OSDN Git Service

Backport from mainline:
[pf3gnuchains/gcc-fork.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3    2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4    Free Software Foundation, Inc.
5    Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
6    and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
7    Software Science at the University of Utah.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
24
25 /* For long call handling.  */
26 extern unsigned long total_code_bytes;
27
28 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
29
30 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
31
32 /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
33 #ifndef TARGET_64BIT
34 #define TARGET_64BIT 0
35 #endif
36
37 /* Generate code for ELF32 ABI.  */
38 #ifndef TARGET_ELF32
39 #define TARGET_ELF32 0
40 #endif
41
42 /* Generate code for SOM 32bit ABI.  */
43 #ifndef TARGET_SOM
44 #define TARGET_SOM 0
45 #endif
46
47 /* HP-UX UNIX features.  */
48 #ifndef TARGET_HPUX
49 #define TARGET_HPUX 0
50 #endif
51
52 /* HP-UX 10.10 UNIX 95 features.  */
53 #ifndef TARGET_HPUX_10_10
54 #define TARGET_HPUX_10_10 0
55 #endif
56
57 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.)  */
58 #ifndef TARGET_HPUX_11
59 #define TARGET_HPUX_11 0
60 #endif
61
62 /* HP-UX 11i multibyte and UNIX 98 extensions.  */
63 #ifndef TARGET_HPUX_11_11
64 #define TARGET_HPUX_11_11 0
65 #endif
66
67 /* HP-UX 11i multibyte and UNIX 2003 extensions.  */
68 #ifndef TARGET_HPUX_11_31
69 #define TARGET_HPUX_11_31 0
70 #endif
71
72 /* HP-UX long double library.  */
73 #ifndef HPUX_LONG_DOUBLE_LIBRARY
74 #define HPUX_LONG_DOUBLE_LIBRARY 0
75 #endif
76
77 /* Linux kernel atomic operation support.  */
78 #ifndef TARGET_SYNC_LIBCALL
79 #define TARGET_SYNC_LIBCALL 0
80 #endif
81
82 /* The following three defines are potential target switches.  The current
83    defines are optimal given the current capabilities of GAS and GNU ld.  */
84
85 /* Define to a C expression evaluating to true to use long absolute calls.
86    Currently, only the HP assembler and SOM linker support long absolute
87    calls.  They are used only in non-pic code.  */
88 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
89
90 /* Define to a C expression evaluating to true to use long PIC symbol
91    difference calls.  Long PIC symbol difference calls are only used with
92    the HP assembler and linker.  The HP assembler detects this instruction
93    sequence and treats it as long pc-relative call.  Currently, GAS only
94    allows a difference of two symbols in the same subspace, and it doesn't
95    detect the sequence as a pc-relative call.  */
96 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
97
98 /* Define to a C expression evaluating to true to use long PIC
99    pc-relative calls.  Long PIC pc-relative calls are only used with
100    GAS.  Currently, they are usable for calls which bind local to a
101    module but not for external calls.  */
102 #define TARGET_LONG_PIC_PCREL_CALL 0
103
104 /* Define to a C expression evaluating to true to use SOM secondary
105    definition symbols for weak support.  Linker support for secondary
106    definition symbols is buggy prior to HP-UX 11.X.  */
107 #define TARGET_SOM_SDEF 0
108
109 /* Define to a C expression evaluating to true to save the entry value
110    of SP in the current frame marker.  This is normally unnecessary.
111    However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
112    HP compilers don't use this flag but it is supported by the assembler.
113    We set this flag to indicate that register %r3 has been saved at the
114    start of the frame.  Thus, when the HP unwind library is used, we
115    need to generate additional code to save SP into the frame marker.  */
116 #define TARGET_HPUX_UNWIND_LIBRARY 0
117
118 #ifndef TARGET_DEFAULT
119 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
120 #endif
121
122 #ifndef TARGET_CPU_DEFAULT
123 #define TARGET_CPU_DEFAULT 0
124 #endif
125
126 #ifndef TARGET_SCHED_DEFAULT
127 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
128 #endif
129
130 /* Support for a compile-time default CPU, et cetera.  The rules are:
131    --with-schedule is ignored if -mschedule is specified.
132    --with-arch is ignored if -march is specified.  */
133 #define OPTION_DEFAULT_SPECS \
134   {"arch", "%{!march=*:-march=%(VALUE)}" }, \
135   {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
136
137 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
138    and the old mnemonics are dialect zero.  */
139 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
140
141 /* Override some settings from dbxelf.h.  */
142
143 /* We do not have to be compatible with dbx, so we enable gdb extensions
144    by default.  */
145 #define DEFAULT_GDB_EXTENSIONS 1
146
147 /* This used to be zero (no max length), but big enums and such can
148    cause huge strings which killed gas.
149
150    We also have to avoid lossage in dbxout.c -- it does not compute the
151    string size accurately, so we are real conservative here.  */
152 #undef DBX_CONTIN_LENGTH
153 #define DBX_CONTIN_LENGTH 3000
154
155 /* GDB always assumes the current function's frame begins at the value
156    of the stack pointer upon entry to the current function.  Accessing
157    local variables and parameters passed on the stack is done using the
158    base of the frame + an offset provided by GCC.
159
160    For functions which have frame pointers this method works fine;
161    the (frame pointer) == (stack pointer at function entry) and GCC provides
162    an offset relative to the frame pointer.
163
164    This loses for functions without a frame pointer; GCC provides an offset
165    which is relative to the stack pointer after adjusting for the function's
166    frame size.  GDB would prefer the offset to be relative to the value of
167    the stack pointer at the function's entry.  Yuk!  */
168 #define DEBUGGER_AUTO_OFFSET(X) \
169   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
170     + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
171
172 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
173   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
174     + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
175
176 #define TARGET_CPU_CPP_BUILTINS()                               \
177 do {                                                            \
178      builtin_assert("cpu=hppa");                                \
179      builtin_assert("machine=hppa");                            \
180      builtin_define("__hppa");                                  \
181      builtin_define("__hppa__");                                \
182      if (TARGET_PA_20)                                          \
183        builtin_define("_PA_RISC2_0");                           \
184      else if (TARGET_PA_11)                                     \
185        builtin_define("_PA_RISC1_1");                           \
186      else                                                       \
187        builtin_define("_PA_RISC1_0");                           \
188 } while (0)
189
190 /* An old set of OS defines for various BSD-like systems.  */
191 #define TARGET_OS_CPP_BUILTINS()                                \
192   do                                                            \
193     {                                                           \
194         builtin_define_std ("REVARGV");                         \
195         builtin_define_std ("hp800");                           \
196         builtin_define_std ("hp9000");                          \
197         builtin_define_std ("hp9k8");                           \
198         if (!c_dialect_cxx () && !flag_iso)                     \
199           builtin_define ("hppa");                              \
200         builtin_define_std ("spectrum");                        \
201         builtin_define_std ("unix");                            \
202         builtin_assert ("system=bsd");                          \
203         builtin_assert ("system=unix");                         \
204     }                                                           \
205   while (0)
206
207 #define CC1_SPEC "%{pg:} %{p:}"
208
209 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
210
211 /* We don't want -lg.  */
212 #ifndef LIB_SPEC
213 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
214 #endif
215
216 /* Make gcc agree with <machine/ansi.h> */
217
218 #define SIZE_TYPE "unsigned int"
219 #define PTRDIFF_TYPE "int"
220 #define WCHAR_TYPE "unsigned int"
221 #define WCHAR_TYPE_SIZE 32
222 \f
223 /* target machine storage layout */
224 typedef struct GTY(()) machine_function
225 {
226   /* Flag indicating that a .NSUBSPA directive has been output for
227      this function.  */
228   int in_nsubspa;
229 } machine_function;
230
231 /* Define this macro if it is advisable to hold scalars in registers
232    in a wider mode than that declared by the program.  In such cases, 
233    the value is constrained to be within the bounds of the declared
234    type, but kept valid in the wider mode.  The signedness of the
235    extension may differ from that of the type.  */
236
237 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
238   if (GET_MODE_CLASS (MODE) == MODE_INT \
239       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)         \
240     (MODE) = word_mode;
241
242 /* Define this if most significant bit is lowest numbered
243    in instructions that operate on numbered bit-fields.  */
244 #define BITS_BIG_ENDIAN 1
245
246 /* Define this if most significant byte of a word is the lowest numbered.  */
247 /* That is true on the HP-PA.  */
248 #define BYTES_BIG_ENDIAN 1
249
250 /* Define this if most significant word of a multiword number is lowest
251    numbered.  */
252 #define WORDS_BIG_ENDIAN 1
253
254 #define MAX_BITS_PER_WORD 64
255
256 /* Width of a word, in units (bytes).  */
257 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
258
259 /* Minimum number of units in a word.  If this is undefined, the default
260    is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
261    smallest value that UNITS_PER_WORD can have at run-time.
262
263    FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
264    building of various TImode routines in libgcc.  The HP runtime
265    specification doesn't provide the alignment requirements and calling
266    conventions for TImode variables.  */
267 #define MIN_UNITS_PER_WORD 4
268
269 /* The widest floating point format supported by the hardware.  Note that
270    setting this influences some Ada floating point type sizes, currently
271    required for GNAT to operate properly.  */
272 #define WIDEST_HARDWARE_FP_SIZE 64
273
274 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
275 #define PARM_BOUNDARY BITS_PER_WORD
276
277 /* Largest alignment required for any stack parameter, in bits.
278    Don't define this if it is equal to PARM_BOUNDARY */
279 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
280
281 /* Boundary (in *bits*) on which stack pointer is always aligned;
282    certain optimizations in combine depend on this.
283
284    The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
285    the stack on the 32 and 64-bit ports, respectively.  However, we
286    are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
287    in main.  Thus, we treat the former as the preferred alignment.  */
288 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
289 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
290
291 /* Allocation boundary (in *bits*) for the code of a function.  */
292 #define FUNCTION_BOUNDARY BITS_PER_WORD
293
294 /* Alignment of field after `int : 0' in a structure.  */
295 #define EMPTY_FIELD_BOUNDARY 32
296
297 /* Every structure's size must be a multiple of this.  */
298 #define STRUCTURE_SIZE_BOUNDARY 8
299
300 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
301 #define PCC_BITFIELD_TYPE_MATTERS 1
302
303 /* No data type wants to be aligned rounder than this.  */
304 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
305
306 /* Get around hp-ux assembler bug, and make strcpy of constants fast.  */
307 #define CONSTANT_ALIGNMENT(EXP, ALIGN)          \
308   (TREE_CODE (EXP) == STRING_CST                \
309    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
310
311 /* Make arrays of chars word-aligned for the same reasons.  */
312 #define DATA_ALIGNMENT(TYPE, ALIGN)             \
313   (TREE_CODE (TYPE) == ARRAY_TYPE               \
314    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
315    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
316
317 /* Set this nonzero if move instructions will actually fail to work
318    when given unaligned data.  */
319 #define STRICT_ALIGNMENT 1
320
321 /* Value is 1 if it is a good idea to tie two pseudo registers
322    when one has mode MODE1 and one has mode MODE2.
323    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
324    for any hard reg, then this must be 0 for correct output.  */
325 #define MODES_TIEABLE_P(MODE1, MODE2) \
326   pa_modes_tieable_p (MODE1, MODE2)
327
328 /* Specify the registers used for certain standard purposes.
329    The values of these macros are register numbers.  */
330
331 /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
332 /* #define PC_REGNUM  */
333
334 /* Register to use for pushing function arguments.  */
335 #define STACK_POINTER_REGNUM 30
336
337 /* Fixed register for local variable access.  Always eliminated.  */
338 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
339
340 /* Base register for access to local variables of the function.  */
341 #define HARD_FRAME_POINTER_REGNUM 3
342
343 /* Don't allow hard registers to be renamed into r2 unless r2
344    is already live or already being saved (due to eh).  */
345
346 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
347   ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
348
349 /* Base register for access to arguments of the function.  */
350 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
351
352 /* Register in which static-chain is passed to a function.  */
353 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
354
355 /* Register used to address the offset table for position-independent
356    data references.  */
357 #define PIC_OFFSET_TABLE_REGNUM \
358   (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
359
360 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
361
362 /* Function to return the rtx used to save the pic offset table register
363    across function calls.  */
364 extern rtx hppa_pic_save_rtx (void);
365
366 #define DEFAULT_PCC_STRUCT_RETURN 0
367
368 /* Register in which address to store a structure value
369    is passed to a function.  */
370 #define PA_STRUCT_VALUE_REGNUM 28
371
372 /* Definitions for register eliminations.
373
374    We have two registers that can be eliminated.  First, the frame pointer
375    register can often be eliminated in favor of the stack pointer register.
376    Secondly, the argument pointer register can always be eliminated in the
377    32-bit runtimes.  */
378
379 /* This is an array of structures.  Each structure initializes one pair
380    of eliminable registers.  The "from" register number is given first,
381    followed by "to".  Eliminations of the same "from" register are listed
382    in order of preference.
383
384    The argument pointer cannot be eliminated in the 64-bit runtime.  It
385    is the same register as the hard frame pointer in the 32-bit runtime.
386    So, it does not need to be listed.  */
387 #define ELIMINABLE_REGS                                 \
388 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},    \
389  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
390  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
391
392 /* Define the offset between two registers, one to be eliminated,
393    and the other its replacement, at the start of a routine.  */
394 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
395   ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
396
397 /* Describe how we implement __builtin_eh_return.  */
398 #define EH_RETURN_DATA_REGNO(N) \
399   ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
400 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 29)
401 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
402
403 /* Offset from the frame pointer register value to the top of stack.  */
404 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
405
406 /* The maximum number of hard registers that can be saved in the call
407    frame.  The soft frame pointer is not included.  */
408 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
409
410 /* A C expression whose value is RTL representing the location of the
411    incoming return address at the beginning of any function, before the
412    prologue.  You only need to define this macro if you want to support
413    call frame debugging information like that provided by DWARF 2.  */
414 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
415 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
416
417 /* A C expression whose value is an integer giving a DWARF 2 column
418    number that may be used as an alternate return column.  This should
419    be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
420    register, but an alternate column needs to be used for signal frames.
421
422    Column 0 is not used but unfortunately its register size is set to
423    4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
424 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
425
426 /* This macro chooses the encoding of pointers embedded in the exception
427    handling sections.  If at all possible, this should be defined such
428    that the exception handling section will not require dynamic relocations,
429    and so may be read-only.
430
431    Because the HP assembler auto aligns, it is necessary to use
432    DW_EH_PE_aligned.  It's not possible to make the data read-only
433    on the HP-UX SOM port since the linker requires fixups for label
434    differences in different sections to be word aligned.  However,
435    the SOM linker can do unaligned fixups for absolute pointers.
436    We also need aligned pointers for global and function pointers.
437
438    Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
439    fixups, the runtime doesn't have a consistent relationship between
440    text and data for dynamically loaded objects.  Thus, it's not possible
441    to use pc-relative encoding for pointers on this target.  It may be
442    possible to use segment relative encodings but GAS doesn't currently
443    have a mechanism to generate these encodings.  For other targets, we
444    use pc-relative encoding for pointers.  If the pointer might require
445    dynamic relocation, we make it indirect.  */
446 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
447   (TARGET_GAS && !TARGET_HPUX                                           \
448    ? (DW_EH_PE_pcrel                                                    \
449       | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)               \
450       | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))             \
451    : (!TARGET_GAS || (GLOBAL) || (CODE) == 2                            \
452       ? DW_EH_PE_aligned : DW_EH_PE_absptr))
453
454 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
455    indirect are handled automatically.  We output pc-relative, and
456    indirect pc-relative ourself since we need some special magic to
457    generate pc-relative relocations, and to handle indirect function
458    pointers.  */
459 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
460   do {                                                                  \
461     if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)                          \
462       {                                                                 \
463         fputs (integer_asm_op (SIZE, FALSE), FILE);                     \
464         if ((ENCODING) & DW_EH_PE_indirect)                             \
465           output_addr_const (FILE, pa_get_deferred_plabel (ADDR));      \
466         else                                                            \
467           assemble_name (FILE, XSTR ((ADDR), 0));                       \
468         fputs ("+8-$PIC_pcrel$0", FILE);                                \
469         goto DONE;                                                      \
470       }                                                                 \
471     } while (0)
472 \f
473
474 /* The class value for index registers, and the one for base regs.  */
475 #define INDEX_REG_CLASS GENERAL_REGS
476 #define BASE_REG_CLASS GENERAL_REGS
477
478 #define FP_REG_CLASS_P(CLASS) \
479   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
480
481 /* True if register is floating-point.  */
482 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
483
484 #define MAYBE_FP_REG_CLASS_P(CLASS) \
485   reg_classes_intersect_p ((CLASS), FP_REGS)
486
487 \f
488 /* Stack layout; function entry, exit and calling.  */
489
490 /* Define this if pushing a word on the stack
491    makes the stack pointer a smaller address.  */
492 /* #define STACK_GROWS_DOWNWARD */
493
494 /* Believe it or not.  */
495 #define ARGS_GROW_DOWNWARD
496
497 /* Define this to nonzero if the nominal address of the stack frame
498    is at the high-address end of the local variables;
499    that is, each additional local variable allocated
500    goes at a more negative offset in the frame.  */
501 #define FRAME_GROWS_DOWNWARD 0
502
503 /* Offset within stack frame to start allocating local variables at.
504    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
505    first local allocated.  Otherwise, it is the offset to the BEGINNING
506    of the first local allocated.
507
508    On the 32-bit ports, we reserve one slot for the previous frame
509    pointer and one fill slot.  The fill slot is for compatibility
510    with HP compiled programs.  On the 64-bit ports, we reserve one
511    slot for the previous frame pointer.  */
512 #define STARTING_FRAME_OFFSET 8
513
514 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
515    of the stack.  The default is to align it to STACK_BOUNDARY.  */
516 #define STACK_ALIGNMENT_NEEDED 0
517
518 /* If we generate an insn to push BYTES bytes,
519    this says how many the stack pointer really advances by.
520    On the HP-PA, don't define this because there are no push insns.  */
521 /*  #define PUSH_ROUNDING(BYTES) */
522
523 /* Offset of first parameter from the argument pointer register value.
524    This value will be negated because the arguments grow down.
525    Also note that on STACK_GROWS_UPWARD machines (such as this one)
526    this is the distance from the frame pointer to the end of the first
527    argument, not it's beginning.  To get the real offset of the first
528    argument, the size of the argument must be added.  */
529
530 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
531
532 /* When a parameter is passed in a register, stack space is still
533    allocated for it.  */
534 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
535
536 /* Define this if the above stack space is to be considered part of the
537    space allocated by the caller.  */
538 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
539
540 /* Keep the stack pointer constant throughout the function.
541    This is both an optimization and a necessity: longjmp
542    doesn't behave itself when the stack pointer moves within
543    the function!  */
544 #define ACCUMULATE_OUTGOING_ARGS 1
545
546 /* The weird HPPA calling conventions require a minimum of 48 bytes on
547    the stack: 16 bytes for register saves, and 32 bytes for magic.
548    This is the difference between the logical top of stack and the
549    actual sp.
550
551    On the 64-bit port, the HP C compiler allocates a 48-byte frame
552    marker, although the runtime documentation only describes a 16
553    byte marker.  For compatibility, we allocate 48 bytes.  */
554 #define STACK_POINTER_OFFSET \
555   (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
556
557 #define STACK_DYNAMIC_OFFSET(FNDECL)    \
558   (TARGET_64BIT                         \
559    ? (STACK_POINTER_OFFSET)             \
560    : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
561
562 \f
563 /* Define a data type for recording info about an argument list
564    during the scan of that argument list.  This data type should
565    hold all necessary information about the function itself
566    and about the args processed so far, enough to enable macros
567    such as FUNCTION_ARG to determine where the next arg should go.
568
569    On the HP-PA, the WORDS field holds the number of words
570    of arguments scanned so far (including the invisible argument,
571    if any, which holds the structure-value-address).  Thus, 4 or
572    more means all following args should go on the stack.
573    
574    The INCOMING field tracks whether this is an "incoming" or
575    "outgoing" argument.
576    
577    The INDIRECT field indicates whether this is is an indirect
578    call or not.
579    
580    The NARGS_PROTOTYPE field indicates that an argument does not
581    have a prototype when it less than or equal to 0.  */
582
583 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
584
585 #define CUMULATIVE_ARGS struct hppa_args
586
587 /* Initialize a variable CUM of type CUMULATIVE_ARGS
588    for a call to a function whose data type is FNTYPE.
589    For a library call, FNTYPE is 0.  */
590
591 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
592   (CUM).words = 0,                                                      \
593   (CUM).incoming = 0,                                                   \
594   (CUM).indirect = (FNTYPE) && !(FNDECL),                               \
595   (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE)               \
596                            ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
597                               + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
598                                  || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
599                            : 0)
600
601
602
603 /* Similar, but when scanning the definition of a procedure.  We always
604    set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
605
606 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
607   (CUM).words = 0,                              \
608   (CUM).incoming = 1,                           \
609   (CUM).indirect = 0,                           \
610   (CUM).nargs_prototype = 1000
611
612 /* Figure out the size in words of the function argument.  The size
613    returned by this macro should always be greater than zero because
614    we pass variable and zero sized objects by reference.  */
615
616 #define FUNCTION_ARG_SIZE(MODE, TYPE)   \
617   ((((MODE) != BLKmode \
618      ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
619      : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
620
621 /* Determine where to put an argument to a function.
622    Value is zero to push the argument on the stack,
623    or a hard register in which to store the argument.
624
625    MODE is the argument's machine mode.
626    TYPE is the data type of the argument (as a tree).
627     This is null for libcalls where that information may
628     not be available.
629    CUM is a variable of type CUMULATIVE_ARGS which gives info about
630     the preceding args and about the function being called.
631    NAMED is nonzero if this argument is a named parameter
632     (otherwise it is an extra parameter matching an ellipsis).
633
634    On the HP-PA the first four words of args are normally in registers
635    and the rest are pushed.  But any arg that won't entirely fit in regs
636    is pushed.
637
638    Arguments passed in registers are either 1 or 2 words long.
639
640    The caller must make a distinction between calls to explicitly named
641    functions and calls through pointers to functions -- the conventions
642    are different!  Calls through pointers to functions only use general
643    registers for the first four argument words.
644
645    Of course all this is different for the portable runtime model
646    HP wants everyone to use for ELF.  Ugh.  Here's a quick description
647    of how it's supposed to work.
648
649    1) callee side remains unchanged.  It expects integer args to be
650    in the integer registers, float args in the float registers and
651    unnamed args in integer registers.
652
653    2) caller side now depends on if the function being called has
654    a prototype in scope (rather than if it's being called indirectly).
655
656       2a) If there is a prototype in scope, then arguments are passed
657       according to their type (ints in integer registers, floats in float
658       registers, unnamed args in integer registers.
659
660       2b) If there is no prototype in scope, then floating point arguments
661       are passed in both integer and float registers.  egad.
662
663   FYI: The portable parameter passing conventions are almost exactly like
664   the standard parameter passing conventions on the RS6000.  That's why
665   you'll see lots of similar code in rs6000.h.  */
666
667 /* If defined, a C expression which determines whether, and in which
668    direction, to pad out an argument with extra space.  */
669 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
670   pa_function_arg_padding ((MODE), (TYPE))
671
672 /* Specify padding for the last element of a block move between registers
673    and memory.
674
675    The 64-bit runtime specifies that objects need to be left justified
676    (i.e., the normal justification for a big endian target).  The 32-bit
677    runtime specifies right justification for objects smaller than 64 bits.
678    We use a DImode register in the parallel for 5 to 7 byte structures
679    so that there is only one element.  This allows the object to be
680    correctly padded.  */
681 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
682   pa_function_arg_padding ((MODE), (TYPE))
683
684 \f
685 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
686    as assembly via FUNCTION_PROFILER.  Just output a local label.
687    We can't use the function label because the GAS SOM target can't
688    handle the difference of a global symbol and a local symbol.  */
689
690 #ifndef FUNC_BEGIN_PROLOG_LABEL
691 #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
692 #endif
693
694 #define FUNCTION_PROFILER(FILE, LABEL) \
695   (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
696
697 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
698 void hppa_profile_hook (int label_no);
699
700 /* The profile counter if emitted must come before the prologue.  */
701 #define PROFILE_BEFORE_PROLOGUE 1
702
703 /* We never want final.c to emit profile counters.  When profile
704    counters are required, we have to defer emitting them to the end
705    of the current file.  */
706 #define NO_PROFILE_COUNTERS 1
707
708 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
709    the stack pointer does not matter.  The value is tested only in
710    functions that have frame pointers.
711    No definition is equivalent to always zero.  */
712
713 extern int may_call_alloca;
714
715 #define EXIT_IGNORE_STACK       \
716  (get_frame_size () != 0        \
717   || cfun->calls_alloca || crtl->outgoing_args_size)
718
719 /* Length in units of the trampoline for entering a nested function.  */
720
721 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
722
723 /* Alignment required by the trampoline.  */
724
725 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
726
727 /* Minimum length of a cache line.  A length of 16 will work on all
728    PA-RISC processors.  All PA 1.1 processors have a cache line of
729    32 bytes.  Most but not all PA 2.0 processors have a cache line
730    of 64 bytes.  As cache flushes are expensive and we don't support
731    PA 1.0, we use a minimum length of 32.  */
732
733 #define MIN_CACHELINE_SIZE 32
734
735 \f
736 /* Addressing modes, and classification of registers for them. 
737
738    Using autoincrement addressing modes on PA8000 class machines is
739    not profitable.  */
740
741 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
742 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
743
744 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
745 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
746
747 /* Macros to check register numbers against specific register classes.  */
748
749 /* The following macros assume that X is a hard or pseudo reg number.
750    They give nonzero only if X is a hard reg of the suitable class
751    or a pseudo reg currently allocated to a suitable hard reg.
752    Since they use reg_renumber, they are safe only once reg_renumber
753    has been allocated, which happens in local-alloc.c.  */
754
755 #define REGNO_OK_FOR_INDEX_P(X) \
756   ((X) && ((X) < 32                                                     \
757    || ((X) == FRAME_POINTER_REGNUM)                                     \
758    || ((X) >= FIRST_PSEUDO_REGISTER                                     \
759        && reg_renumber                                                  \
760        && (unsigned) reg_renumber[X] < 32)))
761 #define REGNO_OK_FOR_BASE_P(X) \
762   ((X) && ((X) < 32                                                     \
763    || ((X) == FRAME_POINTER_REGNUM)                                     \
764    || ((X) >= FIRST_PSEUDO_REGISTER                                     \
765        && reg_renumber                                                  \
766        && (unsigned) reg_renumber[X] < 32)))
767 #define REGNO_OK_FOR_FP_P(X) \
768   (FP_REGNO_P (X)                                                       \
769    || (X >= FIRST_PSEUDO_REGISTER                                       \
770        && reg_renumber                                                  \
771        && FP_REGNO_P (reg_renumber[X])))
772
773 /* Now macros that check whether X is a register and also,
774    strictly, whether it is in a specified class.
775
776    These macros are specific to the HP-PA, and may be used only
777    in code for printing assembler insns and in conditions for
778    define_optimization.  */
779
780 /* 1 if X is an fp register.  */
781
782 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
783 \f
784 /* Maximum number of registers that can appear in a valid memory address.  */
785
786 #define MAX_REGS_PER_ADDRESS 2
787
788 /* Non-TLS symbolic references.  */
789 #define PA_SYMBOL_REF_TLS_P(RTX) \
790   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
791
792 /* Recognize any constant value that is a valid address except
793    for symbolic addresses.  We get better CSE by rejecting them
794    here and allowing hppa_legitimize_address to break them up.  We
795    use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
796
797 #define CONSTANT_ADDRESS_P(X) \
798   ((GET_CODE (X) == LABEL_REF                                           \
799    || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))         \
800    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
801    || GET_CODE (X) == HIGH)                                             \
802    && (reload_in_progress || reload_completed                           \
803        || ! pa_symbolic_expression_p (X)))
804
805 /* A C expression that is nonzero if we are using the new HP assembler.  */
806
807 #ifndef NEW_HP_ASSEMBLER
808 #define NEW_HP_ASSEMBLER 0
809 #endif
810
811 /* The macros below define the immediate range for CONST_INTS on
812    the 64-bit port.  Constants in this range can be loaded in three
813    instructions using a ldil/ldo/depdi sequence.  Constants outside
814    this range are forced to the constant pool prior to reload.  */
815
816 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
817 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
818 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
819   ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
820
821 /* Target flags set on a symbol_ref.  */
822
823 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
824 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
825 #define SYMBOL_REF_REFERENCED_P(RTX) \
826   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
827
828 /* Defines for constraints.md.  */
829
830 /* Return 1 iff OP is a scaled or unscaled index address.  */
831 #define IS_INDEX_ADDR_P(OP) \
832   (GET_CODE (OP) == PLUS                                \
833    && GET_MODE (OP) == Pmode                            \
834    && (GET_CODE (XEXP (OP, 0)) == MULT                  \
835        || GET_CODE (XEXP (OP, 1)) == MULT               \
836        || (REG_P (XEXP (OP, 0))                         \
837            && REG_P (XEXP (OP, 1)))))
838
839 /* Return 1 iff OP is a LO_SUM DLT address.  */
840 #define IS_LO_SUM_DLT_ADDR_P(OP) \
841   (GET_CODE (OP) == LO_SUM                              \
842    && GET_MODE (OP) == Pmode                            \
843    && REG_P (XEXP (OP, 0))                              \
844    && REG_OK_FOR_BASE_P (XEXP (OP, 0))                  \
845    && GET_CODE (XEXP (OP, 1)) == UNSPEC)
846
847 /* Nonzero if 14-bit offsets can be used for all loads and stores.
848    This is not possible when generating PA 1.x code as floating point
849    loads and stores only support 5-bit offsets.  Note that we do not
850    forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
851    Instead, we use pa_secondary_reload() to reload integer mode
852    REG+D memory addresses used in floating point loads and stores.
853
854    FIXME: the ELF32 linker clobbers the LSB of the FP register number
855    in PA 2.0 floating-point insns with long displacements.  This is
856    because R_PARISC_DPREL14WR and other relocations like it are not
857    yet supported by GNU ld.  For now, we reject long displacements
858    on this target.  */
859
860 #define INT14_OK_STRICT \
861   (TARGET_SOFT_FLOAT                                                   \
862    || TARGET_DISABLE_FPREGS                                            \
863    || (TARGET_PA_20 && !TARGET_ELF32))
864
865 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
866    and check its validity for a certain class.
867    We have two alternate definitions for each of them.
868    The usual definition accepts all pseudo regs; the other rejects
869    them unless they have been allocated suitable hard regs.
870    The symbol REG_OK_STRICT causes the latter definition to be used.
871
872    Most source files want to accept pseudo regs in the hope that
873    they will get allocated to the class that the insn wants them to be in.
874    Source files for reload pass need to be strict.
875    After reload, it makes no difference, since pseudo regs have
876    been eliminated by then.  */
877
878 #ifndef REG_OK_STRICT
879
880 /* Nonzero if X is a hard reg that can be used as an index
881    or if it is a pseudo reg.  */
882 #define REG_OK_FOR_INDEX_P(X) \
883   (REGNO (X) && (REGNO (X) < 32                                 \
884    || REGNO (X) == FRAME_POINTER_REGNUM                         \
885    || REGNO (X) >= FIRST_PSEUDO_REGISTER))
886
887 /* Nonzero if X is a hard reg that can be used as a base reg
888    or if it is a pseudo reg.  */
889 #define REG_OK_FOR_BASE_P(X) \
890   (REGNO (X) && (REGNO (X) < 32                                 \
891    || REGNO (X) == FRAME_POINTER_REGNUM                         \
892    || REGNO (X) >= FIRST_PSEUDO_REGISTER))
893
894 #else
895
896 /* Nonzero if X is a hard reg that can be used as an index.  */
897 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
898
899 /* Nonzero if X is a hard reg that can be used as a base reg.  */
900 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
901
902 #endif
903 \f
904 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
905    valid memory address for an instruction.  The MODE argument is the
906    machine mode for the MEM expression that wants to use this address.
907
908    On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
909    REG+REG, and REG+(REG*SCALE).  The indexed address forms are only
910    available with floating point loads and stores, and integer loads.
911    We get better code by allowing indexed addresses in the initial
912    RTL generation.
913
914    The acceptance of indexed addresses as legitimate implies that we
915    must provide patterns for doing indexed integer stores, or the move
916    expanders must force the address of an indexed store to a register.
917    We have adopted the latter approach.
918    
919    Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
920    the base register is a valid pointer for indexed instructions.
921    On targets that have non-equivalent space registers, we have to
922    know at the time of assembler output which register in a REG+REG
923    pair is the base register.  The REG_POINTER flag is sometimes lost
924    in reload and the following passes, so it can't be relied on during
925    code generation.  Thus, we either have to canonicalize the order
926    of the registers in REG+REG indexed addresses, or treat REG+REG
927    addresses separately and provide patterns for both permutations.
928
929    The latter approach requires several hundred additional lines of
930    code in pa.md.  The downside to canonicalizing is that a PLUS
931    in the wrong order can't combine to form to make a scaled indexed
932    memory operand.  As we won't need to canonicalize the operands if
933    the REG_POINTER lossage can be fixed, it seems better canonicalize.
934
935    We initially break out scaled indexed addresses in canonical order
936    in pa_emit_move_sequence.  LEGITIMIZE_ADDRESS also canonicalizes
937    scaled indexed addresses during RTL generation.  However, fold_rtx
938    has its own opinion on how the operands of a PLUS should be ordered.
939    If one of the operands is equivalent to a constant, it will make
940    that operand the second operand.  As the base register is likely to
941    be equivalent to a SYMBOL_REF, we have made it the second operand.
942
943    GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
944    operands are in the order INDEX+BASE on targets with non-equivalent
945    space registers, and in any order on targets with equivalent space
946    registers.  It accepts both MULT+BASE and BASE+MULT for scaled indexing.
947
948    We treat a SYMBOL_REF as legitimate if it is part of the current
949    function's constant-pool, because such addresses can actually be
950    output as REG+SMALLINT.  */
951
952 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
953 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
954
955 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
956 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
957
958 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
959 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
960
961 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
962 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
963
964 #if HOST_BITS_PER_WIDE_INT > 32
965 #define VAL_32_BITS_P(X) \
966   ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
967    < (unsigned HOST_WIDE_INT) 2 << 31)
968 #else
969 #define VAL_32_BITS_P(X) 1
970 #endif
971 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
972
973 /* These are the modes that we allow for scaled indexing.  */
974 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
975   ((TARGET_64BIT && (MODE) == DImode)                                   \
976    || (MODE) == SImode                                                  \
977    || (MODE) == HImode                                                  \
978    || (MODE) == SFmode                                                  \
979    || (MODE) == DFmode)
980
981 /* These are the modes that we allow for unscaled indexing.  */
982 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
983   ((TARGET_64BIT && (MODE) == DImode)                                   \
984    || (MODE) == SImode                                                  \
985    || (MODE) == HImode                                                  \
986    || (MODE) == QImode                                                  \
987    || (MODE) == SFmode                                                  \
988    || (MODE) == DFmode)
989
990 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
991 {                                                                       \
992   if ((REG_P (X) && REG_OK_FOR_BASE_P (X))                              \
993       || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC          \
994            || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC)      \
995           && REG_P (XEXP (X, 0))                                        \
996           && REG_OK_FOR_BASE_P (XEXP (X, 0))))                          \
997     goto ADDR;                                                          \
998   else if (GET_CODE (X) == PLUS)                                        \
999     {                                                                   \
1000       rtx base = 0, index = 0;                                          \
1001       if (REG_P (XEXP (X, 1))                                           \
1002           && REG_OK_FOR_BASE_P (XEXP (X, 1)))                           \
1003         base = XEXP (X, 1), index = XEXP (X, 0);                        \
1004       else if (REG_P (XEXP (X, 0))                                      \
1005                && REG_OK_FOR_BASE_P (XEXP (X, 0)))                      \
1006         base = XEXP (X, 0), index = XEXP (X, 1);                        \
1007       if (base                                                          \
1008           && GET_CODE (index) == CONST_INT                              \
1009           && ((INT_14_BITS (index)                                      \
1010                && (((MODE) != DImode                                    \
1011                     && (MODE) != SFmode                                 \
1012                     && (MODE) != DFmode)                                \
1013                    /* The base register for DImode loads and stores     \
1014                       with long displacements must be aligned because   \
1015                       the lower three bits in the displacement are      \
1016                       assumed to be zero.  */                           \
1017                    || ((MODE) == DImode                                 \
1018                        && (!TARGET_64BIT                                \
1019                            || (INTVAL (index) % 8) == 0))               \
1020                    /* Similarly, the base register for SFmode/DFmode    \
1021                       loads and stores with long displacements must     \
1022                       be aligned.  */                                   \
1023                    || (((MODE) == SFmode || (MODE) == DFmode)           \
1024                        && INT14_OK_STRICT                               \
1025                        && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1026                || INT_5_BITS (index)))                                  \
1027         goto ADDR;                                                      \
1028       if (!TARGET_DISABLE_INDEXING                                      \
1029           /* Only accept the "canonical" INDEX+BASE operand order       \
1030              on targets with non-equivalent space registers.  */        \
1031           && (TARGET_NO_SPACE_REGS                                      \
1032               ? (base && REG_P (index))                                 \
1033               : (base == XEXP (X, 1) && REG_P (index)                   \
1034                  && (reload_completed                                   \
1035                      || (reload_in_progress && HARD_REGISTER_P (base))  \
1036                      || REG_POINTER (base))                             \
1037                  && (reload_completed                                   \
1038                      || (reload_in_progress && HARD_REGISTER_P (index)) \
1039                      || !REG_POINTER (index))))                         \
1040           && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE)                     \
1041           && REG_OK_FOR_INDEX_P (index)                                 \
1042           && borx_reg_operand (base, Pmode)                             \
1043           && borx_reg_operand (index, Pmode))                           \
1044         goto ADDR;                                                      \
1045       if (!TARGET_DISABLE_INDEXING                                      \
1046           && base                                                       \
1047           && GET_CODE (index) == MULT                                   \
1048           && MODE_OK_FOR_SCALED_INDEXING_P (MODE)                       \
1049           && REG_P (XEXP (index, 0))                                    \
1050           && GET_MODE (XEXP (index, 0)) == Pmode                        \
1051           && REG_OK_FOR_INDEX_P (XEXP (index, 0))                       \
1052           && GET_CODE (XEXP (index, 1)) == CONST_INT                    \
1053           && INTVAL (XEXP (index, 1))                                   \
1054              == (HOST_WIDE_INT) GET_MODE_SIZE (MODE)                    \
1055           && borx_reg_operand (base, Pmode))                            \
1056         goto ADDR;                                                      \
1057     }                                                                   \
1058   else if (GET_CODE (X) == LO_SUM                                       \
1059            && GET_CODE (XEXP (X, 0)) == REG                             \
1060            && REG_OK_FOR_BASE_P (XEXP (X, 0))                           \
1061            && CONSTANT_P (XEXP (X, 1))                                  \
1062            && (TARGET_SOFT_FLOAT                                        \
1063                /* We can allow symbolic LO_SUM addresses for PA2.0.  */ \
1064                || (TARGET_PA_20                                         \
1065                    && !TARGET_ELF32                                     \
1066                    && GET_CODE (XEXP (X, 1)) != CONST_INT)              \
1067                || ((MODE) != SFmode                                     \
1068                    && (MODE) != DFmode)))                               \
1069     goto ADDR;                                                          \
1070   else if (GET_CODE (X) == LO_SUM                                       \
1071            && GET_CODE (XEXP (X, 0)) == SUBREG                          \
1072            && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG                \
1073            && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))              \
1074            && CONSTANT_P (XEXP (X, 1))                                  \
1075            && (TARGET_SOFT_FLOAT                                        \
1076                /* We can allow symbolic LO_SUM addresses for PA2.0.  */ \
1077                || (TARGET_PA_20                                         \
1078                    && !TARGET_ELF32                                     \
1079                    && GET_CODE (XEXP (X, 1)) != CONST_INT)              \
1080                || ((MODE) != SFmode                                     \
1081                    && (MODE) != DFmode)))                               \
1082     goto ADDR;                                                          \
1083   else if (GET_CODE (X) == CONST_INT && INT_5_BITS (X))                 \
1084     goto ADDR;                                                          \
1085   /* Needed for -fPIC */                                                \
1086   else if (GET_CODE (X) == LO_SUM                                       \
1087            && GET_CODE (XEXP (X, 0)) == REG                             \
1088            && REG_OK_FOR_BASE_P (XEXP (X, 0))                           \
1089            && GET_CODE (XEXP (X, 1)) == UNSPEC                          \
1090            && (TARGET_SOFT_FLOAT                                        \
1091                || (TARGET_PA_20 && !TARGET_ELF32)                       \
1092                || ((MODE) != SFmode                                     \
1093                    && (MODE) != DFmode)))                               \
1094     goto ADDR;                                                          \
1095 }
1096
1097 /* Look for machine dependent ways to make the invalid address AD a
1098    valid address.
1099
1100    For the PA, transform:
1101
1102         memory(X + <large int>)
1103
1104    into:
1105
1106         if (<large int> & mask) >= 16
1107           Y = (<large int> & ~mask) + mask + 1  Round up.
1108         else
1109           Y = (<large int> & ~mask)             Round down.
1110         Z = X + Y
1111         memory (Z + (<large int> - Y));
1112
1113    This makes reload inheritance and reload_cse work better since Z
1114    can be reused.
1115
1116    There may be more opportunities to improve code with this hook.  */
1117 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)      \
1118 do {                                                                    \
1119   long offset, newoffset, mask;                                         \
1120   rtx new_rtx, temp = NULL_RTX;                                         \
1121                                                                         \
1122   mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT                           \
1123           ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff);                \
1124                                                                         \
1125   if (optimize && GET_CODE (AD) == PLUS)                                \
1126     temp = simplify_binary_operation (PLUS, Pmode,                      \
1127                                       XEXP (AD, 0), XEXP (AD, 1));      \
1128                                                                         \
1129   new_rtx = temp ? temp : AD;                                           \
1130                                                                         \
1131   if (optimize                                                          \
1132       && GET_CODE (new_rtx) == PLUS                                             \
1133       && GET_CODE (XEXP (new_rtx, 0)) == REG                            \
1134       && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT)                             \
1135     {                                                                   \
1136       offset = INTVAL (XEXP ((new_rtx), 1));                            \
1137                                                                         \
1138       /* Choose rounding direction.  Round up if we are >= halfway.  */ \
1139       if ((offset & mask) >= ((mask + 1) / 2))                          \
1140         newoffset = (offset & ~mask) + mask + 1;                        \
1141       else                                                              \
1142         newoffset = offset & ~mask;                                     \
1143                                                                         \
1144       /* Ensure that long displacements are aligned.  */                \
1145       if (mask == 0x3fff                                                \
1146           && (GET_MODE_CLASS (MODE) == MODE_FLOAT                       \
1147               || (TARGET_64BIT && (MODE) == DImode)))                   \
1148         newoffset &= ~(GET_MODE_SIZE (MODE) - 1);                       \
1149                                                                         \
1150       if (newoffset != 0 && VAL_14_BITS_P (newoffset))                  \
1151         {                                                               \
1152           temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0),                        \
1153                                GEN_INT (newoffset));                    \
1154           AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1155           push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0,               \
1156                        BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,           \
1157                        (OPNUM), (TYPE));                                \
1158           goto WIN;                                                     \
1159         }                                                               \
1160     }                                                                   \
1161 } while (0)
1162
1163
1164 \f
1165 #define TARGET_ASM_SELECT_SECTION  pa_select_section
1166
1167 /* Return a nonzero value if DECL has a section attribute.  */
1168 #define IN_NAMED_SECTION_P(DECL) \
1169   ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1170    && DECL_SECTION_NAME (DECL) != NULL_TREE)
1171
1172 /* Define this macro if references to a symbol must be treated
1173    differently depending on something about the variable or
1174    function named by the symbol (such as what section it is in).
1175
1176    The macro definition, if any, is executed immediately after the
1177    rtl for DECL or other node is created.
1178    The value of the rtl will be a `mem' whose address is a
1179    `symbol_ref'.
1180
1181    The usual thing for this macro to do is to a flag in the
1182    `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1183    name string in the `symbol_ref' (if one bit is not enough
1184    information).
1185
1186    On the HP-PA we use this to indicate if a symbol is in text or
1187    data space.  Also, function labels need special treatment.  */
1188
1189 #define TEXT_SPACE_P(DECL)\
1190   (TREE_CODE (DECL) == FUNCTION_DECL                                    \
1191    || (TREE_CODE (DECL) == VAR_DECL                                     \
1192        && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)            \
1193        && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
1194        && !flag_pic)                                                    \
1195    || CONSTANT_CLASS_P (DECL))
1196
1197 #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
1198
1199 /* Specify the machine mode that this machine uses for the index in the
1200    tablejump instruction.  For small tables, an element consists of a
1201    ia-relative branch and its delay slot.  When -mbig-switch is specified,
1202    we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1203    for both 32 and 64-bit pic code.  */
1204 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1205
1206 /* Jump tables must be 32-bit aligned, no matter the size of the element.  */
1207 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1208
1209 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1210 #define DEFAULT_SIGNED_CHAR 1
1211
1212 /* Max number of bytes we can move from memory to memory
1213    in one reasonably fast instruction.  */
1214 #define MOVE_MAX 8
1215
1216 /* Higher than the default as we prefer to use simple move insns
1217    (better scheduling and delay slot filling) and because our
1218    built-in block move is really a 2X unrolled loop. 
1219
1220    Believe it or not, this has to be big enough to allow for copying all
1221    arguments passed in registers to avoid infinite recursion during argument
1222    setup for a function call.  Why?  Consider how we copy the stack slots
1223    reserved for parameters when they may be trashed by a call.  */
1224 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1225
1226 /* Define if operations between registers always perform the operation
1227    on the full register even if a narrower mode is specified.  */
1228 #define WORD_REGISTER_OPERATIONS
1229
1230 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1231    will either zero-extend or sign-extend.  The value of this macro should
1232    be the code that says which one of the two operations is implicitly
1233    done, UNKNOWN if none.  */
1234 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1235
1236 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1237 #define SLOW_BYTE_ACCESS 1
1238
1239 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1240    is done just by pretending it is already truncated.  */
1241 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1242
1243 /* Specify the machine mode that pointers have.
1244    After generation of rtl, the compiler makes no further distinction
1245    between pointers and any other objects of this machine mode.  */
1246 #define Pmode word_mode
1247
1248 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1249    return the mode to be used for the comparison.  For floating-point, CCFPmode
1250    should be used.  CC_NOOVmode should be used when the first operand is a
1251    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1252    needed.  */
1253 #define SELECT_CC_MODE(OP,X,Y) \
1254   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1255
1256 /* A function address in a call instruction
1257    is a byte address (for indexing purposes)
1258    so give the MEM rtx a byte's mode.  */
1259 #define FUNCTION_MODE SImode
1260
1261 /* Define this if addresses of constant functions
1262    shouldn't be put through pseudo regs where they can be cse'd.
1263    Desirable on machines where ordinary constants are expensive
1264    but a CALL with constant address is cheap.  */
1265 #define NO_FUNCTION_CSE
1266
1267 /* Define this to be nonzero if shift instructions ignore all but the low-order
1268    few bits.  */
1269 #define SHIFT_COUNT_TRUNCATED 1
1270
1271 /* Adjust the cost of branches.  */
1272 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1273
1274 /* Handling the special cases is going to get too complicated for a macro,
1275    just call `pa_adjust_insn_length' to do the real work.  */
1276 #define ADJUST_INSN_LENGTH(INSN, LENGTH)        \
1277   LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1278
1279 /* Millicode insns are actually function calls with some special
1280    constraints on arguments and register usage.
1281
1282    Millicode calls always expect their arguments in the integer argument
1283    registers, and always return their result in %r29 (ret1).  They
1284    are expected to clobber their arguments, %r1, %r29, and the return
1285    pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1286
1287    This macro tells reorg that the references to arguments and
1288    millicode calls do not appear to happen until after the millicode call.
1289    This allows reorg to put insns which set the argument registers into the
1290    delay slot of the millicode call -- thus they act more like traditional
1291    CALL_INSNs.
1292
1293    Note we cannot consider side effects of the insn to be delayed because
1294    the branch and link insn will clobber the return pointer.  If we happened
1295    to use the return pointer in the delay slot of the call, then we lose.
1296
1297    get_attr_type will try to recognize the given insn, so make sure to
1298    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1299    in particular.  */
1300 #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
1301
1302 \f
1303 /* Control the assembler format that we output.  */
1304
1305 /* A C string constant describing how to begin a comment in the target
1306    assembler language.  The compiler assumes that the comment will end at
1307    the end of the line.  */
1308
1309 #define ASM_COMMENT_START ";"
1310
1311 /* Output to assembler file text saying following lines
1312    may contain character constants, extra white space, comments, etc.  */
1313
1314 #define ASM_APP_ON ""
1315
1316 /* Output to assembler file text saying following lines
1317    no longer contain unusual constructs.  */
1318
1319 #define ASM_APP_OFF ""
1320
1321 /* This is how to output the definition of a user-level label named NAME,
1322    such as the label on a static function or variable NAME.  */
1323
1324 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1325   do {                                                  \
1326     assemble_name ((FILE), (NAME));                     \
1327     if (TARGET_GAS)                                     \
1328       fputs (":\n", (FILE));                            \
1329     else                                                \
1330       fputc ('\n', (FILE));                             \
1331   } while (0)
1332
1333 /* This is how to output a reference to a user-level label named NAME.
1334    `assemble_name' uses this.  */
1335
1336 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1337   do {                                  \
1338     const char *xname = (NAME);         \
1339     if (FUNCTION_NAME_P (NAME))         \
1340       xname += 1;                       \
1341     if (xname[0] == '*')                \
1342       xname += 1;                       \
1343     else                                \
1344       fputs (user_label_prefix, FILE);  \
1345     fputs (xname, FILE);                \
1346   } while (0)
1347
1348 /* This how we output the symbol_ref X.  */
1349
1350 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1351   do {                                                 \
1352     SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1353     assemble_name (FILE, XSTR (X, 0));                 \
1354   } while (0)
1355
1356 /* This is how to store into the string LABEL
1357    the symbol_ref name of an internal numbered label where
1358    PREFIX is the class of label and NUM is the number within the class.
1359    This is suitable for output with `assemble_name'.  */
1360
1361 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1362   sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1363
1364 /* Output the definition of a compiler-generated label named NAME.  */
1365
1366 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1367   do {                                                  \
1368     assemble_name_raw ((FILE), (NAME));                 \
1369     if (TARGET_GAS)                                     \
1370       fputs (":\n", (FILE));                            \
1371     else                                                \
1372       fputc ('\n', (FILE));                             \
1373   } while (0)
1374
1375 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1376
1377 #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1378   pa_output_ascii ((FILE), (P), (SIZE))
1379
1380 /* Jump tables are always placed in the text section.  Technically, it
1381    is possible to put them in the readonly data section when -mbig-switch
1382    is specified.  This has the benefit of getting the table out of .text
1383    and reducing branch lengths as a result.  The downside is that an
1384    additional insn (addil) is needed to access the table when generating
1385    PIC code.  The address difference table also has to use 32-bit
1386    pc-relative relocations.  Currently, GAS does not support these
1387    relocations, although it is easily modified to do this operation.
1388    The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1389    when using ELF GAS.  A simple difference can be used when using
1390    SOM GAS or the HP assembler.  The final downside is GDB complains
1391    about the nesting of the label for the table when debugging.  */
1392
1393 #define JUMP_TABLES_IN_TEXT_SECTION 1
1394
1395 /* This is how to output an element of a case-vector that is absolute.  */
1396
1397 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1398   if (TARGET_BIG_SWITCH)                                                \
1399     fprintf (FILE, "\t.word L$%04d\n", VALUE);                          \
1400   else                                                                  \
1401     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1402
1403 /* This is how to output an element of a case-vector that is relative. 
1404    Since we always place jump tables in the text section, the difference
1405    is absolute and requires no relocation.  */
1406
1407 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1408   if (TARGET_BIG_SWITCH)                                                \
1409     fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL);              \
1410   else                                                                  \
1411     fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1412
1413 /* This is how to output an assembler line that says to advance the
1414    location counter to a multiple of 2**LOG bytes.  */
1415
1416 #define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1417     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1418
1419 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1420   fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n",          \
1421            (unsigned HOST_WIDE_INT)(SIZE))
1422
1423 /* This says how to output an assembler line to define an uninitialized
1424    global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1425    This macro exists to properly support languages like C++ which do not
1426    have common data.  */
1427
1428 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)           \
1429   pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1430   
1431 /* This says how to output an assembler line to define a global common symbol
1432    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1433
1434 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)              \
1435   pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1436
1437 /* This says how to output an assembler line to define a local common symbol
1438    with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1439    controls how the assembler definitions of uninitialized static variables
1440    are output.  */
1441
1442 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)               \
1443   pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1444   
1445 /* All HP assemblers use "!" to separate logical lines.  */
1446 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1447
1448 /* Print operand X (an rtx) in assembler syntax to file FILE.
1449    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1450    For `%' followed by punctuation, CODE is the punctuation and X is null.
1451
1452    On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1453    and an immediate zero should be represented as `r0'.
1454
1455    Several % codes are defined:
1456    O an operation
1457    C compare conditions
1458    N extract conditions
1459    M modifier to handle preincrement addressing for memory refs.
1460    F modifier to handle preincrement addressing for fp memory refs */
1461
1462 #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
1463
1464 \f
1465 /* Print a memory address as an operand to reference that memory location.  */
1466
1467 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1468 { rtx addr = ADDR;                                                      \
1469   switch (GET_CODE (addr))                                              \
1470     {                                                                   \
1471     case REG:                                                           \
1472       fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);                \
1473       break;                                                            \
1474     case PLUS:                                                          \
1475       gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);              \
1476       fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),            \
1477                reg_names [REGNO (XEXP (addr, 0))]);                     \
1478       break;                                                            \
1479     case LO_SUM:                                                        \
1480       if (!symbolic_operand (XEXP (addr, 1), VOIDmode))                 \
1481         fputs ("R'", FILE);                                             \
1482       else if (flag_pic == 0)                                           \
1483         fputs ("RR'", FILE);                                            \
1484       else                                                              \
1485         fputs ("RT'", FILE);                                            \
1486       pa_output_global_address (FILE, XEXP (addr, 1), 0);               \
1487       fputs ("(", FILE);                                                \
1488       output_operand (XEXP (addr, 0), 0);                               \
1489       fputs (")", FILE);                                                \
1490       break;                                                            \
1491     case CONST_INT:                                                     \
1492       fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));  \
1493       break;                                                            \
1494     default:                                                            \
1495       output_addr_const (FILE, addr);                                   \
1496     }}
1497
1498 \f
1499 /* Find the return address associated with the frame given by
1500    FRAMEADDR.  */
1501 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)                                \
1502   (pa_return_addr_rtx (COUNT, FRAMEADDR))
1503
1504 /* Used to mask out junk bits from the return address, such as
1505    processor state, interrupt status, condition codes and the like.  */
1506 #define MASK_RETURN_ADDR                                                \
1507   /* The privilege level is in the two low order bits, mask em out      \
1508      of the return address.  */                                         \
1509   (GEN_INT (-4))
1510
1511 /* The number of Pmode words for the setjmp buffer.  */
1512 #define JMP_BUF_SIZE 50
1513
1514 /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
1515 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1516   "__canonicalize_funcptr_for_compare"
1517
1518 #ifdef HAVE_AS_TLS
1519 #undef TARGET_HAVE_TLS
1520 #define TARGET_HAVE_TLS true
1521 #endif
1522
1523 /* The maximum offset in bytes for a PA 1.X pc-relative call to the
1524    head of the preceding stub table.  The selected offsets have been
1525    chosen so that approximately one call stub is allocated for every
1526    86.7 instructions.  A long branch stub is two instructions when
1527    not generating PIC code.  For HP-UX and ELF targets, PIC stubs are
1528    seven and four instructions, respectively.  */  
1529 #define MAX_PCREL17F_OFFSET \
1530   (flag_pic ? (TARGET_HPUX ? 198164 : 221312) : 240000)