1 /* Subroutines for insn-output.c for HPPA.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.c
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "insn-attr.h"
40 #include "integrate.h"
48 #include "target-def.h"
51 /* Return nonzero if there is a bypass for the output of
52 OUT_INSN and the fp store IN_INSN. */
54 hppa_fpstore_bypass_p (rtx out_insn, rtx in_insn)
56 enum machine_mode store_mode;
57 enum machine_mode other_mode;
60 if (recog_memoized (in_insn) < 0
61 || (get_attr_type (in_insn) != TYPE_FPSTORE
62 && get_attr_type (in_insn) != TYPE_FPSTORE_LOAD)
63 || recog_memoized (out_insn) < 0)
66 store_mode = GET_MODE (SET_SRC (PATTERN (in_insn)));
68 set = single_set (out_insn);
72 other_mode = GET_MODE (SET_SRC (set));
74 return (GET_MODE_SIZE (store_mode) == GET_MODE_SIZE (other_mode));
78 #ifndef DO_FRAME_NOTES
79 #ifdef INCOMING_RETURN_ADDR_RTX
80 #define DO_FRAME_NOTES 1
82 #define DO_FRAME_NOTES 0
86 static void copy_reg_pointer (rtx, rtx);
87 static void fix_range (const char *);
88 static bool pa_handle_option (size_t, const char *, int);
89 static int hppa_address_cost (rtx);
90 static bool hppa_rtx_costs (rtx, int, int, int *);
91 static inline rtx force_mode (enum machine_mode, rtx);
92 static void pa_reorg (void);
93 static void pa_combine_instructions (void);
94 static int pa_can_combine_p (rtx, rtx, rtx, int, rtx, rtx, rtx);
95 static int forward_branch_p (rtx);
96 static void compute_zdepwi_operands (unsigned HOST_WIDE_INT, unsigned *);
97 static int compute_movmem_length (rtx);
98 static int compute_clrmem_length (rtx);
99 static bool pa_assemble_integer (rtx, unsigned int, int);
100 static void remove_useless_addtr_insns (int);
101 static void store_reg (int, HOST_WIDE_INT, int);
102 static void store_reg_modify (int, int, HOST_WIDE_INT);
103 static void load_reg (int, HOST_WIDE_INT, int);
104 static void set_reg_plus_d (int, int, HOST_WIDE_INT, int);
105 static void pa_output_function_prologue (FILE *, HOST_WIDE_INT);
106 static void update_total_code_bytes (int);
107 static void pa_output_function_epilogue (FILE *, HOST_WIDE_INT);
108 static int pa_adjust_cost (rtx, rtx, rtx, int);
109 static int pa_adjust_priority (rtx, int);
110 static int pa_issue_rate (void);
111 static void pa_som_asm_init_sections (void) ATTRIBUTE_UNUSED;
112 static section *pa_select_section (tree, int, unsigned HOST_WIDE_INT)
114 static void pa_encode_section_info (tree, rtx, int);
115 static const char *pa_strip_name_encoding (const char *);
116 static bool pa_function_ok_for_sibcall (tree, tree);
117 static void pa_globalize_label (FILE *, const char *)
119 static void pa_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
120 HOST_WIDE_INT, tree);
121 #if !defined(USE_COLLECT2)
122 static void pa_asm_out_constructor (rtx, int);
123 static void pa_asm_out_destructor (rtx, int);
125 static void pa_init_builtins (void);
126 static rtx hppa_builtin_saveregs (void);
127 static void hppa_va_start (tree, rtx);
128 static tree hppa_gimplify_va_arg_expr (tree, tree, tree *, tree *);
129 static bool pa_scalar_mode_supported_p (enum machine_mode);
130 static bool pa_commutative_p (const_rtx x, int outer_code);
131 static void copy_fp_args (rtx) ATTRIBUTE_UNUSED;
132 static int length_fp_args (rtx) ATTRIBUTE_UNUSED;
133 static inline void pa_file_start_level (void) ATTRIBUTE_UNUSED;
134 static inline void pa_file_start_space (int) ATTRIBUTE_UNUSED;
135 static inline void pa_file_start_file (int) ATTRIBUTE_UNUSED;
136 static inline void pa_file_start_mcount (const char*) ATTRIBUTE_UNUSED;
137 static void pa_elf_file_start (void) ATTRIBUTE_UNUSED;
138 static void pa_som_file_start (void) ATTRIBUTE_UNUSED;
139 static void pa_linux_file_start (void) ATTRIBUTE_UNUSED;
140 static void pa_hpux64_gas_file_start (void) ATTRIBUTE_UNUSED;
141 static void pa_hpux64_hpas_file_start (void) ATTRIBUTE_UNUSED;
142 static void output_deferred_plabels (void);
143 static void output_deferred_profile_counters (void) ATTRIBUTE_UNUSED;
144 #ifdef ASM_OUTPUT_EXTERNAL_REAL
145 static void pa_hpux_file_end (void);
147 #ifdef HPUX_LONG_DOUBLE_LIBRARY
148 static void pa_hpux_init_libfuncs (void);
150 static rtx pa_struct_value_rtx (tree, int);
151 static bool pa_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
153 static int pa_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
155 static struct machine_function * pa_init_machine_status (void);
156 static enum reg_class pa_secondary_reload (bool, rtx, enum reg_class,
158 secondary_reload_info *);
159 static void pa_extra_live_on_entry (bitmap);
161 /* The following extra sections are only used for SOM. */
162 static GTY(()) section *som_readonly_data_section;
163 static GTY(()) section *som_one_only_readonly_data_section;
164 static GTY(()) section *som_one_only_data_section;
166 /* Save the operands last given to a compare for use when we
167 generate a scc or bcc insn. */
168 rtx hppa_compare_op0, hppa_compare_op1;
169 enum cmp_type hppa_branch_type;
171 /* Which cpu we are scheduling for. */
172 enum processor_type pa_cpu = TARGET_SCHED_DEFAULT;
174 /* The UNIX standard to use for predefines and linking. */
175 int flag_pa_unix = TARGET_HPUX_11_11 ? 1998 : TARGET_HPUX_10_10 ? 1995 : 1993;
177 /* Counts for the number of callee-saved general and floating point
178 registers which were saved by the current function's prologue. */
179 static int gr_saved, fr_saved;
181 /* Boolean indicating whether the return pointer was saved by the
182 current function's prologue. */
183 static bool rp_saved;
185 static rtx find_addr_reg (rtx);
187 /* Keep track of the number of bytes we have output in the CODE subspace
188 during this compilation so we'll know when to emit inline long-calls. */
189 unsigned long total_code_bytes;
191 /* The last address of the previous function plus the number of bytes in
192 associated thunks that have been output. This is used to determine if
193 a thunk can use an IA-relative branch to reach its target function. */
194 static int last_address;
196 /* Variables to handle plabels that we discover are necessary at assembly
197 output time. They are output after the current function. */
198 struct deferred_plabel GTY(())
203 static GTY((length ("n_deferred_plabels"))) struct deferred_plabel *
205 static size_t n_deferred_plabels = 0;
208 /* Initialize the GCC target structure. */
210 #undef TARGET_ASM_ALIGNED_HI_OP
211 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
212 #undef TARGET_ASM_ALIGNED_SI_OP
213 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
214 #undef TARGET_ASM_ALIGNED_DI_OP
215 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
216 #undef TARGET_ASM_UNALIGNED_HI_OP
217 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
218 #undef TARGET_ASM_UNALIGNED_SI_OP
219 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
220 #undef TARGET_ASM_UNALIGNED_DI_OP
221 #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
222 #undef TARGET_ASM_INTEGER
223 #define TARGET_ASM_INTEGER pa_assemble_integer
225 #undef TARGET_ASM_FUNCTION_PROLOGUE
226 #define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue
227 #undef TARGET_ASM_FUNCTION_EPILOGUE
228 #define TARGET_ASM_FUNCTION_EPILOGUE pa_output_function_epilogue
230 #undef TARGET_SCHED_ADJUST_COST
231 #define TARGET_SCHED_ADJUST_COST pa_adjust_cost
232 #undef TARGET_SCHED_ADJUST_PRIORITY
233 #define TARGET_SCHED_ADJUST_PRIORITY pa_adjust_priority
234 #undef TARGET_SCHED_ISSUE_RATE
235 #define TARGET_SCHED_ISSUE_RATE pa_issue_rate
237 #undef TARGET_ENCODE_SECTION_INFO
238 #define TARGET_ENCODE_SECTION_INFO pa_encode_section_info
239 #undef TARGET_STRIP_NAME_ENCODING
240 #define TARGET_STRIP_NAME_ENCODING pa_strip_name_encoding
242 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
243 #define TARGET_FUNCTION_OK_FOR_SIBCALL pa_function_ok_for_sibcall
245 #undef TARGET_COMMUTATIVE_P
246 #define TARGET_COMMUTATIVE_P pa_commutative_p
248 #undef TARGET_ASM_OUTPUT_MI_THUNK
249 #define TARGET_ASM_OUTPUT_MI_THUNK pa_asm_output_mi_thunk
250 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
251 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
253 #undef TARGET_ASM_FILE_END
254 #ifdef ASM_OUTPUT_EXTERNAL_REAL
255 #define TARGET_ASM_FILE_END pa_hpux_file_end
257 #define TARGET_ASM_FILE_END output_deferred_plabels
260 #if !defined(USE_COLLECT2)
261 #undef TARGET_ASM_CONSTRUCTOR
262 #define TARGET_ASM_CONSTRUCTOR pa_asm_out_constructor
263 #undef TARGET_ASM_DESTRUCTOR
264 #define TARGET_ASM_DESTRUCTOR pa_asm_out_destructor
267 #undef TARGET_DEFAULT_TARGET_FLAGS
268 #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | TARGET_CPU_DEFAULT)
269 #undef TARGET_HANDLE_OPTION
270 #define TARGET_HANDLE_OPTION pa_handle_option
272 #undef TARGET_INIT_BUILTINS
273 #define TARGET_INIT_BUILTINS pa_init_builtins
275 #undef TARGET_RTX_COSTS
276 #define TARGET_RTX_COSTS hppa_rtx_costs
277 #undef TARGET_ADDRESS_COST
278 #define TARGET_ADDRESS_COST hppa_address_cost
280 #undef TARGET_MACHINE_DEPENDENT_REORG
281 #define TARGET_MACHINE_DEPENDENT_REORG pa_reorg
283 #ifdef HPUX_LONG_DOUBLE_LIBRARY
284 #undef TARGET_INIT_LIBFUNCS
285 #define TARGET_INIT_LIBFUNCS pa_hpux_init_libfuncs
288 #undef TARGET_PROMOTE_FUNCTION_RETURN
289 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
290 #undef TARGET_PROMOTE_PROTOTYPES
291 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
293 #undef TARGET_STRUCT_VALUE_RTX
294 #define TARGET_STRUCT_VALUE_RTX pa_struct_value_rtx
295 #undef TARGET_RETURN_IN_MEMORY
296 #define TARGET_RETURN_IN_MEMORY pa_return_in_memory
297 #undef TARGET_MUST_PASS_IN_STACK
298 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
299 #undef TARGET_PASS_BY_REFERENCE
300 #define TARGET_PASS_BY_REFERENCE pa_pass_by_reference
301 #undef TARGET_CALLEE_COPIES
302 #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
303 #undef TARGET_ARG_PARTIAL_BYTES
304 #define TARGET_ARG_PARTIAL_BYTES pa_arg_partial_bytes
306 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
307 #define TARGET_EXPAND_BUILTIN_SAVEREGS hppa_builtin_saveregs
308 #undef TARGET_EXPAND_BUILTIN_VA_START
309 #define TARGET_EXPAND_BUILTIN_VA_START hppa_va_start
310 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
311 #define TARGET_GIMPLIFY_VA_ARG_EXPR hppa_gimplify_va_arg_expr
313 #undef TARGET_SCALAR_MODE_SUPPORTED_P
314 #define TARGET_SCALAR_MODE_SUPPORTED_P pa_scalar_mode_supported_p
316 #undef TARGET_CANNOT_FORCE_CONST_MEM
317 #define TARGET_CANNOT_FORCE_CONST_MEM pa_tls_referenced_p
319 #undef TARGET_SECONDARY_RELOAD
320 #define TARGET_SECONDARY_RELOAD pa_secondary_reload
322 #undef TARGET_EXTRA_LIVE_ON_ENTRY
323 #define TARGET_EXTRA_LIVE_ON_ENTRY pa_extra_live_on_entry
325 struct gcc_target targetm = TARGET_INITIALIZER;
327 /* Parse the -mfixed-range= option string. */
330 fix_range (const char *const_str)
333 char *str, *dash, *comma;
335 /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
336 REG2 are either register names or register numbers. The effect
337 of this option is to mark the registers in the range from REG1 to
338 REG2 as ``fixed'' so they won't be used by the compiler. This is
339 used, e.g., to ensure that kernel mode code doesn't use fr4-fr31. */
341 i = strlen (const_str);
342 str = (char *) alloca (i + 1);
343 memcpy (str, const_str, i + 1);
347 dash = strchr (str, '-');
350 warning (0, "value of -mfixed-range must have form REG1-REG2");
355 comma = strchr (dash + 1, ',');
359 first = decode_reg_name (str);
362 warning (0, "unknown register name: %s", str);
366 last = decode_reg_name (dash + 1);
369 warning (0, "unknown register name: %s", dash + 1);
377 warning (0, "%s-%s is an empty range", str, dash + 1);
381 for (i = first; i <= last; ++i)
382 fixed_regs[i] = call_used_regs[i] = 1;
391 /* Check if all floating point registers have been fixed. */
392 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
397 target_flags |= MASK_DISABLE_FPREGS;
400 /* Implement TARGET_HANDLE_OPTION. */
403 pa_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
408 case OPT_mpa_risc_1_0:
410 target_flags &= ~(MASK_PA_11 | MASK_PA_20);
414 case OPT_mpa_risc_1_1:
416 target_flags &= ~MASK_PA_20;
417 target_flags |= MASK_PA_11;
420 case OPT_mpa_risc_2_0:
422 target_flags |= MASK_PA_11 | MASK_PA_20;
426 if (strcmp (arg, "8000") == 0)
427 pa_cpu = PROCESSOR_8000;
428 else if (strcmp (arg, "7100") == 0)
429 pa_cpu = PROCESSOR_7100;
430 else if (strcmp (arg, "700") == 0)
431 pa_cpu = PROCESSOR_700;
432 else if (strcmp (arg, "7100LC") == 0)
433 pa_cpu = PROCESSOR_7100LC;
434 else if (strcmp (arg, "7200") == 0)
435 pa_cpu = PROCESSOR_7200;
436 else if (strcmp (arg, "7300") == 0)
437 pa_cpu = PROCESSOR_7300;
442 case OPT_mfixed_range_:
452 #if TARGET_HPUX_10_10
458 #if TARGET_HPUX_11_11
470 override_options (void)
472 /* Unconditional branches in the delay slot are not compatible with dwarf2
473 call frame information. There is no benefit in using this optimization
474 on PA8000 and later processors. */
475 if (pa_cpu >= PROCESSOR_8000
476 || (! USING_SJLJ_EXCEPTIONS && flag_exceptions)
477 || flag_unwind_tables)
478 target_flags &= ~MASK_JUMP_IN_DELAY;
480 if (flag_pic && TARGET_PORTABLE_RUNTIME)
482 warning (0, "PIC code generation is not supported in the portable runtime model");
485 if (flag_pic && TARGET_FAST_INDIRECT_CALLS)
487 warning (0, "PIC code generation is not compatible with fast indirect calls");
490 if (! TARGET_GAS && write_symbols != NO_DEBUG)
492 warning (0, "-g is only supported when using GAS on this processor,");
493 warning (0, "-g option disabled");
494 write_symbols = NO_DEBUG;
497 /* We only support the "big PIC" model now. And we always generate PIC
498 code when in 64bit mode. */
499 if (flag_pic == 1 || TARGET_64BIT)
502 /* We can't guarantee that .dword is available for 32-bit targets. */
503 if (UNITS_PER_WORD == 4)
504 targetm.asm_out.aligned_op.di = NULL;
506 /* The unaligned ops are only available when using GAS. */
509 targetm.asm_out.unaligned_op.hi = NULL;
510 targetm.asm_out.unaligned_op.si = NULL;
511 targetm.asm_out.unaligned_op.di = NULL;
514 init_machine_status = pa_init_machine_status;
518 pa_init_builtins (void)
520 #ifdef DONT_HAVE_FPUTC_UNLOCKED
521 built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED] =
522 built_in_decls[(int) BUILT_IN_PUTC_UNLOCKED];
523 implicit_built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED]
524 = implicit_built_in_decls[(int) BUILT_IN_PUTC_UNLOCKED];
527 if (built_in_decls [BUILT_IN_FINITE])
528 set_user_assembler_name (built_in_decls [BUILT_IN_FINITE], "_Isfinite");
529 if (built_in_decls [BUILT_IN_FINITEF])
530 set_user_assembler_name (built_in_decls [BUILT_IN_FINITEF], "_Isfinitef");
534 /* Function to init struct machine_function.
535 This will be called, via a pointer variable,
536 from push_function_context. */
538 static struct machine_function *
539 pa_init_machine_status (void)
541 return ggc_alloc_cleared (sizeof (machine_function));
544 /* If FROM is a probable pointer register, mark TO as a probable
545 pointer register with the same pointer alignment as FROM. */
548 copy_reg_pointer (rtx to, rtx from)
550 if (REG_POINTER (from))
551 mark_reg_pointer (to, REGNO_POINTER_ALIGN (REGNO (from)));
554 /* Return 1 if X contains a symbolic expression. We know these
555 expressions will have one of a few well defined forms, so
556 we need only check those forms. */
558 symbolic_expression_p (rtx x)
561 /* Strip off any HIGH. */
562 if (GET_CODE (x) == HIGH)
565 return (symbolic_operand (x, VOIDmode));
568 /* Accept any constant that can be moved in one instruction into a
571 cint_ok_for_move (HOST_WIDE_INT ival)
573 /* OK if ldo, ldil, or zdepi, can be used. */
574 return (VAL_14_BITS_P (ival)
575 || ldil_cint_p (ival)
576 || zdepi_cint_p (ival));
579 /* Return truth value of whether OP can be used as an operand in a
582 adddi3_operand (rtx op, enum machine_mode mode)
584 return (register_operand (op, mode)
585 || (GET_CODE (op) == CONST_INT
586 && (TARGET_64BIT ? INT_14_BITS (op) : INT_11_BITS (op))));
589 /* True iff the operand OP can be used as the destination operand of
590 an integer store. This also implies the operand could be used as
591 the source operand of an integer load. Symbolic, lo_sum and indexed
592 memory operands are not allowed. We accept reloading pseudos and
593 other memory operands. */
595 integer_store_memory_operand (rtx op, enum machine_mode mode)
597 return ((reload_in_progress
599 && REGNO (op) >= FIRST_PSEUDO_REGISTER
600 && reg_renumber [REGNO (op)] < 0)
601 || (GET_CODE (op) == MEM
602 && (reload_in_progress || memory_address_p (mode, XEXP (op, 0)))
603 && !symbolic_memory_operand (op, VOIDmode)
604 && !IS_LO_SUM_DLT_ADDR_P (XEXP (op, 0))
605 && !IS_INDEX_ADDR_P (XEXP (op, 0))));
608 /* True iff ldil can be used to load this CONST_INT. The least
609 significant 11 bits of the value must be zero and the value must
610 not change sign when extended from 32 to 64 bits. */
612 ldil_cint_p (HOST_WIDE_INT ival)
614 HOST_WIDE_INT x = ival & (((HOST_WIDE_INT) -1 << 31) | 0x7ff);
616 return x == 0 || x == ((HOST_WIDE_INT) -1 << 31);
619 /* True iff zdepi can be used to generate this CONST_INT.
620 zdepi first sign extends a 5-bit signed number to a given field
621 length, then places this field anywhere in a zero. */
623 zdepi_cint_p (unsigned HOST_WIDE_INT x)
625 unsigned HOST_WIDE_INT lsb_mask, t;
627 /* This might not be obvious, but it's at least fast.
628 This function is critical; we don't have the time loops would take. */
630 t = ((x >> 4) + lsb_mask) & ~(lsb_mask - 1);
631 /* Return true iff t is a power of two. */
632 return ((t & (t - 1)) == 0);
635 /* True iff depi or extru can be used to compute (reg & mask).
636 Accept bit pattern like these:
641 and_mask_p (unsigned HOST_WIDE_INT mask)
644 mask += mask & -mask;
645 return (mask & (mask - 1)) == 0;
648 /* True iff depi can be used to compute (reg | MASK). */
650 ior_mask_p (unsigned HOST_WIDE_INT mask)
652 mask += mask & -mask;
653 return (mask & (mask - 1)) == 0;
656 /* Legitimize PIC addresses. If the address is already
657 position-independent, we return ORIG. Newly generated
658 position-independent addresses go to REG. If we need more
659 than one register, we lose. */
662 legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
666 gcc_assert (!PA_SYMBOL_REF_TLS_P (orig));
668 /* Labels need special handling. */
669 if (pic_label_operand (orig, mode))
673 /* We do not want to go through the movXX expanders here since that
674 would create recursion.
676 Nor do we really want to call a generator for a named pattern
677 since that requires multiple patterns if we want to support
680 So instead we just emit the raw set, which avoids the movXX
681 expanders completely. */
682 mark_reg_pointer (reg, BITS_PER_UNIT);
683 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, orig));
685 /* Put a REG_EQUAL note on this insn, so that it can be optimized. */
686 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig, REG_NOTES (insn));
688 /* During and after reload, we need to generate a REG_LABEL_OPERAND note
689 and update LABEL_NUSES because this is not done automatically. */
690 if (reload_in_progress || reload_completed)
692 /* Extract LABEL_REF. */
693 if (GET_CODE (orig) == CONST)
694 orig = XEXP (XEXP (orig, 0), 0);
695 /* Extract CODE_LABEL. */
696 orig = XEXP (orig, 0);
697 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL_OPERAND, orig,
699 LABEL_NUSES (orig)++;
701 current_function_uses_pic_offset_table = 1;
704 if (GET_CODE (orig) == SYMBOL_REF)
710 /* Before reload, allocate a temporary register for the intermediate
711 result. This allows the sequence to be deleted when the final
712 result is unused and the insns are trivially dead. */
713 tmp_reg = ((reload_in_progress || reload_completed)
714 ? reg : gen_reg_rtx (Pmode));
716 if (function_label_operand (orig, mode))
718 /* Force function label into memory. */
719 orig = XEXP (force_const_mem (mode, orig), 0);
720 /* Load plabel address from DLT. */
721 emit_move_insn (tmp_reg,
722 gen_rtx_PLUS (word_mode, pic_offset_table_rtx,
723 gen_rtx_HIGH (word_mode, orig)));
725 = gen_const_mem (Pmode,
726 gen_rtx_LO_SUM (Pmode, tmp_reg,
727 gen_rtx_UNSPEC (Pmode,
730 emit_move_insn (reg, pic_ref);
731 /* Now load address of function descriptor. */
732 pic_ref = gen_rtx_MEM (Pmode, reg);
736 /* Load symbol reference from DLT. */
737 emit_move_insn (tmp_reg,
738 gen_rtx_PLUS (word_mode, pic_offset_table_rtx,
739 gen_rtx_HIGH (word_mode, orig)));
741 = gen_const_mem (Pmode,
742 gen_rtx_LO_SUM (Pmode, tmp_reg,
743 gen_rtx_UNSPEC (Pmode,
748 current_function_uses_pic_offset_table = 1;
749 mark_reg_pointer (reg, BITS_PER_UNIT);
750 insn = emit_move_insn (reg, pic_ref);
752 /* Put a REG_EQUAL note on this insn, so that it can be optimized. */
753 set_unique_reg_note (insn, REG_EQUAL, orig);
757 else if (GET_CODE (orig) == CONST)
761 if (GET_CODE (XEXP (orig, 0)) == PLUS
762 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
766 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
768 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
769 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
770 base == reg ? 0 : reg);
772 if (GET_CODE (orig) == CONST_INT)
774 if (INT_14_BITS (orig))
775 return plus_constant (base, INTVAL (orig));
776 orig = force_reg (Pmode, orig);
778 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
779 /* Likewise, should we set special REG_NOTEs here? */
785 static GTY(()) rtx gen_tls_tga;
788 gen_tls_get_addr (void)
791 gen_tls_tga = init_one_libfunc ("__tls_get_addr");
796 hppa_tls_call (rtx arg)
800 ret = gen_reg_rtx (Pmode);
801 emit_library_call_value (gen_tls_get_addr (), ret,
802 LCT_CONST, Pmode, 1, arg, Pmode);
808 legitimize_tls_address (rtx addr)
810 rtx ret, insn, tmp, t1, t2, tp;
811 enum tls_model model = SYMBOL_REF_TLS_MODEL (addr);
815 case TLS_MODEL_GLOBAL_DYNAMIC:
816 tmp = gen_reg_rtx (Pmode);
818 emit_insn (gen_tgd_load_pic (tmp, addr));
820 emit_insn (gen_tgd_load (tmp, addr));
821 ret = hppa_tls_call (tmp);
824 case TLS_MODEL_LOCAL_DYNAMIC:
825 ret = gen_reg_rtx (Pmode);
826 tmp = gen_reg_rtx (Pmode);
829 emit_insn (gen_tld_load_pic (tmp, addr));
831 emit_insn (gen_tld_load (tmp, addr));
832 t1 = hppa_tls_call (tmp);
835 t2 = gen_reg_rtx (Pmode);
836 emit_libcall_block (insn, t2, t1,
837 gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
839 emit_insn (gen_tld_offset_load (ret, addr, t2));
842 case TLS_MODEL_INITIAL_EXEC:
843 tp = gen_reg_rtx (Pmode);
844 tmp = gen_reg_rtx (Pmode);
845 ret = gen_reg_rtx (Pmode);
846 emit_insn (gen_tp_load (tp));
848 emit_insn (gen_tie_load_pic (tmp, addr));
850 emit_insn (gen_tie_load (tmp, addr));
851 emit_move_insn (ret, gen_rtx_PLUS (Pmode, tp, tmp));
854 case TLS_MODEL_LOCAL_EXEC:
855 tp = gen_reg_rtx (Pmode);
856 ret = gen_reg_rtx (Pmode);
857 emit_insn (gen_tp_load (tp));
858 emit_insn (gen_tle_load (ret, addr, tp));
868 /* Try machine-dependent ways of modifying an illegitimate address
869 to be legitimate. If we find one, return the new, valid address.
870 This macro is used in only one place: `memory_address' in explow.c.
872 OLDX is the address as it was before break_out_memory_refs was called.
873 In some cases it is useful to look at this to decide what needs to be done.
875 MODE and WIN are passed so that this macro can use
876 GO_IF_LEGITIMATE_ADDRESS.
878 It is always safe for this macro to do nothing. It exists to recognize
879 opportunities to optimize the output.
881 For the PA, transform:
883 memory(X + <large int>)
887 if (<large int> & mask) >= 16
888 Y = (<large int> & ~mask) + mask + 1 Round up.
890 Y = (<large int> & ~mask) Round down.
892 memory (Z + (<large int> - Y));
894 This is for CSE to find several similar references, and only use one Z.
896 X can either be a SYMBOL_REF or REG, but because combine cannot
897 perform a 4->2 combination we do nothing for SYMBOL_REF + D where
898 D will not fit in 14 bits.
900 MODE_FLOAT references allow displacements which fit in 5 bits, so use
903 MODE_INT references allow displacements which fit in 14 bits, so use
906 This relies on the fact that most mode MODE_FLOAT references will use FP
907 registers and most mode MODE_INT references will use integer registers.
908 (In the rare case of an FP register used in an integer MODE, we depend
909 on secondary reloads to clean things up.)
912 It is also beneficial to handle (plus (mult (X) (Y)) (Z)) in a special
913 manner if Y is 2, 4, or 8. (allows more shadd insns and shifted indexed
914 addressing modes to be used).
916 Put X and Z into registers. Then put the entire expression into
920 hppa_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
921 enum machine_mode mode)
925 /* We need to canonicalize the order of operands in unscaled indexed
926 addresses since the code that checks if an address is valid doesn't
927 always try both orders. */
928 if (!TARGET_NO_SPACE_REGS
929 && GET_CODE (x) == PLUS
930 && GET_MODE (x) == Pmode
931 && REG_P (XEXP (x, 0))
932 && REG_P (XEXP (x, 1))
933 && REG_POINTER (XEXP (x, 0))
934 && !REG_POINTER (XEXP (x, 1)))
935 return gen_rtx_PLUS (Pmode, XEXP (x, 1), XEXP (x, 0));
937 if (PA_SYMBOL_REF_TLS_P (x))
938 return legitimize_tls_address (x);
940 return legitimize_pic_address (x, mode, gen_reg_rtx (Pmode));
942 /* Strip off CONST. */
943 if (GET_CODE (x) == CONST)
946 /* Special case. Get the SYMBOL_REF into a register and use indexing.
947 That should always be safe. */
948 if (GET_CODE (x) == PLUS
949 && GET_CODE (XEXP (x, 0)) == REG
950 && GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
952 rtx reg = force_reg (Pmode, XEXP (x, 1));
953 return force_reg (Pmode, gen_rtx_PLUS (Pmode, reg, XEXP (x, 0)));
956 /* Note we must reject symbols which represent function addresses
957 since the assembler/linker can't handle arithmetic on plabels. */
958 if (GET_CODE (x) == PLUS
959 && GET_CODE (XEXP (x, 1)) == CONST_INT
960 && ((GET_CODE (XEXP (x, 0)) == SYMBOL_REF
961 && !FUNCTION_NAME_P (XSTR (XEXP (x, 0), 0)))
962 || GET_CODE (XEXP (x, 0)) == REG))
964 rtx int_part, ptr_reg;
966 int offset = INTVAL (XEXP (x, 1));
969 mask = (GET_MODE_CLASS (mode) == MODE_FLOAT
970 ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff);
972 /* Choose which way to round the offset. Round up if we
973 are >= halfway to the next boundary. */
974 if ((offset & mask) >= ((mask + 1) / 2))
975 newoffset = (offset & ~ mask) + mask + 1;
977 newoffset = (offset & ~ mask);
979 /* If the newoffset will not fit in 14 bits (ldo), then
980 handling this would take 4 or 5 instructions (2 to load
981 the SYMBOL_REF + 1 or 2 to load the newoffset + 1 to
982 add the new offset and the SYMBOL_REF.) Combine can
983 not handle 4->2 or 5->2 combinations, so do not create
985 if (! VAL_14_BITS_P (newoffset)
986 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
988 rtx const_part = plus_constant (XEXP (x, 0), newoffset);
991 gen_rtx_HIGH (Pmode, const_part));
994 gen_rtx_LO_SUM (Pmode,
995 tmp_reg, const_part));
999 if (! VAL_14_BITS_P (newoffset))
1000 int_part = force_reg (Pmode, GEN_INT (newoffset));
1002 int_part = GEN_INT (newoffset);
1004 ptr_reg = force_reg (Pmode,
1005 gen_rtx_PLUS (Pmode,
1006 force_reg (Pmode, XEXP (x, 0)),
1009 return plus_constant (ptr_reg, offset - newoffset);
1012 /* Handle (plus (mult (a) (shadd_constant)) (b)). */
1014 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT
1015 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1016 && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1)))
1017 && (OBJECT_P (XEXP (x, 1))
1018 || GET_CODE (XEXP (x, 1)) == SUBREG)
1019 && GET_CODE (XEXP (x, 1)) != CONST)
1021 int val = INTVAL (XEXP (XEXP (x, 0), 1));
1025 if (GET_CODE (reg1) != REG)
1026 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1028 reg2 = XEXP (XEXP (x, 0), 0);
1029 if (GET_CODE (reg2) != REG)
1030 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1032 return force_reg (Pmode, gen_rtx_PLUS (Pmode,
1033 gen_rtx_MULT (Pmode,
1039 /* Similarly for (plus (plus (mult (a) (shadd_constant)) (b)) (c)).
1041 Only do so for floating point modes since this is more speculative
1042 and we lose if it's an integer store. */
1043 if (GET_CODE (x) == PLUS
1044 && GET_CODE (XEXP (x, 0)) == PLUS
1045 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
1046 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
1047 && shadd_constant_p (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)))
1048 && (mode == SFmode || mode == DFmode))
1051 /* First, try and figure out what to use as a base register. */
1052 rtx reg1, reg2, base, idx, orig_base;
1054 reg1 = XEXP (XEXP (x, 0), 1);
1059 /* Make sure they're both regs. If one was a SYMBOL_REF [+ const],
1060 then emit_move_sequence will turn on REG_POINTER so we'll know
1061 it's a base register below. */
1062 if (GET_CODE (reg1) != REG)
1063 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1065 if (GET_CODE (reg2) != REG)
1066 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1068 /* Figure out what the base and index are. */
1070 if (GET_CODE (reg1) == REG
1071 && REG_POINTER (reg1))
1074 orig_base = XEXP (XEXP (x, 0), 1);
1075 idx = gen_rtx_PLUS (Pmode,
1076 gen_rtx_MULT (Pmode,
1077 XEXP (XEXP (XEXP (x, 0), 0), 0),
1078 XEXP (XEXP (XEXP (x, 0), 0), 1)),
1081 else if (GET_CODE (reg2) == REG
1082 && REG_POINTER (reg2))
1085 orig_base = XEXP (x, 1);
1092 /* If the index adds a large constant, try to scale the
1093 constant so that it can be loaded with only one insn. */
1094 if (GET_CODE (XEXP (idx, 1)) == CONST_INT
1095 && VAL_14_BITS_P (INTVAL (XEXP (idx, 1))
1096 / INTVAL (XEXP (XEXP (idx, 0), 1)))
1097 && INTVAL (XEXP (idx, 1)) % INTVAL (XEXP (XEXP (idx, 0), 1)) == 0)
1099 /* Divide the CONST_INT by the scale factor, then add it to A. */
1100 int val = INTVAL (XEXP (idx, 1));
1102 val /= INTVAL (XEXP (XEXP (idx, 0), 1));
1103 reg1 = XEXP (XEXP (idx, 0), 0);
1104 if (GET_CODE (reg1) != REG)
1105 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1107 reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, reg1, GEN_INT (val)));
1109 /* We can now generate a simple scaled indexed address. */
1112 (Pmode, gen_rtx_PLUS (Pmode,
1113 gen_rtx_MULT (Pmode, reg1,
1114 XEXP (XEXP (idx, 0), 1)),
1118 /* If B + C is still a valid base register, then add them. */
1119 if (GET_CODE (XEXP (idx, 1)) == CONST_INT
1120 && INTVAL (XEXP (idx, 1)) <= 4096
1121 && INTVAL (XEXP (idx, 1)) >= -4096)
1123 int val = INTVAL (XEXP (XEXP (idx, 0), 1));
1126 reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, XEXP (idx, 1)));
1128 reg2 = XEXP (XEXP (idx, 0), 0);
1129 if (GET_CODE (reg2) != CONST_INT)
1130 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1132 return force_reg (Pmode, gen_rtx_PLUS (Pmode,
1133 gen_rtx_MULT (Pmode,
1139 /* Get the index into a register, then add the base + index and
1140 return a register holding the result. */
1142 /* First get A into a register. */
1143 reg1 = XEXP (XEXP (idx, 0), 0);
1144 if (GET_CODE (reg1) != REG)
1145 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1147 /* And get B into a register. */
1148 reg2 = XEXP (idx, 1);
1149 if (GET_CODE (reg2) != REG)
1150 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1152 reg1 = force_reg (Pmode,
1153 gen_rtx_PLUS (Pmode,
1154 gen_rtx_MULT (Pmode, reg1,
1155 XEXP (XEXP (idx, 0), 1)),
1158 /* Add the result to our base register and return. */
1159 return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, reg1));
1163 /* Uh-oh. We might have an address for x[n-100000]. This needs
1164 special handling to avoid creating an indexed memory address
1165 with x-100000 as the base.
1167 If the constant part is small enough, then it's still safe because
1168 there is a guard page at the beginning and end of the data segment.
1170 Scaled references are common enough that we want to try and rearrange the
1171 terms so that we can use indexing for these addresses too. Only
1172 do the optimization for floatint point modes. */
1174 if (GET_CODE (x) == PLUS
1175 && symbolic_expression_p (XEXP (x, 1)))
1177 /* Ugly. We modify things here so that the address offset specified
1178 by the index expression is computed first, then added to x to form
1179 the entire address. */
1181 rtx regx1, regx2, regy1, regy2, y;
1183 /* Strip off any CONST. */
1185 if (GET_CODE (y) == CONST)
1188 if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
1190 /* See if this looks like
1191 (plus (mult (reg) (shadd_const))
1192 (const (plus (symbol_ref) (const_int))))
1194 Where const_int is small. In that case the const
1195 expression is a valid pointer for indexing.
1197 If const_int is big, but can be divided evenly by shadd_const
1198 and added to (reg). This allows more scaled indexed addresses. */
1199 if (GET_CODE (XEXP (y, 0)) == SYMBOL_REF
1200 && GET_CODE (XEXP (x, 0)) == MULT
1201 && GET_CODE (XEXP (y, 1)) == CONST_INT
1202 && INTVAL (XEXP (y, 1)) >= -4096
1203 && INTVAL (XEXP (y, 1)) <= 4095
1204 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1205 && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))))
1207 int val = INTVAL (XEXP (XEXP (x, 0), 1));
1211 if (GET_CODE (reg1) != REG)
1212 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1214 reg2 = XEXP (XEXP (x, 0), 0);
1215 if (GET_CODE (reg2) != REG)
1216 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1218 return force_reg (Pmode,
1219 gen_rtx_PLUS (Pmode,
1220 gen_rtx_MULT (Pmode,
1225 else if ((mode == DFmode || mode == SFmode)
1226 && GET_CODE (XEXP (y, 0)) == SYMBOL_REF
1227 && GET_CODE (XEXP (x, 0)) == MULT
1228 && GET_CODE (XEXP (y, 1)) == CONST_INT
1229 && INTVAL (XEXP (y, 1)) % INTVAL (XEXP (XEXP (x, 0), 1)) == 0
1230 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1231 && shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))))
1234 = force_reg (Pmode, GEN_INT (INTVAL (XEXP (y, 1))
1235 / INTVAL (XEXP (XEXP (x, 0), 1))));
1236 regx2 = XEXP (XEXP (x, 0), 0);
1237 if (GET_CODE (regx2) != REG)
1238 regx2 = force_reg (Pmode, force_operand (regx2, 0));
1239 regx2 = force_reg (Pmode, gen_rtx_fmt_ee (GET_CODE (y), Pmode,
1243 gen_rtx_PLUS (Pmode,
1244 gen_rtx_MULT (Pmode, regx2,
1245 XEXP (XEXP (x, 0), 1)),
1246 force_reg (Pmode, XEXP (y, 0))));
1248 else if (GET_CODE (XEXP (y, 1)) == CONST_INT
1249 && INTVAL (XEXP (y, 1)) >= -4096
1250 && INTVAL (XEXP (y, 1)) <= 4095)
1252 /* This is safe because of the guard page at the
1253 beginning and end of the data space. Just
1254 return the original address. */
1259 /* Doesn't look like one we can optimize. */
1260 regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
1261 regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
1262 regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
1263 regx1 = force_reg (Pmode,
1264 gen_rtx_fmt_ee (GET_CODE (y), Pmode,
1266 return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
1274 /* For the HPPA, REG and REG+CONST is cost 0
1275 and addresses involving symbolic constants are cost 2.
1277 PIC addresses are very expensive.
1279 It is no coincidence that this has the same structure
1280 as GO_IF_LEGITIMATE_ADDRESS. */
1283 hppa_address_cost (rtx X)
1285 switch (GET_CODE (X))
1298 /* Compute a (partial) cost for rtx X. Return true if the complete
1299 cost has been computed, and false if subexpressions should be
1300 scanned. In either case, *TOTAL contains the cost result. */
1303 hppa_rtx_costs (rtx x, int code, int outer_code, int *total)
1308 if (INTVAL (x) == 0)
1310 else if (INT_14_BITS (x))
1327 if ((x == CONST0_RTX (DFmode) || x == CONST0_RTX (SFmode))
1328 && outer_code != SET)
1335 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1336 *total = COSTS_N_INSNS (3);
1337 else if (TARGET_PA_11 && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT)
1338 *total = COSTS_N_INSNS (8);
1340 *total = COSTS_N_INSNS (20);
1344 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1346 *total = COSTS_N_INSNS (14);
1354 *total = COSTS_N_INSNS (60);
1357 case PLUS: /* this includes shNadd insns */
1359 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1360 *total = COSTS_N_INSNS (3);
1362 *total = COSTS_N_INSNS (1);
1368 *total = COSTS_N_INSNS (1);
1376 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
1377 new rtx with the correct mode. */
1379 force_mode (enum machine_mode mode, rtx orig)
1381 if (mode == GET_MODE (orig))
1384 gcc_assert (REGNO (orig) < FIRST_PSEUDO_REGISTER);
1386 return gen_rtx_REG (mode, REGNO (orig));
1389 /* Return 1 if *X is a thread-local symbol. */
1392 pa_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1394 return PA_SYMBOL_REF_TLS_P (*x);
1397 /* Return 1 if X contains a thread-local symbol. */
1400 pa_tls_referenced_p (rtx x)
1402 if (!TARGET_HAVE_TLS)
1405 return for_each_rtx (&x, &pa_tls_symbol_ref_1, 0);
1408 /* Emit insns to move operands[1] into operands[0].
1410 Return 1 if we have written out everything that needs to be done to
1411 do the move. Otherwise, return 0 and the caller will emit the move
1414 Note SCRATCH_REG may not be in the proper mode depending on how it
1415 will be used. This routine is responsible for creating a new copy
1416 of SCRATCH_REG in the proper mode. */
1419 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
1421 register rtx operand0 = operands[0];
1422 register rtx operand1 = operands[1];
1425 /* We can only handle indexed addresses in the destination operand
1426 of floating point stores. Thus, we need to break out indexed
1427 addresses from the destination operand. */
1428 if (GET_CODE (operand0) == MEM && IS_INDEX_ADDR_P (XEXP (operand0, 0)))
1430 gcc_assert (can_create_pseudo_p ());
1432 tem = copy_to_mode_reg (Pmode, XEXP (operand0, 0));
1433 operand0 = replace_equiv_address (operand0, tem);
1436 /* On targets with non-equivalent space registers, break out unscaled
1437 indexed addresses from the source operand before the final CSE.
1438 We have to do this because the REG_POINTER flag is not correctly
1439 carried through various optimization passes and CSE may substitute
1440 a pseudo without the pointer set for one with the pointer set. As
1441 a result, we loose various opportunities to create insns with
1442 unscaled indexed addresses. */
1443 if (!TARGET_NO_SPACE_REGS
1444 && !cse_not_expected
1445 && GET_CODE (operand1) == MEM
1446 && GET_CODE (XEXP (operand1, 0)) == PLUS
1447 && REG_P (XEXP (XEXP (operand1, 0), 0))
1448 && REG_P (XEXP (XEXP (operand1, 0), 1)))
1450 = replace_equiv_address (operand1,
1451 copy_to_mode_reg (Pmode, XEXP (operand1, 0)));
1454 && reload_in_progress && GET_CODE (operand0) == REG
1455 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
1456 operand0 = reg_equiv_mem[REGNO (operand0)];
1457 else if (scratch_reg
1458 && reload_in_progress && GET_CODE (operand0) == SUBREG
1459 && GET_CODE (SUBREG_REG (operand0)) == REG
1460 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
1462 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
1463 the code which tracks sets/uses for delete_output_reload. */
1464 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
1465 reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
1466 SUBREG_BYTE (operand0));
1467 operand0 = alter_subreg (&temp);
1471 && reload_in_progress && GET_CODE (operand1) == REG
1472 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
1473 operand1 = reg_equiv_mem[REGNO (operand1)];
1474 else if (scratch_reg
1475 && reload_in_progress && GET_CODE (operand1) == SUBREG
1476 && GET_CODE (SUBREG_REG (operand1)) == REG
1477 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
1479 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
1480 the code which tracks sets/uses for delete_output_reload. */
1481 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
1482 reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
1483 SUBREG_BYTE (operand1));
1484 operand1 = alter_subreg (&temp);
1487 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
1488 && ((tem = find_replacement (&XEXP (operand0, 0)))
1489 != XEXP (operand0, 0)))
1490 operand0 = replace_equiv_address (operand0, tem);
1492 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
1493 && ((tem = find_replacement (&XEXP (operand1, 0)))
1494 != XEXP (operand1, 0)))
1495 operand1 = replace_equiv_address (operand1, tem);
1497 /* Handle secondary reloads for loads/stores of FP registers from
1498 REG+D addresses where D does not fit in 5 or 14 bits, including
1499 (subreg (mem (addr))) cases. */
1501 && fp_reg_operand (operand0, mode)
1502 && ((GET_CODE (operand1) == MEM
1503 && !memory_address_p ((GET_MODE_SIZE (mode) == 4 ? SFmode : DFmode),
1504 XEXP (operand1, 0)))
1505 || ((GET_CODE (operand1) == SUBREG
1506 && GET_CODE (XEXP (operand1, 0)) == MEM
1507 && !memory_address_p ((GET_MODE_SIZE (mode) == 4
1509 XEXP (XEXP (operand1, 0), 0))))))
1511 if (GET_CODE (operand1) == SUBREG)
1512 operand1 = XEXP (operand1, 0);
1514 /* SCRATCH_REG will hold an address and maybe the actual data. We want
1515 it in WORD_MODE regardless of what mode it was originally given
1517 scratch_reg = force_mode (word_mode, scratch_reg);
1519 /* D might not fit in 14 bits either; for such cases load D into
1521 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
1523 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
1524 emit_move_insn (scratch_reg,
1525 gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
1527 XEXP (XEXP (operand1, 0), 0),
1531 emit_move_insn (scratch_reg, XEXP (operand1, 0));
1532 emit_insn (gen_rtx_SET (VOIDmode, operand0,
1533 replace_equiv_address (operand1, scratch_reg)));
1536 else if (scratch_reg
1537 && fp_reg_operand (operand1, mode)
1538 && ((GET_CODE (operand0) == MEM
1539 && !memory_address_p ((GET_MODE_SIZE (mode) == 4
1541 XEXP (operand0, 0)))
1542 || ((GET_CODE (operand0) == SUBREG)
1543 && GET_CODE (XEXP (operand0, 0)) == MEM
1544 && !memory_address_p ((GET_MODE_SIZE (mode) == 4
1546 XEXP (XEXP (operand0, 0), 0)))))
1548 if (GET_CODE (operand0) == SUBREG)
1549 operand0 = XEXP (operand0, 0);
1551 /* SCRATCH_REG will hold an address and maybe the actual data. We want
1552 it in WORD_MODE regardless of what mode it was originally given
1554 scratch_reg = force_mode (word_mode, scratch_reg);
1556 /* D might not fit in 14 bits either; for such cases load D into
1558 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
1560 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
1561 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
1564 XEXP (XEXP (operand0, 0),
1569 emit_move_insn (scratch_reg, XEXP (operand0, 0));
1570 emit_insn (gen_rtx_SET (VOIDmode,
1571 replace_equiv_address (operand0, scratch_reg),
1575 /* Handle secondary reloads for loads of FP registers from constant
1576 expressions by forcing the constant into memory.
1578 Use scratch_reg to hold the address of the memory location.
1580 The proper fix is to change PREFERRED_RELOAD_CLASS to return
1581 NO_REGS when presented with a const_int and a register class
1582 containing only FP registers. Doing so unfortunately creates
1583 more problems than it solves. Fix this for 2.5. */
1584 else if (scratch_reg
1585 && CONSTANT_P (operand1)
1586 && fp_reg_operand (operand0, mode))
1588 rtx const_mem, xoperands[2];
1590 /* SCRATCH_REG will hold an address and maybe the actual data. We want
1591 it in WORD_MODE regardless of what mode it was originally given
1593 scratch_reg = force_mode (word_mode, scratch_reg);
1595 /* Force the constant into memory and put the address of the
1596 memory location into scratch_reg. */
1597 const_mem = force_const_mem (mode, operand1);
1598 xoperands[0] = scratch_reg;
1599 xoperands[1] = XEXP (const_mem, 0);
1600 emit_move_sequence (xoperands, Pmode, 0);
1602 /* Now load the destination register. */
1603 emit_insn (gen_rtx_SET (mode, operand0,
1604 replace_equiv_address (const_mem, scratch_reg)));
1607 /* Handle secondary reloads for SAR. These occur when trying to load
1608 the SAR from memory, FP register, or with a constant. */
1609 else if (scratch_reg
1610 && GET_CODE (operand0) == REG
1611 && REGNO (operand0) < FIRST_PSEUDO_REGISTER
1612 && REGNO_REG_CLASS (REGNO (operand0)) == SHIFT_REGS
1613 && (GET_CODE (operand1) == MEM
1614 || GET_CODE (operand1) == CONST_INT
1615 || (GET_CODE (operand1) == REG
1616 && FP_REG_CLASS_P (REGNO_REG_CLASS (REGNO (operand1))))))
1618 /* D might not fit in 14 bits either; for such cases load D into
1620 if (GET_CODE (operand1) == MEM
1621 && !memory_address_p (Pmode, XEXP (operand1, 0)))
1623 /* We are reloading the address into the scratch register, so we
1624 want to make sure the scratch register is a full register. */
1625 scratch_reg = force_mode (word_mode, scratch_reg);
1627 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
1628 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1,
1631 XEXP (XEXP (operand1, 0),
1635 /* Now we are going to load the scratch register from memory,
1636 we want to load it in the same width as the original MEM,
1637 which must be the same as the width of the ultimate destination,
1639 scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
1641 emit_move_insn (scratch_reg,
1642 replace_equiv_address (operand1, scratch_reg));
1646 /* We want to load the scratch register using the same mode as
1647 the ultimate destination. */
1648 scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
1650 emit_move_insn (scratch_reg, operand1);
1653 /* And emit the insn to set the ultimate destination. We know that
1654 the scratch register has the same mode as the destination at this
1656 emit_move_insn (operand0, scratch_reg);
1659 /* Handle the most common case: storing into a register. */
1660 else if (register_operand (operand0, mode))
1662 if (register_operand (operand1, mode)
1663 || (GET_CODE (operand1) == CONST_INT
1664 && cint_ok_for_move (INTVAL (operand1)))
1665 || (operand1 == CONST0_RTX (mode))
1666 || (GET_CODE (operand1) == HIGH
1667 && !symbolic_operand (XEXP (operand1, 0), VOIDmode))
1668 /* Only `general_operands' can come here, so MEM is ok. */
1669 || GET_CODE (operand1) == MEM)
1671 /* Various sets are created during RTL generation which don't
1672 have the REG_POINTER flag correctly set. After the CSE pass,
1673 instruction recognition can fail if we don't consistently
1674 set this flag when performing register copies. This should
1675 also improve the opportunities for creating insns that use
1676 unscaled indexing. */
1677 if (REG_P (operand0) && REG_P (operand1))
1679 if (REG_POINTER (operand1)
1680 && !REG_POINTER (operand0)
1681 && !HARD_REGISTER_P (operand0))
1682 copy_reg_pointer (operand0, operand1);
1683 else if (REG_POINTER (operand0)
1684 && !REG_POINTER (operand1)
1685 && !HARD_REGISTER_P (operand1))
1686 copy_reg_pointer (operand1, operand0);
1689 /* When MEMs are broken out, the REG_POINTER flag doesn't
1690 get set. In some cases, we can set the REG_POINTER flag
1691 from the declaration for the MEM. */
1692 if (REG_P (operand0)
1693 && GET_CODE (operand1) == MEM
1694 && !REG_POINTER (operand0))
1696 tree decl = MEM_EXPR (operand1);
1698 /* Set the register pointer flag and register alignment
1699 if the declaration for this memory reference is a
1700 pointer type. Fortran indirect argument references
1703 && !(flag_argument_noalias > 1
1704 && TREE_CODE (decl) == INDIRECT_REF
1705 && TREE_CODE (TREE_OPERAND (decl, 0)) == PARM_DECL))
1709 /* If this is a COMPONENT_REF, use the FIELD_DECL from
1711 if (TREE_CODE (decl) == COMPONENT_REF)
1712 decl = TREE_OPERAND (decl, 1);
1714 type = TREE_TYPE (decl);
1715 if (TREE_CODE (type) == ARRAY_TYPE)
1716 type = get_inner_array_type (type);
1718 if (POINTER_TYPE_P (type))
1722 type = TREE_TYPE (type);
1723 /* Using TYPE_ALIGN_OK is rather conservative as
1724 only the ada frontend actually sets it. */
1725 align = (TYPE_ALIGN_OK (type) ? TYPE_ALIGN (type)
1727 mark_reg_pointer (operand0, align);
1732 emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1));
1736 else if (GET_CODE (operand0) == MEM)
1738 if (mode == DFmode && operand1 == CONST0_RTX (mode)
1739 && !(reload_in_progress || reload_completed))
1741 rtx temp = gen_reg_rtx (DFmode);
1743 emit_insn (gen_rtx_SET (VOIDmode, temp, operand1));
1744 emit_insn (gen_rtx_SET (VOIDmode, operand0, temp));
1747 if (register_operand (operand1, mode) || operand1 == CONST0_RTX (mode))
1749 /* Run this case quickly. */
1750 emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1));
1753 if (! (reload_in_progress || reload_completed))
1755 operands[0] = validize_mem (operand0);
1756 operands[1] = operand1 = force_reg (mode, operand1);
1760 /* Simplify the source if we need to.
1761 Note we do have to handle function labels here, even though we do
1762 not consider them legitimate constants. Loop optimizations can
1763 call the emit_move_xxx with one as a source. */
1764 if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
1765 || function_label_operand (operand1, mode)
1766 || (GET_CODE (operand1) == HIGH
1767 && symbolic_operand (XEXP (operand1, 0), mode)))
1771 if (GET_CODE (operand1) == HIGH)
1774 operand1 = XEXP (operand1, 0);
1776 if (symbolic_operand (operand1, mode))
1778 /* Argh. The assembler and linker can't handle arithmetic
1781 So we force the plabel into memory, load operand0 from
1782 the memory location, then add in the constant part. */
1783 if ((GET_CODE (operand1) == CONST
1784 && GET_CODE (XEXP (operand1, 0)) == PLUS
1785 && function_label_operand (XEXP (XEXP (operand1, 0), 0), Pmode))
1786 || function_label_operand (operand1, mode))
1788 rtx temp, const_part;
1790 /* Figure out what (if any) scratch register to use. */
1791 if (reload_in_progress || reload_completed)
1793 scratch_reg = scratch_reg ? scratch_reg : operand0;
1794 /* SCRATCH_REG will hold an address and maybe the actual
1795 data. We want it in WORD_MODE regardless of what mode it
1796 was originally given to us. */
1797 scratch_reg = force_mode (word_mode, scratch_reg);
1800 scratch_reg = gen_reg_rtx (Pmode);
1802 if (GET_CODE (operand1) == CONST)
1804 /* Save away the constant part of the expression. */
1805 const_part = XEXP (XEXP (operand1, 0), 1);
1806 gcc_assert (GET_CODE (const_part) == CONST_INT);
1808 /* Force the function label into memory. */
1809 temp = force_const_mem (mode, XEXP (XEXP (operand1, 0), 0));
1813 /* No constant part. */
1814 const_part = NULL_RTX;
1816 /* Force the function label into memory. */
1817 temp = force_const_mem (mode, operand1);
1821 /* Get the address of the memory location. PIC-ify it if
1823 temp = XEXP (temp, 0);
1825 temp = legitimize_pic_address (temp, mode, scratch_reg);
1827 /* Put the address of the memory location into our destination
1830 emit_move_sequence (operands, mode, scratch_reg);
1832 /* Now load from the memory location into our destination
1834 operands[1] = gen_rtx_MEM (Pmode, operands[0]);
1835 emit_move_sequence (operands, mode, scratch_reg);
1837 /* And add back in the constant part. */
1838 if (const_part != NULL_RTX)
1839 expand_inc (operand0, const_part);
1848 if (reload_in_progress || reload_completed)
1850 temp = scratch_reg ? scratch_reg : operand0;
1851 /* TEMP will hold an address and maybe the actual
1852 data. We want it in WORD_MODE regardless of what mode it
1853 was originally given to us. */
1854 temp = force_mode (word_mode, temp);
1857 temp = gen_reg_rtx (Pmode);
1859 /* (const (plus (symbol) (const_int))) must be forced to
1860 memory during/after reload if the const_int will not fit
1862 if (GET_CODE (operand1) == CONST
1863 && GET_CODE (XEXP (operand1, 0)) == PLUS
1864 && GET_CODE (XEXP (XEXP (operand1, 0), 1)) == CONST_INT
1865 && !INT_14_BITS (XEXP (XEXP (operand1, 0), 1))
1866 && (reload_completed || reload_in_progress)
1869 rtx const_mem = force_const_mem (mode, operand1);
1870 operands[1] = legitimize_pic_address (XEXP (const_mem, 0),
1872 operands[1] = replace_equiv_address (const_mem, operands[1]);
1873 emit_move_sequence (operands, mode, temp);
1877 operands[1] = legitimize_pic_address (operand1, mode, temp);
1878 if (REG_P (operand0) && REG_P (operands[1]))
1879 copy_reg_pointer (operand0, operands[1]);
1880 emit_insn (gen_rtx_SET (VOIDmode, operand0, operands[1]));
1883 /* On the HPPA, references to data space are supposed to use dp,
1884 register 27, but showing it in the RTL inhibits various cse
1885 and loop optimizations. */
1890 if (reload_in_progress || reload_completed)
1892 temp = scratch_reg ? scratch_reg : operand0;
1893 /* TEMP will hold an address and maybe the actual
1894 data. We want it in WORD_MODE regardless of what mode it
1895 was originally given to us. */
1896 temp = force_mode (word_mode, temp);
1899 temp = gen_reg_rtx (mode);
1901 /* Loading a SYMBOL_REF into a register makes that register
1902 safe to be used as the base in an indexed address.
1904 Don't mark hard registers though. That loses. */
1905 if (GET_CODE (operand0) == REG
1906 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
1907 mark_reg_pointer (operand0, BITS_PER_UNIT);
1908 if (REGNO (temp) >= FIRST_PSEUDO_REGISTER)
1909 mark_reg_pointer (temp, BITS_PER_UNIT);
1912 set = gen_rtx_SET (mode, operand0, temp);
1914 set = gen_rtx_SET (VOIDmode,
1916 gen_rtx_LO_SUM (mode, temp, operand1));
1918 emit_insn (gen_rtx_SET (VOIDmode,
1920 gen_rtx_HIGH (mode, operand1)));
1926 else if (pa_tls_referenced_p (operand1))
1931 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
1933 addend = XEXP (XEXP (tmp, 0), 1);
1934 tmp = XEXP (XEXP (tmp, 0), 0);
1937 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
1938 tmp = legitimize_tls_address (tmp);
1941 tmp = gen_rtx_PLUS (mode, tmp, addend);
1942 tmp = force_operand (tmp, operands[0]);
1946 else if (GET_CODE (operand1) != CONST_INT
1947 || !cint_ok_for_move (INTVAL (operand1)))
1951 HOST_WIDE_INT value = 0;
1952 HOST_WIDE_INT insv = 0;
1955 if (GET_CODE (operand1) == CONST_INT)
1956 value = INTVAL (operand1);
1959 && GET_CODE (operand1) == CONST_INT
1960 && HOST_BITS_PER_WIDE_INT > 32
1961 && GET_MODE_BITSIZE (GET_MODE (operand0)) > 32)
1965 /* Extract the low order 32 bits of the value and sign extend.
1966 If the new value is the same as the original value, we can
1967 can use the original value as-is. If the new value is
1968 different, we use it and insert the most-significant 32-bits
1969 of the original value into the final result. */
1970 nval = ((value & (((HOST_WIDE_INT) 2 << 31) - 1))
1971 ^ ((HOST_WIDE_INT) 1 << 31)) - ((HOST_WIDE_INT) 1 << 31);
1974 #if HOST_BITS_PER_WIDE_INT > 32
1975 insv = value >= 0 ? value >> 32 : ~(~value >> 32);
1979 operand1 = GEN_INT (nval);
1983 if (reload_in_progress || reload_completed)
1984 temp = scratch_reg ? scratch_reg : operand0;
1986 temp = gen_reg_rtx (mode);
1988 /* We don't directly split DImode constants on 32-bit targets
1989 because PLUS uses an 11-bit immediate and the insn sequence
1990 generated is not as efficient as the one using HIGH/LO_SUM. */
1991 if (GET_CODE (operand1) == CONST_INT
1992 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD
1993 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
1996 /* Directly break constant into high and low parts. This
1997 provides better optimization opportunities because various
1998 passes recognize constants split with PLUS but not LO_SUM.
1999 We use a 14-bit signed low part except when the addition
2000 of 0x4000 to the high part might change the sign of the
2002 HOST_WIDE_INT low = value & 0x3fff;
2003 HOST_WIDE_INT high = value & ~ 0x3fff;
2007 if (high == 0x7fffc000 || (mode == HImode && high == 0x4000))
2015 emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (high)));
2016 operands[1] = gen_rtx_PLUS (mode, temp, GEN_INT (low));
2020 emit_insn (gen_rtx_SET (VOIDmode, temp,
2021 gen_rtx_HIGH (mode, operand1)));
2022 operands[1] = gen_rtx_LO_SUM (mode, temp, operand1);
2025 insn = emit_move_insn (operands[0], operands[1]);
2027 /* Now insert the most significant 32 bits of the value
2028 into the register. When we don't have a second register
2029 available, it could take up to nine instructions to load
2030 a 64-bit integer constant. Prior to reload, we force
2031 constants that would take more than three instructions
2032 to load to the constant pool. During and after reload,
2033 we have to handle all possible values. */
2036 /* Use a HIGH/LO_SUM/INSV sequence if we have a second
2037 register and the value to be inserted is outside the
2038 range that can be loaded with three depdi instructions. */
2039 if (temp != operand0 && (insv >= 16384 || insv < -16384))
2041 operand1 = GEN_INT (insv);
2043 emit_insn (gen_rtx_SET (VOIDmode, temp,
2044 gen_rtx_HIGH (mode, operand1)));
2045 emit_move_insn (temp, gen_rtx_LO_SUM (mode, temp, operand1));
2046 emit_insn (gen_insv (operand0, GEN_INT (32),
2051 int len = 5, pos = 27;
2053 /* Insert the bits using the depdi instruction. */
2056 HOST_WIDE_INT v5 = ((insv & 31) ^ 16) - 16;
2057 HOST_WIDE_INT sign = v5 < 0;
2059 /* Left extend the insertion. */
2060 insv = (insv >= 0 ? insv >> len : ~(~insv >> len));
2061 while (pos > 0 && (insv & 1) == sign)
2063 insv = (insv >= 0 ? insv >> 1 : ~(~insv >> 1));
2068 emit_insn (gen_insv (operand0, GEN_INT (len),
2069 GEN_INT (pos), GEN_INT (v5)));
2071 len = pos > 0 && pos < 5 ? pos : 5;
2077 set_unique_reg_note (insn, REG_EQUAL, op1);
2082 /* Now have insn-emit do whatever it normally does. */
2086 /* Examine EXP and return nonzero if it contains an ADDR_EXPR (meaning
2087 it will need a link/runtime reloc). */
2090 reloc_needed (tree exp)
2094 switch (TREE_CODE (exp))
2099 case POINTER_PLUS_EXPR:
2102 reloc = reloc_needed (TREE_OPERAND (exp, 0));
2103 reloc |= reloc_needed (TREE_OPERAND (exp, 1));
2108 case NON_LVALUE_EXPR:
2109 reloc = reloc_needed (TREE_OPERAND (exp, 0));
2115 unsigned HOST_WIDE_INT ix;
2117 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
2119 reloc |= reloc_needed (value);
2132 /* Does operand (which is a symbolic_operand) live in text space?
2133 If so, SYMBOL_REF_FLAG, which is set by pa_encode_section_info,
2137 read_only_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
2139 if (GET_CODE (operand) == CONST)
2140 operand = XEXP (XEXP (operand, 0), 0);
2143 if (GET_CODE (operand) == SYMBOL_REF)
2144 return SYMBOL_REF_FLAG (operand) && !CONSTANT_POOL_ADDRESS_P (operand);
2148 if (GET_CODE (operand) == SYMBOL_REF)
2149 return SYMBOL_REF_FLAG (operand) || CONSTANT_POOL_ADDRESS_P (operand);
2155 /* Return the best assembler insn template
2156 for moving operands[1] into operands[0] as a fullword. */
2158 singlemove_string (rtx *operands)
2160 HOST_WIDE_INT intval;
2162 if (GET_CODE (operands[0]) == MEM)
2163 return "stw %r1,%0";
2164 if (GET_CODE (operands[1]) == MEM)
2166 if (GET_CODE (operands[1]) == CONST_DOUBLE)
2171 gcc_assert (GET_MODE (operands[1]) == SFmode);
2173 /* Translate the CONST_DOUBLE to a CONST_INT with the same target
2175 REAL_VALUE_FROM_CONST_DOUBLE (d, operands[1]);
2176 REAL_VALUE_TO_TARGET_SINGLE (d, i);
2178 operands[1] = GEN_INT (i);
2179 /* Fall through to CONST_INT case. */
2181 if (GET_CODE (operands[1]) == CONST_INT)
2183 intval = INTVAL (operands[1]);
2185 if (VAL_14_BITS_P (intval))
2187 else if ((intval & 0x7ff) == 0)
2188 return "ldil L'%1,%0";
2189 else if (zdepi_cint_p (intval))
2190 return "{zdepi %Z1,%0|depwi,z %Z1,%0}";
2192 return "ldil L'%1,%0\n\tldo R'%1(%0),%0";
2194 return "copy %1,%0";
2198 /* Compute position (in OP[1]) and width (in OP[2])
2199 useful for copying IMM to a register using the zdepi
2200 instructions. Store the immediate value to insert in OP[0]. */
2202 compute_zdepwi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
2206 /* Find the least significant set bit in IMM. */
2207 for (lsb = 0; lsb < 32; lsb++)
2214 /* Choose variants based on *sign* of the 5-bit field. */
2215 if ((imm & 0x10) == 0)
2216 len = (lsb <= 28) ? 4 : 32 - lsb;
2219 /* Find the width of the bitstring in IMM. */
2220 for (len = 5; len < 32; len++)
2222 if ((imm & (1 << len)) == 0)
2226 /* Sign extend IMM as a 5-bit value. */
2227 imm = (imm & 0xf) - 0x10;
2235 /* Compute position (in OP[1]) and width (in OP[2])
2236 useful for copying IMM to a register using the depdi,z
2237 instructions. Store the immediate value to insert in OP[0]. */
2239 compute_zdepdi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
2241 HOST_WIDE_INT lsb, len;
2243 /* Find the least significant set bit in IMM. */
2244 for (lsb = 0; lsb < HOST_BITS_PER_WIDE_INT; lsb++)
2251 /* Choose variants based on *sign* of the 5-bit field. */
2252 if ((imm & 0x10) == 0)
2253 len = ((lsb <= HOST_BITS_PER_WIDE_INT - 4)
2254 ? 4 : HOST_BITS_PER_WIDE_INT - lsb);
2257 /* Find the width of the bitstring in IMM. */
2258 for (len = 5; len < HOST_BITS_PER_WIDE_INT; len++)
2260 if ((imm & ((unsigned HOST_WIDE_INT) 1 << len)) == 0)
2264 /* Sign extend IMM as a 5-bit value. */
2265 imm = (imm & 0xf) - 0x10;
2273 /* Output assembler code to perform a doubleword move insn
2274 with operands OPERANDS. */
2277 output_move_double (rtx *operands)
2279 enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1;
2281 rtx addreg0 = 0, addreg1 = 0;
2283 /* First classify both operands. */
2285 if (REG_P (operands[0]))
2287 else if (offsettable_memref_p (operands[0]))
2289 else if (GET_CODE (operands[0]) == MEM)
2294 if (REG_P (operands[1]))
2296 else if (CONSTANT_P (operands[1]))
2298 else if (offsettable_memref_p (operands[1]))
2300 else if (GET_CODE (operands[1]) == MEM)
2305 /* Check for the cases that the operand constraints are not
2306 supposed to allow to happen. */
2307 gcc_assert (optype0 == REGOP || optype1 == REGOP);
2309 /* Handle copies between general and floating registers. */
2311 if (optype0 == REGOP && optype1 == REGOP
2312 && FP_REG_P (operands[0]) ^ FP_REG_P (operands[1]))
2314 if (FP_REG_P (operands[0]))
2316 output_asm_insn ("{stws|stw} %1,-16(%%sp)", operands);
2317 output_asm_insn ("{stws|stw} %R1,-12(%%sp)", operands);
2318 return "{fldds|fldd} -16(%%sp),%0";
2322 output_asm_insn ("{fstds|fstd} %1,-16(%%sp)", operands);
2323 output_asm_insn ("{ldws|ldw} -16(%%sp),%0", operands);
2324 return "{ldws|ldw} -12(%%sp),%R0";
2328 /* Handle auto decrementing and incrementing loads and stores
2329 specifically, since the structure of the function doesn't work
2330 for them without major modification. Do it better when we learn
2331 this port about the general inc/dec addressing of PA.
2332 (This was written by tege. Chide him if it doesn't work.) */
2334 if (optype0 == MEMOP)
2336 /* We have to output the address syntax ourselves, since print_operand
2337 doesn't deal with the addresses we want to use. Fix this later. */
2339 rtx addr = XEXP (operands[0], 0);
2340 if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
2342 rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
2344 operands[0] = XEXP (addr, 0);
2345 gcc_assert (GET_CODE (operands[1]) == REG
2346 && GET_CODE (operands[0]) == REG);
2348 gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
2350 /* No overlap between high target register and address
2351 register. (We do this in a non-obvious way to
2352 save a register file writeback) */
2353 if (GET_CODE (addr) == POST_INC)
2354 return "{stws|stw},ma %1,8(%0)\n\tstw %R1,-4(%0)";
2355 return "{stws|stw},ma %1,-8(%0)\n\tstw %R1,12(%0)";
2357 else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
2359 rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
2361 operands[0] = XEXP (addr, 0);
2362 gcc_assert (GET_CODE (operands[1]) == REG
2363 && GET_CODE (operands[0]) == REG);
2365 gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
2366 /* No overlap between high target register and address
2367 register. (We do this in a non-obvious way to save a
2368 register file writeback) */
2369 if (GET_CODE (addr) == PRE_INC)
2370 return "{stws|stw},mb %1,8(%0)\n\tstw %R1,4(%0)";
2371 return "{stws|stw},mb %1,-8(%0)\n\tstw %R1,4(%0)";
2374 if (optype1 == MEMOP)
2376 /* We have to output the address syntax ourselves, since print_operand
2377 doesn't deal with the addresses we want to use. Fix this later. */
2379 rtx addr = XEXP (operands[1], 0);
2380 if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
2382 rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
2384 operands[1] = XEXP (addr, 0);
2385 gcc_assert (GET_CODE (operands[0]) == REG
2386 && GET_CODE (operands[1]) == REG);
2388 if (!reg_overlap_mentioned_p (high_reg, addr))
2390 /* No overlap between high target register and address
2391 register. (We do this in a non-obvious way to
2392 save a register file writeback) */
2393 if (GET_CODE (addr) == POST_INC)
2394 return "{ldws|ldw},ma 8(%1),%0\n\tldw -4(%1),%R0";
2395 return "{ldws|ldw},ma -8(%1),%0\n\tldw 12(%1),%R0";
2399 /* This is an undefined situation. We should load into the
2400 address register *and* update that register. Probably
2401 we don't need to handle this at all. */
2402 if (GET_CODE (addr) == POST_INC)
2403 return "ldw 4(%1),%R0\n\t{ldws|ldw},ma 8(%1),%0";
2404 return "ldw 4(%1),%R0\n\t{ldws|ldw},ma -8(%1),%0";
2407 else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
2409 rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
2411 operands[1] = XEXP (addr, 0);
2412 gcc_assert (GET_CODE (operands[0]) == REG
2413 && GET_CODE (operands[1]) == REG);
2415 if (!reg_overlap_mentioned_p (high_reg, addr))
2417 /* No overlap between high target register and address
2418 register. (We do this in a non-obvious way to
2419 save a register file writeback) */
2420 if (GET_CODE (addr) == PRE_INC)
2421 return "{ldws|ldw},mb 8(%1),%0\n\tldw 4(%1),%R0";
2422 return "{ldws|ldw},mb -8(%1),%0\n\tldw 4(%1),%R0";
2426 /* This is an undefined situation. We should load into the
2427 address register *and* update that register. Probably
2428 we don't need to handle this at all. */
2429 if (GET_CODE (addr) == PRE_INC)
2430 return "ldw 12(%1),%R0\n\t{ldws|ldw},mb 8(%1),%0";
2431 return "ldw -4(%1),%R0\n\t{ldws|ldw},mb -8(%1),%0";
2434 else if (GET_CODE (addr) == PLUS
2435 && GET_CODE (XEXP (addr, 0)) == MULT)
2438 rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
2440 if (!reg_overlap_mentioned_p (high_reg, addr))
2442 xoperands[0] = high_reg;
2443 xoperands[1] = XEXP (addr, 1);
2444 xoperands[2] = XEXP (XEXP (addr, 0), 0);
2445 xoperands[3] = XEXP (XEXP (addr, 0), 1);
2446 output_asm_insn ("{sh%O3addl %2,%1,%0|shladd,l %2,%O3,%1,%0}",
2448 return "ldw 4(%0),%R0\n\tldw 0(%0),%0";
2452 xoperands[0] = high_reg;
2453 xoperands[1] = XEXP (addr, 1);
2454 xoperands[2] = XEXP (XEXP (addr, 0), 0);
2455 xoperands[3] = XEXP (XEXP (addr, 0), 1);
2456 output_asm_insn ("{sh%O3addl %2,%1,%R0|shladd,l %2,%O3,%1,%R0}",
2458 return "ldw 0(%R0),%0\n\tldw 4(%R0),%R0";
2463 /* If an operand is an unoffsettable memory ref, find a register
2464 we can increment temporarily to make it refer to the second word. */
2466 if (optype0 == MEMOP)
2467 addreg0 = find_addr_reg (XEXP (operands[0], 0));
2469 if (optype1 == MEMOP)
2470 addreg1 = find_addr_reg (XEXP (operands[1], 0));
2472 /* Ok, we can do one word at a time.
2473 Normally we do the low-numbered word first.
2475 In either case, set up in LATEHALF the operands to use
2476 for the high-numbered word and in some cases alter the
2477 operands in OPERANDS to be suitable for the low-numbered word. */
2479 if (optype0 == REGOP)
2480 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2481 else if (optype0 == OFFSOP)
2482 latehalf[0] = adjust_address (operands[0], SImode, 4);
2484 latehalf[0] = operands[0];
2486 if (optype1 == REGOP)
2487 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2488 else if (optype1 == OFFSOP)
2489 latehalf[1] = adjust_address (operands[1], SImode, 4);
2490 else if (optype1 == CNSTOP)
2491 split_double (operands[1], &operands[1], &latehalf[1]);
2493 latehalf[1] = operands[1];
2495 /* If the first move would clobber the source of the second one,
2496 do them in the other order.
2498 This can happen in two cases:
2500 mem -> register where the first half of the destination register
2501 is the same register used in the memory's address. Reload
2502 can create such insns.
2504 mem in this case will be either register indirect or register
2505 indirect plus a valid offset.
2507 register -> register move where REGNO(dst) == REGNO(src + 1)
2508 someone (Tim/Tege?) claimed this can happen for parameter loads.
2510 Handle mem -> register case first. */
2511 if (optype0 == REGOP
2512 && (optype1 == MEMOP || optype1 == OFFSOP)
2513 && refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
2516 /* Do the late half first. */
2518 output_asm_insn ("ldo 4(%0),%0", &addreg1);
2519 output_asm_insn (singlemove_string (latehalf), latehalf);
2523 output_asm_insn ("ldo -4(%0),%0", &addreg1);
2524 return singlemove_string (operands);
2527 /* Now handle register -> register case. */
2528 if (optype0 == REGOP && optype1 == REGOP
2529 && REGNO (operands[0]) == REGNO (operands[1]) + 1)
2531 output_asm_insn (singlemove_string (latehalf), latehalf);
2532 return singlemove_string (operands);
2535 /* Normal case: do the two words, low-numbered first. */
2537 output_asm_insn (singlemove_string (operands), operands);
2539 /* Make any unoffsettable addresses point at high-numbered word. */
2541 output_asm_insn ("ldo 4(%0),%0", &addreg0);
2543 output_asm_insn ("ldo 4(%0),%0", &addreg1);
2546 output_asm_insn (singlemove_string (latehalf), latehalf);
2548 /* Undo the adds we just did. */
2550 output_asm_insn ("ldo -4(%0),%0", &addreg0);
2552 output_asm_insn ("ldo -4(%0),%0", &addreg1);
2558 output_fp_move_double (rtx *operands)
2560 if (FP_REG_P (operands[0]))
2562 if (FP_REG_P (operands[1])
2563 || operands[1] == CONST0_RTX (GET_MODE (operands[0])))
2564 output_asm_insn ("fcpy,dbl %f1,%0", operands);
2566 output_asm_insn ("fldd%F1 %1,%0", operands);
2568 else if (FP_REG_P (operands[1]))
2570 output_asm_insn ("fstd%F0 %1,%0", operands);
2576 gcc_assert (operands[1] == CONST0_RTX (GET_MODE (operands[0])));
2578 /* This is a pain. You have to be prepared to deal with an
2579 arbitrary address here including pre/post increment/decrement.
2581 so avoid this in the MD. */
2582 gcc_assert (GET_CODE (operands[0]) == REG);
2584 xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2585 xoperands[0] = operands[0];
2586 output_asm_insn ("copy %%r0,%0\n\tcopy %%r0,%1", xoperands);
2591 /* Return a REG that occurs in ADDR with coefficient 1.
2592 ADDR can be effectively incremented by incrementing REG. */
2595 find_addr_reg (rtx addr)
2597 while (GET_CODE (addr) == PLUS)
2599 if (GET_CODE (XEXP (addr, 0)) == REG)
2600 addr = XEXP (addr, 0);
2601 else if (GET_CODE (XEXP (addr, 1)) == REG)
2602 addr = XEXP (addr, 1);
2603 else if (CONSTANT_P (XEXP (addr, 0)))
2604 addr = XEXP (addr, 1);
2605 else if (CONSTANT_P (XEXP (addr, 1)))
2606 addr = XEXP (addr, 0);
2610 gcc_assert (GET_CODE (addr) == REG);
2614 /* Emit code to perform a block move.
2616 OPERANDS[0] is the destination pointer as a REG, clobbered.
2617 OPERANDS[1] is the source pointer as a REG, clobbered.
2618 OPERANDS[2] is a register for temporary storage.
2619 OPERANDS[3] is a register for temporary storage.
2620 OPERANDS[4] is the size as a CONST_INT
2621 OPERANDS[5] is the alignment safe to use, as a CONST_INT.
2622 OPERANDS[6] is another temporary register. */
2625 output_block_move (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
2627 int align = INTVAL (operands[5]);
2628 unsigned long n_bytes = INTVAL (operands[4]);
2630 /* We can't move more than a word at a time because the PA
2631 has no longer integer move insns. (Could use fp mem ops?) */
2632 if (align > (TARGET_64BIT ? 8 : 4))
2633 align = (TARGET_64BIT ? 8 : 4);
2635 /* Note that we know each loop below will execute at least twice
2636 (else we would have open-coded the copy). */
2640 /* Pre-adjust the loop counter. */
2641 operands[4] = GEN_INT (n_bytes - 16);
2642 output_asm_insn ("ldi %4,%2", operands);
2645 output_asm_insn ("ldd,ma 8(%1),%3", operands);
2646 output_asm_insn ("ldd,ma 8(%1),%6", operands);
2647 output_asm_insn ("std,ma %3,8(%0)", operands);
2648 output_asm_insn ("addib,>= -16,%2,.-12", operands);
2649 output_asm_insn ("std,ma %6,8(%0)", operands);
2651 /* Handle the residual. There could be up to 7 bytes of
2652 residual to copy! */
2653 if (n_bytes % 16 != 0)
2655 operands[4] = GEN_INT (n_bytes % 8);
2656 if (n_bytes % 16 >= 8)
2657 output_asm_insn ("ldd,ma 8(%1),%3", operands);
2658 if (n_bytes % 8 != 0)
2659 output_asm_insn ("ldd 0(%1),%6", operands);
2660 if (n_bytes % 16 >= 8)
2661 output_asm_insn ("std,ma %3,8(%0)", operands);
2662 if (n_bytes % 8 != 0)
2663 output_asm_insn ("stdby,e %6,%4(%0)", operands);
2668 /* Pre-adjust the loop counter. */
2669 operands[4] = GEN_INT (n_bytes - 8);
2670 output_asm_insn ("ldi %4,%2", operands);
2673 output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
2674 output_asm_insn ("{ldws|ldw},ma 4(%1),%6", operands);
2675 output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
2676 output_asm_insn ("addib,>= -8,%2,.-12", operands);
2677 output_asm_insn ("{stws|stw},ma %6,4(%0)", operands);
2679 /* Handle the residual. There could be up to 7 bytes of
2680 residual to copy! */
2681 if (n_bytes % 8 != 0)
2683 operands[4] = GEN_INT (n_bytes % 4);
2684 if (n_bytes % 8 >= 4)
2685 output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
2686 if (n_bytes % 4 != 0)
2687 output_asm_insn ("ldw 0(%1),%6", operands);
2688 if (n_bytes % 8 >= 4)
2689 output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
2690 if (n_bytes % 4 != 0)
2691 output_asm_insn ("{stbys|stby},e %6,%4(%0)", operands);
2696 /* Pre-adjust the loop counter. */
2697 operands[4] = GEN_INT (n_bytes - 4);
2698 output_asm_insn ("ldi %4,%2", operands);
2701 output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
2702 output_asm_insn ("{ldhs|ldh},ma 2(%1),%6", operands);
2703 output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
2704 output_asm_insn ("addib,>= -4,%2,.-12", operands);
2705 output_asm_insn ("{sths|sth},ma %6,2(%0)", operands);
2707 /* Handle the residual. */
2708 if (n_bytes % 4 != 0)
2710 if (n_bytes % 4 >= 2)
2711 output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
2712 if (n_bytes % 2 != 0)
2713 output_asm_insn ("ldb 0(%1),%6", operands);
2714 if (n_bytes % 4 >= 2)
2715 output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
2716 if (n_bytes % 2 != 0)
2717 output_asm_insn ("stb %6,0(%0)", operands);
2722 /* Pre-adjust the loop counter. */
2723 operands[4] = GEN_INT (n_bytes - 2);
2724 output_asm_insn ("ldi %4,%2", operands);
2727 output_asm_insn ("{ldbs|ldb},ma 1(%1),%3", operands);
2728 output_asm_insn ("{ldbs|ldb},ma 1(%1),%6", operands);
2729 output_asm_insn ("{stbs|stb},ma %3,1(%0)", operands);
2730 output_asm_insn ("addib,>= -2,%2,.-12", operands);
2731 output_asm_insn ("{stbs|stb},ma %6,1(%0)", operands);
2733 /* Handle the residual. */
2734 if (n_bytes % 2 != 0)
2736 output_asm_insn ("ldb 0(%1),%3", operands);
2737 output_asm_insn ("stb %3,0(%0)", operands);
2746 /* Count the number of insns necessary to handle this block move.
2748 Basic structure is the same as emit_block_move, except that we
2749 count insns rather than emit them. */
2752 compute_movmem_length (rtx insn)
2754 rtx pat = PATTERN (insn);
2755 unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 7), 0));
2756 unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 6), 0));
2757 unsigned int n_insns = 0;
2759 /* We can't move more than four bytes at a time because the PA
2760 has no longer integer move insns. (Could use fp mem ops?) */
2761 if (align > (TARGET_64BIT ? 8 : 4))
2762 align = (TARGET_64BIT ? 8 : 4);
2764 /* The basic copying loop. */
2768 if (n_bytes % (2 * align) != 0)
2770 if ((n_bytes % (2 * align)) >= align)
2773 if ((n_bytes % align) != 0)
2777 /* Lengths are expressed in bytes now; each insn is 4 bytes. */
2781 /* Emit code to perform a block clear.
2783 OPERANDS[0] is the destination pointer as a REG, clobbered.
2784 OPERANDS[1] is a register for temporary storage.
2785 OPERANDS[2] is the size as a CONST_INT
2786 OPERANDS[3] is the alignment safe to use, as a CONST_INT. */
2789 output_block_clear (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
2791 int align = INTVAL (operands[3]);
2792 unsigned long n_bytes = INTVAL (operands[2]);
2794 /* We can't clear more than a word at a time because the PA
2795 has no longer integer move insns. */
2796 if (align > (TARGET_64BIT ? 8 : 4))
2797 align = (TARGET_64BIT ? 8 : 4);
2799 /* Note that we know each loop below will execute at least twice
2800 (else we would have open-coded the copy). */
2804 /* Pre-adjust the loop counter. */
2805 operands[2] = GEN_INT (n_bytes - 16);
2806 output_asm_insn ("ldi %2,%1", operands);
2809 output_asm_insn ("std,ma %%r0,8(%0)", operands);
2810 output_asm_insn ("addib,>= -16,%1,.-4", operands);
2811 output_asm_insn ("std,ma %%r0,8(%0)", operands);
2813 /* Handle the residual. There could be up to 7 bytes of
2814 residual to copy! */
2815 if (n_bytes % 16 != 0)
2817 operands[2] = GEN_INT (n_bytes % 8);
2818 if (n_bytes % 16 >= 8)
2819 output_asm_insn ("std,ma %%r0,8(%0)", operands);
2820 if (n_bytes % 8 != 0)
2821 output_asm_insn ("stdby,e %%r0,%2(%0)", operands);
2826 /* Pre-adjust the loop counter. */
2827 operands[2] = GEN_INT (n_bytes - 8);
2828 output_asm_insn ("ldi %2,%1", operands);
2831 output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
2832 output_asm_insn ("addib,>= -8,%1,.-4", operands);
2833 output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
2835 /* Handle the residual. There could be up to 7 bytes of
2836 residual to copy! */
2837 if (n_bytes % 8 != 0)
2839 operands[2] = GEN_INT (n_bytes % 4);
2840 if (n_bytes % 8 >= 4)
2841 output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
2842 if (n_bytes % 4 != 0)
2843 output_asm_insn ("{stbys|stby},e %%r0,%2(%0)", operands);
2848 /* Pre-adjust the loop counter. */
2849 operands[2] = GEN_INT (n_bytes - 4);
2850 output_asm_insn ("ldi %2,%1", operands);
2853 output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
2854 output_asm_insn ("addib,>= -4,%1,.-4", operands);
2855 output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
2857 /* Handle the residual. */
2858 if (n_bytes % 4 != 0)
2860 if (n_bytes % 4 >= 2)
2861 output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
2862 if (n_bytes % 2 != 0)
2863 output_asm_insn ("stb %%r0,0(%0)", operands);
2868 /* Pre-adjust the loop counter. */
2869 operands[2] = GEN_INT (n_bytes - 2);
2870 output_asm_insn ("ldi %2,%1", operands);
2873 output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
2874 output_asm_insn ("addib,>= -2,%1,.-4", operands);
2875 output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
2877 /* Handle the residual. */
2878 if (n_bytes % 2 != 0)
2879 output_asm_insn ("stb %%r0,0(%0)", operands);
2888 /* Count the number of insns necessary to handle this block move.
2890 Basic structure is the same as emit_block_move, except that we
2891 count insns rather than emit them. */
2894 compute_clrmem_length (rtx insn)
2896 rtx pat = PATTERN (insn);
2897 unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 4), 0));
2898 unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 3), 0));
2899 unsigned int n_insns = 0;
2901 /* We can't clear more than a word at a time because the PA
2902 has no longer integer move insns. */
2903 if (align > (TARGET_64BIT ? 8 : 4))
2904 align = (TARGET_64BIT ? 8 : 4);
2906 /* The basic loop. */
2910 if (n_bytes % (2 * align) != 0)
2912 if ((n_bytes % (2 * align)) >= align)
2915 if ((n_bytes % align) != 0)
2919 /* Lengths are expressed in bytes now; each insn is 4 bytes. */
2925 output_and (rtx *operands)
2927 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
2929 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
2930 int ls0, ls1, ms0, p, len;
2932 for (ls0 = 0; ls0 < 32; ls0++)
2933 if ((mask & (1 << ls0)) == 0)
2936 for (ls1 = ls0; ls1 < 32; ls1++)
2937 if ((mask & (1 << ls1)) != 0)
2940 for (ms0 = ls1; ms0 < 32; ms0++)
2941 if ((mask & (1 << ms0)) == 0)
2944 gcc_assert (ms0 == 32);
2952 operands[2] = GEN_INT (len);
2953 return "{extru|extrw,u} %1,31,%2,%0";
2957 /* We could use this `depi' for the case above as well, but `depi'
2958 requires one more register file access than an `extru'. */
2963 operands[2] = GEN_INT (p);
2964 operands[3] = GEN_INT (len);
2965 return "{depi|depwi} 0,%2,%3,%0";
2969 return "and %1,%2,%0";
2972 /* Return a string to perform a bitwise-and of operands[1] with operands[2]
2973 storing the result in operands[0]. */
2975 output_64bit_and (rtx *operands)
2977 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
2979 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
2980 int ls0, ls1, ms0, p, len;
2982 for (ls0 = 0; ls0 < HOST_BITS_PER_WIDE_INT; ls0++)
2983 if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls0)) == 0)
2986 for (ls1 = ls0; ls1 < HOST_BITS_PER_WIDE_INT; ls1++)
2987 if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls1)) != 0)
2990 for (ms0 = ls1; ms0 < HOST_BITS_PER_WIDE_INT; ms0++)
2991 if ((mask & ((unsigned HOST_WIDE_INT) 1 << ms0)) == 0)
2994 gcc_assert (ms0 == HOST_BITS_PER_WIDE_INT);
2996 if (ls1 == HOST_BITS_PER_WIDE_INT)
3002 operands[2] = GEN_INT (len);
3003 return "extrd,u %1,63,%2,%0";
3007 /* We could use this `depi' for the case above as well, but `depi'
3008 requires one more register file access than an `extru'. */
3013 operands[2] = GEN_INT (p);
3014 operands[3] = GEN_INT (len);
3015 return "depdi 0,%2,%3,%0";
3019 return "and %1,%2,%0";
3023 output_ior (rtx *operands)
3025 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
3026 int bs0, bs1, p, len;
3028 if (INTVAL (operands[2]) == 0)
3029 return "copy %1,%0";
3031 for (bs0 = 0; bs0 < 32; bs0++)
3032 if ((mask & (1 << bs0)) != 0)
3035 for (bs1 = bs0; bs1 < 32; bs1++)
3036 if ((mask & (1 << bs1)) == 0)
3039 gcc_assert (bs1 == 32 || ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
3044 operands[2] = GEN_INT (p);
3045 operands[3] = GEN_INT (len);
3046 return "{depi|depwi} -1,%2,%3,%0";
3049 /* Return a string to perform a bitwise-and of operands[1] with operands[2]
3050 storing the result in operands[0]. */
3052 output_64bit_ior (rtx *operands)
3054 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
3055 int bs0, bs1, p, len;
3057 if (INTVAL (operands[2]) == 0)
3058 return "copy %1,%0";
3060 for (bs0 = 0; bs0 < HOST_BITS_PER_WIDE_INT; bs0++)
3061 if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs0)) != 0)
3064 for (bs1 = bs0; bs1 < HOST_BITS_PER_WIDE_INT; bs1++)
3065 if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs1)) == 0)
3068 gcc_assert (bs1 == HOST_BITS_PER_WIDE_INT
3069 || ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
3074 operands[2] = GEN_INT (p);
3075 operands[3] = GEN_INT (len);
3076 return "depdi -1,%2,%3,%0";
3079 /* Target hook for assembling integer objects. This code handles
3080 aligned SI and DI integers specially since function references
3081 must be preceded by P%. */
3084 pa_assemble_integer (rtx x, unsigned int size, int aligned_p)
3086 if (size == UNITS_PER_WORD
3088 && function_label_operand (x, VOIDmode))
3090 fputs (size == 8? "\t.dword\tP%" : "\t.word\tP%", asm_out_file);
3091 output_addr_const (asm_out_file, x);
3092 fputc ('\n', asm_out_file);
3095 return default_assemble_integer (x, size, aligned_p);
3098 /* Output an ascii string. */
3100 output_ascii (FILE *file, const char *p, int size)
3104 unsigned char partial_output[16]; /* Max space 4 chars can occupy. */
3106 /* The HP assembler can only take strings of 256 characters at one
3107 time. This is a limitation on input line length, *not* the
3108 length of the string. Sigh. Even worse, it seems that the
3109 restriction is in number of input characters (see \xnn &
3110 \whatever). So we have to do this very carefully. */
3112 fputs ("\t.STRING \"", file);
3115 for (i = 0; i < size; i += 4)
3119 for (io = 0, co = 0; io < MIN (4, size - i); io++)
3121 register unsigned int c = (unsigned char) p[i + io];
3123 if (c == '\"' || c == '\\')
3124 partial_output[co++] = '\\';
3125 if (c >= ' ' && c < 0177)
3126 partial_output[co++] = c;
3130 partial_output[co++] = '\\';
3131 partial_output[co++] = 'x';
3132 hexd = c / 16 - 0 + '0';
3134 hexd -= '9' - 'a' + 1;
3135 partial_output[co++] = hexd;
3136 hexd = c % 16 - 0 + '0';
3138 hexd -= '9' - 'a' + 1;
3139 partial_output[co++] = hexd;
3142 if (chars_output + co > 243)
3144 fputs ("\"\n\t.STRING \"", file);
3147 fwrite (partial_output, 1, (size_t) co, file);
3151 fputs ("\"\n", file);
3154 /* Try to rewrite floating point comparisons & branches to avoid
3155 useless add,tr insns.
3157 CHECK_NOTES is nonzero if we should examine REG_DEAD notes
3158 to see if FPCC is dead. CHECK_NOTES is nonzero for the
3159 first attempt to remove useless add,tr insns. It is zero
3160 for the second pass as reorg sometimes leaves bogus REG_DEAD
3163 When CHECK_NOTES is zero we can only eliminate add,tr insns
3164 when there's a 1:1 correspondence between fcmp and ftest/fbranch
3167 remove_useless_addtr_insns (int check_notes)
3170 static int pass = 0;
3172 /* This is fairly cheap, so always run it when optimizing. */
3176 int fbranch_count = 0;
3178 /* Walk all the insns in this function looking for fcmp & fbranch
3179 instructions. Keep track of how many of each we find. */
3180 for (insn = get_insns (); insn; insn = next_insn (insn))
3184 /* Ignore anything that isn't an INSN or a JUMP_INSN. */
3185 if (GET_CODE (insn) != INSN && GET_CODE (insn) != JUMP_INSN)
3188 tmp = PATTERN (insn);
3190 /* It must be a set. */
3191 if (GET_CODE (tmp) != SET)
3194 /* If the destination is CCFP, then we've found an fcmp insn. */
3195 tmp = SET_DEST (tmp);
3196 if (GET_CODE (tmp) == REG && REGNO (tmp) == 0)
3202 tmp = PATTERN (insn);
3203 /* If this is an fbranch instruction, bump the fbranch counter. */
3204 if (GET_CODE (tmp) == SET
3205 && SET_DEST (tmp) == pc_rtx
3206 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3207 && GET_CODE (XEXP (SET_SRC (tmp), 0)) == NE
3208 && GET_CODE (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == REG
3209 && REGNO (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == 0)
3217 /* Find all floating point compare + branch insns. If possible,
3218 reverse the comparison & the branch to avoid add,tr insns. */
3219 for (insn = get_insns (); insn; insn = next_insn (insn))
3223 /* Ignore anything that isn't an INSN. */
3224 if (GET_CODE (insn) != INSN)
3227 tmp = PATTERN (insn);
3229 /* It must be a set. */
3230 if (GET_CODE (tmp) != SET)
3233 /* The destination must be CCFP, which is register zero. */
3234 tmp = SET_DEST (tmp);
3235 if (GET_CODE (tmp) != REG || REGNO (tmp) != 0)
3238 /* INSN should be a set of CCFP.
3240 See if the result of this insn is used in a reversed FP
3241 conditional branch. If so, reverse our condition and
3242 the branch. Doing so avoids useless add,tr insns. */
3243 next = next_insn (insn);
3246 /* Jumps, calls and labels stop our search. */
3247 if (GET_CODE (next) == JUMP_INSN
3248 || GET_CODE (next) == CALL_INSN
3249 || GET_CODE (next) == CODE_LABEL)
3252 /* As does another fcmp insn. */
3253 if (GET_CODE (next) == INSN
3254 && GET_CODE (PATTERN (next)) == SET
3255 && GET_CODE (SET_DEST (PATTERN (next))) == REG
3256 && REGNO (SET_DEST (PATTERN (next))) == 0)
3259 next = next_insn (next);
3262 /* Is NEXT_INSN a branch? */
3264 && GET_CODE (next) == JUMP_INSN)
3266 rtx pattern = PATTERN (next);
3268 /* If it a reversed fp conditional branch (e.g. uses add,tr)
3269 and CCFP dies, then reverse our conditional and the branch
3270 to avoid the add,tr. */
3271 if (GET_CODE (pattern) == SET
3272 && SET_DEST (pattern) == pc_rtx
3273 && GET_CODE (SET_SRC (pattern)) == IF_THEN_ELSE
3274 && GET_CODE (XEXP (SET_SRC (pattern), 0)) == NE
3275 && GET_CODE (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == REG
3276 && REGNO (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == 0
3277 && GET_CODE (XEXP (SET_SRC (pattern), 1)) == PC
3278 && (fcmp_count == fbranch_count
3280 && find_regno_note (next, REG_DEAD, 0))))
3282 /* Reverse the branch. */
3283 tmp = XEXP (SET_SRC (pattern), 1);
3284 XEXP (SET_SRC (pattern), 1) = XEXP (SET_SRC (pattern), 2);
3285 XEXP (SET_SRC (pattern), 2) = tmp;
3286 INSN_CODE (next) = -1;
3288 /* Reverse our condition. */
3289 tmp = PATTERN (insn);
3290 PUT_CODE (XEXP (tmp, 1),
3291 (reverse_condition_maybe_unordered
3292 (GET_CODE (XEXP (tmp, 1)))));
3302 /* You may have trouble believing this, but this is the 32 bit HP-PA
3307 Variable arguments (optional; any number may be allocated)
3309 SP-(4*(N+9)) arg word N
3314 Fixed arguments (must be allocated; may remain unused)
3323 SP-32 External Data Pointer (DP)
3325 SP-24 External/stub RP (RP')
3329 SP-8 Calling Stub RP (RP'')
3334 SP-0 Stack Pointer (points to next available address)
3338 /* This function saves registers as follows. Registers marked with ' are
3339 this function's registers (as opposed to the previous function's).
3340 If a frame_pointer isn't needed, r4 is saved as a general register;
3341 the space for the frame pointer is still allocated, though, to keep
3347 SP (FP') Previous FP
3348 SP + 4 Alignment filler (sigh)
3349 SP + 8 Space for locals reserved here.
3353 SP + n All call saved register used.
3357 SP + o All call saved fp registers used.
3361 SP + p (SP') points to next available address.
3365 /* Global variables set by output_function_prologue(). */
3366 /* Size of frame. Need to know this to emit return insns from
3368 static HOST_WIDE_INT actual_fsize, local_fsize;
3369 static int save_fregs;
3371 /* Emit RTL to store REG at the memory location specified by BASE+DISP.
3372 Handle case where DISP > 8k by using the add_high_const patterns.
3374 Note in DISP > 8k case, we will leave the high part of the address
3375 in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/
3378 store_reg (int reg, HOST_WIDE_INT disp, int base)
3380 rtx insn, dest, src, basereg;
3382 src = gen_rtx_REG (word_mode, reg);
3383 basereg = gen_rtx_REG (Pmode, base);
3384 if (VAL_14_BITS_P (disp))
3386 dest = gen_rtx_MEM (word_mode, plus_constant (basereg, disp));
3387 insn = emit_move_insn (dest, src);
3389 else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
3391 rtx delta = GEN_INT (disp);
3392 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3394 emit_move_insn (tmpreg, delta);
3395 insn = emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
3399 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3400 gen_rtx_SET (VOIDmode, tmpreg,
3401 gen_rtx_PLUS (Pmode, basereg, delta)),
3403 RTX_FRAME_RELATED_P (insn) = 1;
3405 dest = gen_rtx_MEM (word_mode, tmpreg);
3406 insn = emit_move_insn (dest, src);
3410 rtx delta = GEN_INT (disp);
3411 rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
3412 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3414 emit_move_insn (tmpreg, high);
3415 dest = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
3416 insn = emit_move_insn (dest, src);
3420 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3421 gen_rtx_SET (VOIDmode,
3422 gen_rtx_MEM (word_mode,
3423 gen_rtx_PLUS (word_mode, basereg,
3431 RTX_FRAME_RELATED_P (insn) = 1;
3434 /* Emit RTL to store REG at the memory location specified by BASE and then
3435 add MOD to BASE. MOD must be <= 8k. */
3438 store_reg_modify (int base, int reg, HOST_WIDE_INT mod)
3440 rtx insn, basereg, srcreg, delta;
3442 gcc_assert (VAL_14_BITS_P (mod));
3444 basereg = gen_rtx_REG (Pmode, base);
3445 srcreg = gen_rtx_REG (word_mode, reg);
3446 delta = GEN_INT (mod);
3448 insn = emit_insn (gen_post_store (basereg, srcreg, delta));
3451 RTX_FRAME_RELATED_P (insn) = 1;
3453 /* RTX_FRAME_RELATED_P must be set on each frame related set
3454 in a parallel with more than one element. */
3455 RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 0)) = 1;
3456 RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
3460 /* Emit RTL to set REG to the value specified by BASE+DISP. Handle case
3461 where DISP > 8k by using the add_high_const patterns. NOTE indicates
3462 whether to add a frame note or not.
3464 In the DISP > 8k case, we leave the high part of the address in %r1.
3465 There is code in expand_hppa_{prologue,epilogue} that knows about this. */
3468 set_reg_plus_d (int reg, int base, HOST_WIDE_INT disp, int note)
3472 if (VAL_14_BITS_P (disp))
3474 insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
3475 plus_constant (gen_rtx_REG (Pmode, base), disp));
3477 else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
3479 rtx basereg = gen_rtx_REG (Pmode, base);
3480 rtx delta = GEN_INT (disp);
3481 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3483 emit_move_insn (tmpreg, delta);
3484 insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
3485 gen_rtx_PLUS (Pmode, tmpreg, basereg));
3488 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3489 gen_rtx_SET (VOIDmode, tmpreg,
3490 gen_rtx_PLUS (Pmode, basereg, delta)),
3495 rtx basereg = gen_rtx_REG (Pmode, base);
3496 rtx delta = GEN_INT (disp);
3497 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3499 emit_move_insn (tmpreg,
3500 gen_rtx_PLUS (Pmode, basereg,
3501 gen_rtx_HIGH (Pmode, delta)));
3502 insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
3503 gen_rtx_LO_SUM (Pmode, tmpreg, delta));
3506 if (DO_FRAME_NOTES && note)
3507 RTX_FRAME_RELATED_P (insn) = 1;
3511 compute_frame_size (HOST_WIDE_INT size, int *fregs_live)
3516 /* The code in hppa_expand_prologue and hppa_expand_epilogue must
3517 be consistent with the rounding and size calculation done here.
3518 Change them at the same time. */
3520 /* We do our own stack alignment. First, round the size of the
3521 stack locals up to a word boundary. */
3522 size = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
3524 /* Space for previous frame pointer + filler. If any frame is
3525 allocated, we need to add in the STARTING_FRAME_OFFSET. We
3526 waste some space here for the sake of HP compatibility. The
3527 first slot is only used when the frame pointer is needed. */
3528 if (size || frame_pointer_needed)
3529 size += STARTING_FRAME_OFFSET;
3531 /* If the current function calls __builtin_eh_return, then we need
3532 to allocate stack space for registers that will hold data for
3533 the exception handler. */
3534 if (DO_FRAME_NOTES && current_function_calls_eh_return)
3538 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
3540 size += i * UNITS_PER_WORD;
3543 /* Account for space used by the callee general register saves. */
3544 for (i = 18, j = frame_pointer_needed ? 4 : 3; i >= j; i--)
3545 if (df_regs_ever_live_p (i))
3546 size += UNITS_PER_WORD;
3548 /* Account for space used by the callee floating point register saves. */
3549 for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
3550 if (df_regs_ever_live_p (i)
3551 || (!TARGET_64BIT && df_regs_ever_live_p (i + 1)))
3555 /* We always save both halves of the FP register, so always
3556 increment the frame size by 8 bytes. */
3560 /* If any of the floating registers are saved, account for the
3561 alignment needed for the floating point register save block. */
3564 size = (size + 7) & ~7;
3569 /* The various ABIs include space for the outgoing parameters in the
3570 size of the current function's stack frame. We don't need to align
3571 for the outgoing arguments as their alignment is set by the final
3572 rounding for the frame as a whole. */
3573 size += current_function_outgoing_args_size;
3575 /* Allocate space for the fixed frame marker. This space must be
3576 allocated for any function that makes calls or allocates
3578 if (!current_function_is_leaf || size)
3579 size += TARGET_64BIT ? 48 : 32;
3581 /* Finally, round to the preferred stack boundary. */
3582 return ((size + PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)
3583 & ~(PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1));
3586 /* Generate the assembly code for function entry. FILE is a stdio
3587 stream to output the code to. SIZE is an int: how many units of
3588 temporary storage to allocate.
3590 Refer to the array `regs_ever_live' to determine which registers to
3591 save; `regs_ever_live[I]' is nonzero if register number I is ever
3592 used in the function. This function is responsible for knowing
3593 which registers should not be saved even if used. */
3595 /* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
3596 of memory. If any fpu reg is used in the function, we allocate
3597 such a block here, at the bottom of the frame, just in case it's needed.
3599 If this function is a leaf procedure, then we may choose not
3600 to do a "save" insn. The decision about whether or not
3601 to do this is made in regclass.c. */
3604 pa_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
3606 /* The function's label and associated .PROC must never be
3607 separated and must be output *after* any profiling declarations
3608 to avoid changing spaces/subspaces within a procedure. */
3609 ASM_OUTPUT_LABEL (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
3610 fputs ("\t.PROC\n", file);
3612 /* hppa_expand_prologue does the dirty work now. We just need
3613 to output the assembler directives which denote the start
3615 fprintf (file, "\t.CALLINFO FRAME=" HOST_WIDE_INT_PRINT_DEC, actual_fsize);
3616 if (current_function_is_leaf)
3617 fputs (",NO_CALLS", file);
3619 fputs (",CALLS", file);
3621 fputs (",SAVE_RP", file);
3623 /* The SAVE_SP flag is used to indicate that register %r3 is stored
3624 at the beginning of the frame and that it is used as the frame
3625 pointer for the frame. We do this because our current frame
3626 layout doesn't conform to that specified in the HP runtime
3627 documentation and we need a way to indicate to programs such as
3628 GDB where %r3 is saved. The SAVE_SP flag was chosen because it
3629 isn't used by HP compilers but is supported by the assembler.
3630 However, SAVE_SP is supposed to indicate that the previous stack
3631 pointer has been saved in the frame marker. */
3632 if (frame_pointer_needed)
3633 fputs (",SAVE_SP", file);
3635 /* Pass on information about the number of callee register saves
3636 performed in the prologue.
3638 The compiler is supposed to pass the highest register number
3639 saved, the assembler then has to adjust that number before
3640 entering it into the unwind descriptor (to account for any
3641 caller saved registers with lower register numbers than the
3642 first callee saved register). */
3644 fprintf (file, ",ENTRY_GR=%d", gr_saved + 2);
3647 fprintf (file, ",ENTRY_FR=%d", fr_saved + 11);
3649 fputs ("\n\t.ENTRY\n", file);
3651 remove_useless_addtr_insns (0);
3655 hppa_expand_prologue (void)
3657 int merge_sp_adjust_with_store = 0;
3658 HOST_WIDE_INT size = get_frame_size ();
3659 HOST_WIDE_INT offset;
3667 /* Compute total size for frame pointer, filler, locals and rounding to
3668 the next word boundary. Similar code appears in compute_frame_size
3669 and must be changed in tandem with this code. */
3670 local_fsize = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
3671 if (local_fsize || frame_pointer_needed)
3672 local_fsize += STARTING_FRAME_OFFSET;
3674 actual_fsize = compute_frame_size (size, &save_fregs);
3676 /* Compute a few things we will use often. */
3677 tmpreg = gen_rtx_REG (word_mode, 1);
3679 /* Save RP first. The calling conventions manual states RP will
3680 always be stored into the caller's frame at sp - 20 or sp - 16
3681 depending on which ABI is in use. */
3682 if (df_regs_ever_live_p (2) || current_function_calls_eh_return)
3684 store_reg (2, TARGET_64BIT ? -16 : -20, STACK_POINTER_REGNUM);
3690 /* Allocate the local frame and set up the frame pointer if needed. */
3691 if (actual_fsize != 0)
3693 if (frame_pointer_needed)
3695 /* Copy the old frame pointer temporarily into %r1. Set up the
3696 new stack pointer, then store away the saved old frame pointer
3697 into the stack at sp and at the same time update the stack
3698 pointer by actual_fsize bytes. Two versions, first
3699 handles small (<8k) frames. The second handles large (>=8k)
3701 insn = emit_move_insn (tmpreg, frame_pointer_rtx);
3703 RTX_FRAME_RELATED_P (insn) = 1;
3705 insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
3707 RTX_FRAME_RELATED_P (insn) = 1;
3709 if (VAL_14_BITS_P (actual_fsize))
3710 store_reg_modify (STACK_POINTER_REGNUM, 1, actual_fsize);
3713 /* It is incorrect to store the saved frame pointer at *sp,
3714 then increment sp (writes beyond the current stack boundary).
3716 So instead use stwm to store at *sp and post-increment the
3717 stack pointer as an atomic operation. Then increment sp to
3718 finish allocating the new frame. */
3719 HOST_WIDE_INT adjust1 = 8192 - 64;
3720 HOST_WIDE_INT adjust2 = actual_fsize - adjust1;
3722 store_reg_modify (STACK_POINTER_REGNUM, 1, adjust1);
3723 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
3727 /* We set SAVE_SP in frames that need a frame pointer. Thus,
3728 we need to store the previous stack pointer (frame pointer)
3729 into the frame marker on targets that use the HP unwind
3730 library. This allows the HP unwind library to be used to
3731 unwind GCC frames. However, we are not fully compatible
3732 with the HP library because our frame layout differs from
3733 that specified in the HP runtime specification.
3735 We don't want a frame note on this instruction as the frame
3736 marker moves during dynamic stack allocation.
3738 This instruction also serves as a blockage to prevent
3739 register spills from being scheduled before the stack
3740 pointer is raised. This is necessary as we store
3741 registers using the frame pointer as a base register,
3742 and the frame pointer is set before sp is raised. */
3743 if (TARGET_HPUX_UNWIND_LIBRARY)
3745 rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx,
3746 GEN_INT (TARGET_64BIT ? -8 : -4));
3748 emit_move_insn (gen_rtx_MEM (word_mode, addr),
3752 emit_insn (gen_blockage ());
3754 /* no frame pointer needed. */
3757 /* In some cases we can perform the first callee register save
3758 and allocating the stack frame at the same time. If so, just
3759 make a note of it and defer allocating the frame until saving
3760 the callee registers. */
3761 if (VAL_14_BITS_P (actual_fsize) && local_fsize == 0)
3762 merge_sp_adjust_with_store = 1;
3763 /* Can not optimize. Adjust the stack frame by actual_fsize
3766 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
3771 /* Normal register save.
3773 Do not save the frame pointer in the frame_pointer_needed case. It
3774 was done earlier. */
3775 if (frame_pointer_needed)
3777 offset = local_fsize;
3779 /* Saving the EH return data registers in the frame is the simplest
3780 way to get the frame unwind information emitted. We put them
3781 just before the general registers. */
3782 if (DO_FRAME_NOTES && current_function_calls_eh_return)
3784 unsigned int i, regno;
3788 regno = EH_RETURN_DATA_REGNO (i);
3789 if (regno == INVALID_REGNUM)
3792 store_reg (regno, offset, FRAME_POINTER_REGNUM);
3793 offset += UNITS_PER_WORD;
3797 for (i = 18; i >= 4; i--)
3798 if (df_regs_ever_live_p (i) && ! call_used_regs[i])
3800 store_reg (i, offset, FRAME_POINTER_REGNUM);
3801 offset += UNITS_PER_WORD;
3804 /* Account for %r3 which is saved in a special place. */
3807 /* No frame pointer needed. */
3810 offset = local_fsize - actual_fsize;
3812 /* Saving the EH return data registers in the frame is the simplest
3813 way to get the frame unwind information emitted. */
3814 if (DO_FRAME_NOTES && current_function_calls_eh_return)
3816 unsigned int i, regno;
3820 regno = EH_RETURN_DATA_REGNO (i);
3821 if (regno == INVALID_REGNUM)
3824 /* If merge_sp_adjust_with_store is nonzero, then we can
3825 optimize the first save. */
3826 if (merge_sp_adjust_with_store)
3828 store_reg_modify (STACK_POINTER_REGNUM, regno, -offset);
3829 merge_sp_adjust_with_store = 0;
3832 store_reg (regno, offset, STACK_POINTER_REGNUM);
3833 offset += UNITS_PER_WORD;
3837 for (i = 18; i >= 3; i--)
3838 if (df_regs_ever_live_p (i) && ! call_used_regs[i])
3840 /* If merge_sp_adjust_with_store is nonzero, then we can
3841 optimize the first GR save. */
3842 if (merge_sp_adjust_with_store)
3844 store_reg_modify (STACK_POINTER_REGNUM, i, -offset);
3845 merge_sp_adjust_with_store = 0;
3848 store_reg (i, offset, STACK_POINTER_REGNUM);
3849 offset += UNITS_PER_WORD;
3853 /* If we wanted to merge the SP adjustment with a GR save, but we never
3854 did any GR saves, then just emit the adjustment here. */
3855 if (merge_sp_adjust_with_store)
3856 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
3860 /* The hppa calling conventions say that %r19, the pic offset
3861 register, is saved at sp - 32 (in this function's frame)
3862 when generating PIC code. FIXME: What is the correct thing
3863 to do for functions which make no calls and allocate no
3864 frame? Do we need to allocate a frame, or can we just omit
3865 the save? For now we'll just omit the save.
3867 We don't want a note on this insn as the frame marker can
3868 move if there is a dynamic stack allocation. */
3869 if (flag_pic && actual_fsize != 0 && !TARGET_64BIT)
3871 rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx, GEN_INT (-32));
3873 emit_move_insn (gen_rtx_MEM (word_mode, addr), pic_offset_table_rtx);
3877 /* Align pointer properly (doubleword boundary). */
3878 offset = (offset + 7) & ~7;
3880 /* Floating point register store. */
3885 /* First get the frame or stack pointer to the start of the FP register
3887 if (frame_pointer_needed)
3889 set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0);
3890 base = frame_pointer_rtx;
3894 set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
3895 base = stack_pointer_rtx;
3898 /* Now actually save the FP registers. */
3899 for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
3901 if (df_regs_ever_live_p (i)
3902 || (! TARGET_64BIT && df_regs_ever_live_p (i + 1)))
3904 rtx addr, insn, reg;
3905 addr = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg));
3906 reg = gen_rtx_REG (DFmode, i);
3907 insn = emit_move_insn (addr, reg);
3910 RTX_FRAME_RELATED_P (insn) = 1;
3913 rtx mem = gen_rtx_MEM (DFmode,
3914 plus_constant (base, offset));
3916 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
3917 gen_rtx_SET (VOIDmode, mem, reg),
3922 rtx meml = gen_rtx_MEM (SFmode,
3923 plus_constant (base, offset));
3924 rtx memr = gen_rtx_MEM (SFmode,
3925 plus_constant (base, offset + 4));
3926 rtx regl = gen_rtx_REG (SFmode, i);
3927 rtx regr = gen_rtx_REG (SFmode, i + 1);
3928 rtx setl = gen_rtx_SET (VOIDmode, meml, regl);
3929 rtx setr = gen_rtx_SET (VOIDmode, memr, regr);
3932 RTX_FRAME_RELATED_P (setl) = 1;
3933 RTX_FRAME_RELATED_P (setr) = 1;