1 /* Definitions of target machine for GNU compiler.
2 Sun 68000/68020 version.
3 Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions that relate to assembler syntax. */
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() \
31 builtin_define ("__mc68000__"); \
33 builtin_define ("__mc68020__"); \
34 builtin_define ("__m68k__"); \
35 builtin_assert ("cpu=m68k"); \
36 builtin_assert ("machine=m68k"); \
41 /* Classify the groups of pseudo-ops used to assemble QI, HI and SI
43 #define INT_OP_STANDARD 0 /* .byte, .short, .long */
44 #define INT_OP_DOT_WORD 1 /* .byte, .word, .long */
45 #define INT_OP_NO_DOT 2 /* byte, short, long */
46 #define INT_OP_DC 3 /* dc.b, dc.w, dc.l */
49 #define INT_OP_GROUP INT_OP_DOT_WORD
51 /* Print subsidiary information on the compiler version in use. */
53 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
55 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
58 /* Run-time compilation parameters selecting different hardware subsets. */
60 extern int target_flags;
62 /* Macros used in the machine description to test the flags. */
64 /* Compile for a 68020 (not a 68000 or 68010). */
66 #define TARGET_68020 (target_flags & MASK_68020)
68 /* Compile 68881 insns for floating point (not library calls). */
70 #define TARGET_68881 (target_flags & MASK_68881)
72 /* Compile using 68020 bit-field insns. */
73 #define MASK_BITFIELD 4
74 #define TARGET_BITFIELD (target_flags & MASK_BITFIELD)
76 /* Compile using rtd insn calling sequence.
77 This will not work unless you use prototypes at least
78 for all functions that can take varying numbers of args. */
80 #define TARGET_RTD (target_flags & MASK_RTD)
82 /* Compile passing first two args in regs 0 and 1.
83 This exists only to test compiler features that will
84 be needed for RISC chips. It is not usable
85 and is not intended to be usable on this cpu. */
86 #define MASK_REGPARM 16
87 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
89 /* Compile with 16-bit `int'. */
91 #define TARGET_SHORT (target_flags & MASK_SHORT)
93 /* Optimize for 68040, but still allow execution on 68020
94 (-m68020-40 or -m68040).
95 The 68040 will execute all 68030 and 68881/2 instructions, but some
96 of them must be emulated in software by the OS. When TARGET_68040 is
97 turned on, these instructions won't be used. This code will still
98 run on a 68030 and 68881/2. */
99 #define MASK_68040 256
100 #define TARGET_68040 (target_flags & MASK_68040)
102 /* Use the 68040-only fp instructions (-m68040 or -m68060). */
103 #define MASK_68040_ONLY 512
104 #define TARGET_68040_ONLY (target_flags & MASK_68040_ONLY)
106 /* Optimize for 68060, but still allow execution on 68020
107 (-m68020-60 or -m68060).
108 The 68060 will execute all 68030 and 68881/2 instructions, but some
109 of them must be emulated in software by the OS. When TARGET_68060 is
110 turned on, these instructions won't be used. This code will still
111 run on a 68030 and 68881/2. */
112 #define MASK_68060 1024
113 #define TARGET_68060 (target_flags & MASK_68060)
115 /* Compile for mcf5200 */
116 #define MASK_5200 2048
117 #define TARGET_5200 (target_flags & MASK_5200)
119 /* Align ints to a word boundary. This breaks compatibility with the
120 published ABI's for structures containing ints, but produces faster
121 code on cpus with 32 bit busses (020, 030, 040, 060, CPU32+, coldfire).
122 It's required for coldfire cpus without a misalignment module. */
123 #define MASK_ALIGN_INT 4096
124 #define TARGET_ALIGN_INT (target_flags & MASK_ALIGN_INT)
126 /* Compile for a CPU32 */
127 /* A 68020 without bitfields is a good heuristic for a CPU32 */
128 #define TARGET_CPU32 (TARGET_68020 && !TARGET_BITFIELD)
130 /* Use PC-relative addressing modes (without using a global offset table).
131 The m68000 supports 16-bit PC-relative addressing.
132 The m68020 supports 32-bit PC-relative addressing
133 (using outer displacements).
135 Under this model, all SYMBOL_REFs (and CONSTs) and LABEL_REFs are
136 treated as all containing an implicit PC-relative component, and hence
137 cannot be used directly as addresses for memory writes. See the comments
138 in m68k.c for more information. */
139 #define MASK_PCREL 8192
140 #define TARGET_PCREL (target_flags & MASK_PCREL)
142 /* Relax strict alignment. */
143 #define MASK_NO_STRICT_ALIGNMENT 16384
144 #define TARGET_STRICT_ALIGNMENT (~target_flags & MASK_NO_STRICT_ALIGNMENT)
146 /* Build for ColdFire v3 */
147 #define MASK_CFV3 0x8000
148 #define TARGET_CFV3 (target_flags & MASK_CFV3)
150 /* Build for ColdFire v4 */
151 #define MASK_CFV4 0x10000
152 #define TARGET_CFV4 (target_flags & MASK_CFV4)
154 /* Divide support for ColdFire */
155 #define MASK_CF_HWDIV 0x40000
156 #define TARGET_CF_HWDIV (target_flags & MASK_CF_HWDIV)
158 /* Compile for mcf582 */
159 #define MASK_528x 0x80000
160 #define TARGET_528x (target_flags & MASK_528x)
163 /* Is the target a coldfire */
164 #define MASK_COLDFIRE (MASK_5200|MASK_528x|MASK_CFV3|MASK_CFV4)
165 #define TARGET_COLDFIRE (target_flags & MASK_COLDFIRE)
167 /* Which bits can be set by specifying a coldfire */
168 #define MASK_ALL_CF_BITS (MASK_COLDFIRE|MASK_CF_HWDIV)
170 /* Macro to define tables used to set the flags.
171 This is a list in braces of pairs in braces,
172 each pair being { "NAME", VALUE }
173 where VALUE is the bits to set or minus the bits to clear.
174 An empty string NAME is used to identify the default VALUE. */
176 #define TARGET_SWITCHES \
177 { { "68020", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY), \
178 N_("Generate code for a 68020") }, \
179 { "c68020", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY), \
180 N_("Generate code for a 68020") }, \
181 { "68020", (MASK_68020|MASK_BITFIELD), "" }, \
182 { "c68020", (MASK_68020|MASK_BITFIELD), "" }, \
183 { "68000", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
184 |MASK_68020|MASK_BITFIELD|MASK_68881), \
185 N_("Generate code for a 68000") }, \
186 { "c68000", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
187 |MASK_68020|MASK_BITFIELD|MASK_68881), \
188 N_("Generate code for a 68000") }, \
189 { "bitfield", MASK_BITFIELD, \
190 N_("Use the bit-field instructions") }, \
191 { "nobitfield", - MASK_BITFIELD, \
192 N_("Do not use the bit-field instructions") }, \
194 N_("Use different calling convention using 'rtd'") }, \
195 { "nortd", - MASK_RTD, \
196 N_("Use normal calling convention") }, \
197 { "short", MASK_SHORT, \
198 N_("Consider type `int' to be 16 bits wide") }, \
199 { "noshort", - MASK_SHORT, \
200 N_("Consider type `int' to be 32 bits wide") }, \
201 { "68881", MASK_68881, "" }, \
202 { "soft-float", - (MASK_68040_ONLY|MASK_68881), \
203 N_("Generate code with library calls for floating point") }, \
204 { "68020-40", -(MASK_ALL_CF_BITS|MASK_68060|MASK_68040_ONLY), \
205 N_("Generate code for a 68040, without any new instructions") }, \
206 { "68020-40", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040), ""},\
207 { "68020-60", -(MASK_ALL_CF_BITS|MASK_68040_ONLY), \
208 N_("Generate code for a 68060, without any new instructions") }, \
209 { "68020-60", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040 \
210 |MASK_68060), "" }, \
211 { "68030", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY), \
212 N_("Generate code for a 68030") }, \
213 { "68030", (MASK_68020|MASK_BITFIELD), "" }, \
214 { "68040", - (MASK_ALL_CF_BITS|MASK_68060), \
215 N_("Generate code for a 68040") }, \
216 { "68040", (MASK_68020|MASK_68881|MASK_BITFIELD \
217 |MASK_68040_ONLY|MASK_68040), "" }, \
218 { "68060", - (MASK_ALL_CF_BITS|MASK_68040), \
219 N_("Generate code for a 68060") }, \
220 { "68060", (MASK_68020|MASK_68881|MASK_BITFIELD \
221 |MASK_68040_ONLY|MASK_68060), "" }, \
222 { "5200", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
223 |MASK_BITFIELD|MASK_68881), \
224 N_("Generate code for a 520X") }, \
225 { "5200", (MASK_5200), "" }, \
226 { "5206e", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
227 |MASK_BITFIELD|MASK_68881), \
228 N_("Generate code for a 5206e") }, \
229 { "5206e", (MASK_5200|MASK_CF_HWDIV), "" }, \
230 { "528x", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
231 |MASK_BITFIELD|MASK_68881), \
232 N_("Generate code for a 528x") }, \
233 { "528x", (MASK_528x|MASK_CF_HWDIV), "" }, \
234 { "5307", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
235 |MASK_BITFIELD|MASK_68881), \
236 N_("Generate code for a 5307") }, \
237 { "5307", (MASK_CFV3|MASK_CF_HWDIV), "" }, \
238 { "5407", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
239 |MASK_BITFIELD|MASK_68881), \
240 N_("Generate code for a 5407") }, \
241 { "5407", (MASK_CFV4|MASK_CF_HWDIV), "" }, \
243 N_("Generate code for a 68851") }, \
245 N_("Do no generate code for a 68851") }, \
246 { "68302", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
247 |MASK_68020|MASK_BITFIELD|MASK_68881), \
248 N_("Generate code for a 68302") }, \
249 { "68332", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
250 |MASK_BITFIELD|MASK_68881), \
251 N_("Generate code for a 68332") }, \
252 { "68332", MASK_68020, "" }, \
253 { "cpu32", - (MASK_ALL_CF_BITS|MASK_68060|MASK_68040|MASK_68040_ONLY \
254 |MASK_BITFIELD|MASK_68881), \
255 N_("Generate code for a cpu32") }, \
256 { "cpu32", MASK_68020, "" }, \
257 { "align-int", MASK_ALIGN_INT, \
258 N_("Align variables on a 32-bit boundary") }, \
259 { "no-align-int", -MASK_ALIGN_INT, \
260 N_("Align variables on a 16-bit boundary") }, \
261 { "pcrel", MASK_PCREL, \
262 N_("Generate pc-relative code") }, \
263 { "strict-align", -MASK_NO_STRICT_ALIGNMENT, \
264 N_("Do not use unaligned memory references") }, \
265 { "no-strict-align", MASK_NO_STRICT_ALIGNMENT, \
266 N_("Use unaligned memory references") }, \
268 { "", TARGET_DEFAULT, "" }}
269 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
271 /* This macro is similar to `TARGET_SWITCHES' but defines names of
272 command options that have values. Its definition is an
273 initializer with a subgrouping for each command option.
275 Each subgrouping contains a string constant, that defines the
276 fixed part of the option name, and the address of a variable. The
277 variable, type `char *', is set to the variable part of the given
278 option if the fixed part matches. The actual option name is made
279 by appending `-m' to the specified name. */
280 #define TARGET_OPTIONS \
281 { { "align-loops=", &m68k_align_loops_string, \
282 N_("Loop code aligned to this power of 2"), 0}, \
283 { "align-jumps=", &m68k_align_jumps_string, \
284 N_("Jump targets are aligned to this power of 2"), 0}, \
285 { "align-functions=", &m68k_align_funcs_string, \
286 N_("Function starts are aligned to this power of 2"), 0}, \
290 /* Sometimes certain combinations of command options do not make
291 sense on a particular target machine. You can define a macro
292 `OVERRIDE_OPTIONS' to take account of this. This macro, if
293 defined, is executed once just after all the command options have
296 Don't use this macro to turn on various extra optimizations for
297 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
299 #define OVERRIDE_OPTIONS override_options()
301 /* These are meant to be redefined in the host dependent files */
302 #define SUBTARGET_SWITCHES
303 #define SUBTARGET_OPTIONS
304 #define SUBTARGET_OVERRIDE_OPTIONS
306 /* target machine storage layout */
308 /* Define for XFmode extended real floating point support. */
309 #define LONG_DOUBLE_TYPE_SIZE 96
311 /* Set the value of FLT_EVAL_METHOD in float.h. When using 68040 fp
312 instructions, we get proper intermediate rounding, otherwise we
313 get extended precision results. */
314 #define TARGET_FLT_EVAL_METHOD (TARGET_68040_ONLY ? 0 : 2)
316 /* Define this if most significant bit is lowest numbered
317 in instructions that operate on numbered bit-fields.
318 This is true for 68020 insns such as bfins and bfexts.
319 We make it true always by avoiding using the single-bit insns
320 except in special cases with constant bit numbers. */
321 #define BITS_BIG_ENDIAN 1
323 /* Define this if most significant byte of a word is the lowest numbered. */
324 /* That is true on the 68000. */
325 #define BYTES_BIG_ENDIAN 1
327 /* Define this if most significant word of a multiword number is the lowest
329 /* For 68000 we can decide arbitrarily
330 since there are no machine instructions for them.
331 So let's be consistent. */
332 #define WORDS_BIG_ENDIAN 1
334 /* Width of a word, in units (bytes). */
335 #define UNITS_PER_WORD 4
337 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
338 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
340 /* Boundary (in *bits*) on which stack pointer should be aligned. */
341 #define STACK_BOUNDARY 16
343 /* Allocation boundary (in *bits*) for the code of a function. */
344 #define FUNCTION_BOUNDARY (1 << (m68k_align_funcs + 3))
346 /* Alignment of field after `int : 0' in a structure. */
347 #define EMPTY_FIELD_BOUNDARY 16
349 /* No data type wants to be aligned rounder than this.
350 Most published ABIs say that ints should be aligned on 16 bit
351 boundaries, but cpus with 32 bit busses get better performance
352 aligned on 32 bit boundaries. Coldfires without a misalignment
353 module require 32 bit alignment. */
354 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
356 /* Set this nonzero if move instructions will actually fail to work
357 when given unaligned data. */
358 #define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)
360 /* Maximum power of 2 that code can be aligned to. */
361 #define MAX_CODE_ALIGN 2 /* 4 byte alignment */
363 /* Align loop starts for optimal branching. */
364 #define LOOP_ALIGN(LABEL) (m68k_align_loops)
366 /* This is how to align an instruction for optimal branching. */
367 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (m68k_align_jumps)
369 /* Define number of bits in most basic integer type.
370 (If undefined, default is BITS_PER_WORD). */
372 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
374 /* Define these to avoid dependence on meaning of `int'. */
376 #define WCHAR_TYPE "long int"
377 #define WCHAR_TYPE_SIZE 32
379 /* Standard register usage. */
381 /* Number of actual hardware registers.
382 The hardware registers are assigned numbers for the compiler
383 from 0 to just below FIRST_PSEUDO_REGISTER.
384 All registers that the compiler knows about must be given numbers,
385 even those that are not normally considered general registers.
386 For the 68000, we give the data registers numbers 0-7,
387 the address registers numbers 010-017,
388 and the 68881 floating point registers numbers 020-027. */
389 #define FIRST_PSEUDO_REGISTER 25
391 /* This defines the register which is used to hold the offset table for PIC. */
392 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 13 : INVALID_REGNUM)
394 /* 1 for registers that have pervasive standard uses
395 and are not available for the register allocator.
396 On the 68000, only the stack pointer is such. */
398 #define FIXED_REGISTERS \
399 {/* Data registers. */ \
400 0, 0, 0, 0, 0, 0, 0, 0, \
402 /* Address registers. */ \
403 0, 0, 0, 0, 0, 0, 0, 1, \
405 /* Floating point registers \
407 0, 0, 0, 0, 0, 0, 0, 0 }
409 /* 1 for registers not available across function calls.
410 These must include the FIXED_REGISTERS and also any
411 registers that can be used without being saved.
412 The latter must include the registers where values are returned
413 and the register where structure-value addresses are passed.
414 Aside from that, you can include as many other registers as you like. */
415 #define CALL_USED_REGISTERS \
416 {1, 1, 0, 0, 0, 0, 0, 0, \
417 1, 1, 0, 0, 0, 0, 0, 1, \
418 1, 1, 0, 0, 0, 0, 0, 0 }
421 /* Make sure everything's fine if we *don't* have a given processor.
422 This assumes that putting a register in fixed_regs will keep the
423 compiler's mitts completely off it. We don't bother to zero it out
424 of register classes. */
426 #define CONDITIONAL_REGISTER_USAGE \
430 if (! TARGET_68881) \
432 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
433 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
434 if (TEST_HARD_REG_BIT (x, i)) \
435 fixed_regs[i] = call_used_regs[i] = 1; \
437 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
438 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
439 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
442 /* Return number of consecutive hard regs needed starting at reg REGNO
443 to hold something of mode MODE.
444 This is ordinarily the length in words of a value of mode MODE
445 but can be less for certain modes in special long registers.
447 On the 68000, ordinary registers hold 32 bits worth;
448 for the 68881 registers, a single register is always enough for
449 anything that can be stored in them at all. */
450 #define HARD_REGNO_NREGS(REGNO, MODE) \
451 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
452 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
454 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
455 On the 68000, the cpu registers can hold any mode but the 68881 registers
456 can hold only SFmode or DFmode. */
458 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
460 && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE (MODE) / 4 > 8)) \
461 || ((REGNO) >= 16 && (REGNO) < 24 \
462 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
463 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
464 && GET_MODE_UNIT_SIZE (MODE) <= 12))
467 /* Value is 1 if it is a good idea to tie two pseudo registers
468 when one has mode MODE1 and one has mode MODE2.
469 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
470 for any hard reg, then this must be 0 for correct output. */
471 #define MODES_TIEABLE_P(MODE1, MODE2) \
473 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
474 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
475 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
476 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
478 /* Specify the registers used for certain standard purposes.
479 The values of these macros are register numbers. */
481 /* m68000 pc isn't overloaded on a register. */
482 /* #define PC_REGNUM */
484 /* Register to use for pushing function arguments. */
485 #define STACK_POINTER_REGNUM 15
487 /* Base register for access to local variables of the function. */
488 #define FRAME_POINTER_REGNUM 14
490 /* Value should be nonzero if functions must have frame pointers.
491 Zero means the frame pointer need not be set up (and parms
492 may be accessed via the stack pointer) in functions that seem suitable.
493 This is computed in `reload', in reload1.c. */
494 #define FRAME_POINTER_REQUIRED 0
496 /* Base register for access to arguments of the function.
497 * This isn't a hardware register. It will be eliminated to the
498 * stack pointer or frame pointer.
500 #define ARG_POINTER_REGNUM 24
502 /* Register in which static-chain is passed to a function. */
503 #define STATIC_CHAIN_REGNUM 8
505 /* Register in which address to store a structure value
506 is passed to a function. */
507 #define STRUCT_VALUE_REGNUM 9
509 /* Define the classes of registers for register constraints in the
510 machine description. Also define ranges of constants.
512 One of the classes must always be named ALL_REGS and include all hard regs.
513 If there is more than one class, another class must be named NO_REGS
514 and contain no registers.
516 The name GENERAL_REGS must be the name of a class (or an alias for
517 another name such as ALL_REGS). This is the class of registers
518 that is allowed by "g" or "r" in a register constraint.
519 Also, registers outside this class are allocated only when
520 instructions express preferences for them.
522 The classes must be numbered in nondecreasing order; that is,
523 a larger-numbered class must never be contained completely
524 in a smaller-numbered class.
526 For any two classes, it is very desirable that there be another
527 class that represents their union. */
529 /* The 68000 has three kinds of registers, so eight classes would be
530 a complete set. One of them is not needed. */
535 GENERAL_REGS, DATA_OR_FP_REGS,
536 ADDR_OR_FP_REGS, ALL_REGS,
539 #define N_REG_CLASSES (int) LIM_REG_CLASSES
541 /* Give names of register classes as strings for dump file. */
543 #define REG_CLASS_NAMES \
544 { "NO_REGS", "DATA_REGS", \
545 "ADDR_REGS", "FP_REGS", \
546 "GENERAL_REGS", "DATA_OR_FP_REGS", \
547 "ADDR_OR_FP_REGS", "ALL_REGS" }
549 /* Define which registers fit in which classes.
550 This is an initializer for a vector of HARD_REG_SET
551 of length N_REG_CLASSES. */
553 #define REG_CLASS_CONTENTS \
555 {0x00000000}, /* NO_REGS */ \
556 {0x000000ff}, /* DATA_REGS */ \
557 {0x0000ff00}, /* ADDR_REGS */ \
558 {0x00ff0000}, /* FP_REGS */ \
559 {0x0000ffff}, /* GENERAL_REGS */ \
560 {0x00ff00ff}, /* DATA_OR_FP_REGS */ \
561 {0x00ffff00}, /* ADDR_OR_FP_REGS */ \
562 {0x00ffffff}, /* ALL_REGS */ \
565 /* The same information, inverted:
566 Return the class number of the smallest class containing
567 reg number REGNO. This could be a conditional expression
568 or could index an array. */
570 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
572 /* The class value for index registers, and the one for base regs. */
574 #define INDEX_REG_CLASS GENERAL_REGS
575 #define BASE_REG_CLASS ADDR_REGS
577 /* Get reg_class from a letter such as appears in the machine description.
578 We do a trick here to modify the effective constraints on the
579 machine description; we zorch the constraint letters that aren't
580 appropriate for a specific target. This allows us to guarantee
581 that a specific kind of register will not be used for a given target
582 without fiddling with the register classes above. */
584 #define REG_CLASS_FROM_LETTER(C) \
585 ((C) == 'a' ? ADDR_REGS : \
586 ((C) == 'd' ? DATA_REGS : \
587 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
591 /* The letters I, J, K, L and M in a register constraint string
592 can be used to stand for particular ranges of immediate operands.
593 This macro defines what the ranges are.
594 C is the letter, and VALUE is a constant value.
595 Return 1 if VALUE is in the range specified by C.
597 For the 68000, `I' is used for the range 1 to 8
598 allowed as immediate shift counts and in addq.
599 `J' is used for the range of signed numbers that fit in 16 bits.
600 `K' is for numbers that moveq can't handle.
601 `L' is for range -8 to -1, range of values that can be added with subq.
602 `M' is for numbers that moveq+notb can't handle.
603 'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
604 'O' is for 16 (for rotate using swap).
605 'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate. */
607 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
608 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
609 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
610 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
611 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
612 (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
613 (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
614 (C) == 'O' ? (VALUE) == 16 : \
615 (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
618 * A small bit of explanation:
619 * "G" defines all of the floating constants that are *NOT* 68881
620 * constants. this is so 68881 constants get reloaded and the
623 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
624 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
626 /* A C expression that defines the optional machine-dependent constraint
627 letters that can be used to segregate specific types of operands,
628 usually memory references, for the target machine. It should return 1 if
629 VALUE corresponds to the operand type represented by the constraint letter
630 C. If C is not defined as an extra constraint, the value returned should
631 be 0 regardless of VALUE. */
633 /* Letters in the range `Q' through `U' may be defined in a
634 machine-dependent fashion to stand for arbitrary operand types.
635 The machine description macro `EXTRA_CONSTRAINT' is passed the
636 operand as its first argument and the constraint letter as its
639 `Q' means address register indirect addressing mode.
640 `S' is for operands that satisfy 'm' when -mpcrel is in effect.
641 `T' is for operands that satisfy 's' when -mpcrel is not in effect. */
643 #define EXTRA_CONSTRAINT(OP,CODE) \
646 && GET_CODE (OP) == MEM \
647 && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
648 || GET_CODE (XEXP (OP, 0)) == LABEL_REF \
649 || GET_CODE (XEXP (OP, 0)) == CONST)) \
653 && (GET_CODE (OP) == SYMBOL_REF \
654 || GET_CODE (OP) == LABEL_REF \
655 || GET_CODE (OP) == CONST)) \
658 ? (GET_CODE (OP) == MEM \
659 && GET_CODE (XEXP (OP, 0)) == REG) \
663 /* Given an rtx X being reloaded into a reg required to be
664 in class CLASS, return the class of reg to actually use.
665 In general this is just CLASS; but on some machines
666 in some cases it is preferable to use a more restrictive class.
667 On the 68000 series, use a data reg if possible when the
668 value is a constant in the range where moveq could be used
669 and we ensure that QImodes are reloaded into data regs. */
671 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
672 ((GET_CODE (X) == CONST_INT \
673 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
674 && (CLASS) != ADDR_REGS) \
676 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
678 : (GET_CODE (X) == CONST_DOUBLE \
679 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
680 ? (TARGET_68881 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS) \
681 ? FP_REGS : NO_REGS) \
683 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
684 || GET_CODE (X) == LABEL_REF)) \
688 /* Force QImode output reloads from subregs to be allocated to data regs,
689 since QImode stores from address regs are not supported. We make the
690 assumption that if the class is not ADDR_REGS, then it must be a superset
693 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
694 (((MODE) == QImode && (CLASS) != ADDR_REGS) \
698 /* Return the maximum number of consecutive registers
699 needed to represent mode MODE in a register of class CLASS. */
700 /* On the 68000, this is the size of MODE in words,
701 except in the FP regs, where a single reg is always enough. */
702 #define CLASS_MAX_NREGS(CLASS, MODE) \
703 ((CLASS) == FP_REGS ? 1 \
704 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
706 /* Moves between fp regs and other regs are two insns. */
707 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
708 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
709 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
712 /* Stack layout; function entry, exit and calling. */
714 /* Define this if pushing a word on the stack
715 makes the stack pointer a smaller address. */
716 #define STACK_GROWS_DOWNWARD
718 /* Define this if the nominal address of the stack frame
719 is at the high-address end of the local variables;
720 that is, each additional local variable allocated
721 goes at a more negative offset in the frame. */
722 #define FRAME_GROWS_DOWNWARD
724 /* Offset within stack frame to start allocating local variables at.
725 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
726 first local allocated. Otherwise, it is the offset to the BEGINNING
727 of the first local allocated. */
728 #define STARTING_FRAME_OFFSET 0
730 /* If we generate an insn to push BYTES bytes,
731 this says how many the stack pointer really advances by.
732 On the 68000, sp@- in a byte insn really pushes a word.
733 On the 5200 (coldfire), sp@- in a byte insn pushes just a byte. */
734 #define PUSH_ROUNDING(BYTES) (TARGET_COLDFIRE ? BYTES : ((BYTES) + 1) & ~1)
736 /* We want to avoid trying to push bytes. */
737 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
738 (move_by_pieces_ninsns (SIZE, ALIGN) < MOVE_RATIO \
739 && (((SIZE) >=16 && (ALIGN) >= 16) || (TARGET_COLDFIRE)))
741 /* Offset of first parameter from the argument pointer register value. */
742 #define FIRST_PARM_OFFSET(FNDECL) 8
744 /* Value is the number of byte of arguments automatically
745 popped when returning from a subroutine call.
746 FUNDECL is the declaration node of the function (as a tree),
747 FUNTYPE is the data type of the function (as a tree),
748 or for a library call it is an identifier node for the subroutine name.
749 SIZE is the number of bytes of arguments passed on the stack.
751 On the 68000, the RTS insn cannot pop anything.
752 On the 68010, the RTD insn may be used to pop them if the number
753 of args is fixed, but if the number is variable then the caller
754 must pop them all. RTD can't be used for library calls now
755 because the library is compiled with the Unix compiler.
756 Use of RTD is a selectable option, since it is incompatible with
757 standard Unix calling sequences. If the option is not selected,
758 the caller must always pop the args. */
760 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
761 ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \
762 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
763 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
764 == void_type_node))) \
767 /* Define how to find the value returned by a function.
768 VALTYPE is the data type of the value (as a tree).
769 If the precise function being called is known, FUNC is its FUNCTION_DECL;
770 otherwise, FUNC is 0. */
772 /* On the 68000 the return value is in D0 regardless. */
774 #define FUNCTION_VALUE(VALTYPE, FUNC) \
775 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
777 /* Define how to find the value returned by a library function
778 assuming the value has mode MODE. */
780 /* On the 68000 the return value is in D0 regardless. */
782 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
784 /* 1 if N is a possible register number for a function value.
785 On the 68000, d0 is the only register thus used. */
787 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
789 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
790 more than one register. */
792 #define NEEDS_UNTYPED_CALL 0
794 /* Define this if PCC uses the nonreentrant convention for returning
795 structure and union values. */
797 #define PCC_STATIC_STRUCT_RETURN
799 /* 1 if N is a possible register number for function argument passing.
800 On the 68000, no registers are used in this way. */
802 #define FUNCTION_ARG_REGNO_P(N) 0
804 /* Define a data type for recording info about an argument list
805 during the scan of that argument list. This data type should
806 hold all necessary information about the function itself
807 and about the args processed so far, enough to enable macros
808 such as FUNCTION_ARG to determine where the next arg should go.
810 On the m68k, this is a single integer, which is a number of bytes
811 of arguments scanned so far. */
813 #define CUMULATIVE_ARGS int
815 /* Initialize a variable CUM of type CUMULATIVE_ARGS
816 for a call to a function whose data type is FNTYPE.
817 For a library call, FNTYPE is 0.
819 On the m68k, the offset starts at 0. */
821 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
824 /* Update the data in CUM to advance over an argument
825 of mode MODE and data type TYPE.
826 (TYPE is null for libcalls where that information may not be available.) */
828 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
829 ((CUM) += ((MODE) != BLKmode \
830 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
831 : (int_size_in_bytes (TYPE) + 3) & ~3))
833 /* Define where to put the arguments to a function.
834 Value is zero to push the argument on the stack,
835 or a hard register in which to store the argument.
837 MODE is the argument's machine mode.
838 TYPE is the data type of the argument (as a tree).
839 This is null for libcalls where that information may
841 CUM is a variable of type CUMULATIVE_ARGS which gives info about
842 the preceding args and about the function being called.
843 NAMED is nonzero if this argument is a named parameter
844 (otherwise it is an extra parameter matching an ellipsis). */
846 /* On the 68000 all args are pushed, except if -mregparm is specified
847 then the first two words of arguments are passed in d0, d1.
848 *NOTE* -mregparm does not work.
849 It exists only to test register calling conventions. */
851 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
852 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx_REG ((MODE), (CUM) / 4) : 0)
854 /* For an arg passed partly in registers and partly in memory,
855 this is the number of registers used.
856 For args passed entirely in registers or entirely in memory, zero. */
858 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
859 ((TARGET_REGPARM && (CUM) < 8 \
860 && 8 < ((CUM) + ((MODE) == BLKmode \
861 ? int_size_in_bytes (TYPE) \
862 : GET_MODE_SIZE (MODE)))) \
865 /* Output assembler code to FILE to increment profiler label # LABELNO
866 for profiling a function entry. */
868 #define FUNCTION_PROFILER(FILE, LABELNO) \
869 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
871 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
872 the stack pointer does not matter. The value is tested only in
873 functions that have frame pointers.
874 No definition is equivalent to always zero. */
876 #define EXIT_IGNORE_STACK 1
878 /* This is a hook for other tm files to change. */
879 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
881 /* Determine if the epilogue should be output as RTL.
882 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
883 #define USE_RETURN_INSN use_return_insn ()
885 /* Output assembler code for a block containing the constant parts
886 of a trampoline, leaving space for the variable parts. */
888 /* On the 68k, the trampoline looks like this:
892 WARNING: Targets that may run on 68040+ cpus must arrange for
893 the instruction cache to be flushed. Previous incarnations of
894 the m68k trampoline code attempted to get around this by either
895 using an out-of-line transfer function or pc-relative data, but
896 the fact remains that the code to jump to the transfer function
897 or the code to load the pc-relative data needs to be flushed
898 just as much as the "variable" portion of the trampoline.
899 Recognizing that a cache flush is going to be required anyway,
900 dispense with such notions and build a smaller trampoline. */
902 /* Since more instructions are required to move a template into
903 place than to create it on the spot, don't use a template. */
905 /* Length in units of the trampoline for entering a nested function. */
907 #define TRAMPOLINE_SIZE 12
909 /* Alignment required for a trampoline in bits. */
911 #define TRAMPOLINE_ALIGNMENT 16
913 /* Targets redefine this to invoke code to either flush the cache,
914 or enable stack execution (or both). */
916 #ifndef FINALIZE_TRAMPOLINE
917 #define FINALIZE_TRAMPOLINE(TRAMP)
920 /* Emit RTL insns to initialize the variable parts of a trampoline.
921 FNADDR is an RTX for the address of the function's pure code.
922 CXT is an RTX for the static chain value for the function.
924 We generate a two-instructions program at address TRAMP :
928 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
930 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C)); \
931 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
932 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), \
934 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
935 FINALIZE_TRAMPOLINE(TRAMP); \
938 /* This is the library routine that is used
939 to transfer control from the trampoline
940 to the actual nested function.
941 It is defined for backward compatibility,
942 for linking with object code that used the old
943 trampoline definition. */
945 /* A colon is used with no explicit operands
946 to cause the template string to be scanned for %-constructs. */
947 /* The function name __transfer_from_trampoline is not actually used.
948 The function definition just permits use of "asm with operands"
949 (though the operand list is empty). */
950 #define TRANSFER_FROM_TRAMPOLINE \
952 __transfer_from_trampoline () \
954 register char *a0 asm ("%a0"); \
955 asm (GLOBAL_ASM_OP "___trampoline"); \
956 asm ("___trampoline:"); \
957 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
958 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
962 /* Definitions for register eliminations.
964 This is an array of structures. Each structure initializes one pair
965 of eliminable registers. The "from" register number is given first,
966 followed by "to". Eliminations of the same "from" register are listed
967 in order of preference.
969 There are two registers that can always be eliminated on the m68k.
970 The frame pointer and the arg pointer can be replaced by either the
971 hard frame pointer or to the stack pointer, depending upon the
972 circumstances. The hard frame pointer is not used before reload and
973 so it is not eligible for elimination. */
975 #define ELIMINABLE_REGS \
976 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
977 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }, \
978 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }}
980 /* Given FROM and TO register numbers, say whether this elimination is
981 allowed. Frame pointer elimination is automatically handled.
983 All other eliminations are valid. */
985 #define CAN_ELIMINATE(FROM, TO) \
986 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
988 /* Define the offset between two registers, one to be eliminated, and the other
989 its replacement, at the start of a routine. */
991 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
992 (OFFSET) = m68k_initial_elimination_offset(FROM, TO)
994 /* Addressing modes, and classification of registers for them. */
996 #define HAVE_POST_INCREMENT 1
998 #define HAVE_PRE_DECREMENT 1
1000 /* Macros to check register numbers against specific register classes. */
1002 /* These assume that REGNO is a hard or pseudo reg number.
1003 They give nonzero only if REGNO is a hard reg of the suitable class
1004 or a pseudo reg currently allocated to a suitable hard reg.
1005 Since they use reg_renumber, they are safe only once reg_renumber
1006 has been allocated, which happens in local-alloc.c. */
1008 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1009 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1010 #define REGNO_OK_FOR_BASE_P(REGNO) \
1011 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1012 #define REGNO_OK_FOR_DATA_P(REGNO) \
1013 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1014 #define REGNO_OK_FOR_FP_P(REGNO) \
1015 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1017 /* Now macros that check whether X is a register and also,
1018 strictly, whether it is in a specified class.
1020 These macros are specific to the 68000, and may be used only
1021 in code for printing assembler insns and in conditions for
1022 define_optimization. */
1024 /* 1 if X is a data register. */
1026 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1028 /* 1 if X is an fp register. */
1030 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1032 /* 1 if X is an address register */
1034 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1036 /* Maximum number of registers that can appear in a valid memory address. */
1038 #define MAX_REGS_PER_ADDRESS 2
1040 /* Recognize any constant value that is a valid address. */
1042 #define CONSTANT_ADDRESS_P(X) \
1043 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1044 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1045 || GET_CODE (X) == HIGH)
1047 /* Nonzero if the constant value X is a legitimate general operand.
1048 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1050 #define LEGITIMATE_CONSTANT_P(X) (GET_MODE (X) != XFmode)
1052 /* Nonzero if the constant value X is a legitimate general operand
1053 when generating PIC code. It is given that flag_pic is on and
1054 that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1056 PCREL_GENERAL_OPERAND_OK makes reload accept addresses that are
1057 accepted by insn predicates, but which would otherwise fail the
1058 `general_operand' test. */
1060 #ifndef REG_OK_STRICT
1061 #define PCREL_GENERAL_OPERAND_OK 0
1063 #define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
1066 #define LEGITIMATE_PIC_OPERAND_P(X) \
1067 (! symbolic_operand (X, VOIDmode) \
1068 || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)) \
1069 || PCREL_GENERAL_OPERAND_OK)
1071 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1072 and check its validity for a certain class.
1073 We have two alternate definitions for each of them.
1074 The usual definition accepts all pseudo regs; the other rejects
1075 them unless they have been allocated suitable hard regs.
1076 The symbol REG_OK_STRICT causes the latter definition to be used.
1078 Most source files want to accept pseudo regs in the hope that
1079 they will get allocated to the class that the insn wants them to be in.
1080 Source files for reload pass need to be strict.
1081 After reload, it makes no difference, since pseudo regs have
1082 been eliminated by then. */
1084 #ifndef REG_OK_STRICT
1086 /* Nonzero if X is a hard reg that can be used as an index
1087 or if it is a pseudo reg. */
1088 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1089 /* Nonzero if X is a hard reg that can be used as a base reg
1090 or if it is a pseudo reg. */
1091 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1095 /* Nonzero if X is a hard reg that can be used as an index. */
1096 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1097 /* Nonzero if X is a hard reg that can be used as a base reg. */
1098 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1102 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1103 that is a valid memory address for an instruction.
1104 The MODE argument is the machine mode for the MEM expression
1105 that wants to use this address.
1107 When generating PIC, an address involving a SYMBOL_REF is legitimate
1108 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1109 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1110 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1112 Likewise for a LABEL_REF when generating PIC.
1114 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1116 /* Allow SUBREG everywhere we allow REG. This results in better code. It
1117 also makes function inlining work when inline functions are called with
1118 arguments that are SUBREGs. */
1120 #define LEGITIMATE_BASE_REG_P(X) \
1121 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1122 || (GET_CODE (X) == SUBREG \
1123 && GET_CODE (SUBREG_REG (X)) == REG \
1124 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1126 #define INDIRECTABLE_1_ADDRESS_P(X) \
1127 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1128 || LEGITIMATE_BASE_REG_P (X) \
1129 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
1130 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
1131 || (GET_CODE (X) == PLUS \
1132 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
1133 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1135 || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) \
1136 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1137 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
1138 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1139 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))
1141 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
1142 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1144 /* Only labels on dispatch tables are valid for indexing from. */
1145 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
1147 if (GET_CODE (X) == LABEL_REF \
1148 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
1149 && GET_CODE (temp) == JUMP_INSN \
1150 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
1151 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
1153 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1155 #define GO_IF_INDEXING(X, ADDR) \
1156 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
1157 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
1158 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
1159 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1161 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
1162 { GO_IF_INDEXING (X, ADDR); \
1163 if (GET_CODE (X) == PLUS) \
1164 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1165 && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100)) \
1166 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
1167 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1168 && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100)) \
1169 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1171 /* coldfire/5200 does not allow HImode index registers. */
1172 #define LEGITIMATE_INDEX_REG_P(X) \
1173 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1174 || (! TARGET_COLDFIRE \
1175 && GET_CODE (X) == SIGN_EXTEND \
1176 && GET_CODE (XEXP (X, 0)) == REG \
1177 && GET_MODE (XEXP (X, 0)) == HImode \
1178 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1179 || (GET_CODE (X) == SUBREG \
1180 && GET_CODE (SUBREG_REG (X)) == REG \
1181 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1183 #define LEGITIMATE_INDEX_P(X) \
1184 (LEGITIMATE_INDEX_REG_P (X) \
1185 || ((TARGET_68020 || TARGET_COLDFIRE) && GET_CODE (X) == MULT \
1186 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
1187 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1188 && (INTVAL (XEXP (X, 1)) == 2 \
1189 || INTVAL (XEXP (X, 1)) == 4 \
1190 || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_COLDFIRE))))
1192 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
1193 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1194 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
1195 GO_IF_INDEXED_ADDRESS (X, ADDR); \
1196 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
1197 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
1198 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
1201 /* Don't call memory_address_noforce for the address to fetch
1202 the switch offset. This address is ok as it stands (see above),
1203 but memory_address_noforce would alter it. */
1204 #define PIC_CASE_VECTOR_ADDRESS(index) index
1206 /* Try machine-dependent ways of modifying an illegitimate address
1207 to be legitimate. If we find one, return the new, valid address.
1208 This macro is used in only one place: `memory_address' in explow.c.
1210 OLDX is the address as it was before break_out_memory_refs was called.
1211 In some cases it is useful to look at this to decide what needs to be done.
1213 MODE and WIN are passed so that this macro can use
1214 GO_IF_LEGITIMATE_ADDRESS.
1216 It is always safe for this macro to do nothing. It exists to recognize
1217 opportunities to optimize the output.
1219 For the 68000, we handle X+REG by loading X into a register R and
1220 using R+REG. R will go in an address reg and indexing will be used.
1221 However, if REG is a broken-out memory address or multiplication,
1222 nothing needs to be done because REG can certainly go in an address reg. */
1224 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1225 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1226 { register int ch = (X) != (OLDX); \
1227 if (GET_CODE (X) == PLUS) \
1229 if (GET_CODE (XEXP (X, 0)) == MULT) \
1230 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1231 if (GET_CODE (XEXP (X, 1)) == MULT) \
1232 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1233 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1234 && GET_CODE (XEXP (X, 0)) == REG) \
1236 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1237 if (GET_CODE (XEXP (X, 0)) == REG \
1238 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1239 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1240 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1241 { register rtx temp = gen_reg_rtx (Pmode); \
1242 register rtx val = force_operand (XEXP (X, 1), 0); \
1243 emit_move_insn (temp, val); \
1245 XEXP (X, 1) = temp; \
1247 else if (GET_CODE (XEXP (X, 1)) == REG \
1248 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1249 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1250 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1251 { register rtx temp = gen_reg_rtx (Pmode); \
1252 register rtx val = force_operand (XEXP (X, 0), 0); \
1253 emit_move_insn (temp, val); \
1255 XEXP (X, 0) = temp; \
1258 /* Go to LABEL if ADDR (a legitimate address expression)
1259 has an effect that depends on the machine mode it is used for.
1260 On the 68000, only predecrement and postincrement address depend thus
1261 (the amount of decrement or increment being the length of the operand). */
1263 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1264 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1266 /* Specify the machine mode that this machine uses
1267 for the index in the tablejump instruction. */
1268 #define CASE_VECTOR_MODE HImode
1270 /* Define as C expression which evaluates to nonzero if the tablejump
1271 instruction expects the table to contain offsets from the address of the
1273 Do not define this if the table should contain absolute addresses. */
1274 #define CASE_VECTOR_PC_RELATIVE 1
1276 /* Define this as 1 if `char' should by default be signed; else as 0. */
1277 #define DEFAULT_SIGNED_CHAR 1
1279 /* Don't cse the address of the function being compiled. */
1280 #define NO_RECURSIVE_FUNCTION_CSE
1282 /* Max number of bytes we can move from memory to memory
1283 in one reasonably fast instruction. */
1286 /* Nonzero if access to memory by bytes is slow and undesirable. */
1287 #define SLOW_BYTE_ACCESS 0
1289 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1290 is done just by pretending it is already truncated. */
1291 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1293 /* We assume that the store-condition-codes instructions store 0 for false
1294 and some other value for true. This is the value stored for true. */
1296 #define STORE_FLAG_VALUE (-1)
1298 /* When a prototype says `char' or `short', really pass an `int'. */
1299 #define PROMOTE_PROTOTYPES 1
1301 /* Specify the machine mode that pointers have.
1302 After generation of rtl, the compiler makes no further distinction
1303 between pointers and any other objects of this machine mode. */
1304 #define Pmode SImode
1306 /* A function address in a call instruction
1307 is a byte address (for indexing purposes)
1308 so give the MEM rtx a byte's mode. */
1309 #define FUNCTION_MODE QImode
1312 /* Tell final.c how to eliminate redundant test instructions. */
1314 /* Here we define machine-dependent flags and fields in cc_status
1315 (see `conditions.h'). */
1317 /* Set if the cc value is actually in the 68881, so a floating point
1318 conditional branch must be output. */
1319 #define CC_IN_68881 04000
1321 /* Store in cc_status the expressions that the condition codes will
1322 describe after execution of an instruction whose pattern is EXP.
1323 Do not alter them if the instruction would not alter the cc's. */
1325 /* On the 68000, all the insns to store in an address register fail to
1326 set the cc's. However, in some cases these instructions can make it
1327 possibly invalid to use the saved cc's. In those cases we clear out
1328 some or all of the saved cc's so they won't be used. */
1330 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1332 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1333 { if (cc_prev_status.flags & CC_IN_68881) \
1335 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1339 /* Control the assembler format that we output. */
1341 /* Output to assembler file text saying following lines
1342 may contain character constants, extra white space, comments, etc. */
1344 #define ASM_APP_ON "#APP\n"
1346 /* Output to assembler file text saying following lines
1347 no longer contain unusual constructs. */
1349 #define ASM_APP_OFF "#NO_APP\n"
1351 /* Output before read-only data. */
1353 #define TEXT_SECTION_ASM_OP "\t.text"
1355 /* Output before writable data. */
1357 #define DATA_SECTION_ASM_OP "\t.data"
1359 #define GLOBAL_ASM_OP "\t.globl\t"
1361 /* Here are four prefixes that are used by asm_fprintf to
1362 facilitate customization for alternate assembler syntaxes.
1363 Machines with no likelihood of an alternate syntax need not
1364 define these and need not use asm_fprintf. */
1366 /* The prefix for register names. Note that REGISTER_NAMES
1367 is supposed to include this prefix. */
1369 #define REGISTER_PREFIX ""
1371 /* The prefix for local labels. You should be able to define this as
1372 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1373 without having to make any other changes to account for the specific
1374 definition. Note it is a string literal, not interpreted by printf
1377 #define LOCAL_LABEL_PREFIX ""
1379 /* The prefix to add to user-visible assembler symbols. */
1381 #define USER_LABEL_PREFIX "_"
1383 /* The prefix for immediate operands. */
1385 #define IMMEDIATE_PREFIX "#"
1387 /* How to refer to registers in assembler output.
1388 This sequence is indexed by compiler's hard-register-number (see above). */
1390 #define REGISTER_NAMES \
1391 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1392 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1393 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", "argptr" }
1395 /* How to renumber registers for dbx and gdb.
1396 On the Sun-3, the floating point registers have numbers
1397 18 to 25, not 16 to 23 as they do in the compiler. */
1399 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1401 /* Before the prologue, RA is at 0(%sp). */
1402 #define INCOMING_RETURN_ADDR_RTX \
1403 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1405 /* We must not use the DBX register numbers for the DWARF 2 CFA column
1406 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
1407 Instead use the identity mapping. */
1408 #define DWARF_FRAME_REGNUM(REG) REG
1410 /* Before the prologue, the top of the frame is at 4(%sp). */
1411 #define INCOMING_FRAME_SP_OFFSET 4
1413 /* Describe how we implement __builtin_eh_return. */
1414 #define EH_RETURN_DATA_REGNO(N) \
1415 ((N) < 2 ? (N) : INVALID_REGNUM)
1416 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 8)
1417 #define EH_RETURN_HANDLER_RTX \
1418 gen_rtx_MEM (Pmode, \
1419 gen_rtx_PLUS (Pmode, arg_pointer_rtx, \
1420 plus_constant (EH_RETURN_STACKADJ_RTX, \
1423 /* Select a format to encode pointers in exception handling data. CODE
1424 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1425 true if the symbol may be affected by dynamic relocations. */
1426 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1428 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1431 /* This is how to output a reference to a user-level label named NAME.
1432 `assemble_name' uses this. */
1434 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1435 asm_fprintf (FILE, "%U%s", NAME)
1437 /* This is how to store into the string LABEL
1438 the symbol_ref name of an internal numbered label where
1439 PREFIX is the class of label and NUM is the number within the class.
1440 This is suitable for output with `assemble_name'. */
1442 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1443 sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long)(NUM))
1445 /* This is how to output an insn to push a register on the stack.
1446 It need not be very fast code. */
1448 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1449 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1451 /* This is how to output an insn to pop a register from the stack.
1452 It need not be very fast code. */
1454 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1455 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1457 /* This is how to output an element of a case-vector that is absolute.
1458 (The 68000 does not use such vectors,
1459 but we must define this macro anyway.) */
1461 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1462 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1464 /* This is how to output an element of a case-vector that is relative. */
1466 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1467 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1469 /* This is how to output an assembler line
1470 that says to advance the location counter
1471 to a multiple of 2**LOG bytes. */
1473 /* We don't have a way to align to more than a two-byte boundary, so do the
1474 best we can and don't complain. */
1475 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1477 fprintf (FILE, "\t.even\n");
1479 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1480 fprintf (FILE, "\t.skip %u\n", (int)(SIZE))
1482 /* This says how to output an assembler line
1483 to define a global common symbol. */
1485 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1486 ( fputs (".comm ", (FILE)), \
1487 assemble_name ((FILE), (NAME)), \
1488 fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1490 /* This says how to output an assembler line
1491 to define a local common symbol. */
1493 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1494 ( fputs (".lcomm ", (FILE)), \
1495 assemble_name ((FILE), (NAME)), \
1496 fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
1498 /* Output a float value (represented as a C double) as an immediate operand.
1499 This macro is a 68k-specific macro. */
1501 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
1506 real_to_decimal (dstr, &(VALUE), sizeof (dstr), 9, 0); \
1507 asm_fprintf ((FILE), "%I0r%s", dstr); \
1512 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1513 asm_fprintf ((FILE), "%I0x%lx", l); \
1517 /* Output a double value (represented as a C double) as an immediate operand.
1518 This macro is a 68k-specific macro. */
1519 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
1520 do { char dstr[30]; \
1521 real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1); \
1522 asm_fprintf (FILE, "%I0r%s", dstr); \
1525 /* Note, long double immediate operands are not actually
1526 generated by m68k.md. */
1527 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
1528 do { char dstr[30]; \
1529 real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1); \
1530 asm_fprintf (FILE, "%I0r%s", dstr); \
1533 /* Print operand X (an rtx) in assembler syntax to file FILE.
1534 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1535 For `%' followed by punctuation, CODE is the punctuation and X is null.
1537 On the 68000, we use several CODE characters:
1538 '.' for dot needed in Motorola-style opcode names.
1539 '-' for an operand pushing on the stack:
1540 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1541 '+' for an operand pushing on the stack:
1542 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1543 '@' for a reference to the top word on the stack:
1544 sp@, (sp) or (%sp) depending on the style of syntax.
1545 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1546 but & in SGS syntax).
1547 '!' for the fpcr register (used in some float-to-fixed conversions).
1548 '$' for the letter `s' in an op code, but only on the 68040.
1549 '&' for the letter `d' in an op code, but only on the 68040.
1550 '/' for register prefix needed by longlong.h.
1552 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1553 'd' to force memory addressing to be absolute, not relative.
1554 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1555 'o' for operands to go directly to output_operand_address (bypassing
1556 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
1557 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1558 or print pair of registers as rx:ry. */
1560 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1561 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1562 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
1563 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1565 /* A C compound statement to output to stdio stream STREAM the
1566 assembler syntax for an instruction operand X. X is an RTL
1569 CODE is a value that can be used to specify one of several ways
1570 of printing the operand. It is used when identical operands
1571 must be printed differently depending on the context. CODE
1572 comes from the `%' specification that was used to request
1573 printing of the operand. If the specification was just `%DIGIT'
1574 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1575 is the ASCII code for LTR.
1577 If X is a register, this macro should print the register's name.
1578 The names can be found in an array `reg_names' whose type is
1579 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
1581 When the machine description has a specification `%PUNCT' (a `%'
1582 followed by a punctuation character), this macro is called with
1583 a null pointer for X and the punctuation character for CODE.
1585 See m68k.c for the m68k specific codes. */
1587 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1589 /* A C compound statement to output to stdio stream STREAM the
1590 assembler syntax for an instruction operand that is a memory
1591 reference whose address is ADDR. ADDR is an RTL expression. */
1593 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1595 /* Variables in m68k.c */
1596 extern const char *m68k_align_loops_string;
1597 extern const char *m68k_align_jumps_string;
1598 extern const char *m68k_align_funcs_string;
1599 extern int m68k_align_loops;
1600 extern int m68k_align_jumps;
1601 extern int m68k_align_funcs;
1602 extern int m68k_last_compare_had_fp_operands;
1605 /* Define the codes that are matched by predicates in m68k.c. */
1607 #define PREDICATE_CODES \
1608 {"general_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1609 LABEL_REF, SUBREG, REG, MEM}}, \
1610 {"nonimmediate_src_operand", {SUBREG, REG, MEM}}, \
1611 {"memory_src_operand", {SUBREG, MEM}}, \
1612 {"not_sp_operand", {SUBREG, REG, MEM}}, \
1613 {"pcrel_address", {SYMBOL_REF, LABEL_REF, CONST}}, \
1614 {"const_uint32_operand", {CONST_INT, CONST_DOUBLE}}, \
1615 {"const_sint32_operand", {CONST_INT}}, \
1616 {"valid_dbcc_comparison_p", {EQ, NE, GTU, LTU, GEU, LEU, \
1618 {"extend_operator", {SIGN_EXTEND, ZERO_EXTEND}},