OSDN Git Service

* config/pa/fptr.c: Update license header.
[pf3gnuchains/gcc-fork.git] / gcc / config / pa / pa64-regs.h
1 /* Configuration for GCC-compiler for PA-RISC.
2    Copyright (C) 1999, 2000, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA.  */
20
21 /* Standard register usage.
22
23    It is safe to refer to actual register numbers in this file.  */
24
25 /* Number of actual hardware registers.
26    The hardware registers are assigned numbers for the compiler
27    from 0 to just below FIRST_PSEUDO_REGISTER.
28    All registers that the compiler knows about must be given numbers,
29    even those that are not normally considered general registers.
30
31    HP-PA 2.0w has 32 fullword registers and 32 floating point
32    registers. However, the floating point registers behave
33    differently: the left and right halves of registers are addressable
34    as 32-bit registers.
35
36    Due to limitations within GCC itself, we do not expose the left/right
37    half addressability when in wide mode.  This is not a major performance
38    issue as using the halves independently triggers false dependency stalls
39    anyway.  */
40
41 #define FIRST_PSEUDO_REGISTER 61  /* 32 general regs + 28 fp regs +
42                                      + 1 shift reg */
43
44 /* 1 for registers that have pervasive standard uses
45    and are not available for the register allocator.
46
47    On the HP-PA, these are:
48    Reg 0        = 0 (hardware). However, 0 is used for condition code,
49                   so is not fixed.
50    Reg 1        = ADDIL target/Temporary (hardware).
51    Reg 2        = Return Pointer
52    Reg 3        = Frame Pointer
53    Reg 4        = Frame Pointer (>8k varying frame with HP compilers only)
54    Reg 4-18     = Preserved Registers
55    Reg 19       = Linkage Table Register in HPUX 8.0 shared library scheme.
56    Reg 20-22    = Temporary Registers
57    Reg 23-26    = Temporary/Parameter Registers
58    Reg 27       = Global Data Pointer (hp)
59    Reg 28       = Temporary/Return Value register
60    Reg 29       = Temporary/Static Chain/Return Value register #2
61    Reg 30       = stack pointer
62    Reg 31       = Temporary/Millicode Return Pointer (hp)
63
64    Freg 0-3     = Status Registers      -- Not known to the compiler.
65    Freg 4-7     = Arguments/Return Value
66    Freg 8-11    = Temporary Registers
67    Freg 12-21   = Preserved Registers
68    Freg 22-31 = Temporary Registers
69
70 */
71
72 #define FIXED_REGISTERS  \
73  {0, 0, 0, 0, 0, 0, 0, 0, \
74   0, 0, 0, 0, 0, 0, 0, 0, \
75   0, 0, 0, 0, 0, 0, 0, 0, \
76   0, 0, 0, 1, 0, 0, 1, 0, \
77   /* fp registers */      \
78   0, 0, 0, 0, 0, 0, 0, 0, \
79   0, 0, 0, 0, 0, 0, 0, 0, \
80   0, 0, 0, 0, 0, 0, 0, 0, \
81   0, 0, 0, 0,             \
82   /* shift register */    \
83   0}
84
85 /* 1 for registers not available across function calls.
86    These must include the FIXED_REGISTERS and also any
87    registers that can be used without being saved.
88    The latter must include the registers where values are returned
89    and the register where structure-value addresses are passed.
90    Aside from that, you can include as many other registers as you like.  */
91 #define CALL_USED_REGISTERS  \
92  {1, 1, 1, 0, 0, 0, 0, 0, \
93   0, 0, 0, 0, 0, 0, 0, 0, \
94   0, 0, 0, 1, 1, 1, 1, 1, \
95   1, 1, 1, 1, 1, 1, 1, 1, \
96   /* fp registers */      \
97   1, 1, 1, 1, 1, 1, 1, 1, \
98   0, 0, 0, 0, 0, 0, 0, 0, \
99   0, 0, 1, 1, 1, 1, 1, 1, \
100   1, 1, 1, 1,             \
101   /* shift register */    \
102   1}
103
104 #define CONDITIONAL_REGISTER_USAGE \
105 {                                               \
106   int i;                                        \
107   if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
108     {                                           \
109       for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)\
110         fixed_regs[i] = call_used_regs[i] = 1;  \
111     }                                           \
112   if (flag_pic)                                 \
113     fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
114 }
115
116 /* Allocate the call used registers first.  This should minimize
117    the number of registers that need to be saved (as call used
118    registers will generally not be allocated across a call).
119
120    Experimentation has shown slightly better results by allocating
121    FP registers first.  We allocate the caller-saved registers more
122    or less in reverse order to their allocation as arguments.  */
123
124 #define REG_ALLOC_ORDER \
125  {                                      \
126   /* caller-saved fp regs.  */          \
127   50, 51, 52, 53, 54, 55, 56, 57,       \
128   58, 59, 39, 38, 37, 36, 35, 34,       \
129   33, 32,                               \
130   /* caller-saved general regs.  */     \
131   28, 31, 19, 20, 21, 22, 23, 24,       \
132   25, 26, 29,  2,                       \
133   /* callee-saved fp regs.  */          \
134   40, 41, 42, 43, 44, 45, 46, 47,       \
135   48, 49,                               \
136   /* callee-saved general regs.  */     \
137    3,  4,  5,  6,  7,  8,  9, 10,       \
138   11, 12, 13, 14, 15, 16, 17, 18,       \
139   /* special registers.  */             \
140    1, 27, 30,  0, 60}
141
142
143 /* Return number of consecutive hard regs needed starting at reg REGNO
144    to hold something of mode MODE.
145    This is ordinarily the length in words of a value of mode MODE
146    but can be less for certain modes in special long registers.
147
148    For PA64, GPRs and FPRs hold 64 bits worth.  We ignore the 32-bit
149    addressability of the FPRs and pretend each register holds precisely
150    WORD_SIZE bits.  Note that SCmode values are placed in a single FPR.
151    Thus, any patterns defined to operate on these values would have to
152    use the 32-bit addressability of the FPR registers.  */
153 #define HARD_REGNO_NREGS(REGNO, MODE)                                   \
154   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
155
156 /* These are the valid FP modes.  */
157 #define VALID_FP_MODE_P(MODE)                                           \
158   ((MODE) == SFmode || (MODE) == DFmode                                 \
159    || (MODE) == SCmode || (MODE) == DCmode                              \
160    || (MODE) == QImode || (MODE) == HImode || (MODE) == SImode          \
161    || (MODE) == DImode)
162
163 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
164    On the HP-PA, the cpu registers can hold any mode.  We
165    force this to be an even register is it cannot hold the full mode.  */
166 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
167   ((REGNO) == 0                                                         \
168    ? (MODE) == CCmode || (MODE) == CCFPmode                             \
169    /* Make wide modes be in aligned registers.  */                      \
170    : FP_REGNO_P (REGNO)                                                 \
171      ? (VALID_FP_MODE_P (MODE)                                          \
172         && (GET_MODE_SIZE (MODE) <= 8                                   \
173             || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 1) == 0)       \
174             || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 3) == 0)))     \
175    : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD                            \
176       || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD                    \
177           && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))  \
178       || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD                    \
179           && ((REGNO) & 3) == 3 && (REGNO) <= 23)))
180
181 /* How to renumber registers for dbx and gdb.
182
183    Registers 0  - 31 remain unchanged.
184
185    Registers 32 - 59 are mapped to 72, 74, 76 ...
186
187    Register 60 is mapped to 32.  */
188 #define DBX_REGISTER_NUMBER(REGNO) \
189   ((REGNO) <= 31 ? (REGNO) : ((REGNO) < 60 ? (REGNO - 32) * 2 + 72 : 32))
190
191 /* We must not use the DBX register numbers for the DWARF 2 CFA column
192    numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
193    Instead use the identity mapping.  */
194 #define DWARF_FRAME_REGNUM(REG) REG
195
196 /* Define the classes of registers for register constraints in the
197    machine description.  Also define ranges of constants.
198
199    One of the classes must always be named ALL_REGS and include all hard regs.
200    If there is more than one class, another class must be named NO_REGS
201    and contain no registers.
202
203    The name GENERAL_REGS must be the name of a class (or an alias for
204    another name such as ALL_REGS).  This is the class of registers
205    that is allowed by "g" or "r" in a register constraint.
206    Also, registers outside this class are allocated only when
207    instructions express preferences for them.
208
209    The classes must be numbered in nondecreasing order; that is,
210    a larger-numbered class must never be contained completely
211    in a smaller-numbered class.
212
213    For any two classes, it is very desirable that there be another
214    class that represents their union.  */
215
216   /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
217      1.1 fp regs, and the high 1.1 fp regs, to which the operands of
218      fmpyadd and fmpysub are restricted.  */
219
220 enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
221                  GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
222
223 #define N_REG_CLASSES (int) LIM_REG_CLASSES
224
225 /* Give names of register classes as strings for dump file.  */
226
227 #define REG_CLASS_NAMES \
228   {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
229    "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
230
231 /* Define which registers fit in which classes.
232    This is an initializer for a vector of HARD_REG_SET
233    of length N_REG_CLASSES. Register 0, the "condition code" register,
234    is in no class.  */
235
236 #define REG_CLASS_CONTENTS      \
237  {{0x00000000, 0x00000000},     /* NO_REGS */                   \
238   {0x00000002, 0x00000000},     /* R1_REGS */                   \
239   {0xfffffffe, 0x00000000},     /* GENERAL_REGS */              \
240   {0x00000000, 0x00000000},     /* FPUPPER_REGS */                      \
241   {0x00000000, 0x0fffffff},     /* FP_REGS */                   \
242   {0xfffffffe, 0x0fffffff},     /* GENERAL_OR_FP_REGS */        \
243   {0x00000000, 0x10000000},     /* SHIFT_REGS */                \
244   {0xfffffffe, 0x1fffffff}}     /* ALL_REGS */
245
246 /* Defines invalid mode changes.
247
248    SImode loads to floating-point registers are not zero-extended.
249    The definition for LOAD_EXTEND_OP specifies that integer loads
250    narrower than BITS_PER_WORD will be zero-extended.  As a result,
251    we inhibit changes from SImode unless they are to a mode that is
252    identical in size.  */
253
254 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
255   ((FROM) == SImode && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)       \
256    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
257
258 /* Return the class number of the smallest class containing
259    reg number REGNO.  This could be a conditional expression
260    or could index an array.  */
261
262 #define REGNO_REG_CLASS(REGNO)                                          \
263   ((REGNO) == 0 ? NO_REGS                                               \
264    : (REGNO) == 1 ? R1_REGS                                             \
265    : (REGNO) < 32 ? GENERAL_REGS                                        \
266    : (REGNO) < 60 ? FP_REGS                                             \
267    : SHIFT_REGS)
268
269 /* Return the maximum number of consecutive registers
270    needed to represent mode MODE in a register of class CLASS.  */
271 #define CLASS_MAX_NREGS(CLASS, MODE)                                    \
272   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
273
274 /* 1 if N is a possible register number for function argument passing.  */
275
276 #define FUNCTION_ARG_REGNO_P(N) \
277   ((((N) >= 19) && (N) <= 26) \
278    || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
279
280 /* How to refer to registers in assembler output.
281    This sequence is indexed by compiler's hard-register-number (see above).  */
282
283 #define REGISTER_NAMES \
284 {"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
285  "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
286  "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
287  "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
288  "%fr4",  "%fr5",   "%fr6",  "%fr7",   "%fr8",  "%fr9",   "%fr10", "%fr11",  \
289  "%fr12", "%fr13",  "%fr14", "%fr15",  "%fr16", "%fr17",  "%fr18", "%fr19",  \
290  "%fr20", "%fr21",  "%fr22", "%fr23",  "%fr24", "%fr25",  "%fr26", "%fr27",  \
291  "%fr28", "%fr29",  "%fr30", "%fr31", "SAR"}
292
293 #define ADDITIONAL_REGISTER_NAMES \
294  {{"%cr11",60}}
295
296 #define FP_SAVED_REG_LAST 49
297 #define FP_SAVED_REG_FIRST 40
298 #define FP_REG_STEP 1
299 #define FP_REG_FIRST 32
300 #define FP_REG_LAST 59