OSDN Git Service

a21bc727aabec1af554e27b7ea99f66e462a2a19
[pf3gnuchains/gcc-fork.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3    2007, 2008, 2009 Free Software Foundation, Inc.
4    Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5                   Ulrich Weigand (uweigand@de.ibm.com).
6                   Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23
24 #ifndef _S390_H
25 #define _S390_H
26
27 /* Override the __fixdfdi etc. routines when building libgcc2.
28    ??? This should be done in a cleaner way ...  */
29 #if defined (IN_LIBGCC2) && !defined (__s390x__)
30 #include <config/s390/fixdfdi.h>
31 #endif
32
33 /* Which processor to generate code or schedule for. The cpu attribute
34    defines a list that mirrors this list, so changes to s390.md must be
35    made at the same time.  */
36
37 enum processor_type
38 {
39   PROCESSOR_9672_G5,
40   PROCESSOR_9672_G6,
41   PROCESSOR_2064_Z900,
42   PROCESSOR_2084_Z990,
43   PROCESSOR_2094_Z9_109,
44   PROCESSOR_2097_Z10,
45   PROCESSOR_max
46 };
47
48 /* Optional architectural facilities supported by the processor.  */
49
50 enum processor_flags
51 {
52   PF_IEEE_FLOAT = 1,
53   PF_ZARCH = 2,
54   PF_LONG_DISPLACEMENT = 4,
55   PF_EXTIMM = 8,
56   PF_DFP = 16,
57   PF_Z10 = 32
58 };
59
60 extern enum processor_type s390_tune;
61 extern int s390_tune_flags;
62
63 /* This is necessary to avoid a warning about comparing different enum
64    types.  */
65 #define s390_tune_attr ((enum attr_cpu)s390_tune)
66
67 extern enum processor_type s390_arch;
68 extern int s390_arch_flags;
69
70 /* These flags indicate that the generated code should run on a cpu
71    providing the respective hardware facility regardless of the
72    current cpu mode (ESA or z/Architecture).  */
73
74 #define TARGET_CPU_IEEE_FLOAT \
75         (s390_arch_flags & PF_IEEE_FLOAT)
76 #define TARGET_CPU_ZARCH \
77         (s390_arch_flags & PF_ZARCH)
78 #define TARGET_CPU_LONG_DISPLACEMENT \
79         (s390_arch_flags & PF_LONG_DISPLACEMENT)
80 #define TARGET_CPU_EXTIMM \
81         (s390_arch_flags & PF_EXTIMM)
82 #define TARGET_CPU_DFP \
83         (s390_arch_flags & PF_DFP)
84 #define TARGET_CPU_Z10 \
85         (s390_arch_flags & PF_Z10)
86
87 /* These flags indicate that the generated code should run on a cpu
88    providing the respective hardware facility when run in
89    z/Architecture mode.  */
90
91 #define TARGET_LONG_DISPLACEMENT \
92        (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
93 #define TARGET_EXTIMM \
94        (TARGET_ZARCH && TARGET_CPU_EXTIMM)
95 #define TARGET_DFP \
96        (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
97 #define TARGET_Z10 \
98        (TARGET_ZARCH && TARGET_CPU_Z10)
99
100 /* Run-time target specification.  */
101
102 /* Defaults for option flags defined only on some subtargets.  */
103 #ifndef TARGET_TPF_PROFILING
104 #define TARGET_TPF_PROFILING 0
105 #endif
106
107 /* This will be overridden by OS headers.  */
108 #define TARGET_TPF 0
109
110 /* Target CPU builtins.  */
111 #define TARGET_CPU_CPP_BUILTINS()                       \
112   do                                                    \
113     {                                                   \
114       builtin_assert ("cpu=s390");                      \
115       builtin_assert ("machine=s390");                  \
116       builtin_define ("__s390__");                      \
117       if (TARGET_64BIT)                                 \
118         builtin_define ("__s390x__");                   \
119       if (TARGET_LONG_DOUBLE_128)                       \
120         builtin_define ("__LONG_DOUBLE_128__");         \
121     }                                                   \
122   while (0)
123
124 #ifdef DEFAULT_TARGET_64BIT
125 #define TARGET_DEFAULT             (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
126 #else
127 #define TARGET_DEFAULT             0
128 #endif
129
130 /* Support for configure-time defaults.  */
131 #define OPTION_DEFAULT_SPECS                                    \
132   { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" },                 \
133   { "arch", "%{!march=*:-march=%(VALUE)}" },                    \
134   { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
135
136 /* Defaulting rules.  */
137 #ifdef DEFAULT_TARGET_64BIT
138 #define DRIVER_SELF_SPECS                                       \
139   "%{!m31:%{!m64:-m64}}",                                       \
140   "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",             \
141   "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
142 #else
143 #define DRIVER_SELF_SPECS                                       \
144   "%{!m31:%{!m64:-m31}}",                                       \
145   "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",             \
146   "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
147 #endif
148
149 /* Target version string.  Overridden by the OS header.  */
150 #ifdef DEFAULT_TARGET_64BIT
151 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
152 #else
153 #define TARGET_VERSION fprintf (stderr, " (S/390)");
154 #endif
155
156 /* Hooks to override options.  */
157 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
158 #define OVERRIDE_OPTIONS override_options ()
159
160 /* Frame pointer is not used for debugging.  */
161 #define CAN_DEBUG_WITHOUT_FP
162
163 /* Constants needed to control the TEST DATA CLASS (TDC) instruction.  */
164 #define S390_TDC_POSITIVE_ZERO                     (1 << 11)
165 #define S390_TDC_NEGATIVE_ZERO                     (1 << 10)
166 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER    (1 << 9)
167 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER    (1 << 8)
168 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER  (1 << 7)
169 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER  (1 << 6)
170 #define S390_TDC_POSITIVE_INFINITY                 (1 << 5)
171 #define S390_TDC_NEGATIVE_INFINITY                 (1 << 4)
172 #define S390_TDC_POSITIVE_QUIET_NAN                (1 << 3)
173 #define S390_TDC_NEGATIVE_QUIET_NAN                (1 << 2)
174 #define S390_TDC_POSITIVE_SIGNALING_NAN            (1 << 1)
175 #define S390_TDC_NEGATIVE_SIGNALING_NAN            (1 << 0)
176
177 /* The following values are different for DFP.  */
178 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
179 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
180 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER   (1 << 7)
181 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER   (1 << 6)
182
183 /* For signbit, the BFP-DFP-difference makes no difference. */ 
184 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
185                           | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
186                           | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
187                           | S390_TDC_NEGATIVE_INFINITY \
188                           | S390_TDC_NEGATIVE_QUIET_NAN \
189                           | S390_TDC_NEGATIVE_SIGNALING_NAN )
190
191 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
192                           | S390_TDC_NEGATIVE_INFINITY )
193
194 /* In libgcc2, determine target settings as compile-time constants.  */
195 #ifdef IN_LIBGCC2
196 #undef TARGET_64BIT
197 #ifdef __s390x__
198 #define TARGET_64BIT 1
199 #else
200 #define TARGET_64BIT 0
201 #endif
202 #endif
203
204
205 /* Target machine storage layout.  */
206
207 /* Everything is big-endian.  */
208 #define BITS_BIG_ENDIAN 1
209 #define BYTES_BIG_ENDIAN 1
210 #define WORDS_BIG_ENDIAN 1
211
212 /* Width of a word, in units (bytes).  */
213 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
214 #ifndef IN_LIBGCC2
215 #define MIN_UNITS_PER_WORD 4
216 #endif
217 #define MAX_BITS_PER_WORD 64
218
219 /* Function arguments and return values are promoted to word size.  */
220 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE)            \
221 if (INTEGRAL_MODE_P (MODE) &&                           \
222     GET_MODE_SIZE (MODE) < UNITS_PER_WORD) {            \
223   (MODE) = Pmode;                                       \
224           }
225
226 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
227 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
228
229 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
230 #define STACK_BOUNDARY 64
231
232 /* Allocation boundary (in *bits*) for the code of a function.  */
233 #define FUNCTION_BOUNDARY 32
234
235 /* There is no point aligning anything to a rounder boundary than this.  */
236 #define BIGGEST_ALIGNMENT 64
237
238 /* Alignment of field after `int : 0' in a structure.  */
239 #define EMPTY_FIELD_BOUNDARY 32
240
241 /* Alignment on even addresses for LARL instruction.  */
242 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
243 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
244
245 /* Alignment is not required by the hardware.  */
246 #define STRICT_ALIGNMENT 0
247
248 /* Mode of stack savearea.
249    FUNCTION is VOIDmode because calling convention maintains SP.
250    BLOCK needs Pmode for SP.
251    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
252 #define STACK_SAVEAREA_MODE(LEVEL)      \
253   (LEVEL == SAVE_FUNCTION ? VOIDmode    \
254   : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
255
256
257 /* Type layout.  */
258
259 /* Sizes in bits of the source language data types.  */
260 #define SHORT_TYPE_SIZE 16
261 #define INT_TYPE_SIZE 32
262 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
263 #define LONG_LONG_TYPE_SIZE 64
264 #define FLOAT_TYPE_SIZE 32
265 #define DOUBLE_TYPE_SIZE 64
266 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
267
268 /* Define this to set long double type size to use in libgcc2.c, which can
269    not depend on target_flags.  */
270 #ifdef __LONG_DOUBLE_128__
271 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
272 #else
273 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
274 #endif
275
276 /* Work around target_flags dependency in ada/targtyps.c.  */
277 #define WIDEST_HARDWARE_FP_SIZE 64
278
279 /* We use "unsigned char" as default.  */
280 #define DEFAULT_SIGNED_CHAR 0
281
282
283 /* Register usage.  */
284
285 /* We have 16 general purpose registers (registers 0-15),
286    and 16 floating point registers (registers 16-31).
287    (On non-IEEE machines, we have only 4 fp registers.)
288
289    Amongst the general purpose registers, some are used
290    for specific purposes:
291    GPR 11: Hard frame pointer (if needed)
292    GPR 12: Global offset table pointer (if needed)
293    GPR 13: Literal pool base register
294    GPR 14: Return address register
295    GPR 15: Stack pointer
296
297    Registers 32-35 are 'fake' hard registers that do not
298    correspond to actual hardware:
299    Reg 32: Argument pointer
300    Reg 33: Condition code
301    Reg 34: Frame pointer  
302    Reg 35: Return address pointer
303
304    Registers 36 and 37 are mapped to access registers 
305    0 and 1, used to implement thread-local storage.  */
306
307 #define FIRST_PSEUDO_REGISTER 38
308
309 /* Standard register usage.  */
310 #define GENERAL_REGNO_P(N)      ((int)(N) >= 0 && (N) < 16)
311 #define ADDR_REGNO_P(N)         ((N) >= 1 && (N) < 16)
312 #define FP_REGNO_P(N)           ((N) >= 16 && (N) < 32)
313 #define CC_REGNO_P(N)           ((N) == 33)
314 #define FRAME_REGNO_P(N)        ((N) == 32 || (N) == 34 || (N) == 35)
315 #define ACCESS_REGNO_P(N)       ((N) == 36 || (N) == 37)
316
317 #define GENERAL_REG_P(X)        (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
318 #define ADDR_REG_P(X)           (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
319 #define FP_REG_P(X)             (REG_P (X) && FP_REGNO_P (REGNO (X)))
320 #define CC_REG_P(X)             (REG_P (X) && CC_REGNO_P (REGNO (X)))
321 #define FRAME_REG_P(X)          (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
322 #define ACCESS_REG_P(X)         (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
323
324 /* Set up fixed registers and calling convention:
325
326    GPRs 0-5 are always call-clobbered,
327    GPRs 6-15 are always call-saved.
328    GPR 12 is fixed if used as GOT pointer.
329    GPR 13 is always fixed (as literal pool pointer).
330    GPR 14 is always fixed on S/390 machines (as return address).
331    GPR 15 is always fixed (as stack pointer).
332    The 'fake' hard registers are call-clobbered and fixed.
333    The access registers are call-saved and fixed.
334
335    On 31-bit, FPRs 18-19 are call-clobbered;
336    on 64-bit, FPRs 24-31 are call-clobbered.
337    The remaining FPRs are call-saved.  */
338
339 #define FIXED_REGISTERS                         \
340 { 0, 0, 0, 0,                                   \
341   0, 0, 0, 0,                                   \
342   0, 0, 0, 0,                                   \
343   0, 1, 1, 1,                                   \
344   0, 0, 0, 0,                                   \
345   0, 0, 0, 0,                                   \
346   0, 0, 0, 0,                                   \
347   0, 0, 0, 0,                                   \
348   1, 1, 1, 1,                                   \
349   1, 1 }
350
351 #define CALL_USED_REGISTERS                     \
352 { 1, 1, 1, 1,                                   \
353   1, 1, 0, 0,                                   \
354   0, 0, 0, 0,                                   \
355   0, 1, 1, 1,                                   \
356   1, 1, 1, 1,                                   \
357   1, 1, 1, 1,                                   \
358   1, 1, 1, 1,                                   \
359   1, 1, 1, 1,                                   \
360   1, 1, 1, 1,                                   \
361   1, 1 }
362
363 #define CALL_REALLY_USED_REGISTERS              \
364 { 1, 1, 1, 1,                                   \
365   1, 1, 0, 0,                                   \
366   0, 0, 0, 0,                                   \
367   0, 0, 0, 0,                                   \
368   1, 1, 1, 1,                                   \
369   1, 1, 1, 1,                                   \
370   1, 1, 1, 1,                                   \
371   1, 1, 1, 1,                                   \
372   1, 1, 1, 1,                                   \
373   0, 0 }
374
375 #define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
376
377 /* Preferred register allocation order.  */
378 #define REG_ALLOC_ORDER                                         \
379 {  1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13,            \
380    16, 17, 18, 19, 20, 21, 22, 23,                              \
381    24, 25, 26, 27, 28, 29, 30, 31,                              \
382    15, 32, 33, 34, 35, 36, 37 }
383
384
385 /* Fitting values into registers.  */
386
387 /* Integer modes <= word size fit into any GPR.
388    Integer modes > word size fit into successive GPRs, starting with
389    an even-numbered register.
390    SImode and DImode fit into FPRs as well.
391
392    Floating point modes <= word size fit into any FPR or GPR.
393    Floating point modes > word size (i.e. DFmode on 32-bit) fit
394    into any FPR, or an even-odd GPR pair.
395    TFmode fits only into an even-odd FPR pair.
396
397    Complex floating point modes fit either into two FPRs, or into
398    successive GPRs (again starting with an even number).
399    TCmode fits only into two successive even-odd FPR pairs.
400
401    Condition code modes fit only into the CC register.  */
402
403 /* Because all registers in a class have the same size HARD_REGNO_NREGS
404    is equivalent to CLASS_MAX_NREGS.  */
405 #define HARD_REGNO_NREGS(REGNO, MODE)                           \
406   s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
407
408 #define HARD_REGNO_MODE_OK(REGNO, MODE)         \
409   s390_hard_regno_mode_ok ((REGNO), (MODE))
410
411 #define HARD_REGNO_RENAME_OK(FROM, TO)          \
412   s390_hard_regno_rename_ok (FROM, TO)
413
414 #define MODES_TIEABLE_P(MODE1, MODE2)           \
415    (((MODE1) == SFmode || (MODE1) == DFmode)    \
416    == ((MODE2) == SFmode || (MODE2) == DFmode))
417
418 /* Maximum number of registers to represent a value of mode MODE
419    in a register of class CLASS.  */
420 #define CLASS_MAX_NREGS(CLASS, MODE)                                    \
421   s390_class_max_nregs ((CLASS), (MODE))
422
423 /* If a 4-byte value is loaded into a FPR, it is placed into the
424    *upper* half of the register, not the lower.  Therefore, we
425    cannot use SUBREGs to switch between modes in FP registers.
426    Likewise for access registers, since they have only half the
427    word size on 64-bit.  */
428 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                       \
429   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)                           \
430    ? ((reg_classes_intersect_p (FP_REGS, CLASS)                         \
431        && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8))         \
432       || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
433
434 /* Register classes.  */
435
436 /* We use the following register classes:
437    GENERAL_REGS     All general purpose registers
438    ADDR_REGS        All general purpose registers except %r0
439                     (These registers can be used in address generation)
440    FP_REGS          All floating point registers
441    CC_REGS          The condition code register
442    ACCESS_REGS      The access registers
443
444    GENERAL_FP_REGS  Union of GENERAL_REGS and FP_REGS
445    ADDR_FP_REGS     Union of ADDR_REGS and FP_REGS
446    GENERAL_CC_REGS  Union of GENERAL_REGS and CC_REGS
447    ADDR_CC_REGS     Union of ADDR_REGS and CC_REGS
448
449    NO_REGS          No registers
450    ALL_REGS         All registers
451
452    Note that the 'fake' frame pointer and argument pointer registers
453    are included amongst the address registers here.  */
454
455 enum reg_class
456 {
457   NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
458   ADDR_CC_REGS, GENERAL_CC_REGS, 
459   FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
460   ALL_REGS, LIM_REG_CLASSES
461 };
462 #define N_REG_CLASSES (int) LIM_REG_CLASSES
463
464 #define REG_CLASS_NAMES                                                 \
465 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS",     \
466   "ADDR_CC_REGS", "GENERAL_CC_REGS",                                    \
467   "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
468
469 /* Class -> register mapping.  */
470 #define REG_CLASS_CONTENTS \
471 {                                                       \
472   { 0x00000000, 0x00000000 },   /* NO_REGS */           \
473   { 0x00000000, 0x00000002 },   /* CC_REGS */           \
474   { 0x0000fffe, 0x0000000d },   /* ADDR_REGS */         \
475   { 0x0000ffff, 0x0000000d },   /* GENERAL_REGS */      \
476   { 0x00000000, 0x00000030 },   /* ACCESS_REGS */       \
477   { 0x0000fffe, 0x0000000f },   /* ADDR_CC_REGS */      \
478   { 0x0000ffff, 0x0000000f },   /* GENERAL_CC_REGS */   \
479   { 0xffff0000, 0x00000000 },   /* FP_REGS */           \
480   { 0xfffffffe, 0x0000000d },   /* ADDR_FP_REGS */      \
481   { 0xffffffff, 0x0000000d },   /* GENERAL_FP_REGS */   \
482   { 0xffffffff, 0x0000003f },   /* ALL_REGS */          \
483 }
484
485 /* The following macro defines cover classes for Integrated Register
486    Allocator.  Cover classes is a set of non-intersected register
487    classes covering all hard registers used for register allocation
488    purpose.  Any move between two registers of a cover class should be
489    cheaper than load or store of the registers.  The macro value is
490    array of register classes with LIM_REG_CLASSES used as the end
491    marker.  */
492
493 #define IRA_COVER_CLASSES                                                    \
494 {                                                                            \
495   GENERAL_REGS, FP_REGS, CC_REGS, ACCESS_REGS, LIM_REG_CLASSES               \
496 }
497
498 /* In some case register allocation order is not enough for IRA to
499    generate a good code.  The following macro (if defined) increases
500    cost of REGNO for a pseudo approximately by pseudo usage frequency
501    multiplied by the macro value.
502
503    We avoid usage of BASE_REGNUM by nonzero macro value because the
504    reload can decide not to use the hard register because some
505    constant was forced to be in memory.  */
506 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno)       \
507   (regno == BASE_REGNUM ? 0.0 : 0.5)
508
509 /* Register -> class mapping.  */
510 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
511 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
512
513 /* ADDR_REGS can be used as base or index register.  */
514 #define INDEX_REG_CLASS ADDR_REGS
515 #define BASE_REG_CLASS ADDR_REGS
516
517 /* Check whether REGNO is a hard register of the suitable class
518    or a pseudo register currently allocated to one such.  */
519 #define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
520     (((REGNO) < FIRST_PSEUDO_REGISTER                                   \
521       && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS)                        \
522      || ADDR_REGNO_P (reg_renumber[REGNO]))
523 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
524
525
526 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
527    return the class of reg to actually use.  */
528 #define PREFERRED_RELOAD_CLASS(X, CLASS)        \
529   s390_preferred_reload_class ((X), (CLASS))
530
531 /* We need secondary memory to move data between GPRs and FPRs.  With
532    DFP the ldgr lgdr instructions are available.  But these
533    instructions do not handle GPR pairs so it is not possible for 31
534    bit.  */
535 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
536  ((CLASS1) != (CLASS2)                                \
537   && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS)     \
538   && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
539
540 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
541    because the movsi and movsf patterns don't handle r/f moves.  */
542 #define SECONDARY_MEMORY_NEEDED_MODE(MODE)              \
543  (GET_MODE_BITSIZE (MODE) < 32                          \
544   ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)        \
545   : MODE)
546
547
548 /* Stack layout and calling conventions.  */
549
550 /* Our stack grows from higher to lower addresses.  However, local variables
551    are accessed by positive offsets, and function arguments are stored at
552    increasing addresses.  */
553 #define STACK_GROWS_DOWNWARD
554 #define FRAME_GROWS_DOWNWARD 1
555 /* #undef ARGS_GROW_DOWNWARD */
556
557 /* The basic stack layout looks like this: the stack pointer points
558    to the register save area for called functions.  Above that area
559    is the location to place outgoing arguments.  Above those follow
560    dynamic allocations (alloca), and finally the local variables.  */
561
562 /* Offset from stack-pointer to first location of outgoing args.  */
563 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
564
565 /* Offset within stack frame to start allocating local variables at.  */
566 #define STARTING_FRAME_OFFSET 0
567
568 /* Offset from the stack pointer register to an item dynamically
569    allocated on the stack, e.g., by `alloca'.  */
570 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
571   (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
572
573 /* Offset of first parameter from the argument pointer register value.
574    We have a fake argument pointer register that points directly to
575    the argument area.  */
576 #define FIRST_PARM_OFFSET(FNDECL) 0
577
578 /* Defining this macro makes __builtin_frame_address(0) and 
579    __builtin_return_address(0) work with -fomit-frame-pointer.  */
580 #define INITIAL_FRAME_ADDRESS_RTX                                             \
581   (plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
582
583 /* The return address of the current frame is retrieved
584    from the initial value of register RETURN_REGNUM.
585    For frames farther back, we use the stack slot where
586    the corresponding RETURN_REGNUM register was saved.  */
587 #define DYNAMIC_CHAIN_ADDRESS(FRAME)                                          \
588   (TARGET_PACKED_STACK ?                                                      \
589    plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_WORD) : (FRAME))
590
591 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
592    builtin_frame_address.  Otherwise arg pointer -
593    STACK_POINTER_OFFSET would be returned for
594    __builtin_frame_address(0) what might result in an address pointing
595    somewhere into the middle of the local variables since the packed
596    stack layout generally does not need all the bytes in the register
597    save area.  */
598 #define FRAME_ADDR_RTX(FRAME)                   \
599   DYNAMIC_CHAIN_ADDRESS ((FRAME))
600
601 #define RETURN_ADDR_RTX(COUNT, FRAME)                                         \
602   s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
603
604 /* In 31-bit mode, we need to mask off the high bit of return addresses.  */
605 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
606
607
608 /* Exception handling.  */
609
610 /* Describe calling conventions for DWARF-2 exception handling.  */
611 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, RETURN_REGNUM)
612 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
613 #define DWARF_FRAME_RETURN_COLUMN  14
614
615 /* Describe how we implement __builtin_eh_return.  */
616 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
617 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
618        
619 /* Select a format to encode pointers in exception handling data.  */
620 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                          \
621   (flag_pic                                                                 \
622     ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
623    : DW_EH_PE_absptr)
624
625
626 /* Frame registers.  */
627
628 #define STACK_POINTER_REGNUM 15
629 #define FRAME_POINTER_REGNUM 34
630 #define HARD_FRAME_POINTER_REGNUM 11
631 #define ARG_POINTER_REGNUM 32
632 #define RETURN_ADDRESS_POINTER_REGNUM 35
633
634 /* The static chain must be call-clobbered, but not used for
635    function argument passing.  As register 1 is clobbered by
636    the trampoline code, we only have one option.  */
637 #define STATIC_CHAIN_REGNUM 0
638
639 /* Number of hardware registers that go into the DWARF-2 unwind info.
640    To avoid ABI incompatibility, this number must not change even as
641    'fake' hard registers are added or removed.  */
642 #define DWARF_FRAME_REGISTERS 34
643
644
645 /* Frame pointer and argument pointer elimination.  */
646
647 #define FRAME_POINTER_REQUIRED 0
648
649 #define ELIMINABLE_REGS                                         \
650 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },                \
651  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },           \
652  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },                  \
653  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },             \
654  { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM },       \
655  { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },  \
656  { BASE_REGNUM, BASE_REGNUM }}
657
658 #define CAN_ELIMINATE(FROM, TO) \
659   s390_can_eliminate ((FROM), (TO))
660
661 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
662   (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
663
664
665 /* Stack arguments.  */
666
667 /* We need current_function_outgoing_args to be valid.  */
668 #define ACCUMULATE_OUTGOING_ARGS 1
669
670 /* Return doesn't modify the stack.  */
671 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
672
673
674 /* Register arguments.  */
675
676 typedef struct s390_arg_structure
677 {
678   int gprs;                     /* gpr so far */
679   int fprs;                     /* fpr so far */
680 }
681 CUMULATIVE_ARGS;
682
683 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
684   ((CUM).gprs=0, (CUM).fprs=0)
685
686 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
687   s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
688
689 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)   \
690   s390_function_arg (&CUM, MODE, TYPE, NAMED)
691
692 /* Arguments can be placed in general registers 2 to 6, or in floating
693    point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
694    bit.  */
695 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
696   (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
697
698
699 /* Scalar return values.  */
700
701 #define FUNCTION_VALUE(VALTYPE, FUNC) \
702   s390_function_value ((VALTYPE), VOIDmode)
703
704 #define LIBCALL_VALUE(MODE) \
705   s390_function_value (NULL, (MODE))
706
707 /* Only gpr 2 and fpr 0 are ever used as return registers.  */
708 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
709
710
711 /* Function entry and exit.  */
712
713 /* When returning from a function, the stack pointer does not matter.  */
714 #define EXIT_IGNORE_STACK       1
715
716
717 /* Profiling.  */
718
719 #define FUNCTION_PROFILER(FILE, LABELNO)                        \
720   s390_function_profiler ((FILE), ((LABELNO)))
721
722 #define PROFILE_BEFORE_PROLOGUE 1
723
724
725 /* Trampolines for nested functions.  */
726
727 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
728
729 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)                       \
730    s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
731
732 #define TRAMPOLINE_TEMPLATE(FILE)                                       \
733    s390_trampoline_template (FILE)
734
735
736 /* Addressing modes, and classification of registers for them.  */
737
738 /* Recognize any constant value that is a valid address.  */
739 #define CONSTANT_ADDRESS_P(X) 0
740
741 /* Maximum number of registers that can appear in a valid memory address.  */
742 #define MAX_REGS_PER_ADDRESS 2
743
744 /* This definition replaces the formerly used 'm' constraint with a
745 different constraint letter in order to avoid changing semantics of
746 the 'm' constraint when accepting new address formats in
747 legitimate_address_p.  The constraint letter defined here must not be
748 used in insn definitions or inline assemblies.  */
749 #define TARGET_MEM_CONSTRAINT 'e'
750
751 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
752    valid memory address for an instruction.
753    The MODE argument is the machine mode for the MEM expression
754    that wants to use this address.  */
755 #ifdef REG_OK_STRICT
756 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
757 {                                                                       \
758   if (legitimate_address_p (MODE, X, 1))                                \
759     goto ADDR;                                                          \
760 }
761 #else
762 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)                         \
763 {                                                                       \
764   if (legitimate_address_p (MODE, X, 0))                                \
765     goto ADDR;                                                          \
766 }
767 #endif
768
769 /* Try machine-dependent ways of modifying an illegitimate address
770    to be legitimate.  If we find one, return the new, valid address.
771    This macro is used in only one place: `memory_address' in explow.c.  */
772 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)                          \
773 {                                                                       \
774   (X) = legitimize_address (X, OLDX, MODE);                             \
775   if (memory_address_p (MODE, X))                                       \
776     goto WIN;                                                           \
777 }
778
779 /* Try a machine-dependent way of reloading an illegitimate address
780    operand.  If we find one, push the reload and jump to WIN.  This
781    macro is used in only one place: `find_reloads_address' in reload.c.  */
782 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)      \
783 do {                                                                    \
784   rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE));       \
785   if (new_rtx)                                                          \
786     {                                                                   \
787       (AD) = new_rtx;                                                   \
788       goto WIN;                                                         \
789     }                                                                   \
790 } while (0)
791
792 /* Nonzero if the constant value X is a legitimate general operand.
793    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
794 #define LEGITIMATE_CONSTANT_P(X) \
795      legitimate_constant_p (X)
796
797 /* Helper macro for s390.c and s390.md to check for symbolic constants.  */
798 #define SYMBOLIC_CONST(X)       \
799 (GET_CODE (X) == SYMBOL_REF                                             \
800  || GET_CODE (X) == LABEL_REF                                           \
801  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
802
803 #define TLS_SYMBOLIC_CONST(X)   \
804 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X))       \
805  || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
806
807
808 /* Condition codes.  */
809
810 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
811    return the mode to be used for the comparison.  */
812 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
813
814 /* Canonicalize a comparison from one we don't have to one we do have.  */
815 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
816   s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
817
818 /* Define the information needed to generate branch and scc insns.  This is
819    stored from the compare operation.  Note that we can't use "rtx" here
820    since it hasn't been defined!  */
821 extern struct rtx_def *s390_compare_op0, *s390_compare_op1;
822
823
824 /* Relative costs of operations.  */
825
826 /* On s390, copy between fprs and gprs is expensive.  */
827 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)                        \
828   ((   (   reg_classes_intersect_p ((CLASS1), GENERAL_REGS)             \
829         && reg_classes_intersect_p ((CLASS2), FP_REGS))                 \
830     || (   reg_classes_intersect_p ((CLASS1), FP_REGS)                  \
831         && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
832
833 /* A C expression for the cost of moving data of mode M between a
834    register and memory.  A value of 2 is the default; this cost is
835    relative to those in `REGISTER_MOVE_COST'.  */
836 #define MEMORY_MOVE_COST(M, C, I) 1
837
838 /* A C expression for the cost of a branch instruction.  A value of 1
839    is the default; other values are interpreted relative to that.  */
840 #define BRANCH_COST(speed_p, predictable_p) 1
841
842 /* Nonzero if access to memory by bytes is slow and undesirable.  */
843 #define SLOW_BYTE_ACCESS 1
844
845 /* An integer expression for the size in bits of the largest integer machine
846    mode that should actually be used.  We allow pairs of registers.  */ 
847 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
848
849 /* The maximum number of bytes that a single instruction can move quickly
850    between memory and registers or between two memory locations.  */
851 #define MOVE_MAX (TARGET_64BIT ? 16 : 8)
852 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
853 #define MAX_MOVE_MAX 16
854
855 /* Determine whether to use move_by_pieces or block move insn.  */
856 #define MOVE_BY_PIECES_P(SIZE, ALIGN)           \
857   ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4   \
858     || (TARGET_64BIT && (SIZE) == 8) )
859
860 /* Determine whether to use clear_by_pieces or block clear insn.  */
861 #define CLEAR_BY_PIECES_P(SIZE, ALIGN)          \
862   ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4   \
863     || (TARGET_64BIT && (SIZE) == 8) )
864
865 /* This macro is used to determine whether store_by_pieces should be
866    called to "memcpy" storage when the source is a constant string.  */
867 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
868
869 /* Likewise to decide whether to "memset" storage with byte values
870    other than zero.  */
871 #define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
872
873 /* Don't perform CSE on function addresses.  */
874 #define NO_FUNCTION_CSE
875
876 /* This value is used in tree-sra to decide whether it might benefical
877    to split a struct move into several word-size moves.  For S/390
878    only small values make sense here since struct moves are relatively
879    cheap thanks to mvc so the small default value choosen for archs
880    with memmove patterns should be ok.  But this value is multiplied
881    in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
882    here to compensate for that factor since mvc costs exactly the same
883    on 31 and 64 bit.  */
884 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
885
886
887 /* Sections.  */
888
889 /* Output before read-only data.  */
890 #define TEXT_SECTION_ASM_OP ".text"
891
892 /* Output before writable (initialized) data.  */
893 #define DATA_SECTION_ASM_OP ".data"
894
895 /* Output before writable (uninitialized) data.  */
896 #define BSS_SECTION_ASM_OP ".bss"
897
898 /* S/390 constant pool breaks the devices in crtstuff.c to control section
899    in where code resides.  We have to write it as asm code.  */
900 #ifndef __s390x__
901 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
902     asm (SECTION_OP "\n\
903         bras\t%r2,1f\n\
904 0:      .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
905 1:      l\t%r3,0(%r2)\n\
906         bas\t%r14,0(%r3,%r2)\n\
907         .previous");
908 #endif
909
910
911 /* Position independent code.  */
912
913 extern int flag_pic;
914
915 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
916
917 #define LEGITIMATE_PIC_OPERAND_P(X)  legitimate_pic_operand_p (X)
918
919
920 /* Assembler file format.  */
921
922 /* Character to start a comment.  */
923 #define ASM_COMMENT_START "#"
924
925 /* Declare an uninitialized external linkage data object.  */
926 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
927   asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
928
929 /* Globalizing directive for a label.  */
930 #define GLOBAL_ASM_OP ".globl "
931
932 /* Advance the location counter to a multiple of 2**LOG bytes.  */
933 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
934   if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
935
936 /* Advance the location counter by SIZE bytes.  */
937 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
938   fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
939
940 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h.  */
941 #define LOCAL_LABEL_PREFIX "."
942
943 /* How to refer to registers in assembler output.  This sequence is
944    indexed by compiler's hard-register-number (see above).  */
945 #define REGISTER_NAMES                                                  \
946 { "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",        \
947   "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",       \
948   "%f0",  "%f2",  "%f4",  "%f6",  "%f1",  "%f3",  "%f5",  "%f7",        \
949   "%f8",  "%f10", "%f12", "%f14", "%f9",  "%f11", "%f13", "%f15",       \
950   "%ap",  "%cc",  "%fp",  "%rp",  "%a0",  "%a1"                         \
951 }
952
953 /* Print operand X (an rtx) in assembler syntax to file FILE.  */
954 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
955 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
956
957 /* Output machine-dependent UNSPECs in address constants.  */
958 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)          \
959 do {                                                    \
960   if (!s390_output_addr_const_extra (FILE, (X)))        \
961     goto FAIL;                                          \
962 } while (0);
963
964 /* Output an element of a case-vector that is absolute.  */
965 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)                            \
966 do {                                                                    \
967   char buf[32];                                                         \
968   fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE));                \
969   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));                      \
970   assemble_name ((FILE), buf);                                          \
971   fputc ('\n', (FILE));                                                 \
972 } while (0)
973
974 /* Output an element of a case-vector that is relative.  */
975 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
976 do {                                                                    \
977   char buf[32];                                                         \
978   fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE));                \
979   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));                      \
980   assemble_name ((FILE), buf);                                          \
981   fputc ('-', (FILE));                                                  \
982   ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL));                        \
983   assemble_name ((FILE), buf);                                          \
984   fputc ('\n', (FILE));                                                 \
985 } while (0)
986
987
988 /* Miscellaneous parameters.  */
989
990 /* Specify the machine mode that this machine uses for the index in the
991    tablejump instruction.  */
992 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
993
994 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
995    is done just by pretending it is already truncated.  */
996 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
997
998 /* Specify the machine mode that pointers have.
999    After generation of rtl, the compiler makes no further distinction
1000    between pointers and any other objects of this machine mode.  */
1001 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
1002
1003 /* This is -1 for "pointer mode" extend.  See ptr_extend in s390.md.  */
1004 #define POINTERS_EXTEND_UNSIGNED -1
1005
1006 /* A function address in a call instruction is a byte address (for
1007    indexing purposes) so give the MEM rtx a byte's mode.  */
1008 #define FUNCTION_MODE QImode
1009
1010 /* Specify the value which is used when clz operand is zero.  */
1011 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
1012
1013 /* Machine-specific symbol_ref flags.  */
1014 #define SYMBOL_FLAG_ALIGN1                (SYMBOL_FLAG_MACH_DEP << 0)
1015 #define SYMBOL_REF_ALIGN1_P(X)          \
1016   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
1017 #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
1018 #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
1019   ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
1020
1021 /* Check whether integer displacement is in range.  */
1022 #define DISP_IN_RANGE(d) \
1023   (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
1024                            : ((d) >= 0 && (d) <= 4095))
1025
1026 #endif