1 /* Build expressions with type checking for C++ compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Hacked by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* This file is part of the C++ front end.
25 It contains routines to build C++ expressions given their operands,
26 including computing the types of the result, C and C++ specific error
27 checks, and some optimization. */
31 #include "coretypes.h"
41 #include "diagnostic.h"
48 static tree pfn_from_ptrmemfunc (tree);
49 static tree delta_from_ptrmemfunc (tree);
50 static tree convert_for_assignment (tree, tree, const char *, tree, int,
52 static tree cp_pointer_int_sum (enum tree_code, tree, tree);
53 static tree rationalize_conditional_expr (enum tree_code, tree,
55 static int comp_ptr_ttypes_real (tree, tree, int);
56 static bool comp_except_types (tree, tree, bool);
57 static bool comp_array_types (const_tree, const_tree, bool);
58 static tree pointer_diff (tree, tree, tree);
59 static tree get_delta_difference (tree, tree, bool, bool);
60 static void casts_away_constness_r (tree *, tree *);
61 static bool casts_away_constness (tree, tree);
62 static void maybe_warn_about_returning_address_of_local (tree);
63 static tree lookup_destructor (tree, tree, tree);
64 static void warn_args_num (location_t, tree, bool);
65 static int convert_arguments (tree, VEC(tree,gc) **, tree, int,
68 /* Do `exp = require_complete_type (exp);' to make sure exp
69 does not have an incomplete type. (That includes void types.)
70 Returns the error_mark_node if the VALUE does not have
71 complete type when this function returns. */
74 require_complete_type (tree value)
78 if (processing_template_decl || value == error_mark_node)
81 if (TREE_CODE (value) == OVERLOAD)
82 type = unknown_type_node;
84 type = TREE_TYPE (value);
86 if (type == error_mark_node)
87 return error_mark_node;
89 /* First, detect a valid value with a complete type. */
90 if (COMPLETE_TYPE_P (type))
93 if (complete_type_or_else (type, value))
96 return error_mark_node;
99 /* Try to complete TYPE, if it is incomplete. For example, if TYPE is
100 a template instantiation, do the instantiation. Returns TYPE,
101 whether or not it could be completed, unless something goes
102 horribly wrong, in which case the error_mark_node is returned. */
105 complete_type (tree type)
107 if (type == NULL_TREE)
108 /* Rather than crash, we return something sure to cause an error
110 return error_mark_node;
112 if (type == error_mark_node || COMPLETE_TYPE_P (type))
114 else if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
116 tree t = complete_type (TREE_TYPE (type));
117 unsigned int needs_constructing, has_nontrivial_dtor;
118 if (COMPLETE_TYPE_P (t) && !dependent_type_p (type))
121 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (t));
123 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (t));
124 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
126 TYPE_NEEDS_CONSTRUCTING (t) = needs_constructing;
127 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = has_nontrivial_dtor;
130 else if (CLASS_TYPE_P (type) && CLASSTYPE_TEMPLATE_INSTANTIATION (type))
131 instantiate_class_template (TYPE_MAIN_VARIANT (type));
136 /* Like complete_type, but issue an error if the TYPE cannot be completed.
137 VALUE is used for informative diagnostics.
138 Returns NULL_TREE if the type cannot be made complete. */
141 complete_type_or_else (tree type, tree value)
143 type = complete_type (type);
144 if (type == error_mark_node)
145 /* We already issued an error. */
147 else if (!COMPLETE_TYPE_P (type))
149 cxx_incomplete_type_diagnostic (value, type, DK_ERROR);
156 /* Return truthvalue of whether type of EXP is instantiated. */
159 type_unknown_p (const_tree exp)
161 return (TREE_CODE (exp) == TREE_LIST
162 || TREE_TYPE (exp) == unknown_type_node);
166 /* Return the common type of two parameter lists.
167 We assume that comptypes has already been done and returned 1;
168 if that isn't so, this may crash.
170 As an optimization, free the space we allocate if the parameter
171 lists are already common. */
174 commonparms (tree p1, tree p2)
176 tree oldargs = p1, newargs, n;
180 len = list_length (p1);
181 newargs = tree_last (p1);
183 if (newargs == void_list_node)
192 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
197 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n), i++)
199 if (TREE_PURPOSE (p1) && !TREE_PURPOSE (p2))
201 TREE_PURPOSE (n) = TREE_PURPOSE (p1);
204 else if (! TREE_PURPOSE (p1))
206 if (TREE_PURPOSE (p2))
208 TREE_PURPOSE (n) = TREE_PURPOSE (p2);
214 if (1 != simple_cst_equal (TREE_PURPOSE (p1), TREE_PURPOSE (p2)))
216 TREE_PURPOSE (n) = TREE_PURPOSE (p2);
218 if (TREE_VALUE (p1) != TREE_VALUE (p2))
221 TREE_VALUE (n) = merge_types (TREE_VALUE (p1), TREE_VALUE (p2));
224 TREE_VALUE (n) = TREE_VALUE (p1);
232 /* Given a type, perhaps copied for a typedef,
233 find the "original" version of it. */
235 original_type (tree t)
237 int quals = cp_type_quals (t);
238 while (t != error_mark_node
239 && TYPE_NAME (t) != NULL_TREE)
241 tree x = TYPE_NAME (t);
242 if (TREE_CODE (x) != TYPE_DECL)
244 x = DECL_ORIGINAL_TYPE (x);
249 return cp_build_qualified_type (t, quals);
252 /* Return the common type for two arithmetic types T1 and T2 under the
253 usual arithmetic conversions. The default conversions have already
254 been applied, and enumerated types converted to their compatible
258 cp_common_type (tree t1, tree t2)
260 enum tree_code code1 = TREE_CODE (t1);
261 enum tree_code code2 = TREE_CODE (t2);
264 /* In what follows, we slightly generalize the rules given in [expr] so
265 as to deal with `long long' and `complex'. First, merge the
267 attributes = (*targetm.merge_type_attributes) (t1, t2);
269 if (SCOPED_ENUM_P (t1) || SCOPED_ENUM_P (t2))
271 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
272 return build_type_attribute_variant (t1, attributes);
277 /* FIXME: Attributes. */
278 gcc_assert (ARITHMETIC_TYPE_P (t1)
279 || TREE_CODE (t1) == VECTOR_TYPE
280 || UNSCOPED_ENUM_P (t1));
281 gcc_assert (ARITHMETIC_TYPE_P (t2)
282 || TREE_CODE (t2) == VECTOR_TYPE
283 || UNSCOPED_ENUM_P (t2));
285 /* If one type is complex, form the common type of the non-complex
286 components, then make that complex. Use T1 or T2 if it is the
288 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
290 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
291 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
293 = type_after_usual_arithmetic_conversions (subtype1, subtype2);
295 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
296 return build_type_attribute_variant (t1, attributes);
297 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
298 return build_type_attribute_variant (t2, attributes);
300 return build_type_attribute_variant (build_complex_type (subtype),
304 if (code1 == VECTOR_TYPE)
306 /* When we get here we should have two vectors of the same size.
307 Just prefer the unsigned one if present. */
308 if (TYPE_UNSIGNED (t1))
309 return build_type_attribute_variant (t1, attributes);
311 return build_type_attribute_variant (t2, attributes);
314 /* If only one is real, use it as the result. */
315 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
316 return build_type_attribute_variant (t1, attributes);
317 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
318 return build_type_attribute_variant (t2, attributes);
320 /* Both real or both integers; use the one with greater precision. */
321 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
322 return build_type_attribute_variant (t1, attributes);
323 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
324 return build_type_attribute_variant (t2, attributes);
326 /* The types are the same; no need to do anything fancy. */
327 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
328 return build_type_attribute_variant (t1, attributes);
330 if (code1 != REAL_TYPE)
332 /* If one is unsigned long long, then convert the other to unsigned
334 if (same_type_p (TYPE_MAIN_VARIANT (t1), long_long_unsigned_type_node)
335 || same_type_p (TYPE_MAIN_VARIANT (t2), long_long_unsigned_type_node))
336 return build_type_attribute_variant (long_long_unsigned_type_node,
338 /* If one is a long long, and the other is an unsigned long, and
339 long long can represent all the values of an unsigned long, then
340 convert to a long long. Otherwise, convert to an unsigned long
341 long. Otherwise, if either operand is long long, convert the
344 Since we're here, we know the TYPE_PRECISION is the same;
345 therefore converting to long long cannot represent all the values
346 of an unsigned long, so we choose unsigned long long in that
348 if (same_type_p (TYPE_MAIN_VARIANT (t1), long_long_integer_type_node)
349 || same_type_p (TYPE_MAIN_VARIANT (t2), long_long_integer_type_node))
351 tree t = ((TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
352 ? long_long_unsigned_type_node
353 : long_long_integer_type_node);
354 return build_type_attribute_variant (t, attributes);
357 /* Go through the same procedure, but for longs. */
358 if (same_type_p (TYPE_MAIN_VARIANT (t1), long_unsigned_type_node)
359 || same_type_p (TYPE_MAIN_VARIANT (t2), long_unsigned_type_node))
360 return build_type_attribute_variant (long_unsigned_type_node,
362 if (same_type_p (TYPE_MAIN_VARIANT (t1), long_integer_type_node)
363 || same_type_p (TYPE_MAIN_VARIANT (t2), long_integer_type_node))
365 tree t = ((TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
366 ? long_unsigned_type_node : long_integer_type_node);
367 return build_type_attribute_variant (t, attributes);
369 /* Otherwise prefer the unsigned one. */
370 if (TYPE_UNSIGNED (t1))
371 return build_type_attribute_variant (t1, attributes);
373 return build_type_attribute_variant (t2, attributes);
377 if (same_type_p (TYPE_MAIN_VARIANT (t1), long_double_type_node)
378 || same_type_p (TYPE_MAIN_VARIANT (t2), long_double_type_node))
379 return build_type_attribute_variant (long_double_type_node,
381 if (same_type_p (TYPE_MAIN_VARIANT (t1), double_type_node)
382 || same_type_p (TYPE_MAIN_VARIANT (t2), double_type_node))
383 return build_type_attribute_variant (double_type_node,
385 if (same_type_p (TYPE_MAIN_VARIANT (t1), float_type_node)
386 || same_type_p (TYPE_MAIN_VARIANT (t2), float_type_node))
387 return build_type_attribute_variant (float_type_node,
390 /* Two floating-point types whose TYPE_MAIN_VARIANTs are none of
391 the standard C++ floating-point types. Logic earlier in this
392 function has already eliminated the possibility that
393 TYPE_PRECISION (t2) != TYPE_PRECISION (t1), so there's no
394 compelling reason to choose one or the other. */
395 return build_type_attribute_variant (t1, attributes);
399 /* T1 and T2 are arithmetic or enumeration types. Return the type
400 that will result from the "usual arithmetic conversions" on T1 and
401 T2 as described in [expr]. */
404 type_after_usual_arithmetic_conversions (tree t1, tree t2)
406 gcc_assert (ARITHMETIC_TYPE_P (t1)
407 || TREE_CODE (t1) == VECTOR_TYPE
408 || UNSCOPED_ENUM_P (t1));
409 gcc_assert (ARITHMETIC_TYPE_P (t2)
410 || TREE_CODE (t2) == VECTOR_TYPE
411 || UNSCOPED_ENUM_P (t2));
413 /* Perform the integral promotions. We do not promote real types here. */
414 if (INTEGRAL_OR_ENUMERATION_TYPE_P (t1)
415 && INTEGRAL_OR_ENUMERATION_TYPE_P (t2))
417 t1 = type_promotes_to (t1);
418 t2 = type_promotes_to (t2);
421 return cp_common_type (t1, t2);
424 /* Subroutine of composite_pointer_type to implement the recursive
425 case. See that function for documentation of the parameters. */
428 composite_pointer_type_r (tree t1, tree t2,
429 composite_pointer_operation operation,
430 tsubst_flags_t complain)
437 /* Determine the types pointed to by T1 and T2. */
438 if (TREE_CODE (t1) == POINTER_TYPE)
440 pointee1 = TREE_TYPE (t1);
441 pointee2 = TREE_TYPE (t2);
445 pointee1 = TYPE_PTRMEM_POINTED_TO_TYPE (t1);
446 pointee2 = TYPE_PTRMEM_POINTED_TO_TYPE (t2);
451 Otherwise, the composite pointer type is a pointer type
452 similar (_conv.qual_) to the type of one of the operands,
453 with a cv-qualification signature (_conv.qual_) that is the
454 union of the cv-qualification signatures of the operand
456 if (same_type_ignoring_top_level_qualifiers_p (pointee1, pointee2))
457 result_type = pointee1;
458 else if ((TREE_CODE (pointee1) == POINTER_TYPE
459 && TREE_CODE (pointee2) == POINTER_TYPE)
460 || (TYPE_PTR_TO_MEMBER_P (pointee1)
461 && TYPE_PTR_TO_MEMBER_P (pointee2)))
462 result_type = composite_pointer_type_r (pointee1, pointee2, operation,
466 if (complain & tf_error)
471 permerror (input_location, "comparison between "
472 "distinct pointer types %qT and %qT lacks a cast",
476 permerror (input_location, "conversion between "
477 "distinct pointer types %qT and %qT lacks a cast",
480 case CPO_CONDITIONAL_EXPR:
481 permerror (input_location, "conditional expression between "
482 "distinct pointer types %qT and %qT lacks a cast",
489 result_type = void_type_node;
491 result_type = cp_build_qualified_type (result_type,
492 (cp_type_quals (pointee1)
493 | cp_type_quals (pointee2)));
494 /* If the original types were pointers to members, so is the
496 if (TYPE_PTR_TO_MEMBER_P (t1))
498 if (!same_type_p (TYPE_PTRMEM_CLASS_TYPE (t1),
499 TYPE_PTRMEM_CLASS_TYPE (t2))
500 && (complain & tf_error))
505 permerror (input_location, "comparison between "
506 "distinct pointer types %qT and %qT lacks a cast",
510 permerror (input_location, "conversion between "
511 "distinct pointer types %qT and %qT lacks a cast",
514 case CPO_CONDITIONAL_EXPR:
515 permerror (input_location, "conditional expression between "
516 "distinct pointer types %qT and %qT lacks a cast",
523 result_type = build_ptrmem_type (TYPE_PTRMEM_CLASS_TYPE (t1),
527 result_type = build_pointer_type (result_type);
529 /* Merge the attributes. */
530 attributes = (*targetm.merge_type_attributes) (t1, t2);
531 return build_type_attribute_variant (result_type, attributes);
534 /* Return the composite pointer type (see [expr.rel]) for T1 and T2.
535 ARG1 and ARG2 are the values with those types. The OPERATION is to
536 describe the operation between the pointer types,
537 in case an error occurs.
539 This routine also implements the computation of a common type for
540 pointers-to-members as per [expr.eq]. */
543 composite_pointer_type (tree t1, tree t2, tree arg1, tree arg2,
544 composite_pointer_operation operation,
545 tsubst_flags_t complain)
552 If one operand is a null pointer constant, the composite pointer
553 type is the type of the other operand. */
554 if (null_ptr_cst_p (arg1))
556 if (null_ptr_cst_p (arg2))
563 If one of the operands has type "pointer to cv1 void*", then
564 the other has type "pointer to cv2T", and the composite pointer
565 type is "pointer to cv12 void", where cv12 is the union of cv1
568 If either type is a pointer to void, make sure it is T1. */
569 if (TREE_CODE (t2) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (t2)))
577 /* Now, if T1 is a pointer to void, merge the qualifiers. */
578 if (TREE_CODE (t1) == POINTER_TYPE && VOID_TYPE_P (TREE_TYPE (t1)))
583 if (TYPE_PTRFN_P (t2) && (complain & tf_error))
588 pedwarn (input_location, OPT_pedantic,
589 "ISO C++ forbids comparison between "
590 "pointer of type %<void *%> and pointer-to-function");
593 pedwarn (input_location, OPT_pedantic,
594 "ISO C++ forbids conversion between "
595 "pointer of type %<void *%> and pointer-to-function");
597 case CPO_CONDITIONAL_EXPR:
598 pedwarn (input_location, OPT_pedantic,
599 "ISO C++ forbids conditional expression between "
600 "pointer of type %<void *%> and pointer-to-function");
607 = cp_build_qualified_type (void_type_node,
608 (cp_type_quals (TREE_TYPE (t1))
609 | cp_type_quals (TREE_TYPE (t2))));
610 result_type = build_pointer_type (result_type);
611 /* Merge the attributes. */
612 attributes = (*targetm.merge_type_attributes) (t1, t2);
613 return build_type_attribute_variant (result_type, attributes);
616 if (c_dialect_objc () && TREE_CODE (t1) == POINTER_TYPE
617 && TREE_CODE (t2) == POINTER_TYPE)
619 if (objc_compare_types (t1, t2, -3, NULL_TREE))
623 /* [expr.eq] permits the application of a pointer conversion to
624 bring the pointers to a common type. */
625 if (TREE_CODE (t1) == POINTER_TYPE && TREE_CODE (t2) == POINTER_TYPE
626 && CLASS_TYPE_P (TREE_TYPE (t1))
627 && CLASS_TYPE_P (TREE_TYPE (t2))
628 && !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (t1),
631 class1 = TREE_TYPE (t1);
632 class2 = TREE_TYPE (t2);
634 if (DERIVED_FROM_P (class1, class2))
635 t2 = (build_pointer_type
636 (cp_build_qualified_type (class1, TYPE_QUALS (class2))));
637 else if (DERIVED_FROM_P (class2, class1))
638 t1 = (build_pointer_type
639 (cp_build_qualified_type (class2, TYPE_QUALS (class1))));
642 if (complain & tf_error)
646 error ("comparison between distinct "
647 "pointer types %qT and %qT lacks a cast", t1, t2);
650 error ("conversion between distinct "
651 "pointer types %qT and %qT lacks a cast", t1, t2);
653 case CPO_CONDITIONAL_EXPR:
654 error ("conditional expression between distinct "
655 "pointer types %qT and %qT lacks a cast", t1, t2);
660 return error_mark_node;
663 /* [expr.eq] permits the application of a pointer-to-member
664 conversion to change the class type of one of the types. */
665 else if (TYPE_PTR_TO_MEMBER_P (t1)
666 && !same_type_p (TYPE_PTRMEM_CLASS_TYPE (t1),
667 TYPE_PTRMEM_CLASS_TYPE (t2)))
669 class1 = TYPE_PTRMEM_CLASS_TYPE (t1);
670 class2 = TYPE_PTRMEM_CLASS_TYPE (t2);
672 if (DERIVED_FROM_P (class1, class2))
673 t1 = build_ptrmem_type (class2, TYPE_PTRMEM_POINTED_TO_TYPE (t1));
674 else if (DERIVED_FROM_P (class2, class1))
675 t2 = build_ptrmem_type (class1, TYPE_PTRMEM_POINTED_TO_TYPE (t2));
678 if (complain & tf_error)
682 error ("comparison between distinct "
683 "pointer-to-member types %qT and %qT lacks a cast",
687 error ("conversion between distinct "
688 "pointer-to-member types %qT and %qT lacks a cast",
691 case CPO_CONDITIONAL_EXPR:
692 error ("conditional expression between distinct "
693 "pointer-to-member types %qT and %qT lacks a cast",
699 return error_mark_node;
703 return composite_pointer_type_r (t1, t2, operation, complain);
706 /* Return the merged type of two types.
707 We assume that comptypes has already been done and returned 1;
708 if that isn't so, this may crash.
710 This just combines attributes and default arguments; any other
711 differences would cause the two types to compare unalike. */
714 merge_types (tree t1, tree t2)
716 enum tree_code code1;
717 enum tree_code code2;
720 /* Save time if the two types are the same. */
723 if (original_type (t1) == original_type (t2))
726 /* If one type is nonsense, use the other. */
727 if (t1 == error_mark_node)
729 if (t2 == error_mark_node)
732 /* Merge the attributes. */
733 attributes = (*targetm.merge_type_attributes) (t1, t2);
735 if (TYPE_PTRMEMFUNC_P (t1))
736 t1 = TYPE_PTRMEMFUNC_FN_TYPE (t1);
737 if (TYPE_PTRMEMFUNC_P (t2))
738 t2 = TYPE_PTRMEMFUNC_FN_TYPE (t2);
740 code1 = TREE_CODE (t1);
741 code2 = TREE_CODE (t2);
744 gcc_assert (code1 == TYPENAME_TYPE || code2 == TYPENAME_TYPE);
745 if (code1 == TYPENAME_TYPE)
747 t1 = resolve_typename_type (t1, /*only_current_p=*/true);
748 code1 = TREE_CODE (t1);
752 t2 = resolve_typename_type (t2, /*only_current_p=*/true);
753 code2 = TREE_CODE (t2);
761 /* For two pointers, do this recursively on the target type. */
763 tree target = merge_types (TREE_TYPE (t1), TREE_TYPE (t2));
764 int quals = cp_type_quals (t1);
766 if (code1 == POINTER_TYPE)
767 t1 = build_pointer_type (target);
769 t1 = cp_build_reference_type (target, TYPE_REF_IS_RVALUE (t1));
770 t1 = build_type_attribute_variant (t1, attributes);
771 t1 = cp_build_qualified_type (t1, quals);
773 if (TREE_CODE (target) == METHOD_TYPE)
774 t1 = build_ptrmemfunc_type (t1);
783 quals = cp_type_quals (t1);
784 pointee = merge_types (TYPE_PTRMEM_POINTED_TO_TYPE (t1),
785 TYPE_PTRMEM_POINTED_TO_TYPE (t2));
786 t1 = build_ptrmem_type (TYPE_PTRMEM_CLASS_TYPE (t1),
788 t1 = cp_build_qualified_type (t1, quals);
794 tree elt = merge_types (TREE_TYPE (t1), TREE_TYPE (t2));
795 /* Save space: see if the result is identical to one of the args. */
796 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
797 return build_type_attribute_variant (t1, attributes);
798 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
799 return build_type_attribute_variant (t2, attributes);
800 /* Merge the element types, and have a size if either arg has one. */
801 t1 = build_cplus_array_type
802 (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
807 /* Function types: prefer the one that specified arg types.
808 If both do, merge the arg types. Also merge the return types. */
810 tree valtype = merge_types (TREE_TYPE (t1), TREE_TYPE (t2));
811 tree p1 = TYPE_ARG_TYPES (t1);
812 tree p2 = TYPE_ARG_TYPES (t2);
815 /* Save space: see if the result is identical to one of the args. */
816 if (valtype == TREE_TYPE (t1) && ! p2)
817 return cp_build_type_attribute_variant (t1, attributes);
818 if (valtype == TREE_TYPE (t2) && ! p1)
819 return cp_build_type_attribute_variant (t2, attributes);
821 /* Simple way if one arg fails to specify argument types. */
822 if (p1 == NULL_TREE || TREE_VALUE (p1) == void_type_node)
824 rval = build_function_type (valtype, p2);
825 if ((raises = TYPE_RAISES_EXCEPTIONS (t2)))
826 rval = build_exception_variant (rval, raises);
827 return cp_build_type_attribute_variant (rval, attributes);
829 raises = TYPE_RAISES_EXCEPTIONS (t1);
830 if (p2 == NULL_TREE || TREE_VALUE (p2) == void_type_node)
832 rval = build_function_type (valtype, p1);
834 rval = build_exception_variant (rval, raises);
835 return cp_build_type_attribute_variant (rval, attributes);
838 rval = build_function_type (valtype, commonparms (p1, p2));
839 t1 = build_exception_variant (rval, raises);
845 /* Get this value the long way, since TYPE_METHOD_BASETYPE
846 is just the main variant of this. */
847 tree basetype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (t2)));
848 tree raises = TYPE_RAISES_EXCEPTIONS (t1);
851 /* If this was a member function type, get back to the
852 original type of type member function (i.e., without
853 the class instance variable up front. */
854 t1 = build_function_type (TREE_TYPE (t1),
855 TREE_CHAIN (TYPE_ARG_TYPES (t1)));
856 t2 = build_function_type (TREE_TYPE (t2),
857 TREE_CHAIN (TYPE_ARG_TYPES (t2)));
858 t3 = merge_types (t1, t2);
859 t3 = build_method_type_directly (basetype, TREE_TYPE (t3),
860 TYPE_ARG_TYPES (t3));
861 t1 = build_exception_variant (t3, raises);
866 /* There is no need to merge attributes into a TYPENAME_TYPE.
867 When the type is instantiated it will have whatever
868 attributes result from the instantiation. */
874 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
876 else if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
879 return cp_build_type_attribute_variant (t1, attributes);
882 /* Return the ARRAY_TYPE type without its domain. */
885 strip_array_domain (tree type)
888 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
889 if (TYPE_DOMAIN (type) == NULL_TREE)
891 t2 = build_cplus_array_type (TREE_TYPE (type), NULL_TREE);
892 return cp_build_type_attribute_variant (t2, TYPE_ATTRIBUTES (type));
895 /* Wrapper around cp_common_type that is used by c-common.c and other
896 front end optimizations that remove promotions.
898 Return the common type for two arithmetic types T1 and T2 under the
899 usual arithmetic conversions. The default conversions have already
900 been applied, and enumerated types converted to their compatible
904 common_type (tree t1, tree t2)
906 /* If one type is nonsense, use the other */
907 if (t1 == error_mark_node)
909 if (t2 == error_mark_node)
912 return cp_common_type (t1, t2);
915 /* Return the common type of two pointer types T1 and T2. This is the
916 type for the result of most arithmetic operations if the operands
917 have the given two types.
919 We assume that comp_target_types has already been done and returned
920 nonzero; if that isn't so, this may crash. */
923 common_pointer_type (tree t1, tree t2)
925 gcc_assert ((TYPE_PTR_P (t1) && TYPE_PTR_P (t2))
926 || (TYPE_PTRMEM_P (t1) && TYPE_PTRMEM_P (t2))
927 || (TYPE_PTRMEMFUNC_P (t1) && TYPE_PTRMEMFUNC_P (t2)));
929 return composite_pointer_type (t1, t2, error_mark_node, error_mark_node,
930 CPO_CONVERSION, tf_warning_or_error);
933 /* Compare two exception specifier types for exactness or subsetness, if
934 allowed. Returns false for mismatch, true for match (same, or
937 [except.spec] "If a class X ... objects of class X or any class publicly
938 and unambiguously derived from X. Similarly, if a pointer type Y * ...
939 exceptions of type Y * or that are pointers to any type publicly and
940 unambiguously derived from Y. Otherwise a function only allows exceptions
941 that have the same type ..."
942 This does not mention cv qualifiers and is different to what throw
943 [except.throw] and catch [except.catch] will do. They will ignore the
944 top level cv qualifiers, and allow qualifiers in the pointer to class
947 We implement the letter of the standard. */
950 comp_except_types (tree a, tree b, bool exact)
952 if (same_type_p (a, b))
956 if (cp_type_quals (a) || cp_type_quals (b))
959 if (TREE_CODE (a) == POINTER_TYPE
960 && TREE_CODE (b) == POINTER_TYPE)
964 if (cp_type_quals (a) || cp_type_quals (b))
968 if (TREE_CODE (a) != RECORD_TYPE
969 || TREE_CODE (b) != RECORD_TYPE)
972 if (PUBLICLY_UNIQUELY_DERIVED_P (a, b))
978 /* Return true if TYPE1 and TYPE2 are equivalent exception specifiers.
979 If EXACT is false, T2 can be stricter than T1 (according to 15.4/7),
980 otherwise it must be exact. Exception lists are unordered, but
981 we've already filtered out duplicates. Most lists will be in order,
982 we should try to make use of that. */
985 comp_except_specs (const_tree t1, const_tree t2, bool exact)
994 if (t1 == NULL_TREE) /* T1 is ... */
995 return t2 == NULL_TREE || !exact;
996 if (!TREE_VALUE (t1)) /* t1 is EMPTY */
997 return t2 != NULL_TREE && !TREE_VALUE (t2);
998 if (t2 == NULL_TREE) /* T2 is ... */
1000 if (TREE_VALUE (t1) && !TREE_VALUE (t2)) /* T2 is EMPTY, T1 is not */
1003 /* Neither set is ... or EMPTY, make sure each part of T2 is in T1.
1004 Count how many we find, to determine exactness. For exact matching and
1005 ordered T1, T2, this is an O(n) operation, otherwise its worst case is
1007 for (base = t1; t2 != NULL_TREE; t2 = TREE_CHAIN (t2))
1009 for (probe = base; probe != NULL_TREE; probe = TREE_CHAIN (probe))
1011 tree a = TREE_VALUE (probe);
1012 tree b = TREE_VALUE (t2);
1014 if (comp_except_types (a, b, exact))
1016 if (probe == base && exact)
1017 base = TREE_CHAIN (probe);
1022 if (probe == NULL_TREE)
1025 return !exact || base == NULL_TREE || length == list_length (t1);
1028 /* Compare the array types T1 and T2. ALLOW_REDECLARATION is true if
1029 [] can match [size]. */
1032 comp_array_types (const_tree t1, const_tree t2, bool allow_redeclaration)
1041 /* The type of the array elements must be the same. */
1042 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1045 d1 = TYPE_DOMAIN (t1);
1046 d2 = TYPE_DOMAIN (t2);
1051 /* If one of the arrays is dimensionless, and the other has a
1052 dimension, they are of different types. However, it is valid to
1060 declarations for an array object can specify
1061 array types that differ by the presence or absence of a major
1062 array bound (_dcl.array_). */
1064 return allow_redeclaration;
1066 /* Check that the dimensions are the same. */
1068 if (!cp_tree_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2)))
1070 max1 = TYPE_MAX_VALUE (d1);
1071 max2 = TYPE_MAX_VALUE (d2);
1072 if (processing_template_decl && !abi_version_at_least (2)
1073 && !value_dependent_expression_p (max1)
1074 && !value_dependent_expression_p (max2))
1076 /* With abi-1 we do not fold non-dependent array bounds, (and
1077 consequently mangle them incorrectly). We must therefore
1078 fold them here, to verify the domains have the same
1084 if (!cp_tree_equal (max1, max2))
1090 /* Compare the relative position of T1 and T2 into their respective
1091 template parameter list.
1092 T1 and T2 must be template parameter types.
1093 Return TRUE if T1 and T2 have the same position, FALSE otherwise. */
1096 comp_template_parms_position (tree t1, tree t2)
1098 gcc_assert (t1 && t2
1099 && TREE_CODE (t1) == TREE_CODE (t2)
1100 && (TREE_CODE (t1) == BOUND_TEMPLATE_TEMPLATE_PARM
1101 || TREE_CODE (t1) == TEMPLATE_TEMPLATE_PARM
1102 || TREE_CODE (t1) == TEMPLATE_TYPE_PARM));
1104 if (TEMPLATE_TYPE_IDX (t1) != TEMPLATE_TYPE_IDX (t2)
1105 || TEMPLATE_TYPE_LEVEL (t1) != TEMPLATE_TYPE_LEVEL (t2)
1106 || (TEMPLATE_TYPE_PARAMETER_PACK (t1)
1107 != TEMPLATE_TYPE_PARAMETER_PACK (t2)))
1113 /* Subroutine of incompatible_dependent_types_p.
1114 Return the template parameter of the dependent type T.
1115 If T is a typedef, return the template parameters of
1116 the _decl_ of the typedef. T must be a dependent type. */
1119 get_template_parms_of_dependent_type (tree t)
1121 tree tinfo = NULL_TREE, tparms = NULL_TREE;
1123 /* First, try the obvious case of getting the
1124 template info from T itself. */
1125 if ((tinfo = get_template_info (t)))
1127 else if (TREE_CODE (t) == TEMPLATE_TYPE_PARM)
1128 return TEMPLATE_TYPE_PARM_SIBLING_PARMS (t);
1129 else if (typedef_variant_p (t)
1130 && !NAMESPACE_SCOPE_P (TYPE_NAME (t)))
1131 tinfo = get_template_info (DECL_CONTEXT (TYPE_NAME (t)));
1132 /* If T is a TYPENAME_TYPE which context is a template type
1133 parameter, get the template parameters from that context. */
1134 else if (TYPE_CONTEXT (t)
1135 && TREE_CODE (TYPE_CONTEXT (t)) == TEMPLATE_TYPE_PARM)
1136 return TEMPLATE_TYPE_PARM_SIBLING_PARMS (TYPE_CONTEXT (t));
1137 else if (TYPE_CONTEXT (t)
1138 && !NAMESPACE_SCOPE_P (t))
1139 tinfo = get_template_info (TYPE_CONTEXT (t));
1142 tparms = DECL_TEMPLATE_PARMS (TI_TEMPLATE (tinfo));
1147 /* Subroutine of structural_comptypes.
1148 Compare the dependent types T1 and T2.
1149 Return TRUE if we are sure they can't be equal, FALSE otherwise.
1150 The whole point of this function is to support cases where either T1 or
1151 T2 is a typedef. In those cases, we need to compare the template parameters
1152 of the _decl_ of the typedef. If those don't match then we know T1
1153 and T2 cannot be equal. */
1156 incompatible_dependent_types_p (tree t1, tree t2)
1158 tree tparms1 = NULL_TREE, tparms2 = NULL_TREE;
1159 bool t1_typedef_variant_p, t2_typedef_variant_p;
1161 if (!uses_template_parms (t1) || !uses_template_parms (t2))
1164 if (TREE_CODE (t1) == TEMPLATE_TYPE_PARM)
1166 /* If T1 and T2 don't have the same relative position in their
1167 template parameters set, they can't be equal. */
1168 if (!comp_template_parms_position (t1, t2))
1172 t1_typedef_variant_p = typedef_variant_p (t1);
1173 t2_typedef_variant_p = typedef_variant_p (t2);
1175 /* Either T1 or T2 must be a typedef. */
1176 if (!t1_typedef_variant_p && !t2_typedef_variant_p)
1179 if (!t1_typedef_variant_p || !t2_typedef_variant_p)
1180 /* Either T1 or T2 is not a typedef so we cannot compare the
1181 the template parms of the typedefs of T1 and T2.
1182 At this point, if the main variant type of T1 and T2 are equal
1183 it means the two types can't be incompatible, from the perspective
1184 of this function. */
1185 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
1188 /* So if we reach this point, it means either T1 or T2 is a typedef variant.
1189 Let's compare their template parameters. */
1191 tparms1 = get_template_parms_of_dependent_type (t1);
1192 tparms2 = get_template_parms_of_dependent_type (t2);
1194 /* If T2 is a template type parm and if we could not get the template
1195 parms it belongs to, that means we have not finished parsing the
1196 full set of template parameters of the template declaration it
1197 belongs to yet. If we could get the template parms T1 belongs to,
1198 that mostly means T1 and T2 belongs to templates that are
1199 different and incompatible. */
1200 if (TREE_CODE (t1) == TEMPLATE_TYPE_PARM
1201 && (tparms1 == NULL_TREE || tparms2 == NULL_TREE)
1202 && tparms1 != tparms2)
1205 if (tparms1 == NULL_TREE
1206 || tparms2 == NULL_TREE
1207 || tparms1 == tparms2)
1210 /* And now compare the mighty template parms! */
1211 return !comp_template_parms (tparms1, tparms2);
1214 /* Subroutine in comptypes. */
1217 structural_comptypes (tree t1, tree t2, int strict)
1222 /* Suppress errors caused by previously reported errors. */
1223 if (t1 == error_mark_node || t2 == error_mark_node)
1226 gcc_assert (TYPE_P (t1) && TYPE_P (t2));
1228 /* TYPENAME_TYPEs should be resolved if the qualifying scope is the
1229 current instantiation. */
1230 if (TREE_CODE (t1) == TYPENAME_TYPE)
1231 t1 = resolve_typename_type (t1, /*only_current_p=*/true);
1233 if (TREE_CODE (t2) == TYPENAME_TYPE)
1234 t2 = resolve_typename_type (t2, /*only_current_p=*/true);
1236 if (TYPE_PTRMEMFUNC_P (t1))
1237 t1 = TYPE_PTRMEMFUNC_FN_TYPE (t1);
1238 if (TYPE_PTRMEMFUNC_P (t2))
1239 t2 = TYPE_PTRMEMFUNC_FN_TYPE (t2);
1241 /* Different classes of types can't be compatible. */
1242 if (TREE_CODE (t1) != TREE_CODE (t2))
1245 /* Qualifiers must match. For array types, we will check when we
1246 recur on the array element types. */
1247 if (TREE_CODE (t1) != ARRAY_TYPE
1248 && TYPE_QUALS (t1) != TYPE_QUALS (t2))
1250 if (TYPE_FOR_JAVA (t1) != TYPE_FOR_JAVA (t2))
1253 /* If T1 and T2 are dependent typedefs then check upfront that
1254 the template parameters of their typedef DECLs match before
1255 going down checking their subtypes. */
1256 if (incompatible_dependent_types_p (t1, t2))
1259 /* Allow for two different type nodes which have essentially the same
1260 definition. Note that we already checked for equality of the type
1261 qualifiers (just above). */
1263 if (TREE_CODE (t1) != ARRAY_TYPE
1264 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
1268 /* Compare the types. Break out if they could be the same. */
1269 switch (TREE_CODE (t1))
1273 /* All void and bool types are the same. */
1277 case FIXED_POINT_TYPE:
1279 /* With these nodes, we can't determine type equivalence by
1280 looking at what is stored in the nodes themselves, because
1281 two nodes might have different TYPE_MAIN_VARIANTs but still
1282 represent the same type. For example, wchar_t and int could
1283 have the same properties (TYPE_PRECISION, TYPE_MIN_VALUE,
1284 TYPE_MAX_VALUE, etc.), but have different TYPE_MAIN_VARIANTs
1285 and are distinct types. On the other hand, int and the
1288 typedef int INT __attribute((may_alias));
1290 have identical properties, different TYPE_MAIN_VARIANTs, but
1291 represent the same type. The canonical type system keeps
1292 track of equivalence in this case, so we fall back on it. */
1293 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
1295 case TEMPLATE_TEMPLATE_PARM:
1296 case BOUND_TEMPLATE_TEMPLATE_PARM:
1297 if (!comp_template_parms_position (t1, t2))
1299 if (!comp_template_parms
1300 (DECL_TEMPLATE_PARMS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t1)),
1301 DECL_TEMPLATE_PARMS (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t2))))
1303 if (TREE_CODE (t1) == TEMPLATE_TEMPLATE_PARM)
1305 /* Don't check inheritance. */
1306 strict = COMPARE_STRICT;
1311 if (TYPE_TEMPLATE_INFO (t1) && TYPE_TEMPLATE_INFO (t2)
1312 && (TYPE_TI_TEMPLATE (t1) == TYPE_TI_TEMPLATE (t2)
1313 || TREE_CODE (t1) == BOUND_TEMPLATE_TEMPLATE_PARM)
1314 && comp_template_args (TYPE_TI_ARGS (t1), TYPE_TI_ARGS (t2)))
1317 if ((strict & COMPARE_BASE) && DERIVED_FROM_P (t1, t2))
1319 else if ((strict & COMPARE_DERIVED) && DERIVED_FROM_P (t2, t1))
1325 if (!comptypes (TYPE_OFFSET_BASETYPE (t1), TYPE_OFFSET_BASETYPE (t2),
1326 strict & ~COMPARE_REDECLARATION))
1328 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1332 case REFERENCE_TYPE:
1333 if (TYPE_REF_IS_RVALUE (t1) != TYPE_REF_IS_RVALUE (t2))
1335 /* fall through to checks for pointer types */
1338 if (TYPE_MODE (t1) != TYPE_MODE (t2)
1339 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2)
1340 || !same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1346 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1348 if (!compparms (TYPE_ARG_TYPES (t1), TYPE_ARG_TYPES (t2)))
1353 /* Target types must match incl. qualifiers. */
1354 if (!comp_array_types (t1, t2, !!(strict & COMPARE_REDECLARATION)))
1358 case TEMPLATE_TYPE_PARM:
1359 /* If incompatible_dependent_types_p called earlier didn't decide
1360 T1 and T2 were different, they might be equal. */
1364 if (!cp_tree_equal (TYPENAME_TYPE_FULLNAME (t1),
1365 TYPENAME_TYPE_FULLNAME (t2)))
1367 if (!same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2)))
1371 case UNBOUND_CLASS_TEMPLATE:
1372 if (!cp_tree_equal (TYPE_IDENTIFIER (t1), TYPE_IDENTIFIER (t2)))
1374 if (!same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2)))
1379 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1384 if (TYPE_VECTOR_SUBPARTS (t1) != TYPE_VECTOR_SUBPARTS (t2)
1385 || !same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
1389 case TYPE_PACK_EXPANSION:
1390 return same_type_p (PACK_EXPANSION_PATTERN (t1),
1391 PACK_EXPANSION_PATTERN (t2));
1394 if (DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t1)
1395 != DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t2)
1396 || (DECLTYPE_FOR_LAMBDA_CAPTURE (t1)
1397 != DECLTYPE_FOR_LAMBDA_CAPTURE (t2))
1398 || (DECLTYPE_FOR_LAMBDA_RETURN (t1)
1399 != DECLTYPE_FOR_LAMBDA_RETURN (t2))
1400 || !cp_tree_equal (DECLTYPE_TYPE_EXPR (t1),
1401 DECLTYPE_TYPE_EXPR (t2)))
1409 /* If we get here, we know that from a target independent POV the
1410 types are the same. Make sure the target attributes are also
1412 return targetm.comp_type_attributes (t1, t2);
1415 /* Return true if T1 and T2 are related as allowed by STRICT. STRICT
1416 is a bitwise-or of the COMPARE_* flags. */
1419 comptypes (tree t1, tree t2, int strict)
1421 if (strict == COMPARE_STRICT)
1426 if (t1 == error_mark_node || t2 == error_mark_node)
1429 if (TYPE_STRUCTURAL_EQUALITY_P (t1) || TYPE_STRUCTURAL_EQUALITY_P (t2))
1430 /* At least one of the types requires structural equality, so
1431 perform a deep check. */
1432 return structural_comptypes (t1, t2, strict);
1434 #ifdef ENABLE_CHECKING
1435 if (USE_CANONICAL_TYPES)
1437 bool result = structural_comptypes (t1, t2, strict);
1439 if (result && TYPE_CANONICAL (t1) != TYPE_CANONICAL (t2))
1440 /* The two types are structurally equivalent, but their
1441 canonical types were different. This is a failure of the
1442 canonical type propagation code.*/
1444 ("canonical types differ for identical types %T and %T",
1446 else if (!result && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
1447 /* Two types are structurally different, but the canonical
1448 types are the same. This means we were over-eager in
1449 assigning canonical types. */
1451 ("same canonical type node for different types %T and %T",
1457 if (USE_CANONICAL_TYPES)
1458 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
1461 return structural_comptypes (t1, t2, strict);
1463 else if (strict == COMPARE_STRUCTURAL)
1464 return structural_comptypes (t1, t2, COMPARE_STRICT);
1466 return structural_comptypes (t1, t2, strict);
1469 /* Returns 1 if TYPE1 is at least as qualified as TYPE2. */
1472 at_least_as_qualified_p (const_tree type1, const_tree type2)
1474 int q1 = cp_type_quals (type1);
1475 int q2 = cp_type_quals (type2);
1477 /* All qualifiers for TYPE2 must also appear in TYPE1. */
1478 return (q1 & q2) == q2;
1481 /* Returns 1 if TYPE1 is more cv-qualified than TYPE2, -1 if TYPE2 is
1482 more cv-qualified that TYPE1, and 0 otherwise. */
1485 comp_cv_qualification (const_tree type1, const_tree type2)
1487 int q1 = cp_type_quals (type1);
1488 int q2 = cp_type_quals (type2);
1493 if ((q1 & q2) == q2)
1495 else if ((q1 & q2) == q1)
1501 /* Returns 1 if the cv-qualification signature of TYPE1 is a proper
1502 subset of the cv-qualification signature of TYPE2, and the types
1503 are similar. Returns -1 if the other way 'round, and 0 otherwise. */
1506 comp_cv_qual_signature (tree type1, tree type2)
1508 if (comp_ptr_ttypes_real (type2, type1, -1))
1510 else if (comp_ptr_ttypes_real (type1, type2, -1))
1516 /* Subroutines of `comptypes'. */
1518 /* Return true if two parameter type lists PARMS1 and PARMS2 are
1519 equivalent in the sense that functions with those parameter types
1520 can have equivalent types. The two lists must be equivalent,
1521 element by element. */
1524 compparms (const_tree parms1, const_tree parms2)
1528 /* An unspecified parmlist matches any specified parmlist
1529 whose argument types don't need default promotions. */
1531 for (t1 = parms1, t2 = parms2;
1533 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
1535 /* If one parmlist is shorter than the other,
1536 they fail to match. */
1539 if (!same_type_p (TREE_VALUE (t1), TREE_VALUE (t2)))
1546 /* Process a sizeof or alignof expression where the operand is a
1550 cxx_sizeof_or_alignof_type (tree type, enum tree_code op, bool complain)
1555 gcc_assert (op == SIZEOF_EXPR || op == ALIGNOF_EXPR);
1556 if (type == error_mark_node)
1557 return error_mark_node;
1559 type = non_reference (type);
1560 if (TREE_CODE (type) == METHOD_TYPE)
1563 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
1564 "invalid application of %qs to a member function",
1565 operator_name_info[(int) op].name);
1566 value = size_one_node;
1569 dependent_p = dependent_type_p (type);
1571 complete_type (type);
1573 /* VLA types will have a non-constant size. In the body of an
1574 uninstantiated template, we don't need to try to compute the
1575 value, because the sizeof expression is not an integral
1576 constant expression in that case. And, if we do try to
1577 compute the value, we'll likely end up with SAVE_EXPRs, which
1578 the template substitution machinery does not expect to see. */
1579 || (processing_template_decl
1580 && COMPLETE_TYPE_P (type)
1581 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
1583 value = build_min (op, size_type_node, type);
1584 TREE_READONLY (value) = 1;
1588 return c_sizeof_or_alignof_type (input_location, complete_type (type),
1593 /* Return the size of the type, without producing any warnings for
1594 types whose size cannot be taken. This routine should be used only
1595 in some other routine that has already produced a diagnostic about
1596 using the size of such a type. */
1598 cxx_sizeof_nowarn (tree type)
1600 if (TREE_CODE (type) == FUNCTION_TYPE
1601 || TREE_CODE (type) == VOID_TYPE
1602 || TREE_CODE (type) == ERROR_MARK)
1603 return size_one_node;
1604 else if (!COMPLETE_TYPE_P (type))
1605 return size_zero_node;
1607 return cxx_sizeof_or_alignof_type (type, SIZEOF_EXPR, false);
1610 /* Process a sizeof expression where the operand is an expression. */
1613 cxx_sizeof_expr (tree e, tsubst_flags_t complain)
1615 if (e == error_mark_node)
1616 return error_mark_node;
1618 if (processing_template_decl)
1620 e = build_min (SIZEOF_EXPR, size_type_node, e);
1621 TREE_SIDE_EFFECTS (e) = 0;
1622 TREE_READONLY (e) = 1;
1627 /* To get the size of a static data member declared as an array of
1628 unknown bound, we need to instantiate it. */
1629 if (TREE_CODE (e) == VAR_DECL
1630 && VAR_HAD_UNKNOWN_BOUND (e)
1631 && DECL_TEMPLATE_INSTANTIATION (e))
1632 instantiate_decl (e, /*defer_ok*/true, /*expl_inst_mem*/false);
1634 e = mark_type_use (e);
1636 if (TREE_CODE (e) == COMPONENT_REF
1637 && TREE_CODE (TREE_OPERAND (e, 1)) == FIELD_DECL
1638 && DECL_C_BIT_FIELD (TREE_OPERAND (e, 1)))
1640 if (complain & tf_error)
1641 error ("invalid application of %<sizeof%> to a bit-field");
1643 return error_mark_node;
1646 else if (is_overloaded_fn (e))
1648 if (complain & tf_error)
1649 permerror (input_location, "ISO C++ forbids applying %<sizeof%> to an expression of "
1652 return error_mark_node;
1655 else if (type_unknown_p (e))
1657 if (complain & tf_error)
1658 cxx_incomplete_type_error (e, TREE_TYPE (e));
1660 return error_mark_node;
1666 return cxx_sizeof_or_alignof_type (e, SIZEOF_EXPR, complain & tf_error);
1669 /* Implement the __alignof keyword: Return the minimum required
1670 alignment of E, measured in bytes. For VAR_DECL's and
1671 FIELD_DECL's return DECL_ALIGN (which can be set from an
1672 "aligned" __attribute__ specification). */
1675 cxx_alignof_expr (tree e, tsubst_flags_t complain)
1679 if (e == error_mark_node)
1680 return error_mark_node;
1682 if (processing_template_decl)
1684 e = build_min (ALIGNOF_EXPR, size_type_node, e);
1685 TREE_SIDE_EFFECTS (e) = 0;
1686 TREE_READONLY (e) = 1;
1691 e = mark_type_use (e);
1693 if (TREE_CODE (e) == VAR_DECL)
1694 t = size_int (DECL_ALIGN_UNIT (e));
1695 else if (TREE_CODE (e) == COMPONENT_REF
1696 && TREE_CODE (TREE_OPERAND (e, 1)) == FIELD_DECL
1697 && DECL_C_BIT_FIELD (TREE_OPERAND (e, 1)))
1699 if (complain & tf_error)
1700 error ("invalid application of %<__alignof%> to a bit-field");
1702 return error_mark_node;
1705 else if (TREE_CODE (e) == COMPONENT_REF
1706 && TREE_CODE (TREE_OPERAND (e, 1)) == FIELD_DECL)
1707 t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (e, 1)));
1708 else if (is_overloaded_fn (e))
1710 if (complain & tf_error)
1711 permerror (input_location, "ISO C++ forbids applying %<__alignof%> to an expression of "
1714 return error_mark_node;
1715 if (TREE_CODE (e) == FUNCTION_DECL)
1716 t = size_int (DECL_ALIGN_UNIT (e));
1720 else if (type_unknown_p (e))
1722 if (complain & tf_error)
1723 cxx_incomplete_type_error (e, TREE_TYPE (e));
1725 return error_mark_node;
1729 return cxx_sizeof_or_alignof_type (TREE_TYPE (e), ALIGNOF_EXPR,
1730 complain & tf_error);
1732 return fold_convert (size_type_node, t);
1735 /* Process a sizeof or alignof expression E with code OP where the operand
1736 is an expression. */
1739 cxx_sizeof_or_alignof_expr (tree e, enum tree_code op, bool complain)
1741 if (op == SIZEOF_EXPR)
1742 return cxx_sizeof_expr (e, complain? tf_warning_or_error : tf_none);
1744 return cxx_alignof_expr (e, complain? tf_warning_or_error : tf_none);
1747 /* EXPR is being used in a context that is not a function call.
1752 The expression can be used only as the left-hand operand of a
1753 member function call.
1755 [expr.mptr.operator]
1757 If the result of .* or ->* is a function, then that result can be
1758 used only as the operand for the function call operator ().
1760 by issuing an error message if appropriate. Returns true iff EXPR
1761 violates these rules. */
1764 invalid_nonstatic_memfn_p (const_tree expr, tsubst_flags_t complain)
1766 if (expr && DECL_NONSTATIC_MEMBER_FUNCTION_P (expr))
1768 if (complain & tf_error)
1769 error ("invalid use of non-static member function");
1775 /* If EXP is a reference to a bitfield, and the type of EXP does not
1776 match the declared type of the bitfield, return the declared type
1777 of the bitfield. Otherwise, return NULL_TREE. */
1780 is_bitfield_expr_with_lowered_type (const_tree exp)
1782 switch (TREE_CODE (exp))
1785 if (!is_bitfield_expr_with_lowered_type (TREE_OPERAND (exp, 1)
1786 ? TREE_OPERAND (exp, 1)
1787 : TREE_OPERAND (exp, 0)))
1789 return is_bitfield_expr_with_lowered_type (TREE_OPERAND (exp, 2));
1792 return is_bitfield_expr_with_lowered_type (TREE_OPERAND (exp, 1));
1796 return is_bitfield_expr_with_lowered_type (TREE_OPERAND (exp, 0));
1802 field = TREE_OPERAND (exp, 1);
1803 if (TREE_CODE (field) != FIELD_DECL || !DECL_BIT_FIELD_TYPE (field))
1805 if (same_type_ignoring_top_level_qualifiers_p
1806 (TREE_TYPE (exp), DECL_BIT_FIELD_TYPE (field)))
1808 return DECL_BIT_FIELD_TYPE (field);
1812 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (exp, 0)))
1813 == TYPE_MAIN_VARIANT (TREE_TYPE (exp)))
1814 return is_bitfield_expr_with_lowered_type (TREE_OPERAND (exp, 0));
1822 /* Like is_bitfield_with_lowered_type, except that if EXP is not a
1823 bitfield with a lowered type, the type of EXP is returned, rather
1827 unlowered_expr_type (const_tree exp)
1831 type = is_bitfield_expr_with_lowered_type (exp);
1833 type = TREE_TYPE (exp);
1838 /* Perform the conversions in [expr] that apply when an lvalue appears
1839 in an rvalue context: the lvalue-to-rvalue, array-to-pointer, and
1840 function-to-pointer conversions. In addition, manifest constants
1841 are replaced by their values, and bitfield references are converted
1842 to their declared types. Note that this function does not perform the
1843 lvalue-to-rvalue conversion for class types. If you need that conversion
1844 to for class types, then you probably need to use force_rvalue.
1846 Although the returned value is being used as an rvalue, this
1847 function does not wrap the returned expression in a
1848 NON_LVALUE_EXPR; the caller is expected to be mindful of the fact
1849 that the return value is no longer an lvalue. */
1852 decay_conversion (tree exp)
1855 enum tree_code code;
1857 type = TREE_TYPE (exp);
1858 if (type == error_mark_node)
1859 return error_mark_node;
1861 exp = mark_rvalue_use (exp);
1863 exp = resolve_nondeduced_context (exp);
1864 if (type_unknown_p (exp))
1866 cxx_incomplete_type_error (exp, TREE_TYPE (exp));
1867 return error_mark_node;
1870 exp = decl_constant_value (exp);
1871 if (error_operand_p (exp))
1872 return error_mark_node;
1874 /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue.
1875 Leave such NOP_EXPRs, since RHS is being used in non-lvalue context. */
1876 code = TREE_CODE (type);
1877 if (code == VOID_TYPE)
1879 error ("void value not ignored as it ought to be");
1880 return error_mark_node;
1882 if (invalid_nonstatic_memfn_p (exp, tf_warning_or_error))
1883 return error_mark_node;
1884 if (code == FUNCTION_TYPE || is_overloaded_fn (exp))
1885 return cp_build_unary_op (ADDR_EXPR, exp, 0, tf_warning_or_error);
1886 if (code == ARRAY_TYPE)
1891 if (TREE_CODE (exp) == INDIRECT_REF)
1892 return build_nop (build_pointer_type (TREE_TYPE (type)),
1893 TREE_OPERAND (exp, 0));
1895 if (TREE_CODE (exp) == COMPOUND_EXPR)
1897 tree op1 = decay_conversion (TREE_OPERAND (exp, 1));
1898 return build2 (COMPOUND_EXPR, TREE_TYPE (op1),
1899 TREE_OPERAND (exp, 0), op1);
1903 && ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
1905 error ("invalid use of non-lvalue array");
1906 return error_mark_node;
1909 ptrtype = build_pointer_type (TREE_TYPE (type));
1911 if (TREE_CODE (exp) == VAR_DECL)
1913 if (!cxx_mark_addressable (exp))
1914 return error_mark_node;
1915 adr = build_nop (ptrtype, build_address (exp));
1918 /* This way is better for a COMPONENT_REF since it can
1919 simplify the offset for a component. */
1920 adr = cp_build_unary_op (ADDR_EXPR, exp, 1, tf_warning_or_error);
1921 return cp_convert (ptrtype, adr);
1924 /* If a bitfield is used in a context where integral promotion
1925 applies, then the caller is expected to have used
1926 default_conversion. That function promotes bitfields correctly
1927 before calling this function. At this point, if we have a
1928 bitfield referenced, we may assume that is not subject to
1929 promotion, and that, therefore, the type of the resulting rvalue
1930 is the declared type of the bitfield. */
1931 exp = convert_bitfield_to_declared_type (exp);
1933 /* We do not call rvalue() here because we do not want to wrap EXP
1934 in a NON_LVALUE_EXPR. */
1938 Non-class rvalues always have cv-unqualified types. */
1939 type = TREE_TYPE (exp);
1940 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
1941 exp = build_nop (cv_unqualified (type), exp);
1946 /* Perform preparatory conversions, as part of the "usual arithmetic
1947 conversions". In particular, as per [expr]:
1949 Whenever an lvalue expression appears as an operand of an
1950 operator that expects the rvalue for that operand, the
1951 lvalue-to-rvalue, array-to-pointer, or function-to-pointer
1952 standard conversions are applied to convert the expression to an
1955 In addition, we perform integral promotions here, as those are
1956 applied to both operands to a binary operator before determining
1957 what additional conversions should apply. */
1960 default_conversion (tree exp)
1962 /* Check for target-specific promotions. */
1963 tree promoted_type = targetm.promoted_type (TREE_TYPE (exp));
1965 exp = cp_convert (promoted_type, exp);
1966 /* Perform the integral promotions first so that bitfield
1967 expressions (which may promote to "int", even if the bitfield is
1968 declared "unsigned") are promoted correctly. */
1969 else if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (TREE_TYPE (exp)))
1970 exp = perform_integral_promotions (exp);
1971 /* Perform the other conversions. */
1972 exp = decay_conversion (exp);
1977 /* EXPR is an expression with an integral or enumeration type.
1978 Perform the integral promotions in [conv.prom], and return the
1982 perform_integral_promotions (tree expr)
1987 expr = mark_rvalue_use (expr);
1991 If the bitfield has an enumerated type, it is treated as any
1992 other value of that type for promotion purposes. */
1993 type = is_bitfield_expr_with_lowered_type (expr);
1994 if (!type || TREE_CODE (type) != ENUMERAL_TYPE)
1995 type = TREE_TYPE (expr);
1996 gcc_assert (INTEGRAL_OR_ENUMERATION_TYPE_P (type));
1997 promoted_type = type_promotes_to (type);
1998 if (type != promoted_type)
1999 expr = cp_convert (promoted_type, expr);
2003 /* Returns nonzero iff exp is a STRING_CST or the result of applying
2004 decay_conversion to one. */
2007 string_conv_p (const_tree totype, const_tree exp, int warn)
2011 if (TREE_CODE (totype) != POINTER_TYPE)
2014 t = TREE_TYPE (totype);
2015 if (!same_type_p (t, char_type_node)
2016 && !same_type_p (t, char16_type_node)
2017 && !same_type_p (t, char32_type_node)
2018 && !same_type_p (t, wchar_type_node))
2021 if (TREE_CODE (exp) == STRING_CST)
2023 /* Make sure that we don't try to convert between char and wide chars. */
2024 if (!same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (exp))), t))
2029 /* Is this a string constant which has decayed to 'const char *'? */
2030 t = build_pointer_type (build_qualified_type (t, TYPE_QUAL_CONST));
2031 if (!same_type_p (TREE_TYPE (exp), t))
2034 if (TREE_CODE (exp) != ADDR_EXPR
2035 || TREE_CODE (TREE_OPERAND (exp, 0)) != STRING_CST)
2039 /* This warning is not very useful, as it complains about printf. */
2041 warning (OPT_Wwrite_strings,
2042 "deprecated conversion from string constant to %qT",
2048 /* Given a COND_EXPR, MIN_EXPR, or MAX_EXPR in T, return it in a form that we
2049 can, for example, use as an lvalue. This code used to be in
2050 unary_complex_lvalue, but we needed it to deal with `a = (d == c) ? b : c'
2051 expressions, where we're dealing with aggregates. But now it's again only
2052 called from unary_complex_lvalue. The case (in particular) that led to
2053 this was with CODE == ADDR_EXPR, since it's not an lvalue when we'd
2057 rationalize_conditional_expr (enum tree_code code, tree t,
2058 tsubst_flags_t complain)
2060 /* For MIN_EXPR or MAX_EXPR, fold-const.c has arranged things so that
2061 the first operand is always the one to be used if both operands
2062 are equal, so we know what conditional expression this used to be. */
2063 if (TREE_CODE (t) == MIN_EXPR || TREE_CODE (t) == MAX_EXPR)
2065 tree op0 = TREE_OPERAND (t, 0);
2066 tree op1 = TREE_OPERAND (t, 1);
2068 /* The following code is incorrect if either operand side-effects. */
2069 gcc_assert (!TREE_SIDE_EFFECTS (op0)
2070 && !TREE_SIDE_EFFECTS (op1));
2072 build_conditional_expr (build_x_binary_op ((TREE_CODE (t) == MIN_EXPR
2073 ? LE_EXPR : GE_EXPR),
2074 op0, TREE_CODE (op0),
2075 op1, TREE_CODE (op1),
2076 /*overloaded_p=*/NULL,
2078 cp_build_unary_op (code, op0, 0, complain),
2079 cp_build_unary_op (code, op1, 0, complain),
2084 build_conditional_expr (TREE_OPERAND (t, 0),
2085 cp_build_unary_op (code, TREE_OPERAND (t, 1), 0,
2087 cp_build_unary_op (code, TREE_OPERAND (t, 2), 0,
2092 /* Given the TYPE of an anonymous union field inside T, return the
2093 FIELD_DECL for the field. If not found return NULL_TREE. Because
2094 anonymous unions can nest, we must also search all anonymous unions
2095 that are directly reachable. */
2098 lookup_anon_field (tree t, tree type)
2102 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2104 if (TREE_STATIC (field))
2106 if (TREE_CODE (field) != FIELD_DECL || DECL_ARTIFICIAL (field))
2109 /* If we find it directly, return the field. */
2110 if (DECL_NAME (field) == NULL_TREE
2111 && type == TYPE_MAIN_VARIANT (TREE_TYPE (field)))
2116 /* Otherwise, it could be nested, search harder. */
2117 if (DECL_NAME (field) == NULL_TREE
2118 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2120 tree subfield = lookup_anon_field (TREE_TYPE (field), type);
2128 /* Build an expression representing OBJECT.MEMBER. OBJECT is an
2129 expression; MEMBER is a DECL or baselink. If ACCESS_PATH is
2130 non-NULL, it indicates the path to the base used to name MEMBER.
2131 If PRESERVE_REFERENCE is true, the expression returned will have
2132 REFERENCE_TYPE if the MEMBER does. Otherwise, the expression
2133 returned will have the type referred to by the reference.
2135 This function does not perform access control; that is either done
2136 earlier by the parser when the name of MEMBER is resolved to MEMBER
2137 itself, or later when overload resolution selects one of the
2138 functions indicated by MEMBER. */
2141 build_class_member_access_expr (tree object, tree member,
2142 tree access_path, bool preserve_reference,
2143 tsubst_flags_t complain)
2147 tree result = NULL_TREE;
2149 if (error_operand_p (object) || error_operand_p (member))
2150 return error_mark_node;
2152 gcc_assert (DECL_P (member) || BASELINK_P (member));
2156 The type of the first expression shall be "class object" (of a
2158 object_type = TREE_TYPE (object);
2159 if (!currently_open_class (object_type)
2160 && !complete_type_or_else (object_type, object))
2161 return error_mark_node;
2162 if (!CLASS_TYPE_P (object_type))
2164 if (complain & tf_error)
2165 error ("request for member %qD in %qE, which is of non-class type %qT",
2166 member, object, object_type);
2167 return error_mark_node;
2170 /* The standard does not seem to actually say that MEMBER must be a
2171 member of OBJECT_TYPE. However, that is clearly what is
2173 if (DECL_P (member))
2175 member_scope = DECL_CLASS_CONTEXT (member);
2177 if (TREE_DEPRECATED (member))
2178 warn_deprecated_use (member, NULL_TREE);
2181 member_scope = BINFO_TYPE (BASELINK_ACCESS_BINFO (member));
2182 /* If MEMBER is from an anonymous aggregate, MEMBER_SCOPE will
2183 presently be the anonymous union. Go outwards until we find a
2184 type related to OBJECT_TYPE. */
2185 while (ANON_AGGR_TYPE_P (member_scope)
2186 && !same_type_ignoring_top_level_qualifiers_p (member_scope,
2188 member_scope = TYPE_CONTEXT (member_scope);
2189 if (!member_scope || !DERIVED_FROM_P (member_scope, object_type))
2191 if (complain & tf_error)
2193 if (TREE_CODE (member) == FIELD_DECL)
2194 error ("invalid use of nonstatic data member %qE", member);
2196 error ("%qD is not a member of %qT", member, object_type);
2198 return error_mark_node;
2201 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x' into
2202 `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only an lvalue
2203 in the front end; only _DECLs and _REFs are lvalues in the back end. */
2205 tree temp = unary_complex_lvalue (ADDR_EXPR, object);
2207 object = cp_build_indirect_ref (temp, RO_NULL, complain);
2210 /* In [expr.ref], there is an explicit list of the valid choices for
2211 MEMBER. We check for each of those cases here. */
2212 if (TREE_CODE (member) == VAR_DECL)
2214 /* A static data member. */
2216 /* If OBJECT has side-effects, they are supposed to occur. */
2217 if (TREE_SIDE_EFFECTS (object))
2218 result = build2 (COMPOUND_EXPR, TREE_TYPE (result), object, result);
2220 else if (TREE_CODE (member) == FIELD_DECL)
2222 /* A non-static data member. */
2227 null_object_p = (TREE_CODE (object) == INDIRECT_REF
2228 && integer_zerop (TREE_OPERAND (object, 0)));
2230 /* Convert OBJECT to the type of MEMBER. */
2231 if (!same_type_p (TYPE_MAIN_VARIANT (object_type),
2232 TYPE_MAIN_VARIANT (member_scope)))
2237 binfo = lookup_base (access_path ? access_path : object_type,
2238 member_scope, ba_unique, &kind);
2239 if (binfo == error_mark_node)
2240 return error_mark_node;
2242 /* It is invalid to try to get to a virtual base of a
2243 NULL object. The most common cause is invalid use of
2245 if (null_object_p && kind == bk_via_virtual)
2247 if (complain & tf_error)
2249 error ("invalid access to non-static data member %qD of "
2252 error ("(perhaps the %<offsetof%> macro was used incorrectly)");
2254 return error_mark_node;
2257 /* Convert to the base. */
2258 object = build_base_path (PLUS_EXPR, object, binfo,
2260 /* If we found the base successfully then we should be able
2261 to convert to it successfully. */
2262 gcc_assert (object != error_mark_node);
2265 /* Complain about other invalid uses of offsetof, even though they will
2266 give the right answer. Note that we complain whether or not they
2267 actually used the offsetof macro, since there's no way to know at this
2268 point. So we just give a warning, instead of a pedwarn. */
2269 /* Do not produce this warning for base class field references, because
2270 we know for a fact that didn't come from offsetof. This does occur
2271 in various testsuite cases where a null object is passed where a
2272 vtable access is required. */
2273 if (null_object_p && warn_invalid_offsetof
2274 && CLASSTYPE_NON_STD_LAYOUT (object_type)
2275 && !DECL_FIELD_IS_BASE (member)
2276 && cp_unevaluated_operand == 0
2277 && (complain & tf_warning))
2279 warning (OPT_Winvalid_offsetof,
2280 "invalid access to non-static data member %qD "
2281 " of NULL object", member);
2282 warning (OPT_Winvalid_offsetof,
2283 "(perhaps the %<offsetof%> macro was used incorrectly)");
2286 /* If MEMBER is from an anonymous aggregate, we have converted
2287 OBJECT so that it refers to the class containing the
2288 anonymous union. Generate a reference to the anonymous union
2289 itself, and recur to find MEMBER. */
2290 if (ANON_AGGR_TYPE_P (DECL_CONTEXT (member))
2291 /* When this code is called from build_field_call, the
2292 object already has the type of the anonymous union.
2293 That is because the COMPONENT_REF was already
2294 constructed, and was then disassembled before calling
2295 build_field_call. After the function-call code is
2296 cleaned up, this waste can be eliminated. */
2297 && (!same_type_ignoring_top_level_qualifiers_p
2298 (TREE_TYPE (object), DECL_CONTEXT (member))))
2300 tree anonymous_union;
2302 anonymous_union = lookup_anon_field (TREE_TYPE (object),
2303 DECL_CONTEXT (member));
2304 object = build_class_member_access_expr (object,
2306 /*access_path=*/NULL_TREE,
2311 /* Compute the type of the field, as described in [expr.ref]. */
2312 type_quals = TYPE_UNQUALIFIED;
2313 member_type = TREE_TYPE (member);
2314 if (TREE_CODE (member_type) != REFERENCE_TYPE)
2316 type_quals = (cp_type_quals (member_type)
2317 | cp_type_quals (object_type));
2319 /* A field is const (volatile) if the enclosing object, or the
2320 field itself, is const (volatile). But, a mutable field is
2321 not const, even within a const object. */
2322 if (DECL_MUTABLE_P (member))
2323 type_quals &= ~TYPE_QUAL_CONST;
2324 member_type = cp_build_qualified_type (member_type, type_quals);
2327 result = build3 (COMPONENT_REF, member_type, object, member,
2329 result = fold_if_not_in_template (result);
2331 /* Mark the expression const or volatile, as appropriate. Even
2332 though we've dealt with the type above, we still have to mark the
2333 expression itself. */
2334 if (type_quals & TYPE_QUAL_CONST)
2335 TREE_READONLY (result) = 1;
2336 if (type_quals & TYPE_QUAL_VOLATILE)
2337 TREE_THIS_VOLATILE (result) = 1;
2339 else if (BASELINK_P (member))
2341 /* The member is a (possibly overloaded) member function. */
2345 /* If the MEMBER is exactly one static member function, then we
2346 know the type of the expression. Otherwise, we must wait
2347 until overload resolution has been performed. */
2348 functions = BASELINK_FUNCTIONS (member);
2349 if (TREE_CODE (functions) == FUNCTION_DECL
2350 && DECL_STATIC_FUNCTION_P (functions))
2351 type = TREE_TYPE (functions);
2353 type = unknown_type_node;
2354 /* Note that we do not convert OBJECT to the BASELINK_BINFO
2355 base. That will happen when the function is called. */
2356 result = build3 (COMPONENT_REF, type, object, member, NULL_TREE);
2358 else if (TREE_CODE (member) == CONST_DECL)
2360 /* The member is an enumerator. */
2362 /* If OBJECT has side-effects, they are supposed to occur. */
2363 if (TREE_SIDE_EFFECTS (object))
2364 result = build2 (COMPOUND_EXPR, TREE_TYPE (result),
2369 if (complain & tf_error)
2370 error ("invalid use of %qD", member);
2371 return error_mark_node;
2374 if (!preserve_reference)
2377 If E2 is declared to have type "reference to T", then ... the
2378 type of E1.E2 is T. */
2379 result = convert_from_reference (result);
2384 /* Return the destructor denoted by OBJECT.SCOPE::DTOR_NAME, or, if
2385 SCOPE is NULL, by OBJECT.DTOR_NAME, where DTOR_NAME is ~type. */
2388 lookup_destructor (tree object, tree scope, tree dtor_name)
2390 tree object_type = TREE_TYPE (object);
2391 tree dtor_type = TREE_OPERAND (dtor_name, 0);
2394 if (scope && !check_dtor_name (scope, dtor_type))
2396 error ("qualified type %qT does not match destructor name ~%qT",
2398 return error_mark_node;
2400 if (TREE_CODE (dtor_type) == IDENTIFIER_NODE)
2402 /* In a template, names we can't find a match for are still accepted
2403 destructor names, and we check them here. */
2404 if (check_dtor_name (object_type, dtor_type))
2405 dtor_type = object_type;
2408 error ("object type %qT does not match destructor name ~%qT",
2409 object_type, dtor_type);
2410 return error_mark_node;
2414 else if (!DERIVED_FROM_P (dtor_type, TYPE_MAIN_VARIANT (object_type)))
2416 error ("the type being destroyed is %qT, but the destructor refers to %qT",
2417 TYPE_MAIN_VARIANT (object_type), dtor_type);
2418 return error_mark_node;
2420 expr = lookup_member (dtor_type, complete_dtor_identifier,
2421 /*protect=*/1, /*want_type=*/false);
2422 expr = (adjust_result_of_qualified_name_lookup
2423 (expr, dtor_type, object_type));
2427 /* An expression of the form "A::template B" has been resolved to
2428 DECL. Issue a diagnostic if B is not a template or template
2432 check_template_keyword (tree decl)
2434 /* The standard says:
2438 If a name prefixed by the keyword template is not a member
2439 template, the program is ill-formed.
2441 DR 228 removed the restriction that the template be a member
2444 DR 96, if accepted would add the further restriction that explicit
2445 template arguments must be provided if the template keyword is
2446 used, but, as of 2005-10-16, that DR is still in "drafting". If
2447 this DR is accepted, then the semantic checks here can be
2448 simplified, as the entity named must in fact be a template
2449 specialization, rather than, as at present, a set of overloaded
2450 functions containing at least one template function. */
2451 if (TREE_CODE (decl) != TEMPLATE_DECL
2452 && TREE_CODE (decl) != TEMPLATE_ID_EXPR)
2454 if (!is_overloaded_fn (decl))
2455 permerror (input_location, "%qD is not a template", decl);
2460 if (BASELINK_P (fns))
2461 fns = BASELINK_FUNCTIONS (fns);
2464 tree fn = OVL_CURRENT (fns);
2465 if (TREE_CODE (fn) == TEMPLATE_DECL
2466 || TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2468 if (TREE_CODE (fn) == FUNCTION_DECL
2469 && DECL_USE_TEMPLATE (fn)
2470 && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (fn)))
2472 fns = OVL_NEXT (fns);
2475 permerror (input_location, "%qD is not a template", decl);
2480 /* This function is called by the parser to process a class member
2481 access expression of the form OBJECT.NAME. NAME is a node used by
2482 the parser to represent a name; it is not yet a DECL. It may,
2483 however, be a BASELINK where the BASELINK_FUNCTIONS is a
2484 TEMPLATE_ID_EXPR. Templates must be looked up by the parser, and
2485 there is no reason to do the lookup twice, so the parser keeps the
2486 BASELINK. TEMPLATE_P is true iff NAME was explicitly declared to
2487 be a template via the use of the "A::template B" syntax. */
2490 finish_class_member_access_expr (tree object, tree name, bool template_p,
2491 tsubst_flags_t complain)
2496 tree access_path = NULL_TREE;
2497 tree orig_object = object;
2498 tree orig_name = name;
2500 if (object == error_mark_node || name == error_mark_node)
2501 return error_mark_node;
2503 /* If OBJECT is an ObjC class instance, we must obey ObjC access rules. */
2504 if (!objc_is_public (object, name))
2505 return error_mark_node;
2507 object_type = TREE_TYPE (object);
2509 if (processing_template_decl)
2511 if (/* If OBJECT_TYPE is dependent, so is OBJECT.NAME. */
2512 dependent_type_p (object_type)
2513 /* If NAME is just an IDENTIFIER_NODE, then the expression
2515 || TREE_CODE (object) == IDENTIFIER_NODE
2516 /* If NAME is "f<args>", where either 'f' or 'args' is
2517 dependent, then the expression is dependent. */
2518 || (TREE_CODE (name) == TEMPLATE_ID_EXPR
2519 && dependent_template_id_p (TREE_OPERAND (name, 0),
2520 TREE_OPERAND (name, 1)))
2521 /* If NAME is "T::X" where "T" is dependent, then the
2522 expression is dependent. */
2523 || (TREE_CODE (name) == SCOPE_REF
2524 && TYPE_P (TREE_OPERAND (name, 0))
2525 && dependent_type_p (TREE_OPERAND (name, 0))))
2526 return build_min_nt (COMPONENT_REF, object, name, NULL_TREE);
2527 object = build_non_dependent_expr (object);
2532 The type of the first expression shall be "class object" (of a
2534 if (!currently_open_class (object_type)
2535 && !complete_type_or_else (object_type, object))
2536 return error_mark_node;
2537 if (!CLASS_TYPE_P (object_type))
2539 if (complain & tf_error)
2540 error ("request for member %qD in %qE, which is of non-class type %qT",
2541 name, object, object_type);
2542 return error_mark_node;
2545 if (BASELINK_P (name))
2546 /* A member function that has already been looked up. */
2550 bool is_template_id = false;
2551 tree template_args = NULL_TREE;
2554 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
2556 is_template_id = true;
2557 template_args = TREE_OPERAND (name, 1);
2558 name = TREE_OPERAND (name, 0);
2560 if (TREE_CODE (name) == OVERLOAD)
2561 name = DECL_NAME (get_first_fn (name));
2562 else if (DECL_P (name))
2563 name = DECL_NAME (name);
2566 if (TREE_CODE (name) == SCOPE_REF)
2568 /* A qualified name. The qualifying class or namespace `S'
2569 has already been looked up; it is either a TYPE or a
2571 scope = TREE_OPERAND (name, 0);
2572 name = TREE_OPERAND (name, 1);
2574 /* If SCOPE is a namespace, then the qualified name does not
2575 name a member of OBJECT_TYPE. */
2576 if (TREE_CODE (scope) == NAMESPACE_DECL)
2578 if (complain & tf_error)
2579 error ("%<%D::%D%> is not a member of %qT",
2580 scope, name, object_type);
2581 return error_mark_node;
2584 gcc_assert (CLASS_TYPE_P (scope));
2585 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE
2586 || TREE_CODE (name) == BIT_NOT_EXPR);
2588 if (constructor_name_p (name, scope))
2590 if (complain & tf_error)
2591 error ("cannot call constructor %<%T::%D%> directly",
2593 return error_mark_node;
2596 /* Find the base of OBJECT_TYPE corresponding to SCOPE. */
2597 access_path = lookup_base (object_type, scope, ba_check, NULL);
2598 if (access_path == error_mark_node)
2599 return error_mark_node;
2602 if (complain & tf_error)
2603 error ("%qT is not a base of %qT", scope, object_type);
2604 return error_mark_node;
2610 access_path = object_type;
2613 if (TREE_CODE (name) == BIT_NOT_EXPR)
2614 member = lookup_destructor (object, scope, name);
2617 /* Look up the member. */
2618 member = lookup_member (access_path, name, /*protect=*/1,
2619 /*want_type=*/false);
2620 if (member == NULL_TREE)
2622 if (complain & tf_error)
2623 error ("%qD has no member named %qE", object_type, name);
2624 return error_mark_node;
2626 if (member == error_mark_node)
2627 return error_mark_node;
2632 tree templ = member;
2634 if (BASELINK_P (templ))
2635 templ = lookup_template_function (templ, template_args);
2638 if (complain & tf_error)
2639 error ("%qD is not a member template function", name);
2640 return error_mark_node;
2645 if (TREE_DEPRECATED (member))
2646 warn_deprecated_use (member, NULL_TREE);
2649 check_template_keyword (member);
2651 expr = build_class_member_access_expr (object, member, access_path,
2652 /*preserve_reference=*/false,
2654 if (processing_template_decl && expr != error_mark_node)
2656 if (BASELINK_P (member))
2658 if (TREE_CODE (orig_name) == SCOPE_REF)
2659 BASELINK_QUALIFIED_P (member) = 1;
2662 return build_min_non_dep (COMPONENT_REF, expr,
2663 orig_object, orig_name,
2670 /* Return an expression for the MEMBER_NAME field in the internal
2671 representation of PTRMEM, a pointer-to-member function. (Each
2672 pointer-to-member function type gets its own RECORD_TYPE so it is
2673 more convenient to access the fields by name than by FIELD_DECL.)
2674 This routine converts the NAME to a FIELD_DECL and then creates the
2675 node for the complete expression. */
2678 build_ptrmemfunc_access_expr (tree ptrmem, tree member_name)
2684 /* This code is a stripped down version of
2685 build_class_member_access_expr. It does not work to use that
2686 routine directly because it expects the object to be of class
2688 ptrmem_type = TREE_TYPE (ptrmem);
2689 gcc_assert (TYPE_PTRMEMFUNC_P (ptrmem_type));
2690 member = lookup_member (ptrmem_type, member_name, /*protect=*/0,
2691 /*want_type=*/false);
2692 member_type = cp_build_qualified_type (TREE_TYPE (member),
2693 cp_type_quals (ptrmem_type));
2694 return fold_build3_loc (input_location,
2695 COMPONENT_REF, member_type,
2696 ptrmem, member, NULL_TREE);
2699 /* Given an expression PTR for a pointer, return an expression
2700 for the value pointed to.
2701 ERRORSTRING is the name of the operator to appear in error messages.
2703 This function may need to overload OPERATOR_FNNAME.
2704 Must also handle REFERENCE_TYPEs for C++. */
2707 build_x_indirect_ref (tree expr, ref_operator errorstring,
2708 tsubst_flags_t complain)
2710 tree orig_expr = expr;
2713 if (processing_template_decl)
2715 /* Retain the type if we know the operand is a pointer so that
2716 describable_type doesn't make auto deduction break. */
2717 if (TREE_TYPE (expr) && POINTER_TYPE_P (TREE_TYPE (expr)))
2718 return build_min (INDIRECT_REF, TREE_TYPE (TREE_TYPE (expr)), expr);
2719 if (type_dependent_expression_p (expr))
2720 return build_min_nt (INDIRECT_REF, expr);
2721 expr = build_non_dependent_expr (expr);
2724 rval = build_new_op (INDIRECT_REF, LOOKUP_NORMAL, expr, NULL_TREE,
2725 NULL_TREE, /*overloaded_p=*/NULL, complain);
2727 rval = cp_build_indirect_ref (expr, errorstring, complain);
2729 if (processing_template_decl && rval != error_mark_node)
2730 return build_min_non_dep (INDIRECT_REF, rval, orig_expr);
2735 /* Helper function called from c-common. */
2737 build_indirect_ref (location_t loc __attribute__ ((__unused__)),
2738 tree ptr, ref_operator errorstring)
2740 return cp_build_indirect_ref (ptr, errorstring, tf_warning_or_error);
2744 cp_build_indirect_ref (tree ptr, ref_operator errorstring,
2745 tsubst_flags_t complain)
2749 if (ptr == error_mark_node)
2750 return error_mark_node;
2752 if (ptr == current_class_ptr)
2753 return current_class_ref;
2755 pointer = (TREE_CODE (TREE_TYPE (ptr)) == REFERENCE_TYPE
2756 ? ptr : decay_conversion (ptr));
2757 type = TREE_TYPE (pointer);
2759 if (POINTER_TYPE_P (type))
2763 If the type of the expression is "pointer to T," the type
2764 of the result is "T." */
2765 tree t = TREE_TYPE (type);
2767 if (CONVERT_EXPR_P (ptr)
2768 || TREE_CODE (ptr) == VIEW_CONVERT_EXPR)
2770 /* If a warning is issued, mark it to avoid duplicates from
2771 the backend. This only needs to be done at
2772 warn_strict_aliasing > 2. */
2773 if (warn_strict_aliasing > 2)
2774 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (ptr, 0)),
2775 type, TREE_OPERAND (ptr, 0)))
2776 TREE_NO_WARNING (ptr) = 1;
2779 if (VOID_TYPE_P (t))
2781 /* A pointer to incomplete type (other than cv void) can be
2782 dereferenced [expr.unary.op]/1 */
2783 if (complain & tf_error)
2784 error ("%qT is not a pointer-to-object type", type);
2785 return error_mark_node;
2787 else if (TREE_CODE (pointer) == ADDR_EXPR
2788 && same_type_p (t, TREE_TYPE (TREE_OPERAND (pointer, 0))))
2789 /* The POINTER was something like `&x'. We simplify `*&x' to
2791 return TREE_OPERAND (pointer, 0);
2794 tree ref = build1 (INDIRECT_REF, t, pointer);
2796 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2797 so that we get the proper error message if the result is used
2798 to assign to. Also, &* is supposed to be a no-op. */
2799 TREE_READONLY (ref) = CP_TYPE_CONST_P (t);
2800 TREE_THIS_VOLATILE (ref) = CP_TYPE_VOLATILE_P (t);
2801 TREE_SIDE_EFFECTS (ref)
2802 = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (pointer));
2806 else if (!(complain & tf_error))
2807 /* Don't emit any errors; we'll just return ERROR_MARK_NODE later. */
2809 /* `pointer' won't be an error_mark_node if we were given a
2810 pointer to member, so it's cool to check for this here. */
2811 else if (TYPE_PTR_TO_MEMBER_P (type))
2812 switch (errorstring)
2814 case RO_ARRAY_INDEXING:
2815 error ("invalid use of array indexing on pointer to member");
2818 error ("invalid use of unary %<*%> on pointer to member");
2820 case RO_IMPLICIT_CONVERSION:
2821 error ("invalid use of implicit conversion on pointer to member");
2826 else if (pointer != error_mark_node)
2827 switch (errorstring)
2830 error ("invalid type argument");
2832 case RO_ARRAY_INDEXING:
2833 error ("invalid type argument of array indexing");
2836 error ("invalid type argument of unary %<*%>");
2838 case RO_IMPLICIT_CONVERSION:
2839 error ("invalid type argument of implicit conversion");
2844 return error_mark_node;
2847 /* This handles expressions of the form "a[i]", which denotes
2850 This is logically equivalent in C to *(a+i), but we may do it differently.
2851 If A is a variable or a member, we generate a primitive ARRAY_REF.
2852 This avoids forcing the array out of registers, and can work on
2853 arrays that are not lvalues (for example, members of structures returned
2856 If INDEX is of some user-defined type, it must be converted to
2857 integer type. Otherwise, to make a compatible PLUS_EXPR, it
2858 will inherit the type of the array, which will be some pointer type.
2860 LOC is the location to use in building the array reference. */
2863 build_array_ref (location_t loc, tree array, tree idx)
2869 error_at (loc, "subscript missing in array reference");
2870 return error_mark_node;
2873 if (TREE_TYPE (array) == error_mark_node
2874 || TREE_TYPE (idx) == error_mark_node)
2875 return error_mark_node;
2877 /* If ARRAY is a COMPOUND_EXPR or COND_EXPR, move our reference
2879 switch (TREE_CODE (array))
2883 tree value = build_array_ref (loc, TREE_OPERAND (array, 1), idx);
2884 ret = build2 (COMPOUND_EXPR, TREE_TYPE (value),
2885 TREE_OPERAND (array, 0), value);
2886 SET_EXPR_LOCATION (ret, loc);
2891 ret = build_conditional_expr
2892 (TREE_OPERAND (array, 0),
2893 build_array_ref (loc, TREE_OPERAND (array, 1), idx),
2894 build_array_ref (loc, TREE_OPERAND (array, 2), idx),
2895 tf_warning_or_error);
2896 protected_set_expr_location (ret, loc);
2903 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2907 warn_array_subscript_with_type_char (idx);
2909 if (!INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (TREE_TYPE (idx)))
2911 error_at (loc, "array subscript is not an integer");
2912 return error_mark_node;
2915 /* Apply integral promotions *after* noticing character types.
2916 (It is unclear why we do these promotions -- the standard
2917 does not say that we should. In fact, the natural thing would
2918 seem to be to convert IDX to ptrdiff_t; we're performing
2919 pointer arithmetic.) */
2920 idx = perform_integral_promotions (idx);
2922 /* An array that is indexed by a non-constant
2923 cannot be stored in a register; we must be able to do
2924 address arithmetic on its address.
2925 Likewise an array of elements of variable size. */
2926 if (TREE_CODE (idx) != INTEGER_CST
2927 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2928 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))))
2931 if (!cxx_mark_addressable (array))
2932 return error_mark_node;
2935 /* An array that is indexed by a constant value which is not within
2936 the array bounds cannot be stored in a register either; because we
2937 would get a crash in store_bit_field/extract_bit_field when trying
2938 to access a non-existent part of the register. */
2939 if (TREE_CODE (idx) == INTEGER_CST
2940 && TYPE_DOMAIN (TREE_TYPE (array))
2941 && ! int_fits_type_p (idx, TYPE_DOMAIN (TREE_TYPE (array))))
2943 if (!cxx_mark_addressable (array))
2944 return error_mark_node;
2947 if (!lvalue_p (array))
2948 pedwarn (loc, OPT_pedantic,
2949 "ISO C++ forbids subscripting non-lvalue array");
2951 /* Note in C++ it is valid to subscript a `register' array, since
2952 it is valid to take the address of something with that
2953 storage specification. */
2957 while (TREE_CODE (foo) == COMPONENT_REF)
2958 foo = TREE_OPERAND (foo, 0);
2959 if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
2960 warning_at (loc, OPT_Wextra,
2961 "subscripting array declared %<register%>");
2964 type = TREE_TYPE (TREE_TYPE (array));
2965 rval = build4 (ARRAY_REF, type, array, idx, NULL_TREE, NULL_TREE);
2966 /* Array ref is const/volatile if the array elements are
2967 or if the array is.. */
2968 TREE_READONLY (rval)
2969 |= (CP_TYPE_CONST_P (type) | TREE_READONLY (array));
2970 TREE_SIDE_EFFECTS (rval)
2971 |= (CP_TYPE_VOLATILE_P (type) | TREE_SIDE_EFFECTS (array));
2972 TREE_THIS_VOLATILE (rval)
2973 |= (CP_TYPE_VOLATILE_P (type) | TREE_THIS_VOLATILE (array));
2974 ret = require_complete_type (fold_if_not_in_template (rval));
2975 protected_set_expr_location (ret, loc);
2980 tree ar = default_conversion (array);
2981 tree ind = default_conversion (idx);
2983 /* Put the integer in IND to simplify error checking. */
2984 if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
2991 if (ar == error_mark_node)
2994 if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE)
2996 error_at (loc, "subscripted value is neither array nor pointer");
2997 return error_mark_node;
2999 if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
3001 error_at (loc, "array subscript is not an integer");
3002 return error_mark_node;
3005 warn_array_subscript_with_type_char (idx);
3007 ret = cp_build_indirect_ref (cp_build_binary_op (input_location,
3009 tf_warning_or_error),
3011 tf_warning_or_error);
3012 protected_set_expr_location (ret, loc);
3017 /* Resolve a pointer to member function. INSTANCE is the object
3018 instance to use, if the member points to a virtual member.
3020 This used to avoid checking for virtual functions if basetype
3021 has no virtual functions, according to an earlier ANSI draft.
3022 With the final ISO C++ rules, such an optimization is
3023 incorrect: A pointer to a derived member can be static_cast
3024 to pointer-to-base-member, as long as the dynamic object
3025 later has the right member. */
3028 get_member_function_from_ptrfunc (tree *instance_ptrptr, tree function)
3030 if (TREE_CODE (function) == OFFSET_REF)
3031 function = TREE_OPERAND (function, 1);
3033 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
3035 tree idx, delta, e1, e2, e3, vtbl, basetype;
3036 tree fntype = TYPE_PTRMEMFUNC_FN_TYPE (TREE_TYPE (function));
3038 tree instance_ptr = *instance_ptrptr;
3039 tree instance_save_expr = 0;
3040 if (instance_ptr == error_mark_node)
3042 if (TREE_CODE (function) == PTRMEM_CST)
3044 /* Extracting the function address from a pmf is only
3045 allowed with -Wno-pmf-conversions. It only works for
3047 e1 = build_addr_func (PTRMEM_CST_MEMBER (function));
3048 e1 = convert (fntype, e1);
3053 error ("object missing in use of %qE", function);
3054 return error_mark_node;
3058 if (TREE_SIDE_EFFECTS (instance_ptr))
3059 instance_ptr = instance_save_expr = save_expr (instance_ptr);
3061 if (TREE_SIDE_EFFECTS (function))
3062 function = save_expr (function);
3064 /* Start by extracting all the information from the PMF itself. */
3065 e3 = pfn_from_ptrmemfunc (function);
3066 delta = delta_from_ptrmemfunc (function);
3067 idx = build1 (NOP_EXPR, vtable_index_type, e3);
3068 switch (TARGET_PTRMEMFUNC_VBIT_LOCATION)
3070 case ptrmemfunc_vbit_in_pfn:
3071 e1 = cp_build_binary_op (input_location,
3072 BIT_AND_EXPR, idx, integer_one_node,
3073 tf_warning_or_error);
3074 idx = cp_build_binary_op (input_location,
3075 MINUS_EXPR, idx, integer_one_node,
3076 tf_warning_or_error);
3079 case ptrmemfunc_vbit_in_delta:
3080 e1 = cp_build_binary_op (input_location,
3081 BIT_AND_EXPR, delta, integer_one_node,
3082 tf_warning_or_error);
3083 delta = cp_build_binary_op (input_location,
3084 RSHIFT_EXPR, delta, integer_one_node,
3085 tf_warning_or_error);
3092 /* Convert down to the right base before using the instance. A
3093 special case is that in a pointer to member of class C, C may
3094 be incomplete. In that case, the function will of course be
3095 a member of C, and no conversion is required. In fact,
3096 lookup_base will fail in that case, because incomplete
3097 classes do not have BINFOs. */
3098 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (fntype));
3099 if (!same_type_ignoring_top_level_qualifiers_p
3100 (basetype, TREE_TYPE (TREE_TYPE (instance_ptr))))
3102 basetype = lookup_base (TREE_TYPE (TREE_TYPE (instance_ptr)),
3103 basetype, ba_check, NULL);
3104 instance_ptr = build_base_path (PLUS_EXPR, instance_ptr, basetype,
3106 if (instance_ptr == error_mark_node)
3107 return error_mark_node;
3109 /* ...and then the delta in the PMF. */
3110 instance_ptr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (instance_ptr),
3111 instance_ptr, fold_convert (sizetype, delta));
3113 /* Hand back the adjusted 'this' argument to our caller. */
3114 *instance_ptrptr = instance_ptr;
3116 /* Next extract the vtable pointer from the object. */
3117 vtbl = build1 (NOP_EXPR, build_pointer_type (vtbl_ptr_type_node),
3119 vtbl = cp_build_indirect_ref (vtbl, RO_NULL, tf_warning_or_error);
3120 /* If the object is not dynamic the access invokes undefined
3121 behavior. As it is not executed in this case silence the
3122 spurious warnings it may provoke. */
3123 TREE_NO_WARNING (vtbl) = 1;
3125 /* Finally, extract the function pointer from the vtable. */
3126 e2 = fold_build2_loc (input_location,
3127 POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl,
3128 fold_convert (sizetype, idx));
3129 e2 = cp_build_indirect_ref (e2, RO_NULL, tf_warning_or_error);
3130 TREE_CONSTANT (e2) = 1;
3132 /* When using function descriptors, the address of the
3133 vtable entry is treated as a function pointer. */
3134 if (TARGET_VTABLE_USES_DESCRIPTORS)
3135 e2 = build1 (NOP_EXPR, TREE_TYPE (e2),
3136 cp_build_unary_op (ADDR_EXPR, e2, /*noconvert=*/1,
3137 tf_warning_or_error));
3139 e2 = fold_convert (TREE_TYPE (e3), e2);
3140 e1 = build_conditional_expr (e1, e2, e3, tf_warning_or_error);
3142 /* Make sure this doesn't get evaluated first inside one of the
3143 branches of the COND_EXPR. */
3144 if (instance_save_expr)
3145 e1 = build2 (COMPOUND_EXPR, TREE_TYPE (e1),
3146 instance_save_expr, e1);
3153 /* Used by the C-common bits. */
3155 build_function_call (location_t loc ATTRIBUTE_UNUSED,
3156 tree function, tree params)
3158 return cp_build_function_call (function, params, tf_warning_or_error);
3161 /* Used by the C-common bits. */
3163 build_function_call_vec (location_t loc ATTRIBUTE_UNUSED,
3164 tree function, VEC(tree,gc) *params,
3165 VEC(tree,gc) *origtypes ATTRIBUTE_UNUSED)
3167 VEC(tree,gc) *orig_params = params;
3168 tree ret = cp_build_function_call_vec (function, ¶ms,
3169 tf_warning_or_error);
3171 /* cp_build_function_call_vec can reallocate PARAMS by adding
3172 default arguments. That should never happen here. Verify
3174 gcc_assert (params == orig_params);
3179 /* Build a function call using a tree list of arguments. */
3182 cp_build_function_call (tree function, tree params, tsubst_flags_t complain)
3187 vec = make_tree_vector ();
3188 for (; params != NULL_TREE; params = TREE_CHAIN (params))
3189 VEC_safe_push (tree, gc, vec, TREE_VALUE (params));
3190 ret = cp_build_function_call_vec (function, &vec, complain);
3191 release_tree_vector (vec);
3195 /* Build a function call using a vector of arguments. PARAMS may be
3196 NULL if there are no parameters. This changes the contents of
3200 cp_build_function_call_vec (tree function, VEC(tree,gc) **params,
3201 tsubst_flags_t complain)
3203 tree fntype, fndecl;
3205 tree original = function;
3209 VEC(tree,gc) *allocated = NULL;
3212 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
3213 expressions, like those used for ObjC messenger dispatches. */
3214 if (params != NULL && !VEC_empty (tree, *params))
3215 function = objc_rewrite_function_call (function,
3216 VEC_index (tree, *params, 0));
3218 /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue.
3219 Strip such NOP_EXPRs, since FUNCTION is used in non-lvalue context. */
3220 if (TREE_CODE (function) == NOP_EXPR
3221 && TREE_TYPE (function) == TREE_TYPE (TREE_OPERAND (function, 0)))
3222 function = TREE_OPERAND (function, 0);
3224 if (TREE_CODE (function) == FUNCTION_DECL)
3226 mark_used (function);
3229 /* Convert anything with function type to a pointer-to-function. */
3230 if (DECL_MAIN_P (function) && (complain & tf_error))
3231 pedwarn (input_location, OPT_pedantic,
3232 "ISO C++ forbids calling %<::main%> from within program");
3234 function = build_addr_func (function);
3240 function = build_addr_func (function);
3243 if (function == error_mark_node)
3244 return error_mark_node;
3246 fntype = TREE_TYPE (function);
3248 if (TYPE_PTRMEMFUNC_P (fntype))
3250 if (complain & tf_error)
3251 error ("must use %<.*%> or %<->*%> to call pointer-to-member "
3252 "function in %<%E (...)%>, e.g. %<(... ->* %E) (...)%>",
3253 original, original);
3254 return error_mark_node;
3257 is_method = (TREE_CODE (fntype) == POINTER_TYPE
3258 && TREE_CODE (TREE_TYPE (fntype)) == METHOD_TYPE);
3260 if (!((TREE_CODE (fntype) == POINTER_TYPE
3261 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE)
3263 || TREE_CODE (function) == TEMPLATE_ID_EXPR))
3265 if (complain & tf_error)
3266 error ("%qE cannot be used as a function", original);
3267 return error_mark_node;
3270 /* fntype now gets the type of function pointed to. */
3271 fntype = TREE_TYPE (fntype);
3272 parm_types = TYPE_ARG_TYPES (fntype);
3276 allocated = make_tree_vector ();
3277 params = &allocated;
3280 nargs = convert_arguments (parm_types, params, fndecl, LOOKUP_NORMAL,
3283 return error_mark_node;
3285 argarray = VEC_address (tree, *params);
3287 /* Check for errors in format strings and inappropriately
3289 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
3292 ret = build_cxx_call (function, nargs, argarray);
3294 if (allocated != NULL)
3295 release_tree_vector (allocated);
3300 /* Subroutine of convert_arguments.
3301 Warn about wrong number of args are genereted. */
3304 warn_args_num (location_t loc, tree fndecl, bool too_many_p)
3308 if (TREE_CODE (TREE_TYPE (fndecl)) == METHOD_TYPE)
3310 if (DECL_NAME (fndecl) == NULL_TREE
3311 || IDENTIFIER_HAS_TYPE_VALUE (DECL_NAME (fndecl)))
3314 ? G_("too many arguments to constructor %q#D")
3315 : G_("too few arguments to constructor %q#D"),
3320 ? G_("too many arguments to member function %q#D")
3321 : G_("too few arguments to member function %q#D"),
3327 ? G_("too many arguments to function %q#D")
3328 : G_("too few arguments to function %q#D"),
3330 inform (DECL_SOURCE_LOCATION (fndecl),
3334 error_at (loc, too_many_p ? G_("too many arguments to function")
3335 : G_("too few arguments to function"));
3338 /* Convert the actual parameter expressions in the list VALUES to the
3339 types in the list TYPELIST. The converted expressions are stored
3340 back in the VALUES vector.
3341 If parmdecls is exhausted, or when an element has NULL as its type,
3342 perform the default conversions.
3344 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
3346 This is also where warnings about wrong number of args are generated.
3348 Returns the actual number of arguments processed (which might be less
3349 than the length of the vector), or -1 on error.
3351 In C++, unspecified trailing parameters can be filled in with their
3352 default arguments, if such were specified. Do so here. */
3355 convert_arguments (tree typelist, VEC(tree,gc) **values, tree fndecl,
3356 int flags, tsubst_flags_t complain)
3361 /* Argument passing is always copy-initialization. */
3362 flags |= LOOKUP_ONLYCONVERTING;
3364 for (i = 0, typetail = typelist;
3365 i < VEC_length (tree, *values);
3368 tree type = typetail ? TREE_VALUE (typetail) : 0;
3369 tree val = VEC_index (tree, *values, i);
3371 if (val == error_mark_node || type == error_mark_node)
3374 if (type == void_type_node)
3376 if (complain & tf_error)
3378 warn_args_num (input_location, fndecl, /*too_many_p=*/true);
3385 /* build_c_cast puts on a NOP_EXPR to make the result not an lvalue.
3386 Strip such NOP_EXPRs, since VAL is used in non-lvalue context. */
3387 if (TREE_CODE (val) == NOP_EXPR
3388 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0))
3389 && (type == 0 || TREE_CODE (type) != REFERENCE_TYPE))
3390 val = TREE_OPERAND (val, 0);
3392 if (type == 0 || TREE_CODE (type) != REFERENCE_TYPE)
3394 if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
3395 || TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE
3396 || TREE_CODE (TREE_TYPE (val)) == METHOD_TYPE)
3397 val = decay_conversion (val);
3400 if (val == error_mark_node)
3405 /* Formal parm type is specified by a function prototype. */
3408 if (!COMPLETE_TYPE_P (complete_type (type)))
3410 if (complain & tf_error)
3413 error ("parameter %P of %qD has incomplete type %qT",
3416 error ("parameter %P has incomplete type %qT", i, type);
3418 parmval = error_mark_node;
3422 parmval = convert_for_initialization
3423 (NULL_TREE, type, val, flags,
3424 "argument passing", fndecl, i, complain);
3425 parmval = convert_for_arg_passing (type, parmval);
3428 if (parmval == error_mark_node)
3431 VEC_replace (tree, *values, i, parmval);
3435 if (fndecl && DECL_BUILT_IN (fndecl)
3436 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
3437 /* Don't do ellipsis conversion for __built_in_constant_p
3438 as this will result in spurious errors for non-trivial
3440 val = require_complete_type (val);
3442 val = convert_arg_to_ellipsis (val);
3444 VEC_replace (tree, *values, i, val);
3448 typetail = TREE_CHAIN (typetail);
3451 if (typetail != 0 && typetail != void_list_node)
3453 /* See if there are default arguments that can be used. Because
3454 we hold default arguments in the FUNCTION_TYPE (which is so
3455 wrong), we can see default parameters here from deduced
3456 contexts (and via typeof) for indirect function calls.
3457 Fortunately we know whether we have a function decl to
3458 provide default arguments in a language conformant
3460 if (fndecl && TREE_PURPOSE (typetail)
3461 && TREE_CODE (TREE_PURPOSE (typetail)) != DEFAULT_ARG)
3463 for (; typetail != void_list_node; ++i)
3466 = convert_default_arg (TREE_VALUE (typetail),
3467 TREE_PURPOSE (typetail),