1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include "coretypes.h"
30 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "conditions.h"
35 #include "insn-attr.h"
42 #include "target-def.h"
45 /* Needed for use_return_insn. */
48 /* This flag is used to communicate between movhi and ASM_OUTPUT_CASE_END,
49 if SGS_SWITCH_TABLE. */
50 int switch_table_difference_label_flag;
52 static rtx find_addr_reg PARAMS ((rtx));
53 static const char *singlemove_string PARAMS ((rtx *));
54 static void m68k_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
55 static void m68k_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
56 static void m68k_coff_asm_named_section PARAMS ((const char *, unsigned int));
57 #ifdef CTOR_LIST_BEGIN
58 static void m68k_svr3_asm_out_constructor PARAMS ((rtx, int));
61 static void m68k_hp320_internal_label PARAMS ((FILE *, const char *, unsigned long));
62 static void m68k_hp320_file_start PARAMS ((void));
64 static void m68k_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT,
65 HOST_WIDE_INT, tree));
66 static int m68k_save_reg PARAMS ((unsigned int));
67 static int const_int_cost PARAMS ((rtx));
68 static bool m68k_rtx_costs PARAMS ((rtx, int, int, int *));
71 /* Alignment to use for loops and jumps */
72 /* Specify power of two alignment used for loops. */
73 const char *m68k_align_loops_string;
74 /* Specify power of two alignment used for non-loop jumps. */
75 const char *m68k_align_jumps_string;
76 /* Specify power of two alignment used for functions. */
77 const char *m68k_align_funcs_string;
79 /* Specify power of two alignment used for loops. */
81 /* Specify power of two alignment used for non-loop jumps. */
83 /* Specify power of two alignment used for functions. */
86 /* Nonzero if the last compare/test insn had FP operands. The
87 sCC expanders peek at this to determine what to do for the
88 68060, which has no fsCC instructions. */
89 int m68k_last_compare_had_fp_operands;
91 /* Initialize the GCC target structure. */
93 #if INT_OP_GROUP == INT_OP_DOT_WORD
94 #undef TARGET_ASM_ALIGNED_HI_OP
95 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
98 #if INT_OP_GROUP == INT_OP_NO_DOT
99 #undef TARGET_ASM_BYTE_OP
100 #define TARGET_ASM_BYTE_OP "\tbyte\t"
101 #undef TARGET_ASM_ALIGNED_HI_OP
102 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
103 #undef TARGET_ASM_ALIGNED_SI_OP
104 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
107 #if INT_OP_GROUP == INT_OP_DC
108 #undef TARGET_ASM_BYTE_OP
109 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
110 #undef TARGET_ASM_ALIGNED_HI_OP
111 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
112 #undef TARGET_ASM_ALIGNED_SI_OP
113 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
116 #undef TARGET_ASM_UNALIGNED_HI_OP
117 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
118 #undef TARGET_ASM_UNALIGNED_SI_OP
119 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
121 #undef TARGET_ASM_FUNCTION_PROLOGUE
122 #define TARGET_ASM_FUNCTION_PROLOGUE m68k_output_function_prologue
123 #undef TARGET_ASM_FUNCTION_EPILOGUE
124 #define TARGET_ASM_FUNCTION_EPILOGUE m68k_output_function_epilogue
126 #undef TARGET_ASM_INTERNAL_LABEL
127 #define TARGET_ASM_INTERNAL_LABEL m68k_hp320_internal_label
130 #undef TARGET_ASM_OUTPUT_MI_THUNK
131 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
132 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
133 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
135 #undef TARGET_ASM_FILE_START_APP_OFF
136 #define TARGET_ASM_FILE_START_APP_OFF true
138 #undef TARGET_RTX_COSTS
139 #define TARGET_RTX_COSTS m68k_rtx_costs
141 struct gcc_target targetm = TARGET_INITIALIZER;
143 /* Sometimes certain combinations of command options do not make
144 sense on a particular target machine. You can define a macro
145 `OVERRIDE_OPTIONS' to take account of this. This macro, if
146 defined, is executed once just after all the command options have
149 Don't use this macro to turn on various extra optimizations for
150 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
160 /* Validate -malign-loops= value, or provide default */
161 m68k_align_loops = def_align;
162 if (m68k_align_loops_string)
164 i = atoi (m68k_align_loops_string);
165 if (i < 1 || i > MAX_CODE_ALIGN)
166 error ("-malign-loops=%d is not between 1 and %d", i, MAX_CODE_ALIGN);
168 m68k_align_loops = i;
171 /* Validate -malign-jumps= value, or provide default */
172 m68k_align_jumps = def_align;
173 if (m68k_align_jumps_string)
175 i = atoi (m68k_align_jumps_string);
176 if (i < 1 || i > MAX_CODE_ALIGN)
177 error ("-malign-jumps=%d is not between 1 and %d", i, MAX_CODE_ALIGN);
179 m68k_align_jumps = i;
182 /* Validate -malign-functions= value, or provide default */
183 m68k_align_funcs = def_align;
184 if (m68k_align_funcs_string)
186 i = atoi (m68k_align_funcs_string);
187 if (i < 1 || i > MAX_CODE_ALIGN)
188 error ("-malign-functions=%d is not between 1 and %d",
191 m68k_align_funcs = i;
194 /* -fPIC uses 32-bit pc-relative displacements, which don't exist
196 if (! TARGET_68020 && flag_pic == 2)
197 error("-fPIC is not currently supported on the 68000 or 68010\n");
199 /* ??? A historic way of turning on pic, or is this intended to
200 be an embedded thing that doesn't have the same name binding
201 significance that it does on hosted ELF systems? */
202 if (TARGET_PCREL && flag_pic == 0)
205 /* Turn off function cse if we are doing PIC. We always want function call
206 to be done as `bsr foo@PLTPC', so it will force the assembler to create
207 the PLT entry for `foo'. Doing function cse will cause the address of
208 `foo' to be loaded into a register, which is exactly what we want to
209 avoid when we are doing PIC on svr4 m68k. */
211 flag_no_function_cse = 1;
213 SUBTARGET_OVERRIDE_OPTIONS;
215 /* Tell the compiler which flavor of XFmode we're using. */
216 real_format_for_mode[XFmode - QFmode] = &ieee_extended_motorola_format;
219 /* Return 1 if we need to save REGNO. */
221 m68k_save_reg (regno)
224 if (flag_pic && current_function_uses_pic_offset_table
225 && regno == PIC_OFFSET_TABLE_REGNUM)
228 if (current_function_calls_eh_return)
233 unsigned int test = EH_RETURN_DATA_REGNO (i);
234 if (test == INVALID_REGNUM)
241 return (regs_ever_live[regno]
242 && !call_used_regs[regno]
243 && !fixed_regs[regno]
244 && !(regno == FRAME_POINTER_REGNUM && frame_pointer_needed));
247 /* This function generates the assembly code for function entry.
248 STREAM is a stdio stream to output the code to.
249 SIZE is an int: how many units of temporary storage to allocate.
250 Refer to the array `regs_ever_live' to determine which registers
251 to save; `regs_ever_live[I]' is nonzero if register number I
252 is ever used in the function. This function is responsible for
253 knowing which registers should not be saved even if used. */
256 /* Note that the order of the bit mask for fmovem is the opposite
257 of the order for movem! */
260 m68k_output_function_prologue (stream, size)
265 register int mask = 0;
266 int num_saved_regs = 0;
267 HOST_WIDE_INT fsize = (size + 3) & -4;
268 HOST_WIDE_INT cfa_offset = INCOMING_FRAME_SP_OFFSET;
269 HOST_WIDE_INT cfa_store_offset = cfa_offset;
271 /* If the stack limit is a symbol, we can check it here,
272 before actually allocating the space. */
273 if (current_function_limit_stack
274 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
276 #if defined (MOTOROLA)
277 asm_fprintf (stream, "\tcmp.l %I%s+%wd,%Rsp\n\ttrapcs\n",
278 XSTR (stack_limit_rtx, 0), fsize + 4);
280 asm_fprintf (stream, "\tcmpl %I%s+%wd,%Rsp\n\ttrapcs\n",
281 XSTR (stack_limit_rtx, 0), fsize + 4);
285 if (frame_pointer_needed)
287 if (fsize == 0 && TARGET_68040)
289 /* on the 68040, pea + move is faster than link.w 0 */
291 fprintf (stream, "\tpea (%s)\n\tmove.l %s,%s\n",
292 reg_names[FRAME_POINTER_REGNUM],
293 reg_names[STACK_POINTER_REGNUM],
294 reg_names[FRAME_POINTER_REGNUM]);
296 fprintf (stream, "\tpea %s@\n\tmovel %s,%s\n",
297 reg_names[FRAME_POINTER_REGNUM],
298 reg_names[STACK_POINTER_REGNUM],
299 reg_names[FRAME_POINTER_REGNUM]);
302 else if (fsize < 0x8000)
305 asm_fprintf (stream, "\tlink.w %s,%I%wd\n",
306 reg_names[FRAME_POINTER_REGNUM], -fsize);
308 asm_fprintf (stream, "\tlink %s,%I%wd\n",
309 reg_names[FRAME_POINTER_REGNUM], -fsize);
312 else if (TARGET_68020)
315 asm_fprintf (stream, "\tlink.l %s,%I%wd\n",
316 reg_names[FRAME_POINTER_REGNUM], -fsize);
318 asm_fprintf (stream, "\tlink %s,%I%wd\n",
319 reg_names[FRAME_POINTER_REGNUM], -fsize);
324 /* Adding negative number is faster on the 68040. */
326 asm_fprintf (stream, "\tlink.w %s,%I0\n\tadd.l %I%wd,%Rsp\n",
327 reg_names[FRAME_POINTER_REGNUM], -fsize);
329 asm_fprintf (stream, "\tlink %s,%I0\n\taddl %I%wd,%Rsp\n",
330 reg_names[FRAME_POINTER_REGNUM], -fsize);
333 if (dwarf2out_do_frame ())
336 l = (char *) dwarf2out_cfi_label ();
337 cfa_store_offset += 4;
338 cfa_offset = cfa_store_offset;
339 dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, -cfa_store_offset);
340 dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, cfa_offset);
341 cfa_store_offset += fsize;
346 if (fsize + 4 < 0x8000)
353 /* asm_fprintf() cannot handle %. */
355 asm_fprintf (stream, "\tsubq.w %I%wd,%Rsp\n", fsize + 4);
357 asm_fprintf (stream, "\tsubqw %I%wd,%Rsp\n", fsize + 4);
362 /* asm_fprintf() cannot handle %. */
364 asm_fprintf (stream, "\tsubq.l %I%wd,%Rsp\n", fsize + 4);
366 asm_fprintf (stream, "\tsubql %I%wd,%Rsp\n", fsize + 4);
370 else if (fsize + 4 <= 16 && TARGET_CPU32)
372 /* On the CPU32 it is faster to use two subqw instructions to
373 subtract a small integer (8 < N <= 16) to a register. */
374 /* asm_fprintf() cannot handle %. */
377 "\tsubq.w %I8,%Rsp\n\tsubq.w %I%wd,%Rsp\n",
380 asm_fprintf (stream, "\tsubqw %I8,%Rsp\n\tsubqw %I%wd,%Rsp\n",
385 #endif /* not NO_ADDSUB_Q */
388 /* Adding negative number is faster on the 68040. */
389 /* asm_fprintf() cannot handle %. */
391 asm_fprintf (stream, "\tadd.w %I%wd,%Rsp\n", - (fsize + 4));
393 asm_fprintf (stream, "\taddw %I%wd,%Rsp\n", - (fsize + 4));
399 asm_fprintf (stream, "\tlea (%wd,%Rsp),%Rsp\n", - (fsize + 4));
401 asm_fprintf (stream, "\tlea %Rsp@(%wd),%Rsp\n", - (fsize + 4));
407 /* asm_fprintf() cannot handle %. */
409 asm_fprintf (stream, "\tadd.l %I%wd,%Rsp\n", - (fsize + 4));
411 asm_fprintf (stream, "\taddl %I%wd,%Rsp\n", - (fsize + 4));
414 if (dwarf2out_do_frame ())
416 cfa_store_offset += fsize + 4;
417 cfa_offset = cfa_store_offset;
418 dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
423 for (regno = 16; regno < 24; regno++)
424 if (m68k_save_reg (regno))
426 mask |= 1 << (regno - 16);
429 if ((mask & 0xff) != 0)
432 asm_fprintf (stream, "\tfmovm %I0x%x,-(%Rsp)\n", mask & 0xff);
434 asm_fprintf (stream, "\tfmovem %I0x%x,%Rsp@-\n", mask & 0xff);
436 if (dwarf2out_do_frame ())
438 char *l = (char *) dwarf2out_cfi_label ();
441 cfa_store_offset += num_saved_regs * 12;
442 if (! frame_pointer_needed)
444 cfa_offset = cfa_store_offset;
445 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
447 for (regno = 16, n_regs = 0; regno < 24; regno++)
448 if (mask & (1 << (regno - 16)))
449 dwarf2out_reg_save (l, regno,
450 -cfa_store_offset + n_regs++ * 12);
456 for (regno = 0; regno < 16; regno++)
457 if (m68k_save_reg (regno))
459 mask |= 1 << (15 - regno);
463 /* If the stack limit is not a symbol, check it here.
464 This has the disadvantage that it may be too late... */
465 if (current_function_limit_stack)
467 if (REG_P (stack_limit_rtx))
469 #if defined (MOTOROLA)
470 asm_fprintf (stream, "\tcmp.l %s,%Rsp\n\ttrapcs\n",
471 reg_names[REGNO (stack_limit_rtx)]);
473 asm_fprintf (stream, "\tcmpl %s,%Rsp\n\ttrapcs\n",
474 reg_names[REGNO (stack_limit_rtx)]);
477 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
478 warning ("stack limit expression is not supported");
481 if (num_saved_regs <= 2)
483 /* Store each separately in the same order moveml uses.
484 Using two movel instructions instead of a single moveml
485 is about 15% faster for the 68020 and 68030 at no expense
490 /* Undo the work from above. */
491 for (i = 0; i< 16; i++)
496 "\t%Omove.l %s,-(%Rsp)\n",
498 "\tmovel %s,%Rsp@-\n",
501 if (dwarf2out_do_frame ())
503 char *l = (char *) dwarf2out_cfi_label ();
505 cfa_store_offset += 4;
506 if (! frame_pointer_needed)
508 cfa_offset = cfa_store_offset;
509 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
511 dwarf2out_reg_save (l, 15 - i, -cfa_store_offset);
519 /* The coldfire does not support the predecrement form of the
520 movml instruction, so we must adjust the stack pointer and
521 then use the plain address register indirect mode. We also
522 have to invert the register save mask to use the new mode.
524 FIXME: if num_saved_regs was calculated earlier, we could
525 combine the stack pointer adjustment with any adjustment
526 done when the initial stack frame is created. This would
527 save an instruction */
532 for (i = 0; i < 16; i++)
534 newmask |= (1 << (15-i));
537 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", -num_saved_regs*4);
538 asm_fprintf (stream, "\tmovm.l %I0x%x,(%Rsp)\n", newmask);
540 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", -num_saved_regs*4);
541 asm_fprintf (stream, "\tmoveml %I0x%x,%Rsp@\n", newmask);
547 asm_fprintf (stream, "\tmovm.l %I0x%x,-(%Rsp)\n", mask);
549 asm_fprintf (stream, "\tmoveml %I0x%x,%Rsp@-\n", mask);
552 if (dwarf2out_do_frame ())
554 char *l = (char *) dwarf2out_cfi_label ();
557 cfa_store_offset += num_saved_regs * 4;
558 if (! frame_pointer_needed)
560 cfa_offset = cfa_store_offset;
561 dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
563 for (regno = 0, n_regs = 0; regno < 16; regno++)
564 if (mask & (1 << (15 - regno)))
565 dwarf2out_reg_save (l, regno,
566 -cfa_store_offset + n_regs++ * 4);
569 if (flag_pic && current_function_uses_pic_offset_table)
572 asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
573 reg_names[PIC_OFFSET_TABLE_REGNUM]);
575 asm_fprintf (stream, "\tmovel %I%U_GLOBAL_OFFSET_TABLE_, %s\n",
576 reg_names[PIC_OFFSET_TABLE_REGNUM]);
577 asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
578 reg_names[PIC_OFFSET_TABLE_REGNUM],
579 reg_names[PIC_OFFSET_TABLE_REGNUM]);
584 /* Return true if this function's epilogue can be output as RTL. */
591 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
594 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
595 if (m68k_save_reg (regno))
601 /* This function generates the assembly code for function exit,
602 on machines that need it.
604 The function epilogue should not depend on the current stack pointer!
605 It should use the frame pointer only, if there is a frame pointer.
606 This is mandatory because of alloca; we also take advantage of it to
607 omit stack adjustments before returning. */
610 m68k_output_function_epilogue (stream, size)
615 register int mask, fmask;
617 HOST_WIDE_INT offset, foffset;
618 HOST_WIDE_INT fsize = (size + 3) & -4;
620 rtx insn = get_last_insn ();
621 int restore_from_sp = 0;
623 /* If the last insn was a BARRIER, we don't have to write any code. */
624 if (GET_CODE (insn) == NOTE)
625 insn = prev_nonnote_insn (insn);
626 if (insn && GET_CODE (insn) == BARRIER)
628 /* Output just a no-op so that debuggers don't get confused
629 about which function the pc is in at this address. */
630 fprintf (stream, "\tnop\n");
634 #ifdef FUNCTION_EXTRA_EPILOGUE
635 FUNCTION_EXTRA_EPILOGUE (stream, size);
637 nregs = 0; fmask = 0;
640 for (regno = 16; regno < 24; regno++)
641 if (m68k_save_reg (regno))
644 fmask |= 1 << (23 - regno);
647 foffset = nregs * 12;
649 for (regno = 0; regno < 16; regno++)
650 if (m68k_save_reg (regno))
655 offset = foffset + nregs * 4;
656 /* FIXME : leaf_function_p below is too strong.
657 What we really need to know there is if there could be pending
658 stack adjustment needed at that point. */
659 restore_from_sp = ! frame_pointer_needed
660 || (! current_function_calls_alloca && leaf_function_p ());
661 if (offset + fsize >= 0x8000
666 asm_fprintf (stream, "\t%Omove.l %I%wd,%Ra1\n", -fsize);
668 asm_fprintf (stream, "\tmovel %I%wd,%Ra1\n", -fsize);
672 if (TARGET_5200 || nregs <= 2)
674 /* Restore each separately in the same order moveml does.
675 Using two movel instructions instead of a single moveml
676 is about 15% faster for the 68020 and 68030 at no expense
681 /* Undo the work from above. */
682 for (i = 0; i< 16; i++)
688 asm_fprintf (stream, "\t%Omove.l -%wd(%s,%Ra1.l),%s\n",
690 reg_names[FRAME_POINTER_REGNUM],
693 asm_fprintf (stream, "\tmovel %s@(-%wd,%Ra1:l),%s\n",
694 reg_names[FRAME_POINTER_REGNUM],
695 offset + fsize, reg_names[i]);
698 else if (restore_from_sp)
701 asm_fprintf (stream, "\t%Omove.l (%Rsp)+,%s\n",
704 asm_fprintf (stream, "\tmovel %Rsp@+,%s\n",
711 asm_fprintf (stream, "\t%Omove.l -%wd(%s),%s\n",
713 reg_names[FRAME_POINTER_REGNUM],
716 asm_fprintf (stream, "\tmovel %s@(-%wd),%s\n",
717 reg_names[FRAME_POINTER_REGNUM],
718 offset + fsize, reg_names[i]);
729 asm_fprintf (stream, "\tmovm.l -%wd(%s,%Ra1.l),%I0x%x\n",
731 reg_names[FRAME_POINTER_REGNUM],
734 asm_fprintf (stream, "\tmoveml %s@(-%wd,%Ra1:l),%I0x%x\n",
735 reg_names[FRAME_POINTER_REGNUM],
736 offset + fsize, mask);
739 else if (restore_from_sp)
742 asm_fprintf (stream, "\tmovm.l (%Rsp)+,%I0x%x\n", mask);
744 asm_fprintf (stream, "\tmoveml %Rsp@+,%I0x%x\n", mask);
750 asm_fprintf (stream, "\tmovm.l -%wd(%s),%I0x%x\n",
752 reg_names[FRAME_POINTER_REGNUM],
755 asm_fprintf (stream, "\tmoveml %s@(-%wd),%I0x%x\n",
756 reg_names[FRAME_POINTER_REGNUM],
757 offset + fsize, mask);
766 asm_fprintf (stream, "\tfmovm -%wd(%s,%Ra1.l),%I0x%x\n",
768 reg_names[FRAME_POINTER_REGNUM],
771 asm_fprintf (stream, "\tfmovem %s@(-%wd,%Ra1:l),%I0x%x\n",
772 reg_names[FRAME_POINTER_REGNUM],
773 foffset + fsize, fmask);
776 else if (restore_from_sp)
779 asm_fprintf (stream, "\tfmovm (%Rsp)+,%I0x%x\n", fmask);
781 asm_fprintf (stream, "\tfmovem %Rsp@+,%I0x%x\n", fmask);
787 asm_fprintf (stream, "\tfmovm -%wd(%s),%I0x%x\n",
789 reg_names[FRAME_POINTER_REGNUM],
792 asm_fprintf (stream, "\tfmovem %s@(-%wd),%I0x%x\n",
793 reg_names[FRAME_POINTER_REGNUM],
794 foffset + fsize, fmask);
798 if (frame_pointer_needed)
799 fprintf (stream, "\tunlk %s\n",
800 reg_names[FRAME_POINTER_REGNUM]);
809 asm_fprintf (stream, "\taddq.w %I%wd,%Rsp\n", fsize + 4);
811 asm_fprintf (stream, "\taddqw %I%wd,%Rsp\n", fsize + 4);
817 asm_fprintf (stream, "\taddq.l %I%wd,%Rsp\n", fsize + 4);
819 asm_fprintf (stream, "\taddql %I%wd,%Rsp\n", fsize + 4);
823 else if (fsize + 4 <= 16 && TARGET_CPU32)
825 /* On the CPU32 it is faster to use two addqw instructions to
826 add a small integer (8 < N <= 16) to a register. */
827 /* asm_fprintf() cannot handle %. */
829 asm_fprintf (stream, "\taddq.w %I8,%Rsp\n\taddq.w %I%wd,%Rsp\n",
832 asm_fprintf (stream, "\taddqw %I8,%Rsp\n\taddqw %I%wd,%Rsp\n",
837 #endif /* not NO_ADDSUB_Q */
838 if (fsize + 4 < 0x8000)
842 /* asm_fprintf() cannot handle %. */
844 asm_fprintf (stream, "\tadd.w %I%wd,%Rsp\n", fsize + 4);
846 asm_fprintf (stream, "\taddw %I%wd,%Rsp\n", fsize + 4);
852 asm_fprintf (stream, "\tlea (%wd,%Rsp),%Rsp\n", fsize + 4);
854 asm_fprintf (stream, "\tlea %Rsp@(%wd),%Rsp\n", fsize + 4);
860 /* asm_fprintf() cannot handle %. */
862 asm_fprintf (stream, "\tadd.l %I%wd,%Rsp\n", fsize + 4);
864 asm_fprintf (stream, "\taddl %I%wd,%Rsp\n", fsize + 4);
868 if (current_function_calls_eh_return)
871 asm_fprintf (stream, "\tadd.l %Ra0,%Rsp\n");
873 asm_fprintf (stream, "\taddl %Ra0,%Rsp\n");
876 if (current_function_pops_args)
877 asm_fprintf (stream, "\trtd %I%d\n", current_function_pops_args);
879 fprintf (stream, "\trts\n");
882 /* Similar to general_operand, but exclude stack_pointer_rtx. */
885 not_sp_operand (op, mode)
887 enum machine_mode mode;
889 return op != stack_pointer_rtx && nonimmediate_operand (op, mode);
892 /* Return TRUE if X is a valid comparison operator for the dbcc
895 Note it rejects floating point comparison operators.
896 (In the future we could use Fdbcc).
898 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
901 valid_dbcc_comparison_p (x, mode)
903 enum machine_mode mode ATTRIBUTE_UNUSED;
905 switch (GET_CODE (x))
907 case EQ: case NE: case GTU: case LTU:
911 /* Reject some when CC_NO_OVERFLOW is set. This may be over
913 case GT: case LT: case GE: case LE:
914 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
920 /* Return nonzero if flags are currently in the 68881 flag register. */
924 /* We could add support for these in the future */
925 return cc_status.flags & CC_IN_68881;
928 /* Output a dbCC; jCC sequence. Note we do not handle the
929 floating point version of this sequence (Fdbcc). We also
930 do not handle alternative conditions when CC_NO_OVERFLOW is
931 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
932 kick those out before we get here. */
935 output_dbcc_and_branch (operands)
938 switch (GET_CODE (operands[3]))
942 output_asm_insn ("dbeq %0,%l1\n\tjbeq %l2", operands);
944 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
950 output_asm_insn ("dbne %0,%l1\n\tjbne %l2", operands);
952 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
958 output_asm_insn ("dbgt %0,%l1\n\tjbgt %l2", operands);
960 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
966 output_asm_insn ("dbhi %0,%l1\n\tjbhi %l2", operands);
968 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
974 output_asm_insn ("dblt %0,%l1\n\tjblt %l2", operands);
976 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
982 output_asm_insn ("dbcs %0,%l1\n\tjbcs %l2", operands);
984 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
990 output_asm_insn ("dbge %0,%l1\n\tjbge %l2", operands);
992 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
998 output_asm_insn ("dbcc %0,%l1\n\tjbcc %l2", operands);
1000 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1006 output_asm_insn ("dble %0,%l1\n\tjble %l2", operands);
1008 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1014 output_asm_insn ("dbls %0,%l1\n\tjbls %l2", operands);
1016 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1024 /* If the decrement is to be done in SImode, then we have
1025 to compensate for the fact that dbcc decrements in HImode. */
1026 switch (GET_MODE (operands[0]))
1030 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjbpl %l1", operands);
1032 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjpl %l1", operands);
1045 output_scc_di(op, operand1, operand2, dest)
1052 enum rtx_code op_code = GET_CODE (op);
1054 /* This does not produce a useful cc. */
1057 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1058 below. Swap the operands and change the op if these requirements
1059 are not fulfilled. */
1060 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1064 operand1 = operand2;
1066 op_code = swap_condition (op_code);
1068 loperands[0] = operand1;
1069 if (GET_CODE (operand1) == REG)
1070 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1072 loperands[1] = adjust_address (operand1, SImode, 4);
1073 if (operand2 != const0_rtx)
1075 loperands[2] = operand2;
1076 if (GET_CODE (operand2) == REG)
1077 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1079 loperands[3] = adjust_address (operand2, SImode, 4);
1081 loperands[4] = gen_label_rtx();
1082 if (operand2 != const0_rtx)
1085 #ifdef SGS_CMP_ORDER
1086 output_asm_insn ("cmp%.l %0,%2\n\tjbne %l4\n\tcmp%.l %1,%3", loperands);
1088 output_asm_insn ("cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1", loperands);
1091 #ifdef SGS_CMP_ORDER
1092 output_asm_insn ("cmp%.l %0,%2\n\tjne %l4\n\tcmp%.l %1,%3", loperands);
1094 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1100 if (TARGET_68020 || TARGET_5200 || ! ADDRESS_REG_P (loperands[0]))
1101 output_asm_insn ("tst%.l %0", loperands);
1104 #ifdef SGS_CMP_ORDER
1105 output_asm_insn ("cmp%.w %0,%#0", loperands);
1107 output_asm_insn ("cmp%.w %#0,%0", loperands);
1112 output_asm_insn ("jbne %l4", loperands);
1114 output_asm_insn ("jne %l4", loperands);
1117 if (TARGET_68020 || TARGET_5200 || ! ADDRESS_REG_P (loperands[1]))
1118 output_asm_insn ("tst%.l %1", loperands);
1121 #ifdef SGS_CMP_ORDER
1122 output_asm_insn ("cmp%.w %1,%#0", loperands);
1124 output_asm_insn ("cmp%.w %#0,%1", loperands);
1129 loperands[5] = dest;
1134 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1135 CODE_LABEL_NUMBER (loperands[4]));
1136 output_asm_insn ("seq %5", loperands);
1140 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1141 CODE_LABEL_NUMBER (loperands[4]));
1142 output_asm_insn ("sne %5", loperands);
1146 loperands[6] = gen_label_rtx();
1148 output_asm_insn ("shi %5\n\tjbra %l6", loperands);
1150 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1152 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1153 CODE_LABEL_NUMBER (loperands[4]));
1154 output_asm_insn ("sgt %5", loperands);
1155 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1156 CODE_LABEL_NUMBER (loperands[6]));
1160 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1161 CODE_LABEL_NUMBER (loperands[4]));
1162 output_asm_insn ("shi %5", loperands);
1166 loperands[6] = gen_label_rtx();
1168 output_asm_insn ("scs %5\n\tjbra %l6", loperands);
1170 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1172 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1173 CODE_LABEL_NUMBER (loperands[4]));
1174 output_asm_insn ("slt %5", loperands);
1175 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1176 CODE_LABEL_NUMBER (loperands[6]));
1180 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1181 CODE_LABEL_NUMBER (loperands[4]));
1182 output_asm_insn ("scs %5", loperands);
1186 loperands[6] = gen_label_rtx();
1188 output_asm_insn ("scc %5\n\tjbra %l6", loperands);
1190 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1192 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1193 CODE_LABEL_NUMBER (loperands[4]));
1194 output_asm_insn ("sge %5", loperands);
1195 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1196 CODE_LABEL_NUMBER (loperands[6]));
1200 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1201 CODE_LABEL_NUMBER (loperands[4]));
1202 output_asm_insn ("scc %5", loperands);
1206 loperands[6] = gen_label_rtx();
1208 output_asm_insn ("sls %5\n\tjbra %l6", loperands);
1210 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1212 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1213 CODE_LABEL_NUMBER (loperands[4]));
1214 output_asm_insn ("sle %5", loperands);
1215 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1216 CODE_LABEL_NUMBER (loperands[6]));
1220 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1221 CODE_LABEL_NUMBER (loperands[4]));
1222 output_asm_insn ("sls %5", loperands);
1232 output_btst (operands, countop, dataop, insn, signpos)
1234 rtx countop, dataop;
1238 operands[0] = countop;
1239 operands[1] = dataop;
1241 if (GET_CODE (countop) == CONST_INT)
1243 register int count = INTVAL (countop);
1244 /* If COUNT is bigger than size of storage unit in use,
1245 advance to the containing unit of same size. */
1246 if (count > signpos)
1248 int offset = (count & ~signpos) / 8;
1249 count = count & signpos;
1250 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1252 if (count == signpos)
1253 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1255 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1257 /* These three statements used to use next_insns_test_no...
1258 but it appears that this should do the same job. */
1260 && next_insn_tests_no_inequality (insn))
1263 && next_insn_tests_no_inequality (insn))
1266 && next_insn_tests_no_inequality (insn))
1269 cc_status.flags = CC_NOT_NEGATIVE;
1271 return "btst %0,%1";
1274 /* Returns 1 if OP is either a symbol reference or a sum of a symbol
1275 reference and a constant. */
1278 symbolic_operand (op, mode)
1280 enum machine_mode mode ATTRIBUTE_UNUSED;
1282 switch (GET_CODE (op))
1290 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1291 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1292 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1294 #if 0 /* Deleted, with corresponding change in m68k.h,
1295 so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
1297 return GET_MODE (op) == mode;
1305 /* Check for sign_extend or zero_extend. Used for bit-count operands. */
1308 extend_operator(x, mode)
1310 enum machine_mode mode;
1312 if (mode != VOIDmode && GET_MODE(x) != mode)
1314 switch (GET_CODE(x))
1325 /* Legitimize PIC addresses. If the address is already
1326 position-independent, we return ORIG. Newly generated
1327 position-independent addresses go to REG. If we need more
1328 than one register, we lose.
1330 An address is legitimized by making an indirect reference
1331 through the Global Offset Table with the name of the symbol
1334 The assembler and linker are responsible for placing the
1335 address of the symbol in the GOT. The function prologue
1336 is responsible for initializing a5 to the starting address
1339 The assembler is also responsible for translating a symbol name
1340 into a constant displacement from the start of the GOT.
1342 A quick example may make things a little clearer:
1344 When not generating PIC code to store the value 12345 into _foo
1345 we would generate the following code:
1349 When generating PIC two transformations are made. First, the compiler
1350 loads the address of foo into a register. So the first transformation makes:
1355 The code in movsi will intercept the lea instruction and call this
1356 routine which will transform the instructions into:
1358 movel a5@(_foo:w), a0
1362 That (in a nutshell) is how *all* symbol and label references are
1366 legitimize_pic_address (orig, mode, reg)
1368 enum machine_mode mode ATTRIBUTE_UNUSED;
1372 /* First handle a simple SYMBOL_REF or LABEL_REF */
1373 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1378 pic_ref = gen_rtx_MEM (Pmode,
1379 gen_rtx_PLUS (Pmode,
1380 pic_offset_table_rtx, orig));
1381 current_function_uses_pic_offset_table = 1;
1382 RTX_UNCHANGING_P (pic_ref) = 1;
1383 emit_move_insn (reg, pic_ref);
1386 else if (GET_CODE (orig) == CONST)
1390 /* Make sure this is CONST has not already been legitimized */
1391 if (GET_CODE (XEXP (orig, 0)) == PLUS
1392 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
1398 /* legitimize both operands of the PLUS */
1399 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1401 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
1402 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
1403 base == reg ? 0 : reg);
1407 if (GET_CODE (orig) == CONST_INT)
1408 return plus_constant (base, INTVAL (orig));
1409 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
1410 /* Likewise, should we set special REG_NOTEs here? */
1416 typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ } CONST_METHOD;
1418 static CONST_METHOD const_method PARAMS ((rtx));
1420 #define USE_MOVQ(i) ((unsigned)((i) + 128) <= 255)
1423 const_method (constant)
1429 i = INTVAL (constant);
1433 /* The Coldfire doesn't have byte or word operations. */
1434 /* FIXME: This may not be useful for the m68060 either */
1437 /* if -256 < N < 256 but N is not in range for a moveq
1438 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1439 if (USE_MOVQ (i ^ 0xff))
1441 /* Likewise, try with not.w */
1442 if (USE_MOVQ (i ^ 0xffff))
1444 /* This is the only value where neg.w is useful */
1447 /* Try also with swap */
1449 if (USE_MOVQ ((u >> 16) | (u << 16)))
1452 /* Otherwise, use move.l */
1457 const_int_cost (constant)
1460 switch (const_method (constant))
1463 /* Constants between -128 and 127 are cheap due to moveq */
1469 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap */
1479 m68k_rtx_costs (x, code, outer_code, total)
1481 int code, outer_code;
1487 /* Constant zero is super cheap due to clr instruction. */
1488 if (x == const0_rtx)
1491 *total = const_int_cost (x);
1501 /* Make 0.0 cheaper than other floating constants to
1502 encourage creating tstsf and tstdf insns. */
1503 if (outer_code == COMPARE
1504 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
1510 /* These are vaguely right for a 68020. */
1511 /* The costs for long multiply have been adjusted to work properly
1512 in synth_mult on the 68020, relative to an average of the time
1513 for add and the time for shift, taking away a little more because
1514 sometimes move insns are needed. */
1515 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1516 #define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : 13)
1517 #define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1518 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1521 /* An lea costs about three times as much as a simple add. */
1522 if (GET_MODE (x) == SImode
1523 && GET_CODE (XEXP (x, 1)) == REG
1524 && GET_CODE (XEXP (x, 0)) == MULT
1525 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1526 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1527 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
1528 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
1529 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
1530 *total = COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */
1538 *total = COSTS_N_INSNS(1);
1543 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
1545 if (INTVAL (XEXP (x, 1)) < 16)
1546 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
1548 /* We're using clrw + swap for these cases. */
1549 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
1552 *total = COSTS_N_INSNS (10); /* worst case */
1555 /* A shift by a big integer takes an extra instruction. */
1556 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1557 && (INTVAL (XEXP (x, 1)) == 16))
1559 *total = COSTS_N_INSNS (2); /* clrw;swap */
1562 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1563 && !(INTVAL (XEXP (x, 1)) > 0
1564 && INTVAL (XEXP (x, 1)) <= 8))
1566 *total = COSTS_N_INSNS (3); /* lsr #i,dn */
1572 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
1573 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
1574 && GET_MODE (x) == SImode)
1575 *total = COSTS_N_INSNS (MULW_COST);
1576 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1577 *total = COSTS_N_INSNS (MULW_COST);
1579 *total = COSTS_N_INSNS (MULL_COST);
1586 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
1587 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
1589 *total = COSTS_N_INSNS (43); /* div.l */
1598 output_move_const_into_data_reg (operands)
1603 i = INTVAL (operands[1]);
1604 switch (const_method (operands[1]))
1607 return "moveq %1,%0";
1609 operands[1] = GEN_INT (i ^ 0xff);
1610 return "moveq %1,%0\n\tnot%.b %0";
1612 operands[1] = GEN_INT (i ^ 0xffff);
1613 return "moveq %1,%0\n\tnot%.w %0";
1615 return "moveq %#-128,%0\n\tneg%.w %0";
1620 operands[1] = GEN_INT ((u << 16) | (u >> 16));
1621 return "moveq %1,%0\n\tswap %0";
1624 return "move%.l %1,%0";
1631 output_move_simode_const (operands)
1634 if (operands[1] == const0_rtx
1635 && (DATA_REG_P (operands[0])
1636 || GET_CODE (operands[0]) == MEM)
1637 /* clr insns on 68000 read before writing.
1638 This isn't so on the 68010, but we have no TARGET_68010. */
1639 && ((TARGET_68020 || TARGET_5200)
1640 || !(GET_CODE (operands[0]) == MEM
1641 && MEM_VOLATILE_P (operands[0]))))
1643 else if (operands[1] == const0_rtx
1644 && ADDRESS_REG_P (operands[0]))
1645 return "sub%.l %0,%0";
1646 else if (DATA_REG_P (operands[0]))
1647 return output_move_const_into_data_reg (operands);
1648 else if (ADDRESS_REG_P (operands[0])
1649 && INTVAL (operands[1]) < 0x8000
1650 && INTVAL (operands[1]) >= -0x8000)
1651 return "move%.w %1,%0";
1652 else if (GET_CODE (operands[0]) == MEM
1653 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1654 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1655 && INTVAL (operands[1]) < 0x8000
1656 && INTVAL (operands[1]) >= -0x8000)
1658 return "move%.l %1,%0";
1662 output_move_simode (operands)
1665 if (GET_CODE (operands[1]) == CONST_INT)
1666 return output_move_simode_const (operands);
1667 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1668 || GET_CODE (operands[1]) == CONST)
1669 && push_operand (operands[0], SImode))
1671 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1672 || GET_CODE (operands[1]) == CONST)
1673 && ADDRESS_REG_P (operands[0]))
1674 return "lea %a1,%0";
1675 return "move%.l %1,%0";
1679 output_move_himode (operands)
1682 if (GET_CODE (operands[1]) == CONST_INT)
1684 if (operands[1] == const0_rtx
1685 && (DATA_REG_P (operands[0])
1686 || GET_CODE (operands[0]) == MEM)
1687 /* clr insns on 68000 read before writing.
1688 This isn't so on the 68010, but we have no TARGET_68010. */
1689 && ((TARGET_68020 || TARGET_5200)
1690 || !(GET_CODE (operands[0]) == MEM
1691 && MEM_VOLATILE_P (operands[0]))))
1693 else if (operands[1] == const0_rtx
1694 && ADDRESS_REG_P (operands[0]))
1695 return "sub%.l %0,%0";
1696 else if (DATA_REG_P (operands[0])
1697 && INTVAL (operands[1]) < 128
1698 && INTVAL (operands[1]) >= -128)
1700 return "moveq %1,%0";
1702 else if (INTVAL (operands[1]) < 0x8000
1703 && INTVAL (operands[1]) >= -0x8000)
1704 return "move%.w %1,%0";
1706 else if (CONSTANT_P (operands[1]))
1707 return "move%.l %1,%0";
1708 /* Recognize the insn before a tablejump, one that refers
1709 to a table of offsets. Such an insn will need to refer
1710 to a label on the insn. So output one. Use the label-number
1711 of the table of offsets to generate this label. This code,
1712 and similar code below, assumes that there will be at most one
1713 reference to each table. */
1714 if (GET_CODE (operands[1]) == MEM
1715 && GET_CODE (XEXP (operands[1], 0)) == PLUS
1716 && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF
1717 && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS)
1719 rtx labelref = XEXP (XEXP (operands[1], 0), 1);
1720 #if defined (MOTOROLA) && !defined (SGS_SWITCH_TABLES)
1722 asm_fprintf (asm_out_file, "\tset %LLI%d,.+2\n",
1723 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1725 asm_fprintf (asm_out_file, "\t.set %LLI%d,.+2\n",
1726 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1727 #endif /* not SGS */
1728 #else /* SGS_SWITCH_TABLES or not MOTOROLA */
1729 (*targetm.asm_out.internal_label) (asm_out_file, "LI",
1730 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1731 #ifdef SGS_SWITCH_TABLES
1732 /* Set flag saying we need to define the symbol
1733 LD%n (with value L%n-LI%n) at the end of the switch table. */
1734 switch_table_difference_label_flag = 1;
1735 #endif /* SGS_SWITCH_TABLES */
1736 #endif /* SGS_SWITCH_TABLES or not MOTOROLA */
1738 return "move%.w %1,%0";
1742 output_move_qimode (operands)
1747 /* This is probably useless, since it loses for pushing a struct
1748 of several bytes a byte at a time. */
1749 /* 68k family always modifies the stack pointer by at least 2, even for
1750 byte pushes. The 5200 (coldfire) does not do this. */
1751 if (GET_CODE (operands[0]) == MEM
1752 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1753 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
1754 && ! ADDRESS_REG_P (operands[1])
1757 xoperands[1] = operands[1];
1759 = gen_rtx_MEM (QImode,
1760 gen_rtx_PLUS (VOIDmode, stack_pointer_rtx, const1_rtx));
1761 /* Just pushing a byte puts it in the high byte of the halfword. */
1762 /* We must put it in the low-order, high-numbered byte. */
1763 if (!reg_mentioned_p (stack_pointer_rtx, operands[1]))
1765 xoperands[3] = stack_pointer_rtx;
1767 output_asm_insn ("subq%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
1769 output_asm_insn ("sub%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
1773 output_asm_insn ("move%.b %1,%-\n\tmove%.b %@,%2", xoperands);
1777 /* clr and st insns on 68000 read before writing.
1778 This isn't so on the 68010, but we have no TARGET_68010. */
1779 if (!ADDRESS_REG_P (operands[0])
1780 && ((TARGET_68020 || TARGET_5200)
1781 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1783 if (operands[1] == const0_rtx)
1785 if ((!TARGET_5200 || DATA_REG_P (operands[0]))
1786 && GET_CODE (operands[1]) == CONST_INT
1787 && (INTVAL (operands[1]) & 255) == 255)
1793 if (GET_CODE (operands[1]) == CONST_INT
1794 && DATA_REG_P (operands[0])
1795 && INTVAL (operands[1]) < 128
1796 && INTVAL (operands[1]) >= -128)
1798 return "moveq %1,%0";
1800 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
1801 return "sub%.l %0,%0";
1802 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
1803 return "move%.l %1,%0";
1804 /* 68k family (including the 5200 coldfire) does not support byte moves to
1805 from address registers. */
1806 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
1807 return "move%.w %1,%0";
1808 return "move%.b %1,%0";
1812 output_move_stricthi (operands)
1815 if (operands[1] == const0_rtx
1816 /* clr insns on 68000 read before writing.
1817 This isn't so on the 68010, but we have no TARGET_68010. */
1818 && ((TARGET_68020 || TARGET_5200)
1819 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1821 return "move%.w %1,%0";
1825 output_move_strictqi (operands)
1828 if (operands[1] == const0_rtx
1829 /* clr insns on 68000 read before writing.
1830 This isn't so on the 68010, but we have no TARGET_68010. */
1831 && ((TARGET_68020 || TARGET_5200)
1832 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1834 return "move%.b %1,%0";
1837 /* Return the best assembler insn template
1838 for moving operands[1] into operands[0] as a fullword. */
1841 singlemove_string (operands)
1844 if (GET_CODE (operands[1]) == CONST_INT)
1845 return output_move_simode_const (operands);
1846 return "move%.l %1,%0";
1850 /* Output assembler code to perform a doubleword move insn
1851 with operands OPERANDS. */
1854 output_move_double (operands)
1859 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
1864 rtx addreg0 = 0, addreg1 = 0;
1865 int dest_overlapped_low = 0;
1866 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
1871 /* First classify both operands. */
1873 if (REG_P (operands[0]))
1875 else if (offsettable_memref_p (operands[0]))
1877 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
1879 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
1881 else if (GET_CODE (operands[0]) == MEM)
1886 if (REG_P (operands[1]))
1888 else if (CONSTANT_P (operands[1]))
1890 else if (offsettable_memref_p (operands[1]))
1892 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
1894 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
1896 else if (GET_CODE (operands[1]) == MEM)
1901 /* Check for the cases that the operand constraints are not
1902 supposed to allow to happen. Abort if we get one,
1903 because generating code for these cases is painful. */
1905 if (optype0 == RNDOP || optype1 == RNDOP)
1908 /* If one operand is decrementing and one is incrementing
1909 decrement the former register explicitly
1910 and change that operand into ordinary indexing. */
1912 if (optype0 == PUSHOP && optype1 == POPOP)
1914 operands[0] = XEXP (XEXP (operands[0], 0), 0);
1916 output_asm_insn ("sub%.l %#12,%0", operands);
1918 output_asm_insn ("subq%.l %#8,%0", operands);
1919 if (GET_MODE (operands[1]) == XFmode)
1920 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
1921 else if (GET_MODE (operands[0]) == DFmode)
1922 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
1924 operands[0] = gen_rtx_MEM (DImode, operands[0]);
1927 if (optype0 == POPOP && optype1 == PUSHOP)
1929 operands[1] = XEXP (XEXP (operands[1], 0), 0);
1931 output_asm_insn ("sub%.l %#12,%1", operands);
1933 output_asm_insn ("subq%.l %#8,%1", operands);
1934 if (GET_MODE (operands[1]) == XFmode)
1935 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
1936 else if (GET_MODE (operands[1]) == DFmode)
1937 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
1939 operands[1] = gen_rtx_MEM (DImode, operands[1]);
1943 /* If an operand is an unoffsettable memory ref, find a register
1944 we can increment temporarily to make it refer to the second word. */
1946 if (optype0 == MEMOP)
1947 addreg0 = find_addr_reg (XEXP (operands[0], 0));
1949 if (optype1 == MEMOP)
1950 addreg1 = find_addr_reg (XEXP (operands[1], 0));
1952 /* Ok, we can do one word at a time.
1953 Normally we do the low-numbered word first,
1954 but if either operand is autodecrementing then we
1955 do the high-numbered word first.
1957 In either case, set up in LATEHALF the operands to use
1958 for the high-numbered word and in some cases alter the
1959 operands in OPERANDS to be suitable for the low-numbered word. */
1963 if (optype0 == REGOP)
1965 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
1966 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
1968 else if (optype0 == OFFSOP)
1970 middlehalf[0] = adjust_address (operands[0], SImode, 4);
1971 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
1975 middlehalf[0] = operands[0];
1976 latehalf[0] = operands[0];
1979 if (optype1 == REGOP)
1981 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
1982 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
1984 else if (optype1 == OFFSOP)
1986 middlehalf[1] = adjust_address (operands[1], SImode, 4);
1987 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
1989 else if (optype1 == CNSTOP)
1991 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1996 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
1997 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
1998 operands[1] = GEN_INT (l[0]);
1999 middlehalf[1] = GEN_INT (l[1]);
2000 latehalf[1] = GEN_INT (l[2]);
2002 else if (CONSTANT_P (operands[1]))
2004 /* actually, no non-CONST_DOUBLE constant should ever
2007 if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
2008 latehalf[1] = constm1_rtx;
2010 latehalf[1] = const0_rtx;
2015 middlehalf[1] = operands[1];
2016 latehalf[1] = operands[1];
2020 /* size is not 12: */
2022 if (optype0 == REGOP)
2023 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2024 else if (optype0 == OFFSOP)
2025 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2027 latehalf[0] = operands[0];
2029 if (optype1 == REGOP)
2030 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2031 else if (optype1 == OFFSOP)
2032 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2033 else if (optype1 == CNSTOP)
2034 split_double (operands[1], &operands[1], &latehalf[1]);
2036 latehalf[1] = operands[1];
2039 /* If insn is effectively movd N(sp),-(sp) then we will do the
2040 high word first. We should use the adjusted operand 1 (which is N+4(sp))
2041 for the low word as well, to compensate for the first decrement of sp. */
2042 if (optype0 == PUSHOP
2043 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
2044 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
2045 operands[1] = middlehalf[1] = latehalf[1];
2047 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
2048 if the upper part of reg N does not appear in the MEM, arrange to
2049 emit the move late-half first. Otherwise, compute the MEM address
2050 into the upper part of N and use that as a pointer to the memory
2052 if (optype0 == REGOP
2053 && (optype1 == OFFSOP || optype1 == MEMOP))
2055 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
2057 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2058 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2060 /* If both halves of dest are used in the src memory address,
2061 compute the address into latehalf of dest.
2062 Note that this can't happen if the dest is two data regs. */
2064 xops[0] = latehalf[0];
2065 xops[1] = XEXP (operands[1], 0);
2066 output_asm_insn ("lea %a1,%0", xops);
2067 if (GET_MODE (operands[1]) == XFmode )
2069 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
2070 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
2071 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2075 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
2076 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2080 && reg_overlap_mentioned_p (middlehalf[0],
2081 XEXP (operands[1], 0)))
2083 /* Check for two regs used by both source and dest.
2084 Note that this can't happen if the dest is all data regs.
2085 It can happen if the dest is d6, d7, a0.
2086 But in that case, latehalf is an addr reg, so
2087 the code at compadr does ok. */
2089 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2090 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2093 /* JRV says this can't happen: */
2094 if (addreg0 || addreg1)
2097 /* Only the middle reg conflicts; simply put it last. */
2098 output_asm_insn (singlemove_string (operands), operands);
2099 output_asm_insn (singlemove_string (latehalf), latehalf);
2100 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2103 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
2104 /* If the low half of dest is mentioned in the source memory
2105 address, the arrange to emit the move late half first. */
2106 dest_overlapped_low = 1;
2109 /* If one or both operands autodecrementing,
2110 do the two words, high-numbered first. */
2112 /* Likewise, the first move would clobber the source of the second one,
2113 do them in the other order. This happens only for registers;
2114 such overlap can't happen in memory unless the user explicitly
2115 sets it up, and that is an undefined circumstance. */
2117 if (optype0 == PUSHOP || optype1 == PUSHOP
2118 || (optype0 == REGOP && optype1 == REGOP
2119 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
2120 || REGNO (operands[0]) == REGNO (latehalf[1])))
2121 || dest_overlapped_low)
2123 /* Make any unoffsettable addresses point at high-numbered word. */
2127 output_asm_insn ("addq%.l %#8,%0", &addreg0);
2129 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2134 output_asm_insn ("addq%.l %#8,%0", &addreg1);
2136 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2140 output_asm_insn (singlemove_string (latehalf), latehalf);
2142 /* Undo the adds we just did. */
2144 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2146 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2150 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2152 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2154 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2157 /* Do low-numbered word. */
2158 return singlemove_string (operands);
2161 /* Normal case: do the two words, low-numbered first. */
2163 output_asm_insn (singlemove_string (operands), operands);
2165 /* Do the middle one of the three words for long double */
2169 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2171 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2173 output_asm_insn (singlemove_string (middlehalf), middlehalf);
2176 /* Make any unoffsettable addresses point at high-numbered word. */
2178 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2180 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2183 output_asm_insn (singlemove_string (latehalf), latehalf);
2185 /* Undo the adds we just did. */
2189 output_asm_insn ("subq%.l %#8,%0", &addreg0);
2191 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2196 output_asm_insn ("subq%.l %#8,%0", &addreg1);
2198 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2204 /* Return a REG that occurs in ADDR with coefficient 1.
2205 ADDR can be effectively incremented by incrementing REG. */
2208 find_addr_reg (addr)
2211 while (GET_CODE (addr) == PLUS)
2213 if (GET_CODE (XEXP (addr, 0)) == REG)
2214 addr = XEXP (addr, 0);
2215 else if (GET_CODE (XEXP (addr, 1)) == REG)
2216 addr = XEXP (addr, 1);
2217 else if (CONSTANT_P (XEXP (addr, 0)))
2218 addr = XEXP (addr, 1);
2219 else if (CONSTANT_P (XEXP (addr, 1)))
2220 addr = XEXP (addr, 0);
2224 if (GET_CODE (addr) == REG)
2229 /* Output assembler code to perform a 32 bit 3 operand add. */
2232 output_addsi3 (operands)
2235 if (! operands_match_p (operands[0], operands[1]))
2237 if (!ADDRESS_REG_P (operands[1]))
2239 rtx tmp = operands[1];
2241 operands[1] = operands[2];
2245 /* These insns can result from reloads to access
2246 stack slots over 64k from the frame pointer. */
2247 if (GET_CODE (operands[2]) == CONST_INT
2248 && INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000)
2249 return "move%.l %2,%0\n\tadd%.l %1,%0";
2251 if (GET_CODE (operands[2]) == REG)
2252 return "lea 0(%1,%2.l),%0";
2254 return "lea %c2(%1),%0";
2257 if (GET_CODE (operands[2]) == REG)
2258 return "lea (%1,%2.l),%0";
2260 return "lea (%c2,%1),%0";
2261 #else /* not MOTOROLA (MIT syntax) */
2262 if (GET_CODE (operands[2]) == REG)
2263 return "lea %1@(0,%2:l),%0";
2265 return "lea %1@(%c2),%0";
2266 #endif /* not MOTOROLA */
2267 #endif /* not SGS */
2269 if (GET_CODE (operands[2]) == CONST_INT)
2272 if (INTVAL (operands[2]) > 0
2273 && INTVAL (operands[2]) <= 8)
2274 return "addq%.l %2,%0";
2275 if (INTVAL (operands[2]) < 0
2276 && INTVAL (operands[2]) >= -8)
2278 operands[2] = GEN_INT (- INTVAL (operands[2]));
2279 return "subq%.l %2,%0";
2281 /* On the CPU32 it is faster to use two addql instructions to
2282 add a small integer (8 < N <= 16) to a register.
2283 Likewise for subql. */
2284 if (TARGET_CPU32 && REG_P (operands[0]))
2286 if (INTVAL (operands[2]) > 8
2287 && INTVAL (operands[2]) <= 16)
2289 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
2290 return "addq%.l %#8,%0\n\taddq%.l %2,%0";
2292 if (INTVAL (operands[2]) < -8
2293 && INTVAL (operands[2]) >= -16)
2295 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
2296 return "subq%.l %#8,%0\n\tsubq%.l %2,%0";
2300 if (ADDRESS_REG_P (operands[0])
2301 && INTVAL (operands[2]) >= -0x8000
2302 && INTVAL (operands[2]) < 0x8000)
2305 return "add%.w %2,%0";
2308 return "lea (%c2,%0),%0";
2310 return "lea %0@(%c2),%0";
2314 return "add%.l %2,%0";
2317 /* Store in cc_status the expressions that the condition codes will
2318 describe after execution of an instruction whose pattern is EXP.
2319 Do not alter them if the instruction would not alter the cc's. */
2321 /* On the 68000, all the insns to store in an address register fail to
2322 set the cc's. However, in some cases these instructions can make it
2323 possibly invalid to use the saved cc's. In those cases we clear out
2324 some or all of the saved cc's so they won't be used. */
2327 notice_update_cc (exp, insn)
2331 if (GET_CODE (exp) == SET)
2333 if (GET_CODE (SET_SRC (exp)) == CALL)
2337 else if (ADDRESS_REG_P (SET_DEST (exp)))
2339 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
2340 cc_status.value1 = 0;
2341 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
2342 cc_status.value2 = 0;
2344 else if (!FP_REG_P (SET_DEST (exp))
2345 && SET_DEST (exp) != cc0_rtx
2346 && (FP_REG_P (SET_SRC (exp))
2347 || GET_CODE (SET_SRC (exp)) == FIX
2348 || GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
2349 || GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
2353 /* A pair of move insns doesn't produce a useful overall cc. */
2354 else if (!FP_REG_P (SET_DEST (exp))
2355 && !FP_REG_P (SET_SRC (exp))
2356 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
2357 && (GET_CODE (SET_SRC (exp)) == REG
2358 || GET_CODE (SET_SRC (exp)) == MEM
2359 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
2363 else if (GET_CODE (SET_SRC (exp)) == CALL)
2367 else if (XEXP (exp, 0) != pc_rtx)
2369 cc_status.flags = 0;
2370 cc_status.value1 = XEXP (exp, 0);
2371 cc_status.value2 = XEXP (exp, 1);
2374 else if (GET_CODE (exp) == PARALLEL
2375 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
2377 if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
2379 else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
2381 cc_status.flags = 0;
2382 cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
2383 cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
2388 if (cc_status.value2 != 0
2389 && ADDRESS_REG_P (cc_status.value2)
2390 && GET_MODE (cc_status.value2) == QImode)
2392 if (cc_status.value2 != 0)
2393 switch (GET_CODE (cc_status.value2))
2395 case PLUS: case MINUS: case MULT:
2396 case DIV: case UDIV: case MOD: case UMOD: case NEG:
2397 #if 0 /* These instructions always clear the overflow bit */
2398 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
2399 case ROTATE: case ROTATERT:
2401 if (GET_MODE (cc_status.value2) != VOIDmode)
2402 cc_status.flags |= CC_NO_OVERFLOW;
2405 /* (SET r1 (ZERO_EXTEND r2)) on this machine
2406 ends with a move insn moving r2 in r2's mode.
2407 Thus, the cc's are set for r2.
2408 This can set N bit spuriously. */
2409 cc_status.flags |= CC_NOT_NEGATIVE;
2414 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
2416 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
2417 cc_status.value2 = 0;
2418 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
2419 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
2420 cc_status.flags = CC_IN_68881;
2424 output_move_const_double (operands)
2427 int code = standard_68881_constant_p (operands[1]);
2431 static char buf[40];
2433 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2436 return "fmove%.d %1,%0";
2440 output_move_const_single (operands)
2443 int code = standard_68881_constant_p (operands[1]);
2447 static char buf[40];
2449 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2452 return "fmove%.s %f1,%0";
2455 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2456 from the "fmovecr" instruction.
2457 The value, anded with 0xff, gives the code to use in fmovecr
2458 to get the desired constant. */
2460 /* This code has been fixed for cross-compilation. */
2462 static int inited_68881_table = 0;
2464 static const char *const strings_68881[7] = {
2474 static const int codes_68881[7] = {
2484 REAL_VALUE_TYPE values_68881[7];
2486 /* Set up values_68881 array by converting the decimal values
2487 strings_68881 to binary. */
2494 enum machine_mode mode;
2497 for (i = 0; i < 7; i++)
2501 r = REAL_VALUE_ATOF (strings_68881[i], mode);
2502 values_68881[i] = r;
2504 inited_68881_table = 1;
2508 standard_68881_constant_p (x)
2514 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
2515 used at all on those chips. */
2516 if (TARGET_68040 || TARGET_68060)
2519 if (! inited_68881_table)
2520 init_68881_table ();
2522 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2524 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
2526 for (i = 0; i < 6; i++)
2528 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
2529 return (codes_68881[i]);
2532 if (GET_MODE (x) == SFmode)
2535 if (REAL_VALUES_EQUAL (r, values_68881[6]))
2536 return (codes_68881[6]);
2538 /* larger powers of ten in the constants ram are not used
2539 because they are not equal to a `double' C constant. */
2543 /* If X is a floating-point constant, return the logarithm of X base 2,
2544 or 0 if X is not a power of 2. */
2547 floating_exact_log2 (x)
2550 REAL_VALUE_TYPE r, r1;
2553 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2555 if (REAL_VALUES_LESS (r, dconst1))
2558 exp = real_exponent (&r);
2559 real_2expN (&r1, exp);
2560 if (REAL_VALUES_EQUAL (r1, r))
2566 /* A C compound statement to output to stdio stream STREAM the
2567 assembler syntax for an instruction operand X. X is an RTL
2570 CODE is a value that can be used to specify one of several ways
2571 of printing the operand. It is used when identical operands
2572 must be printed differently depending on the context. CODE
2573 comes from the `%' specification that was used to request
2574 printing of the operand. If the specification was just `%DIGIT'
2575 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2576 is the ASCII code for LTR.
2578 If X is a register, this macro should print the register's name.
2579 The names can be found in an array `reg_names' whose type is
2580 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2582 When the machine description has a specification `%PUNCT' (a `%'
2583 followed by a punctuation character), this macro is called with
2584 a null pointer for X and the punctuation character for CODE.
2586 The m68k specific codes are:
2588 '.' for dot needed in Motorola-style opcode names.
2589 '-' for an operand pushing on the stack:
2590 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2591 '+' for an operand pushing on the stack:
2592 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2593 '@' for a reference to the top word on the stack:
2594 sp@, (sp) or (%sp) depending on the style of syntax.
2595 '#' for an immediate operand prefix (# in MIT and Motorola syntax
2596 but & in SGS syntax).
2597 '!' for the cc register (used in an `and to cc' insn).
2598 '$' for the letter `s' in an op code, but only on the 68040.
2599 '&' for the letter `d' in an op code, but only on the 68040.
2600 '/' for register prefix needed by longlong.h.
2602 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2603 'd' to force memory addressing to be absolute, not relative.
2604 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2605 'o' for operands to go directly to output_operand_address (bypassing
2606 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
2607 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2608 or print pair of registers as rx:ry.
2613 print_operand (file, op, letter)
2614 FILE *file; /* file to write to */
2615 rtx op; /* operand to print */
2616 int letter; /* %<letter> or 0 */
2620 #if defined (MOTOROLA)
2621 fprintf (file, ".");
2624 else if (letter == '#')
2626 asm_fprintf (file, "%I");
2628 else if (letter == '-')
2631 asm_fprintf (file, "-(%Rsp)");
2633 asm_fprintf (file, "%Rsp@-");
2636 else if (letter == '+')
2639 asm_fprintf (file, "(%Rsp)+");
2641 asm_fprintf (file, "%Rsp@+");
2644 else if (letter == '@')
2647 asm_fprintf (file, "(%Rsp)");
2649 asm_fprintf (file, "%Rsp@");
2652 else if (letter == '!')
2654 asm_fprintf (file, "%Rfpcr");
2656 else if (letter == '$')
2658 if (TARGET_68040_ONLY)
2660 fprintf (file, "s");
2663 else if (letter == '&')
2665 if (TARGET_68040_ONLY)
2667 fprintf (file, "d");
2670 else if (letter == '/')
2672 asm_fprintf (file, "%R");
2674 else if (letter == 'o')
2676 /* This is only for direct addresses with TARGET_PCREL */
2677 if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
2680 output_addr_const (file, XEXP (op, 0));
2682 else if (GET_CODE (op) == REG)
2685 /* Print out the second register name of a register pair.
2686 I.e., R (6) => 7. */
2687 fputs (reg_names[REGNO (op) + 1], file);
2689 fputs (reg_names[REGNO (op)], file);
2691 else if (GET_CODE (op) == MEM)
2693 output_address (XEXP (op, 0));
2694 if (letter == 'd' && ! TARGET_68020
2695 && CONSTANT_ADDRESS_P (XEXP (op, 0))
2696 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
2697 && INTVAL (XEXP (op, 0)) < 0x8000
2698 && INTVAL (XEXP (op, 0)) >= -0x8000))
2701 fprintf (file, ".l");
2703 fprintf (file, ":l");
2707 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
2710 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2711 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
2713 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
2716 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2717 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
2719 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
2722 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2723 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
2727 /* Use `print_operand_address' instead of `output_addr_const'
2728 to ensure that we print relevant PIC stuff. */
2729 asm_fprintf (file, "%I");
2731 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
2732 print_operand_address (file, op);
2734 output_addr_const (file, op);
2739 /* A C compound statement to output to stdio stream STREAM the
2740 assembler syntax for an instruction operand that is a memory
2741 reference whose address is ADDR. ADDR is an RTL expression.
2743 Note that this contains a kludge that knows that the only reason
2744 we have an address (plus (label_ref...) (reg...)) when not generating
2745 PIC code is in the insn before a tablejump, and we know that m68k.md
2746 generates a label LInnn: on such an insn.
2748 It is possible for PIC to generate a (plus (label_ref...) (reg...))
2749 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
2751 Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
2752 fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
2753 we want. This difference can be accommodated by using an assembler
2754 define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
2755 string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
2756 macro. See m68k/sgs.h for an example; for versions without the bug.
2757 Some assemblers refuse all the above solutions. The workaround is to
2758 emit "K(pc,d0.l*2)" with K being a small constant known to give the
2761 They also do not like things like "pea 1.w", so we simple leave off
2762 the .w on small constants.
2764 This routine is responsible for distinguishing between -fpic and -fPIC
2765 style relocations in an address. When generating -fpic code the
2766 offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
2767 -fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
2769 #ifndef ASM_OUTPUT_CASE_FETCH
2772 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2773 asm_fprintf (file, "%LLD%d(%Rpc,%s.", labelno, regname)
2775 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2776 asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.", labelno, labelno, regname)
2779 #define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2780 asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:", labelno, labelno, regname)
2782 #endif /* ASM_OUTPUT_CASE_FETCH */
2785 print_operand_address (file, addr)
2789 register rtx reg1, reg2, breg, ireg;
2792 switch (GET_CODE (addr))
2796 fprintf (file, "(%s)", reg_names[REGNO (addr)]);
2798 fprintf (file, "%s@", reg_names[REGNO (addr)]);
2803 fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
2805 fprintf (file, "%s@-", reg_names[REGNO (XEXP (addr, 0))]);
2810 fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
2812 fprintf (file, "%s@+", reg_names[REGNO (XEXP (addr, 0))]);
2816 reg1 = reg2 = ireg = breg = offset = 0;
2817 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
2819 offset = XEXP (addr, 0);
2820 addr = XEXP (addr, 1);
2822 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
2824 offset = XEXP (addr, 1);
2825 addr = XEXP (addr, 0);
2827 if (GET_CODE (addr) != PLUS)
2831 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
2833 reg1 = XEXP (addr, 0);
2834 addr = XEXP (addr, 1);
2836 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
2838 reg1 = XEXP (addr, 1);
2839 addr = XEXP (addr, 0);
2841 else if (GET_CODE (XEXP (addr, 0)) == MULT)
2843 reg1 = XEXP (addr, 0);
2844 addr = XEXP (addr, 1);
2846 else if (GET_CODE (XEXP (addr, 1)) == MULT)
2848 reg1 = XEXP (addr, 1);
2849 addr = XEXP (addr, 0);
2851 else if (GET_CODE (XEXP (addr, 0)) == REG)
2853 reg1 = XEXP (addr, 0);
2854 addr = XEXP (addr, 1);
2856 else if (GET_CODE (XEXP (addr, 1)) == REG)
2858 reg1 = XEXP (addr, 1);
2859 addr = XEXP (addr, 0);
2861 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
2862 || GET_CODE (addr) == SIGN_EXTEND)
2874 #if 0 /* for OLD_INDEXING */
2875 else if (GET_CODE (addr) == PLUS)
2877 if (GET_CODE (XEXP (addr, 0)) == REG)
2879 reg2 = XEXP (addr, 0);
2880 addr = XEXP (addr, 1);
2882 else if (GET_CODE (XEXP (addr, 1)) == REG)
2884 reg2 = XEXP (addr, 1);
2885 addr = XEXP (addr, 0);
2897 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
2898 || GET_CODE (reg1) == MULT))
2899 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
2904 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
2909 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
2910 && ! (flag_pic && ireg == pic_offset_table_rtx))
2913 if (GET_CODE (ireg) == MULT)
2915 scale = INTVAL (XEXP (ireg, 1));
2916 ireg = XEXP (ireg, 0);
2918 if (GET_CODE (ireg) == SIGN_EXTEND)
2920 ASM_OUTPUT_CASE_FETCH (file,
2921 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2922 reg_names[REGNO (XEXP (ireg, 0))]);
2923 fprintf (file, "w");
2927 ASM_OUTPUT_CASE_FETCH (file,
2928 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2929 reg_names[REGNO (ireg)]);
2930 fprintf (file, "l");
2935 fprintf (file, "*%d", scale);
2937 fprintf (file, ":%d", scale);
2943 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
2944 && ! (flag_pic && breg == pic_offset_table_rtx))
2946 ASM_OUTPUT_CASE_FETCH (file,
2947 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2948 reg_names[REGNO (breg)]);
2949 fprintf (file, "l)");
2952 if (ireg != 0 || breg != 0)
2959 if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
2966 output_addr_const (file, addr);
2967 if (flag_pic && (breg == pic_offset_table_rtx))
2969 fprintf (file, "@GOT");
2971 fprintf (file, ".w");
2974 fprintf (file, "(%s", reg_names[REGNO (breg)]);
2980 fprintf (file, "%s@(", reg_names[REGNO (breg)]);
2983 output_addr_const (file, addr);
2984 if ((flag_pic == 1) && (breg == pic_offset_table_rtx))
2985 fprintf (file, ":w");
2986 if ((flag_pic == 2) && (breg == pic_offset_table_rtx))
2987 fprintf (file, ":l");
2989 if (addr != 0 && ireg != 0)
2994 if (ireg != 0 && GET_CODE (ireg) == MULT)
2996 scale = INTVAL (XEXP (ireg, 1));
2997 ireg = XEXP (ireg, 0);
2999 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
3002 fprintf (file, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]);
3004 fprintf (file, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]);
3010 fprintf (file, "%s.l", reg_names[REGNO (ireg)]);
3012 fprintf (file, "%s:l", reg_names[REGNO (ireg)]);
3018 fprintf (file, "*%d", scale);
3020 fprintf (file, ":%d", scale);
3026 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
3027 && ! (flag_pic && reg1 == pic_offset_table_rtx))
3029 ASM_OUTPUT_CASE_FETCH (file,
3030 CODE_LABEL_NUMBER (XEXP (addr, 0)),
3031 reg_names[REGNO (reg1)]);
3032 fprintf (file, "l)");
3035 /* FALL-THROUGH (is this really what we want?) */
3037 if (GET_CODE (addr) == CONST_INT
3038 && INTVAL (addr) < 0x8000
3039 && INTVAL (addr) >= -0x8000)
3043 /* Many SGS assemblers croak on size specifiers for constants. */
3044 fprintf (file, "%d", (int) INTVAL (addr));
3046 fprintf (file, "%d.w", (int) INTVAL (addr));
3049 fprintf (file, "%d:w", (int) INTVAL (addr));
3052 else if (GET_CODE (addr) == CONST_INT)
3054 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
3056 else if (TARGET_PCREL)
3059 output_addr_const (file, addr);
3061 asm_fprintf (file, ":w,%Rpc)");
3063 asm_fprintf (file, ":l,%Rpc)");
3067 /* Special case for SYMBOL_REF if the symbol name ends in
3068 `.<letter>', this can be mistaken as a size suffix. Put
3069 the name in parentheses. */
3070 if (GET_CODE (addr) == SYMBOL_REF
3071 && strlen (XSTR (addr, 0)) > 2
3072 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
3075 output_addr_const (file, addr);
3079 output_addr_const (file, addr);
3085 /* Check for cases where a clr insns can be omitted from code using
3086 strict_low_part sets. For example, the second clrl here is not needed:
3087 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
3089 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
3090 insn we are checking for redundancy. TARGET is the register set by the
3094 strict_low_part_peephole_ok (mode, first_insn, target)
3095 enum machine_mode mode;
3101 p = prev_nonnote_insn (first_insn);
3105 /* If it isn't an insn, then give up. */
3106 if (GET_CODE (p) != INSN)
3109 if (reg_set_p (target, p))
3111 rtx set = single_set (p);
3114 /* If it isn't an easy to recognize insn, then give up. */
3118 dest = SET_DEST (set);
3120 /* If this sets the entire target register to zero, then our
3121 first_insn is redundant. */
3122 if (rtx_equal_p (dest, target)
3123 && SET_SRC (set) == const0_rtx)
3125 else if (GET_CODE (dest) == STRICT_LOW_PART
3126 && GET_CODE (XEXP (dest, 0)) == REG
3127 && REGNO (XEXP (dest, 0)) == REGNO (target)
3128 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
3129 <= GET_MODE_SIZE (mode)))
3130 /* This is a strict low part set which modifies less than
3131 we are using, so it is safe. */
3137 p = prev_nonnote_insn (p);
3144 /* Accept integer operands in the range 0..0xffffffff. We have to check the
3145 range carefully since this predicate is used in DImode contexts. Also, we
3146 need some extra crud to make it work when hosted on 64-bit machines. */
3149 const_uint32_operand (op, mode)
3151 enum machine_mode mode;
3153 /* It doesn't make sense to ask this question with a mode that is
3154 not larger than 32 bits. */
3155 if (GET_MODE_BITSIZE (mode) <= 32)
3158 #if HOST_BITS_PER_WIDE_INT > 32
3159 /* All allowed constants will fit a CONST_INT. */
3160 return (GET_CODE (op) == CONST_INT
3161 && (INTVAL (op) >= 0 && INTVAL (op) <= 0xffffffffL));
3163 return (GET_CODE (op) == CONST_INT
3164 || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0));
3168 /* Accept integer operands in the range -0x80000000..0x7fffffff. We have
3169 to check the range carefully since this predicate is used in DImode
3173 const_sint32_operand (op, mode)
3175 enum machine_mode mode;
3177 /* It doesn't make sense to ask this question with a mode that is
3178 not larger than 32 bits. */
3179 if (GET_MODE_BITSIZE (mode) <= 32)
3182 /* All allowed constants will fit a CONST_INT. */
3183 return (GET_CODE (op) == CONST_INT
3184 && (INTVAL (op) >= (-0x7fffffff - 1) && INTVAL (op) <= 0x7fffffff));
3187 /* Operand predicates for implementing asymmetric pc-relative addressing
3188 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
3189 when used as a source operand, but not as a destination operand.
3191 We model this by restricting the meaning of the basic predicates
3192 (general_operand, memory_operand, etc) to forbid the use of this
3193 addressing mode, and then define the following predicates that permit
3194 this addressing mode. These predicates can then be used for the
3195 source operands of the appropriate instructions.
3197 n.b. While it is theoretically possible to change all machine patterns
3198 to use this addressing more where permitted by the architecture,
3199 it has only been implemented for "common" cases: SImode, HImode, and
3200 QImode operands, and only for the principle operations that would
3201 require this addressing mode: data movement and simple integer operations.
3203 In parallel with these new predicates, two new constraint letters
3204 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
3205 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
3206 In the pcrel case 's' is only valid in combination with 'a' registers.
3207 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
3208 of how these constraints are used.
3210 The use of these predicates is strictly optional, though patterns that
3211 don't will cause an extra reload register to be allocated where one
3214 lea (abc:w,%pc),%a0 ; need to reload address
3215 moveq &1,%d1 ; since write to pc-relative space
3216 movel %d1,%a0@ ; is not allowed
3218 lea (abc:w,%pc),%a1 ; no need to reload address here
3219 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
3221 For more info, consult tiemann@cygnus.com.
3224 All of the ugliness with predicates and constraints is due to the
3225 simple fact that the m68k does not allow a pc-relative addressing
3226 mode as a destination. gcc does not distinguish between source and
3227 destination addresses. Hence, if we claim that pc-relative address
3228 modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
3229 end up with invalid code. To get around this problem, we left
3230 pc-relative modes as invalid addresses, and then added special
3231 predicates and constraints to accept them.
3233 A cleaner way to handle this is to modify gcc to distinguish
3234 between source and destination addresses. We can then say that
3235 pc-relative is a valid source address but not a valid destination
3236 address, and hopefully avoid a lot of the predicate and constraint
3237 hackery. Unfortunately, this would be a pretty big change. It would
3238 be a useful change for a number of ports, but there aren't any current
3239 plans to undertake this.
3241 ***************************************************************************/
3244 /* Special case of a general operand that's used as a source operand.
3245 Use this to permit reads from PC-relative memory when -mpcrel
3249 general_src_operand (op, mode)
3251 enum machine_mode mode;
3254 && GET_CODE (op) == MEM
3255 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3256 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3257 || GET_CODE (XEXP (op, 0)) == CONST))
3259 return general_operand (op, mode);
3262 /* Special case of a nonimmediate operand that's used as a source.
3263 Use this to permit reads from PC-relative memory when -mpcrel
3267 nonimmediate_src_operand (op, mode)
3269 enum machine_mode mode;
3271 if (TARGET_PCREL && GET_CODE (op) == MEM
3272 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3273 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3274 || GET_CODE (XEXP (op, 0)) == CONST))
3276 return nonimmediate_operand (op, mode);
3279 /* Special case of a memory operand that's used as a source.
3280 Use this to permit reads from PC-relative memory when -mpcrel
3284 memory_src_operand (op, mode)
3286 enum machine_mode mode;
3288 if (TARGET_PCREL && GET_CODE (op) == MEM
3289 && (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
3290 || GET_CODE (XEXP (op, 0)) == LABEL_REF
3291 || GET_CODE (XEXP (op, 0)) == CONST))
3293 return memory_operand (op, mode);
3296 /* Predicate that accepts only a pc-relative address. This is needed
3297 because pc-relative addresses don't satisfy the predicate
3298 "general_src_operand". */
3301 pcrel_address (op, mode)
3303 enum machine_mode mode ATTRIBUTE_UNUSED;
3305 return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF
3306 || GET_CODE (op) == CONST);
3310 output_andsi3 (operands)
3314 if (GET_CODE (operands[2]) == CONST_INT
3315 && (INTVAL (operands[2]) | 0xffff) == 0xffffffff
3316 && (DATA_REG_P (operands[0])
3317 || offsettable_memref_p (operands[0]))
3320 if (GET_CODE (operands[0]) != REG)
3321 operands[0] = adjust_address (operands[0], HImode, 2);
3322 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
3323 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3325 if (operands[2] == const0_rtx)
3327 return "and%.w %2,%0";
3329 if (GET_CODE (operands[2]) == CONST_INT
3330 && (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
3331 && (DATA_REG_P (operands[0])
3332 || offsettable_memref_p (operands[0])))
3334 if (DATA_REG_P (operands[0]))
3336 operands[1] = GEN_INT (logval);
3340 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3341 operands[1] = GEN_INT (logval % 8);
3343 /* This does not set condition codes in a standard way. */
3345 return "bclr %1,%0";
3347 return "and%.l %2,%0";
3351 output_iorsi3 (operands)
3354 register int logval;
3355 if (GET_CODE (operands[2]) == CONST_INT
3356 && INTVAL (operands[2]) >> 16 == 0
3357 && (DATA_REG_P (operands[0])
3358 || offsettable_memref_p (operands[0]))
3361 if (GET_CODE (operands[0]) != REG)
3362 operands[0] = adjust_address (operands[0], HImode, 2);
3363 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3365 if (INTVAL (operands[2]) == 0xffff)
3366 return "mov%.w %2,%0";
3367 return "or%.w %2,%0";
3369 if (GET_CODE (operands[2]) == CONST_INT
3370 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3371 && (DATA_REG_P (operands[0])
3372 || offsettable_memref_p (operands[0])))
3374 if (DATA_REG_P (operands[0]))
3375 operands[1] = GEN_INT (logval);
3378 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3379 operands[1] = GEN_INT (logval % 8);
3382 return "bset %1,%0";
3384 return "or%.l %2,%0";
3388 output_xorsi3 (operands)
3391 register int logval;
3392 if (GET_CODE (operands[2]) == CONST_INT
3393 && INTVAL (operands[2]) >> 16 == 0
3394 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
3397 if (! DATA_REG_P (operands[0]))
3398 operands[0] = adjust_address (operands[0], HImode, 2);
3399 /* Do not delete a following tstl %0 insn; that would be incorrect. */
3401 if (INTVAL (operands[2]) == 0xffff)
3403 return "eor%.w %2,%0";
3405 if (GET_CODE (operands[2]) == CONST_INT
3406 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
3407 && (DATA_REG_P (operands[0])
3408 || offsettable_memref_p (operands[0])))
3410 if (DATA_REG_P (operands[0]))
3411 operands[1] = GEN_INT (logval);
3414 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
3415 operands[1] = GEN_INT (logval % 8);
3418 return "bchg %1,%0";
3420 return "eor%.l %2,%0";
3423 /* Output assembly to switch to section NAME with attribute FLAGS. */
3426 m68k_coff_asm_named_section (name, flags)
3432 if (flags & SECTION_WRITE)
3437 fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
3440 #ifdef CTOR_LIST_BEGIN
3442 m68k_svr3_asm_out_constructor (symbol, priority)
3444 int priority ATTRIBUTE_UNUSED;
3449 xop[0] = gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (SImode, stack_pointer_rtx));
3452 output_asm_insn (output_move_simode (xop), xop);