1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include "coretypes.h"
30 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "conditions.h"
35 #include "insn-attr.h"
42 #include "target-def.h"
45 /* Needed for use_return_insn. */
48 /* This flag is used to communicate between movhi and ASM_OUTPUT_CASE_END,
49 if SGS_SWITCH_TABLE. */
50 int switch_table_difference_label_flag;
52 static rtx find_addr_reg PARAMS ((rtx));
53 static const char *singlemove_string PARAMS ((rtx *));
54 static void m68k_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
55 static void m68k_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
56 static void m68k_coff_asm_named_section PARAMS ((const char *, unsigned int));
57 #ifdef CTOR_LIST_BEGIN
58 static void m68k_svr3_asm_out_constructor PARAMS ((rtx, int));
61 static void m68k_hp320_internal_label PARAMS ((FILE *, const char *, unsigned long));
62 static void m68k_hp320_file_start PARAMS ((void));
64 static void m68k_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT,
65 HOST_WIDE_INT, tree));
66 static int m68k_save_reg PARAMS ((unsigned int));
67 static int const_int_cost PARAMS ((rtx));
68 static bool m68k_rtx_costs PARAMS ((rtx, int, int, int *));
71 /* Alignment to use for loops and jumps */
72 /* Specify power of two alignment used for loops. */
73 const char *m68k_align_loops_string;
74 /* Specify power of two alignment used for non-loop jumps. */
75 const char *m68k_align_jumps_string;
76 /* Specify power of two alignment used for functions. */
77 const char *m68k_align_funcs_string;
79 /* Specify power of two alignment used for loops. */
81 /* Specify power of two alignment used for non-loop jumps. */
83 /* Specify power of two alignment used for functions. */
86 /* Nonzero if the last compare/test insn had FP operands. The
87 sCC expanders peek at this to determine what to do for the
88 68060, which has no fsCC instructions. */
89 int m68k_last_compare_had_fp_operands;
91 /* Initialize the GCC target structure. */
93 #if INT_OP_GROUP == INT_OP_DOT_WORD
94 #undef TARGET_ASM_ALIGNED_HI_OP
95 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
98 #if INT_OP_GROUP == INT_OP_NO_DOT
99 #undef TARGET_ASM_BYTE_OP
100 #define TARGET_ASM_BYTE_OP "\tbyte\t"
101 #undef TARGET_ASM_ALIGNED_HI_OP
102 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
103 #undef TARGET_ASM_ALIGNED_SI_OP
104 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
107 #if INT_OP_GROUP == INT_OP_DC
108 #undef TARGET_ASM_BYTE_OP
109 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
110 #undef TARGET_ASM_ALIGNED_HI_OP
111 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
112 #undef TARGET_ASM_ALIGNED_SI_OP
113 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
116 #undef TARGET_ASM_UNALIGNED_HI_OP
117 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
118 #undef TARGET_ASM_UNALIGNED_SI_OP
119 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
121 #undef TARGET_ASM_FUNCTION_PROLOGUE
122 #define TARGET_ASM_FUNCTION_PROLOGUE m68k_output_function_prologue
123 #undef TARGET_ASM_FUNCTION_EPILOGUE
124 #define TARGET_ASM_FUNCTION_EPILOGUE m68k_output_function_epilogue
126 #undef TARGET_ASM_INTERNAL_LABEL
127 #define TARGET_ASM_INTERNAL_LABEL m68k_hp320_internal_label
130 #undef TARGET_ASM_OUTPUT_MI_THUNK
131 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
132 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
133 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
135 #undef TARGET_ASM_FILE_START_APP_OFF
136 #define TARGET_ASM_FILE_START_APP_OFF true
138 #undef TARGET_RTX_COSTS
139 #define TARGET_RTX_COSTS m68k_rtx_costs
141 struct gcc_target targetm = TARGET_INITIALIZER;
143 /* Sometimes certain combinations of command options do not make
144 sense on a particular target machine. You can define a macro
145 `OVERRIDE_OPTIONS' to take account of this. This macro, if
146 defined, is executed once just after all the command options have
149 Don't use this macro to turn on various extra optimizations for
150 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
160 /* Validate -malign-loops= value, or provide default */
161 m68k_align_loops = def_align;
162 if (m68k_align_loops_string)
164 i = atoi (m68k_align_loops_string);
165 if (i < 1 || i > MAX_CODE_ALIGN)
166 error ("-malign-loops=%d is not between 1 and %d", i, MAX_CODE_ALIGN);
168 m68k_align_loops = i;
171 /* Validate -malign-jumps= value, or provide default */
172 m68k_align_jumps = def_align;
173 if (m68k_align_jumps_string)
175 i = atoi (m68k_align_jumps_string);
176 if (i < 1 || i > MAX_CODE_ALIGN)
177 error ("-malign-jumps=%d is not between 1 and %d", i, MAX_CODE_ALIGN);
179 m68k_align_jumps = i;
182 /* Validate -malign-functions= value, or provide default */
183 m68k_align_funcs = def_align;
184 if (m68k_align_funcs_string)
186 i = atoi (m68k_align_funcs_string);
187 if (i < 1 || i > MAX_CODE_ALIGN)
188 error ("-malign-functions=%d is not between 1 and %d",
191 m68k_align_funcs = i;
194 /* -fPIC uses 32-bit pc-relative displacements, which don't exist
196 if (! TARGET_68020 && flag_pic == 2)
197 error("-fPIC is not currently supported on the 68000 or 68010\n");
199 /* ??? A historic way of turning on pic, or is this intended to
200 be an embedded thing that doesn't have the same name binding
201 significance that it does on hosted ELF systems? */
202 if (TARGET_PCREL && flag_pic == 0)
205 /* Turn off function cse if we are doing PIC. We always want function call
206 to be done as `bsr foo@PLTPC', so it will force the assembler to create
207 the PLT entry for `foo'. Doing function cse will cause the address of
208 `foo' to be loaded into a register, which is exactly what we want to
209 avoid when we are doing PIC on svr4 m68k. */
211 flag_no_function_cse = 1;
213 SUBTARGET_OVERRIDE_OPTIONS;
215 /* Tell the compiler which flavor of XFmode we're using. */
216 real_format_for_mode[XFmode - QFmode] = &ieee_extended_motorola_format;
219 /* Return 1 if we need to save REGNO. */
221 m68k_save_reg (regno)
224 if (flag_pic && current_function_uses_pic_offset_table
225 && regno == PIC_OFFSET_TABLE_REGNUM)
228 if (current_function_calls_eh_return)
233 unsigned int test = EH_RETURN_DATA_REGNO (i);
234 if (test == INVALID_REGNUM)
241 return (regs_ever_live[regno]
242 && !call_used_regs[regno]
243 && !fixed_regs[regno]
244 && !(regno == FRAME_POINTER_REGNUM && frame_pointer_needed));
247 /* This function generates the assembly code for function entry.
248 STREAM is a stdio stream to output the code to.
249 SIZE is an int: how many units of temporary storage to allocate.
250 Refer to the array `regs_ever_live' to determine which registers
251 to save; `regs_ever_live[I]' is nonzero if register number I
252 is ever used in the function. This function is responsible for
253 knowing which registers should not be saved even if used. */
256 /* Note that the order of the bit mask for fmovem is the opposite
257 of the order for movem! */
260 m68k_output_function_prologue (stream, size)
265 register int mask = 0;
266 int num_saved_regs = 0;
267 HOST_WIDE_INT fsize = (size + 3) & -4;
268 HOST_WIDE_INT cfa_offset = INCOMING_FRAME_SP_OFFSET;
269 HOST_WIDE_INT cfa_store_offset = cfa_offset;
271 /* If the stack limit is a symbol, we can check it here,
272 before actually allocating the space. */
273 if (current_function_limit_stack
274 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
276 #if defined (MOTOROLA)
277 asm_fprintf (stream, "\tcmp.l %I%s+%wd,%Rsp\n\ttrapcs\n",
278 XSTR (stack_limit_rtx, 0), fsize + 4);
280 asm_fprintf (stream, "\tcmpl %I%s+%wd,%Rsp\n\ttrapcs\n",
281 XSTR (stack_limit_rtx, 0), fsize + 4);
285 if (frame_pointer_needed)
287 if (fsize == 0 && TARGET_68040)
289 /* on the 68040, pea + move is faster than link.w 0 */
291 fprintf (stream, "\tpea (%s)\n\tmove.l %s,%s\n",
292 reg_names[FRAME_POINTER_REGNUM],
293 reg_names[STACK_POINTER_REGNUM],
294 reg_names[FRAME_POINTER_REGNUM]);
296 fprintf (stream, "\tpea %s@\n\tmovel %s,%s\n",
297 reg_names[FRAME_POINTER_REGNUM],
298 reg_names[STACK_POINTER_REGNUM],
299 reg_names[FRAME_POINTER_REGNUM]);
302 else if (fsize < 0x8000)
305 asm_fprintf (stream, "\tlink.w %s,%I%wd\n",
306 reg_names[FRAME_POINTER_REGNUM], -fsize);
308 asm_fprintf (stream, "\tlink %s,%I%wd\n",
309 reg_names[FRAME_POINTER_REGNUM], -fsize);
312 else if (TARGET_68020)
315 asm_fprintf (stream, "\tlink.l %s,%I%wd\n",
316 reg_names[FRAME_POINTER_REGNUM], -fsize);
318 asm_fprintf (stream, "\tlink %s,%I%wd\n",
319 reg_names[FRAME_POINTER_REGNUM], -fsize);
324 /* Adding negative number is faster on the 68040. */
326 asm_fprintf (stream, "\tlink.w %s,%I0\n\tadd.l %I%wd,%Rsp\n",
327 reg_names[FRAME_POINTER_REGNUM], -fsize);
329 asm_fprintf (stream, "\tlink %s,%I0\n\taddl %I%wd,%Rsp\n",
330 reg_names[FRAME_POINTER_REGNUM], -fsize);
333 if (dwarf2out_do_frame ())
336 l = (char *) dwarf2out_cfi_label ();
337 cfa_store_offset += 4;
338 cfa_offset = cfa_store_offset;
339 dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, -cfa_store_offset);
340 dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, cfa_offset);
341 cfa_store_offset += fsize;
346 if (fsize + 4 < 0x8000)
353 /* asm_fprintf() cannot handle %. */
355 asm_fprintf (stream, "\tsubq.w %I%wd,%Rsp\n", fsize + 4);
357 asm_fprintf (stream, "\tsubqw %I%wd,%Rsp\n", fsize + 4);
362 /* asm_fprintf() cannot handle %. */
364 asm_fprintf (stream, "\tsubq.l %I%wd,%Rsp\n", fsize + 4);
366 asm_fprintf (stream, "\tsubql %I%wd,%Rsp\n", fsize + 4);
370 else if (fsize + 4 <= 16 && TARGET_CPU32)
372 /* On the CPU32 it is faster to use two subqw instructions to
373 subtract a small integer (8 < N <= 16) to a register. */
374 /* asm_fprintf() cannot handle %. */
377 "\tsubq.w %I8,%Rsp\n\tsubq.w %I%wd,%Rsp\n",
380 asm_fprintf (stream, "\tsubqw %I8,%Rsp\n\tsubqw %I%wd,%Rsp\n",
385 #endif /* not NO_ADDSUB_Q */
388 /* Adding negative number is faster on the 68040. */
389 /* asm_fprintf() cannot handle %. */
391 asm_fprintf (stream, "\tadd.w %I%wd,%Rsp\n", - (fsize + 4));
393 asm_fprintf (stream, "\taddw %I%wd,%Rsp\n", - (fsize + 4));
399 asm_fprintf (stream, "\tlea (%wd,%Rsp),%Rsp\n", - (fsize + 4));
401 asm_fprintf (stream, "\tlea %Rsp@(%wd),%Rsp\n", - (fsize + 4));
407 /* asm_fprintf() cannot handle %. */
409 asm_fprintf (stream, "\tadd.l %I%wd,%Rsp\n", - (fsize + 4));
411 asm_fprintf (stream, "\taddl %I%wd,%Rsp\n", - (fsize + 4));
414 if (dwarf2out_do_frame ())
416 cfa_store_offset += fsize + 4;
417 cfa_offset = cfa_store_offset;
418 dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
423 for (regno = 16; regno < 24; regno++)
424 if (m68k_save_reg (regno))
426 mask |= 1 << (regno - 16);
429 if ((mask & 0xff) != 0)
432 asm_fprintf (stream, "\tfmovm %I0x%x,-(%Rsp)\n", mask & 0xff);
434 asm_fprintf (stream, "\tfmovem %I0x%x,%Rsp@-\n", mask & 0xff);
436 if (dwarf2out_do_frame ())
438 char *l = (char *) dwarf2out_cfi_label ();
441 cfa_store_offset += num_saved_regs * 12;
442 if (! frame_pointer_needed)
444 cfa_offset = cfa_store_offset;
445 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
447 for (regno = 16, n_regs = 0; regno < 24; regno++)
448 if (mask & (1 << (regno - 16)))
449 dwarf2out_reg_save (l, regno,
450 -cfa_store_offset + n_regs++ * 12);
456 for (regno = 0; regno < 16; regno++)
457 if (m68k_save_reg (regno))
459 mask |= 1 << (15 - regno);
463 /* If the stack limit is not a symbol, check it here.
464 This has the disadvantage that it may be too late... */
465 if (current_function_limit_stack)
467 if (REG_P (stack_limit_rtx))
469 #if defined (MOTOROLA)
470 asm_fprintf (stream, "\tcmp.l %s,%Rsp\n\ttrapcs\n",
471 reg_names[REGNO (stack_limit_rtx)]);
473 asm_fprintf (stream, "\tcmpl %s,%Rsp\n\ttrapcs\n",
474 reg_names[REGNO (stack_limit_rtx)]);
477 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
478 warning ("stack limit expression is not supported");
481 if (num_saved_regs <= 2)
483 /* Store each separately in the same order moveml uses.
484 Using two movel instructions instead of a single moveml
485 is about 15% faster for the 68020 and 68030 at no expense
490 /* Undo the work from above. */
491 for (i = 0; i< 16; i++)
496 "\t%Omove.l %s,-(%Rsp)\n",
498 "\tmovel %s,%Rsp@-\n",
501 if (dwarf2out_do_frame ())
503 char *l = (char *) dwarf2out_cfi_label ();
505 cfa_store_offset += 4;
506 if (! frame_pointer_needed)
508 cfa_offset = cfa_store_offset;
509 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
511 dwarf2out_reg_save (l, 15 - i, -cfa_store_offset);
519 /* The coldfire does not support the predecrement form of the
520 movml instruction, so we must adjust the stack pointer and
521 then use the plain address register indirect mode. We also
522 have to invert the register save mask to use the new mode.
524 FIXME: if num_saved_regs was calculated earlier, we could
525 combine the stack pointer adjustment with any adjustment
526 done when the initial stack frame is created. This would
527 save an instruction */
532 for (i = 0; i < 16; i++)
534 newmask |= (1 << (15-i));
537 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", -num_saved_regs*4);
538 asm_fprintf (stream, "\tmovm.l %I0x%x,(%Rsp)\n", newmask);
540 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", -num_saved_regs*4);
541 asm_fprintf (stream, "\tmoveml %I0x%x,%Rsp@\n", newmask);
547 asm_fprintf (stream, "\tmovm.l %I0x%x,-(%Rsp)\n", mask);
549 asm_fprintf (stream, "\tmoveml %I0x%x,%Rsp@-\n", mask);
552 if (dwarf2out_do_frame ())
554 char *l = (char *) dwarf2out_cfi_label ();
557 cfa_store_offset += num_saved_regs * 4;
558 if (! frame_pointer_needed)
560 cfa_offset = cfa_store_offset;
561 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
563 for (regno = 0, n_regs = 0; regno < 16; regno++)
564 if (mask & (1 << (15 - regno)))
565 dwarf2out_reg_save (l, regno,
566 -cfa_store_offset + n_regs++ * 4);
569 if (flag_pic && current_function_uses_pic_offset_table)
572 asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
573 reg_names[PIC_OFFSET_TABLE_REGNUM]);
575 asm_fprintf (stream, "\tmovel %I%U_GLOBAL_OFFSET_TABLE_, %s\n",
576 reg_names[PIC_OFFSET_TABLE_REGNUM]);
577 asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
578 reg_names[PIC_OFFSET_TABLE_REGNUM],
579 reg_names[PIC_OFFSET_TABLE_REGNUM]);
584 /* Return true if this function's epilogue can be output as RTL. */
591 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
594 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
595 if (m68k_save_reg (regno))
601 /* This function generates the assembly code for function exit,
602 on machines that need it.
604 The function epilogue should not depend on the current stack pointer!
605 It should use the frame pointer only, if there is a frame pointer.
606 This is mandatory because of alloca; we also take advantage of it to
607 omit stack adjustments before returning. */
610 m68k_output_function_epilogue (stream, size)
615 register int mask, fmask;
617 HOST_WIDE_INT offset, foffset;
618 HOST_WIDE_INT fsize = (size + 3) & -4;
620 rtx insn = get_last_insn ();
621 int restore_from_sp = 0;
623 /* If the last insn was a BARRIER, we don't have to write any code. */
624 if (GET_CODE (insn) == NOTE)
625 insn = prev_nonnote_insn (insn);
626 if (insn && GET_CODE (insn) == BARRIER)
628 /* Output just a no-op so that debuggers don't get confused
629 about which function the pc is in at this address. */
630 fprintf (stream, "\tnop\n");
634 #ifdef FUNCTION_EXTRA_EPILOGUE
635 FUNCTION_EXTRA_EPILOGUE (stream, size);
637 nregs = 0; fmask = 0;
640 for (regno = 16; regno < 24; regno++)
641 if (m68k_save_reg (regno))
644 fmask |= 1 << (23 - regno);
647 foffset = nregs * 12;
649 for (regno = 0; regno < 16; regno++)
650 if (m68k_save_reg (regno))
655 offset = foffset + nregs * 4;
656 /* FIXME : leaf_function_p below is too strong.
657 What we really need to know there is if there could be pending
658 stack adjustment needed at that point. */
659 restore_from_sp = ! frame_pointer_needed
660 || (! current_function_calls_alloca && leaf_function_p ());
661 if (offset + fsize >= 0x8000
666 asm_fprintf (stream, "\t%Omove.l %I%wd,%Ra1\n", -fsize);
668 asm_fprintf (stream, "\tmovel %I%wd,%Ra1\n", -fsize);
672 if (TARGET_5200 || nregs <= 2)
674 /* Restore each separately in the same order moveml does.
675 Using two movel instructions instead of a single moveml
676 is about 15% faster for the 68020 and 68030 at no expense
681 /* Undo the work from above. */
682 for (i = 0; i< 16; i++)
688 asm_fprintf (stream, "\t%Omove.l -%wd(%s,%Ra1.l),%s\n",
690 reg_names[FRAME_POINTER_REGNUM],
693 asm_fprintf (stream, "\tmovel %s@(-%wd,%Ra1:l),%s\n",
694 reg_names[FRAME_POINTER_REGNUM],
695 offset + fsize, reg_names[i]);
698 else if (restore_from_sp)
701 asm_fprintf (stream, "\t%Omove.l (%Rsp)+,%s\n",
704 asm_fprintf (stream, "\tmovel %Rsp@+,%s\n",
711 asm_fprintf (stream, "\t%Omove.l -%wd(%s),%s\n",
713 reg_names[FRAME_POINTER_REGNUM],
716 asm_fprintf (stream, "\tmovel %s@(-%wd),%s\n",
717 reg_names[FRAME_POINTER_REGNUM],
718 offset + fsize, reg_names[i]);
729 asm_fprintf (stream, "\tmovm.l -%wd(%s,%Ra1.l),%I0x%x\n",
731 reg_names[FRAME_POINTER_REGNUM],
734 asm_fprintf (stream, "\tmoveml %s@(-%wd,%Ra1:l),%I0x%x\n",
735 reg_names[FRAME_POINTER_REGNUM],
736 offset + fsize, mask);
739 else if (restore_from_sp)
742 asm_fprintf (stream, "\tmovm.l (%Rsp)+,%I0x%x\n", mask);
744 asm_fprintf (stream, "\tmoveml %Rsp@+,%I0x%x\n", mask);
750 asm_fprintf (stream, "\tmovm.l -%wd(%s),%I0x%x\n",
752 reg_names[FRAME_POINTER_REGNUM],
755 asm_fprintf (stream, "\tmoveml %s@(-%wd),%I0x%x\n",
756 reg_names[FRAME_POINTER_REGNUM],
757 offset + fsize, mask);
766 asm_fprintf (stream, "\tfmovm -%wd(%s,%Ra1.l),%I0x%x\n",
768 reg_names[FRAME_POINTER_REGNUM],
771 asm_fprintf (stream, "\tfmovem %s@(-%wd,%Ra1:l),%I0x%x\n",
772 reg_names[FRAME_POINTER_REGNUM],
773 foffset + fsize, fmask);
776 else if (restore_from_sp)
779 asm_fprintf (stream, "\tfmovm (%Rsp)+,%I0x%x\n", fmask);
781 asm_fprintf (stream, "\tfmovem %Rsp@+,%I0x%x\n", fmask);
787 asm_fprintf (stream, "\tfmovm -%wd(%s),%I0x%x\n",
789 reg_names[FRAME_POINTER_REGNUM],
792 asm_fprintf (stream, "\tfmovem %s@(-%wd),%I0x%x\n",
793 reg_names[FRAME_POINTER_REGNUM],
794 foffset + fsize, fmask);
798 if (frame_pointer_needed)
799 fprintf (stream, "\tunlk %s\n",
800 reg_names[FRAME_POINTER_REGNUM]);
809 asm_fprintf (stream, "\taddq.w %I%wd,%Rsp\n", fsize + 4);
811 asm_fprintf (stream, "\taddqw %I%wd,%Rsp\n", fsize + 4);
817 asm_fprintf (stream, "\taddq.l %I%wd,%Rsp\n", fsize + 4);
819 asm_fprintf (stream, "\taddql %I%wd,%Rsp\n", fsize + 4);
823 else if (fsize + 4 <= 16 && TARGET_CPU32)
825 /* On the CPU32 it is faster to use two addqw instructions to
826 add a small integer (8 < N <= 16) to a register. */
827 /* asm_fprintf() cannot handle %. */
829 asm_fprintf (stream, "\taddq.w %I8,%Rsp\n\taddq.w %I%wd,%Rsp\n",
832 asm_fprintf (stream, "\taddqw %I8,%Rsp\n\taddqw %I%wd,%Rsp\n",
837 #endif /* not NO_ADDSUB_Q */
838 if (fsize + 4 < 0x8000)
842 /* asm_fprintf() cannot handle %. */
844 asm_fprintf (stream, "\tadd.w %I%wd,%Rsp\n", fsize + 4);
846 asm_fprintf (stream, "\taddw %I%wd,%Rsp\n", fsize + 4);
852 asm_fprintf (stream, "\tlea (%wd,%Rsp),%Rsp\n", fsize + 4);
854 asm_fprintf (stream, "\tlea %Rsp@(%wd),%Rsp\n", fsize + 4);
860 /* asm_fprintf() cannot handle %. */
862 asm_fprintf (stream, "\tadd.l %I%wd,%Rsp\n", fsize + 4);
864 asm_fprintf (stream, "\taddl %I%wd,%Rsp\n", fsize + 4);
868 if (current_function_calls_eh_return)
871 asm_fprintf (stream, "\tadd.l %Ra0,%Rsp\n");
873 asm_fprintf (stream, "\taddl %Ra0,%Rsp\n");
876 if (current_function_pops_args)
877 asm_fprintf (stream, "\trtd %I%d\n", current_function_pops_args);
879 fprintf (stream, "\trts\n");
882 /* Similar to general_operand, but exclude stack_pointer_rtx. */
885 not_sp_operand (op, mode)
887 enum machine_mode mode;
889 return op != stack_pointer_rtx && nonimmediate_operand (op, mode);
892 /* Return TRUE if X is a valid comparison operator for the dbcc
895 Note it rejects floating point comparison operators.
896 (In the future we could use Fdbcc).
898 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
901 valid_dbcc_comparison_p (x, mode)
903 enum machine_mode mode ATTRIBUTE_UNUSED;
905 switch (GET_CODE (x))
907 case EQ: case NE: case GTU: case LTU:
911 /* Reject some when CC_NO_OVERFLOW is set. This may be over
913 case GT: case LT: case GE: case LE:
914 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
920 /* Return nonzero if flags are currently in the 68881 flag register. */
924 /* We could add support for these in the future */
925 return cc_status.flags & CC_IN_68881;
928 /* Output a dbCC; jCC sequence. Note we do not handle the
929 floating point version of this sequence (Fdbcc). We also
930 do not handle alternative conditions when CC_NO_OVERFLOW is
931 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
932 kick those out before we get here. */
935 output_dbcc_and_branch (operands)
938 switch (GET_CODE (operands[3]))
942 output_asm_insn ("dbeq %0,%l1\n\tjbeq %l2", operands);
944 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
950 output_asm_insn ("dbne %0,%l1\n\tjbne %l2", operands);
952 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
958 output_asm_insn ("dbgt %0,%l1\n\tjbgt %l2", operands);
960 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
966 output_asm_insn ("dbhi %0,%l1\n\tjbhi %l2", operands);
968 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
974 output_asm_insn ("dblt %0,%l1\n\tjblt %l2", operands);
976 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
982 output_asm_insn ("dbcs %0,%l1\n\tjbcs %l2", operands);
984 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
990 output_asm_insn ("dbge %0,%l1\n\tjbge %l2", operands);
992 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
998 output_asm_insn ("dbcc %0,%l1\n\tjbcc %l2", operands);
1000 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1006 output_asm_insn ("dble %0,%l1\n\tjble %l2", operands);
1008 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1014 output_asm_insn ("dbls %0,%l1\n\tjbls %l2", operands);
1016 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1024 /* If the decrement is to be done in SImode, then we have
1025 to compensate for the fact that dbcc decrements in HImode. */
1026 switch (GET_MODE (operands[0]))
1030 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjbpl %l1", operands);
1032 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjpl %l1", operands);
1045 output_scc_di(op, operand1, operand2, dest)
1052 enum rtx_code op_code = GET_CODE (op);
1054 /* This does not produce a useful cc. */
1057 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1058 below. Swap the operands and change the op if these requirements
1059 are not fulfilled. */
1060 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1064 operand1 = operand2;
1066 op_code = swap_condition (op_code);
1068 loperands[0] = operand1;
1069 if (GET_CODE (operand1) == REG)
1070 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1072 loperands[1] = adjust_address (operand1, SImode, 4);
1073 if (operand2 != const0_rtx)
1075 loperands[2] = operand2;
1076 if (GET_CODE (operand2) == REG)
1077 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1079 loperands[3] = adjust_address (operand2, SImode, 4);
1081 loperands[4] = gen_label_rtx();
1082 if (operand2 != const0_rtx)
1085 #ifdef SGS_CMP_ORDER
1086 output_asm_insn ("cmp%.l %0,%2\n\tjbne %l4\n\tcmp%.l %1,%3", loperands);
1088 output_asm_insn ("cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1", loperands);
1091 #ifdef SGS_CMP_ORDER
1092 output_asm_insn ("cmp%.l %0,%2\n\tjne %l4\n\tcmp%.l %1,%3", loperands);
1094 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1100 if (TARGET_68020 || TARGET_5200 || ! ADDRESS_REG_P (loperands[0]))
1101 output_asm_insn ("tst%.l %0", loperands);
1104 #ifdef SGS_CMP_ORDER
1105 output_asm_insn ("cmp%.w %0,%#0", loperands);
1107 output_asm_insn ("cmp%.w %#0,%0", loperands);
1112 output_asm_insn ("jbne %l4", loperands);
1114 output_asm_insn ("jne %l4", loperands);
1117 if (TARGET_68020 || TARGET_5200 || ! ADDRESS_REG_P (loperands[1]))
1118 output_asm_insn ("tst%.l %1", loperands);
1121 #ifdef SGS_CMP_ORDER
1122 output_asm_insn ("cmp%.w %1,%#0", loperands);
1124 output_asm_insn ("cmp%.w %#0,%1", loperands);
1129 loperands[5] = dest;
1134 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1135 CODE_LABEL_NUMBER (loperands[4]));
1136 output_asm_insn ("seq %5", loperands);
1140 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1141 CODE_LABEL_NUMBER (loperands[4]));
1142 output_asm_insn ("sne %5", loperands);
1146 loperands[6] = gen_label_rtx();
1148 output_asm_insn ("shi %5\n\tjbra %l6", loperands);
1150 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1152 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1153 CODE_LABEL_NUMBER (loperands[4]));
1154 output_asm_insn ("sgt %5", loperands);
1155 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1156 CODE_LABEL_NUMBER (loperands[6]));
1160 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1161 CODE_LABEL_NUMBER (loperands[4]));
1162 output_asm_insn ("shi %5", loperands);
1166 loperands[6] = gen_label_rtx();
1168 output_asm_insn ("scs %5\n\tjbra %l6", loperands);
1170 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1172 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1173 CODE_LABEL_NUMBER (loperands[4]));
1174 output_asm_insn ("slt %5", loperands);
1175 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1176 CODE_LABEL_NUMBER (loperands[6]));
1180 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1181 CODE_LABEL_NUMBER (loperands[4]));
1182 output_asm_insn ("scs %5", loperands);
1186 loperands[6] = gen_label_rtx();
1188 output_asm_insn ("scc %5\n\tjbra %l6", loperands);
1190 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1192 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1193 CODE_LABEL_NUMBER (loperands[4]));
1194 output_asm_insn ("sge %5", loperands);
1195 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1196 CODE_LABEL_NUMBER (loperands[6]));
1200 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1201 CODE_LABEL_NUMBER (loperands[4]));
1202 output_asm_insn ("scc %5", loperands);
1206 loperands[6] = gen_label_rtx();
1208 output_asm_insn ("sls %5\n\tjbra %l6", loperands);
1210 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1212 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1213 CODE_LABEL_NUMBER (loperands[4]));
1214 output_asm_insn ("sle %5", loperands);
1215 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1216 CODE_LABEL_NUMBER (loperands[6]));
1220 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1221 CODE_LABEL_NUMBER (loperands[4]));
1222 output_asm_insn ("sls %5", loperands);
1232 output_btst (operands, countop, dataop, insn, signpos)
1234 rtx countop, dataop;
1238 operands[0] = countop;
1239 operands[1] = dataop;
1241 if (GET_CODE (countop) == CONST_INT)
1243 register int count = INTVAL (countop);
1244 /* If COUNT is bigger than size of storage unit in use,
1245 advance to the containing unit of same size. */
1246 if (count > signpos)
1248 int offset = (count & ~signpos) / 8;
1249 count = count & signpos;
1250 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1252 if (count == signpos)
1253 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1255 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1257 /* These three statements used to use next_insns_test_no...
1258 but it appears that this should do the same job. */
1260 && next_insn_tests_no_inequality (insn))
1263 && next_insn_tests_no_inequality (insn))
1266 && next_insn_tests_no_inequality (insn))
1269 cc_status.flags = CC_NOT_NEGATIVE;
1271 return "btst %0,%1";
1274 /* Returns 1 if OP is either a symbol reference or a sum of a symbol
1275 reference and a constant. */
1278 symbolic_operand (op, mode)
1280 enum machine_mode mode ATTRIBUTE_UNUSED;
1282 switch (GET_CODE (op))
1290 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1291 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1292 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1294 #if 0 /* Deleted, with corresponding change in m68k.h,
1295 so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
1297 return GET_MODE (op) == mode;
1305 /* Check for sign_extend or zero_extend. Used for bit-count operands. */
1308 extend_operator(x, mode)
1310 enum machine_mode mode;
1312 if (mode != VOIDmode && GET_MODE(x) != mode)
1314 switch (GET_CODE(x))
1325 /* Legitimize PIC addresses. If the address is already
1326 position-independent, we return ORIG. Newly generated
1327 position-independent addresses go to REG. If we need more
1328 than one register, we lose.
1330 An address is legitimized by making an indirect reference
1331 through the Global Offset Table with the name of the symbol
1334 The assembler and linker are responsible for placing the
1335 address of the symbol in the GOT. The function prologue
1336 is responsible for initializing a5 to the starting address
1339 The assembler is also responsible for translating a symbol name
1340 into a constant displacement from the start of the GOT.
1342 A quick example may make things a little clearer:
1344 When not generating PIC code to store the value 12345 into _foo
1345 we would generate the following code:
1349 When generating PIC two transformations are made. First, the compiler
1350 loads the address of foo into a register. So the first transformation makes:
1355 The code in movsi will intercept the lea instruction and call this
1356 routine which will transform the instructions into:
1358 movel a5@(_foo:w), a0
1362 That (in a nutshell) is how *all* symbol and label references are
1366 legitimize_pic_address (orig, mode, reg)
1368 enum machine_mode mode ATTRIBUTE_UNUSED;
1372 /* First handle a simple SYMBOL_REF or LABEL_REF */
1373 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1378 pic_ref = gen_rtx_MEM (Pmode,
1379 gen_rtx_PLUS (Pmode,
1380 pic_offset_table_rtx, orig));
1381 current_function_uses_pic_offset_table = 1;
1382 RTX_UNCHANGING_P (pic_ref) = 1;
1383 emit_move_insn (reg, pic_ref);
1386 else if (GET_CODE (orig) == CONST)
1390 /* Make sure this is CONST has not already been legitimized */
1391 if (GET_CODE (XEXP (orig, 0)) == PLUS
1392 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
1398 /* legitimize both operands of the PLUS */
1399 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1401 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
1402 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
1403 base == reg ? 0 : reg);
1407 if (GET_CODE (orig) == CONST_INT)
1408 return plus_constant (base, INTVAL (orig));
1409 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
1410 /* Likewise, should we set special REG_NOTEs here? */
1416 typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ } CONST_METHOD;
1418 static CONST_METHOD const_method PARAMS ((rtx));
1420 #define USE_MOVQ(i) ((unsigned)((i) + 128) <= 255)
1423 const_method (constant)
1429 i = INTVAL (constant);
1433 /* The Coldfire doesn't have byte or word operations. */
1434 /* FIXME: This may not be useful for the m68060 either */
1437 /* if -256 < N < 256 but N is not in range for a moveq
1438 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1439 if (USE_MOVQ (i ^ 0xff))
1441 /* Likewise, try with not.w */
1442 if (USE_MOVQ (i ^ 0xffff))
1444 /* This is the only value where neg.w is useful */
1447 /* Try also with swap */
1449 if (USE_MOVQ ((u >> 16) | (u << 16)))
1452 /* Otherwise, use move.l */
1457 const_int_cost (constant)
1460 switch (const_method (constant))
1463 /* Constants between -128 and 127 are cheap due to moveq */
1469 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap */
1479 m68k_rtx_costs (x, code, outer_code, total)
1481 int code, outer_code;
1487 /* Constant zero is super cheap due to clr instruction. */
1488 if (x == const0_rtx)
1491 *total = const_int_cost (x);
1501 /* Make 0.0 cheaper than other floating constants to
1502 encourage creating tstsf and tstdf insns. */
1503 if (outer_code == COMPARE
1504 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
1510 /* These are vaguely right for a 68020. */
1511 /* The costs for long multiply have been adjusted to work properly
1512 in synth_mult on the 68020, relative to an average of the time
1513 for add and the time for shift, taking away a little more because
1514 sometimes move insns are needed. */
1515 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1516 #define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : 13)
1517 #define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1518 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1521 /* An lea costs about three times as much as a simple add. */
1522 if (GET_MODE (x) == SImode
1523 && GET_CODE (XEXP (x, 1)) == REG
1524 && GET_CODE (XEXP (x, 0)) == MULT
1525 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1526 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1527 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
1528 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
1529 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
1530 *total = COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */
1538 *total = COSTS_N_INSNS(1);
1543 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
1545 if (INTVAL (XEXP (x, 1)) < 16)
1546 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
1548 /* We're using clrw + swap for these cases. */
1549 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
1552 *total = COSTS_N_INSNS (10); /* worst case */
1555 /* A shift by a big integer takes an extra instruction. */
1556 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1557 && (INTVAL (XEXP (x, 1)) == 16))
1559 *total = COSTS_N_INSNS (2); /* clrw;swap */
1562 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1563 && !(INTVAL (XEXP (x, 1)) > 0
1564 && INTVAL (XEXP (x, 1)) <= 8))
1566 *total = COSTS_N_INSNS (3); /* lsr #i,dn */
1572 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
1573 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
1574 && GET_MODE (x) == SImode)
1575 *total = COSTS_N_INSNS (MULW_COST);
1576 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1577 *total = COSTS_N_INSNS (MULW_COST);
1579 *total = COSTS_N_INSNS (MULL_COST);
1586 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1587 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
1589 *total = COSTS_N_INSNS (43); /* div.l */
1598 output_move_const_into_data_reg (operands)
1603 i = INTVAL (operands[1]);
1604 switch (const_method (operands[1]))
1607 return "moveq %1,%0";
1609 operands[1] = GEN_INT (i ^ 0xff);
1610 return "moveq %1,%0\n\tnot%.b %0";
1612 operands[1] = GEN_INT (i ^ 0xffff);
1613 return "moveq %1,%0\n\tnot%.w %0";
1615 return "moveq %#-128,%0\n\tneg%.w %0";
1620 operands[1] = GEN_INT ((u << 16) | (u >> 16));
1621 return "moveq %1,%0\n\tswap %0";
1624 return "move%.l %1,%0";
1631 output_move_simode_const (operands)
1634 if (operands[1] == const0_rtx
1635 && (DATA_REG_P (operands[0])
1636 || GET_CODE (operands[0]) == MEM)
1637 /* clr insns on 68000 read before writing.
1638 This isn't so on the 68010, but we have no TARGET_68010. */
1639 && ((TARGET_68020 || TARGET_5200)
1640 || !(GET_CODE (operands[0]) == MEM
1641 && MEM_VOLATILE_P (operands[0]))))
1643 else if (operands[1] == const0_rtx
1644 && ADDRESS_REG_P (operands[0]))
1645 return "sub%.l %0,%0";
1646 else if (DATA_REG_P (operands[0]))
1647 return output_move_const_into_data_reg (operands);
1648 else if (ADDRESS_REG_P (operands[0])
1649 && INTVAL (operands[1]) < 0x8000
1650 && INTVAL (operands[1]) >= -0x8000)
1651 return "move%.w %1,%0";
1652 else if (GET_CODE (operands[0]) == MEM
1653 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1654 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1655 && INTVAL (operands[1]) < 0x8000
1656 && INTVAL (operands[1]) >= -0x8000)
1658 return "move%.l %1,%0";
1662 output_move_simode (operands)
1665 if (GET_CODE (operands[1]) == CONST_INT)
1666 return output_move_simode_const (operands);
1667 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1668 || GET_CODE (operands[1]) == CONST)
1669 && push_operand (operands[0], SImode))
1671 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1672 || GET_CODE (operands[1]) == CONST)
1673 && ADDRESS_REG_P (operands[0]))
1674 return "lea %a1,%0";
1675 return "move%.l %1,%0";
1679 output_move_himode (operands)
1682 if (GET_CODE (operands[1]) == CONST_INT)
1684 if (operands[1] == const0_rtx
1685 && (DATA_REG_P (operands[0])
1686 || GET_CODE (operands[0]) == MEM)
1687 /* clr insns on 68000 read before writing.
1688 This isn't so on the 68010, but we have no TARGET_68010. */
1689 && ((TARGET_68020 || TARGET_5200)
1690 || !(GET_CODE (operands[0]) == MEM
1691 && MEM_VOLATILE_P (operands[0]))))
1693 else if (operands[1] == const0_rtx
1694 && ADDRESS_REG_P (operands[0]))
1695 return "sub%.l %0,%0";
1696 else if (DATA_REG_P (operands[0])
1697 && INTVAL (operands[1]) < 128
1698 && INTVAL (operands[1]) >= -128)
1700 return "moveq %1,%0";
1702 else if (INTVAL (operands[1]) < 0x8000
1703 && INTVAL (operands[1]) >= -0x8000)
1704 return "move%.w %1,%0";
1706 else if (CONSTANT_P (operands[1]))
1707 return "move%.l %1,%0";
1709 /* Recognize the insn before a tablejump, one that refers
1710 to a table of offsets. Such an insn will need to refer
1711 to a label on the insn. So output one. Use the label-number
1712 of the table of offsets to generate this label. This code,
1713 and similar code below, assumes that there will be at most one
1714 reference to each table. */
1715 if (GET_CODE (operands[1]) == MEM
1716 && GET_CODE (XEXP (operands[1], 0)) == PLUS
1717 && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF
1718 && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS)
1720 rtx labelref = XEXP (XEXP (operands[1], 0), 1);
1721 #if defined (MOTOROLA) && !defined (SGS_SWITCH_TABLES)
1723 asm_fprintf (asm_out_file, "\tset %LLI%d,.+2\n",
1724 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1726 asm_fprintf (asm_out_file, "\t.set %LLI%d,.+2\n",
1727 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1728 #endif /* not SGS */
1729 #else /* SGS_SWITCH_TABLES or not MOTOROLA */
1730 (*targetm.asm_out.internal_label) (asm_out_file, "LI",
1731 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1732 #ifdef SGS_SWITCH_TABLES
1733 /* Set flag saying we need to define the symbol
1734 LD%n (with value L%n-LI%n) at the end of the switch table. */
1735 switch_table_difference_label_flag = 1;
1736 #endif /* SGS_SWITCH_TABLES */
1737 #endif /* SGS_SWITCH_TABLES or not MOTOROLA */
1739 #endif /* SGS_NO_LI */
1740 return "move%.w %1,%0";
1744 output_move_qimode (operands)
1749 /* This is probably useless, since it loses for pushing a struct
1750 of several bytes a byte at a time. */
1751 /* 68k family always modifies the stack pointer by at least 2, even for
1752 byte pushes. The 5200 (coldfire) does not do this. */
1753 if (GET_CODE (operands[0]) == MEM
1754 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1755 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
1756 && ! ADDRESS_REG_P (operands[1])
1759 xoperands[1] = operands[1];
1761 = gen_rtx_MEM (QImode,
1762 gen_rtx_PLUS (VOIDmode, stack_pointer_rtx, const1_rtx));
1763 /* Just pushing a byte puts it in the high byte of the halfword. */
1764 /* We must put it in the low-order, high-numbered byte. */
1765 if (!reg_mentioned_p (stack_pointer_rtx, operands[1]))
1767 xoperands[3] = stack_pointer_rtx;
1769 output_asm_insn ("subq%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
1771 output_asm_insn ("sub%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
1775 output_asm_insn ("move%.b %1,%-\n\tmove%.b %@,%2", xoperands);
1779 /* clr and st insns on 68000 read before writing.
1780 This isn't so on the 68010, but we have no TARGET_68010. */
1781 if (!ADDRESS_REG_P (operands[0])
1782 && ((TARGET_68020 || TARGET_5200)
1783 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1785 if (operands[1] == const0_rtx)
1787 if ((!TARGET_5200 || DATA_REG_P (operands[0]))
1788 && GET_CODE (operands[1]) == CONST_INT
1789 && (INTVAL (operands[1]) & 255) == 255)
1795 if (GET_CODE (operands[1]) == CONST_INT
1796 && DATA_REG_P (operands[0])
1797 && INTVAL (operands[1]) < 128
1798 && INTVAL (operands[1]) >= -128)
1800 return "moveq %1,%0";
1802 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
1803 return "sub%.l %0,%0";
1804 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
1805 return "move%.l %1,%0";
1806 /* 68k family (including the 5200 coldfire) does not support byte moves to
1807 from address registers. */
1808 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
1809 return "move%.w %1,%0";
1810 return "move%.b %1,%0";
1814 output_move_stricthi (operands)
1817 if (operands[1] == const0_rtx
1818 /* clr insns on 68000 read before writing.
1819 This isn't so on the 68010, but we have no TARGET_68010. */
1820 && ((TARGET_68020 || TARGET_5200)
1821 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1823 return "move%.w %1,%0";
1827 output_move_strictqi (operands)
1830 if (operands[1] == const0_rtx
1831 /* clr insns on 68000 read before writing.
1832 This isn't so on the 68010, but we have no TARGET_68010. */
1833 && ((TARGET_68020 || TARGET_5200)
1834 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1836 return "move%.b %1,%0";
1839 /* Return the best assembler insn template
1840 for moving operands[1] into operands[0] as a fullword. */
1843 singlemove_string (operands)
1846 if (GET_CODE (operands[1]) == CONST_INT)
1847 return output_move_simode_const (operands);
1848 return "move%.l %1,%0";
1852 /* Output assembler code to perform a doubleword move insn
1853 with operands OPERANDS. */
1856 output_move_double (operands)
1861 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
1866 rtx addreg0 = 0, addreg1 = 0;
1867 int dest_overlapped_low = 0;
1868 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
1873 /* First classify both operands. */
1875 if (REG_P (operands[0]))
1877 else if (offsettable_memref_p (operands[0]))
1879 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
1881 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
1883 else if (GET_CODE (operands[0]) == MEM)
1888 if (REG_P (operands[1]))
1890 else if (CONSTANT_P (operands[1]))
1892 else if (offsettable_memref_p (operands[1]))
1894 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
1896 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
1898 else if (GET_CODE (operands[1]) == MEM)
1903 /* Check for the cases that the operand constraints are not
1904 supposed to allow to happen. Abort if we get one,
1905 because generating code for these cases is painful. */
1907 if (optype0 == RNDOP || optype1 == RNDOP)
1910 /* If one operand is decrementing and one is incrementing
1911 decrement the former register explicitly
1912 and change that operand into ordinary indexing. */
1914 if (optype0 == PUSHOP && optype1 == POPOP)
1916 operands[0] = XEXP (XEXP (operands[0], 0), 0);
1918 output_asm_insn ("sub%.l %#12,%0", operands);
1920 output_asm_insn ("subq%.l %#8,%0", operands);
1921 if (GET_MODE (operands[1]) == XFmode)
1922 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
1923 else if (GET_MODE (operands[0]) == DFmode)
1924 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
1926 operands[0] = gen_rtx_MEM (DImode, operands[0]);
1929 if (optype0 == POPOP && optype1 == PUSHOP)
1931 operands[1] = XEXP (XEXP (operands[1], 0), 0);
1933 output_asm_insn ("sub%.l %#12,%1", operands);
1935 output_asm_insn ("subq%.l %#8,%1", operands);
1936 if (GET_MODE (operands[1]) == XFmode)
1937 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
1938 else if (GET_MODE (operands[1]) == DFmode)
1939 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
1941 operands[1] = gen_rtx_MEM (DImode, operands[1]);
1945 /* If an operand is an unoffsettable memory ref, find a register
1946 we can increment temporarily to make it refer to the second word. */
1948 if (optype0 == MEMOP)
1949 addreg0 = find_addr_reg (XEXP (operands[0], 0));
1951 if (optype1 == MEMOP)
1952 addreg1 = find_addr_reg (XEXP (operands[1], 0));
1954 /* Ok, we can do one word at a time.
1955 Normally we do the low-numbered word first,
1956 but if either operand is autodecrementing then we
1957 do the high-numbered word first.
1959 In either case, set up in LATEHALF the operands to use
1960 for the high-numbered word and in some cases alter the
1961 operands in OPERANDS to be suitable for the low-numbered word. */
1965 if (optype0 == REGOP)
1967 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
1968 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
1970 else if (optype0 == OFFSOP)
1972 middlehalf[0] = adjust_address (operands[0], SImode, 4);
1973 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
1977 middlehalf[0] = operands[0];
1978 latehalf[0] = operands[0];
1981 if (optype1 == REGOP)
1983 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
1984 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
1986 else if (optype1 == OFFSOP)
1988 middlehalf[1] = adjust_address (operands[1], SImode, 4);
1989 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
1991 else if (optype1 == CNSTOP)
1993 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1998 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
1999 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
2000 operands[1] = GEN_INT (l[0]);
2001 middlehalf[1] = GEN_INT (l[1]);
2002 latehalf[1] = GEN_INT (l[2]);
2004 else if (CONSTANT_P (operands[1]))
2006 /* actually, no non-CONST_DOUBLE constant should ever
2009 if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
2010 latehalf[1] = constm1_rtx;
2012 latehalf[1] = const0_rtx;
2017 middlehalf[1] = operands[1];
2018 latehalf[1] = operands[1];
2022 /* size is not 12: */
2024 if (optype0 == REGOP)
2025 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2026 else if (optype0 == OFFSOP)
2027 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2029 latehalf[0] = operands[0];
2031 if (optype1 == REGOP)
2032 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2033 else if (optype1 == OFFSOP)
2034 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2035 else if (optype1 == CNSTOP)
2036 split_double (operands[1], &operands[1], &latehalf[1]);
2038 latehalf[1] = operands[1];
2041 /* If insn is effectively movd N(sp),-(sp) then we will do the
2042 high word first. We should use the adjusted operand 1 (which is N+4(sp))
2043 for the low word as well, to compensate for the first decrement of sp. */
2044 if (optype0 == PUSHOP
2045 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
2046 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
2047 operands[1] = middlehalf[1] = latehalf[1];
2049 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
2050 if the upper part of reg N does not appear in the MEM, arrange to
2051 emit the move late-half first. Otherwise, compute the MEM address
2052 into the upper part of N and use that as a pointer to the memory
2054 if (optype0 == REGOP
2055 && (optype1 == OFFSOP || optype1 == MEMOP))
2057 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
2059 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2060 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2062 /* If both halves of dest are used in the src memory address,
2063 compute the address into latehalf of dest.
2064 Note that this can't happen if the dest is two data regs. */
2066 xops[0] = latehalf[0];
2067 xops[1] = XEXP (operands[1], 0);
2068 output_asm_insn ("lea %a1,%0", xops);
2069 if (GET_MODE (operands[1]) == XFmode )
2071 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
2072 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
2073 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2077 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
2078 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2082 && reg_overlap_mentioned_p (middlehalf[0],
2083 XEXP (operands[1], 0)))
2085 /* Check for two regs used by both source and dest.
2086 Note that this can't happen if the dest is all data regs.
2087 It can happen if the dest is d6, d7, a0.
2088 But in that case, latehalf is an addr reg, so
2089 the code at compadr does ok. */
2091 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2092 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2095 /* JRV says this can't happen: */
2096 if (addreg0 || addreg1)
2099 /* Only the middle reg conflicts; simply put it last. */
2100 output_asm_insn (singlemove_string (operands), operands);
2101 output_asm_insn (singlemove_string (latehalf), latehalf);
2102 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2105 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
2106 /* If the low half of dest is mentioned in the source memory
2107 address, the arrange to emit the move late half first. */
2108 dest_overlapped_low = 1;
2111 /* If one or both operands autodecrementing,
2112 do the two words, high-numbered first. */
2114 /* Likewise, the first move would clobber the source of the second one,
2115 do them in the other order. This happens only for registers;
2116 such overlap can't happen in memory unless the user explicitly
2117 sets it up, and that is an undefined circumstance. */
2119 if (optype0 == PUSHOP || optype1 == PUSHOP
2120 || (optype0 == REGOP && optype1 == REGOP
2121 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
2122 || REGNO (operands[0]) == REGNO (latehalf[1])))
2123 || dest_overlapped_low)
2125 /* Make any unoffsettable addresses point at high-numbered word. */
2129 output_asm_insn ("addq%.l %#8,%0", &addreg0);
2131 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2136 output_asm_insn ("addq%.l %#8,%0", &addreg1);
2138 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2142 output_asm_insn (singlemove_string (latehalf), latehalf);
2144 /* Undo the adds we just did. */
2146 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2148 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2152 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2154 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2156 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2159 /* Do low-numbered word. */
2160 return singlemove_string (operands);
2163 /* Normal case: do the two words, low-numbered first. */
2165 output_asm_insn (singlemove_string (operands), operands);
2167 /* Do the middle one of the three words for long double */
2171 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2173 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2175 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2178 /* Make any unoffsettable addresses point at high-numbered word. */
2180 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2182 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2185 output_asm_insn (singlemove_string (latehalf), latehalf);
2187 /* Undo the adds we just did. */
2191 output_asm_insn ("subq%.l %#8,%0", &addreg0);
2193 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2198 output_asm_insn ("subq%.l %#8,%0", &addreg1);
2200 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2206 /* Return a REG that occurs in ADDR with coefficient 1.
2207 ADDR can be effectively incremented by incrementing REG. */
2210 find_addr_reg (addr)
2213 while (GET_CODE (addr) == PLUS)
2215 if (GET_CODE (XEXP (addr, 0)) == REG)
2216 addr = XEXP (addr, 0);
2217 else if (GET_CODE (XEXP (addr, 1)) == REG)
2218 addr = XEXP (addr, 1);
2219 else if (CONSTANT_P (XEXP (addr, 0)))
2220 addr = XEXP (addr, 1);
2221 else if (CONSTANT_P (XEXP (addr, 1)))
2222 addr = XEXP (addr, 0);
2226 if (GET_CODE (addr) == REG)
2231 /* Output assembler code to perform a 32 bit 3 operand add. */
2234 output_addsi3 (operands)
2237 if (! operands_match_p (operands[0], operands[1]))
2239 if (!ADDRESS_REG_P (operands[1]))
2241 rtx tmp = operands[1];
2243 operands[1] = operands[2];
2247 /* These insns can result from reloads to access
2248 stack slots over 64k from the frame pointer. */
2249 if (GET_CODE (operands[2]) == CONST_INT
2250 && INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000)
2251 return "move%.l %2,%0\n\tadd%.l %1,%0";
2253 if (GET_CODE (operands[2]) == REG)
2254 return "lea 0(%1,%2.l),%0";
2256 return "lea %c2(%1),%0";
2259 if (GET_CODE (operands[2]) == REG)
2260 return "lea (%1,%2.l),%0";
2262 return "lea (%c2,%1),%0";
2263 #else /* not MOTOROLA (MIT syntax) */
2264 if (GET_CODE (operands[2]) == REG)
2265 return "lea %1@(0,%2:l),%0";
2267 return "lea %1@(%c2),%0";
2268 #endif /* not MOTOROLA */
2269 #endif /* not SGS */
2271 if (GET_CODE (operands[2]) == CONST_INT)
2274 if (INTVAL (operands[2]) > 0
2275 && INTVAL (operands[2]) <= 8)
2276 return "addq%.l %2,%0";
2277 if (INTVAL (operands[2]) < 0
2278 && INTVAL (operands[2]) >= -8)
2280 operands[2] = GEN_INT (- INTVAL (operands[2]));
2281 return "subq%.l %2,%0";
2283 /* On the CPU32 it is faster to use two addql instructions to
2284 add a small integer (8 < N <= 16) to a register.
2285 Likewise for subql. */
2286 if (TARGET_CPU32 && REG_P (operands[0]))
2288 if (INTVAL (operands[2]) > 8
2289 && INTVAL (operands[2]) <= 16)
2291 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
2292 return "addq%.l %#8,%0\n\taddq%.l %2,%0";
2294 if (INTVAL (operands[2]) < -8
2295 && INTVAL (operands[2]) >= -16)
2297 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
2298 return "subq%.l %#8,%0\n\tsubq%.l %2,%0";
2302 if (ADDRESS_REG_P (operands[0])
2303 && INTVAL (operands[2]) >= -0x8000
2304 && INTVAL (operands[2]) < 0x8000)
2307 return "add%.w %2,%0";
2310 return "lea (%c2,%0),%0";
2312 return "lea %0@(%c2),%0";
2316 return "add%.l %2,%0";
2319 /* Store in cc_status the expressions that the condition codes will
2320 describe after execution of an instruction whose pattern is EXP.
2321 Do not alter them if the instruction would not alter the cc's. */
2323 /* On the 68000, all the insns to store in an address register fail to
2324 set the cc's. However, in some cases these instructions can make it
2325 possibly invalid to use the saved cc's. In those cases we clear out
2326 some or all of the saved cc's so they won't be used. */
2329 notice_update_cc (exp, insn)
2333 if (GET_CODE (exp) == SET)
2335 if (GET_CODE (SET_SRC (exp)) == CALL)
2339 else if (ADDRESS_REG_P (SET_DEST (exp)))
2341 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
2342 cc_status.value1 = 0;
2343 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
2344 cc_status.value2 = 0;
2346 else if (!FP_REG_P (SET_DEST (exp))
2347 && SET_DEST (exp) != cc0_rtx
2348 && (FP_REG_P (SET_SRC (exp))
2349 || GET_CODE (SET_SRC (exp)) == FIX
2350 || GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
2351 || GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
2355 /* A pair of move insns doesn't produce a useful overall cc. */
2356 else if (!FP_REG_P (SET_DEST (exp))
2357 && !FP_REG_P (SET_SRC (exp))
2358 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
2359 && (GET_CODE (SET_SRC (exp)) == REG
2360 || GET_CODE (SET_SRC (exp)) == MEM
2361 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
2365 else if (GET_CODE (SET_SRC (exp)) == CALL)
2369 else if (XEXP (exp, 0) != pc_rtx)
2371 cc_status.flags = 0;
2372 cc_status.value1 = XEXP (exp, 0);
2373 cc_status.value2 = XEXP (exp, 1);
2376 else if (GET_CODE (exp) == PARALLEL
2377 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
2379 if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
2381 else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
2383 cc_status.flags = 0;
2384 cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
2385 cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
2390 if (cc_status.value2 != 0
2391 && ADDRESS_REG_P (cc_status.value2)
2392 && GET_MODE (cc_status.value2) == QImode)
2394 if (cc_status.value2 != 0)
2395 switch (GET_CODE (cc_status.value2))
2397 case PLUS: case MINUS: case MULT:
2398 case DIV: case UDIV: case MOD: case UMOD: case NEG:
2399 #if 0 /* These instructions always clear the overflow bit */
2400 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
2401 case ROTATE: case ROTATERT:
2403 if (GET_MODE (cc_status.value2) != VOIDmode)
2404 cc_status.flags |= CC_NO_OVERFLOW;
2407 /* (SET r1 (ZERO_EXTEND r2)) on this machine
2408 ends with a move insn moving r2 in r2's mode.
2409 Thus, the cc's are set for r2.
2410 This can set N bit spuriously. */
2411 cc_status.flags |= CC_NOT_NEGATIVE;
2416 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
2418 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
2419 cc_status.value2 = 0;
2420 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
2421 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
2422 cc_status.flags = CC_IN_68881;
2426 output_move_const_double (operands)
2429 int code = standard_68881_constant_p (operands[1]);
2433 static char buf[40];
2435 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2438 return "fmove%.d %1,%0";
2442 output_move_const_single (operands)
2445 int code = standard_68881_constant_p (operands[1]);
2449 static char buf[40];
2451 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2454 return "fmove%.s %f1,%0";
2457 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2458 from the "fmovecr" instruction.
2459 The value, anded with 0xff, gives the code to use in fmovecr
2460 to get the desired constant. */
2462 /* This code has been fixed for cross-compilation. */
2464 static int inited_68881_table = 0;
2466 static const char *const strings_68881[7] = {
2476 static const int codes_68881[7] = {
2486 REAL_VALUE_TYPE values_68881[7];
2488 /* Set up values_68881 array by converting the decimal values
2489 strings_68881 to binary. */
2496 enum machine_mode mode;
2499 for (i = 0; i < 7; i++)
2503 r = REAL_VALUE_ATOF (strings_68881[i], mode);
2504 values_68881[i] = r;
2506 inited_68881_table = 1;
2510 standard_68881_constant_p (x)
2516 #ifdef NO_ASM_FMOVECR
2520 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
2521 used at all on those chips. */
2522 if (TARGET_68040 || TARGET_68060)
2525 if (! inited_68881_table)
2526 init_68881_table ();
2528 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2530 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
2532 for (i = 0; i < 6; i++)
2534 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
2535 return (codes_68881[i]);
2538 if (GET_MODE (x) == SFmode)
2541 if (REAL_VALUES_EQUAL (r, values_68881[6]))
2542 return (codes_68881[6]);
2544 /* larger powers of ten in the constants ram are not used
2545 because they are not equal to a `double' C constant. */
2549 /* If X is a floating-point constant, return the logarithm of X base 2,
2550 or 0 if X is not a power of 2. */
2553 floating_exact_log2 (x)
2556 REAL_VALUE_TYPE r, r1;
2559 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2561 if (REAL_VALUES_LESS (r, dconst1))
2564 exp = real_exponent (&r);
2565 real_2expN (&r1, exp);
2566 if (REAL_VALUES_EQUAL (r1, r))
2572 /* A C compound statement to output to stdio stream STREAM the
2573 assembler syntax for an instruction operand X. X is an RTL
2576 CODE is a value that can be used to specify one of several ways
2577 of printing the operand. It is used when identical operands
2578 must be printed differently depending on the context. CODE
2579 comes from the `%' specification that was used to request
2580 printing of the operand. If the specification was just `%DIGIT'
2581 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2582 is the ASCII code for LTR.
2584 If X is a register, this macro should print the register's name.
2585 The names can be found in an array `reg_names' whose type is
2586 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2588 When the machine description has a specification `%PUNCT' (a `%'
2589 followed by a punctuation character), this macro is called with
2590 a null pointer for X and the punctuation character for CODE.
2592 The m68k specific codes are:
2594 '.' for dot needed in Motorola-style opcode names.
2595 '-' for an operand pushing on the stack:
2596 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2597 '+' for an operand pushing on the stack:
2598 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2599 '@' for a reference to the top word on the stack:
2600 sp@, (sp) or (%sp) depending on the style of syntax.
2601 '#' for an immediate operand prefix (# in MIT and Motorola syntax
2602 but & in SGS syntax).
2603 '!' for the cc register (used in an `and to cc' insn).
2604 '$' for the letter `s' in an op code, but only on the 68040.
2605 '&' for the letter `d' in an op code, but only on the 68040.
2606 '/' for register prefix needed by longlong.h.
2608 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2609 'd' to force memory addressing to be absolute, not relative.
2610 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2611 'o' for operands to go directly to output_operand_address (bypassing
2612 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
2613 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2614 or print pair of registers as rx:ry.
2619 print_operand (file, op, letter)
2620 FILE *file; /* file to write to */
2621 rtx op; /* operand to print */
2622 int letter; /* %<letter> or 0 */
2626 #if defined (MOTOROLA)
2627 fprintf (file, ".");
2630 else if (letter == '#')
2632 asm_fprintf (file, "%I");
2634 else if (letter == '-')
2637 asm_fprintf (file, "-(%Rsp)");
2639 asm_fprintf (file, "%Rsp@-");
2642 else if (letter == '+')
2645 asm_fprintf (file, "(%Rsp)+");
2647 asm_fprintf (file, "%Rsp@+");
2650 else if (letter == '@')
2653 asm_fprintf (file, "(%Rsp)");
2655 asm_fprintf (file, "%Rsp@");
2658 else if (letter == '!')
2660 asm_fprintf (file, "%Rfpcr");
2662 else if (letter == '$')
2664 if (TARGET_68040_ONLY)
2666 fprintf (file, "s");
2669 else if (letter == '&')
2671 if (TARGET_68040_ONLY)
2673 fprintf (file, "d");
2676 else if (letter == '/')
2678 asm_fprintf (file, "%R");
2680 else if (letter == 'o')
2682 /* This is only for direct addresses with TARGET_PCREL */
2683 if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
2686 output_addr_const (file, XEXP (op, 0));
2688 else if (GET_CODE (op) == REG)
2691 /* Print out the second register name of a register pair.
2692 I.e., R (6) => 7. */
2693 fputs (reg_names[REGNO (op) + 1], file);
2695 fputs (reg_names[REGNO (op)], file);
2697 else if (GET_CODE (op) == MEM)
2699 output_address (XEXP (op, 0));
2700 if (letter == 'd' && ! TARGET_68020
2701 && CONSTANT_ADDRESS_P (XEXP (op, 0))
2702 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
2703 && INTVAL (XEXP (op, 0)) < 0x8000
2704 && INTVAL (XEXP (op, 0)) >= -0x8000))
2707 fprintf (file, ".l");
2709 fprintf (file, ":l");
2713 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
2716 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2717 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
2719 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
2722 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2723 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
2725 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
2728 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2729 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
2733 /* Use `print_operand_address' instead of `output_addr_const'
2734 to ensure that we print relevant PIC stuff. */
2735 asm_fprintf (file, "%I");
2737 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
2738 print_operand_address (file, op);
2740 output_addr_const (file, op);
2745 /* A C compound statement to output to stdio stream STREAM the
2746 assembler syntax for an instruction operand that is a memory
2747 reference whose address is ADDR. ADDR is an RTL expression.
2749 Note that this contains a kludge that knows that the only reason
2750 we have an address (plus (label_ref...) (reg...)) when not generating
2751 PIC code is in the insn before a tablejump, and we know that m68k.md
2752 generates a label LInnn: on such an insn.
2754 It is possible for PIC to generate a (plus (label_ref...) (reg...))
2755 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
2757 Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
2758 fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
2759 we want. This difference can be accommodated by using an assembler
2760 define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
2761 string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
2762 macro. See m68k/sgs.h for an example; for versions without the bug.
2763 Some assemblers refuse all the above solutions. The workaround is to
2764 emit "K(pc,d0.l*2)" with K being a small constant known to give the
2767 They also do not like things like "pea 1.w", so we simple leave off
2768 the .w on small constants.
2770 This routine is responsible for distinguishing between -fpic and -fPIC
2771 style relocations in an address. When generating -fpic code the
2772 offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
2773 -fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
2775 #ifndef ASM_OUTPUT_CASE_FETCH
2778 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2779 asm_fprintf (file, "%LLD%d(%Rpc,%s.", labelno, regname)
2781 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2782 asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.", labelno, labelno, regname)
2785 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2786 asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:", labelno, labelno, regname)
2788 #endif /* ASM_OUTPUT_CASE_FETCH */
2791 print_operand_address (file, addr)
2795 register rtx reg1, reg2, breg, ireg;
2798 switch (GET_CODE (addr))
2802 fprintf (file, "(%s)", reg_names[REGNO (addr)]);
2804 fprintf (file, "%s@", reg_names[REGNO (addr)]);
2809 fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
2811 fprintf (file, "%s@-", reg_names[REGNO (XEXP (addr, 0))]);
2816 fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
2818 fprintf (file, "%s@+", reg_names[REGNO (XEXP (addr, 0))]);
2822 reg1 = reg2 = ireg = breg = offset = 0;
2823 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
2825 offset = XEXP (addr, 0);
2826 addr = XEXP (addr, 1);
2828 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
2830 offset = XEXP (addr, 1);
2831 addr = XEXP (addr, 0);
2833 if (GET_CODE (addr) != PLUS)
2837 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
2839 reg1 = XEXP (addr, 0);
2840 addr = XEXP (addr, 1);
2842 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
2844 reg1 = XEXP (addr, 1);
2845 addr = XEXP (addr, 0);
2847 else if (GET_CODE (XEXP (addr, 0)) == MULT)
2849 reg1 = XEXP (addr, 0);
2850 addr = XEXP (addr, 1);
2852 else if (GET_CODE (XEXP (addr, 1)) == MULT)
2854 reg1 = XEXP (addr, 1);
2855 addr = XEXP (addr, 0);
2857 else if (GET_CODE (XEXP (addr, 0)) == REG)
2859 reg1 = XEXP (addr, 0);
2860 addr = XEXP (addr, 1);
2862 else if (GET_CODE (XEXP (addr, 1)) == REG)
2864 reg1 = XEXP (addr, 1);
2865 addr = XEXP (addr, 0);
2867 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
2868 || GET_CODE (addr) == SIGN_EXTEND)
2880 #if 0 /* for OLD_INDEXING */
2881 else if (GET_CODE (addr) == PLUS)
2883 if (GET_CODE (XEXP (addr, 0)) == REG)
2885 reg2 = XEXP (addr, 0);
2886 addr = XEXP (addr, 1);
2888 else if (GET_CODE (XEXP (addr, 1)) == REG)
2890 reg2 = XEXP (addr, 1);
2891 addr = XEXP (addr, 0);
2903 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
2904 || GET_CODE (reg1) == MULT))
2905 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
2910 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
2915 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
2916 && ! (flag_pic && ireg == pic_offset_table_rtx))
2919 if (GET_CODE (ireg) == MULT)
2921 scale = INTVAL (XEXP (ireg, 1));
2922 ireg = XEXP (ireg, 0);
2924 if (GET_CODE (ireg) == SIGN_EXTEND)
2926 ASM_OUTPUT_CASE_FETCH (file,
2927 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2928 reg_names[REGNO (XEXP (ireg, 0))]);
2929 fprintf (file, "w");
2933 ASM_OUTPUT_CASE_FETCH (file,
2934 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2935 reg_names[REGNO (ireg)]);
2936 fprintf (file, "l");
2941 fprintf (file, "*%d", scale);
2943 fprintf (file, ":%d", scale);
2949 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
2950 && ! (flag_pic && breg == pic_offset_table_rtx))
2952 ASM_OUTPUT_CASE_FETCH (file,
2953 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2954 reg_names[REGNO (breg)]);
2955 fprintf (file, "l)");
2958 if (ireg != 0 || breg != 0)
2965 if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
2972 output_addr_const (file, addr);
2973 if (flag_pic && (breg == pic_offset_table_rtx))
2975 fprintf (file, "@GOT");
2977 fprintf (file, ".w");
2980 fprintf (file, "(%s", reg_names[REGNO (breg)]);
2986 fprintf (file, "%s@(", reg_names[REGNO (breg)]);
2989 output_addr_const (file, addr);
2990 if ((flag_pic == 1) && (breg == pic_offset_table_rtx))
2991 fprintf (file, ":w");
2992 if ((flag_pic == 2) && (breg == pic_offset_table_rtx))
2993 fprintf (file, ":l");
2995 if (addr != 0 && ireg != 0)
3000 if (ireg != 0 && GET_CODE (ireg) == MULT)
3002 scale = INTVAL (XEXP (ireg, 1));
3003 ireg = XEXP (ireg, 0);
3005 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
3008 fprintf (file, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]);
3010 fprintf (file, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]);
3016 fprintf (file, "%s.l", reg_names[REGNO (ireg)]);
3018 fprintf (file, "%s:l", reg_names[REGNO (ireg)]);
3024 fprintf (file, "*%d", scale);
3026 fprintf (file, ":%d", scale);
3032 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
3033 && ! (flag_pic && reg1 == pic_offset_table_rtx))
3035 ASM_OUTPUT_CASE_FETCH (file,
3036 CODE_LABEL_NUMBER (XEXP (addr, 0)),
3037 reg_names[REGNO (reg1)]);
3038 fprintf (file, "l)");
3041 /* FALL-THROUGH (is this really what we want?) */
3043 if (GET_CODE (addr) == CONST_INT
3044 && INTVAL (addr) < 0x8000
3045 && INTVAL (addr) >= -0x8000)
3049 /* Many SGS assemblers croak on size specifiers for constants. */
3050 fprintf (file, "%d", (int) INTVAL (addr));
3052 fprintf (file, "%d.w", (int) INTVAL (addr));
3055 fprintf (file, "%d:w", (int) INTVAL (addr));
3058 else if (GET_CODE (addr) == CONST_INT)
3060 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
3062 else if (TARGET_PCREL)
3065 output_addr_const (file, addr);
3067 asm_fprintf (file, ":w,%Rpc)");
3069 asm_fprintf (file, ":l,%Rpc)");
3073 /* Special case for SYMBOL_REF if the symbol name ends in
3074 `.<letter>', this can be mistaken as a size suffix. Put
3075 the name in parentheses. */
3076 if (GET_CODE (addr) == SYMBOL_REF
3077 && strlen (XSTR (addr, 0)) > 2
3078 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
3081 output_addr_const (file, addr);
3085 output_addr_const (file, addr);
3091 /* Check for cases where a clr insns can be omitted from code using
3092 strict_low_part sets. For example, the second clrl here is not needed:
3093 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
3095 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
3096 insn we are checking for redundancy. TARGET is the register set by the
3100 strict_low_part_peephole_ok (mode, first_insn, target)
3101 enum machine_mode mode;
3107 p = prev_nonnote_insn (first_insn);
3111 /* If it isn't an insn, then give up. */
3112 if (GET_CODE (p) != INSN)
3115 if (reg_set_p (target, p))
3117 rtx set = single_set (p);
3120 /* If it isn't an easy to recognize insn, then give up. */
3124 dest = SET_DEST (set);
3126 /* If this sets the entire target register to zero, then our
3127 first_insn is redundant. */
3128 if (rtx_equal_p (dest, target)
3129 && SET_SRC (set) == const0_rtx)
3131 else if (GET_CODE (dest) == STRICT_LOW_PART
3132 && GET_CODE (XEXP (dest, 0)) == REG
3133 && REGNO (XEXP (dest, 0)) == REGNO (target)
3134 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
3135 <= GET_MODE_SIZE (mode)))
3136 /* This is a strict low part set which modifies less than
3137 we are using, so it is safe. */
3143 p = prev_nonnote_insn (p);
3150 /* Accept integer operands in the range 0..0xffffffff. We have to check the
3151 range carefully since this predicate is used in DImode contexts. Also, we
3152 need some extra crud to make it work when hosted on 64-bit machines. */
3155 const_uint32_operand (op, mode)
3157 enum machine_mode mode;
3159 /* It doesn't make sense to ask this question with a mode that is
3160 not larger than 32 bits. */
3161 if (GET_MODE_BITSIZE (mode) <= 32)
3164 #if HOST_BITS_PER_WIDE_INT > 32
3165 /* All allowed constants will fit a CONST_INT. */
3166 return (GET_CODE (op) == CONST_INT
3167 && (INTVAL (op) >= 0 && INTVAL (op) <= 0xffffffffL));
3169 return (GET_CODE (op) == CONST_INT
3170 || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0));
3174 /* Accept integer operands in the range -0x80000000..0x7fffffff. We have
3175 to check the range carefully since this predicate is used in DImode
3179 const_sint32_operand (op, mode)
3181 enum machine_mode mode;
3183 /* It doesn't make sense to ask this question with a mode that is
3184 not larger than 32 bits. */
3185 if (GET_MODE_BITSIZE (mode) <= 32)
3188 /* All allowed constants will fit a CONST_INT. */
3189 return (GET_CODE (op) == CONST_INT
3190 && (INTVAL (op) >= (-0x7fffffff - 1) && INTVAL (op) <= 0x7fffffff));
3193 /* Operand predicates for implementing asymmetric pc-relative addressing
3194 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
3195 when used as a source operand, but not as a destination operand.
3197 We model this by restricting the meaning of the basic predicates
3198 (general_operand, memory_operand, etc) to forbid the use of this
3199 addressing mode, and then define the following predicates that permit
3200 this addressing mode. These predicates can then be used for the
3201 source operands of the appropriate instructions.
3203 n.b. While it is theoretically possible to change all machine patterns
3204 to use this addressing more where permitted by the architecture,
3205 it has only been implemented for "common" cases: SImode, HImode, and
3206 QImode operands, and only for the principle operations that would
3207 require this addressing mode: data movement and simple integer operations.
3209 In parallel with these new predicates, two new constraint letters
3210 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
3211 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
3212 In the pcrel case 's' is only valid in combination with 'a' registers.
3213 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
3214 of how these constraints are used.
3216 The use of these predicates is strictly optional, though patterns that
3217 don't will cause an extra reload register to be allocated where one
3220 lea (abc:w,%pc),%a0 ; need to reload address
3221 moveq &1,%d1 ; since write to pc-relative space
3222 movel %d1,%a0@ ; is not allowed
3224 lea (abc:w,%pc),%a1 ; no need to reload address here
3225 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
3227 For more info, consult tiemann@cygnus.com.
3230 All of the ugliness with predicates and constraints is due to the
3231 simple fact that the m68k does not allow a pc-relative addressing
3232 mode as a destination. gcc does not distinguish between source and
3233 destination addresses. Hence, if we claim that pc-relative address
3234 modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
3235 end up with invalid code. To get around this problem, we left
3236 pc-relative modes as invalid addresses, and then added special
3237 predicates and constraints to accept them.
3239 A cleaner way to handle this is to modify gcc to distinguish
3240 between source and destination addresses. We can then say that
3241 pc-relative is a valid source address but not a valid destination
3242 address, and hopefully avoid a lot of the predicate and constraint
3243 hackery. Unfortunately, this would be a pretty big change. It would
3244 be a useful change for a number of ports, but there aren't any current
3245 plans to undertake this.
3247 ***************************************************************************/
3250 /* Special case of a general operand that's used as a source operand.
3251 Use this to permit reads from PC-relative memory when -mpcrel
3255 general_src_operand (op, mode)
3257 enum machine_mode mode;
3260 && GET_CODE (op) == MEM
3261 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3262 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3263 || GET_CODE (XEXP (op, 0)) == CONST))
3265 return general_operand (op, mode);
3268 /* Special case of a nonimmediate operand that's used as a source.
3269 Use this to permit reads from PC-relative memory when -mpcrel
3273 nonimmediate_src_operand (op, mode)
3275 enum machine_mode mode;
3277 if (TARGET_PCREL && GET_CODE (op) == MEM
3278 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3279 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3280 || GET_CODE (XEXP (op, 0)) == CONST))
3282 return nonimmediate_operand (op, mode);
3285 /* Special case of a memory operand that's used as a source.
3286 Use this to permit reads from PC-relative memory when -mpcrel
3290 memory_src_operand (op, mode)
3292 enum machine_mode mode;
3294 if (TARGET_PCREL && GET_CODE (op) == MEM
3295 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3296 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3297 || GET_CODE (XEXP (op, 0)) == CONST))
3299 return memory_operand (op, mode);
3302 /* Predicate that accepts only a pc-relative address. This is needed
3303 because pc-relative addresses don't satisfy the predicate
3304 "general_src_operand". */
3307 pcrel_address (op, mode)
3309 enum machine_mode mode ATTRIBUTE_UNUSED;
3311 return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF
3312 || GET_CODE (op) == CONST);
3316 output_andsi3 (operands)
3320 if (GET_CODE (operands[2]) == CONST_INT
3321 && (INTVAL (operands[2]) | 0xffff) == 0xffffffff
3322 && (DATA_REG_P (operands[0])
3323 || offsettable_memref_p (operands[0]))
3326 if (GET_CODE (operands[0]) != REG)
3327 operands[0] = adjust_address (operands[0], HImode, 2);
3328 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
3329 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3331 if (operands[2] == const0_rtx)
3333 return "and%.w %2,%0";
3335 if (GET_CODE (operands[2]) == CONST_INT
3336 && (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
3337 && (DATA_REG_P (operands[0])
3338 || offsettable_memref_p (operands[0])))
3340 if (DATA_REG_P (operands[0]))
3342 operands[1] = GEN_INT (logval);
3346 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3347 operands[1] = GEN_INT (logval % 8);
3349 /* This does not set condition codes in a standard way. */
3351 return "bclr %1,%0";
3353 return "and%.l %2,%0";
3357 output_iorsi3 (operands)
3360 register int logval;
3361 if (GET_CODE (operands[2]) == CONST_INT
3362 && INTVAL (operands[2]) >> 16 == 0
3363 && (DATA_REG_P (operands[0])
3364 || offsettable_memref_p (operands[0]))
3367 if (GET_CODE (operands[0]) != REG)
3368 operands[0] = adjust_address (operands[0], HImode, 2);
3369 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3371 if (INTVAL (operands[2]) == 0xffff)
3372 return "mov%.w %2,%0";
3373 return "or%.w %2,%0";
3375 if (GET_CODE (operands[2]) == CONST_INT
3376 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3377 && (DATA_REG_P (operands[0])
3378 || offsettable_memref_p (operands[0])))
3380 if (DATA_REG_P (operands[0]))
3381 operands[1] = GEN_INT (logval);
3384 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3385 operands[1] = GEN_INT (logval % 8);
3388 return "bset %1,%0";
3390 return "or%.l %2,%0";
3394 output_xorsi3 (operands)
3397 register int logval;
3398 if (GET_CODE (operands[2]) == CONST_INT
3399 && INTVAL (operands[2]) >> 16 == 0
3400 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
3403 if (! DATA_REG_P (operands[0]))
3404 operands[0] = adjust_address (operands[0], HImode, 2);
3405 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3407 if (INTVAL (operands[2]) == 0xffff)
3409 return "eor%.w %2,%0";
3411 if (GET_CODE (operands[2]) == CONST_INT
3412 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3413 && (DATA_REG_P (operands[0])
3414 || offsettable_memref_p (operands[0])))
3416 if (DATA_REG_P (operands[0]))
3417 operands[1] = GEN_INT (logval);
3420 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3421 operands[1] = GEN_INT (logval % 8);
3424 return "bchg %1,%0";
3426 return "eor%.l %2,%0";
3429 /* Output assembly to switch to section NAME with attribute FLAGS. */
3432 m68k_coff_asm_named_section (name, flags)
3438 if (flags & SECTION_WRITE)
3443 fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
3446 #ifdef CTOR_LIST_BEGIN
3448 m68k_svr3_asm_out_constructor (symbol, priority)
3450 int priority ATTRIBUTE_UNUSED;
3455 xop[0] = gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (SImode, stack_pointer_rtx));
3458 output_asm_insn (output_move_simode (xop), xop);
3464 m68k_hp320_internal_label (stream, prefix, labelno)
3467 unsigned long labelno;
3469 if (prefix[0] == 'L' && prefix[1] == 'I')
3470 fprintf(stream, "\tset %s%ld,.+2\n", prefix, labelno);
3472 fprintf (stream, "%s%ld:\n", prefix, labelno);
3476 m68k_hp320_file_start ()
3478 /* version 1: 68010.
3479 2: 68020 without FPU.
3480 3: 68020 with FPU. */
3481 fprintf (asm_out_file, "\tversion %d\n",
3482 TARGET_68020 ? (TARGET_68881 ? 3 : 2) : 1);
3487 m68k_output_mi_thunk (file, thunk, delta, vcall_offset, function)
3489 tree thunk ATTRIBUTE_UNUSED;
3490 HOST_WIDE_INT delta;
3491 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED;
3497 if (delta > 0 && delta <= 8)
3499 asm_fprintf (file, "\taddq.l %I%d,4(%Rsp)\n", (int) delta);
3501 asm_fprintf (file, "\taddql %I%d,%Rsp@(4)\n", (int) delta);
3503 else if (delta < 0 && delta >= -8)
3505 asm_fprintf (file, "\tsubq.l %I%d,4(%Rsp)\n", (int) -delta);
3507 asm_fprintf (file, "\tsubql %I%d,%Rsp@(4)\n", (int) -delta);
3511 asm_fprintf (file, "\tadd.l %I%wd,4(%Rsp)\n", delta);
3513 asm_fprintf (file, "\taddl %I%wd,%Rsp@(4)\n", delta);
3516 xops[0] = DECL_RTL (function);
3518 /* Logic taken from call patterns in m68k.md. */
3530 fmt = "bra.l %0@PLTPC";
3532 fmt = "bra %0@PLTPC";
3546 #if defined (MOTOROLA) && !defined (USE_GAS)
3553 output_asm_insn (fmt, xops);