1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
27 #include "config/vxworks-dummy.h"
29 /* MIPS external variables defined in mips.c. */
31 /* Which processor to schedule for. Since there is no difference between
32 a R2000 and R3000 in terms of the scheduler, we collapse them into
33 just an R3000. The elements of the enumeration must match exactly
34 the cpu attribute in the mips.md machine description. */
50 PROCESSOR_LOONGSON_2E,
51 PROCESSOR_LOONGSON_2F,
78 /* Costs of various operations on the different architectures. */
80 struct mips_rtx_cost_data
82 unsigned short fp_add;
83 unsigned short fp_mult_sf;
84 unsigned short fp_mult_df;
85 unsigned short fp_div_sf;
86 unsigned short fp_div_df;
87 unsigned short int_mult_si;
88 unsigned short int_mult_di;
89 unsigned short int_div_si;
90 unsigned short int_div_di;
91 unsigned short branch_cost;
92 unsigned short memory_latency;
95 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
96 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
97 to work on a 64-bit machine. */
105 /* Masks that affect tuning.
107 PTF_AVOID_BRANCHLIKELY
108 Set if it is usually not profitable to use branch-likely instructions
109 for this target, typically because the branches are always predicted
110 taken and so incur a large overhead when not taken. */
111 #define PTF_AVOID_BRANCHLIKELY 0x1
113 /* Information about one recognized processor. Defined here for the
114 benefit of TARGET_CPU_CPP_BUILTINS. */
115 struct mips_cpu_info {
116 /* The 'canonical' name of the processor as far as GCC is concerned.
117 It's typically a manufacturer's prefix followed by a numerical
118 designation. It should be lowercase. */
121 /* The internal processor number that most closely matches this
122 entry. Several processors can have the same value, if there's no
123 difference between them from GCC's point of view. */
124 enum processor_type cpu;
126 /* The ISA level that the processor implements. */
129 /* A mask of PTF_* values. */
130 unsigned int tune_flags;
133 /* Enumerates the setting of the -mcode-readable option. */
134 enum mips_code_readable_setting {
140 /* Macros to silence warnings about numbers being signed in traditional
141 C and unsigned in ISO C when compiled on 32-bit hosts. */
143 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
144 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
145 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
148 /* Run-time compilation parameters selecting different hardware subsets. */
150 /* True if we are generating position-independent VxWorks RTP code. */
151 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
153 /* True if the output file is marked as ".abicalls; .option pic0"
155 #define TARGET_ABICALLS_PIC0 \
156 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
158 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
159 #define TARGET_ABICALLS_PIC2 \
160 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
162 /* True if the call patterns should be split into a jalr followed by
163 an instruction to restore $gp. It is only safe to split the load
164 from the call when every use of $gp is explicit.
166 See mips_must_initialize_gp_p for details about how we manage the
169 #define TARGET_SPLIT_CALLS \
170 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
172 /* True if we're generating a form of -mabicalls in which we can use
173 operators like %hi and %lo to refer to locally-binding symbols.
174 We can only do this for -mno-shared, and only then if we can use
175 relocation operations instead of assembly macros. It isn't really
176 worth using absolute sequences for 64-bit symbols because GOT
177 accesses are so much shorter. */
179 #define TARGET_ABSOLUTE_ABICALLS \
182 && TARGET_EXPLICIT_RELOCS \
183 && !ABI_HAS_64BIT_SYMBOLS)
185 /* True if we can optimize sibling calls. For simplicity, we only
186 handle cases in which call_insn_operand will reject invalid
187 sibcall addresses. There are two cases in which this isn't true:
189 - TARGET_MIPS16. call_insn_operand accepts constant addresses
190 but there is no direct jump instruction. It isn't worth
191 using sibling calls in this case anyway; they would usually
192 be longer than normal calls.
194 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
195 accepts global constants, but all sibcalls must be indirect. */
196 #define TARGET_SIBCALLS \
197 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
199 /* True if we need to use a global offset table to access some symbols. */
200 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
202 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
203 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
205 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
206 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
208 /* True if we should use .cprestore to store to the cprestore slot.
210 We continue to use .cprestore for explicit-reloc code so that JALs
211 inside inline asms will work correctly. */
212 #define TARGET_CPRESTORE_DIRECTIVE \
213 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
215 /* True if we can use the J and JAL instructions. */
216 #define TARGET_ABSOLUTE_JUMPS \
217 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
219 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
220 This is true for both the PIC and non-PIC VxWorks RTP modes. */
221 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
223 /* True if .gpword or .gpdword should be used for switch tables.
225 Although GAS does understand .gpdword, the SGI linker mishandles
226 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
227 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
228 #define TARGET_GPWORD \
230 && !TARGET_ABSOLUTE_ABICALLS \
231 && !(mips_abi == ABI_64 && TARGET_IRIX))
233 /* True if the output must have a writable .eh_frame.
234 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
235 #ifdef HAVE_LD_PERSONALITY_RELAXATION
236 #define TARGET_WRITABLE_EH_FRAME 0
238 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
241 /* Generate mips16 code */
242 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
243 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
244 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
245 /* Generate mips16e register save/restore sequences. */
246 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
248 /* True if we're generating a form of MIPS16 code in which general
249 text loads are allowed. */
250 #define TARGET_MIPS16_TEXT_LOADS \
251 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
253 /* True if we're generating a form of MIPS16 code in which PC-relative
254 loads are allowed. */
255 #define TARGET_MIPS16_PCREL_LOADS \
256 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
258 /* Generic ISA defines. */
259 #define ISA_MIPS1 (mips_isa == 1)
260 #define ISA_MIPS2 (mips_isa == 2)
261 #define ISA_MIPS3 (mips_isa == 3)
262 #define ISA_MIPS4 (mips_isa == 4)
263 #define ISA_MIPS32 (mips_isa == 32)
264 #define ISA_MIPS32R2 (mips_isa == 33)
265 #define ISA_MIPS64 (mips_isa == 64)
266 #define ISA_MIPS64R2 (mips_isa == 65)
268 /* Architecture target defines. */
269 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
270 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
271 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
272 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
273 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
274 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
275 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
276 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
277 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
278 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
279 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
280 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON)
281 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
282 || mips_arch == PROCESSOR_SB1A)
283 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
285 /* Scheduling target defines. */
286 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
287 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
288 || mips_tune == PROCESSOR_24KF2_1 \
289 || mips_tune == PROCESSOR_24KF1_1)
290 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
291 || mips_tune == PROCESSOR_74KF2_1 \
292 || mips_tune == PROCESSOR_74KF1_1 \
293 || mips_tune == PROCESSOR_74KF3_2)
294 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
295 || mips_tune == PROCESSOR_LOONGSON_2F)
296 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
297 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
298 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
299 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
300 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
301 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
302 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
303 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
304 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
305 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
306 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
307 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON)
308 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
309 || mips_tune == PROCESSOR_SB1A)
311 /* Whether vector modes and intrinsics for ST Microelectronics
312 Loongson-2E/2F processors should be enabled. In o32 pairs of
313 floating-point registers provide 64-bit values. */
314 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
315 && TARGET_LOONGSON_2EF)
317 /* True if the pre-reload scheduler should try to create chains of
318 multiply-add or multiply-subtract instructions. For example,
326 t1 will have a higher priority than t2 and t3 will have a higher
327 priority than t4. However, before reload, there is no dependence
328 between t1 and t3, and they can often have similar priorities.
329 The scheduler will then tend to prefer:
336 which stops us from making full use of macc/madd-style instructions.
337 This sort of situation occurs frequently in Fourier transforms and
340 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
341 queue so that chained multiply-add and multiply-subtract instructions
342 appear ahead of any other instruction that is likely to clobber lo.
343 In the example above, if t2 and t3 become ready at the same time,
344 the code ensures that t2 is scheduled first.
346 Multiply-accumulate instructions are a bigger win for some targets
347 than others, so this macro is defined on an opt-in basis. */
348 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
353 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
354 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
356 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
357 directly accessible, while the command-line options select
358 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
360 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
361 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
363 /* False if SC acts as a memory barrier with respect to itself,
364 otherwise a SYNC will be emitted after SC for atomic operations
365 that require ordering between the SC and following loads and
366 stores. It does not tell anything about ordering of loads and
367 stores prior to and following the SC, only about the SC itself and
368 those loads and stores follow it. */
369 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON)
371 /* IRIX specific stuff. */
372 #define TARGET_IRIX 0
373 #define TARGET_IRIX6 0
375 /* Define preprocessor macros for the -march and -mtune options.
376 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
377 processor. If INFO's canonical name is "foo", define PREFIX to
378 be "foo", and define an additional macro PREFIX_FOO. */
379 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
384 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
385 for (p = macro; *p != 0; p++) \
388 builtin_define (macro); \
389 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
394 /* Target CPU builtins. */
395 #define TARGET_CPU_CPP_BUILTINS() \
398 /* Everyone but IRIX defines this to mips. */ \
400 builtin_assert ("machine=mips"); \
402 builtin_assert ("cpu=mips"); \
403 builtin_define ("__mips__"); \
404 builtin_define ("_mips"); \
406 /* We do this here because __mips is defined below and so we \
407 can't use builtin_define_std. We don't ever want to define \
408 "mips" for VxWorks because some of the VxWorks headers \
409 construct include filenames from a root directory macro, \
410 an architecture macro and a filename, where the architecture \
411 macro expands to 'mips'. If we define 'mips' to 1, the \
412 architecture macro expands to 1 as well. */ \
413 if (!flag_iso && !TARGET_VXWORKS) \
414 builtin_define ("mips"); \
417 builtin_define ("__mips64"); \
421 /* Treat _R3000 and _R4000 like register-size \
422 defines, which is how they've historically \
426 builtin_define_std ("R4000"); \
427 builtin_define ("_R4000"); \
431 builtin_define_std ("R3000"); \
432 builtin_define ("_R3000"); \
435 if (TARGET_FLOAT64) \
436 builtin_define ("__mips_fpr=64"); \
438 builtin_define ("__mips_fpr=32"); \
440 if (mips_base_mips16) \
441 builtin_define ("__mips16"); \
444 builtin_define ("__mips3d"); \
446 if (TARGET_SMARTMIPS) \
447 builtin_define ("__mips_smartmips"); \
451 builtin_define ("__mips_dsp"); \
454 builtin_define ("__mips_dspr2"); \
455 builtin_define ("__mips_dsp_rev=2"); \
458 builtin_define ("__mips_dsp_rev=1"); \
461 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
462 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
466 builtin_define ("__mips=1"); \
467 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
469 else if (ISA_MIPS2) \
471 builtin_define ("__mips=2"); \
472 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
474 else if (ISA_MIPS3) \
476 builtin_define ("__mips=3"); \
477 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
479 else if (ISA_MIPS4) \
481 builtin_define ("__mips=4"); \
482 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
484 else if (ISA_MIPS32) \
486 builtin_define ("__mips=32"); \
487 builtin_define ("__mips_isa_rev=1"); \
488 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
490 else if (ISA_MIPS32R2) \
492 builtin_define ("__mips=32"); \
493 builtin_define ("__mips_isa_rev=2"); \
494 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
496 else if (ISA_MIPS64) \
498 builtin_define ("__mips=64"); \
499 builtin_define ("__mips_isa_rev=1"); \
500 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
502 else if (ISA_MIPS64R2) \
504 builtin_define ("__mips=64"); \
505 builtin_define ("__mips_isa_rev=2"); \
506 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
512 builtin_define ("_ABIO32=1"); \
513 builtin_define ("_MIPS_SIM=_ABIO32"); \
517 builtin_define ("_ABIN32=2"); \
518 builtin_define ("_MIPS_SIM=_ABIN32"); \
522 builtin_define ("_ABI64=3"); \
523 builtin_define ("_MIPS_SIM=_ABI64"); \
527 builtin_define ("_ABIO64=4"); \
528 builtin_define ("_MIPS_SIM=_ABIO64"); \
532 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
533 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
534 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
535 builtin_define_with_int_value ("_MIPS_FPSET", \
536 32 / MAX_FPRS_PER_FMT); \
538 /* These defines reflect the ABI in use, not whether the \
539 FPU is directly accessible. */ \
540 if (TARGET_HARD_FLOAT_ABI) \
541 builtin_define ("__mips_hard_float"); \
543 builtin_define ("__mips_soft_float"); \
545 if (TARGET_SINGLE_FLOAT) \
546 builtin_define ("__mips_single_float"); \
548 if (TARGET_PAIRED_SINGLE_FLOAT) \
549 builtin_define ("__mips_paired_single_float"); \
551 if (TARGET_BIG_ENDIAN) \
553 builtin_define_std ("MIPSEB"); \
554 builtin_define ("_MIPSEB"); \
558 builtin_define_std ("MIPSEL"); \
559 builtin_define ("_MIPSEL"); \
562 /* Whether calls should go through $25. The separate __PIC__ \
563 macro indicates whether abicalls code might use a GOT. */ \
564 if (TARGET_ABICALLS) \
565 builtin_define ("__mips_abicalls"); \
567 /* Whether Loongson vector modes are enabled. */ \
568 if (TARGET_LOONGSON_VECTORS) \
569 builtin_define ("__mips_loongson_vector_rev"); \
571 /* Historical Octeon macro. */ \
573 builtin_define ("__OCTEON__"); \
575 /* Macros dependent on the C dialect. */ \
576 if (preprocessing_asm_p ()) \
578 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
579 builtin_define ("_LANGUAGE_ASSEMBLY"); \
581 else if (c_dialect_cxx ()) \
583 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
584 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
585 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
589 builtin_define_std ("LANGUAGE_C"); \
590 builtin_define ("_LANGUAGE_C"); \
592 if (c_dialect_objc ()) \
594 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
595 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
596 /* Bizarre, but needed at least for Irix. */ \
597 builtin_define_std ("LANGUAGE_C"); \
598 builtin_define ("_LANGUAGE_C"); \
601 if (mips_abi == ABI_EABI) \
602 builtin_define ("__mips_eabi"); \
604 if (TARGET_CACHE_BUILTIN) \
605 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
609 /* Default target_flags if no switches are specified */
611 #ifndef TARGET_DEFAULT
612 #define TARGET_DEFAULT 0
615 #ifndef TARGET_CPU_DEFAULT
616 #define TARGET_CPU_DEFAULT 0
619 #ifndef TARGET_ENDIAN_DEFAULT
620 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
623 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
624 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
627 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
628 #ifndef MIPS_ISA_DEFAULT
629 #ifndef MIPS_CPU_STRING_DEFAULT
630 #define MIPS_CPU_STRING_DEFAULT "from-abi"
636 /* Make this compile time constant for libgcc2 */
638 #define TARGET_64BIT 1
640 #define TARGET_64BIT 0
642 #endif /* IN_LIBGCC2 */
644 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
645 when compiled with hardware floating point. This is because MIPS16
646 code cannot save and restore the floating-point registers, which is
647 important if in a mixed MIPS16/non-MIPS16 environment. */
650 #if __mips_hard_float
651 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
653 #endif /* IN_LIBGCC2 */
655 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
657 #ifndef MULTILIB_ENDIAN_DEFAULT
658 #if TARGET_ENDIAN_DEFAULT == 0
659 #define MULTILIB_ENDIAN_DEFAULT "EL"
661 #define MULTILIB_ENDIAN_DEFAULT "EB"
665 #ifndef MULTILIB_ISA_DEFAULT
666 # if MIPS_ISA_DEFAULT == 1
667 # define MULTILIB_ISA_DEFAULT "mips1"
669 # if MIPS_ISA_DEFAULT == 2
670 # define MULTILIB_ISA_DEFAULT "mips2"
672 # if MIPS_ISA_DEFAULT == 3
673 # define MULTILIB_ISA_DEFAULT "mips3"
675 # if MIPS_ISA_DEFAULT == 4
676 # define MULTILIB_ISA_DEFAULT "mips4"
678 # if MIPS_ISA_DEFAULT == 32
679 # define MULTILIB_ISA_DEFAULT "mips32"
681 # if MIPS_ISA_DEFAULT == 33
682 # define MULTILIB_ISA_DEFAULT "mips32r2"
684 # if MIPS_ISA_DEFAULT == 64
685 # define MULTILIB_ISA_DEFAULT "mips64"
687 # if MIPS_ISA_DEFAULT == 65
688 # define MULTILIB_ISA_DEFAULT "mips64r2"
690 # define MULTILIB_ISA_DEFAULT "mips1"
701 #ifndef MIPS_ABI_DEFAULT
702 #define MIPS_ABI_DEFAULT ABI_32
705 /* Use the most portable ABI flag for the ASM specs. */
707 #if MIPS_ABI_DEFAULT == ABI_32
708 #define MULTILIB_ABI_DEFAULT "mabi=32"
711 #if MIPS_ABI_DEFAULT == ABI_O64
712 #define MULTILIB_ABI_DEFAULT "mabi=o64"
715 #if MIPS_ABI_DEFAULT == ABI_N32
716 #define MULTILIB_ABI_DEFAULT "mabi=n32"
719 #if MIPS_ABI_DEFAULT == ABI_64
720 #define MULTILIB_ABI_DEFAULT "mabi=64"
723 #if MIPS_ABI_DEFAULT == ABI_EABI
724 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
727 #ifndef MULTILIB_DEFAULTS
728 #define MULTILIB_DEFAULTS \
729 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
732 /* We must pass -EL to the linker by default for little endian embedded
733 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
734 linker will default to using big-endian output files. The OUTPUT_FORMAT
735 line must be in the linker script, otherwise -EB/-EL will not work. */
738 #if TARGET_ENDIAN_DEFAULT == 0
739 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
741 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
745 /* A spec condition that matches all non-mips16 -mips arguments. */
747 #define MIPS_ISA_LEVEL_OPTION_SPEC \
748 "mips1|mips2|mips3|mips4|mips32*|mips64*"
750 /* A spec condition that matches all non-mips16 architecture arguments. */
752 #define MIPS_ARCH_OPTION_SPEC \
753 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
755 /* A spec that infers a -mips argument from an -march argument,
756 or injects the default if no architecture is specified. */
758 #define MIPS_ISA_LEVEL_SPEC \
759 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
760 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
761 %{march=mips2|march=r6000:-mips2} \
762 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
763 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
764 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
765 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
766 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
767 |march=34k*|march=74k*|march=1004k*: -mips32r2} \
768 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
769 |march=xlr: -mips64} \
770 %{march=mips64r2|march=octeon: -mips64r2} \
771 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
773 /* A spec that infers a -mhard-float or -msoft-float setting from an
774 -march argument. Note that soft-float and hard-float code are not
777 #define MIPS_ARCH_FLOAT_SPEC \
778 "%{mhard-float|msoft-float|march=mips*:; \
779 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
780 |march=34kc|march=74kc|march=1004kc|march=5kc \
781 |march=octeon|march=xlr: -msoft-float; \
782 march=*: -mhard-float}"
784 /* A spec condition that matches 32-bit options. It only works if
785 MIPS_ISA_LEVEL_SPEC has been applied. */
787 #define MIPS_32BIT_OPTION_SPEC \
788 "mips1|mips2|mips32*|mgp32"
790 #if MIPS_ABI_DEFAULT == ABI_O64 \
791 || MIPS_ABI_DEFAULT == ABI_N32 \
792 || MIPS_ABI_DEFAULT == ABI_64
793 #define OPT_ARCH64 "mabi=32|mgp32:;"
794 #define OPT_ARCH32 "mabi=32|mgp32"
796 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
797 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
800 /* Support for a compile-time default CPU, et cetera. The rules are:
801 --with-arch is ignored if -march is specified or a -mips is specified
802 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
803 --with-tune is ignored if -mtune is specified; likewise
804 --with-tune-32 and --with-tune-64.
805 --with-abi is ignored if -mabi is specified.
806 --with-float is ignored if -mhard-float or -msoft-float are
808 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
810 #define OPTION_DEFAULT_SPECS \
811 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
812 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
813 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
814 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
815 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
816 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
817 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
818 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
819 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
820 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
821 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
822 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
825 /* A spec that infers the -mdsp setting from an -march argument. */
826 #define BASE_DRIVER_SELF_SPECS \
827 "%{!mno-dsp:%{march=24ke*|march=34k*|march=74k*|march=1004k*: -mdsp}}"
829 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
831 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
832 && ISA_HAS_COND_TRAP)
834 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
836 /* True if the ABI can only work with 64-bit integer registers. We
837 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
838 otherwise floating-point registers must also be 64-bit. */
839 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
841 /* Likewise for 32-bit regs. */
842 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
844 /* True if the file format uses 64-bit symbols. At present, this is
845 only true for n64, which uses 64-bit ELF. */
846 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
848 /* True if symbols are 64 bits wide. This is usually determined by
849 the ABI's file format, but it can be overridden by -msym32. Note that
850 overriding the size with -msym32 changes the ABI of relocatable objects,
851 although it doesn't change the ABI of a fully-linked object. */
852 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32)
854 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
855 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
860 /* ISA has branch likely instructions (e.g. mips2). */
861 /* Disable branchlikely for tx39 until compare rewrite. They haven't
862 been generated up to this point. */
863 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
865 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
866 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
878 /* ISA has a three-operand multiplication instruction. */
879 #define ISA_HAS_DMUL3 (TARGET_64BIT \
883 /* ISA has the floating-point conditional move instructions introduced
885 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
890 && !TARGET_MIPS5500 \
893 /* ISA has the integer conditional move instructions introduced in mips4 and
894 ST Loongson 2E/2F. */
895 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
897 /* ISA has LDC1 and SDC1. */
898 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
900 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
901 branch on CC, and move (both FP and non-FP) on CC. */
902 #define ISA_HAS_8CC (ISA_MIPS4 \
908 /* This is a catch all for other mips4 instructions: indexed load, the
909 FP madd and msub instructions, and the FP recip and recip sqrt
911 #define ISA_HAS_FP4 ((ISA_MIPS4 \
912 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
917 /* ISA has paired-single instructions. */
918 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
920 /* ISA has conditional trap instructions. */
921 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
924 /* ISA has integer multiply-accumulate instructions, madd and msub. */
925 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
931 /* Integer multiply-accumulate instructions should be generated. */
932 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
934 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
935 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
937 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
938 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
940 /* ISA has floating-point nmadd and nmsub instructions
941 'd = -((a * b) [+-] c)'. */
942 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
944 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
947 && (!TARGET_MIPS5400 || TARGET_MAD) \
950 /* ISA has floating-point nmadd and nmsub instructions
951 'c = -((a * b) [+-] c)'. */
952 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
955 /* ISA has count leading zeroes/ones instruction (not implemented). */
956 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
962 /* ISA has three operand multiply instructions that put
963 the high part in an accumulator: mulhi or mulhiu. */
964 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
969 /* ISA has three operand multiply instructions that
970 negates the result and puts the result in an accumulator. */
971 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
976 /* ISA has three operand multiply instructions that subtracts the
977 result from a 4th operand and puts the result in an accumulator. */
978 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
983 /* ISA has three operand multiply instructions that the result
984 from a 4th operand and puts the result in an accumulator. */
985 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
992 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
993 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
994 || TARGET_MIPS4130) \
997 /* ISA has the "ror" (rotate right) instructions. */
998 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
1000 || TARGET_MIPS5400 \
1001 || TARGET_MIPS5500 \
1003 || TARGET_SMARTMIPS) \
1006 /* ISA has data prefetch instructions. This controls use of 'pref'. */
1007 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
1008 || TARGET_LOONGSON_2EF \
1015 /* ISA has data indexed prefetch instructions. This controls use of
1016 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1017 (prefx is a cop1x instruction, so can only be used if FP is
1019 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
1025 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1026 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1027 also requires TARGET_DOUBLE_FLOAT. */
1028 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1030 /* ISA includes the MIPS32r2 seb and seh instructions. */
1031 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
1035 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1036 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
1040 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1041 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
1045 /* ISA has lwxs instruction (load w/scaled index address. */
1046 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
1048 /* The DSP ASE is available. */
1049 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1051 /* Revision 2 of the DSP ASE is available. */
1052 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1054 /* True if the result of a load is not available to the next instruction.
1055 A nop will then be needed between instructions like "lw $4,..."
1056 and "addiu $4,$4,1". */
1057 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1058 && !TARGET_MIPS3900 \
1061 /* Likewise mtc1 and mfc1. */
1062 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1063 && !TARGET_LOONGSON_2EF)
1065 /* Likewise floating-point comparisons. */
1066 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1067 && !TARGET_LOONGSON_2EF)
1069 /* True if mflo and mfhi can be immediately followed by instructions
1070 which write to the HI and LO registers.
1072 According to MIPS specifications, MIPS ISAs I, II, and III need
1073 (at least) two instructions between the reads of HI/LO and
1074 instructions which write them, and later ISAs do not. Contradicting
1075 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1076 the UM for the NEC Vr5000) document needing the instructions between
1077 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1078 MIPS64 and later ISAs to have the interlocks, plus any specific
1079 earlier-ISA CPUs for which CPU documentation declares that the
1080 instructions are really interlocked. */
1081 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1085 || TARGET_MIPS5500 \
1086 || TARGET_LOONGSON_2EF)
1088 /* ISA includes synci, jr.hb and jalr.hb. */
1089 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1093 /* ISA includes sync. */
1094 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1095 #define GENERATE_SYNC \
1096 (target_flags_explicit & MASK_LLSC \
1097 ? TARGET_LLSC && !TARGET_MIPS16 \
1100 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1101 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1103 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1104 #define GENERATE_LL_SC \
1105 (target_flags_explicit & MASK_LLSC \
1106 ? TARGET_LLSC && !TARGET_MIPS16 \
1109 /* ISA includes the baddu instruction. */
1110 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1112 /* ISA includes the bbit* instructions. */
1113 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1115 /* ISA includes the cins instruction. */
1116 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1118 /* ISA includes the exts instruction. */
1119 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1121 /* ISA includes the seq and sne instructions. */
1122 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1124 /* ISA includes the pop instruction. */
1125 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1127 /* The CACHE instruction is available in non-MIPS16 code. */
1128 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1130 /* The CACHE instruction is available. */
1131 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1133 /* Add -G xx support. */
1135 #undef SWITCH_TAKES_ARG
1136 #define SWITCH_TAKES_ARG(CHAR) \
1137 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
1139 #define OVERRIDE_OPTIONS mips_override_options ()
1141 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
1143 /* Show we can debug even without a frame pointer. */
1144 #define CAN_DEBUG_WITHOUT_FP
1146 /* Tell collect what flags to pass to nm. */
1148 #define NM_FLAGS "-Bn"
1152 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1153 to the assembler. It may be overridden by subtargets. */
1154 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1155 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
1157 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1160 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1161 the assembler. It may be overridden by subtargets.
1163 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1164 COFF debugging info. */
1166 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1167 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1168 %{g} %{g0} %{g1} %{g2} %{g3} \
1169 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1170 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1171 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1172 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1173 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1176 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1177 overridden by subtargets. */
1179 #ifndef SUBTARGET_ASM_SPEC
1180 #define SUBTARGET_ASM_SPEC ""
1185 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1186 %{mips32*} %{mips64*} \
1187 %{mips16} %{mno-mips16:-no-mips16} \
1188 %{mips3d} %{mno-mips3d:-no-mips3d} \
1189 %{mdmx} %{mno-mdmx:-no-mdmx} \
1190 %{mdsp} %{mno-dsp} \
1191 %{mdspr2} %{mno-dspr2} \
1192 %{msmartmips} %{mno-smartmips} \
1194 %{mfix-vr4120} %{mfix-vr4130} \
1195 %(subtarget_asm_optimizing_spec) \
1196 %(subtarget_asm_debugging_spec) \
1197 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1198 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1200 %{mshared} %{mno-shared} \
1201 %{msym32} %{mno-sym32} \
1203 %(subtarget_asm_spec)"
1205 /* Extra switches sometimes passed to the linker. */
1206 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1207 will interpret it as a -b option. */
1210 #define LINK_SPEC "\
1212 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1213 %{bestGnum} %{shared} %{non_shared}"
1214 #endif /* LINK_SPEC defined */
1217 /* Specs for the compiler proper */
1219 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1220 overridden by subtargets. */
1221 #ifndef SUBTARGET_CC1_SPEC
1222 #define SUBTARGET_CC1_SPEC ""
1225 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1229 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1230 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1232 %(subtarget_cc1_spec)"
1234 /* Preprocessor specs. */
1236 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1237 overridden by subtargets. */
1238 #ifndef SUBTARGET_CPP_SPEC
1239 #define SUBTARGET_CPP_SPEC ""
1242 #define CPP_SPEC "%(subtarget_cpp_spec)"
1244 /* This macro defines names of additional specifications to put in the specs
1245 that can be used in various specifications like CC1_SPEC. Its definition
1246 is an initializer with a subgrouping for each command option.
1248 Each subgrouping contains a string constant, that defines the
1249 specification name, and a string constant that used by the GCC driver
1252 Do not define this macro if it does not need to do anything. */
1254 #define EXTRA_SPECS \
1255 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1256 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1257 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1258 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1259 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1260 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1261 { "endian_spec", ENDIAN_SPEC }, \
1262 SUBTARGET_EXTRA_SPECS
1264 #ifndef SUBTARGET_EXTRA_SPECS
1265 #define SUBTARGET_EXTRA_SPECS
1268 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1269 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1271 #ifndef PREFERRED_DEBUGGING_TYPE
1272 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1275 /* The size of DWARF addresses should be the same as the size of symbols
1276 in the target file format. They shouldn't depend on things like -msym32,
1277 because many DWARF consumers do not allow the mixture of address sizes
1278 that one would then get from linking -msym32 code with -msym64 code.
1280 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1281 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1282 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1284 /* By default, turn on GDB extensions. */
1285 #define DEFAULT_GDB_EXTENSIONS 1
1287 /* Local compiler-generated symbols must have a prefix that the assembler
1288 understands. By default, this is $, although some targets (e.g.,
1289 NetBSD-ELF) need to override this. */
1291 #ifndef LOCAL_LABEL_PREFIX
1292 #define LOCAL_LABEL_PREFIX "$"
1295 /* By default on the mips, external symbols do not have an underscore
1296 prepended, but some targets (e.g., NetBSD) require this. */
1298 #ifndef USER_LABEL_PREFIX
1299 #define USER_LABEL_PREFIX ""
1302 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1303 since the length can run past this up to a continuation point. */
1304 #undef DBX_CONTIN_LENGTH
1305 #define DBX_CONTIN_LENGTH 1500
1307 /* How to renumber registers for dbx and gdb. */
1308 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1310 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1311 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1313 /* The DWARF 2 CFA column which tracks the return address. */
1314 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1316 /* Before the prologue, RA lives in r31. */
1317 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1319 /* Describe how we implement __builtin_eh_return. */
1320 #define EH_RETURN_DATA_REGNO(N) \
1321 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1323 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1325 #define EH_USES(N) mips_eh_uses (N)
1327 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1328 The default for this in 64-bit mode is 8, which causes problems with
1329 SFmode register saves. */
1330 #define DWARF_CIE_DATA_ALIGNMENT -4
1332 /* Correct the offset of automatic variables and arguments. Note that
1333 the MIPS debug format wants all automatic variables and arguments
1334 to be in terms of the virtual frame pointer (stack pointer before
1335 any adjustment in the function), while the MIPS 3.0 linker wants
1336 the frame pointer to be the stack pointer after the initial
1339 #define DEBUGGER_AUTO_OFFSET(X) \
1340 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1341 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1342 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1344 /* Target machine storage layout */
1346 #define BITS_BIG_ENDIAN 0
1347 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1348 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1350 /* Define this to set the endianness to use in libgcc2.c, which can
1351 not depend on target_flags. */
1352 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1353 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1355 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1358 #define MAX_BITS_PER_WORD 64
1360 /* Width of a word, in units (bytes). */
1361 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1363 #define MIN_UNITS_PER_WORD 4
1366 /* For MIPS, width of a floating point register. */
1367 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1369 /* The number of consecutive floating-point registers needed to store the
1370 largest format supported by the FPU. */
1371 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1373 /* The number of consecutive floating-point registers needed to store the
1374 smallest format supported by the FPU. */
1375 #define MIN_FPRS_PER_FMT \
1376 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1377 ? 1 : MAX_FPRS_PER_FMT)
1379 /* The largest size of value that can be held in floating-point
1380 registers and moved with a single instruction. */
1381 #define UNITS_PER_HWFPVALUE \
1382 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1384 /* The largest size of value that can be held in floating-point
1386 #define UNITS_PER_FPVALUE \
1387 (TARGET_SOFT_FLOAT_ABI ? 0 \
1388 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1389 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1391 /* The number of bytes in a double. */
1392 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1394 #define UNITS_PER_SIMD_WORD(MODE) \
1395 (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1397 /* Set the sizes of the core types. */
1398 #define SHORT_TYPE_SIZE 16
1399 #define INT_TYPE_SIZE 32
1400 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1401 #define LONG_LONG_TYPE_SIZE 64
1403 #define FLOAT_TYPE_SIZE 32
1404 #define DOUBLE_TYPE_SIZE 64
1405 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1407 /* Define the sizes of fixed-point types. */
1408 #define SHORT_FRACT_TYPE_SIZE 8
1409 #define FRACT_TYPE_SIZE 16
1410 #define LONG_FRACT_TYPE_SIZE 32
1411 #define LONG_LONG_FRACT_TYPE_SIZE 64
1413 #define SHORT_ACCUM_TYPE_SIZE 16
1414 #define ACCUM_TYPE_SIZE 32
1415 #define LONG_ACCUM_TYPE_SIZE 64
1416 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1417 doesn't support 128-bit integers for MIPS32 currently. */
1418 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1420 /* long double is not a fixed mode, but the idea is that, if we
1421 support long double, we also want a 128-bit integer type. */
1422 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1425 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1426 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1427 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1429 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1433 /* Width in bits of a pointer. */
1434 #ifndef POINTER_SIZE
1435 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1438 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1439 #define PARM_BOUNDARY BITS_PER_WORD
1441 /* Allocation boundary (in *bits*) for the code of a function. */
1442 #define FUNCTION_BOUNDARY 32
1444 /* Alignment of field after `int : 0' in a structure. */
1445 #define EMPTY_FIELD_BOUNDARY 32
1447 /* Every structure's size must be a multiple of this. */
1448 /* 8 is observed right on a DECstation and on riscos 4.02. */
1449 #define STRUCTURE_SIZE_BOUNDARY 8
1451 /* There is no point aligning anything to a rounder boundary than this. */
1452 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1454 /* All accesses must be aligned. */
1455 #define STRICT_ALIGNMENT 1
1457 /* Define this if you wish to imitate the way many other C compilers
1458 handle alignment of bitfields and the structures that contain
1461 The behavior is that the type written for a bit-field (`int',
1462 `short', or other integer type) imposes an alignment for the
1463 entire structure, as if the structure really did contain an
1464 ordinary field of that type. In addition, the bit-field is placed
1465 within the structure so that it would fit within such a field,
1466 not crossing a boundary for it.
1468 Thus, on most machines, a bit-field whose type is written as `int'
1469 would not cross a four-byte boundary, and would force four-byte
1470 alignment for the whole structure. (The alignment used may not
1471 be four bytes; it is controlled by the other alignment
1474 If the macro is defined, its definition should be a C expression;
1475 a nonzero value for the expression enables this behavior. */
1477 #define PCC_BITFIELD_TYPE_MATTERS 1
1479 /* If defined, a C expression to compute the alignment given to a
1480 constant that is being placed in memory. CONSTANT is the constant
1481 and ALIGN is the alignment that the object would ordinarily have.
1482 The value of this macro is used instead of that alignment to align
1485 If this macro is not defined, then ALIGN is used.
1487 The typical use of this macro is to increase alignment for string
1488 constants to be word aligned so that `strcpy' calls that copy
1489 constants can be done inline. */
1491 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1492 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1493 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1495 /* If defined, a C expression to compute the alignment for a static
1496 variable. TYPE is the data type, and ALIGN is the alignment that
1497 the object would ordinarily have. The value of this macro is used
1498 instead of that alignment to align the object.
1500 If this macro is not defined, then ALIGN is used.
1502 One use of this macro is to increase alignment of medium-size
1503 data to make it all fit in fewer cache lines. Another is to
1504 cause character arrays to be word-aligned so that `strcpy' calls
1505 that copy constants to character arrays can be done inline. */
1507 #undef DATA_ALIGNMENT
1508 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1509 ((((ALIGN) < BITS_PER_WORD) \
1510 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1511 || TREE_CODE (TYPE) == UNION_TYPE \
1512 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1514 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1515 character arrays to be word-aligned so that `strcpy' calls that copy
1516 constants to character arrays can be done inline, and 'strcmp' can be
1517 optimised to use word loads. */
1518 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1519 DATA_ALIGNMENT (TYPE, ALIGN)
1521 #define PAD_VARARGS_DOWN \
1522 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1524 /* Define if operations between registers always perform the operation
1525 on the full register even if a narrower mode is specified. */
1526 #define WORD_REGISTER_OPERATIONS
1528 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1529 moves. All other references are zero extended. */
1530 #define LOAD_EXTEND_OP(MODE) \
1531 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1532 ? SIGN_EXTEND : ZERO_EXTEND)
1534 /* Define this macro if it is advisable to hold scalars in registers
1535 in a wider mode than that declared by the program. In such cases,
1536 the value is constrained to be within the bounds of the declared
1537 type, but kept valid in the wider mode. The signedness of the
1538 extension may differ from that of the type. */
1540 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1541 if (GET_MODE_CLASS (MODE) == MODE_INT \
1542 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1544 if ((MODE) == SImode) \
1549 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1550 Extensions of pointers to word_mode must be signed. */
1551 #define POINTERS_EXTEND_UNSIGNED false
1553 /* Define if loading short immediate values into registers sign extends. */
1554 #define SHORT_IMMEDIATES_SIGN_EXTEND
1556 /* The [d]clz instructions have the natural values at 0. */
1558 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1559 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1561 /* Standard register usage. */
1563 /* Number of hardware registers. We have:
1565 - 32 integer registers
1566 - 32 floating point registers
1567 - 8 condition code registers
1568 - 2 accumulator registers (hi and lo)
1569 - 32 registers each for coprocessors 0, 2 and 3
1571 - ARG_POINTER_REGNUM
1572 - FRAME_POINTER_REGNUM
1573 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1574 - CPRESTORE_SLOT_REGNUM
1575 - 2 dummy entries that were used at various times in the past.
1576 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1577 - 6 DSP control registers */
1579 #define FIRST_PSEUDO_REGISTER 188
1581 /* By default, fix the kernel registers ($26 and $27), the global
1582 pointer ($28) and the stack pointer ($29). This can change
1583 depending on the command-line options.
1585 Regarding coprocessor registers: without evidence to the contrary,
1586 it's best to assume that each coprocessor register has a unique
1587 use. This can be overridden, in, e.g., mips_override_options or
1588 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1589 for a particular target. */
1591 #define FIXED_REGISTERS \
1593 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1594 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1595 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1596 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1597 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1598 /* COP0 registers */ \
1599 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1600 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1601 /* COP2 registers */ \
1602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1603 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1604 /* COP3 registers */ \
1605 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1606 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1607 /* 6 DSP accumulator registers & 6 control registers */ \
1608 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1612 /* Set up this array for o32 by default.
1614 Note that we don't mark $31 as a call-clobbered register. The idea is
1615 that it's really the call instructions themselves which clobber $31.
1616 We don't care what the called function does with it afterwards.
1618 This approach makes it easier to implement sibcalls. Unlike normal
1619 calls, sibcalls don't clobber $31, so the register reaches the
1620 called function in tact. EPILOGUE_USES says that $31 is useful
1621 to the called function. */
1623 #define CALL_USED_REGISTERS \
1625 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1626 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1627 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1628 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1629 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1630 /* COP0 registers */ \
1631 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1632 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1633 /* COP2 registers */ \
1634 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1635 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1636 /* COP3 registers */ \
1637 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1638 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1639 /* 6 DSP accumulator registers & 6 control registers */ \
1640 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1644 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1646 #define CALL_REALLY_USED_REGISTERS \
1647 { /* General registers. */ \
1648 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1649 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1650 /* Floating-point registers. */ \
1651 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1652 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1654 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1655 /* COP0 registers */ \
1656 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1657 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1658 /* COP2 registers */ \
1659 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1660 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1661 /* COP3 registers */ \
1662 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1663 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1664 /* 6 DSP accumulator registers & 6 control registers */ \
1665 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1668 /* Internal macros to classify a register number as to whether it's a
1669 general purpose register, a floating point register, a
1670 multiply/divide register, or a status register. */
1672 #define GP_REG_FIRST 0
1673 #define GP_REG_LAST 31
1674 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1675 #define GP_DBX_FIRST 0
1676 #define K0_REG_NUM (GP_REG_FIRST + 26)
1677 #define K1_REG_NUM (GP_REG_FIRST + 27)
1678 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1680 #define FP_REG_FIRST 32
1681 #define FP_REG_LAST 63
1682 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1683 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1685 #define MD_REG_FIRST 64
1686 #define MD_REG_LAST 65
1687 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1688 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1690 /* The DWARF 2 CFA column which tracks the return address from a
1691 signal handler context. This means that to maintain backwards
1692 compatibility, no hard register can be assigned this column if it
1693 would need to be handled by the DWARF unwinder. */
1694 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1696 #define ST_REG_FIRST 67
1697 #define ST_REG_LAST 74
1698 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1701 /* FIXME: renumber. */
1702 #define COP0_REG_FIRST 80
1703 #define COP0_REG_LAST 111
1704 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1706 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1707 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1708 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1710 #define COP2_REG_FIRST 112
1711 #define COP2_REG_LAST 143
1712 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1714 #define COP3_REG_FIRST 144
1715 #define COP3_REG_LAST 175
1716 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1717 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1718 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1720 #define DSP_ACC_REG_FIRST 176
1721 #define DSP_ACC_REG_LAST 181
1722 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1724 #define AT_REGNUM (GP_REG_FIRST + 1)
1725 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1726 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1728 /* A few bitfield locations for the coprocessor registers. */
1729 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1730 the cause register for the EIC interrupt mode. */
1731 #define CAUSE_IPL 10
1732 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1734 /* Exception Level is at bit 1 of the status register. */
1736 /* Interrupt Enable is at bit 0 of the status register. */
1739 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1740 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1741 should be used instead. */
1742 #define FPSW_REGNUM ST_REG_FIRST
1744 #define GP_REG_P(REGNO) \
1745 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1746 #define M16_REG_P(REGNO) \
1747 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1748 #define FP_REG_P(REGNO) \
1749 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1750 #define MD_REG_P(REGNO) \
1751 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1752 #define ST_REG_P(REGNO) \
1753 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1754 #define COP0_REG_P(REGNO) \
1755 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1756 #define COP2_REG_P(REGNO) \
1757 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1758 #define COP3_REG_P(REGNO) \
1759 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1760 #define ALL_COP_REG_P(REGNO) \
1761 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1762 /* Test if REGNO is one of the 6 new DSP accumulators. */
1763 #define DSP_ACC_REG_P(REGNO) \
1764 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1765 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1766 #define ACC_REG_P(REGNO) \
1767 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1769 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1771 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1772 to initialize the mips16 gp pseudo register. */
1773 #define CONST_GP_P(X) \
1774 (GET_CODE (X) == CONST \
1775 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1776 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1778 /* Return coprocessor number from register number. */
1780 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1781 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1782 : COP3_REG_P (REGNO) ? '3' : '?')
1785 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1787 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1788 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1790 #define MODES_TIEABLE_P mips_modes_tieable_p
1792 /* Register to use for pushing function arguments. */
1793 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1795 /* These two registers don't really exist: they get eliminated to either
1796 the stack or hard frame pointer. */
1797 #define ARG_POINTER_REGNUM 77
1798 #define FRAME_POINTER_REGNUM 78
1800 /* $30 is not available on the mips16, so we use $17 as the frame
1802 #define HARD_FRAME_POINTER_REGNUM \
1803 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1805 /* Register in which static-chain is passed to a function. */
1806 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1808 /* Registers used as temporaries in prologue/epilogue code:
1810 - If a MIPS16 PIC function needs access to _gp, it first loads
1811 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1813 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1814 register. The register must not conflict with MIPS16_PIC_TEMP.
1816 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1819 If we're generating MIPS16 code, these registers must come from the
1820 core set of 8. The prologue registers mustn't conflict with any
1821 incoming arguments, the static chain pointer, or the frame pointer.
1822 The epilogue temporary mustn't conflict with the return registers,
1823 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1824 or the EH data registers.
1826 If we're generating interrupt handlers, we use K0 as a temporary register
1827 in prologue/epilogue code. */
1829 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1830 #define MIPS_PROLOGUE_TEMP_REGNUM \
1831 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1832 #define MIPS_EPILOGUE_TEMP_REGNUM \
1833 (cfun->machine->interrupt_handler_p \
1835 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1837 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1838 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1839 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1841 /* Define this macro if it is as good or better to call a constant
1842 function address than to call an address kept in a register. */
1843 #define NO_FUNCTION_CSE 1
1845 /* The ABI-defined global pointer. Sometimes we use a different
1846 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1847 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1849 /* We normally use $28 as the global pointer. However, when generating
1850 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1851 register instead. They can then avoid saving and restoring $28
1852 and perhaps avoid using a frame at all.
1854 When a leaf function uses something other than $28, mips_expand_prologue
1855 will modify pic_offset_table_rtx in place. Take the register number
1856 from there after reload. */
1857 #define PIC_OFFSET_TABLE_REGNUM \
1858 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1860 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1862 /* Define the classes of registers for register constraints in the
1863 machine description. Also define ranges of constants.
1865 One of the classes must always be named ALL_REGS and include all hard regs.
1866 If there is more than one class, another class must be named NO_REGS
1867 and contain no registers.
1869 The name GENERAL_REGS must be the name of a class (or an alias for
1870 another name such as ALL_REGS). This is the class of registers
1871 that is allowed by "g" or "r" in a register constraint.
1872 Also, registers outside this class are allocated only when
1873 instructions express preferences for them.
1875 The classes must be numbered in nondecreasing order; that is,
1876 a larger-numbered class must never be contained completely
1877 in a smaller-numbered class.
1879 For any two classes, it is very desirable that there be another
1880 class that represents their union. */
1884 NO_REGS, /* no registers in set */
1885 M16_REGS, /* mips16 directly accessible registers */
1886 T_REG, /* mips16 T register ($24) */
1887 M16_T_REGS, /* mips16 registers plus T register */
1888 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1889 V1_REG, /* Register $v1 ($3) used for TLS access. */
1890 LEA_REGS, /* Every GPR except $25 */
1891 GR_REGS, /* integer registers */
1892 FP_REGS, /* floating point registers */
1893 MD0_REG, /* first multiply/divide register */
1894 MD1_REG, /* second multiply/divide register */
1895 MD_REGS, /* multiply/divide registers (hi/lo) */
1896 COP0_REGS, /* generic coprocessor classes */
1899 ST_REGS, /* status registers (fp status) */
1900 DSP_ACC_REGS, /* DSP accumulator registers */
1901 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1902 FRAME_REGS, /* $arg and $frame */
1903 GR_AND_MD0_REGS, /* union classes */
1907 ALL_REGS, /* all registers */
1908 LIM_REG_CLASSES /* max value + 1 */
1911 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1913 #define GENERAL_REGS GR_REGS
1915 /* An initializer containing the names of the register classes as C
1916 string constants. These names are used in writing some of the
1919 #define REG_CLASS_NAMES \
1925 "PIC_FN_ADDR_REG", \
1933 /* coprocessor registers */ \
1941 "GR_AND_MD0_REGS", \
1942 "GR_AND_MD1_REGS", \
1944 "GR_AND_ACC_REGS", \
1948 /* An initializer containing the contents of the register classes,
1949 as integers which are bit masks. The Nth integer specifies the
1950 contents of class N. The way the integer MASK is interpreted is
1951 that register R is in the class if `MASK & (1 << R)' is 1.
1953 When the machine has more than 32 registers, an integer does not
1954 suffice. Then the integers are replaced by sub-initializers,
1955 braced groupings containing several integers. Each
1956 sub-initializer must be suitable as an initializer for the type
1957 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1959 #define REG_CLASS_CONTENTS \
1961 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1962 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1963 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1964 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1965 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1966 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1967 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1968 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1969 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1970 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1971 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1972 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1973 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1974 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1975 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1976 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1977 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1978 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1979 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1980 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1981 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1982 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1983 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1984 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1988 /* A C expression whose value is a register class containing hard
1989 register REGNO. In general there is more that one such class;
1990 choose a class which is "minimal", meaning that no smaller class
1991 also contains the register. */
1993 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1995 /* A macro whose definition is the name of the class to which a
1996 valid base register must belong. A base register is one used in
1997 an address which is the register value plus a displacement. */
1999 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
2001 /* A macro whose definition is the name of the class to which a
2002 valid index register must belong. An index register is one used
2003 in an address where its value is either multiplied by a scale
2004 factor or added to another register (as well as added to a
2007 #define INDEX_REG_CLASS NO_REGS
2009 /* We generally want to put call-clobbered registers ahead of
2010 call-saved ones. (IRA expects this.) */
2012 #define REG_ALLOC_ORDER \
2013 { /* Accumulator registers. When GPRs and accumulators have equal \
2014 cost, we generally prefer to use accumulators. For example, \
2015 a division of multiplication result is better allocated to LO, \
2016 so that we put the MFLO at the point of use instead of at the \
2017 point of definition. It's also needed if we're to take advantage \
2018 of the extra accumulators available with -mdspr2. In some cases, \
2019 it can also help to reduce register pressure. */ \
2020 64, 65,176,177,178,179,180,181, \
2021 /* Call-clobbered GPRs. */ \
2022 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2024 /* The global pointer. This is call-clobbered for o32 and o64 \
2025 abicalls, call-saved for n32 and n64 abicalls, and a program \
2026 invariant otherwise. Putting it between the call-clobbered \
2027 and call-saved registers should cope with all eventualities. */ \
2029 /* Call-saved GPRs. */ \
2030 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2031 /* GPRs that can never be exposed to the register allocator. */ \
2033 /* Call-clobbered FPRs. */ \
2034 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2036 /* FPRs that are usually call-saved. The odd ones are actually \
2037 call-clobbered for n32, but listing them ahead of the even \
2038 registers might encourage the register allocator to fragment \
2039 the available FPR pairs. We need paired FPRs to store long \
2040 doubles, so it isn't clear that using a different order \
2041 for n32 would be a win. */ \
2042 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2043 /* None of the remaining classes have defined call-saved \
2045 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2046 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2047 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2048 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2049 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2050 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2051 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2052 182,183,184,185,186,187 \
2055 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
2056 to be rearranged based on a particular function. On the mips16, we
2057 want to allocate $24 (T_REG) before other registers for
2058 instructions for which it is possible. */
2060 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2062 /* True if VALUE is an unsigned 6-bit number. */
2064 #define UIMM6_OPERAND(VALUE) \
2065 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2067 /* True if VALUE is a signed 10-bit number. */
2069 #define IMM10_OPERAND(VALUE) \
2070 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2072 /* True if VALUE is a signed 16-bit number. */
2074 #define SMALL_OPERAND(VALUE) \
2075 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2077 /* True if VALUE is an unsigned 16-bit number. */
2079 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2080 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2082 /* True if VALUE can be loaded into a register using LUI. */
2084 #define LUI_OPERAND(VALUE) \
2085 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2086 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2088 /* Return a value X with the low 16 bits clear, and such that
2089 VALUE - X is a signed 16-bit value. */
2091 #define CONST_HIGH_PART(VALUE) \
2092 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2094 #define CONST_LOW_PART(VALUE) \
2095 ((VALUE) - CONST_HIGH_PART (VALUE))
2097 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2098 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2099 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2101 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
2102 mips_preferred_reload_class (X, CLASS)
2104 /* The HI and LO registers can only be reloaded via the general
2105 registers. Condition code registers can only be loaded to the
2106 general registers, and from the floating point registers. */
2108 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2109 mips_secondary_reload_class (CLASS, MODE, X, true)
2110 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2111 mips_secondary_reload_class (CLASS, MODE, X, false)
2113 /* Return the maximum number of consecutive registers
2114 needed to represent mode MODE in a register of class CLASS. */
2116 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2118 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2119 mips_cannot_change_mode_class (FROM, TO, CLASS)
2121 /* Stack layout; function entry, exit and calling. */
2123 #define STACK_GROWS_DOWNWARD
2125 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2127 /* Size of the area allocated in the frame to save the GP. */
2129 #define MIPS_GP_SAVE_AREA_SIZE \
2130 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2132 /* The offset of the first local variable from the frame pointer. See
2133 mips_compute_frame_info for details about the frame layout. */
2135 #define STARTING_FRAME_OFFSET \
2136 (FRAME_GROWS_DOWNWARD \
2138 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2140 #define RETURN_ADDR_RTX mips_return_addr
2142 /* Mask off the MIPS16 ISA bit in unwind addresses.
2144 The reason for this is a little subtle. When unwinding a call,
2145 we are given the call's return address, which on most targets
2146 is the address of the following instruction. However, what we
2147 actually want to find is the EH region for the call itself.
2148 The target-independent unwind code therefore searches for "RA - 1".
2150 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2151 RA - 1 is therefore the real (even-valued) start of the return
2152 instruction. EH region labels are usually odd-valued MIPS16 symbols
2153 too, so a search for an even address within a MIPS16 region would
2156 However, there is an exception. If the end of an EH region is also
2157 the end of a function, the end label is allowed to be even. This is
2158 necessary because a following non-MIPS16 function may also need EH
2159 information for its first instruction.
2161 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2162 non-ISA-encoded address. This probably isn't ideal, but it is
2163 the traditional (legacy) behavior. It is therefore only safe
2164 to search MIPS EH regions for an _odd-valued_ address.
2166 Masking off the ISA bit means that the target-independent code
2167 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2168 #define MASK_RETURN_ADDR GEN_INT (-2)
2171 /* Similarly, don't use the least-significant bit to tell pointers to
2172 code from vtable index. */
2174 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2176 /* The eliminations to $17 are only used for mips16 code. See the
2177 definition of HARD_FRAME_POINTER_REGNUM. */
2179 #define ELIMINABLE_REGS \
2180 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2181 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2182 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2183 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2184 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2185 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2187 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2188 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2190 /* Allocate stack space for arguments at the beginning of each function. */
2191 #define ACCUMULATE_OUTGOING_ARGS 1
2193 /* The argument pointer always points to the first argument. */
2194 #define FIRST_PARM_OFFSET(FNDECL) 0
2196 /* o32 and o64 reserve stack space for all argument registers. */
2197 #define REG_PARM_STACK_SPACE(FNDECL) \
2199 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2202 /* Define this if it is the responsibility of the caller to
2203 allocate the area reserved for arguments passed in registers.
2204 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2205 of this macro is to determine whether the space is included in
2206 `crtl->outgoing_args_size'. */
2207 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2209 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2211 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2213 /* Symbolic macros for the registers used to return integer and floating
2216 #define GP_RETURN (GP_REG_FIRST + 2)
2217 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2219 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2221 /* Symbolic macros for the first/last argument registers. */
2223 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2224 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2225 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2226 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2228 #define LIBCALL_VALUE(MODE) \
2229 mips_function_value (NULL_TREE, NULL_TREE, MODE)
2231 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2232 mips_function_value (VALTYPE, FUNC, VOIDmode)
2234 /* 1 if N is a possible register number for a function value.
2235 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2236 Currently, R2 and F0 are only implemented here (C has no complex type) */
2238 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2239 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2240 && (N) == FP_RETURN + 2))
2242 /* 1 if N is a possible register number for function argument passing.
2243 We have no FP argument registers when soft-float. When FP registers
2244 are 32 bits, we can't directly reference the odd numbered ones. */
2246 #define FUNCTION_ARG_REGNO_P(N) \
2247 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2248 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2251 /* This structure has to cope with two different argument allocation
2252 schemes. Most MIPS ABIs view the arguments as a structure, of which
2253 the first N words go in registers and the rest go on the stack. If I
2254 < N, the Ith word might go in Ith integer argument register or in a
2255 floating-point register. For these ABIs, we only need to remember
2256 the offset of the current argument into the structure.
2258 The EABI instead allocates the integer and floating-point arguments
2259 separately. The first N words of FP arguments go in FP registers,
2260 the rest go on the stack. Likewise, the first N words of the other
2261 arguments go in integer registers, and the rest go on the stack. We
2262 need to maintain three counts: the number of integer registers used,
2263 the number of floating-point registers used, and the number of words
2264 passed on the stack.
2266 We could keep separate information for the two ABIs (a word count for
2267 the standard ABIs, and three separate counts for the EABI). But it
2268 seems simpler to view the standard ABIs as forms of EABI that do not
2269 allocate floating-point registers.
2271 So for the standard ABIs, the first N words are allocated to integer
2272 registers, and mips_function_arg decides on an argument-by-argument
2273 basis whether that argument should really go in an integer register,
2274 or in a floating-point one. */
2276 typedef struct mips_args {
2277 /* Always true for varargs functions. Otherwise true if at least
2278 one argument has been passed in an integer register. */
2281 /* The number of arguments seen so far. */
2282 unsigned int arg_number;
2284 /* The number of integer registers used so far. For all ABIs except
2285 EABI, this is the number of words that have been added to the
2286 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2287 unsigned int num_gprs;
2289 /* For EABI, the number of floating-point registers used so far. */
2290 unsigned int num_fprs;
2292 /* The number of words passed on the stack. */
2293 unsigned int stack_words;
2295 /* On the mips16, we need to keep track of which floating point
2296 arguments were passed in general registers, but would have been
2297 passed in the FP regs if this were a 32-bit function, so that we
2298 can move them to the FP regs if we wind up calling a 32-bit
2299 function. We record this information in fp_code, encoded in base
2300 four. A zero digit means no floating point argument, a one digit
2301 means an SFmode argument, and a two digit means a DFmode argument,
2302 and a three digit is not used. The low order digit is the first
2303 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2304 an SFmode argument. ??? A more sophisticated approach will be
2305 needed if MIPS_ABI != ABI_32. */
2308 /* True if the function has a prototype. */
2312 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2313 for a call to a function whose data type is FNTYPE.
2314 For a library call, FNTYPE is 0. */
2316 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2317 mips_init_cumulative_args (&CUM, FNTYPE)
2319 /* Update the data in CUM to advance over an argument
2320 of mode MODE and data type TYPE.
2321 (TYPE is null for libcalls where that information may not be available.) */
2323 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2324 mips_function_arg_advance (&CUM, MODE, TYPE, NAMED)
2326 /* Determine where to put an argument to a function.
2327 Value is zero to push the argument on the stack,
2328 or a hard register in which to store the argument.
2330 MODE is the argument's machine mode.
2331 TYPE is the data type of the argument (as a tree).
2332 This is null for libcalls where that information may
2334 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2335 the preceding args and about the function being called.
2336 NAMED is nonzero if this argument is a named parameter
2337 (otherwise it is an extra parameter matching an ellipsis). */
2339 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2340 mips_function_arg (&CUM, MODE, TYPE, NAMED)
2342 #define FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
2344 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2345 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2347 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2348 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2350 /* True if using EABI and varargs can be passed in floating-point
2351 registers. Under these conditions, we need a more complex form
2352 of va_list, which tracks GPR, FPR and stack arguments separately. */
2353 #define EABI_FLOAT_VARARGS_P \
2354 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2357 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2359 /* Treat LOC as a byte offset from the stack pointer and round it up
2360 to the next fully-aligned offset. */
2361 #define MIPS_STACK_ALIGN(LOC) \
2362 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2365 /* Output assembler code to FILE to increment profiler label # LABELNO
2366 for profiling a function entry. */
2368 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2370 /* The profiler preserves all interesting registers, including $31. */
2371 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2373 /* No mips port has ever used the profiler counter word, so don't emit it
2374 or the label for it. */
2376 #define NO_PROFILE_COUNTERS 1
2378 /* Define this macro if the code for function profiling should come
2379 before the function prologue. Normally, the profiling code comes
2382 /* #define PROFILE_BEFORE_PROLOGUE */
2384 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2385 the stack pointer does not matter. The value is tested only in
2386 functions that have frame pointers.
2387 No definition is equivalent to always zero. */
2389 #define EXIT_IGNORE_STACK 1
2392 /* Trampolines are a block of code followed by two pointers. */
2394 #define TRAMPOLINE_SIZE \
2395 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2397 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2398 pointers from a single LUI base. */
2400 #define TRAMPOLINE_ALIGNMENT 64
2402 /* mips_trampoline_init calls this library function to flush
2403 program and data caches. */
2405 #ifndef CACHE_FLUSH_FUNC
2406 #define CACHE_FLUSH_FUNC "_flush_cache"
2409 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2410 /* Flush both caches. We need to flush the data cache in case \
2411 the system has a write-back cache. */ \
2412 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2413 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2414 GEN_INT (3), TYPE_MODE (integer_type_node))
2417 /* Addressing modes, and classification of registers for them. */
2419 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2420 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2421 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2423 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2424 and check its validity for a certain class.
2425 We have two alternate definitions for each of them.
2426 The usual definition accepts all pseudo regs; the other rejects them all.
2427 The symbol REG_OK_STRICT causes the latter definition to be used.
2429 Most source files want to accept pseudo regs in the hope that
2430 they will get allocated to the class that the insn wants them to be in.
2431 Some source files that are used after register allocation
2432 need to be strict. */
2434 #ifndef REG_OK_STRICT
2435 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2436 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2438 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2439 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2442 #define REG_OK_FOR_INDEX_P(X) 0
2445 /* Maximum number of registers that can appear in a valid memory address. */
2447 #define MAX_REGS_PER_ADDRESS 1
2449 /* Check for constness inline but use mips_legitimate_address_p
2450 to check whether a constant really is an address. */
2452 #define CONSTANT_ADDRESS_P(X) \
2453 (CONSTANT_P (X) && memory_address_p (SImode, X))
2455 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2457 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2458 'the start of the function that this code is output in'. */
2460 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2461 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2462 asm_fprintf ((FILE), "%U%s", \
2463 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2465 asm_fprintf ((FILE), "%U%s", (NAME))
2467 /* Flag to mark a function decl symbol that requires a long call. */
2468 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2469 #define SYMBOL_REF_LONG_CALL_P(X) \
2470 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2472 /* This flag marks functions that cannot be lazily bound. */
2473 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2474 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2475 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2477 /* True if we're generating a form of MIPS16 code in which jump tables
2478 are stored in the text section and encoded as 16-bit PC-relative
2479 offsets. This is only possible when general text loads are allowed,
2480 since the table access itself will be an "lh" instruction. */
2481 /* ??? 16-bit offsets can overflow in large functions. */
2482 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2484 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2486 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2488 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2490 /* Define this as 1 if `char' should by default be signed; else as 0. */
2491 #ifndef DEFAULT_SIGNED_CHAR
2492 #define DEFAULT_SIGNED_CHAR 1
2495 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2496 we generally don't want to use them for copying arbitrary data.
2497 A single N-word move is usually the same cost as N single-word moves. */
2498 #define MOVE_MAX UNITS_PER_WORD
2499 #define MAX_MOVE_MAX 8
2501 /* Define this macro as a C expression which is nonzero if
2502 accessing less than a word of memory (i.e. a `char' or a
2503 `short') is no faster than accessing a word of memory, i.e., if
2504 such access require more than one instruction or if there is no
2505 difference in cost between byte and (aligned) word loads.
2507 On RISC machines, it tends to generate better code to define
2508 this as 1, since it avoids making a QI or HI mode register.
2510 But, generating word accesses for -mips16 is generally bad as shifts
2511 (often extended) would be needed for byte accesses. */
2512 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2514 /* Define this to be nonzero if shift instructions ignore all but the low-order
2516 #define SHIFT_COUNT_TRUNCATED 1
2518 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2519 is done just by pretending it is already truncated. */
2520 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2521 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2524 /* Specify the machine mode that pointers have.
2525 After generation of rtl, the compiler makes no further distinction
2526 between pointers and any other objects of this machine mode. */
2529 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2532 /* Give call MEMs SImode since it is the "most permissive" mode
2533 for both 32-bit and 64-bit targets. */
2535 #define FUNCTION_MODE SImode
2538 /* A C expression for the cost of moving data from a register in
2539 class FROM to one in class TO. The classes are expressed using
2540 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2541 the default; other values are interpreted relative to that.
2543 It is not required that the cost always equal 2 when FROM is the
2544 same as TO; on some machines it is expensive to move between
2545 registers if they are not general registers.
2547 If reload sees an insn consisting of a single `set' between two
2548 hard registers, and if `REGISTER_MOVE_COST' applied to their
2549 classes returns a value of 2, reload does not check to ensure
2550 that the constraints of the insn are met. Setting a cost of
2551 other than 2 will allow reload to verify that the constraints are
2552 met. You should do this if the `movM' pattern's constraints do
2553 not allow such copying. */
2555 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
2556 mips_register_move_cost (MODE, FROM, TO)
2558 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2559 (mips_cost->memory_latency \
2560 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2562 /* Define if copies to/from condition code registers should be avoided.
2564 This is needed for the MIPS because reload_outcc is not complete;
2565 it needs to handle cases where the source is a general or another
2566 condition code register. */
2567 #define AVOID_CCMODE_COPIES
2569 /* A C expression for the cost of a branch instruction. A value of
2570 1 is the default; other values are interpreted relative to that. */
2572 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2573 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2575 /* If defined, modifies the length assigned to instruction INSN as a
2576 function of the context in which it is used. LENGTH is an lvalue
2577 that contains the initially computed length of the insn and should
2578 be updated with the correct length of the insn. */
2579 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2580 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2582 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2583 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2585 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2586 "%*" OPCODE "%?\t" OPERANDS "%/"
2588 /* Return an asm string that forces INSN to be treated as an absolute
2589 J or JAL instruction instead of an assembler macro. */
2590 #define MIPS_ABSOLUTE_JUMP(INSN) \
2591 (TARGET_ABICALLS_PIC2 \
2592 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2595 /* Return the asm template for a call. INSN is the instruction's mnemonic
2596 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2597 number of the target. SIZE_OPNO is the operand number of the argument size
2598 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2599 -1 and the call is indirect, use the function symbol from the call
2600 attributes to attach a R_MIPS_JALR relocation to the call.
2602 When generating GOT code without explicit relocation operators,
2603 all calls should use assembly macros. Otherwise, all indirect
2604 calls should use "jr" or "jalr"; we will arrange to restore $gp
2605 afterwards if necessary. Finally, we can only generate direct
2606 calls for -mabicalls by temporarily switching to non-PIC mode. */
2607 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2608 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2609 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2610 : (REG_P (OPERANDS[TARGET_OPNO]) \
2611 && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \
2612 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2613 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2614 : REG_P (OPERANDS[TARGET_OPNO]) \
2615 ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \
2616 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2618 /* Control the assembler format that we output. */
2620 /* Output to assembler file text saying following lines
2621 may contain character constants, extra white space, comments, etc. */
2624 #define ASM_APP_ON " #APP\n"
2627 /* Output to assembler file text saying following lines
2628 no longer contain unusual constructs. */
2631 #define ASM_APP_OFF " #NO_APP\n"
2634 #define REGISTER_NAMES \
2635 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2636 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2637 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2638 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2639 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2640 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2641 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2642 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2643 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2644 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2645 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2646 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2647 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2648 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2649 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2650 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2651 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2652 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2653 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2654 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2655 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2656 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2657 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2658 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2660 /* List the "software" names for each register. Also list the numerical
2661 names for $fp and $sp. */
2663 #define ADDITIONAL_REGISTER_NAMES \
2665 { "$29", 29 + GP_REG_FIRST }, \
2666 { "$30", 30 + GP_REG_FIRST }, \
2667 { "at", 1 + GP_REG_FIRST }, \
2668 { "v0", 2 + GP_REG_FIRST }, \
2669 { "v1", 3 + GP_REG_FIRST }, \
2670 { "a0", 4 + GP_REG_FIRST }, \
2671 { "a1", 5 + GP_REG_FIRST }, \
2672 { "a2", 6 + GP_REG_FIRST }, \
2673 { "a3", 7 + GP_REG_FIRST }, \
2674 { "t0", 8 + GP_REG_FIRST }, \
2675 { "t1", 9 + GP_REG_FIRST }, \
2676 { "t2", 10 + GP_REG_FIRST }, \
2677 { "t3", 11 + GP_REG_FIRST }, \
2678 { "t4", 12 + GP_REG_FIRST }, \
2679 { "t5", 13 + GP_REG_FIRST }, \
2680 { "t6", 14 + GP_REG_FIRST }, \
2681 { "t7", 15 + GP_REG_FIRST }, \
2682 { "s0", 16 + GP_REG_FIRST }, \
2683 { "s1", 17 + GP_REG_FIRST }, \
2684 { "s2", 18 + GP_REG_FIRST }, \
2685 { "s3", 19 + GP_REG_FIRST }, \
2686 { "s4", 20 + GP_REG_FIRST }, \
2687 { "s5", 21 + GP_REG_FIRST }, \
2688 { "s6", 22 + GP_REG_FIRST }, \
2689 { "s7", 23 + GP_REG_FIRST }, \
2690 { "t8", 24 + GP_REG_FIRST }, \
2691 { "t9", 25 + GP_REG_FIRST }, \
2692 { "k0", 26 + GP_REG_FIRST }, \
2693 { "k1", 27 + GP_REG_FIRST }, \
2694 { "gp", 28 + GP_REG_FIRST }, \
2695 { "sp", 29 + GP_REG_FIRST }, \
2696 { "fp", 30 + GP_REG_FIRST }, \
2697 { "ra", 31 + GP_REG_FIRST }, \
2698 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2701 /* This is meant to be redefined in the host dependent files. It is a
2702 set of alternative names and regnums for mips coprocessors. */
2704 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2706 #define PRINT_OPERAND mips_print_operand
2707 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2708 #define PRINT_OPERAND_ADDRESS mips_print_operand_address
2710 #define DBR_OUTPUT_SEQEND(STREAM) \
2713 /* Undo the effect of '%*'. */ \
2714 mips_pop_asm_switch (&mips_nomacro); \
2715 mips_pop_asm_switch (&mips_noreorder); \
2716 /* Emit a blank line after the delay slot for emphasis. */ \
2717 fputs ("\n", STREAM); \
2721 /* How to tell the debugger about changes of source files. */
2722 #define ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
2724 /* mips-tfile does not understand .stabd directives. */
2725 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2726 dbxout_begin_stabn_sline (LINE); \
2727 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2730 /* Use .loc directives for SDB line numbers. */
2731 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2732 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2734 /* The MIPS implementation uses some labels for its own purpose. The
2735 following lists what labels are created, and are all formed by the
2736 pattern $L[a-z].*. The machine independent portion of GCC creates
2737 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2739 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2740 $Lb[0-9]+ Begin blocks for MIPS debug support
2741 $Lc[0-9]+ Label for use in s<xx> operation.
2742 $Le[0-9]+ End blocks for MIPS debug support */
2744 #undef ASM_DECLARE_OBJECT_NAME
2745 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2746 mips_declare_object (STREAM, NAME, "", ":\n")
2748 /* Globalizing directive for a label. */
2749 #define GLOBAL_ASM_OP "\t.globl\t"
2751 /* This says how to define a global common symbol. */
2753 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2755 /* This says how to define a local common symbol (i.e., not visible to
2758 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2759 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2760 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2763 /* This says how to output an external. It would be possible not to
2764 output anything and let undefined symbol become external. However
2765 the assembler uses length information on externals to allocate in
2766 data/sdata bss/sbss, thereby saving exec time. */
2768 #undef ASM_OUTPUT_EXTERNAL
2769 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2770 mips_output_external(STREAM,DECL,NAME)
2772 /* This is how to declare a function name. The actual work of
2773 emitting the label is moved to function_prologue, so that we can
2774 get the line number correctly emitted before the .ent directive,
2775 and after any .file directives. Define as empty so that the function
2776 is not declared before the .ent directive elsewhere. */
2778 #undef ASM_DECLARE_FUNCTION_NAME
2779 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2781 /* This is how to store into the string LABEL
2782 the symbol_ref name of an internal numbered label where
2783 PREFIX is the class of label and NUM is the number within the class.
2784 This is suitable for output with `assemble_name'. */
2786 #undef ASM_GENERATE_INTERNAL_LABEL
2787 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2788 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2790 /* Print debug labels as "foo = ." rather than "foo:" because they should
2791 represent a byte pointer rather than an ISA-encoded address. This is
2792 particularly important for code like:
2797 .section .gcc_except_table,...
2799 .uleb128 foo-$LFBxxx
2801 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2802 likewise a byte pointer rather than an ISA-encoded address.
2804 At the time of writing, this hook is not used for the function end
2810 But this doesn't matter, because GAS doesn't treat a pre-.end label
2811 as a MIPS16 one anyway. */
2813 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2814 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2816 /* This is how to output an element of a case-vector that is absolute. */
2818 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2819 fprintf (STREAM, "\t%s\t%sL%d\n", \
2820 ptr_mode == DImode ? ".dword" : ".word", \
2821 LOCAL_LABEL_PREFIX, \
2824 /* This is how to output an element of a case-vector. We can make the
2825 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2828 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2830 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2831 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2832 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2833 else if (TARGET_GPWORD) \
2834 fprintf (STREAM, "\t%s\t%sL%d\n", \
2835 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2836 LOCAL_LABEL_PREFIX, VALUE); \
2837 else if (TARGET_RTP_PIC) \
2839 /* Make the entry relative to the start of the function. */ \
2840 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2841 fprintf (STREAM, "\t%s\t%sL%d-", \
2842 Pmode == DImode ? ".dword" : ".word", \
2843 LOCAL_LABEL_PREFIX, VALUE); \
2844 assemble_name (STREAM, XSTR (fnsym, 0)); \
2845 fprintf (STREAM, "\n"); \
2848 fprintf (STREAM, "\t%s\t%sL%d\n", \
2849 ptr_mode == DImode ? ".dword" : ".word", \
2850 LOCAL_LABEL_PREFIX, VALUE); \
2853 /* This is how to output an assembler line
2854 that says to advance the location counter
2855 to a multiple of 2**LOG bytes. */
2857 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2858 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2860 /* This is how to output an assembler line to advance the location
2861 counter by SIZE bytes. */
2863 #undef ASM_OUTPUT_SKIP
2864 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2865 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2867 /* This is how to output a string. */
2868 #undef ASM_OUTPUT_ASCII
2869 #define ASM_OUTPUT_ASCII mips_output_ascii
2871 /* Output #ident as a in the read-only data section. */
2872 #undef ASM_OUTPUT_IDENT
2873 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2875 const char *p = STRING; \
2876 int size = strlen (p) + 1; \
2877 switch_to_section (readonly_data_section); \
2878 assemble_string (p, size); \
2881 /* Default to -G 8 */
2882 #ifndef MIPS_DEFAULT_GVALUE
2883 #define MIPS_DEFAULT_GVALUE 8
2886 /* Define the strings to put out for each section in the object file. */
2887 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2888 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2890 #undef READONLY_DATA_SECTION_ASM_OP
2891 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2893 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2896 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2897 TARGET_64BIT ? "daddiu" : "addiu", \
2898 reg_names[STACK_POINTER_REGNUM], \
2899 reg_names[STACK_POINTER_REGNUM], \
2900 TARGET_64BIT ? "sd" : "sw", \
2902 reg_names[STACK_POINTER_REGNUM]); \
2906 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2909 mips_push_asm_switch (&mips_noreorder); \
2910 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2911 TARGET_64BIT ? "ld" : "lw", \
2913 reg_names[STACK_POINTER_REGNUM], \
2914 TARGET_64BIT ? "daddu" : "addu", \
2915 reg_names[STACK_POINTER_REGNUM], \
2916 reg_names[STACK_POINTER_REGNUM]); \
2917 mips_pop_asm_switch (&mips_noreorder); \
2921 /* How to start an assembler comment.
2922 The leading space is important (the mips native assembler requires it). */
2923 #ifndef ASM_COMMENT_START
2924 #define ASM_COMMENT_START " #"
2927 /* Default definitions for size_t and ptrdiff_t. We must override the
2928 definitions from ../svr4.h on mips-*-linux-gnu. */
2931 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2934 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2936 /* The maximum number of bytes that can be copied by one iteration of
2937 a movmemsi loop; see mips_block_move_loop. */
2938 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2939 (UNITS_PER_WORD * 4)
2941 /* The maximum number of bytes that can be copied by a straight-line
2942 implementation of movmemsi; see mips_block_move_straight. We want
2943 to make sure that any loop-based implementation will iterate at
2945 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2946 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2948 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2949 values were determined experimentally by benchmarking with CSiBE.
2950 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2951 for o32 where we have to restore $gp afterwards as well as make an
2952 indirect call), but in practice, bumping this up higher for
2953 TARGET_ABICALLS doesn't make much difference to code size. */
2955 #define MIPS_CALL_RATIO 8
2957 /* Any loop-based implementation of movmemsi will have at least
2958 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2959 moves, so allow individual copies of fewer elements.
2961 When movmemsi is not available, use a value approximating
2962 the length of a memcpy call sequence, so that move_by_pieces
2963 will generate inline code if it is shorter than a function ca