OSDN Git Service

Delete remaining references to sparc little-endian support.
[pf3gnuchains/gcc-fork.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4    Free Software Foundation, Inc.
5    Contributed by Michael Tiemann (tiemann@cygnus.com).
6    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7    at Cygnus Support.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
24
25 #include "config/vxworks-dummy.h"
26
27 /* Note that some other tm.h files include this one and then override
28    whatever definitions are necessary.  */
29
30 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
31
32 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
33 /* #define SPARC_BI_ARCH */
34
35 /* Macro used later in this file to determine default architecture.  */
36 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
37
38 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
39    architectures to compile for.  We allow targets to choose compile time or
40    runtime selection.  */
41 #ifdef IN_LIBGCC2
42 #if defined(__sparcv9) || defined(__arch64__)
43 #define TARGET_ARCH32 0
44 #else
45 #define TARGET_ARCH32 1
46 #endif /* sparc64 */
47 #else
48 #ifdef SPARC_BI_ARCH
49 #define TARGET_ARCH32 (! TARGET_64BIT)
50 #else
51 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
52 #endif /* SPARC_BI_ARCH */
53 #endif /* IN_LIBGCC2 */
54 #define TARGET_ARCH64 (! TARGET_ARCH32)
55
56 /* Code model selection in 64-bit environment.
57
58    The machine mode used for addresses is 32-bit wide:
59
60    TARGET_CM_32:     32-bit address space.
61                      It is the code model used when generating 32-bit code.
62
63    The machine mode used for addresses is 64-bit wide:
64
65    TARGET_CM_MEDLOW: 32-bit address space.
66                      The executable must be in the low 32 bits of memory.
67                      This avoids generating %uhi and %ulo terms.  Programs
68                      can be statically or dynamically linked.
69
70    TARGET_CM_MEDMID: 44-bit address space.
71                      The executable must be in the low 44 bits of memory,
72                      and the %[hml]44 terms are used.  The text and data
73                      segments have a maximum size of 2GB (31-bit span).
74                      The maximum offset from any instruction to the label
75                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
76
77    TARGET_CM_MEDANY: 64-bit address space.
78                      The text and data segments have a maximum size of 2GB
79                      (31-bit span) and may be located anywhere in memory.
80                      The maximum offset from any instruction to the label
81                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
82
83    TARGET_CM_EMBMEDANY: 64-bit address space.
84                      The text and data segments have a maximum size of 2GB
85                      (31-bit span) and may be located anywhere in memory.
86                      The global register %g4 contains the start address of
87                      the data segment.  Programs are statically linked and
88                      PIC is not supported.
89
90    Different code models are not supported in 32-bit environment.  */
91
92 enum cmodel {
93   CM_32,
94   CM_MEDLOW,
95   CM_MEDMID,
96   CM_MEDANY,
97   CM_EMBMEDANY
98 };
99
100 /* One of CM_FOO.  */
101 extern enum cmodel sparc_cmodel;
102
103 /* V9 code model selection.  */
104 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
105 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
106 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
107 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
108
109 #define SPARC_DEFAULT_CMODEL CM_32
110
111 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
112    which requires the following macro to be true if enabled.  Prior to V9,
113    there are no instructions to even talk about memory synchronization.
114    Note that the UltraSPARC III processors don't implement RMO, unlike the
115    UltraSPARC II processors.  Niagara, Niagara-2, and Niagara-3 do not
116    implement RMO either.
117
118    Default to false; for example, Solaris never enables RMO, only ever uses
119    total memory ordering (TMO).  */
120 #define SPARC_RELAXED_ORDERING false
121
122 /* Do not use the .note.GNU-stack convention by default.  */
123 #define NEED_INDICATE_EXEC_STACK 0
124
125 /* This is call-clobbered in the normal ABI, but is reserved in the
126    home grown (aka upward compatible) embedded ABI.  */
127 #define EMBMEDANY_BASE_REG "%g4"
128 \f
129 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
130    and specified by the user via --with-cpu=foo.
131    This specifies the cpu implementation, not the architecture size.  */
132 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
133    capable cpu's.  */
134 #define TARGET_CPU_sparc        0
135 #define TARGET_CPU_v7           0       /* alias */
136 #define TARGET_CPU_cypress      0       /* alias */
137 #define TARGET_CPU_v8           1       /* generic v8 implementation */
138 #define TARGET_CPU_supersparc   2
139 #define TARGET_CPU_hypersparc   3
140 #define TARGET_CPU_leon         4
141 #define TARGET_CPU_sparclite    5
142 #define TARGET_CPU_f930         5       /* alias */
143 #define TARGET_CPU_f934         5       /* alias */
144 #define TARGET_CPU_sparclite86x 6
145 #define TARGET_CPU_sparclet     7
146 #define TARGET_CPU_tsc701       7       /* alias */
147 #define TARGET_CPU_v9           8       /* generic v9 implementation */
148 #define TARGET_CPU_sparcv9      8       /* alias */
149 #define TARGET_CPU_sparc64      8       /* alias */
150 #define TARGET_CPU_ultrasparc   9
151 #define TARGET_CPU_ultrasparc3  10
152 #define TARGET_CPU_niagara      11
153 #define TARGET_CPU_niagara2     12
154 #define TARGET_CPU_niagara3     13
155 #define TARGET_CPU_niagara4     14
156
157 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
158  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
159  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
160  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
161  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
162  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
163  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
164
165 #define CPP_CPU32_DEFAULT_SPEC ""
166 #define ASM_CPU32_DEFAULT_SPEC ""
167
168 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
169 /* ??? What does Sun's CC pass?  */
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 /* ??? It's not clear how other assemblers will handle this, so by default
172    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
173    is handled in sol2.h.  */
174 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
175 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
177 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
179 #endif
180 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
181 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183 #endif
184 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
185 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187 #endif
188 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
189 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
191 #endif
192 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
193 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
195 #endif
196 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
197 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
199 #endif
200
201 #else
202
203 #define CPP_CPU64_DEFAULT_SPEC ""
204 #define ASM_CPU64_DEFAULT_SPEC ""
205
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
207  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
208 #define CPP_CPU32_DEFAULT_SPEC ""
209 #define ASM_CPU32_DEFAULT_SPEC ""
210 #endif
211
212 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
213 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
214 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
215 #endif
216
217 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
218 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
219 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
220 #endif
221
222 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
223 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
224 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
225 #endif
226
227 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
228 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
229 #define ASM_CPU32_DEFAULT_SPEC ""
230 #endif
231
232 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
233 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
234 #define ASM_CPU32_DEFAULT_SPEC ""
235 #endif
236
237 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon
238 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
239 #define ASM_CPU32_DEFAULT_SPEC ""
240 #endif
241
242 #endif
243
244 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
245  #error Unrecognized value in TARGET_CPU_DEFAULT.
246 #endif
247
248 #ifdef SPARC_BI_ARCH
249
250 #define CPP_CPU_DEFAULT_SPEC \
251 (DEFAULT_ARCH32_P ? "\
252 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
253 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
254 " : "\
255 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
256 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
257 ")
258 #define ASM_CPU_DEFAULT_SPEC \
259 (DEFAULT_ARCH32_P ? "\
260 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
261 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
262 " : "\
263 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
264 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
265 ")
266
267 #else /* !SPARC_BI_ARCH */
268
269 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
270 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
271
272 #endif /* !SPARC_BI_ARCH */
273
274 /* Define macros to distinguish architectures.  */
275
276 /* Common CPP definitions used by CPP_SPEC amongst the various targets
277    for handling -mcpu=xxx switches.  */
278 #define CPP_CPU_SPEC "\
279 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
280 %{mcpu=sparclite:-D__sparclite__} \
281 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
282 %{mcpu=sparclite86x:-D__sparclite86x__} \
283 %{mcpu=v8:-D__sparc_v8__} \
284 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
285 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
286 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
287 %{mcpu=v9:-D__sparc_v9__} \
288 %{mcpu=ultrasparc:-D__sparc_v9__} \
289 %{mcpu=ultrasparc3:-D__sparc_v9__} \
290 %{mcpu=niagara:-D__sparc_v9__} \
291 %{mcpu=niagara2:-D__sparc_v9__} \
292 %{mcpu=niagara3:-D__sparc_v9__} \
293 %{mcpu=niagara4:-D__sparc_v9__} \
294 %{!mcpu*:%(cpp_cpu_default)} \
295 "
296 #define CPP_ARCH32_SPEC ""
297 #define CPP_ARCH64_SPEC "-D__arch64__"
298
299 #define CPP_ARCH_DEFAULT_SPEC \
300 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
301
302 #define CPP_ARCH_SPEC "\
303 %{m32:%(cpp_arch32)} \
304 %{m64:%(cpp_arch64)} \
305 %{!m32:%{!m64:%(cpp_arch_default)}} \
306 "
307
308 /* Macros to distinguish the endianness, window model and FP support.  */
309 #define CPP_OTHER_SPEC "\
310 %{mflat:-D_FLAT} \
311 %{msoft-float:-D_SOFT_FLOAT} \
312 "
313
314 /* Macros to distinguish the particular subtarget.  */
315 #define CPP_SUBTARGET_SPEC ""
316
317 #define CPP_SPEC \
318   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
319
320 /* This used to translate -dalign to -malign, but that is no good
321    because it can't turn off the usual meaning of making debugging dumps.  */
322
323 #define CC1_SPEC ""
324
325 /* Override in target specific files.  */
326 #define ASM_CPU_SPEC "\
327 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
328 %{mcpu=sparclite:-Asparclite} \
329 %{mcpu=sparclite86x:-Asparclite} \
330 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
331 %{mv8plus:-Av8plus} \
332 %{mcpu=v9:-Av9} \
333 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
334 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
335 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
336 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
337 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
338 %{mcpu=niagara4:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
339 %{!mcpu*:%(asm_cpu_default)} \
340 "
341
342 /* Word size selection, among other things.
343    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
344
345 #define ASM_ARCH32_SPEC "-32"
346 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
347 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
348 #else
349 #define ASM_ARCH64_SPEC "-64"
350 #endif
351 #define ASM_ARCH_DEFAULT_SPEC \
352 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
353
354 #define ASM_ARCH_SPEC "\
355 %{m32:%(asm_arch32)} \
356 %{m64:%(asm_arch64)} \
357 %{!m32:%{!m64:%(asm_arch_default)}} \
358 "
359
360 #ifdef HAVE_AS_RELAX_OPTION
361 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
362 #else
363 #define ASM_RELAX_SPEC ""
364 #endif
365
366 /* Special flags to the Sun-4 assembler when using pipe for input.  */
367
368 #define ASM_SPEC "\
369 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
370 %(asm_cpu) %(asm_relax)"
371
372 /* This macro defines names of additional specifications to put in the specs
373    that can be used in various specifications like CC1_SPEC.  Its definition
374    is an initializer with a subgrouping for each command option.
375
376    Each subgrouping contains a string constant, that defines the
377    specification name, and a string constant that used by the GCC driver
378    program.
379
380    Do not define this macro if it does not need to do anything.  */
381
382 #define EXTRA_SPECS \
383   { "cpp_cpu",          CPP_CPU_SPEC },         \
384   { "cpp_cpu_default",  CPP_CPU_DEFAULT_SPEC }, \
385   { "cpp_arch32",       CPP_ARCH32_SPEC },      \
386   { "cpp_arch64",       CPP_ARCH64_SPEC },      \
387   { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
388   { "cpp_arch",         CPP_ARCH_SPEC },        \
389   { "cpp_other",        CPP_OTHER_SPEC },       \
390   { "cpp_subtarget",    CPP_SUBTARGET_SPEC },   \
391   { "asm_cpu",          ASM_CPU_SPEC },         \
392   { "asm_cpu_default",  ASM_CPU_DEFAULT_SPEC }, \
393   { "asm_arch32",       ASM_ARCH32_SPEC },      \
394   { "asm_arch64",       ASM_ARCH64_SPEC },      \
395   { "asm_relax",        ASM_RELAX_SPEC },       \
396   { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
397   { "asm_arch",         ASM_ARCH_SPEC },        \
398   SUBTARGET_EXTRA_SPECS
399
400 #define SUBTARGET_EXTRA_SPECS
401
402 /* Because libgcc can generate references back to libc (via .umul etc.) we have
403    to list libc again after the second libgcc.  */
404 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
405
406 \f
407 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
408 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
409
410 /* ??? This should be 32 bits for v9 but what can we do?  */
411 #define WCHAR_TYPE "short unsigned int"
412 #define WCHAR_TYPE_SIZE 16
413 \f
414 /* Mask of all CPU selection flags.  */
415 #define MASK_ISA \
416 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
417
418 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
419    TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
420    to get high 32 bits.  False in V8+ or V9 because multiply stores
421    a 64-bit result in a register.  */
422
423 #define TARGET_HARD_MUL32                               \
424   ((TARGET_V8 || TARGET_SPARCLITE                       \
425     || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)   \
426    && ! TARGET_V8PLUS && TARGET_ARCH32)
427
428 #define TARGET_HARD_MUL                                 \
429   (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET     \
430    || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
431
432 /* MASK_APP_REGS must always be the default because that's what
433    FIXED_REGISTERS is set to and -ffixed- is processed before
434    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
435    -mno-app-regs).  */
436 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
437
438 /* Recast the cpu class to be the cpu attribute.
439    Every file includes us, but not every file includes insn-attr.h.  */
440 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
441
442 /* Support for a compile-time default CPU, et cetera.  The rules are:
443    --with-cpu is ignored if -mcpu is specified.
444    --with-tune is ignored if -mtune is specified.
445    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
446      are specified.  */
447 #define OPTION_DEFAULT_SPECS \
448   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
449   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
450   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
451 \f
452 /* target machine storage layout */
453
454 /* Define this if most significant bit is lowest numbered
455    in instructions that operate on numbered bit-fields.  */
456 #define BITS_BIG_ENDIAN 1
457
458 /* Define this if most significant byte of a word is the lowest numbered.  */
459 #define BYTES_BIG_ENDIAN 1
460
461 /* Define this if most significant word of a multiword number is the lowest
462    numbered.  */
463 #define WORDS_BIG_ENDIAN 1
464
465 #define MAX_BITS_PER_WORD       64
466
467 /* Width of a word, in units (bytes).  */
468 #define UNITS_PER_WORD          (TARGET_ARCH64 ? 8 : 4)
469 #ifdef IN_LIBGCC2
470 #define MIN_UNITS_PER_WORD      UNITS_PER_WORD
471 #else
472 #define MIN_UNITS_PER_WORD      4
473 #endif
474
475 /* Now define the sizes of the C data types.  */
476
477 #define SHORT_TYPE_SIZE         16
478 #define INT_TYPE_SIZE           32
479 #define LONG_TYPE_SIZE          (TARGET_ARCH64 ? 64 : 32)
480 #define LONG_LONG_TYPE_SIZE     64
481 #define FLOAT_TYPE_SIZE         32
482 #define DOUBLE_TYPE_SIZE        64
483
484 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
485    SPARC ABI says that it is 128-bit wide.  */
486 /* #define LONG_DOUBLE_TYPE_SIZE        128 */
487
488 /* The widest floating-point format really supported by the hardware.  */
489 #define WIDEST_HARDWARE_FP_SIZE 64
490
491 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
492 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
493
494 /* This is the machine mode used for addresses.  */
495 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
496
497 /* If we have to extend pointers (only when TARGET_ARCH64 and not
498    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
499    if ptr_mode and Pmode are the same.  */
500 #define POINTERS_EXTEND_UNSIGNED 1
501
502 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
503 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
504
505 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
506 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
507    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
508 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
509 /* Temporary hack until the FIXME above is fixed.  */
510 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
511
512 /* ALIGN FRAMES on double word boundaries */
513
514 #define SPARC_STACK_ALIGN(LOC) \
515   (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
516
517 /* Allocation boundary (in *bits*) for the code of a function.  */
518 #define FUNCTION_BOUNDARY 32
519
520 /* Alignment of field after `int : 0' in a structure.  */
521 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
522
523 /* Every structure's size must be a multiple of this.  */
524 #define STRUCTURE_SIZE_BOUNDARY 8
525
526 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
527 #define PCC_BITFIELD_TYPE_MATTERS 1
528
529 /* No data type wants to be aligned rounder than this.  */
530 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
531
532 /* The best alignment to use in cases where we have a choice.  */
533 #define FASTEST_ALIGNMENT 64
534
535 /* Define this macro as an expression for the alignment of a structure
536    (given by STRUCT as a tree node) if the alignment computed in the
537    usual way is COMPUTED and the alignment explicitly specified was
538    SPECIFIED.
539
540    The default is to use SPECIFIED if it is larger; otherwise, use
541    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
542 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)   \
543  (TARGET_FASTER_STRUCTS ?                               \
544   ((TREE_CODE (STRUCT) == RECORD_TYPE                   \
545     || TREE_CODE (STRUCT) == UNION_TYPE                 \
546     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
547    && TYPE_FIELDS (STRUCT) != 0                         \
548      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
549      : MAX ((COMPUTED), (SPECIFIED)))                   \
550    :  MAX ((COMPUTED), (SPECIFIED)))
551
552 /* We need 2 words, so we can save the stack pointer and the return register
553    of the function containing a non-local goto target.  */
554 #define STACK_SAVEAREA_MODE(LEVEL) \
555   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
556
557 /* Make strings word-aligned so strcpy from constants will be faster.  */
558 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
559   ((TREE_CODE (EXP) == STRING_CST       \
560     && (ALIGN) < FASTEST_ALIGNMENT)     \
561    ? FASTEST_ALIGNMENT : (ALIGN))
562
563 /* Make arrays of chars word-aligned for the same reasons.  */
564 #define DATA_ALIGNMENT(TYPE, ALIGN)             \
565   (TREE_CODE (TYPE) == ARRAY_TYPE               \
566    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
567    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
568
569 /* Make local arrays of chars word-aligned for the same reasons.  */
570 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
571
572 /* Set this nonzero if move instructions will actually fail to work
573    when given unaligned data.  */
574 #define STRICT_ALIGNMENT 1
575
576 /* Things that must be doubleword aligned cannot go in the text section,
577    because the linker fails to align the text section enough!
578    Put them in the data section.  This macro is only used in this file.  */
579 #define MAX_TEXT_ALIGN 32
580 \f
581 /* Standard register usage.  */
582
583 /* Number of actual hardware registers.
584    The hardware registers are assigned numbers for the compiler
585    from 0 to just below FIRST_PSEUDO_REGISTER.
586    All registers that the compiler knows about must be given numbers,
587    even those that are not normally considered general registers.
588
589    SPARC has 32 integer registers and 32 floating point registers.
590    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
591    accessible.  We still account for them to simplify register computations
592    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
593    32+32+32+4 == 100.
594    Register 100 is used as the integer condition code register.
595    Register 101 is used as the soft frame pointer register.  */
596
597 #define FIRST_PSEUDO_REGISTER 103
598
599 #define SPARC_FIRST_INT_REG     0
600 #define SPARC_LAST_INT_REG     31
601 #define SPARC_FIRST_FP_REG     32
602 /* Additional V9 fp regs.  */
603 #define SPARC_FIRST_V9_FP_REG  64
604 #define SPARC_LAST_V9_FP_REG   95
605 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
606 #define SPARC_FIRST_V9_FCC_REG 96
607 #define SPARC_LAST_V9_FCC_REG  99
608 /* V8 fcc reg.  */
609 #define SPARC_FCC_REG 96
610 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
611 #define SPARC_ICC_REG 100
612 #define SPARC_GSR_REG 102
613
614 /* Nonzero if REGNO is an fp reg.  */
615 #define SPARC_FP_REG_P(REGNO) \
616 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
617
618 /* Nonzero if REGNO is an int reg.  */
619 #define SPARC_INT_REG_P(REGNO) \
620 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
621
622 /* Argument passing regs.  */
623 #define SPARC_OUTGOING_INT_ARG_FIRST 8
624 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
625 #define SPARC_FP_ARG_FIRST           32
626
627 /* 1 for registers that have pervasive standard uses
628    and are not available for the register allocator.
629
630    On non-v9 systems:
631    g1 is free to use as temporary.
632    g2-g4 are reserved for applications.  Gcc normally uses them as
633    temporaries, but this can be disabled via the -mno-app-regs option.
634    g5 through g7 are reserved for the operating system.
635
636    On v9 systems:
637    g1,g5 are free to use as temporaries, and are free to use between calls
638    if the call is to an external function via the PLT.
639    g4 is free to use as a temporary in the non-embedded case.
640    g4 is reserved in the embedded case.
641    g2-g3 are reserved for applications.  Gcc normally uses them as
642    temporaries, but this can be disabled via the -mno-app-regs option.
643    g6-g7 are reserved for the operating system (or application in
644    embedded case).
645    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
646    currently be a fixed register until this pattern is rewritten.
647    Register 1 is also used when restoring call-preserved registers in large
648    stack frames.
649
650    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
651    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
652 */
653
654 #define FIXED_REGISTERS  \
655  {1, 0, 2, 2, 2, 2, 1, 1,       \
656   0, 0, 0, 0, 0, 0, 1, 0,       \
657   0, 0, 0, 0, 0, 0, 0, 0,       \
658   0, 0, 0, 0, 0, 0, 0, 1,       \
659                                 \
660   0, 0, 0, 0, 0, 0, 0, 0,       \
661   0, 0, 0, 0, 0, 0, 0, 0,       \
662   0, 0, 0, 0, 0, 0, 0, 0,       \
663   0, 0, 0, 0, 0, 0, 0, 0,       \
664                                 \
665   0, 0, 0, 0, 0, 0, 0, 0,       \
666   0, 0, 0, 0, 0, 0, 0, 0,       \
667   0, 0, 0, 0, 0, 0, 0, 0,       \
668   0, 0, 0, 0, 0, 0, 0, 0,       \
669                                 \
670   0, 0, 0, 0, 0, 1, 1}
671
672 /* 1 for registers not available across function calls.
673    These must include the FIXED_REGISTERS and also any
674    registers that can be used without being saved.
675    The latter must include the registers where values are returned
676    and the register where structure-value addresses are passed.
677    Aside from that, you can include as many other registers as you like.  */
678
679 #define CALL_USED_REGISTERS  \
680  {1, 1, 1, 1, 1, 1, 1, 1,       \
681   1, 1, 1, 1, 1, 1, 1, 1,       \
682   0, 0, 0, 0, 0, 0, 0, 0,       \
683   0, 0, 0, 0, 0, 0, 0, 1,       \
684                                 \
685   1, 1, 1, 1, 1, 1, 1, 1,       \
686   1, 1, 1, 1, 1, 1, 1, 1,       \
687   1, 1, 1, 1, 1, 1, 1, 1,       \
688   1, 1, 1, 1, 1, 1, 1, 1,       \
689                                 \
690   1, 1, 1, 1, 1, 1, 1, 1,       \
691   1, 1, 1, 1, 1, 1, 1, 1,       \
692   1, 1, 1, 1, 1, 1, 1, 1,       \
693   1, 1, 1, 1, 1, 1, 1, 1,       \
694                                 \
695   1, 1, 1, 1, 1, 1, 1}
696
697 /* Return number of consecutive hard regs needed starting at reg REGNO
698    to hold something of mode MODE.
699    This is ordinarily the length in words of a value of mode MODE
700    but can be less for certain modes in special long registers.
701
702    On SPARC, ordinary registers hold 32 bits worth;
703    this means both integer and floating point registers.
704    On v9, integer regs hold 64 bits worth; floating point regs hold
705    32 bits worth (this includes the new fp regs as even the odd ones are
706    included in the hard register count).  */
707
708 #define HARD_REGNO_NREGS(REGNO, MODE) \
709   ((REGNO) == SPARC_GSR_REG ? 1 :                                       \
710    (TARGET_ARCH64                                                       \
711     ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM                       \
712        ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD   \
713        : (GET_MODE_SIZE (MODE) + 3) / 4)                                \
714     : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
715
716 /* Due to the ARCH64 discrepancy above we must override this next
717    macro too.  */
718 #define REGMODE_NATURAL_SIZE(MODE) \
719   ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
720
721 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
722    See sparc.c for how we initialize this.  */
723 extern const int *hard_regno_mode_classes;
724 extern int sparc_mode_class[];
725
726 /* ??? Because of the funny way we pass parameters we should allow certain
727    ??? types of float/complex values to be in integer registers during
728    ??? RTL generation.  This only matters on arch32.  */
729 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
730   ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
731
732 /* Value is 1 if it is OK to rename a hard register FROM to another hard
733    register TO.  We cannot rename %g1 as it may be used before the save
734    register window instruction in the prologue.  */
735 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
736
737 /* Value is 1 if it is a good idea to tie two pseudo registers
738    when one has mode MODE1 and one has mode MODE2.
739    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
740    for any hard reg, then this must be 0 for correct output.
741
742    For V9: SFmode can't be combined with other float modes, because they can't
743    be allocated to the %d registers.  Also, DFmode won't fit in odd %f
744    registers, but SFmode will.  */
745 #define MODES_TIEABLE_P(MODE1, MODE2) \
746   ((MODE1) == (MODE2)                                           \
747    || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)         \
748        && (! TARGET_V9                                          \
749            || (GET_MODE_CLASS (MODE1) != MODE_FLOAT             \
750                || (MODE1 != SFmode && MODE2 != SFmode)))))
751
752 /* Specify the registers used for certain standard purposes.
753    The values of these macros are register numbers.  */
754
755 /* Register to use for pushing function arguments.  */
756 #define STACK_POINTER_REGNUM 14
757
758 /* The stack bias (amount by which the hardware register is offset by).  */
759 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
760
761 /* Actual top-of-stack address is 92/176 greater than the contents of the
762    stack pointer register for !v9/v9.  That is:
763    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
764      address, and 6*4 bytes for the 6 register parameters.
765    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
766      parameter regs.  */
767 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
768
769 /* Base register for access to local variables of the function.  */
770 #define HARD_FRAME_POINTER_REGNUM 30
771
772 /* The soft frame pointer does not have the stack bias applied.  */
773 #define FRAME_POINTER_REGNUM 101
774
775 /* Given the stack bias, the stack pointer isn't actually aligned.  */
776 #define INIT_EXPANDERS                                                   \
777   do {                                                                   \
778     if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)      \
779       {                                                                  \
780         REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;      \
781         REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
782       }                                                                  \
783   } while (0)
784
785 /* Base register for access to arguments of the function.  */
786 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
787
788 /* Register in which static-chain is passed to a function.  This must
789    not be a register used by the prologue.  */
790 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
791
792 /* Register which holds the global offset table, if any.  */
793
794 #define GLOBAL_OFFSET_TABLE_REGNUM 23
795
796 /* Register which holds offset table for position-independent
797    data references.  */
798
799 #define PIC_OFFSET_TABLE_REGNUM \
800   (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
801
802 /* Pick a default value we can notice from override_options:
803    !v9: Default is on.
804    v9: Default is off.
805    Originally it was -1, but later on the container of options changed to
806    unsigned byte, so we decided to pick 127 as default value, which does
807    reflect an undefined default value in case of 0/1.  */
808
809 #define DEFAULT_PCC_STRUCT_RETURN 127
810
811 /* Functions which return large structures get the address
812    to place the wanted value at offset 64 from the frame.
813    Must reserve 64 bytes for the in and local registers.
814    v9: Functions which return large structures get the address to place the
815    wanted value from an invisible first argument.  */
816 #define STRUCT_VALUE_OFFSET 64
817 \f
818 /* Define the classes of registers for register constraints in the
819    machine description.  Also define ranges of constants.
820
821    One of the classes must always be named ALL_REGS and include all hard regs.
822    If there is more than one class, another class must be named NO_REGS
823    and contain no registers.
824
825    The name GENERAL_REGS must be the name of a class (or an alias for
826    another name such as ALL_REGS).  This is the class of registers
827    that is allowed by "g" or "r" in a register constraint.
828    Also, registers outside this class are allocated only when
829    instructions express preferences for them.
830
831    The classes must be numbered in nondecreasing order; that is,
832    a larger-numbered class must never be contained completely
833    in a smaller-numbered class.
834
835    For any two classes, it is very desirable that there be another
836    class that represents their union.  */
837
838 /* The SPARC has various kinds of registers: general, floating point,
839    and condition codes [well, it has others as well, but none that we
840    care directly about].
841
842    For v9 we must distinguish between the upper and lower floating point
843    registers because the upper ones can't hold SFmode values.
844    HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
845    satisfying a group need for a class will also satisfy a single need for
846    that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
847    regs.
848
849    It is important that one class contains all the general and all the standard
850    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
851    because reg_class_record() will bias the selection in favor of fp regs,
852    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
853    because FP_REGS > GENERAL_REGS.
854
855    It is also important that one class contain all the general and all
856    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
857    EXTRA_FP_REGS but find_reloads() may use class
858    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
859    because the compiler thinks it doesn't have a spill reg when in
860    fact it does.
861
862    v9 also has 4 floating point condition code registers.  Since we don't
863    have a class that is the union of FPCC_REGS with either of the others,
864    it is important that it appear first.  Otherwise the compiler will die
865    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
866    constraints.
867
868    It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
869    may try to use it to hold an SImode value.  See register_operand.
870    ??? Should %fcc[0123] be handled similarly?
871 */
872
873 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
874                  EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
875                  ALL_REGS, LIM_REG_CLASSES };
876
877 #define N_REG_CLASSES (int) LIM_REG_CLASSES
878
879 /* Give names of register classes as strings for dump file.  */
880
881 #define REG_CLASS_NAMES \
882   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",      \
883      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
884      "ALL_REGS" }
885
886 /* Define which registers fit in which classes.
887    This is an initializer for a vector of HARD_REG_SET
888    of length N_REG_CLASSES.  */
889
890 #define REG_CLASS_CONTENTS                              \
891   {{0, 0, 0, 0},        /* NO_REGS */                   \
892    {0, 0, 0, 0xf},      /* FPCC_REGS */                 \
893    {0xffff, 0, 0, 0},   /* I64_REGS */                  \
894    {-1, 0, 0, 0x20},    /* GENERAL_REGS */              \
895    {0, -1, 0, 0},       /* FP_REGS */                   \
896    {0, -1, -1, 0},      /* EXTRA_FP_REGS */             \
897    {-1, -1, 0, 0x20},   /* GENERAL_OR_FP_REGS */        \
898    {-1, -1, -1, 0x20},  /* GENERAL_OR_EXTRA_FP_REGS */  \
899    {-1, -1, -1, 0x7f}}  /* ALL_REGS */
900
901 /* The same information, inverted:
902    Return the class number of the smallest class containing
903    reg number REGNO.  This could be a conditional expression
904    or could index an array.  */
905
906 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
907
908 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
909
910 /* Defines invalid mode changes.  Borrowed from pa64-regs.h.
911
912    SImode loads to floating-point registers are not zero-extended.
913    The definition for LOAD_EXTEND_OP specifies that integer loads
914    narrower than BITS_PER_WORD will be zero-extended.  As a result,
915    we inhibit changes from SImode unless they are to a mode that is
916    identical in size.  */
917
918 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
919   (TARGET_ARCH64                                                \
920    && (FROM) == SImode                                          \
921    && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                \
922    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
923
924 /* This is the order in which to allocate registers normally.
925
926    We put %f0-%f7 last among the float registers, so as to make it more
927    likely that a pseudo-register which dies in the float return register
928    area will get allocated to the float return register, thus saving a move
929    instruction at the end of the function.
930
931    Similarly for integer return value registers.
932
933    We know in this case that we will not end up with a leaf function.
934
935    The register allocator is given the global and out registers first
936    because these registers are call clobbered and thus less useful to
937    global register allocation.
938
939    Next we list the local and in registers.  They are not call clobbered
940    and thus very useful for global register allocation.  We list the input
941    registers before the locals so that it is more likely the incoming
942    arguments received in those registers can just stay there and not be
943    reloaded.  */
944
945 #define REG_ALLOC_ORDER \
946 { 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
947   13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
948   15,                                   /* %o7 */       \
949   16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
950   29, 28, 27, 26, 25, 24, 31,           /* %i5-%i0,%i7 */\
951   40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
952   48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
953   56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
954   64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
955   72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
956   80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
957   88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
958   39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
959   96, 97, 98, 99,                       /* %fcc0-3 */   \
960   100, 0, 14, 30, 101, 102 }            /* %icc, %g0, %o6, %i6, %sfp, %gsr */
961
962 /* This is the order in which to allocate registers for
963    leaf functions.  If all registers can fit in the global and
964    output registers, then we have the possibility of having a leaf
965    function.
966
967    The macro actually mentioned the input registers first,
968    because they get renumbered into the output registers once
969    we know really do have a leaf function.
970
971    To be more precise, this register allocation order is used
972    when %o7 is found to not be clobbered right before register
973    allocation.  Normally, the reason %o7 would be clobbered is
974    due to a call which could not be transformed into a sibling
975    call.
976
977    As a consequence, it is possible to use the leaf register
978    allocation order and not end up with a leaf function.  We will
979    not get suboptimal register allocation in that case because by
980    definition of being potentially leaf, there were no function
981    calls.  Therefore, allocation order within the local register
982    window is not critical like it is when we do have function calls.  */
983
984 #define REG_LEAF_ALLOC_ORDER \
985 { 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
986   29, 28, 27, 26, 25, 24,               /* %i5-%i0 */   \
987   15,                                   /* %o7 */       \
988   13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
989   16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
990   40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
991   48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
992   56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
993   64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
994   72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
995   80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
996   88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
997   39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
998   96, 97, 98, 99,                       /* %fcc0-3 */   \
999   100, 0, 14, 30, 31, 101, 102 }        /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1000
1001 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1002
1003 extern char sparc_leaf_regs[];
1004 #define LEAF_REGISTERS sparc_leaf_regs
1005
1006 extern char leaf_reg_remap[];
1007 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1008
1009 /* The class value for index registers, and the one for base regs.  */
1010 #define INDEX_REG_CLASS GENERAL_REGS
1011 #define BASE_REG_CLASS GENERAL_REGS
1012
1013 /* Local macro to handle the two v9 classes of FP regs.  */
1014 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1015
1016 /* Predicates for 10-bit, 11-bit and 13-bit signed constants.  */
1017 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1018 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1019 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1020
1021 /* 10- and 11-bit immediates are only used for a few specific insns.
1022    SMALL_INT is used throughout the port so we continue to use it.  */
1023 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1024
1025 /* Predicate for constants that can be loaded with a sethi instruction.
1026    This is the general, 64-bit aware, bitwise version that ensures that
1027    only constants whose representation fits in the mask
1028
1029      0x00000000fffffc00
1030
1031    are accepted.  It will reject, for example, negative SImode constants
1032    on 64-bit hosts, so correct handling is to mask the value beforehand
1033    according to the mode of the instruction.  */
1034 #define SPARC_SETHI_P(X) \
1035   (((unsigned HOST_WIDE_INT) (X) \
1036     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1037
1038 /* Version of the above predicate for SImode constants and below.  */
1039 #define SPARC_SETHI32_P(X) \
1040   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1041
1042 /* On SPARC when not VIS3 it is not possible to directly move data
1043    between GENERAL_REGS and FP_REGS.  */
1044 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1045   ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1046    && (! TARGET_VIS3 \
1047        || GET_MODE_SIZE (MODE) > 8 \
1048        || GET_MODE_SIZE (MODE) < 4))
1049
1050 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1051    because the movsi and movsf patterns don't handle r/f moves.
1052    For v8 we copy the default definition.  */
1053 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1054   (TARGET_ARCH64                                                \
1055    ? (GET_MODE_BITSIZE (MODE) < 32                              \
1056       ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)            \
1057       : MODE)                                                   \
1058    : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD                   \
1059       ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1060       : MODE))
1061
1062 /* Return the maximum number of consecutive registers
1063    needed to represent mode MODE in a register of class CLASS.  */
1064 /* On SPARC, this is the size of MODE in words.  */
1065 #define CLASS_MAX_NREGS(CLASS, MODE)    \
1066   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1067    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1068 \f
1069 /* Stack layout; function entry, exit and calling.  */
1070
1071 /* Define this if pushing a word on the stack
1072    makes the stack pointer a smaller address.  */
1073 #define STACK_GROWS_DOWNWARD
1074
1075 /* Define this to nonzero if the nominal address of the stack frame
1076    is at the high-address end of the local variables;
1077    that is, each additional local variable allocated
1078    goes at a more negative offset in the frame.  */
1079 #define FRAME_GROWS_DOWNWARD 1
1080
1081 /* Offset within stack frame to start allocating local variables at.
1082    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1083    first local allocated.  Otherwise, it is the offset to the BEGINNING
1084    of the first local allocated.  */
1085 #define STARTING_FRAME_OFFSET 0
1086
1087 /* Offset of first parameter from the argument pointer register value.
1088    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1089    even if this function isn't going to use it.
1090    v9: This is 128 for the ins and locals.  */
1091 #define FIRST_PARM_OFFSET(FNDECL) \
1092   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1093
1094 /* Offset from the argument pointer register value to the CFA.
1095    This is different from FIRST_PARM_OFFSET because the register window
1096    comes between the CFA and the arguments.  */
1097 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1098
1099 /* When a parameter is passed in a register, stack space is still
1100    allocated for it.
1101    !v9: All 6 possible integer registers have backing store allocated.
1102    v9: Only space for the arguments passed is allocated.  */
1103 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1104    meaning to the backend.  Further, we need to be able to detect if a
1105    varargs/unprototyped function is called, as they may want to spill more
1106    registers than we've provided space.  Ugly, ugly.  So for now we retain
1107    all 6 slots even for v9.  */
1108 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1109
1110 /* Definitions for register elimination.  */
1111
1112 #define ELIMINABLE_REGS \
1113   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1114    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1115
1116 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
1117   do {                                                                  \
1118     if ((TO) == STACK_POINTER_REGNUM)                                   \
1119       (OFFSET) = sparc_compute_frame_size (get_frame_size (),           \
1120                                            current_function_is_leaf);   \
1121     else                                                                \
1122       (OFFSET) = 0;                                                     \
1123     (OFFSET) += SPARC_STACK_BIAS;                                       \
1124   } while (0)
1125
1126 /* Keep the stack pointer constant throughout the function.
1127    This is both an optimization and a necessity: longjmp
1128    doesn't behave itself when the stack pointer moves within
1129    the function!  */
1130 #define ACCUMULATE_OUTGOING_ARGS 1
1131
1132 /* Define this macro if the target machine has "register windows".  This
1133    C expression returns the register number as seen by the called function
1134    corresponding to register number OUT as seen by the calling function.
1135    Return OUT if register number OUT is not an outbound register.  */
1136
1137 #define INCOMING_REGNO(OUT) \
1138  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1139
1140 /* Define this macro if the target machine has "register windows".  This
1141    C expression returns the register number as seen by the calling function
1142    corresponding to register number IN as seen by the called function.
1143    Return IN if register number IN is not an inbound register.  */
1144
1145 #define OUTGOING_REGNO(IN) \
1146  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1147
1148 /* Define this macro if the target machine has register windows.  This
1149    C expression returns true if the register is call-saved but is in the
1150    register window.  */
1151
1152 #define LOCAL_REGNO(REGNO) \
1153   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1154
1155 /* Define the size of space to allocate for the return value of an
1156    untyped_call.  */
1157
1158 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1159
1160 /* 1 if N is a possible register number for function argument passing.
1161    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1162
1163 #define FUNCTION_ARG_REGNO_P(N) \
1164 (TARGET_ARCH64 \
1165  ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1166  : ((N) >= 8 && (N) <= 13))
1167 \f
1168 /* Define a data type for recording info about an argument list
1169    during the scan of that argument list.  This data type should
1170    hold all necessary information about the function itself
1171    and about the args processed so far, enough to enable macros
1172    such as FUNCTION_ARG to determine where the next arg should go.
1173
1174    On SPARC (!v9), this is a single integer, which is a number of words
1175    of arguments scanned so far (including the invisible argument,
1176    if any, which holds the structure-value-address).
1177    Thus 7 or more means all following args should go on the stack.
1178
1179    For v9, we also need to know whether a prototype is present.  */
1180
1181 struct sparc_args {
1182   int words;       /* number of words passed so far */
1183   int prototype_p; /* nonzero if a prototype is present */
1184   int libcall_p;   /* nonzero if a library call */
1185 };
1186 #define CUMULATIVE_ARGS struct sparc_args
1187
1188 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1189    for a call to a function whose data type is FNTYPE.
1190    For a library call, FNTYPE is 0.  */
1191
1192 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1193 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1194
1195 /* If defined, a C expression which determines whether, and in which direction,
1196    to pad out an argument with extra space.  The value should be of type
1197    `enum direction': either `upward' to pad above the argument,
1198    `downward' to pad below, or `none' to inhibit padding.  */
1199
1200 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1201 function_arg_padding ((MODE), (TYPE))
1202
1203 \f
1204 /* Generate the special assembly code needed to tell the assembler whatever
1205    it might need to know about the return value of a function.
1206
1207    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1208    information to the assembler relating to peephole optimization (done in
1209    the assembler).  */
1210
1211 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1212   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1213
1214 /* Output the special assembly code needed to tell the assembler some
1215    register is used as global register variable.
1216
1217    SPARC 64bit psABI declares registers %g2 and %g3 as application
1218    registers and %g6 and %g7 as OS registers.  Any object using them
1219    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1220    and how they are used (scratch or some global variable).
1221    Linker will then refuse to link together objects which use those
1222    registers incompatibly.
1223
1224    Unless the registers are used for scratch, two different global
1225    registers cannot be declared to the same name, so in the unlikely
1226    case of a global register variable occupying more than one register
1227    we prefix the second and following registers with .gnu.part1. etc.  */
1228
1229 extern GTY(()) char sparc_hard_reg_printed[8];
1230
1231 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1232 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)            \
1233 do {                                                                    \
1234   if (TARGET_ARCH64)                                                    \
1235     {                                                                   \
1236       int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1237       int reg;                                                          \
1238       for (reg = (REGNO); reg < 8 && reg < end; reg++)                  \
1239         if ((reg & ~1) == 2 || (reg & ~1) == 6)                         \
1240           {                                                             \
1241             if (reg == (REGNO))                                         \
1242               fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1243             else                                                        \
1244               fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",  \
1245                        reg, reg - (REGNO), (NAME));                     \
1246             sparc_hard_reg_printed[reg] = 1;                            \
1247           }                                                             \
1248     }                                                                   \
1249 } while (0)
1250 #endif
1251
1252 \f
1253 /* Emit rtl for profiling.  */
1254 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1255
1256 /* All the work done in PROFILE_HOOK, but still required.  */
1257 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1258
1259 /* Set the name of the mcount function for the system.  */
1260 #define MCOUNT_FUNCTION "*mcount"
1261 \f
1262 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1263    the stack pointer does not matter.  The value is tested only in
1264    functions that have frame pointers.  */
1265 #define EXIT_IGNORE_STACK 1
1266
1267 /* Length in units of the trampoline for entering a nested function.  */
1268 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1269
1270 /* Alignment required for trampolines, in bits.  */
1271 #define TRAMPOLINE_ALIGNMENT 128
1272 \f
1273 /* Generate RTL to flush the register windows so as to make arbitrary frames
1274    available.  */
1275 #define SETUP_FRAME_ADDRESSES()                 \
1276   do {                                          \
1277     if (!TARGET_FLAT)                           \
1278       emit_insn (gen_flush_register_windows ());\
1279   } while (0)
1280
1281 /* Given an rtx for the address of a frame,
1282    return an rtx for the address of the word in the frame
1283    that holds the dynamic chain--the previous frame's address.  */
1284 #define DYNAMIC_CHAIN_ADDRESS(frame)    \
1285   plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1286
1287 /* Given an rtx for the frame pointer,
1288    return an rtx for the address of the frame.  */
1289 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1290
1291 /* The return address isn't on the stack, it is in a register, so we can't
1292    access it from the current frame pointer.  We can access it from the
1293    previous frame pointer though by reading a value from the register window
1294    save area.  */
1295 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1296
1297 /* This is the offset of the return address to the true next instruction to be
1298    executed for the current function.  */
1299 #define RETURN_ADDR_OFFSET \
1300   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1301
1302 /* The current return address is in %i7.  The return address of anything
1303    farther back is in the register window save area at [%fp+60].  */
1304 /* ??? This ignores the fact that the actual return address is +8 for normal
1305    returns, and +12 for structure returns.  */
1306 #define RETURN_ADDR_REGNUM 31
1307 #define RETURN_ADDR_RTX(count, frame)           \
1308   ((count == -1)                                \
1309    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)                    \
1310    : gen_rtx_MEM (Pmode,                        \
1311                   memory_address (Pmode, plus_constant (frame, \
1312                                                         15 * UNITS_PER_WORD \
1313                                                         + SPARC_STACK_BIAS))))
1314
1315 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1316    +12, but always using +8 is close enough for frame unwind purposes.
1317    Actually, just using %o7 is close enough for unwinding, but %o7+8
1318    is something you can return to.  */
1319 #define INCOMING_RETURN_ADDR_REGNUM 15
1320 #define INCOMING_RETURN_ADDR_RTX \
1321   plus_constant (gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1322 #define DWARF_FRAME_RETURN_COLUMN \
1323   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1324
1325 /* The offset from the incoming value of %sp to the top of the stack frame
1326    for the current function.  On sparc64, we have to account for the stack
1327    bias if present.  */
1328 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1329
1330 /* Describe how we implement __builtin_eh_return.  */
1331 #define EH_RETURN_REGNUM 1
1332 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1333 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1334
1335 /* Define registers used by the epilogue and return instruction.  */
1336 #define EPILOGUE_USES(REGNO)                                    \
1337   ((REGNO) == RETURN_ADDR_REGNUM                                \
1338    || (TARGET_FLAT                                              \
1339        && epilogue_completed                                    \
1340        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)               \
1341    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1342
1343 /* Select a format to encode pointers in exception handling data.  CODE
1344    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1345    true if the symbol may be affected by dynamic relocations.
1346
1347    If assembler and linker properly support .uaword %r_disp32(foo),
1348    then use PC relative 32-bit relocations instead of absolute relocs
1349    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1350    for binaries, to save memory.
1351
1352    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1353    symbol %r_disp32() is against was not local, but .hidden.  In that
1354    case, we have to use DW_EH_PE_absptr for pic personality.  */
1355 #ifdef HAVE_AS_SPARC_UA_PCREL
1356 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1357 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1358   (flag_pic                                                             \
1359    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1360    : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1361       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1362       : DW_EH_PE_absptr))
1363 #else
1364 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1365   (flag_pic                                                             \
1366    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))    \
1367    : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1368       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1369       : DW_EH_PE_absptr))
1370 #endif
1371
1372 /* Emit a PC-relative relocation.  */
1373 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1374   do {                                                  \
1375     fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1376     fprintf (FILE, "%%r_disp%d(", SIZE * 8);            \
1377     assemble_name (FILE, LABEL);                        \
1378     fputc (')', FILE);                                  \
1379   } while (0)
1380 #endif
1381 \f
1382 /* Addressing modes, and classification of registers for them.  */
1383
1384 /* Macros to check register numbers against specific register classes.  */
1385
1386 /* These assume that REGNO is a hard or pseudo reg number.
1387    They give nonzero only if REGNO is a hard reg of the suitable class
1388    or a pseudo reg currently allocated to a suitable hard reg.
1389    Since they use reg_renumber, they are safe only once reg_renumber
1390    has been allocated, which happens in local-alloc.c.  */
1391
1392 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1393 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1394  || (REGNO) == FRAME_POINTER_REGNUM                               \
1395  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1396
1397 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1398
1399 #define REGNO_OK_FOR_FP_P(REGNO) \
1400   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1401    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1402
1403 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1404  (TARGET_V9 \
1405   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1406       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1407 \f
1408 /* Maximum number of registers that can appear in a valid memory address.  */
1409
1410 #define MAX_REGS_PER_ADDRESS 2
1411
1412 /* Recognize any constant value that is a valid address.
1413    When PIC, we do not accept an address that would require a scratch reg
1414    to load into a register.  */
1415
1416 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1417
1418 /* Define this, so that when PIC, reload won't try to reload invalid
1419    addresses which require two reload registers.  */
1420
1421 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1422 \f
1423 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1424
1425 #ifdef HAVE_AS_OFFSETABLE_LO10
1426 #define USE_AS_OFFSETABLE_LO10 1
1427 #else
1428 #define USE_AS_OFFSETABLE_LO10 0
1429 #endif
1430 \f
1431 /* Try a machine-dependent way of reloading an illegitimate address
1432    operand.  If we find one, push the reload and jump to WIN.  This
1433    macro is used in only one place: `find_reloads_address' in reload.c.  */
1434 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)        \
1435 do {                                                                       \
1436   int win;                                                                 \
1437   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),             \
1438                                          (int)(TYPE), (IND_LEVELS), &win); \
1439   if (win)                                                                 \
1440     goto WIN;                                                              \
1441 } while (0)
1442 \f
1443 /* Specify the machine mode that this machine uses
1444    for the index in the tablejump instruction.  */
1445 /* If we ever implement any of the full models (such as CM_FULLANY),
1446    this has to be DImode in that case */
1447 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1448 #define CASE_VECTOR_MODE \
1449 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1450 #else
1451 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1452    we have to sign extend which slows things down.  */
1453 #define CASE_VECTOR_MODE \
1454 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1455 #endif
1456
1457 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1458 #define DEFAULT_SIGNED_CHAR 1
1459
1460 /* Max number of bytes we can move from memory to memory
1461    in one reasonably fast instruction.  */
1462 #define MOVE_MAX 8
1463
1464 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1465    move-instruction pairs, we will do a movmem or libcall instead.  */
1466
1467 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1468
1469 /* Define if operations between registers always perform the operation
1470    on the full register even if a narrower mode is specified.  */
1471 #define WORD_REGISTER_OPERATIONS
1472
1473 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1474    will either zero-extend or sign-extend.  The value of this macro should
1475    be the code that says which one of the two operations is implicitly
1476    done, UNKNOWN if none.  */
1477 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1478
1479 /* Nonzero if access to memory by bytes is slow and undesirable.
1480    For RISC chips, it means that access to memory by bytes is no
1481    better than access by words when possible, so grab a whole word
1482    and maybe make use of that.  */
1483 #define SLOW_BYTE_ACCESS 1
1484
1485 /* Define this to be nonzero if shift instructions ignore all but the low-order
1486    few bits.  */
1487 #define SHIFT_COUNT_TRUNCATED 1
1488
1489 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1490    is done just by pretending it is already truncated.  */
1491 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1492
1493 /* For SImode, we make sure the top 32-bits of the register are clear and
1494    then we subtract 32 from the lzd instruction result.  */
1495 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1496   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1497
1498 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1499    return the mode to be used for the comparison.  For floating-point,
1500    CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1501    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1502    processing is needed.  */
1503 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1504
1505 /* Return nonzero if MODE implies a floating point inequality can be
1506    reversed.  For SPARC this is always true because we have a full
1507    compliment of ordered and unordered comparisons, but until generic
1508    code knows how to reverse it correctly we keep the old definition.  */
1509 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1510
1511 /* A function address in a call instruction for indexing purposes.  */
1512 #define FUNCTION_MODE Pmode
1513
1514 /* Define this if addresses of constant functions
1515    shouldn't be put through pseudo regs where they can be cse'd.
1516    Desirable on machines where ordinary constants are expensive
1517    but a CALL with constant address is cheap.  */
1518 #define NO_FUNCTION_CSE
1519
1520 /* The _Q_* comparison libcalls return booleans.  */
1521 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1522
1523 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1524    that the inputs are fully consumed before the output memory is clobbered.  */
1525
1526 #define TARGET_BUGGY_QP_LIB     0
1527
1528 /* Assume by default that we do not have the Solaris-specific conversion
1529    routines nor 64-bit integer multiply and divide routines.  */
1530
1531 #define SUN_CONVERSION_LIBFUNCS         0
1532 #define DITF_CONVERSION_LIBFUNCS        0
1533 #define SUN_INTEGER_MULTIPLY_64         0
1534
1535 /* Provide the cost of a branch.  For pre-v9 processors we use
1536    a value of 3 to take into account the potential annulling of
1537    the delay slot (which ends up being a bubble in the pipeline slot)
1538    plus a cycle to take into consideration the instruction cache
1539    effects.
1540
1541    On v9 and later, which have branch prediction facilities, we set
1542    it to the depth of the pipeline as that is the cost of a
1543    mispredicted branch.
1544
1545    On Niagara, normal branches insert 3 bubbles into the pipe
1546    and annulled branches insert 4 bubbles.
1547
1548    On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1549    a taken branch costs 6 cycles.  */
1550
1551 #define BRANCH_COST(speed_p, predictable_p) \
1552         ((sparc_cpu == PROCESSOR_V9 \
1553           || sparc_cpu == PROCESSOR_ULTRASPARC) \
1554          ? 7 \
1555          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1556             ? 9 \
1557          : (sparc_cpu == PROCESSOR_NIAGARA \
1558             ? 4 \
1559          : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1560              || sparc_cpu == PROCESSOR_NIAGARA3) \
1561             ? 5 \
1562          : 3))))
1563 \f
1564 /* Control the assembler format that we output.  */
1565
1566 /* A C string constant describing how to begin a comment in the target
1567    assembler language.  The compiler assumes that the comment will end at
1568    the end of the line.  */
1569
1570 #define ASM_COMMENT_START "!"
1571
1572 /* Output to assembler file text saying following lines
1573    may contain character constants, extra white space, comments, etc.  */
1574
1575 #define ASM_APP_ON ""
1576
1577 /* Output to assembler file text saying following lines
1578    no longer contain unusual constructs.  */
1579
1580 #define ASM_APP_OFF ""
1581
1582 /* How to refer to registers in assembler output.
1583    This sequence is indexed by compiler's hard-register-number (see above).  */
1584
1585 #define REGISTER_NAMES \
1586 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",                \
1587  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",                \
1588  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",                \
1589  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",                \
1590  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",                \
1591  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",          \
1592  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",        \
1593  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",        \
1594  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",        \
1595  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",        \
1596  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",        \
1597  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",        \
1598  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1599
1600 /* Define additional names for use in asm clobbers and asm declarations.  */
1601
1602 #define ADDITIONAL_REGISTER_NAMES \
1603 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1604
1605 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1606    can run past this up to a continuation point.  Once we used 1500, but
1607    a single entry in C++ can run more than 500 bytes, due to the length of
1608    mangled symbol names.  dbxout.c should really be fixed to do
1609    continuations when they are actually needed instead of trying to
1610    guess...  */
1611 #define DBX_CONTIN_LENGTH 1000
1612
1613 /* This is how to output a command to make the user-level label named NAME
1614    defined for reference from other files.  */
1615
1616 /* Globalizing directive for a label.  */
1617 #define GLOBAL_ASM_OP "\t.global "
1618
1619 /* The prefix to add to user-visible assembler symbols.  */
1620
1621 #define USER_LABEL_PREFIX "_"
1622
1623 /* This is how to store into the string LABEL
1624    the symbol_ref name of an internal numbered label where
1625    PREFIX is the class of label and NUM is the number within the class.
1626    This is suitable for output with `assemble_name'.  */
1627
1628 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1629   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1630
1631 /* This is how we hook in and defer the case-vector until the end of
1632    the function.  */
1633 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1634   sparc_defer_case_vector ((LAB),(VEC), 0)
1635
1636 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1637   sparc_defer_case_vector ((LAB),(VEC), 1)
1638
1639 /* This is how to output an element of a case-vector that is absolute.  */
1640
1641 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1642 do {                                                                    \
1643   char label[30];                                                       \
1644   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);                      \
1645   if (CASE_VECTOR_MODE == SImode)                                       \
1646     fprintf (FILE, "\t.word\t");                                        \
1647   else                                                                  \
1648     fprintf (FILE, "\t.xword\t");                                       \
1649   assemble_name (FILE, label);                                          \
1650   fputc ('\n', FILE);                                                   \
1651 } while (0)
1652
1653 /* This is how to output an element of a case-vector that is relative.
1654    (SPARC uses such vectors only when generating PIC.)  */
1655
1656 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
1657 do {                                                                    \
1658   char label[30];                                                       \
1659   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));                    \
1660   if (CASE_VECTOR_MODE == SImode)                                       \
1661     fprintf (FILE, "\t.word\t");                                        \
1662   else                                                                  \
1663     fprintf (FILE, "\t.xword\t");                                       \
1664   assemble_name (FILE, label);                                          \
1665   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));                      \
1666   fputc ('-', FILE);                                                    \
1667   assemble_name (FILE, label);                                          \
1668   fputc ('\n', FILE);                                                   \
1669 } while (0)
1670
1671 /* This is what to output before and after case-vector (both
1672    relative and absolute).  If .subsection -1 works, we put case-vectors
1673    at the beginning of the current section.  */
1674
1675 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1676
1677 #define ASM_OUTPUT_ADDR_VEC_START(FILE)                                 \
1678   fprintf(FILE, "\t.subsection\t-1\n")
1679
1680 #define ASM_OUTPUT_ADDR_VEC_END(FILE)                                   \
1681   fprintf(FILE, "\t.previous\n")
1682
1683 #endif
1684
1685 /* This is how to output an assembler line
1686    that says to advance the location counter
1687    to a multiple of 2**LOG bytes.  */
1688
1689 #define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1690   if ((LOG) != 0)                       \
1691     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1692
1693 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1694   fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1695
1696 /* This says how to output an assembler line
1697    to define a global common symbol.  */
1698
1699 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1700 ( fputs ("\t.common ", (FILE)),         \
1701   assemble_name ((FILE), (NAME)),               \
1702   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1703
1704 /* This says how to output an assembler line to define a local common
1705    symbol.  */
1706
1707 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)             \
1708 ( fputs ("\t.reserve ", (FILE)),                                        \
1709   assemble_name ((FILE), (NAME)),                                       \
1710   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",      \
1711            (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1712
1713 /* A C statement (sans semicolon) to output to the stdio stream
1714    FILE the assembler definition of uninitialized global DECL named
1715    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1716    Try to use asm_output_aligned_bss to implement this macro.  */
1717
1718 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
1719   do {                                                          \
1720     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);         \
1721   } while (0)
1722
1723 #define IDENT_ASM_OP "\t.ident\t"
1724
1725 /* Output #ident as a .ident.  */
1726
1727 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1728   fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
1729
1730 /* Prettify the assembly.  */
1731
1732 extern int sparc_indent_opcode;
1733
1734 #define ASM_OUTPUT_OPCODE(FILE, PTR)    \
1735   do {                                  \
1736     if (sparc_indent_opcode)            \
1737       {                                 \
1738         putc (' ', FILE);               \
1739         sparc_indent_opcode = 0;        \
1740       }                                 \
1741   } while (0)
1742
1743 /* TLS support defaulting to original Sun flavor.  GNU extensions
1744    must be activated in separate configuration files.  */
1745 #ifdef HAVE_AS_TLS
1746 #define TARGET_TLS 1
1747 #else
1748 #define TARGET_TLS 0
1749 #endif
1750
1751 #define TARGET_SUN_TLS TARGET_TLS
1752 #define TARGET_GNU_TLS 0
1753
1754 #ifndef HAVE_AS_FMAF_HPC_VIS3
1755 #define AS_NIAGARA3_FLAG "b"
1756 #else
1757 #define AS_NIAGARA3_FLAG "d"
1758 #endif
1759
1760 /* The number of Pmode words for the setjmp buffer.  */
1761 #define JMP_BUF_SIZE 12
1762
1763 /* We use gcc _mcount for profiling.  */
1764 #define NO_PROFILE_COUNTERS 0
1765
1766 /* Debug support */
1767 #define MASK_DEBUG_OPTIONS              0x01    /* debug option handling */
1768 #define MASK_DEBUG_ALL                  MASK_DEBUG_OPTIONS
1769
1770 #define TARGET_DEBUG_OPTIONS            (sparc_debug & MASK_DEBUG_OPTIONS)