1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
27 #include "coretypes.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57 static void diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool);
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 bool is_global = !building_stmt_tree ();
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 finish_compound_stmt (compound_stmt);
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
89 gcc_assert (!building_stmt_tree () == is_global);
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
108 tree base_ptr = TREE_VALUE ((tree) data);
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
112 expand_virtual_init (binfo, base_ptr);
118 /* Initialize all the vtable pointers in the object pointed to by
122 initialize_vtbl_ptrs (tree addr)
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate), or NULL (in the case that T does not require
141 initialization). In either case, the value can be used as
142 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
143 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
144 is the number of elements in the array. If STATIC_STORAGE_P is
145 TRUE, initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
152 tree init = NULL_TREE;
156 To zero-initialize an object of type T means:
158 -- if T is a scalar type, the storage is set to the value of zero
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
164 -- if T is a union type, the storage for its first data member is
167 -- if T is an array type, the storage for each element is
170 -- if T is a reference type, no initialization is performed. */
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
174 if (type == error_mark_node)
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
187 VEC(constructor_elt,gc) *v = NULL;
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
192 if (TREE_CODE (field) != FIELD_DECL)
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
201 tree value = build_zero_init (TREE_TYPE (field),
205 CONSTRUCTOR_APPEND_ELT(v, field, value);
208 /* For unions, only the first field is initialized. */
209 if (TREE_CODE (type) == UNION_TYPE)
213 /* Build a constructor to contain the initializations. */
214 init = build_constructor (type, v);
216 else if (TREE_CODE (type) == ARRAY_TYPE)
219 VEC(constructor_elt,gc) *v = NULL;
221 /* Iterate over the array elements, building initializations. */
223 max_index = fold_build2_loc (input_location,
224 MINUS_EXPR, TREE_TYPE (nelts),
225 nelts, integer_one_node);
227 max_index = array_type_nelts (type);
229 /* If we have an error_mark here, we should just return error mark
230 as we don't know the size of the array yet. */
231 if (max_index == error_mark_node)
232 return error_mark_node;
233 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
235 /* A zero-sized array, which is accepted as an extension, will
236 have an upper bound of -1. */
237 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
241 v = VEC_alloc (constructor_elt, gc, 1);
242 ce = VEC_quick_push (constructor_elt, v, NULL);
244 /* If this is a one element array, we just use a regular init. */
245 if (tree_int_cst_equal (size_zero_node, max_index))
246 ce->index = size_zero_node;
248 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
251 ce->value = build_zero_init (TREE_TYPE (type),
256 /* Build a constructor to contain the initializations. */
257 init = build_constructor (type, v);
259 else if (TREE_CODE (type) == VECTOR_TYPE)
260 init = fold_convert (type, integer_zero_node);
262 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
264 /* In all cases, the initializer is a constant. */
266 TREE_CONSTANT (init) = 1;
271 /* Return a suitable initializer for value-initializing an object of type
272 TYPE, as described in [dcl.init]. */
275 build_value_init (tree type)
279 To value-initialize an object of type T means:
281 - if T is a class type (clause 9) with a user-provided constructor
282 (12.1), then the default constructor for T is called (and the
283 initialization is ill-formed if T has no accessible default
286 - if T is a non-union class type without a user-provided constructor,
287 then every non-static data member and base-class component of T is
288 value-initialized;92)
290 - if T is an array type, then each element is value-initialized;
292 - otherwise, the object is zero-initialized.
294 A program that calls for default-initialization or
295 value-initialization of an entity of reference type is ill-formed.
297 92) Value-initialization for such a class object may be implemented by
298 zero-initializing the object and then calling the default
301 if (CLASS_TYPE_P (type))
303 if (type_has_user_provided_constructor (type))
304 return build_aggr_init_expr
306 build_special_member_call (NULL_TREE, complete_ctor_identifier,
307 NULL, type, LOOKUP_NORMAL,
308 tf_warning_or_error));
309 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
311 /* This is a class that needs constructing, but doesn't have
312 a user-provided constructor. So we need to zero-initialize
313 the object and then call the implicitly defined ctor.
314 This will be handled in simplify_aggr_init_expr. */
315 tree ctor = build_special_member_call
316 (NULL_TREE, complete_ctor_identifier,
317 NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
319 ctor = build_aggr_init_expr (type, ctor);
320 AGGR_INIT_ZERO_FIRST (ctor) = 1;
324 return build_value_init_noctor (type);
327 /* Like build_value_init, but don't call the constructor for TYPE. Used
328 for base initializers. */
331 build_value_init_noctor (tree type)
333 if (CLASS_TYPE_P (type))
335 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
337 if (TREE_CODE (type) != UNION_TYPE)
340 VEC(constructor_elt,gc) *v = NULL;
342 /* Iterate over the fields, building initializations. */
343 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
347 if (TREE_CODE (field) != FIELD_DECL)
350 ftype = TREE_TYPE (field);
352 if (TREE_CODE (ftype) == REFERENCE_TYPE)
353 error ("value-initialization of reference");
355 /* We could skip vfields and fields of types with
356 user-defined constructors, but I think that won't improve
357 performance at all; it should be simpler in general just
358 to zero out the entire object than try to only zero the
359 bits that actually need it. */
361 /* Note that for class types there will be FIELD_DECLs
362 corresponding to base classes as well. Thus, iterating
363 over TYPE_FIELDs will result in correct initialization of
364 all of the subobjects. */
365 value = build_value_init (ftype);
368 CONSTRUCTOR_APPEND_ELT(v, field, value);
371 /* Build a constructor to contain the zero- initializations. */
372 return build_constructor (type, v);
375 else if (TREE_CODE (type) == ARRAY_TYPE)
377 VEC(constructor_elt,gc) *v = NULL;
379 /* Iterate over the array elements, building initializations. */
380 tree max_index = array_type_nelts (type);
382 /* If we have an error_mark here, we should just return error mark
383 as we don't know the size of the array yet. */
384 if (max_index == error_mark_node)
385 return error_mark_node;
386 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
388 /* A zero-sized array, which is accepted as an extension, will
389 have an upper bound of -1. */
390 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
394 v = VEC_alloc (constructor_elt, gc, 1);
395 ce = VEC_quick_push (constructor_elt, v, NULL);
397 /* If this is a one element array, we just use a regular init. */
398 if (tree_int_cst_equal (size_zero_node, max_index))
399 ce->index = size_zero_node;
401 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
404 ce->value = build_value_init (TREE_TYPE (type));
406 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
407 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
408 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
411 /* Build a constructor to contain the initializations. */
412 return build_constructor (type, v);
415 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
418 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
419 arguments. If TREE_LIST is void_type_node, an empty initializer
420 list was given; if NULL_TREE no initializer was given. */
423 perform_member_init (tree member, tree init)
426 tree type = TREE_TYPE (member);
428 /* Effective C++ rule 12 requires that all data members be
430 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
431 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
432 "%qD should be initialized in the member initialization list",
435 /* Get an lvalue for the data member. */
436 decl = build_class_member_access_expr (current_class_ref, member,
437 /*access_path=*/NULL_TREE,
438 /*preserve_reference=*/true,
439 tf_warning_or_error);
440 if (decl == error_mark_node)
443 if (init == void_type_node)
445 /* mem() means value-initialization. */
446 if (TREE_CODE (type) == ARRAY_TYPE)
448 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
449 /*explicit_value_init_p=*/true,
451 tf_warning_or_error);
452 finish_expr_stmt (init);
456 if (TREE_CODE (type) == REFERENCE_TYPE)
457 permerror (DECL_SOURCE_LOCATION (current_function_decl),
458 "value-initialization of %q#D, which has reference type",
462 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
463 finish_expr_stmt (init);
467 /* Deal with this here, as we will get confused if we try to call the
468 assignment op for an anonymous union. This can happen in a
469 synthesized copy constructor. */
470 else if (ANON_AGGR_TYPE_P (type))
474 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
475 finish_expr_stmt (init);
478 else if (TYPE_NEEDS_CONSTRUCTING (type))
480 if (init != NULL_TREE
481 && TREE_CODE (type) == ARRAY_TYPE
482 && TREE_CHAIN (init) == NULL_TREE
483 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
485 /* Initialization of one array from another. */
486 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
487 /*explicit_value_init_p=*/false,
489 tf_warning_or_error));
493 if (CP_TYPE_CONST_P (type)
495 && !type_has_user_provided_default_constructor (type))
496 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
497 vtable; still give this diagnostic. */
498 permerror (DECL_SOURCE_LOCATION (current_function_decl),
499 "uninitialized member %qD with %<const%> type %qT",
501 finish_expr_stmt (build_aggr_init (decl, init, 0,
502 tf_warning_or_error));
507 if (init == NULL_TREE)
510 /* member traversal: note it leaves init NULL */
511 if (TREE_CODE (type) == REFERENCE_TYPE)
512 permerror (DECL_SOURCE_LOCATION (current_function_decl),
513 "uninitialized reference member %qD",
515 else if (CP_TYPE_CONST_P (type))
516 permerror (DECL_SOURCE_LOCATION (current_function_decl),
517 "uninitialized member %qD with %<const%> type %qT",
520 core_type = strip_array_types (type);
521 if (CLASS_TYPE_P (core_type)
522 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
523 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
524 diagnose_uninitialized_cst_or_ref_member (core_type,
525 /*using_new=*/false);
527 else if (TREE_CODE (init) == TREE_LIST)
528 /* There was an explicit member initialization. Do some work
530 init = build_x_compound_expr_from_list (init, "member initializer");
533 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
534 tf_warning_or_error));
537 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
541 expr = build_class_member_access_expr (current_class_ref, member,
542 /*access_path=*/NULL_TREE,
543 /*preserve_reference=*/false,
544 tf_warning_or_error);
545 expr = build_delete (type, expr, sfk_complete_destructor,
546 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
548 if (expr != error_mark_node)
549 finish_eh_cleanup (expr);
553 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
554 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
557 build_field_list (tree t, tree list, int *uses_unions_p)
563 /* Note whether or not T is a union. */
564 if (TREE_CODE (t) == UNION_TYPE)
567 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
569 /* Skip CONST_DECLs for enumeration constants and so forth. */
570 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
573 /* Keep track of whether or not any fields are unions. */
574 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
577 /* For an anonymous struct or union, we must recursively
578 consider the fields of the anonymous type. They can be
579 directly initialized from the constructor. */
580 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
582 /* Add this field itself. Synthesized copy constructors
583 initialize the entire aggregate. */
584 list = tree_cons (fields, NULL_TREE, list);
585 /* And now add the fields in the anonymous aggregate. */
586 list = build_field_list (TREE_TYPE (fields), list,
589 /* Add this field. */
590 else if (DECL_NAME (fields))
591 list = tree_cons (fields, NULL_TREE, list);
597 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
598 a FIELD_DECL or BINFO in T that needs initialization. The
599 TREE_VALUE gives the initializer, or list of initializer arguments.
601 Return a TREE_LIST containing all of the initializations required
602 for T, in the order in which they should be performed. The output
603 list has the same format as the input. */
606 sort_mem_initializers (tree t, tree mem_inits)
609 tree base, binfo, base_binfo;
612 VEC(tree,gc) *vbases;
616 /* Build up a list of initializations. The TREE_PURPOSE of entry
617 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
618 TREE_VALUE will be the constructor arguments, or NULL if no
619 explicit initialization was provided. */
620 sorted_inits = NULL_TREE;
622 /* Process the virtual bases. */
623 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
624 VEC_iterate (tree, vbases, i, base); i++)
625 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
627 /* Process the direct bases. */
628 for (binfo = TYPE_BINFO (t), i = 0;
629 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
630 if (!BINFO_VIRTUAL_P (base_binfo))
631 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
633 /* Process the non-static data members. */
634 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
635 /* Reverse the entire list of initializations, so that they are in
636 the order that they will actually be performed. */
637 sorted_inits = nreverse (sorted_inits);
639 /* If the user presented the initializers in an order different from
640 that in which they will actually occur, we issue a warning. Keep
641 track of the next subobject which can be explicitly initialized
642 without issuing a warning. */
643 next_subobject = sorted_inits;
645 /* Go through the explicit initializers, filling in TREE_PURPOSE in
647 for (init = mem_inits; init; init = TREE_CHAIN (init))
652 subobject = TREE_PURPOSE (init);
654 /* If the explicit initializers are in sorted order, then
655 SUBOBJECT will be NEXT_SUBOBJECT, or something following
657 for (subobject_init = next_subobject;
659 subobject_init = TREE_CHAIN (subobject_init))
660 if (TREE_PURPOSE (subobject_init) == subobject)
663 /* Issue a warning if the explicit initializer order does not
664 match that which will actually occur.
665 ??? Are all these on the correct lines? */
666 if (warn_reorder && !subobject_init)
668 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
669 warning (OPT_Wreorder, "%q+D will be initialized after",
670 TREE_PURPOSE (next_subobject));
672 warning (OPT_Wreorder, "base %qT will be initialized after",
673 TREE_PURPOSE (next_subobject));
674 if (TREE_CODE (subobject) == FIELD_DECL)
675 warning (OPT_Wreorder, " %q+#D", subobject);
677 warning (OPT_Wreorder, " base %qT", subobject);
678 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
679 OPT_Wreorder, " when initialized here");
682 /* Look again, from the beginning of the list. */
685 subobject_init = sorted_inits;
686 while (TREE_PURPOSE (subobject_init) != subobject)
687 subobject_init = TREE_CHAIN (subobject_init);
690 /* It is invalid to initialize the same subobject more than
692 if (TREE_VALUE (subobject_init))
694 if (TREE_CODE (subobject) == FIELD_DECL)
695 error_at (DECL_SOURCE_LOCATION (current_function_decl),
696 "multiple initializations given for %qD",
699 error_at (DECL_SOURCE_LOCATION (current_function_decl),
700 "multiple initializations given for base %qT",
704 /* Record the initialization. */
705 TREE_VALUE (subobject_init) = TREE_VALUE (init);
706 next_subobject = subobject_init;
711 If a ctor-initializer specifies more than one mem-initializer for
712 multiple members of the same union (including members of
713 anonymous unions), the ctor-initializer is ill-formed. */
716 tree last_field = NULL_TREE;
717 for (init = sorted_inits; init; init = TREE_CHAIN (init))
723 /* Skip uninitialized members and base classes. */
724 if (!TREE_VALUE (init)
725 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
727 /* See if this field is a member of a union, or a member of a
728 structure contained in a union, etc. */
729 field = TREE_PURPOSE (init);
730 for (field_type = DECL_CONTEXT (field);
731 !same_type_p (field_type, t);
732 field_type = TYPE_CONTEXT (field_type))
733 if (TREE_CODE (field_type) == UNION_TYPE)
735 /* If this field is not a member of a union, skip it. */
736 if (TREE_CODE (field_type) != UNION_TYPE)
739 /* It's only an error if we have two initializers for the same
747 /* See if LAST_FIELD and the field initialized by INIT are
748 members of the same union. If so, there's a problem,
749 unless they're actually members of the same structure
750 which is itself a member of a union. For example, given:
752 union { struct { int i; int j; }; };
754 initializing both `i' and `j' makes sense. */
755 field_type = DECL_CONTEXT (field);
759 tree last_field_type;
761 last_field_type = DECL_CONTEXT (last_field);
764 if (same_type_p (last_field_type, field_type))
766 if (TREE_CODE (field_type) == UNION_TYPE)
767 error_at (DECL_SOURCE_LOCATION (current_function_decl),
768 "initializations for multiple members of %qT",
774 if (same_type_p (last_field_type, t))
777 last_field_type = TYPE_CONTEXT (last_field_type);
780 /* If we've reached the outermost class, then we're
782 if (same_type_p (field_type, t))
785 field_type = TYPE_CONTEXT (field_type);
796 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
797 is a TREE_LIST giving the explicit mem-initializer-list for the
798 constructor. The TREE_PURPOSE of each entry is a subobject (a
799 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
800 is a TREE_LIST giving the arguments to the constructor or
801 void_type_node for an empty list of arguments. */
804 emit_mem_initializers (tree mem_inits)
806 /* We will already have issued an error message about the fact that
807 the type is incomplete. */
808 if (!COMPLETE_TYPE_P (current_class_type))
811 /* Sort the mem-initializers into the order in which the
812 initializations should be performed. */
813 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
815 in_base_initializer = 1;
817 /* Initialize base classes. */
819 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
821 tree subobject = TREE_PURPOSE (mem_inits);
822 tree arguments = TREE_VALUE (mem_inits);
824 /* If these initializations are taking place in a copy constructor,
825 the base class should probably be explicitly initialized if there
826 is a user-defined constructor in the base class (other than the
827 default constructor, which will be called anyway). */
828 if (extra_warnings && !arguments
829 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
830 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
831 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
832 "base class %q#T should be explicitly initialized in the "
834 BINFO_TYPE (subobject));
836 /* Initialize the base. */
837 if (BINFO_VIRTUAL_P (subobject))
838 construct_virtual_base (subobject, arguments);
843 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
845 expand_aggr_init_1 (subobject, NULL_TREE,
846 cp_build_indirect_ref (base_addr, RO_NULL,
847 tf_warning_or_error),
850 tf_warning_or_error);
851 expand_cleanup_for_base (subobject, NULL_TREE);
854 mem_inits = TREE_CHAIN (mem_inits);
856 in_base_initializer = 0;
858 /* Initialize the vptrs. */
859 initialize_vtbl_ptrs (current_class_ptr);
861 /* Initialize the data members. */
864 perform_member_init (TREE_PURPOSE (mem_inits),
865 TREE_VALUE (mem_inits));
866 mem_inits = TREE_CHAIN (mem_inits);
870 /* Returns the address of the vtable (i.e., the value that should be
871 assigned to the vptr) for BINFO. */
874 build_vtbl_address (tree binfo)
876 tree binfo_for = binfo;
879 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
880 /* If this is a virtual primary base, then the vtable we want to store
881 is that for the base this is being used as the primary base of. We
882 can't simply skip the initialization, because we may be expanding the
883 inits of a subobject constructor where the virtual base layout
885 while (BINFO_PRIMARY_P (binfo_for))
886 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
888 /* Figure out what vtable BINFO's vtable is based on, and mark it as
890 vtbl = get_vtbl_decl_for_binfo (binfo_for);
891 TREE_USED (vtbl) = 1;
893 /* Now compute the address to use when initializing the vptr. */
894 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
895 if (TREE_CODE (vtbl) == VAR_DECL)
896 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
901 /* This code sets up the virtual function tables appropriate for
902 the pointer DECL. It is a one-ply initialization.
904 BINFO is the exact type that DECL is supposed to be. In
905 multiple inheritance, this might mean "C's A" if C : A, B. */
908 expand_virtual_init (tree binfo, tree decl)
913 /* Compute the initializer for vptr. */
914 vtbl = build_vtbl_address (binfo);
916 /* We may get this vptr from a VTT, if this is a subobject
917 constructor or subobject destructor. */
918 vtt_index = BINFO_VPTR_INDEX (binfo);
924 /* Compute the value to use, when there's a VTT. */
925 vtt_parm = current_vtt_parm;
926 vtbl2 = build2 (POINTER_PLUS_EXPR,
927 TREE_TYPE (vtt_parm),
930 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
931 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
933 /* The actual initializer is the VTT value only in the subobject
934 constructor. In maybe_clone_body we'll substitute NULL for
935 the vtt_parm in the case of the non-subobject constructor. */
936 vtbl = build3 (COND_EXPR,
938 build2 (EQ_EXPR, boolean_type_node,
939 current_in_charge_parm, integer_zero_node),
944 /* Compute the location of the vtpr. */
945 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
946 tf_warning_or_error),
948 gcc_assert (vtbl_ptr != error_mark_node);
950 /* Assign the vtable to the vptr. */
951 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
952 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
953 tf_warning_or_error));
956 /* If an exception is thrown in a constructor, those base classes already
957 constructed must be destroyed. This function creates the cleanup
958 for BINFO, which has just been constructed. If FLAG is non-NULL,
959 it is a DECL which is nonzero when this base needs to be
963 expand_cleanup_for_base (tree binfo, tree flag)
967 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
970 /* Call the destructor. */
971 expr = build_special_member_call (current_class_ref,
972 base_dtor_identifier,
975 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
976 tf_warning_or_error);
978 expr = fold_build3_loc (input_location,
979 COND_EXPR, void_type_node,
980 c_common_truthvalue_conversion (input_location, flag),
981 expr, integer_zero_node);
983 finish_eh_cleanup (expr);
986 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
990 construct_virtual_base (tree vbase, tree arguments)
996 /* If there are virtual base classes with destructors, we need to
997 emit cleanups to destroy them if an exception is thrown during
998 the construction process. These exception regions (i.e., the
999 period during which the cleanups must occur) begin from the time
1000 the construction is complete to the end of the function. If we
1001 create a conditional block in which to initialize the
1002 base-classes, then the cleanup region for the virtual base begins
1003 inside a block, and ends outside of that block. This situation
1004 confuses the sjlj exception-handling code. Therefore, we do not
1005 create a single conditional block, but one for each
1006 initialization. (That way the cleanup regions always begin
1007 in the outer block.) We trust the back end to figure out
1008 that the FLAG will not change across initializations, and
1009 avoid doing multiple tests. */
1010 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1011 inner_if_stmt = begin_if_stmt ();
1012 finish_if_stmt_cond (flag, inner_if_stmt);
1014 /* Compute the location of the virtual base. If we're
1015 constructing virtual bases, then we must be the most derived
1016 class. Therefore, we don't have to look up the virtual base;
1017 we already know where it is. */
1018 exp = convert_to_base_statically (current_class_ref, vbase);
1020 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1021 LOOKUP_COMPLAIN, tf_warning_or_error);
1022 finish_then_clause (inner_if_stmt);
1023 finish_if_stmt (inner_if_stmt);
1025 expand_cleanup_for_base (vbase, flag);
1028 /* Find the context in which this FIELD can be initialized. */
1031 initializing_context (tree field)
1033 tree t = DECL_CONTEXT (field);
1035 /* Anonymous union members can be initialized in the first enclosing
1036 non-anonymous union context. */
1037 while (t && ANON_AGGR_TYPE_P (t))
1038 t = TYPE_CONTEXT (t);
1042 /* Function to give error message if member initialization specification
1043 is erroneous. FIELD is the member we decided to initialize.
1044 TYPE is the type for which the initialization is being performed.
1045 FIELD must be a member of TYPE.
1047 MEMBER_NAME is the name of the member. */
1050 member_init_ok_or_else (tree field, tree type, tree member_name)
1052 if (field == error_mark_node)
1056 error ("class %qT does not have any field named %qD", type,
1060 if (TREE_CODE (field) == VAR_DECL)
1062 error ("%q#D is a static data member; it can only be "
1063 "initialized at its definition",
1067 if (TREE_CODE (field) != FIELD_DECL)
1069 error ("%q#D is not a non-static data member of %qT",
1073 if (initializing_context (field) != type)
1075 error ("class %qT does not have any field named %qD", type,
1083 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1084 is a _TYPE node or TYPE_DECL which names a base for that type.
1085 Check the validity of NAME, and return either the base _TYPE, base
1086 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1087 NULL_TREE and issue a diagnostic.
1089 An old style unnamed direct single base construction is permitted,
1090 where NAME is NULL. */
1093 expand_member_init (tree name)
1098 if (!current_class_ref)
1103 /* This is an obsolete unnamed base class initializer. The
1104 parser will already have warned about its use. */
1105 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1108 error ("unnamed initializer for %qT, which has no base classes",
1109 current_class_type);
1112 basetype = BINFO_TYPE
1113 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1116 error ("unnamed initializer for %qT, which uses multiple inheritance",
1117 current_class_type);
1121 else if (TYPE_P (name))
1123 basetype = TYPE_MAIN_VARIANT (name);
1124 name = TYPE_NAME (name);
1126 else if (TREE_CODE (name) == TYPE_DECL)
1127 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1129 basetype = NULL_TREE;
1138 if (current_template_parms)
1141 class_binfo = TYPE_BINFO (current_class_type);
1142 direct_binfo = NULL_TREE;
1143 virtual_binfo = NULL_TREE;
1145 /* Look for a direct base. */
1146 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1147 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1150 /* Look for a virtual base -- unless the direct base is itself
1152 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1153 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1155 /* [class.base.init]
1157 If a mem-initializer-id is ambiguous because it designates
1158 both a direct non-virtual base class and an inherited virtual
1159 base class, the mem-initializer is ill-formed. */
1160 if (direct_binfo && virtual_binfo)
1162 error ("%qD is both a direct base and an indirect virtual base",
1167 if (!direct_binfo && !virtual_binfo)
1169 if (CLASSTYPE_VBASECLASSES (current_class_type))
1170 error ("type %qT is not a direct or virtual base of %qT",
1171 basetype, current_class_type);
1173 error ("type %qT is not a direct base of %qT",
1174 basetype, current_class_type);
1178 return direct_binfo ? direct_binfo : virtual_binfo;
1182 if (TREE_CODE (name) == IDENTIFIER_NODE)
1183 field = lookup_field (current_class_type, name, 1, false);
1187 if (member_init_ok_or_else (field, current_class_type, name))
1194 /* This is like `expand_member_init', only it stores one aggregate
1197 INIT comes in two flavors: it is either a value which
1198 is to be stored in EXP, or it is a parameter list
1199 to go to a constructor, which will operate on EXP.
1200 If INIT is not a parameter list for a constructor, then set
1201 LOOKUP_ONLYCONVERTING.
1202 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1203 the initializer, if FLAGS is 0, then it is the (init) form.
1204 If `init' is a CONSTRUCTOR, then we emit a warning message,
1205 explaining that such initializations are invalid.
1207 If INIT resolves to a CALL_EXPR which happens to return
1208 something of the type we are looking for, then we know
1209 that we can safely use that call to perform the
1212 The virtual function table pointer cannot be set up here, because
1213 we do not really know its type.
1215 This never calls operator=().
1217 When initializing, nothing is CONST.
1219 A default copy constructor may have to be used to perform the
1222 A constructor or a conversion operator may have to be used to
1223 perform the initialization, but not both, as it would be ambiguous. */
1226 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1231 tree type = TREE_TYPE (exp);
1232 int was_const = TREE_READONLY (exp);
1233 int was_volatile = TREE_THIS_VOLATILE (exp);
1236 if (init == error_mark_node)
1237 return error_mark_node;
1239 TREE_READONLY (exp) = 0;
1240 TREE_THIS_VOLATILE (exp) = 0;
1242 if (init && TREE_CODE (init) != TREE_LIST)
1243 flags |= LOOKUP_ONLYCONVERTING;
1245 if (TREE_CODE (type) == ARRAY_TYPE)
1249 /* An array may not be initialized use the parenthesized
1250 initialization form -- unless the initializer is "()". */
1251 if (init && TREE_CODE (init) == TREE_LIST)
1253 if (complain & tf_error)
1254 error ("bad array initializer");
1255 return error_mark_node;
1257 /* Must arrange to initialize each element of EXP
1258 from elements of INIT. */
1259 itype = init ? TREE_TYPE (init) : NULL_TREE;
1260 if (cv_qualified_p (type))
1261 TREE_TYPE (exp) = cv_unqualified (type);
1262 if (itype && cv_qualified_p (itype))
1263 TREE_TYPE (init) = cv_unqualified (itype);
1264 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1265 /*explicit_value_init_p=*/false,
1266 itype && same_type_p (TREE_TYPE (init),
1269 TREE_READONLY (exp) = was_const;
1270 TREE_THIS_VOLATILE (exp) = was_volatile;
1271 TREE_TYPE (exp) = type;
1273 TREE_TYPE (init) = itype;
1277 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1278 /* Just know that we've seen something for this node. */
1279 TREE_USED (exp) = 1;
1281 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1282 destroy_temps = stmts_are_full_exprs_p ();
1283 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1284 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1285 init, LOOKUP_NORMAL|flags, complain);
1286 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1287 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1288 TREE_READONLY (exp) = was_const;
1289 TREE_THIS_VOLATILE (exp) = was_volatile;
1295 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1296 tsubst_flags_t complain)
1298 tree type = TREE_TYPE (exp);
1301 /* It fails because there may not be a constructor which takes
1302 its own type as the first (or only parameter), but which does
1303 take other types via a conversion. So, if the thing initializing
1304 the expression is a unit element of type X, first try X(X&),
1305 followed by initialization by X. If neither of these work
1306 out, then look hard. */
1308 VEC(tree,gc) *parms;
1310 if (init && TREE_CODE (init) != TREE_LIST
1311 && (flags & LOOKUP_ONLYCONVERTING))
1313 /* Base subobjects should only get direct-initialization. */
1314 gcc_assert (true_exp == exp);
1316 if (flags & DIRECT_BIND)
1317 /* Do nothing. We hit this in two cases: Reference initialization,
1318 where we aren't initializing a real variable, so we don't want
1319 to run a new constructor; and catching an exception, where we
1320 have already built up the constructor call so we could wrap it
1321 in an exception region. */;
1322 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1323 && CP_AGGREGATE_TYPE_P (type))
1325 /* A brace-enclosed initializer for an aggregate. */
1326 init = digest_init (type, init);
1329 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1331 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1332 /* We need to protect the initialization of a catch parm with a
1333 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1334 around the TARGET_EXPR for the copy constructor. See
1335 initialize_handler_parm. */
1337 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1338 TREE_OPERAND (init, 0));
1339 TREE_TYPE (init) = void_type_node;
1342 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1343 TREE_SIDE_EFFECTS (init) = 1;
1344 finish_expr_stmt (init);
1348 if (init == NULL_TREE)
1350 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1352 parms = make_tree_vector ();
1353 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1354 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1357 parms = make_tree_vector_single (init);
1359 if (true_exp == exp)
1360 ctor_name = complete_ctor_identifier;
1362 ctor_name = base_ctor_identifier;
1364 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1368 release_tree_vector (parms);
1370 if (TREE_SIDE_EFFECTS (rval))
1371 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1374 /* This function is responsible for initializing EXP with INIT
1377 BINFO is the binfo of the type for who we are performing the
1378 initialization. For example, if W is a virtual base class of A and B,
1380 If we are initializing B, then W must contain B's W vtable, whereas
1381 were we initializing C, W must contain C's W vtable.
1383 TRUE_EXP is nonzero if it is the true expression being initialized.
1384 In this case, it may be EXP, or may just contain EXP. The reason we
1385 need this is because if EXP is a base element of TRUE_EXP, we
1386 don't necessarily know by looking at EXP where its virtual
1387 baseclass fields should really be pointing. But we do know
1388 from TRUE_EXP. In constructors, we don't know anything about
1389 the value being initialized.
1391 FLAGS is just passed to `build_new_method_call'. See that function
1392 for its description. */
1395 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1396 tsubst_flags_t complain)
1398 tree type = TREE_TYPE (exp);
1400 gcc_assert (init != error_mark_node && type != error_mark_node);
1401 gcc_assert (building_stmt_tree ());
1403 /* Use a function returning the desired type to initialize EXP for us.
1404 If the function is a constructor, and its first argument is
1405 NULL_TREE, know that it was meant for us--just slide exp on
1406 in and expand the constructor. Constructors now come
1409 if (init && TREE_CODE (exp) == VAR_DECL
1410 && COMPOUND_LITERAL_P (init))
1412 /* If store_init_value returns NULL_TREE, the INIT has been
1413 recorded as the DECL_INITIAL for EXP. That means there's
1414 nothing more we have to do. */
1415 init = store_init_value (exp, init, flags);
1417 finish_expr_stmt (init);
1421 /* If an explicit -- but empty -- initializer list was present,
1422 that's value-initialization. */
1423 if (init == void_type_node)
1425 /* If there's a user-provided constructor, we just call that. */
1426 if (type_has_user_provided_constructor (type))
1427 /* Fall through. */;
1428 /* If there isn't, but we still need to call the constructor,
1429 zero out the object first. */
1430 else if (TYPE_NEEDS_CONSTRUCTING (type))
1432 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1433 init = build2 (INIT_EXPR, type, exp, init);
1434 finish_expr_stmt (init);
1435 /* And then call the constructor. */
1437 /* If we don't need to mess with the constructor at all,
1438 then just zero out the object and we're done. */
1441 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1442 finish_expr_stmt (init);
1448 /* We know that expand_default_init can handle everything we want
1450 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1453 /* Report an error if TYPE is not a user-defined, class type. If
1454 OR_ELSE is nonzero, give an error message. */
1457 is_class_type (tree type, int or_else)
1459 if (type == error_mark_node)
1462 if (! CLASS_TYPE_P (type))
1465 error ("%qT is not a class type", type);
1472 get_type_value (tree name)
1474 if (name == error_mark_node)
1477 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1478 return IDENTIFIER_TYPE_VALUE (name);
1483 /* Build a reference to a member of an aggregate. This is not a C++
1484 `&', but really something which can have its address taken, and
1485 then act as a pointer to member, for example TYPE :: FIELD can have
1486 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1487 this expression is the operand of "&".
1489 @@ Prints out lousy diagnostics for operator <typename>
1492 @@ This function should be rewritten and placed in search.c. */
1495 build_offset_ref (tree type, tree member, bool address_p)
1498 tree basebinfo = NULL_TREE;
1500 /* class templates can come in as TEMPLATE_DECLs here. */
1501 if (TREE_CODE (member) == TEMPLATE_DECL)
1504 if (dependent_type_p (type) || type_dependent_expression_p (member))
1505 return build_qualified_name (NULL_TREE, type, member,
1506 /*template_p=*/false);
1508 gcc_assert (TYPE_P (type));
1509 if (! is_class_type (type, 1))
1510 return error_mark_node;
1512 gcc_assert (DECL_P (member) || BASELINK_P (member));
1513 /* Callers should call mark_used before this point. */
1514 gcc_assert (!DECL_P (member) || TREE_USED (member));
1516 if (!COMPLETE_TYPE_P (complete_type (type))
1517 && !TYPE_BEING_DEFINED (type))
1519 error ("incomplete type %qT does not have member %qD", type, member);
1520 return error_mark_node;
1523 /* Entities other than non-static members need no further
1525 if (TREE_CODE (member) == TYPE_DECL)
1527 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1528 return convert_from_reference (member);
1530 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1532 error ("invalid pointer to bit-field %qD", member);
1533 return error_mark_node;
1536 /* Set up BASEBINFO for member lookup. */
1537 decl = maybe_dummy_object (type, &basebinfo);
1539 /* A lot of this logic is now handled in lookup_member. */
1540 if (BASELINK_P (member))
1542 /* Go from the TREE_BASELINK to the member function info. */
1543 tree t = BASELINK_FUNCTIONS (member);
1545 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1547 /* Get rid of a potential OVERLOAD around it. */
1548 t = OVL_CURRENT (t);
1550 /* Unique functions are handled easily. */
1552 /* For non-static member of base class, we need a special rule
1553 for access checking [class.protected]:
1555 If the access is to form a pointer to member, the
1556 nested-name-specifier shall name the derived class
1557 (or any class derived from that class). */
1558 if (address_p && DECL_P (t)
1559 && DECL_NONSTATIC_MEMBER_P (t))
1560 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1562 perform_or_defer_access_check (basebinfo, t, t);
1564 if (DECL_STATIC_FUNCTION_P (t))
1569 TREE_TYPE (member) = unknown_type_node;
1571 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1572 /* We need additional test besides the one in
1573 check_accessibility_of_qualified_id in case it is
1574 a pointer to non-static member. */
1575 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1579 /* If MEMBER is non-static, then the program has fallen afoul of
1582 An id-expression that denotes a nonstatic data member or
1583 nonstatic member function of a class can only be used:
1585 -- as part of a class member access (_expr.ref_) in which the
1586 object-expression refers to the member's class or a class
1587 derived from that class, or
1589 -- to form a pointer to member (_expr.unary.op_), or
1591 -- in the body of a nonstatic member function of that class or
1592 of a class derived from that class (_class.mfct.nonstatic_), or
1594 -- in a mem-initializer for a constructor for that class or for
1595 a class derived from that class (_class.base.init_). */
1596 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1598 /* Build a representation of the qualified name suitable
1599 for use as the operand to "&" -- even though the "&" is
1600 not actually present. */
1601 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1602 /* In Microsoft mode, treat a non-static member function as if
1603 it were a pointer-to-member. */
1604 if (flag_ms_extensions)
1606 PTRMEM_OK_P (member) = 1;
1607 return cp_build_unary_op (ADDR_EXPR, member, 0,
1608 tf_warning_or_error);
1610 error ("invalid use of non-static member function %qD",
1611 TREE_OPERAND (member, 1));
1612 return error_mark_node;
1614 else if (TREE_CODE (member) == FIELD_DECL)
1616 error ("invalid use of non-static data member %qD", member);
1617 return error_mark_node;
1622 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1623 PTRMEM_OK_P (member) = 1;
1627 /* If DECL is a scalar enumeration constant or variable with a
1628 constant initializer, return the initializer (or, its initializers,
1629 recursively); otherwise, return DECL. If INTEGRAL_P, the
1630 initializer is only returned if DECL is an integral
1631 constant-expression. */
1634 constant_value_1 (tree decl, bool integral_p)
1636 while (TREE_CODE (decl) == CONST_DECL
1638 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1639 : (TREE_CODE (decl) == VAR_DECL
1640 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1643 /* Static data members in template classes may have
1644 non-dependent initializers. References to such non-static
1645 data members are not value-dependent, so we must retrieve the
1646 initializer here. The DECL_INITIAL will have the right type,
1647 but will not have been folded because that would prevent us
1648 from performing all appropriate semantic checks at
1649 instantiation time. */
1650 if (DECL_CLASS_SCOPE_P (decl)
1651 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1652 && uses_template_parms (CLASSTYPE_TI_ARGS
1653 (DECL_CONTEXT (decl))))
1655 ++processing_template_decl;
1656 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1657 --processing_template_decl;
1661 /* If DECL is a static data member in a template
1662 specialization, we must instantiate it here. The
1663 initializer for the static data member is not processed
1664 until needed; we need it now. */
1666 init = DECL_INITIAL (decl);
1668 if (init == error_mark_node)
1670 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1671 /* Treat the error as a constant to avoid cascading errors on
1672 excessively recursive template instantiation (c++/9335). */
1677 /* Initializers in templates are generally expanded during
1678 instantiation, so before that for const int i(2)
1679 INIT is a TREE_LIST with the actual initializer as
1681 if (processing_template_decl
1683 && TREE_CODE (init) == TREE_LIST
1684 && TREE_CHAIN (init) == NULL_TREE)
1685 init = TREE_VALUE (init);
1687 || !TREE_TYPE (init)
1689 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1690 : (!TREE_CONSTANT (init)
1691 /* Do not return an aggregate constant (of which
1692 string literals are a special case), as we do not
1693 want to make inadvertent copies of such entities,
1694 and we must be sure that their addresses are the
1696 || TREE_CODE (init) == CONSTRUCTOR
1697 || TREE_CODE (init) == STRING_CST)))
1699 decl = unshare_expr (init);
1704 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1705 constant of integral or enumeration type, then return that value.
1706 These are those variables permitted in constant expressions by
1710 integral_constant_value (tree decl)
1712 return constant_value_1 (decl, /*integral_p=*/true);
1715 /* A more relaxed version of integral_constant_value, used by the
1716 common C/C++ code and by the C++ front end for optimization
1720 decl_constant_value (tree decl)
1722 return constant_value_1 (decl,
1723 /*integral_p=*/processing_template_decl);
1726 /* Common subroutines of build_new and build_vec_delete. */
1728 /* Call the global __builtin_delete to delete ADDR. */
1731 build_builtin_delete_call (tree addr)
1733 mark_used (global_delete_fndecl);
1734 return build_call_n (global_delete_fndecl, 1, addr);
1737 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1738 the type of the object being allocated; otherwise, it's just TYPE.
1739 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1740 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1741 a vector of arguments to be provided as arguments to a placement
1742 new operator. This routine performs no semantic checks; it just
1743 creates and returns a NEW_EXPR. */
1746 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1747 VEC(tree,gc) *init, int use_global_new)
1752 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1753 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1754 permits us to distinguish the case of a missing initializer "new
1755 int" from an empty initializer "new int()". */
1757 init_list = NULL_TREE;
1758 else if (VEC_empty (tree, init))
1759 init_list = void_zero_node;
1761 init_list = build_tree_list_vec (init);
1763 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1764 build_tree_list_vec (placement), type, nelts,
1766 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1767 TREE_SIDE_EFFECTS (new_expr) = 1;
1772 /* Diagnose uninitialized const members or reference members of type
1773 TYPE. USING_NEW is used to disambiguate the diagnostic between a
1774 new expression without a new-initializer and a declaration */
1777 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
1782 if (type_has_user_provided_constructor (type))
1785 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1789 if (TREE_CODE (field) != FIELD_DECL)
1792 field_type = strip_array_types (TREE_TYPE (field));
1794 if (TREE_CODE (field_type) == REFERENCE_TYPE)
1797 error ("uninitialized reference member in %q#T "
1798 "using %<new%> without new-initializer", origin);
1800 error ("uninitialized reference member in %q#T", origin);
1801 inform (DECL_SOURCE_LOCATION (field),
1802 "%qD should be initialized", field);
1805 if (CP_TYPE_CONST_P (field_type))
1808 error ("uninitialized const member in %q#T "
1809 "using %<new%> without new-initializer", origin);
1811 error ("uninitialized const member in %q#T", origin);
1812 inform (DECL_SOURCE_LOCATION (field),
1813 "%qD should be initialized", field);
1816 if (CLASS_TYPE_P (field_type))
1817 diagnose_uninitialized_cst_or_ref_member_1 (field_type,
1823 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new)
1825 diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new);
1828 /* Generate code for a new-expression, including calling the "operator
1829 new" function, initializing the object, and, if an exception occurs
1830 during construction, cleaning up. The arguments are as for
1831 build_raw_new_expr. This may change PLACEMENT and INIT. */
1834 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1835 VEC(tree,gc) **init, bool globally_qualified_p,
1836 tsubst_flags_t complain)
1839 /* True iff this is a call to "operator new[]" instead of just
1841 bool array_p = false;
1842 /* If ARRAY_P is true, the element type of the array. This is never
1843 an ARRAY_TYPE; for something like "new int[3][4]", the
1844 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1847 /* The type of the new-expression. (This type is always a pointer
1850 tree non_const_pointer_type;
1851 tree outer_nelts = NULL_TREE;
1852 tree alloc_call, alloc_expr;
1853 /* The address returned by the call to "operator new". This node is
1854 a VAR_DECL and is therefore reusable. */
1857 tree cookie_expr, init_expr;
1858 int nothrow, check_new;
1859 int use_java_new = 0;
1860 /* If non-NULL, the number of extra bytes to allocate at the
1861 beginning of the storage allocated for an array-new expression in
1862 order to store the number of elements. */
1863 tree cookie_size = NULL_TREE;
1864 tree placement_first;
1865 tree placement_expr = NULL_TREE;
1866 /* True if the function we are calling is a placement allocation
1868 bool placement_allocation_fn_p;
1869 /* True if the storage must be initialized, either by a constructor
1870 or due to an explicit new-initializer. */
1871 bool is_initialized;
1872 /* The address of the thing allocated, not including any cookie. In
1873 particular, if an array cookie is in use, DATA_ADDR is the
1874 address of the first array element. This node is a VAR_DECL, and
1875 is therefore reusable. */
1877 tree init_preeval_expr = NULL_TREE;
1881 outer_nelts = nelts;
1884 else if (TREE_CODE (type) == ARRAY_TYPE)
1887 nelts = array_type_nelts_top (type);
1888 outer_nelts = nelts;
1889 type = TREE_TYPE (type);
1892 /* If our base type is an array, then make sure we know how many elements
1894 for (elt_type = type;
1895 TREE_CODE (elt_type) == ARRAY_TYPE;
1896 elt_type = TREE_TYPE (elt_type))
1897 nelts = cp_build_binary_op (input_location,
1899 array_type_nelts_top (elt_type),
1902 if (TREE_CODE (elt_type) == VOID_TYPE)
1904 if (complain & tf_error)
1905 error ("invalid type %<void%> for new");
1906 return error_mark_node;
1909 if (abstract_virtuals_error (NULL_TREE, elt_type))
1910 return error_mark_node;
1912 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1914 if (*init == NULL && !type_has_user_provided_constructor (elt_type))
1916 bool uninitialized_error = false;
1917 /* A program that calls for default-initialization [...] of an
1918 entity of reference type is ill-formed. */
1919 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
1920 uninitialized_error = true;
1922 /* A new-expression that creates an object of type T initializes
1923 that object as follows:
1924 - If the new-initializer is omitted:
1925 -- If T is a (possibly cv-qualified) non-POD class type
1926 (or array thereof), the object is default-initialized (8.5).
1928 -- Otherwise, the object created has indeterminate
1929 value. If T is a const-qualified type, or a (possibly
1930 cv-qualified) POD class type (or array thereof)
1931 containing (directly or indirectly) a member of
1932 const-qualified type, the program is ill-formed; */
1934 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
1935 uninitialized_error = true;
1937 if (uninitialized_error)
1939 if (complain & tf_error)
1940 diagnose_uninitialized_cst_or_ref_member (elt_type,
1942 return error_mark_node;
1946 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
1947 && !type_has_user_provided_default_constructor (elt_type))
1949 if (complain & tf_error)
1950 error ("uninitialized const in %<new%> of %q#T", elt_type);
1951 return error_mark_node;
1954 size = size_in_bytes (elt_type);
1956 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1958 alloc_fn = NULL_TREE;
1960 /* If PLACEMENT is a single simple pointer type not passed by
1961 reference, prepare to capture it in a temporary variable. Do
1962 this now, since PLACEMENT will change in the calls below. */
1963 placement_first = NULL_TREE;
1964 if (VEC_length (tree, *placement) == 1
1965 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
1967 placement_first = VEC_index (tree, *placement, 0);
1969 /* Allocate the object. */
1970 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
1973 tree class_decl = build_java_class_ref (elt_type);
1974 static const char alloc_name[] = "_Jv_AllocObject";
1976 if (class_decl == error_mark_node)
1977 return error_mark_node;
1980 if (!get_global_value_if_present (get_identifier (alloc_name),
1983 if (complain & tf_error)
1984 error ("call to Java constructor with %qs undefined", alloc_name);
1985 return error_mark_node;
1987 else if (really_overloaded_fn (alloc_fn))
1989 if (complain & tf_error)
1990 error ("%qD should never be overloaded", alloc_fn);
1991 return error_mark_node;
1993 alloc_fn = OVL_CURRENT (alloc_fn);
1994 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1995 alloc_call = (cp_build_function_call
1997 build_tree_list (NULL_TREE, class_addr),
2000 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2002 error ("Java class %q#T object allocated using placement new", elt_type);
2003 return error_mark_node;
2010 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2012 if (!globally_qualified_p
2013 && CLASS_TYPE_P (elt_type)
2015 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2016 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2018 /* Use a class-specific operator new. */
2019 /* If a cookie is required, add some extra space. */
2020 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2022 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2023 size = size_binop (PLUS_EXPR, size, cookie_size);
2025 /* Create the argument list. */
2026 VEC_safe_insert (tree, gc, *placement, 0, size);
2027 /* Do name-lookup to find the appropriate operator. */
2028 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2029 if (fns == NULL_TREE)
2031 if (complain & tf_error)
2032 error ("no suitable %qD found in class %qT", fnname, elt_type);
2033 return error_mark_node;
2035 if (TREE_CODE (fns) == TREE_LIST)
2037 if (complain & tf_error)
2039 error ("request for member %qD is ambiguous", fnname);
2040 print_candidates (fns);
2042 return error_mark_node;
2044 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2046 /*conversion_path=*/NULL_TREE,
2053 /* Use a global operator new. */
2054 /* See if a cookie might be required. */
2055 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2056 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2058 cookie_size = NULL_TREE;
2060 alloc_call = build_operator_new_call (fnname, placement,
2061 &size, &cookie_size,
2066 if (alloc_call == error_mark_node)
2067 return error_mark_node;
2069 gcc_assert (alloc_fn != NULL_TREE);
2071 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2072 into a temporary variable. */
2073 if (!processing_template_decl
2074 && placement_first != NULL_TREE
2075 && TREE_CODE (alloc_call) == CALL_EXPR
2076 && call_expr_nargs (alloc_call) == 2
2077 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2078 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2080 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2082 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2083 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2085 placement_expr = get_target_expr (placement_first);
2086 CALL_EXPR_ARG (alloc_call, 1)
2087 = convert (TREE_TYPE (placement_arg), placement_expr);
2091 /* In the simple case, we can stop now. */
2092 pointer_type = build_pointer_type (type);
2093 if (!cookie_size && !is_initialized)
2094 return build_nop (pointer_type, alloc_call);
2096 /* Store the result of the allocation call in a variable so that we can
2097 use it more than once. */
2098 alloc_expr = get_target_expr (alloc_call);
2099 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2101 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2102 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2103 alloc_call = TREE_OPERAND (alloc_call, 1);
2105 /* Now, check to see if this function is actually a placement
2106 allocation function. This can happen even when PLACEMENT is NULL
2107 because we might have something like:
2109 struct S { void* operator new (size_t, int i = 0); };
2111 A call to `new S' will get this allocation function, even though
2112 there is no explicit placement argument. If there is more than
2113 one argument, or there are variable arguments, then this is a
2114 placement allocation function. */
2115 placement_allocation_fn_p
2116 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2117 || varargs_function_p (alloc_fn));
2119 /* Preevaluate the placement args so that we don't reevaluate them for a
2120 placement delete. */
2121 if (placement_allocation_fn_p)
2124 stabilize_call (alloc_call, &inits);
2126 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2130 /* unless an allocation function is declared with an empty excep-
2131 tion-specification (_except.spec_), throw(), it indicates failure to
2132 allocate storage by throwing a bad_alloc exception (clause _except_,
2133 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2134 cation function is declared with an empty exception-specification,
2135 throw(), it returns null to indicate failure to allocate storage and a
2136 non-null pointer otherwise.
2138 So check for a null exception spec on the op new we just called. */
2140 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2141 check_new = (flag_check_new || nothrow) && ! use_java_new;
2149 /* Adjust so we're pointing to the start of the object. */
2150 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2151 alloc_node, cookie_size);
2153 /* Store the number of bytes allocated so that we can know how
2154 many elements to destroy later. We use the last sizeof
2155 (size_t) bytes to store the number of elements. */
2156 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2157 cookie_ptr = fold_build2_loc (input_location,
2158 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2159 alloc_node, cookie_ptr);
2160 size_ptr_type = build_pointer_type (sizetype);
2161 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2162 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2164 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2166 if (targetm.cxx.cookie_has_size ())
2168 /* Also store the element size. */
2169 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2170 fold_build1_loc (input_location,
2171 NEGATE_EXPR, sizetype,
2172 size_in_bytes (sizetype)));
2174 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2175 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2176 size_in_bytes (elt_type));
2177 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2178 cookie, cookie_expr);
2183 cookie_expr = NULL_TREE;
2184 data_addr = alloc_node;
2187 /* Now use a pointer to the type we've actually allocated. */
2189 /* But we want to operate on a non-const version to start with,
2190 since we'll be modifying the elements. */
2191 non_const_pointer_type = build_pointer_type
2192 (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
2194 data_addr = fold_convert (non_const_pointer_type, data_addr);
2195 /* Any further uses of alloc_node will want this type, too. */
2196 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2198 /* Now initialize the allocated object. Note that we preevaluate the
2199 initialization expression, apart from the actual constructor call or
2200 assignment--we do this because we want to delay the allocation as long
2201 as possible in order to minimize the size of the exception region for
2202 placement delete. */
2206 bool explicit_value_init_p = false;
2208 if (*init != NULL && VEC_empty (tree, *init))
2211 explicit_value_init_p = true;
2216 tree vecinit = NULL_TREE;
2217 if (*init && VEC_length (tree, *init) == 1
2218 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2219 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2221 tree arraytype, domain;
2222 vecinit = VEC_index (tree, *init, 0);
2223 if (TREE_CONSTANT (nelts))
2224 domain = compute_array_index_type (NULL_TREE, nelts);
2228 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2229 warning (0, "non-constant array size in new, unable to "
2230 "verify length of initializer-list");
2232 arraytype = build_cplus_array_type (type, domain);
2233 vecinit = digest_init (arraytype, vecinit);
2237 if (complain & tf_error)
2238 permerror (input_location, "ISO C++ forbids initialization in array new");
2240 return error_mark_node;
2241 vecinit = build_tree_list_vec (*init);
2244 = build_vec_init (data_addr,
2245 cp_build_binary_op (input_location,
2246 MINUS_EXPR, outer_nelts,
2250 explicit_value_init_p,
2254 /* An array initialization is stable because the initialization
2255 of each element is a full-expression, so the temporaries don't
2261 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2263 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2265 init_expr = build_special_member_call (init_expr,
2266 complete_ctor_identifier,
2271 else if (explicit_value_init_p)
2273 /* Something like `new int()'. */
2274 init_expr = build2 (INIT_EXPR, type,
2275 init_expr, build_value_init (type));
2281 /* We are processing something like `new int (10)', which
2282 means allocate an int, and initialize it with 10. */
2284 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2285 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2288 stable = stabilize_init (init_expr, &init_preeval_expr);
2291 if (init_expr == error_mark_node)
2292 return error_mark_node;
2294 /* If any part of the object initialization terminates by throwing an
2295 exception and a suitable deallocation function can be found, the
2296 deallocation function is called to free the memory in which the
2297 object was being constructed, after which the exception continues
2298 to propagate in the context of the new-expression. If no
2299 unambiguous matching deallocation function can be found,
2300 propagating the exception does not cause the object's memory to be
2302 if (flag_exceptions && ! use_java_new)
2304 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2307 /* The Standard is unclear here, but the right thing to do
2308 is to use the same method for finding deallocation
2309 functions that we use for finding allocation functions. */
2310 cleanup = (build_op_delete_call
2314 globally_qualified_p,
2315 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2321 /* This is much simpler if we were able to preevaluate all of
2322 the arguments to the constructor call. */
2324 /* CLEANUP is compiler-generated, so no diagnostics. */
2325 TREE_NO_WARNING (cleanup) = true;
2326 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2327 init_expr, cleanup);
2328 /* Likewise, this try-catch is compiler-generated. */
2329 TREE_NO_WARNING (init_expr) = true;
2332 /* Ack! First we allocate the memory. Then we set our sentry
2333 variable to true, and expand a cleanup that deletes the
2334 memory if sentry is true. Then we run the constructor, and
2335 finally clear the sentry.
2337 We need to do this because we allocate the space first, so
2338 if there are any temporaries with cleanups in the
2339 constructor args and we weren't able to preevaluate them, we
2340 need this EH region to extend until end of full-expression
2341 to preserve nesting. */
2343 tree end, sentry, begin;
2345 begin = get_target_expr (boolean_true_node);
2346 CLEANUP_EH_ONLY (begin) = 1;
2348 sentry = TARGET_EXPR_SLOT (begin);
2350 /* CLEANUP is compiler-generated, so no diagnostics. */
2351 TREE_NO_WARNING (cleanup) = true;
2353 TARGET_EXPR_CLEANUP (begin)
2354 = build3 (COND_EXPR, void_type_node, sentry,
2355 cleanup, void_zero_node);
2357 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2358 sentry, boolean_false_node);
2361 = build2 (COMPOUND_EXPR, void_type_node, begin,
2362 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2364 /* Likewise, this is compiler-generated. */
2365 TREE_NO_WARNING (init_expr) = true;
2370 init_expr = NULL_TREE;
2372 /* Now build up the return value in reverse order. */
2377 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2379 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2381 if (rval == data_addr)
2382 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2383 and return the call (which doesn't need to be adjusted). */
2384 rval = TARGET_EXPR_INITIAL (alloc_expr);
2389 tree ifexp = cp_build_binary_op (input_location,
2390 NE_EXPR, alloc_node,
2393 rval = build_conditional_expr (ifexp, rval, alloc_node,
2397 /* Perform the allocation before anything else, so that ALLOC_NODE
2398 has been initialized before we start using it. */
2399 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2402 if (init_preeval_expr)
2403 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2405 /* A new-expression is never an lvalue. */
2406 gcc_assert (!lvalue_p (rval));
2408 return convert (pointer_type, rval);
2411 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2412 is a vector of placement-new arguments (or NULL if none). If NELTS
2413 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2414 is not NULL, then this is an array-new allocation; TYPE is the type
2415 of the elements in the array and NELTS is the number of elements in
2416 the array. *INIT, if non-NULL, is the initializer for the new
2417 object, or an empty vector to indicate an initializer of "()". If
2418 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2419 rather than just "new". This may change PLACEMENT and INIT. */
2422 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2423 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2426 VEC(tree,gc) *orig_placement = NULL;
2427 tree orig_nelts = NULL_TREE;
2428 VEC(tree,gc) *orig_init = NULL;
2430 if (type == error_mark_node)
2431 return error_mark_node;
2433 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2435 tree auto_node = type_uses_auto (type);
2436 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2437 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2440 if (processing_template_decl)
2442 if (dependent_type_p (type)
2443 || any_type_dependent_arguments_p (*placement)
2444 || (nelts && type_dependent_expression_p (nelts))
2445 || any_type_dependent_arguments_p (*init))
2446 return build_raw_new_expr (*placement, type, nelts, *init,
2449 orig_placement = make_tree_vector_copy (*placement);
2451 orig_init = make_tree_vector_copy (*init);
2453 make_args_non_dependent (*placement);
2455 nelts = build_non_dependent_expr (nelts);
2456 make_args_non_dependent (*init);
2461 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2463 if (complain & tf_error)
2464 permerror (input_location, "size in array new must have integral type");
2466 return error_mark_node;
2468 nelts = mark_rvalue_use (nelts);
2469 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2472 /* ``A reference cannot be created by the new operator. A reference
2473 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2474 returned by new.'' ARM 5.3.3 */
2475 if (TREE_CODE (type) == REFERENCE_TYPE)
2477 if (complain & tf_error)
2478 error ("new cannot be applied to a reference type");
2480 return error_mark_node;
2481 type = TREE_TYPE (type);
2484 if (TREE_CODE (type) == FUNCTION_TYPE)
2486 if (complain & tf_error)
2487 error ("new cannot be applied to a function type");
2488 return error_mark_node;
2491 /* The type allocated must be complete. If the new-type-id was
2492 "T[N]" then we are just checking that "T" is complete here, but
2493 that is equivalent, since the value of "N" doesn't matter. */
2494 if (!complete_type_or_else (type, NULL_TREE))
2495 return error_mark_node;
2497 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2498 if (rval == error_mark_node)
2499 return error_mark_node;
2501 if (processing_template_decl)
2503 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2504 orig_init, use_global_new);
2505 release_tree_vector (orig_placement);
2506 release_tree_vector (orig_init);
2510 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2511 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2512 TREE_NO_WARNING (rval) = 1;
2517 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2520 build_java_class_ref (tree type)
2522 tree name = NULL_TREE, class_decl;
2523 static tree CL_suffix = NULL_TREE;
2524 if (CL_suffix == NULL_TREE)
2525 CL_suffix = get_identifier("class$");
2526 if (jclass_node == NULL_TREE)
2528 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2529 if (jclass_node == NULL_TREE)
2531 error ("call to Java constructor, while %<jclass%> undefined");
2532 return error_mark_node;
2534 jclass_node = TREE_TYPE (jclass_node);
2537 /* Mangle the class$ field. */
2540 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2541 if (DECL_NAME (field) == CL_suffix)
2543 mangle_decl (field);
2544 name = DECL_ASSEMBLER_NAME (field);
2549 error ("can't find %<class$%> in %qT", type);
2550 return error_mark_node;
2554 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2555 if (class_decl == NULL_TREE)
2557 class_decl = build_decl (input_location,
2558 VAR_DECL, name, TREE_TYPE (jclass_node));
2559 TREE_STATIC (class_decl) = 1;
2560 DECL_EXTERNAL (class_decl) = 1;
2561 TREE_PUBLIC (class_decl) = 1;
2562 DECL_ARTIFICIAL (class_decl) = 1;
2563 DECL_IGNORED_P (class_decl) = 1;
2564 pushdecl_top_level (class_decl);
2565 make_decl_rtl (class_decl);
2571 build_vec_delete_1 (tree base, tree maxindex, tree type,
2572 special_function_kind auto_delete_vec, int use_global_delete)
2575 tree ptype = build_pointer_type (type = complete_type (type));
2576 tree size_exp = size_in_bytes (type);
2578 /* Temporary variables used by the loop. */
2579 tree tbase, tbase_init;
2581 /* This is the body of the loop that implements the deletion of a
2582 single element, and moves temp variables to next elements. */
2585 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2588 /* This is the thing that governs what to do after the loop has run. */
2589 tree deallocate_expr = 0;
2591 /* This is the BIND_EXPR which holds the outermost iterator of the
2592 loop. It is convenient to set this variable up and test it before
2593 executing any other code in the loop.
2594 This is also the containing expression returned by this function. */
2595 tree controller = NULL_TREE;
2598 /* We should only have 1-D arrays here. */
2599 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2601 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2604 /* The below is short by the cookie size. */
2605 virtual_size = size_binop (MULT_EXPR, size_exp,
2606 convert (sizetype, maxindex));
2608 tbase = create_temporary_var (ptype);
2609 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2610 fold_build2_loc (input_location,
2611 POINTER_PLUS_EXPR, ptype,
2612 fold_convert (ptype, base),
2614 tf_warning_or_error);
2615 controller = build3 (BIND_EXPR, void_type_node, tbase,
2616 NULL_TREE, NULL_TREE);
2617 TREE_SIDE_EFFECTS (controller) = 1;
2619 body = build1 (EXIT_EXPR, void_type_node,
2620 build2 (EQ_EXPR, boolean_type_node, tbase,
2621 fold_convert (ptype, base)));
2622 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2623 body = build_compound_expr
2625 body, cp_build_modify_expr (tbase, NOP_EXPR,
2626 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2627 tf_warning_or_error));
2628 body = build_compound_expr
2630 body, build_delete (ptype, tbase, sfk_complete_destructor,
2631 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2633 loop = build1 (LOOP_EXPR, void_type_node, body);
2634 loop = build_compound_expr (input_location, tbase_init, loop);
2637 /* If the delete flag is one, or anything else with the low bit set,
2638 delete the storage. */
2639 if (auto_delete_vec != sfk_base_destructor)
2643 /* The below is short by the cookie size. */
2644 virtual_size = size_binop (MULT_EXPR, size_exp,
2645 convert (sizetype, maxindex));
2647 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2654 cookie_size = targetm.cxx.get_cookie_size (type);
2656 = cp_convert (ptype,
2657 cp_build_binary_op (input_location,
2659 cp_convert (string_type_node,
2662 tf_warning_or_error));
2663 /* True size with header. */
2664 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2667 if (auto_delete_vec == sfk_deleting_destructor)
2668 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2669 base_tbd, virtual_size,
2670 use_global_delete & 1,
2671 /*placement=*/NULL_TREE,
2672 /*alloc_fn=*/NULL_TREE);
2676 if (!deallocate_expr)
2679 body = deallocate_expr;
2681 body = build_compound_expr (input_location, body, deallocate_expr);
2684 body = integer_zero_node;
2686 /* Outermost wrapper: If pointer is null, punt. */
2687 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2688 fold_build2_loc (input_location,
2689 NE_EXPR, boolean_type_node, base,
2690 convert (TREE_TYPE (base),
2691 integer_zero_node)),
2692 body, integer_zero_node);
2693 body = build1 (NOP_EXPR, void_type_node, body);
2697 TREE_OPERAND (controller, 1) = body;
2701 if (TREE_CODE (base) == SAVE_EXPR)
2702 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2703 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2705 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2708 /* Create an unnamed variable of the indicated TYPE. */
2711 create_temporary_var (tree type)
2715 decl = build_decl (input_location,
2716 VAR_DECL, NULL_TREE, type);
2717 TREE_USED (decl) = 1;
2718 DECL_ARTIFICIAL (decl) = 1;
2719 DECL_IGNORED_P (decl) = 1;
2720 DECL_CONTEXT (decl) = current_function_decl;
2725 /* Create a new temporary variable of the indicated TYPE, initialized
2728 It is not entered into current_binding_level, because that breaks
2729 things when it comes time to do final cleanups (which take place
2730 "outside" the binding contour of the function). */
2733 get_temp_regvar (tree type, tree init)
2737 decl = create_temporary_var (type);
2738 add_decl_expr (decl);
2740 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2741 tf_warning_or_error));
2746 /* `build_vec_init' returns tree structure that performs
2747 initialization of a vector of aggregate types.
2749 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2750 to the first element, of POINTER_TYPE.
2751 MAXINDEX is the maximum index of the array (one less than the
2752 number of elements). It is only used if BASE is a pointer or
2753 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2755 INIT is the (possibly NULL) initializer.
2757 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2758 elements in the array are value-initialized.
2760 FROM_ARRAY is 0 if we should init everything with INIT
2761 (i.e., every element initialized from INIT).
2762 FROM_ARRAY is 1 if we should index into INIT in parallel
2763 with initialization of DECL.
2764 FROM_ARRAY is 2 if we should index into INIT in parallel,
2765 but use assignment instead of initialization. */
2768 build_vec_init (tree base, tree maxindex, tree init,
2769 bool explicit_value_init_p,
2770 int from_array, tsubst_flags_t complain)
2773 tree base2 = NULL_TREE;
2774 tree itype = NULL_TREE;
2776 /* The type of BASE. */
2777 tree atype = TREE_TYPE (base);
2778 /* The type of an element in the array. */
2779 tree type = TREE_TYPE (atype);
2780 /* The element type reached after removing all outer array
2782 tree inner_elt_type;
2783 /* The type of a pointer to an element in the array. */
2788 tree try_block = NULL_TREE;
2789 int num_initialized_elts = 0;
2792 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2793 maxindex = array_type_nelts (atype);
2795 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2796 return error_mark_node;
2798 if (explicit_value_init_p)
2801 inner_elt_type = strip_array_types (type);
2803 /* Look through the TARGET_EXPR around a compound literal. */
2804 if (init && TREE_CODE (init) == TARGET_EXPR
2805 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2807 init = TARGET_EXPR_INITIAL (init);
2810 && TREE_CODE (atype) == ARRAY_TYPE
2812 ? (!CLASS_TYPE_P (inner_elt_type)
2813 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2814 : !TYPE_NEEDS_CONSTRUCTING (type))
2815 && ((TREE_CODE (init) == CONSTRUCTOR
2816 /* Don't do this if the CONSTRUCTOR might contain something
2817 that might throw and require us to clean up. */
2818 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2819 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2822 /* Do non-default initialization of trivial arrays resulting from
2823 brace-enclosed initializers. In this case, digest_init and
2824 store_constructor will handle the semantics for us. */
2826 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2830 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2831 if (TREE_CODE (atype) == ARRAY_TYPE)
2833 ptype = build_pointer_type (type);
2834 base = cp_convert (ptype, decay_conversion (base));
2839 /* The code we are generating looks like:
2843 ptrdiff_t iterator = maxindex;
2845 for (; iterator != -1; --iterator) {
2846 ... initialize *t1 ...
2850 ... destroy elements that were constructed ...
2855 We can omit the try and catch blocks if we know that the
2856 initialization will never throw an exception, or if the array
2857 elements do not have destructors. We can omit the loop completely if
2858 the elements of the array do not have constructors.
2860 We actually wrap the entire body of the above in a STMT_EXPR, for
2863 When copying from array to another, when the array elements have
2864 only trivial copy constructors, we should use __builtin_memcpy
2865 rather than generating a loop. That way, we could take advantage
2866 of whatever cleverness the back end has for dealing with copies
2867 of blocks of memory. */
2869 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2870 destroy_temps = stmts_are_full_exprs_p ();
2871 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2872 rval = get_temp_regvar (ptype, base);
2873 base = get_temp_regvar (ptype, rval);
2874 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2876 /* If initializing one array from another, initialize element by
2877 element. We rely upon the below calls to do the argument
2878 checking. Evaluate the initializer before entering the try block. */
2879 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2881 base2 = decay_conversion (init);
2882 itype = TREE_TYPE (base2);
2883 base2 = get_temp_regvar (itype, base2);
2884 itype = TREE_TYPE (itype);
2887 /* Protect the entire array initialization so that we can destroy
2888 the partially constructed array if an exception is thrown.
2889 But don't do this if we're assigning. */
2890 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2893 try_block = begin_try_block ();
2896 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2898 /* Do non-default initialization of non-trivial arrays resulting from
2899 brace-enclosed initializers. */
2900 unsigned HOST_WIDE_INT idx;
2904 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2906 tree baseref = build1 (INDIRECT_REF, type, base);
2908 num_initialized_elts++;
2910 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2911 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2912 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2914 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2916 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2918 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2920 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2924 /* Clear out INIT so that we don't get confused below. */
2927 else if (from_array)
2930 /* OK, we set base2 above. */;
2931 else if (TYPE_LANG_SPECIFIC (type)
2932 && TYPE_NEEDS_CONSTRUCTING (type)
2933 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2935 if (complain & tf_error)
2936 error ("initializer ends prematurely");
2937 return error_mark_node;
2941 /* Now, default-initialize any remaining elements. We don't need to
2942 do that if a) the type does not need constructing, or b) we've
2943 already initialized all the elements.
2945 We do need to keep going if we're copying an array. */
2948 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2949 && ! (host_integerp (maxindex, 0)
2950 && (num_initialized_elts
2951 == tree_low_cst (maxindex, 0) + 1))))
2953 /* If the ITERATOR is equal to -1, then we don't have to loop;
2954 we've already initialized all the elements. */
2959 for_stmt = begin_for_stmt ();
2960 finish_for_init_stmt (for_stmt);
2961 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2962 build_int_cst (TREE_TYPE (iterator), -1)),
2964 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2968 to = build1 (INDIRECT_REF, type, base);
2975 from = build1 (INDIRECT_REF, itype, base2);
2979 if (from_array == 2)
2980 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2982 else if (TYPE_NEEDS_CONSTRUCTING (type))
2983 elt_init = build_aggr_init (to, from, 0, complain);
2985 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2990 else if (TREE_CODE (type) == ARRAY_TYPE)
2994 ("cannot initialize multi-dimensional array with initializer");
2995 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2997 explicit_value_init_p,
3000 else if (explicit_value_init_p)
3001 elt_init = build2 (INIT_EXPR, type, to,
3002 build_value_init (type));
3005 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
3006 elt_init = build_aggr_init (to, init, 0, complain);
3009 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3010 finish_expr_stmt (elt_init);
3011 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3013 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3016 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3019 finish_for_stmt (for_stmt);
3022 /* Make sure to cleanup any partially constructed elements. */
3023 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3027 tree m = cp_build_binary_op (input_location,
3028 MINUS_EXPR, maxindex, iterator,
3031 /* Flatten multi-dimensional array since build_vec_delete only
3032 expects one-dimensional array. */
3033 if (TREE_CODE (type) == ARRAY_TYPE)
3034 m = cp_build_binary_op (input_location,
3036 array_type_nelts_total (type),
3039 finish_cleanup_try_block (try_block);
3040 e = build_vec_delete_1 (rval, m,
3041 inner_elt_type, sfk_base_destructor,
3042 /*use_global_delete=*/0);
3043 finish_cleanup (e, try_block);
3046 /* The value of the array initialization is the array itself, RVAL
3047 is a pointer to the first element. */
3048 finish_stmt_expr_expr (rval, stmt_expr);
3050 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3052 /* Now make the result have the correct type. */
3053 if (TREE_CODE (atype) == ARRAY_TYPE)
3055 atype = build_pointer_type (atype);
3056 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3057 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3058 TREE_NO_WARNING (stmt_expr) = 1;
3061 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3065 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3069 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3075 case sfk_complete_destructor:
3076 name = complete_dtor_identifier;
3079 case sfk_base_destructor:
3080 name = base_dtor_identifier;
3083 case sfk_deleting_destructor:
3084 name = deleting_dtor_identifier;
3090 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3091 return build_new_method_call (exp, fn,
3093 /*conversion_path=*/NULL_TREE,
3096 tf_warning_or_error);
3099 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3100 ADDR is an expression which yields the store to be destroyed.
3101 AUTO_DELETE is the name of the destructor to call, i.e., either
3102 sfk_complete_destructor, sfk_base_destructor, or
3103 sfk_deleting_destructor.
3105 FLAGS is the logical disjunction of zero or more LOOKUP_
3106 flags. See cp-tree.h for more info. */
3109 build_delete (tree type, tree addr, special_function_kind auto_delete,
3110 int flags, int use_global_delete)
3114 if (addr == error_mark_node)
3115 return error_mark_node;
3117 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3118 set to `error_mark_node' before it gets properly cleaned up. */
3119 if (type == error_mark_node)
3120 return error_mark_node;
3122 type = TYPE_MAIN_VARIANT (type);
3124 addr = mark_rvalue_use (addr);
3126 if (TREE_CODE (type) == POINTER_TYPE)
3128 bool complete_p = true;
3130 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3131 if (TREE_CODE (type) == ARRAY_TYPE)
3134 /* We don't want to warn about delete of void*, only other
3135 incomplete types. Deleting other incomplete types
3136 invokes undefined behavior, but it is not ill-formed, so
3137 compile to something that would even do The Right Thing
3138 (TM) should the type have a trivial dtor and no delete
3140 if (!VOID_TYPE_P (type))
3142 complete_type (type);
3143 if (!COMPLETE_TYPE_P (type))
3145 if (warning (0, "possible problem detected in invocation of "
3146 "delete operator:"))
3148 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3149 inform (input_location, "neither the destructor nor the class-specific "
3150 "operator delete will be called, even if they are "
3151 "declared when the class is defined.");
3156 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3157 /* Call the builtin operator delete. */
3158 return build_builtin_delete_call (addr);
3159 if (TREE_SIDE_EFFECTS (addr))
3160 addr = save_expr (addr);
3162 /* Throw away const and volatile on target type of addr. */
3163 addr = convert_force (build_pointer_type (type), addr, 0);
3165 else if (TREE_CODE (type) == ARRAY_TYPE)
3169 if (TYPE_DOMAIN (type) == NULL_TREE)
3171 error ("unknown array size in delete");
3172 return error_mark_node;
3174 return build_vec_delete (addr, array_type_nelts (type),
3175 auto_delete, use_global_delete);
3179 /* Don't check PROTECT here; leave that decision to the
3180 destructor. If the destructor is accessible, call it,
3181 else report error. */
3182 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3183 if (TREE_SIDE_EFFECTS (addr))
3184 addr = save_expr (addr);
3186 addr = convert_force (build_pointer_type (type), addr, 0);
3189 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3191 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3193 if (auto_delete != sfk_deleting_destructor)
3194 return void_zero_node;
3196 return build_op_delete_call (DELETE_EXPR, addr,
3197 cxx_sizeof_nowarn (type),
3199 /*placement=*/NULL_TREE,
3200 /*alloc_fn=*/NULL_TREE);
3204 tree head = NULL_TREE;
3205 tree do_delete = NULL_TREE;
3208 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3209 lazily_declare_fn (sfk_destructor, type);
3211 /* For `::delete x', we must not use the deleting destructor
3212 since then we would not be sure to get the global `operator
3214 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3216 /* We will use ADDR multiple times so we must save it. */
3217 addr = save_expr (addr);
3218 head = get_target_expr (build_headof (addr));
3219 /* Delete the object. */
3220 do_delete = build_builtin_delete_call (head);
3221 /* Otherwise, treat this like a complete object destructor
3223 auto_delete = sfk_complete_destructor;
3225 /* If the destructor is non-virtual, there is no deleting
3226 variant. Instead, we must explicitly call the appropriate
3227 `operator delete' here. */
3228 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3229 && auto_delete == sfk_deleting_destructor)
3231 /* We will use ADDR multiple times so we must save it. */
3232 addr = save_expr (addr);
3233 /* Build the call. */
3234 do_delete = build_op_delete_call (DELETE_EXPR,
3236 cxx_sizeof_nowarn (type),
3238 /*placement=*/NULL_TREE,
3239 /*alloc_fn=*/NULL_TREE);
3240 /* Call the complete object destructor. */
3241 auto_delete = sfk_complete_destructor;
3243 else if (auto_delete == sfk_deleting_destructor
3244 && TYPE_GETS_REG_DELETE (type))
3246 /* Make sure we have access to the member op delete, even though
3247 we'll actually be calling it from the destructor. */
3248 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3250 /*placement=*/NULL_TREE,
3251 /*alloc_fn=*/NULL_TREE);
3254 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3255 tf_warning_or_error),
3256 auto_delete, flags);
3258 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3260 /* We need to calculate this before the dtor changes the vptr. */
3262 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3264 if (flags & LOOKUP_DESTRUCTOR)
3265 /* Explicit destructor call; don't check for null pointer. */
3266 ifexp = integer_one_node;
3268 /* Handle deleting a null pointer. */
3269 ifexp = fold (cp_build_binary_op (input_location,
3270 NE_EXPR, addr, integer_zero_node,
3271 tf_warning_or_error));
3273 if (ifexp != integer_one_node)
3274 expr = build3 (COND_EXPR, void_type_node,
3275 ifexp, expr, void_zero_node);
3281 /* At the beginning of a destructor, push cleanups that will call the
3282 destructors for our base classes and members.
3284 Called from begin_destructor_body. */
3287 push_base_cleanups (void)
3289 tree binfo, base_binfo;
3293 VEC(tree,gc) *vbases;
3295 /* Run destructors for all virtual baseclasses. */
3296 if (CLASSTYPE_VBASECLASSES (current_class_type))
3298 tree cond = (condition_conversion
3299 (build2 (BIT_AND_EXPR, integer_type_node,
3300 current_in_charge_parm,
3301 integer_two_node)));
3303 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3304 order, which is also the right order for pushing cleanups. */
3305 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3306 VEC_iterate (tree, vbases, i, base_binfo); i++)
3308 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3310 expr = build_special_member_call (current_class_ref,
3311 base_dtor_identifier,
3315 | LOOKUP_NONVIRTUAL),
3316 tf_warning_or_error);
3317 expr = build3 (COND_EXPR, void_type_node, cond,
3318 expr, void_zero_node);
3319 finish_decl_cleanup (NULL_TREE, expr);
3324 /* Take care of the remaining baseclasses. */
3325 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3326 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3328 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3329 || BINFO_VIRTUAL_P (base_binfo))
3332 expr = build_special_member_call (current_class_ref,
3333 base_dtor_identifier,
3335 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3336 tf_warning_or_error);
3337 finish_decl_cleanup (NULL_TREE, expr);
3340 for (member = TYPE_FIELDS (current_class_type); member;
3341 member = TREE_CHAIN (member))
3343 if (TREE_TYPE (member) == error_mark_node
3344 || TREE_CODE (member) != FIELD_DECL
3345 || DECL_ARTIFICIAL (member))
3347 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3349 tree this_member = (build_class_member_access_expr
3350 (current_class_ref, member,
3351 /*access_path=*/NULL_TREE,
3352 /*preserve_reference=*/false,
3353 tf_warning_or_error));
3354 tree this_type = TREE_TYPE (member);
3355 expr = build_delete (this_type, this_member,
3356 sfk_complete_destructor,
3357 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3359 finish_decl_cleanup (NULL_TREE, expr);
3364 /* Build a C++ vector delete expression.
3365 MAXINDEX is the number of elements to be deleted.
3366 ELT_SIZE is the nominal size of each element in the vector.
3367 BASE is the expression that should yield the store to be deleted.
3368 This function expands (or synthesizes) these calls itself.
3369 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3371 This also calls delete for virtual baseclasses of elements of the vector.
3373 Update: MAXINDEX is no longer needed. The size can be extracted from the
3374 start of the vector for pointers, and from the type for arrays. We still
3375 use MAXINDEX for arrays because it happens to already have one of the
3376 values we'd have to extract. (We could use MAXINDEX with pointers to
3377 confirm the size, and trap if the numbers differ; not clear that it'd
3378 be worth bothering.) */
3381 build_vec_delete (tree base, tree maxindex,
3382 special_function_kind auto_delete_vec, int use_global_delete)
3386 tree base_init = NULL_TREE;
3388 type = TREE_TYPE (base);
3390 if (TREE_CODE (type) == POINTER_TYPE)
3392 /* Step back one from start of vector, and read dimension. */
3394 tree size_ptr_type = build_pointer_type (sizetype);
3396 if (TREE_SIDE_EFFECTS (base))
3398 base_init = get_target_expr (base);
3399 base = TARGET_EXPR_SLOT (base_init);
3401 type = strip_array_types (TREE_TYPE (type));
3402 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3403 sizetype, TYPE_SIZE_UNIT (sizetype));
3404 cookie_addr = build2 (POINTER_PLUS_EXPR,
3406 fold_convert (size_ptr_type, base),
3408 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3410 else if (TREE_CODE (type) == ARRAY_TYPE)
3412 /* Get the total number of things in the array, maxindex is a
3414 maxindex = array_type_nelts_total (type);
3415 type = strip_array_types (type);
3416 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3417 if (TREE_SIDE_EFFECTS (base))
3419 base_init = get_target_expr (base);
3420 base = TARGET_EXPR_SLOT (base_init);
3425 if (base != error_mark_node)
3426 error ("type to vector delete is neither pointer or array type");
3427 return error_mark_node;
3430 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3433 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);