the minimal AVR core, not supported by the C
9732 compiler, only for assembler programs (MCU types: at90s1200, attiny10,
9733 attiny11, attiny12, attiny15, attiny28).
9734
9735 Instruction set avr2 (default) is for the classic AVR core with up to
9736 8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
9737 at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
9738 at90c8534, at90s8535).
9739
9740 Instruction set avr3 is for the classic AVR core with up to 128K program
9741 memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).
9742
9743 Instruction set avr4 is for the enhanced AVR core with up to 8K program
9744 memory space (MCU types: atmega8, atmega83, atmega85).
9745
9746 Instruction set avr5 is for the enhanced AVR core with up to 128K program
9747 memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
9748 atmega64, atmega128, at43usb355, at94k).
9749
9750 @item -msize
9751 @opindex msize
9752 Output instruction sizes to the asm file.
9753
9754 @item -minit-stack=@var{N}
9755 @opindex minit-stack
9756 Specify the initial stack address, which may be a symbol or numeric value,
9757 @samp{__stack} is the default.
9758
9759 @item -mno-interrupts
9760 @opindex mno-interrupts
9761 Generated code is not compatible with hardware interrupts.
9762 Code size will be smaller.
9763
9764 @item -mcall-prologues
9765 @opindex mcall-prologues
9766 Functions prologues/epilogues expanded as call to appropriate
9767 subroutines.  Code size will be smaller.
9768
9769 @item -mno-tablejump
9770 @opindex mno-tablejump
9771 Do not generate tablejump insns which sometimes increase code size.
9772
9773 @item -mtiny-stack
9774 @opindex mtiny-stack
9775 Change only the low 8 bits of the stack pointer.
9776 @end table
9777
9778 @node MCore Options
9779 @subsection MCore Options
9780 @cindex MCore options
9781
9782 These are the @samp{-m} options defined for the Motorola M*Core
9783 processors.
9784
9785 @table @gcctabopt
9786
9787 @item -mhardlit
9788 @itemx -mno-hardlit
9789 @opindex mhardlit
9790 @opindex mno-hardlit
9791 Inline constants into the code stream if it can be done in two
9792 instructions or less.
9793
9794 @item -mdiv
9795 @itemx -mno-div
9796 @opindex mdiv
9797 @opindex mno-div
9798 Use the divide instruction.  (Enabled by default).
9799
9800 @item -mrelax-immediate
9801 @itemx -mno-relax-immediate
9802 @opindex mrelax-immediate
9803 @opindex mno-relax-immediate
9804 Allow arbitrary sized immediates in bit operations.
9805
9806 @item -mwide-bitfields
9807 @itemx -mno-wide-bitfields
9808 @opindex mwide-bitfields
9809 @opindex mno-wide-bitfields
9810 Always treat bit-fields as int-sized.
9811
9812 @item -m4byte-functions
9813 @itemx -mno-4byte-functions
9814 @opindex m4byte-functions
9815 @opindex mno-4byte-functions
9816 Force all functions to be aligned to a four byte boundary.
9817
9818 @item -mcallgraph-data
9819 @itemx -mno-callgraph-data
9820 @opindex mcallgraph-data
9821 @opindex mno-callgraph-data
9822 Emit callgraph information.
9823
9824 @item -mslow-bytes
9825 @itemx -mno-slow-bytes
9826 @opindex mslow-bytes
9827 @opindex mno-slow-bytes
9828 Prefer word access when reading byte quantities.
9829
9830 @item -mlittle-endian
9831 @itemx -mbig-endian
9832 @opindex mlittle-endian
9833 @opindex mbig-endian
9834 Generate code for a little endian target.
9835
9836 @item -m210
9837 @itemx -m340
9838 @opindex m210
9839 @opindex m340
9840 Generate code for the 210 processor.
9841 @end table
9842
9843 @node IA-64 Options
9844 @subsection IA-64 Options
9845 @cindex IA-64 Options
9846
9847 These are the @samp{-m} options defined for the Intel IA-64 architecture.
9848
9849 @table @gcctabopt
9850 @item -mbig-endian
9851 @opindex mbig-endian
9852 Generate code for a big endian target.  This is the default for HP-UX@.
9853
9854 @item -mlittle-endian
9855 @opindex mlittle-endian
9856 Generate code for a little endian target.  This is the default for AIX5
9857 and Linux.
9858
9859 @item -mgnu-as
9860 @itemx -mno-gnu-as
9861 @opindex mgnu-as
9862 @opindex mno-gnu-as
9863 Generate (or don't) code for the GNU assembler.  This is the default.
9864 @c Also, this is the default if the configure option @option{--with-gnu-as}
9865 @c is used.
9866
9867 @item -mgnu-ld
9868 @itemx -mno-gnu-ld
9869 @opindex mgnu-ld
9870 @opindex mno-gnu-ld
9871 Generate (or don't) code for the GNU linker.  This is the default.
9872 @c Also, this is the default if the configure option @option{--with-gnu-ld}
9873 @c is used.
9874
9875 @item -mno-pic
9876 @opindex mno-pic
9877 Generate code that does not use a global pointer register.  The result
9878 is not position independent code, and violates the IA-64 ABI@.
9879
9880 @item -mvolatile-asm-stop
9881 @itemx -mno-volatile-asm-stop
9882 @opindex mvolatile-asm-stop
9883 @opindex mno-volatile-asm-stop
9884 Generate (or don't) a stop bit immediately before and after volatile asm
9885 statements.
9886
9887 @item -mb-step
9888 @opindex mb-step
9889 Generate code that works around Itanium B step errata.
9890
9891 @item -mregister-names
9892 @itemx -mno-register-names
9893 @opindex mregister-names
9894 @opindex mno-register-names
9895 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
9896 the stacked registers.  This may make assembler output more readable.
9897
9898 @item -mno-sdata
9899 @itemx -msdata
9900 @opindex mno-sdata
9901 @opindex msdata
9902 Disable (or enable) optimizations that use the small data section.  This may
9903 be useful for working around optimizer bugs.
9904
9905 @item -mconstant-gp
9906 @opindex mconstant-gp
9907 Generate code that uses a single constant global pointer value.  This is
9908 useful when compiling kernel code.
9909
9910 @item -mauto-pic
9911 @opindex mauto-pic
9912 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
9913 This is useful when compiling firmware code.
9914
9915 @item -minline-float-divide-min-latency
9916 @opindex minline-float-divide-min-latency
9917 Generate code for inline divides of floating point values
9918 using the minimum latency algorithm.
9919
9920 @item -minline-float-divide-max-throughput
9921 @opindex minline-float-divide-max-throughput
9922 Generate code for inline divides of floating point values
9923 using the maximum throughput algorithm.
9924
9925 @item -minline-int-divide-min-latency
9926 @opindex minline-int-divide-min-latency
9927 Generate code for inline divides of integer values
9928 using the minimum latency algorithm.
9929
9930 @item -minline-int-divide-max-throughput
9931 @opindex minline-int-divide-max-throughput
9932 Generate code for inline divides of integer values
9933 using the maximum throughput algorithm.
9934
9935 @item -mno-dwarf2-asm
9936 @itemx -mdwarf2-asm
9937 @opindex mno-dwarf2-asm
9938 @opindex mdwarf2-asm
9939 Don't (or do) generate assembler code for the DWARF2 line number debugging
9940 info.  This may be useful when not using the GNU assembler.
9941
9942 @item -mfixed-range=@var{register-range}
9943 @opindex mfixed-range
9944 Generate code treating the given register range as fixed registers.
9945 A fixed register is one that the register allocator can not use.  This is
9946 useful when compiling kernel code.  A register range is specified as
9947 two registers separated by a dash.  Multiple register ranges can be
9948 specified separated by a comma.
9949
9950 @item -mearly-stop-bits
9951 @itemx -mno-early-stop-bits
9952 @opindex mearly-stop-bits
9953 @opindex mno-early-stop-bits
9954 Allow stop bits to be placed earlier than immediately preceding the
9955 instruction that triggered the stop bit.  This can improve instruction
9956 scheduling, but does not always do so.
9957 @end table
9958
9959 @node D30V Options
9960 @subsection D30V Options
9961 @cindex D30V Options
9962
9963 These @samp{-m} options are defined for D30V implementations:
9964
9965 @table @gcctabopt
9966 @item -mextmem
9967 @opindex mextmem
9968 Link the @samp{.text}, @samp{.data}, @samp{.bss}, @samp{.strings},
9969 @samp{.rodata}, @samp{.rodata1}, @samp{.data1} sections into external
9970 memory, which starts at location @code{0x80000000}.
9971
9972 @item -mextmemory
9973 @opindex mextmemory
9974 Same as the @option{-mextmem} switch.
9975
9976 @item -monchip
9977 @opindex monchip
9978 Link the @samp{.text} section into onchip text memory, which starts at
9979 location @code{0x0}.  Also link @samp{.data}, @samp{.bss},
9980 @samp{.strings}, @samp{.rodata}, @samp{.rodata1}, @samp{.data1} sections
9981 into onchip data memory, which starts at location @code{0x20000000}.
9982
9983 @item -mno-asm-optimize
9984 @itemx -masm-optimize
9985 @opindex mno-asm-optimize
9986 @opindex masm-optimize
9987 Disable (enable) passing @option{-O} to the assembler when optimizing.
9988 The assembler uses the @option{-O} option to automatically parallelize
9989 adjacent short instructions where possible.
9990
9991 @item -mbranch-cost=@var{n}
9992 @opindex mbranch-cost
9993 Increase the internal costs of branches to @var{n}.  Higher costs means
9994 that the compiler will issue more instructions to avoid doing a branch.
9995 The default is 2.
9996
9997 @item -mcond-exec=@var{n}
9998 @opindex mcond-exec
9999 Specify the maximum number of conditionally executed instructions that
10000 replace a branch.  The default is 4.
10001 @end table
10002
10003 @node S/390 and zSeries Options
10004 @subsection S/390 and zSeries Options
10005 @cindex S/390 and zSeries Options
10006
10007 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
10008
10009 @table @gcctabopt
10010 @item -mhard-float
10011 @itemx -msoft-float
10012 @opindex mhard-float
10013 @opindex msoft-float
10014 Use (do not use) the hardware floating-point instructions and registers
10015 for floating-point operations.  When @option{-msoft-float} is specified,
10016 functions in @file{libgcc.a} will be used to perform floating-point
10017 operations.  When @option{-mhard-float} is specified, the compiler
10018 generates IEEE floating-point instructions.  This is the default.
10019
10020 @item -mbackchain
10021 @itemx -mno-backchain
10022 @opindex mbackchain
10023 @opindex mno-backchain
10024 Generate (or do not generate) code which maintains an explicit
10025 backchain within the stack frame that points to the caller's frame.
10026 This is currently needed to allow debugging.  The default is to
10027 generate the backchain.
10028
10029 @item -msmall-exec
10030 @itemx -mno-small-exec
10031 @opindex msmall-exec
10032 @opindex mno-small-exec
10033 Generate (or do not generate) code using the @code{bras} instruction
10034 to do subroutine calls.
10035 This only works reliably if the total executable size does not
10036 exceed 64k.  The default is to use the @code{basr} instruction instead,
10037 which does not have this limitation.
10038
10039 @item -m64
10040 @itemx -m31
10041 @opindex m64
10042 @opindex m31
10043 When @option{-m31} is specified, generate code compliant to the
10044 Linux for S/390 ABI@.  When @option{-m64} is specified, generate
10045 code compliant to the Linux for zSeries ABI@.  This allows GCC in
10046 particular to generate 64-bit instructions.  For the @samp{s390}
10047 targets, the default is @option{-m31}, while the @samp{s390x}
10048 targets default to @option{-m64}.
10049
10050 @item -mzarch
10051 @itemx -mesa
10052 @opindex mzarch
10053 @opindex mesa
10054 When @option{-mzarch} is specified, generate code using the 
10055 instructions available on z/Architecture. 
10056 When @option{-mesa} is specified, generate code using the 
10057 instructions available on ESA/390. Note that @option{-mesa} is
10058 not possible with @option{-m64}.
10059 For the @samp{s390} targets, the default is @option{-mesa}, 
10060 while the @samp{s390x} targets default to @option{-mzarch}.
10061
10062 @item -mmvcle
10063 @itemx -mno-mvcle
10064 @opindex mmvcle
10065 @opindex mno-mvcle
10066 Generate (or do not generate) code using the @code{mvcle} instruction
10067 to perform block moves.  When @option{-mno-mvcle} is specified,
10068 use a @code{mvc} loop instead.  This is the default.
10069
10070 @item -mdebug
10071 @itemx -mno-debug
10072 @opindex mdebug
10073 @opindex mno-debug
10074 Print (or do not print) additional debug information when compiling.
10075 The default is to not print debug information.
10076
10077 @item -march=@var{arch}
10078 @opindex march
10079 Generate code that will run on @var{arch}, which is the name of system
10080 representing a certain processor type. Possible values for
10081 @var{cpu-type} are @samp{g5}, @samp{g6} and @samp{z900}. 
10082
10083 @item -mtune=@var{arch}
10084 @opindex mtune
10085 Tune to @var{cpu-type} everything applicable about the generated code,
10086  except for the ABI and the set of available instructions. 
10087 The list of @var{arch} values is the same as for @option{-march}.
10088
10089 @end table
10090
10091 @node CRIS Options
10092 @subsection CRIS Options
10093 @cindex CRIS Options
10094
10095 These options are defined specifically for the CRIS ports.
10096
10097 @table @gcctabopt
10098 @item -march=@var{architecture-type}
10099 @itemx -mcpu=@var{architecture-type}
10100 @opindex march
10101 @opindex mcpu
10102 Generate code for the specified architecture.  The choices for
10103 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
10104 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX.
10105 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
10106 @samp{v10}.
10107
10108 @item -mtune=@var{architecture-type}
10109 @opindex mtune
10110 Tune to @var{architecture-type} everything applicable about the generated
10111 code, except for the ABI and the set of available instructions.  The
10112 choices for @var{architecture-type} are the same as for
10113 @option{-march=@var{architecture-type}}.
10114
10115 @item -mmax-stack-frame=@var{n}
10116 @opindex mmax-stack-frame
10117 Warn when the stack frame of a function exceeds @var{n} bytes.
10118
10119 @item -melinux-stacksize=@var{n}
10120 @opindex melinux-stacksize
10121 Only available with the @samp{cris-axis-aout} target.  Arranges for
10122 indications in the program to the kernel loader that the stack of the
10123 program should be set to @var{n} bytes.
10124
10125 @item -metrax4
10126 @itemx -metrax100
10127 @opindex metrax4
10128 @opindex metrax100
10129 The options @option{-metrax4} and @option{-metrax100} are synonyms for
10130 @option{-march=v3} and @option{-march=v8} respectively.
10131
10132 @item -mpdebug
10133 @opindex mpdebug
10134 Enable CRIS-specific verbose debug-related information in the assembly
10135 code.  This option also has the effect to turn off the @samp{#NO_APP}
10136 formatted-code indicator to the assembler at the beginning of the
10137 assembly file.
10138
10139 @item -mcc-init
10140 @opindex mcc-init
10141 Do not use condition-code results from previous instruction; always emit
10142 compare and test instructions before use of condition codes.
10143
10144 @item -mno-side-effects
10145 @opindex mno-side-effects
10146 Do not emit instructions with side-effects in addressing modes other than
10147 post-increment.
10148
10149 @item -mstack-align
10150 @itemx -mno-stack-align
10151 @itemx -mdata-align
10152 @itemx -mno-data-align
10153 @itemx -mconst-align
10154 @itemx -mno-const-align
10155 @opindex mstack-align
10156 @opindex mno-stack-align
10157 @opindex mdata-align
10158 @opindex mno-data-align
10159 @opindex mconst-align
10160 @opindex mno-const-align
10161 These options (no-options) arranges (eliminate arrangements) for the
10162 stack-frame, individual data and constants to be aligned for the maximum
10163 single data access size for the chosen CPU model.  The default is to
10164 arrange for 32-bit alignment.  ABI details such as structure layout are
10165 not affected by these options.
10166
10167 @item -m32-bit
10168 @itemx -m16-bit
10169 @itemx -m8-bit
10170 @opindex m32-bit
10171 @opindex m16-bit
10172 @opindex m8-bit
10173 Similar to the stack- data- and const-align options above, these options
10174 arrange for stack-frame, writable data and constants to all be 32-bit,
10175 16-bit or 8-bit aligned.  The default is 32-bit alignment.
10176
10177 @item -mno-prologue-epilogue
10178 @itemx -mprologue-epilogue
10179 @opindex mno-prologue-epilogue
10180 @opindex mprologue-epilogue
10181 With @option{-mno-prologue-epilogue}, the normal function prologue and
10182 epilogue that sets up the stack-frame are omitted and no return
10183 instructions or return sequences are generated in the code.  Use this
10184 option only together with visual inspection of the compiled code: no
10185 warnings or errors are generated when call-saved registers must be saved,
10186 or storage for local variable needs to be allocated.
10187
10188 @item -mno-gotplt
10189 @itemx -mgotplt
10190 @opindex mno-gotplt
10191 @opindex mgotplt
10192 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
10193 instruction sequences that load addresses for functions from the PLT part
10194 of the GOT rather than (traditional on other architectures) calls to the
10195 PLT.  The default is @option{-mgotplt}.
10196
10197 @item -maout
10198 @opindex maout
10199 Legacy no-op option only recognized with the cris-axis-aout target.
10200
10201 @item -melf
10202 @opindex melf
10203 Legacy no-op option only recognized with the cris-axis-elf and
10204 cris-axis-linux-gnu targets.
10205
10206 @item -melinux
10207 @opindex melinux
10208 Only recognized with the cris-axis-aout target, where it selects a
10209 GNU/linux-like multilib, include files and instruction set for
10210 @option{-march=v8}.
10211
10212 @item -mlinux
10213 @opindex mlinux
10214 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
10215
10216 @item -sim
10217 @opindex sim
10218 This option, recognized for the cris-axis-aout and cris-axis-elf arranges
10219 to link with input-output functions from a simulator library.  Code,
10220 initialized data and zero-initialized data are allocated consecutively.
10221
10222 @item -sim2
10223 @opindex sim2
10224 Like @option{-sim}, but pass linker options to locate initialized data at
10225 0x40000000 and zero-initialized data at 0x80000000.
10226 @end table
10227
10228 @node MMIX Options
10229 @subsection MMIX Options
10230 @cindex MMIX Options
10231
10232 These options are defined for the MMIX:
10233
10234 @table @gcctabopt
10235 @item -mlibfuncs
10236 @itemx -mno-libfuncs
10237 @opindex mlibfuncs
10238 @opindex mno-libfuncs
10239 Specify that intrinsic library functions are being compiled, passing all
10240 values in registers, no matter the size.
10241
10242 @item -mepsilon
10243 @itemx -mno-epsilon
10244 @opindex mepsilon
10245 @opindex mno-epsilon
10246 Generate floating-point comparison instructions that compare with respect
10247 to the @code{rE} epsilon register.
10248
10249 @item -mabi=mmixware
10250 @itemx -mabi=gnu
10251 @opindex mabi-mmixware
10252 @opindex mabi=gnu
10253 Generate code that passes function parameters and return values that (in
10254 the called function) are seen as registers @code{$0} and up, as opposed to
10255 the GNU ABI which uses global registers @code{$231} and up.
10256
10257 @item -mzero-extend
10258 @itemx -mno-zero-extend
10259 @opindex mzero-extend
10260 @opindex mno-zero-extend
10261 When reading data from memory in sizes shorter than 64 bits, use (do not
10262 use) zero-extending load instructions by default, rather than
10263 sign-extending ones.
10264
10265 @item -mknuthdiv
10266 @itemx -mno-knuthdiv
10267 @opindex mknuthdiv
10268 @opindex mno-knuthdiv
10269 Make the result of a division yielding a remainder have the same sign as
10270 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
10271 remainder follows the sign of the dividend.  Both methods are
10272 arithmetically valid, the latter being almost exclusively used.
10273
10274 @item -mtoplevel-symbols
10275 @itemx -mno-toplevel-symbols
10276 @opindex mtoplevel-symbols
10277 @opindex mno-toplevel-symbols
10278 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
10279 code can be used with the @code{PREFIX} assembly directive.
10280
10281 @item -melf
10282 @opindex melf
10283 Generate an executable in the ELF format, rather than the default
10284 @samp{mmo} format used by the @command{mmix} simulator.
10285
10286 @item -mbranch-predict
10287 @itemx -mno-branch-predict
10288 @opindex mbranch-predict
10289 @opindex mno-branch-predict
10290 Use (do not use) the probable-branch instructions, when static branch
10291 prediction indicates a probable branch.
10292
10293 @item -mbase-addresses
10294 @itemx -mno-base-addresses
10295 @opindex mbase-addresses
10296 @opindex mno-base-addresses
10297 Generate (do not generate) code that uses @emph{base addresses}.  Using a
10298 base address automatically generates a request (handled by the assembler
10299 and the linker) for a constant to be set up in a global register.  The
10300 register is used for one or more base address requests within the range 0
10301 to 255 from the value held in the register.  The generally leads to short
10302 and fast code, but the number of different data items that can be
10303 addressed is limited.  This means that a program that uses lots of static
10304 data may require @option{-mno-base-addresses}.
10305
10306 @item -msingle-exit
10307 @itemx -mno-single-exit
10308 @opindex msingle-exit
10309 @opindex mno-single-exit
10310 Force (do not force) generated code to have a single exit point in each
10311 function.
10312 @end table
10313
10314 @node PDP-11 Options
10315 @subsection PDP-11 Options
10316 @cindex PDP-11 Options
10317
10318 These options are defined for the PDP-11:
10319
10320 @table @gcctabopt
10321 @item -mfpu
10322 @opindex mfpu
10323 Use hardware FPP floating point.  This is the default.  (FIS floating
10324 point on the PDP-11/40 is not supported.)
10325
10326 @item -msoft-float
10327 @opindex msoft-float
10328 Do not use hardware floating point.
10329
10330 @item -mac0
10331 @opindex mac0
10332 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
10333
10334 @item -mno-ac0
10335 @opindex mno-ac0
10336 Return floating-point results in memory.  This is the default.
10337
10338 @item -m40
10339 @opindex m40
10340 Generate code for a PDP-11/40.
10341
10342 @item -m45
10343 @opindex m45
10344 Generate code for a PDP-11/45.  This is the default.
10345
10346 @item -m10
10347 @opindex m10
10348 Generate code for a PDP-11/10.
10349
10350 @item -mbcopy-builtin
10351 @opindex bcopy-builtin
10352 Use inline @code{movstrhi} patterns for copying memory.  This is the
10353 default.
10354
10355 @item -mbcopy
10356 @opindex mbcopy
10357 Do not use inline @code{movstrhi} patterns for copying memory.
10358
10359 @item -mint16
10360 @itemx -mno-int32
10361 @opindex mint16
10362 @opindex mno-int32
10363 Use 16-bit @code{int}.  This is the default.
10364
10365 @item -mint32
10366 @itemx -mno-int16
10367 @opindex mint32
10368 @opindex mno-int16
10369 Use 32-bit @code{int}.
10370
10371 @item -mfloat64
10372 @itemx -mno-float32
10373 @opindex mfloat64
10374 @opindex mno-float32
10375 Use 64-bit @code{float}.  This is the default.
10376
10377 @item -mfloat32
10378 @item -mno-float64
10379 @opindex mfloat32
10380 @opindex mno-float64
10381 Use 32-bit @code{float}.
10382
10383 @item -mabshi
10384 @opindex mabshi
10385 Use @code{abshi2} pattern.  This is the default.
10386
10387 @item -mno-abshi
10388 @opindex mno-abshi
10389 Do not use @code{abshi2} pattern.
10390
10391 @item -mbranch-expensive
10392 @opindex mbranch-expensive
10393 Pretend that branches are expensive.  This is for experimenting with
10394 code generation only.
10395
10396 @item -mbranch-cheap
10397 @opindex mbranch-cheap
10398 Do not pretend that branches are expensive.  This is the default.
10399
10400 @item -msplit
10401 @opindex msplit
10402 Generate code for a system with split I&D.
10403
10404 @item -mno-split
10405 @opindex mno-split
10406 Generate code for a system without split I&D.  This is the default.
10407
10408 @item -munix-asm
10409 @opindex munix-asm
10410 Use Unix assembler syntax.  This is the default when configured for
10411 @samp{pdp11-*-bsd}.
10412
10413 @item -mdec-asm
10414 @opindex mdec-asm
10415 Use DEC assembler syntax.  This is the default when configured for any
10416 PDP-11 target other than @samp{pdp11-*-bsd}.
10417 @end table
10418
10419 @node Xstormy16 Options
10420 @subsection Xstormy16 Options
10421 @cindex Xstormy16 Options
10422
10423 These options are defined for Xstormy16:
10424
10425 @table @gcctabopt
10426 @item -msim
10427 @opindex msim
10428 Choose startup files and linker script suitable for the simulator.
10429 @end table
10430
10431 @node FRV Options
10432 @subsection FRV Options
10433 @cindex FRV Options
10434
10435 @table @gcctabopt
10436 @item -mgpr-32
10437 @opindex mgpr-32
10438
10439 Only use the first 32 general purpose registers.
10440
10441 @item -mgpr-64
10442 @opindex mgpr-64
10443
10444 Use all 64 general purpose registers.
10445
10446 @item -mfpr-32
10447 @opindex mfpr-32
10448
10449 Use only the first 32 floating point registers.
10450
10451 @item -mfpr-64
10452 @opindex mfpr-64
10453
10454 Use all 64 floating point registers
10455
10456 @item -mhard-float
10457 @opindex mhard-float
10458
10459 Use hardware instructions for floating point operations.
10460
10461 @item -msoft-float
10462 @opindex msoft-float
10463
10464 Use library routines for floating point operations.
10465
10466 @item -malloc-cc
10467 @opindex malloc-cc
10468
10469 Dynamically allocate condition code registers.
10470
10471 @item -mfixed-cc
10472 @opindex mfixed-cc
10473
10474 Do not try to dynamically allocate condition code registers, only
10475 use @code{icc0} and @code{fcc0}.
10476
10477 @item -mdword
10478 @opindex mdword
10479
10480 Change ABI to use double word insns.
10481
10482 @item -mno-dword
10483 @opindex mno-dword
10484
10485 Do not use double word instructions.
10486
10487 @item -mdouble
10488 @opindex mdouble
10489
10490 Use floating point double instructions.
10491
10492 @item -mno-double
10493 @opindex mno-double
10494
10495 Do not use floating point double instructions.
10496
10497 @item -mmedia
10498 @opindex mmedia
10499
10500 Use media instructions.
10501
10502 @item -mno-media
10503 @opindex mno-media
10504
10505 Do not use media instructions.
10506
10507 @item -mmuladd
10508 @opindex mmuladd
10509
10510 Use multiply and add/subtract instructions.
10511
10512 @item -mno-muladd
10513 @opindex mno-muladd
10514
10515 Do not use multiply and add/subtract instructions.
10516
10517 @item -mlibrary-pic
10518 @opindex mlibrary-pic
10519
10520 Enable PIC support for building libraries
10521
10522 @item -macc-4
10523 @opindex macc-4
10524
10525 Use only the first four media accumulator registers.
10526
10527 @item -macc-8
10528 @opindex macc-8
10529
10530 Use all eight media accumulator registers.
10531
10532 @item -mpack
10533 @opindex mpack
10534
10535 Pack VLIW instructions.
10536
10537 @item -mno-pack
10538 @opindex mno-pack
10539
10540 Do not pack VLIW instructions.
10541
10542 @item -mno-eflags
10543 @opindex mno-eflags
10544
10545 Do not mark ABI switches in e_flags.
10546
10547 @item -mcond-move
10548 @opindex mcond-move
10549
10550 Enable the use of conditional-move instructions (default).
10551
10552 This switch is mainly for debugging the compiler and will likely be removed
10553 in a future version.
10554
10555 @item -mno-cond-move
10556 @opindex mno-cond-move
10557
10558 Disable the use of conditional-move instructions.
10559
10560 This switch is mainly for debugging the compiler and will likely be removed
10561 in a future version.
10562
10563 @item -mscc
10564 @opindex mscc
10565
10566 Enable the use of conditional set instructions (default).
10567
10568 This switch is mainly for debugging the compiler and will likely be removed
10569 in a future version.
10570
10571 @item -mno-scc
10572 @opindex mno-scc
10573
10574 Disable the use of conditional set instructions.
10575
10576 This switch is mainly for debugging the compiler and will likely be removed
10577 in a future version.
10578
10579 @item -mcond-exec
10580 @opindex mcond-exec
10581
10582 Enable the use of conditional execution (default).
10583
10584 This switch is mainly for debugging the compiler and will likely be removed
10585 in a future version.
10586
10587 @item -mno-cond-exec
10588 @opindex mno-cond-exec
10589
10590 Disable the use of conditional execution.
10591
10592 This switch is mainly for debugging the compiler and will likely be removed
10593 in a future version.
10594
10595 @item -mvliw-branch
10596 @opindex mvliw-branch
10597
10598 Run a pass to pack branches into VLIW instructions (default).
10599
10600 This switch is mainly for debugging the compiler and will likely be removed
10601 in a future version.
10602
10603 @item -mno-vliw-branch
10604 @opindex mno-vliw-branch
10605
10606 Do not run a pass to pack branches into VLIW instructions.
10607
10608 This switch is mainly for debugging the compiler and will likely be removed
10609 in a future version.
10610
10611 @item -mmulti-cond-exec
10612 @opindex mmulti-cond-exec
10613
10614 Enable optimization of @code{&&} and @code{||} in conditional execution
10615 (default).
10616
10617 This switch is mainly for debugging the compiler and will likely be removed
10618 in a future version.
10619
10620 @item -mno-multi-cond-exec
10621 @opindex mno-multi-cond-exec
10622
10623 Disable optimization of @code{&&} and @code{||} in conditional execution.
10624
10625 This switch is mainly for debugging the compiler and will likely be removed
10626 in a future version.
10627
10628 @item -mnested-cond-exec
10629 @opindex mnested-cond-exec
10630
10631 Enable nested conditional execution optimizations (default).
10632
10633 This switch is mainly for debugging the compiler and will likely be removed
10634 in a future version.
10635
10636 @item -mno-nested-cond-exec
10637 @opindex mno-nested-cond-exec
10638
10639 Disable nested conditional execution optimizations.
10640
10641 This switch is mainly for debugging the compiler and will likely be removed
10642 in a future version.
10643
10644 @item -mtomcat-stats
10645 @opindex mtomcat-stats
10646
10647 Cause gas to print out tomcat statistics.
10648
10649 @item -mcpu=@var{cpu}
10650 @opindex mcpu
10651
10652 Select the processor type for which to generate code.  Possible values are
10653 @samp{simple}, @samp{tomcat}, @samp{fr500}, @samp{fr400}, @samp{fr300},
10654 @samp{frv}.
10655
10656 @end table
10657
10658 @node Xtensa Options
10659 @subsection Xtensa Options
10660 @cindex Xtensa Options
10661
10662 The Xtensa architecture is designed to support many different
10663 configurations.  The compiler's default options can be set to match a
10664 particular Xtensa configuration by copying a configuration file into the
10665 GCC sources when building GCC@.  The options below may be used to
10666 override the default options.
10667
10668 @table @gcctabopt
10669 @item -mbig-endian
10670 @itemx -mlittle-endian
10671 @opindex mbig-endian
10672 @opindex mlittle-endian
10673 Specify big-endian or little-endian byte ordering for the target Xtensa
10674 processor.
10675
10676 @item -mdensity
10677 @itemx -mno-density
10678 @opindex mdensity
10679 @opindex mno-density
10680 Enable or disable use of the optional Xtensa code density instructions.
10681
10682 @item -mconst16
10683 @itemx -mno-const16
10684 @opindex mconst16
10685 @opindex mno-const16
10686 Enable or disable use of @code{CONST16} instructions for loading
10687 constant values.  The @code{CONST16} instruction is currently not a
10688 standard option from Tensilica.  When enabled, @code{CONST16}
10689 instructions are always used in place of the standard @code{L32R}
10690 instructions.  The use of @code{CONST16} is enabled by default only if
10691 the @code{L32R} instruction is not available.
10692
10693 @item -mabs
10694 @itemx -mno-abs
10695 @opindex mabs
10696 @opindex mno-abs
10697 Enable or disable use of the Xtensa @code{ABS} instruction for absolute
10698 value operations.
10699
10700 @item -maddx
10701 @itemx -mno-addx
10702 @opindex maddx
10703 @opindex mno-addx
10704 Enable or disable use of the Xtensa @code{ADDX} and @code{SUBX}
10705 instructions.
10706
10707 @item -mmac16
10708 @itemx -mno-mac16
10709 @opindex mmac16
10710 @opindex mno-mac16
10711 Enable or disable use of the Xtensa MAC16 option.  When enabled, GCC
10712 will generate MAC16 instructions from standard C code, with the
10713 limitation that it will use neither the MR register file nor any
10714 instruction that operates on the MR registers.  When this option is
10715 disabled, GCC will translate 16-bit multiply/accumulate operations to a
10716 combination of core instructions and library calls, depending on whether
10717 any other multiplier options are enabled.
10718
10719 @item -mmul16
10720 @itemx -mno-mul16
10721 @opindex mmul16
10722 @opindex mno-mul16
10723 Enable or disable use of the 16-bit integer multiplier option.  When
10724 enabled, the compiler will generate 16-bit multiply instructions for
10725 multiplications of 16 bits or smaller in standard C code.  When this
10726 option is disabled, the compiler will either use 32-bit multiply or
10727 MAC16 instructions if they are available or generate library calls to
10728 perform the multiply operations using shifts and adds.
10729
10730 @item -mmul32
10731 @itemx -mno-mul32
10732 @opindex mmul32
10733 @opindex mno-mul32
10734 Enable or disable use of the 32-bit integer multiplier option.  When
10735 enabled, the compiler will generate 32-bit multiply instructions for
10736 multiplications of 32 bits or smaller in standard C code.  When this
10737 option is disabled, the compiler will generate library calls to perform
10738 the multiply operations using either shifts and adds or 16-bit multiply
10739 instructions if they are available.
10740
10741 @item -mnsa
10742 @itemx -mno-nsa
10743 @opindex mnsa
10744 @opindex mno-nsa
10745 Enable or disable use of the optional normalization shift amount
10746 (@code{NSA}) instructions to implement the built-in @code{ffs} function.
10747
10748 @item -mminmax
10749 @itemx -mno-minmax
10750 @opindex mminmax
10751 @opindex mno-minmax
10752 Enable or disable use of the optional minimum and maximum value
10753 instructions.
10754
10755 @item -msext
10756 @itemx -mno-sext
10757 @opindex msext
10758 @opindex mno-sext
10759 Enable or disable use of the optional sign extend (@code{SEXT})
10760 instruction.
10761
10762 @item -mbooleans
10763 @itemx -mno-booleans
10764 @opindex mbooleans
10765 @opindex mno-booleans
10766 Enable or disable support for the boolean register file used by Xtensa
10767 coprocessors.  This is not typically useful by itself but may be
10768 required for other options that make use of the boolean registers (e.g.,
10769 the floating-point option).
10770
10771 @item -mhard-float
10772 @itemx -msoft-float
10773 @opindex mhard-float
10774 @opindex msoft-float
10775 Enable or disable use of the floating-point option.  When enabled, GCC
10776 generates floating-point instructions for 32-bit @code{float}
10777 operations.  When this option is disabled, GCC generates library calls
10778 to emulate 32-bit floating-point operations using integer instructions.
10779 Regardless of this option, 64-bit @code{double} operations are always
10780 emulated with calls to library functions.
10781
10782 @item -mfused-madd
10783 @itemx -mno-fused-madd
10784 @opindex mfused-madd
10785 @opindex mno-fused-madd
10786 Enable or disable use of fused multiply/add and multiply/subtract
10787 instructions in the floating-point option.  This has no effect if the
10788 floating-point option is not also enabled.  Disabling fused multiply/add
10789 and multiply/subtract instructions forces the compiler to use separate
10790 instructions for the multiply and add/subtract operations.  This may be
10791 desirable in some cases where strict IEEE 754-compliant results are
10792 required: the fused multiply add/subtract instructions do not round the
10793 intermediate result, thereby producing results with @emph{more} bits of
10794 precision than specified by the IEEE standard.  Disabling fused multiply
10795 add/subtract instructions also ensures that the program output is not
10796 sensitive to the compiler's ability to combine multiply and add/subtract
10797 operations.
10798
10799 @item -mtext-section-literals
10800 @itemx -mno-text-section-literals
10801 @opindex mtext-section-literals
10802 @opindex mno-text-section-literals
10803 Control the treatment of literal pools.  The default is
10804 @option{-mno-text-section-literals}, which places literals in a separate
10805 section in the output file.  This allows the literal pool to be placed
10806 in a data RAM/ROM, and it also allows the linker to combine literal
10807 pools from separate object files to remove redundant literals and
10808 improve code size.  With @option{-mtext-section-literals}, the literals
10809 are interspersed in the text section in order to keep them as close as
10810 possible to their references.  This may be necessary for large assembly
10811 files.
10812
10813 @item -mtarget-align
10814 @itemx -mno-target-align
10815 @opindex mtarget-align
10816 @opindex mno-target-align
10817 When this option is enabled, GCC instructs the assembler to
10818 automatically align instructions to reduce branch penalties at the
10819 expense of some code density.  The assembler attempts to widen density
10820 instructions to align branch targets and the instructions following call
10821 instructions.  If there are not enough preceding safe density
10822 instructions to align a target, no widening will be performed.  The
10823 default is @option{-mtarget-align}.  These options do not affect the
10824 treatment of auto-aligned instructions like @code{LOOP}, which the
10825 assembler will always align, either by widening density instructions or
10826 by inserting no-op instructions.
10827
10828 @item -mlongcalls
10829 @itemx -mno-longcalls
10830 @opindex mlongcalls
10831 @opindex mno-longcalls
10832 When this option is enabled, GCC instructs the assembler to translate
10833 direct calls to indirect calls unless it can determine that the target
10834 of a direct call is in the range allowed by the call instruction.  This
10835 translation typically occurs for calls to functions in other source
10836 files.  Specifically, the assembler translates a direct @code{CALL}
10837 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
10838 The default is @option{-mno-longcalls}.  This option should be used in
10839 programs where the call target can potentially be out of range.  This
10840 option is implemented in the assembler, not the compiler, so the
10841 assembly code generated by GCC will still show direct call
10842 instructions---look at the disassembled object code to see the actual
10843 instructions.  Note that the assembler will use an indirect call for
10844 every cross-file call, not just those that really will be out of range.
10845 @end table
10846
10847 @node Code Gen Options
10848 @section Options for Code Generation Conventions
10849 @cindex code generation conventions
10850 @cindex options, code generation
10851 @cindex run-time options
10852
10853 These machine-independent options control the interface conventions
10854 used in code generation.
10855
10856 Most of them have both positive and negative forms; the negative form
10857 of @option{-ffoo} would be @option{-fno-foo}.  In the table below, only
10858 one of the forms is listed---the one which is not the default.  You
10859 can figure out the other form by either removing @samp{no-} or adding
10860 it.
10861
10862 @table @gcctabopt
10863 @item -fbounds-check
10864 @opindex fbounds-check
10865 For front-ends that support it, generate additional code to check that
10866 indices used to access arrays are within the declared range.  This is
10867 currently only supported by the Java and Fortran 77 front-ends, where
10868 this option defaults to true and false respectively.
10869
10870 @item -ftrapv
10871 @opindex ftrapv
10872 This option generates traps for signed overflow on addition, subtraction,
10873 multiplication operations.
10874
10875 @item -fwrapv
10876 @opindex fwrapv
10877 This option instructs the compiler to assume that signed arithmetic
10878 overflow of addition, subtraction and multiplication wraps around
10879 using twos-complement representation.  This flag enables some optimzations
10880 and disables other.  This option is enabled by default for the Java
10881 front-end, as required by the Java language specification.
10882
10883 @item -fexceptions
10884 @opindex fexceptions
10885 Enable exception handling.  Generates extra code needed to propagate
10886 exceptions.  For some targets, this implies GCC will generate frame
10887 unwind information for all functions, which can produce significant data
10888 size overhead, although it does not affect execution.  If you do not
10889 specify this option, GCC will enable it by default for languages like
10890 C++ which normally require exception handling, and disable it for
10891 languages like C that do not normally require it.  However, you may need
10892 to enable this option when compiling C code that needs to interoperate
10893 properly with exception handlers written in C++.  You may also wish to
10894 disable this option if you are compiling older C++ programs that don't
10895 use exception handling.
10896
10897 @item -fnon-call-exceptions
10898 @opindex fnon-call-exceptions
10899 Generate code that allows trapping instructions to throw exceptions.
10900 Note that this requires platform-specific runtime support that does
10901 not exist everywhere.  Moreover, it only allows @emph{trapping}
10902 instructions to throw exceptions, i.e.@: memory references or floating
10903 point instructions.  It does not allow exceptions to be thrown from
10904 arbitrary signal handlers such as @code{SIGALRM}.
10905
10906 @item -funwind-tables
10907 @opindex funwind-tables
10908 Similar to @option{-fexceptions}, except that it will just generate any needed
10909 static data, but will not affect the generated code in any other way.
10910 You will normally not enable this option; instead, a language processor
10911 that needs this handling would enable it on your behalf.
10912
10913 @item -fasynchronous-unwind-tables
10914 @opindex funwind-tables
10915 Generate unwind table in dwarf2 format, if supported by target machine.  The
10916 table is exact at each instruction boundary, so it can be used for stack
10917 unwinding from asynchronous events (such as debugger or garbage collector).
10918
10919 @item -fpcc-struct-return
10920 @opindex fpcc-struct-return
10921 Return ``short'' @code{struct} and @code{union} values in memory like
10922 longer ones, rather than in registers.  This convention is less
10923 efficient, but it has the advantage of allowing intercallability between
10924 GCC-compiled files and files compiled with other compilers, particularly
10925 the Portable C Compiler (pcc).
10926
10927 The precise convention for returning structures in memory depends
10928 on the target configuration macros.
10929
10930 Short structures and unions are those whose size and alignment match
10931 that of some integer type.
10932
10933 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
10934 switch is not binary compatible with code compiled with the
10935 @option{-freg-struct-return} switch.
10936 Use it to conform to a non-default application binary interface.
10937
10938 @item -freg-struct-return
10939 @opindex freg-struct-return
10940 Return @code{struct} and @code{union} values in registers when possible.
10941 This is more efficient for small structures than
10942 @option{-fpcc-struct-return}.
10943
10944 If you specify neither @option{-fpcc-struct-return} nor
10945 @option{-freg-struct-return}, GCC defaults to whichever convention is
10946 standard for the target.  If there is no standard convention, GCC
10947 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
10948 the principal compiler.  In those cases, we can choose the standard, and
10949 we chose the more efficient register return alternative.
10950
10951 @strong{Warning:} code compiled with the @option{-freg-struct-return}
10952 switch is not binary compatible with code compiled with the
10953 @option{-fpcc-struct-return} switch.
10954 Use it to conform to a non-default application binary interface.
10955
10956 @item -fshort-enums
10957 @opindex fshort-enums
10958 Allocate to an @code{enum} type only as many bytes as it needs for the
10959 declared range of possible values.  Specifically, the @code{enum} type
10960 will be equivalent to the smallest integer type which has enough room.
10961
10962 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
10963 code that is not binary compatible with code generated without that switch.
10964 Use it to conform to a non-default application binary interface.
10965
10966 @item -fshort-double
10967 @opindex fshort-double
10968 Use the same size for @code{double} as for @code{float}.
10969
10970 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
10971 code that is not binary compatible with code generated without that switch.
10972 Use it to conform to a non-default application binary interface.
10973
10974 @item -fshort-wchar
10975 @opindex fshort-wchar
10976 Override the underlying type for @samp{wchar_t} to be @samp{short
10977 unsigned int} instead of the default for the target.  This option is
10978 useful for building programs to run under WINE@.
10979
10980 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
10981 code that is not binary compatible with code generated without that switch.
10982 Use it to conform to a non-default application binary interface.
10983
10984 @item -fshared-data
10985 @opindex fshared-data
10986 Requests that the data and non-@code{const} variables of this
10987 compilation be shared data rather than private data.  The distinction
10988 makes sense only on certain operating systems, where shared data is
10989 shared between processes running the same program, while private data
10990 exists in one copy per process.
10991
10992 @item -fno-common
10993 @opindex fno-common
10994 In C, allocate even uninitialized global variables in the data section of the
10995 object file, rather than generating them as common blocks.  This has the
10996 effect that if the same variable is declared (without @code{extern}) in
10997 two different compilations, you will get an error when you link them.
10998 The only reason this might be useful is if you wish to verify that the
10999 program will work on other systems which always work this way.
11000
11001 @item -fno-ident
11002 @opindex fno-ident
11003 Ignore the @samp{#ident} directive.
11004
11005 @item -fno-gnu-linker
11006 @opindex fno-gnu-linker
11007 Do not output global initializations (such as C++ constructors and
11008 destructors) in the form used by the GNU linker (on systems where the GNU
11009 linker is the standard method of handling them).  Use this option when
11010 you want to use a non-GNU linker, which also requires using the
11011 @command{collect2} program to make sure the system linker includes
11012 constructors and destructors.  (@command{collect2} is included in the GCC
11013 distribution.)  For systems which @emph{must} use @command{collect2}, the
11014 compiler driver @command{gcc} is configured to do this automatically.
11015
11016 @item -finhibit-size-directive
11017 @opindex finhibit-size-directive
11018 Don't output a @code{.size} assembler directive, or anything else that
11019 would cause trouble if the function is split in the middle, and the
11020 two halves are placed at locations far apart in memory.  This option is
11021 used when compiling @file{crtstuff.c}; you should not need to use it
11022 for anything else.
11023
11024 @item -fverbose-asm
11025 @opindex fverbose-asm
11026 Put extra commentary information in the generated assembly code to
11027 make it more readable.  This option is generally only of use to those
11028 who actually need to read the generated assembly code (perhaps while
11029 debugging the compiler itself).
11030
11031 @option{-fno-verbose-asm}, the default, causes the
11032 extra information to be omitted and is useful when comparing two assembler
11033 files.
11034
11035 @item -fpic
11036 @opindex fpic
11037 @cindex global offset table
11038 @cindex PIC
11039 Generate position-independent code (PIC) suitable for use in a shared
11040 library, if supported for the target machine.  Such code accesses all
11041 constant addresses through a global offset table (GOT)@.  The dynamic
11042 loader resolves the GOT entries when the program starts (the dynamic
11043 loader is not part of GCC; it is part of the operating system).  If
11044 the GOT size for the linked executable exceeds a machine-specific
11045 maximum size, you get an error message from the linker indicating that
11046 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
11047 instead.  (These maximums are 16k on the m88k, 8k on the SPARC, and 32k
11048 on the m68k and RS/6000.  The 386 has no such limit.)
11049
11050 Position-independent code requires special support, and therefore works
11051 only on certain machines.  For the 386, GCC supports PIC for System V
11052 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
11053 position-independent.
11054
11055 @item -fPIC
11056 @opindex fPIC
11057 If supported for the target machine, emit position-independent code,
11058 suitable for dynamic linking and avoiding any limit on the size of the
11059 global offset table.  This option makes a difference on the m68k, m88k,
11060 and the SPARC.
11061
11062 Position-independent code requires special support, and therefore works
11063 only on certain machines.
11064
11065 @item -fpie
11066 @itemx -fPIE
11067 @opindex fpie
11068 @opindex fPIE
11069 These options are similar to @option{-fpic} and @option{-fPIC}, but
11070 generated position independent code can be only linked into executables.
11071 Usually these options are used when @option{-pie} GCC option will be
11072 used during linking.
11073
11074 @item -ffixed-@var{reg}
11075 @opindex ffixed
11076 Treat the register named @var{reg} as a fixed register; generated code
11077 should never refer to it (except perhaps as a stack pointer, frame
11078 pointer or in some other fixed role).
11079
11080 @var{reg} must be the name of a register.  The register names accepted
11081 are machine-specific and are defined in the @code{REGISTER_NAMES}
11082 macro in the machine description macro file.
11083
11084 This flag does not have a negative form, because it specifies a
11085 three-way choice.
11086
11087 @item -fcall-used-@var{reg}
11088 @opindex fcall-used
11089 Treat the register named @var{reg} as an allocable register that is
11090 clobbered by function calls.  It may be allocated for temporaries or
11091 variables that do not live across a call.  Functions compiled this way
11092 will not save and restore the register @var{reg}.
11093
11094 It is an error to used this flag with the frame pointer or stack pointer.
11095 Use of this flag for other registers that have fixed pervasive roles in
11096 the machine's execution model will produce disastrous results.
11097
11098 This flag does not have a negative form, because it specifies a
11099 three-way choice.
11100
11101 @item -fcall-saved-@var{reg}
11102 @opindex fcall-saved
11103 Treat the register named @var{reg} as an allocable register saved by
11104 functions.  It may be allocated even for temporaries or variables that
11105 live across a call.  Functions compiled this way will save and restore
11106 the register @var{reg} if they use it.
11107
11108 It is an error to used this flag with the frame pointer or stack pointer.
11109 Use of this flag for other registers that have fixed pervasive roles in
11110 the machine's execution model will produce disastrous results.
11111
11112 A different sort of disaster will result from the use of this flag for
11113 a register in which function values may be returned.
11114
11115 This flag does not have a negative form, because it specifies a
11116 three-way choice.
11117
11118 @item -fpack-struct
11119 @opindex fpack-struct
11120 Pack all structure members together without holes.
11121
11122 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
11123 code that is not binary compatible with code generated without that switch.
11124 Additionally, it makes the code suboptimal.
11125 Use it to conform to a non-default application binary interface.
11126
11127 @item -finstrument-functions
11128 @opindex finstrument-functions
11129 Generate instrumentation calls for entry and exit to functions.  Just
11130 after function entry and just before function exit, the following
11131 profiling functions will be called with the address of the current
11132 function and its call site.  (On some platforms,
11133 @code{__builtin_return_address} does not work beyond the current
11134 function, so the call site information may not be available to the
11135 profiling functions otherwise.)
11136
11137 @example
11138 void __cyg_profile_func_enter (void *this_fn,
11139                                void *call_site);
11140 void __cyg_profile_func_exit  (void *this_fn,
11141                                void *call_site);
11142 @end example
11143
11144 The first argument is the address of the start of the current function,
11145 which may be looked up exactly in the symbol table.
11146
11147 This instrumentation is also done for functions expanded inline in other
11148 functions.  The profiling calls will indicate where, conceptually, the
11149 inline function is entered and exited.  This means that addressable
11150 versions of such functions must be available.  If all your uses of a
11151 function are expanded inline, this may mean an additional expansion of
11152 code size.  If you use @samp{extern inline} in your C code, an
11153 addressable version of such functions must be provided.  (This is
11154 normally the case anyways, but if you get lucky and the optimizer always
11155 expands the functions inline, you might have gotten away without
11156 providing static copies.)
11157
11158 A function may be given the attribute @code{no_instrument_function}, in
11159 which case this instrumentation will not be done.  This can be used, for
11160 example, for the profiling functions listed above, high-priority
11161 interrupt routines, and any functions from which the profiling functions
11162 cannot safely be called (perhaps signal handlers, if the profiling
11163 routines generate output or allocate memory).
11164
11165 @item -fstack-check
11166 @opindex fstack-check
11167 Generate code to verify that you do not go beyond the boundary of the
11168 stack.  You should specify this flag if you are running in an
11169 environment with multiple threads, but only rarely need to specify it in
11170 a single-threaded environment since stack overflow is automatically
11171 detected on nearly all systems if there is only one stack.
11172
11173 Note that this switch does not actually cause checking to be done; the
11174 operating system must do that.  The switch causes generation of code
11175 to ensure that the operating system sees the stack being extended.
11176
11177 @item -fstack-limit-register=@var{reg}
11178 @itemx -fstack-limit-symbol=@var{sym}
11179 @itemx -fno-stack-limit
11180 @opindex fstack-limit-register
11181 @opindex fstack-limit-symbol
11182 @opindex fno-stack-limit
11183 Generate code to ensure that the stack does not grow beyond a certain value,
11184 either the value of a register or the address of a symbol.  If the stack
11185 would grow beyond the value, a signal is raised.  For most targets,
11186 the signal is raised before the stack overruns the boundary, so
11187 it is possible to catch the signal without taking special precautions.
11188
11189 For instance, if the stack starts at absolute address @samp{0x80000000}
11190 and grows downwards, you can use the flags
11191 @option{-fstack-limit-symbol=__stack_limit} and
11192 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11193 of 128KB@.  Note that this may only work with the GNU linker.
11194
11195 @cindex aliasing of parameters
11196 @cindex parameters, aliased
11197 @item -fargument-alias
11198 @itemx -fargument-noalias
11199 @itemx -fargument-noalias-global
11200 @opindex fargument-alias
11201 @opindex fargument-noalias
11202 @opindex fargument-noalias-global
11203 Specify the possible relationships among parameters and between
11204 parameters and global data.
11205
11206 @option{-fargument-alias} specifies that arguments (parameters) may
11207 alias each other and may alias global storage.@*
11208 @option{-fargument-noalias} specifies that arguments do not alias
11209 each other, but may alias global storage.@*
11210 @option{-fargument-noalias-global} specifies that arguments do not
11211 alias each other and do not alias global storage.
11212
11213 Each language will automatically use whatever option is required by
11214 the language standard.  You should not need to use these options yourself.
11215
11216 @item -fleading-underscore
11217 @opindex fleading-underscore
11218 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
11219 change the way C symbols are represented in the object file.  One use
11220 is to help link with legacy assembly code.
11221
11222 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
11223 generate code that is not binary compatible with code generated without that
11224 switch.  Use it to conform to a non-default application binary interface.
11225 Not all targets provide complete support for this switch.
11226
11227 @item -ftls-model=@var{model}
11228 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
11229 The @var{model} argument should be one of @code{global-dynamic},
11230 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
11231
11232 The default without @option{-fpic} is @code{initial-exec}; with
11233 @option{-fpic} the default is @code{global-dynamic}.
11234 @end table
11235
11236 @c man end
11237
11238 @node Environment Variables
11239 @section Environment Variables Affecting GCC
11240 @cindex environment variables
11241
11242 @c man begin ENVIRONMENT
11243 This section describes several environment variables that affect how GCC
11244 operates.  Some of them work by specifying directories or prefixes to use
11245 when searching for various kinds of files.  Some are used to specify other
11246 aspects of the compilation environment.
11247
11248 Note that you can also specify places to search using options such as
11249 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
11250 take precedence over places specified using environment variables, which
11251 in turn take precedence over those specified by the configuration of GCC@.
11252 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
11253 GNU Compiler Collection (GCC) Internals}.
11254
11255 @table @env
11256 @item LANG
11257 @itemx LC_CTYPE
11258 @c @itemx LC_COLLATE
11259 @itemx LC_MESSAGES
11260 @c @itemx LC_MONETARY
11261 @c @itemx LC_NUMERIC
11262 @c @itemx LC_TIME
11263 @itemx LC_ALL
11264 @findex LANG
11265 @findex LC_CTYPE
11266 @c @findex LC_COLLATE
11267 @findex LC_MESSAGES
11268 @c @findex LC_MONETARY
11269 @c @findex LC_NUMERIC
11270 @c @findex LC_TIME
11271 @findex LC_ALL
11272 @cindex locale
11273 These environment variables control the way that GCC uses
11274 localization information that allow GCC to work with different
11275 national conventions.  GCC inspects the locale categories
11276 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
11277 so.  These locale categories can be set to any value supported by your
11278 installation.  A typical value is @samp{en_UK} for English in the United
11279 Kingdom.
11280
11281 The @env{LC_CTYPE} environment variable specifies character
11282 classification.  GCC uses it to determine the character boundaries in
11283 a string; this is needed for some multibyte encodings that contain quote
11284 and escape characters that would otherwise be interpreted as a string
11285 end or escape.
11286
11287 The @env{LC_MESSAGES} environment variable specifies the language to
11288 use in diagnostic messages.
11289
11290 If the @env{LC_ALL} environment variable is set, it overrides the value
11291 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
11292 and @env{LC_MESSAGES} default to the value of the @env{LANG}
11293 environment variable.  If none of these variables are set, GCC
11294 defaults to traditional C English behavior.
11295
11296 @item TMPDIR
11297 @findex TMPDIR
11298 If @env{TMPDIR} is set, it specifies the directory to use for temporary
11299 files.  GCC uses temporary files to hold the output of one stage of
11300 compilation which is to be used as input to the next stage: for example,
11301 the output of the preprocessor, which is the input to the compiler
11302 proper.
11303
11304 @item GCC_EXEC_PREFIX
11305 @findex GCC_EXEC_PREFIX
11306 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
11307 names of the subprograms executed by the compiler.  No slash is added
11308 when this prefix is combined with the name of a subprogram, but you can
11309 specify a prefix that ends with a slash if you wish.
11310
11311 If @env{GCC_EXEC_PREFIX} is not set, GCC will attempt to figure out
11312 an appropriate prefix to use based on the pathname it was invoked with.
11313
11314 If GCC cannot find the subprogram using the specified prefix, it
11315 tries looking in the usual places for the subprogram.
11316
11317 The default value of @env{GCC_EXEC_PREFIX} is
11318 @file{@var{prefix}/lib/gcc-lib/} where @var{prefix} is the value
11319 of @code{prefix} when you ran the @file{configure} script.
11320
11321 Other prefixes specified with @option{-B} take precedence over this prefix.
11322
11323 This prefix is also used for finding files such as @file{crt0.o} that are
11324 used for linking.
11325
11326 In addition, the prefix is used in an unusual way in finding the
11327 directories to search for header files.  For each of the standard
11328 directories whose name normally begins with @samp{/usr/local/lib/gcc-lib}
11329 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
11330 replacing that beginning with the specified prefix to produce an
11331 alternate directory name.  Thus, with @option{-Bfoo/}, GCC will search
11332 @file{foo/bar} where it would normally search @file{/usr/local/lib/bar}.
11333 These alternate directories are searched first; the standard directories
11334 come next.
11335
11336 @item COMPILER_PATH
11337 @findex COMPILER_PATH
11338 The value of @env{COMPILER_PATH} is a colon-separated list of
11339 directories, much like @env{PATH}.  GCC tries the directories thus
11340 specified when searching for subprograms, if it can't find the
11341 subprograms using @env{GCC_EXEC_PREFIX}.
11342
11343 @item LIBRARY_PATH
11344 @findex LIBRARY_PATH
11345 The value of @env{LIBRARY_PATH} is a colon-separated list of
11346 directories, much like @env{PATH}.  When configured as a native compiler,
11347 GCC tries the directories thus specified when searching for special
11348 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
11349 using GCC also uses these directories when searching for ordinary
11350 libraries for the @option{-l} option (but directories specified with
11351 @option{-L} come first).
11352
11353 @item LANG
11354 @findex LANG
11355 @cindex locale definition
11356 This variable is used to pass locale information to the compiler.  One way in
11357 which this information is used is to determine the character set to be used
11358 when character literals, string literals and comments are parsed in C and C++.
11359 When the compiler is configured to allow multibyte characters,
11360 the following values for @env{LANG} are recognized:
11361
11362 @table @samp
11363 @item C-JIS
11364 Recognize JIS characters.
11365 @item C-SJIS
11366 Recognize SJIS characters.
11367 @item C-EUCJP
11368 Recognize EUCJP characters.
11369 @end table
11370
11371 If @env{LANG} is not defined, or if it has some other value, then the
11372 compiler will use mblen and mbtowc as defined by the default locale to
11373 recognize and translate multibyte characters.
11374 @end table
11375
11376 @noindent
11377 Some additional environments variables affect the behavior of the
11378 preprocessor.
11379
11380 @include cppenv.texi
11381
11382 @c man end
11383
11384 @node Precompiled Headers
11385 @section Using Precompiled Headers
11386 @cindex precompiled headers
11387 @cindex speed of compilation
11388
11389 Often large projects have many header files that are included in every
11390 source file.  The time the compiler takes to process these header files
11391 over and over again can account for nearly all of the time required to
11392 build the project.  To make builds faster, GCC allows users to
11393 `precompile' a header file; then, if builds can use the precompiled
11394 header file they will be much faster.
11395
11396 To create a precompiled header file, simply compile it as you would any
11397 other file, if necessary using the @option{-x} option to make the driver
11398 treat it as a C or C++ header file.  You will probably want to use a
11399 tool like @command{make} to keep the precompiled header up-to-date when
11400 the headers it contains change.
11401
11402 A precompiled header file will be searched for when @code{#include} is
11403 seen in the compilation.  As it searches for the included file
11404 (@pxref{Search Path,,Search Path,cpp.info,The C Preprocessor}) the
11405 compiler looks for a precompiled header in each directory just before it
11406 looks for the include file in that directory.  The name searched for is
11407 the name specified in the @code{#include} with @samp{.gch} appended.  If
11408 the precompiled header file can't be used, it is ignored.
11409
11410 For instance, if you have @code{#include "all.h"}, and you have
11411 @file{all.h.gch} in the same directory as @file{all.h}, then the
11412 precompiled header file will be used if possible, and the original
11413 header will be used otherwise.
11414
11415 Alternatively, you might decide to put the precompiled header file in a
11416 directory and use @option{-I} to ensure that directory is searched
11417 before (or instead of) the directory containing the original header.
11418 Then, if you want to check that the precompiled header file is always
11419 used, you can put a file of the same name as the original header in this
11420 directory containing an @code{#error} command.
11421
11422 This also works with @option{-include}.  So yet another way to use
11423 precompiled headers, good for projects not designed with precompiled
11424 header files in mind, is to simply take most of the header files used by
11425 a project, include them from another header file, precompile that header
11426 file, and @option{-include} the precompiled header.  If the header files
11427 have guards against multiple inclusion, they will be skipped because
11428 they've already been included (in the precompiled header).
11429
11430 If you need to precompile the same header file for different
11431 languages, targets, or compiler options, you can instead make a
11432 @emph{directory} named like @file{all.h.gch}, and put each precompiled
11433 header in the directory.  (It doesn't matter what you call the files
11434 in the directory, every precompiled header in the directory will be
11435 considered.)  The first precompiled header encountered in the
11436 directory that is valid for this compilation will be used; they're
11437 searched in no particular order.
11438
11439 There are many other possibilities, limited only by your imagination,
11440 good sense, and the constraints of your build system.
11441
11442 A precompiled header file can be used only when these conditions apply:
11443
11444 @itemize
11445 @item
11446 Only one precompiled header can be used in a particular compilation.
11447 @item
11448 A precompiled header can't be used once the first C token is seen.  You
11449 can have preprocessor directives before a precompiled header; you can
11450 even include a precompiled header from inside another header, so long as
11451 there are no C tokens before the @code{#include}.
11452 @item
11453 The precompiled header file must be produced for the same language as
11454 the current compilation.  You can't use a C precompiled header for a C++
11455 compilation.
11456 @item
11457 The precompiled header file must be produced by the same compiler
11458 version and configuration as the current compilation is using.
11459 The easiest way to guarantee this is to use the same compiler binary
11460 for creating and using precompiled headers.
11461 @item
11462 Any macros defined before the precompiled header (including with
11463 @option{-D}) must either be defined in the same way as when the
11464 precompiled header was generated, or must not affect the precompiled
11465 header, which usually means that the they don't appear in the
11466 precompiled header at all.
11467 @item
11468 Certain command-line options must be defined in the same way as when the
11469 precompiled header was generated.  At present, it's not clear which
11470 options are safe to change and which are not; the safest choice is to
11471 use exactly the same options when generating and using the precompiled
11472 header.
11473 @end itemize
11474
11475 For all of these but the last, the compiler will automatically ignore
11476 the precompiled header if the conditions aren't met.  For the last item,
11477 some option changes will cause the precompiled header to be rejected,
11478 but not all incompatible option combinations have yet been found.  If
11479 you find a new incompatible combination, please consider filing a bug
11480 report, see @ref{Bugs}.
11481
11482 @node Running Protoize
11483 @section Running Protoize
11484
11485 The program @code{protoize} is an optional part of GCC@.  You can use
11486 it to add prototypes to a program, thus converting the program to ISO
11487 C in one respect.  The companion program @code{unprotoize} does the
11488 reverse: it removes argument types from any prototypes that are found.
11489
11490 When you run these programs, you must specify a set of source files as
11491 command line arguments.  The conversion programs start out by compiling
11492 these files to see what functions they define.  The information gathered
11493 about a file @var{foo} is saved in a file named @file{@var{foo}.X}.
11494
11495 After scanning comes actual conversion.  The specified files are all
11496 eligible to be converted; any files they include (whether sources or
11497 just headers) are eligible as well.
11498
11499 But not all the eligible files are converted.  By default,
11500 @code{protoize} and @code{unprotoize} convert only source and header
11501 files in the current directory.  You can specify additional directories
11502 whose files should be converted with the @option{-d @var{directory}}
11503 option.  You can also specify particular files to exclude with the
11504 @option{-x @var{file}} option.  A file is converted if it is eligible, its
11505 directory name matches one of the specified directory names, and its
11506 name within the directory has not been excluded.
11507
11508 Basic conversion with @code{protoize} consists of rewriting most
11509 function definitions and function declarations to specify the types of
11510 the arguments.  The only ones not rewritten are those for varargs
11511 functions.
11512
11513 @code{protoize} optionally inserts prototype declarations at the
11514 beginning of the source file, to make them available for any calls that
11515 precede the function's definition.  Or it can insert prototype
11516 declarations with block scope in the blocks where undeclared functions
11517 are called.
11518
11519 Basic conversion with @code{unprotoize} consists of rewriting most
11520 function declarations to remove any argument types, and rewriting
11521 function definitions to the old-style pre-ISO form.
11522
11523 Both conversion programs print a warning for any function declaration or
11524 definition that they can't convert.  You can suppress these warnings
11525 with @option{-q}.
11526
11527 The output from @code{protoize} or @code{unprotoize} replaces the
11528 original source file.  The original file is renamed to a name ending
11529 with @samp{.save} (for DOS, the saved filename ends in @samp{.sav}
11530 without the original @samp{.c} suffix).  If the @samp{.save} (@samp{.sav}
11531 for DOS) file already exists, then the source file is simply discarded.
11532
11533 @code{protoize} and @code{unprotoize} both depend on GCC itself to
11534 scan the program and collect information about the functions it uses.
11535 So neither of these programs will work until GCC is installed.
11536
11537 Here is a table of the options you can use with @code{protoize} and
11538 @code{unprotoize}.  Each option works with both programs unless
11539 otherwise stated.
11540
11541 @table @code
11542 @item -B @var{directory}
11543 Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the
11544 usual directory (normally @file{/usr/local/lib}).  This file contains
11545 prototype information about standard system functions.  This option
11546 applies only to @code{protoize}.
11547
11548 @item -c @var{compilation-options}
11549 Use @var{compilation-options} as the options when running @command{gcc} to
11550 produce the @samp{.X} files.  The special option @option{-aux-info} is
11551 always passed in addition, to tell @command{gcc} to write a @samp{.X} file.
11552
11553 Note that the compilation options must be given as a single argument to
11554 @code{protoize} or @code{unprotoize}.  If you want to specify several
11555 @command{gcc} options, you must quote the entire set of compilation options
11556 to make them a single word in the shell.
11557
11558 There are certain @command{gcc} arguments that you cannot use, because they
11559 would produce the wrong kind of output.  These include @option{-g},
11560 @option{-O}, @option{-c}, @option{-S}, and @option{-o} If you include these in
11561 the @var{compilation-options}, they are ignored.
11562
11563 @item -C
11564 Rename files to end in @samp{.C} (@samp{.cc} for DOS-based file
11565 systems) instead of @samp{.c}.  This is convenient if you are converting
11566 a C program to C++.  This option applies only to @code{protoize}.
11567
11568 @item -g
11569 Add explicit global declarations.  This means inserting explicit
11570 declarations at the beginning of each source file for each function
11571 that is called in the file and was not declared.  These declarations
11572 precede the first function definition that contains a call to an
11573 undeclared function.  This option applies only to @code{protoize}.
11574
11575 @item -i @var{string}
11576 Indent old-style parameter declarations with the string @var{string}.
11577 This option applies only to @code{protoize}.
11578
11579 @code{unprotoize} converts prototyped function definitions to old-style
11580 function definitions, where the arguments are declared between the
11581 argument list and the initial @samp{@{}.  By default, @code{unprotoize}
11582 uses five spaces as the indentation.  If you want to indent with just
11583 one space instead, use @option{-i " "}.
11584
11585 @item -k
11586 Keep the @samp{.X} files.  Normally, they are deleted after conversion
11587 is finished.
11588
11589 @item -l
11590 Add explicit local declarations.  @code{protoize} with @option{-l} inserts
11591 a prototype declaration for each function in each block which calls the
11592 function without any declaration.  This option applies only to
11593 @code{protoize}.
11594
11595 @item -n
11596 Make no real changes.  This mode just prints information about the conversions
11597 that would have been done without @option{-n}.
11598
11599 @item -N
11600 Make no @samp{.save} files.  The original files are simply deleted.
11601 Use this option with caution.
11602
11603 @item -p @var{program}
11604 Use the program @var{program} as the compiler.  Normally, the name
11605 @file{gcc} is used.
11606
11607 @item -q
11608 Work quietly.  Most warnings are suppressed.
11609
11610 @item -v
11611 Print the version number, just like @option{-v} for @command{gcc}.
11612 @end table
11613
11614 If you need special compiler options to compile one of your program's
11615 source files, then you should generate that file's @samp{.X} file
11616 specially, by running @command{gcc} on that source file with the
11617 appropriate options and the option @option{-aux-info}.  Then run
11618 @code{protoize} on the entire set of files.  @code{protoize} will use
11619 the existing @samp{.X} file because it is newer than the source file.
11620 For example:
11621
11622 @example
11623 gcc -Dfoo=bar file1.c -aux-info file1.X
11624 protoize *.c
11625 @end example
11626
11627 @noindent
11628 You need to include the special files along with the rest in the
11629 @code{protoize} command, even though their @samp{.X} files already
11630 exist, because otherwise they won't get converted.
11631
11632 @xref{Protoize Caveats}, for more information on how to use
11633 @code{protoize} successfully.