1 /* Definitions of target machine for GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson <wilson@cygnus.com> and
6 David Mosberger <davidm@hpl.hp.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
31 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "conditions.h"
35 #include "insn-attr.h"
43 #include "basic-block.h"
45 #include "diagnostic-core.h"
46 #include "sched-int.h"
49 #include "target-def.h"
52 #include "langhooks.h"
53 #include "cfglayout.h"
60 #include "tm-constrs.h"
61 #include "sel-sched.h"
63 #include "dwarf2out.h"
66 /* This is used for communication between ASM_OUTPUT_LABEL and
67 ASM_OUTPUT_LABELREF. */
68 int ia64_asm_output_label = 0;
70 /* Register names for ia64_expand_prologue. */
71 static const char * const ia64_reg_numbers[96] =
72 { "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
73 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
74 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
75 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
76 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
77 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
78 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
79 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
80 "r96", "r97", "r98", "r99", "r100","r101","r102","r103",
81 "r104","r105","r106","r107","r108","r109","r110","r111",
82 "r112","r113","r114","r115","r116","r117","r118","r119",
83 "r120","r121","r122","r123","r124","r125","r126","r127"};
85 /* ??? These strings could be shared with REGISTER_NAMES. */
86 static const char * const ia64_input_reg_names[8] =
87 { "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7" };
89 /* ??? These strings could be shared with REGISTER_NAMES. */
90 static const char * const ia64_local_reg_names[80] =
91 { "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",
92 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",
93 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",
94 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",
95 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",
96 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",
97 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",
98 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",
99 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",
100 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79" };
102 /* ??? These strings could be shared with REGISTER_NAMES. */
103 static const char * const ia64_output_reg_names[8] =
104 { "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7" };
106 /* Variables which are this size or smaller are put in the sdata/sbss
109 unsigned int ia64_section_threshold;
111 /* The following variable is used by the DFA insn scheduler. The value is
112 TRUE if we do insn bundling instead of insn scheduling. */
124 number_of_ia64_frame_regs
127 /* Structure to be filled in by ia64_compute_frame_size with register
128 save masks and offsets for the current function. */
130 struct ia64_frame_info
132 HOST_WIDE_INT total_size; /* size of the stack frame, not including
133 the caller's scratch area. */
134 HOST_WIDE_INT spill_cfa_off; /* top of the reg spill area from the cfa. */
135 HOST_WIDE_INT spill_size; /* size of the gr/br/fr spill area. */
136 HOST_WIDE_INT extra_spill_size; /* size of spill area for others. */
137 HARD_REG_SET mask; /* mask of saved registers. */
138 unsigned int gr_used_mask; /* mask of registers in use as gr spill
139 registers or long-term scratches. */
140 int n_spilled; /* number of spilled registers. */
141 int r[number_of_ia64_frame_regs]; /* Frame related registers. */
142 int n_input_regs; /* number of input registers used. */
143 int n_local_regs; /* number of local registers used. */
144 int n_output_regs; /* number of output registers used. */
145 int n_rotate_regs; /* number of rotating registers used. */
147 char need_regstk; /* true if a .regstk directive needed. */
148 char initialized; /* true if the data is finalized. */
151 /* Current frame information calculated by ia64_compute_frame_size. */
152 static struct ia64_frame_info current_frame_info;
153 /* The actual registers that are emitted. */
154 static int emitted_frame_related_regs[number_of_ia64_frame_regs];
156 static int ia64_first_cycle_multipass_dfa_lookahead (void);
157 static void ia64_dependencies_evaluation_hook (rtx, rtx);
158 static void ia64_init_dfa_pre_cycle_insn (void);
159 static rtx ia64_dfa_pre_cycle_insn (void);
160 static int ia64_first_cycle_multipass_dfa_lookahead_guard (rtx);
161 static bool ia64_first_cycle_multipass_dfa_lookahead_guard_spec (const_rtx);
162 static int ia64_dfa_new_cycle (FILE *, int, rtx, int, int, int *);
163 static void ia64_h_i_d_extended (void);
164 static void * ia64_alloc_sched_context (void);
165 static void ia64_init_sched_context (void *, bool);
166 static void ia64_set_sched_context (void *);
167 static void ia64_clear_sched_context (void *);
168 static void ia64_free_sched_context (void *);
169 static int ia64_mode_to_int (enum machine_mode);
170 static void ia64_set_sched_flags (spec_info_t);
171 static ds_t ia64_get_insn_spec_ds (rtx);
172 static ds_t ia64_get_insn_checked_ds (rtx);
173 static bool ia64_skip_rtx_p (const_rtx);
174 static int ia64_speculate_insn (rtx, ds_t, rtx *);
175 static bool ia64_needs_block_p (int);
176 static rtx ia64_gen_spec_check (rtx, rtx, ds_t);
177 static int ia64_spec_check_p (rtx);
178 static int ia64_spec_check_src_p (rtx);
179 static rtx gen_tls_get_addr (void);
180 static rtx gen_thread_pointer (void);
181 static int find_gr_spill (enum ia64_frame_regs, int);
182 static int next_scratch_gr_reg (void);
183 static void mark_reg_gr_used_mask (rtx, void *);
184 static void ia64_compute_frame_size (HOST_WIDE_INT);
185 static void setup_spill_pointers (int, rtx, HOST_WIDE_INT);
186 static void finish_spill_pointers (void);
187 static rtx spill_restore_mem (rtx, HOST_WIDE_INT);
188 static void do_spill (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT, rtx);
189 static void do_restore (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT);
190 static rtx gen_movdi_x (rtx, rtx, rtx);
191 static rtx gen_fr_spill_x (rtx, rtx, rtx);
192 static rtx gen_fr_restore_x (rtx, rtx, rtx);
194 static void ia64_option_override (void);
195 static bool ia64_can_eliminate (const int, const int);
196 static enum machine_mode hfa_element_mode (const_tree, bool);
197 static void ia64_setup_incoming_varargs (cumulative_args_t, enum machine_mode,
199 static int ia64_arg_partial_bytes (cumulative_args_t, enum machine_mode,
201 static rtx ia64_function_arg_1 (cumulative_args_t, enum machine_mode,
202 const_tree, bool, bool);
203 static rtx ia64_function_arg (cumulative_args_t, enum machine_mode,
205 static rtx ia64_function_incoming_arg (cumulative_args_t,
206 enum machine_mode, const_tree, bool);
207 static void ia64_function_arg_advance (cumulative_args_t, enum machine_mode,
209 static unsigned int ia64_function_arg_boundary (enum machine_mode,
211 static bool ia64_function_ok_for_sibcall (tree, tree);
212 static bool ia64_return_in_memory (const_tree, const_tree);
213 static rtx ia64_function_value (const_tree, const_tree, bool);
214 static rtx ia64_libcall_value (enum machine_mode, const_rtx);
215 static bool ia64_function_value_regno_p (const unsigned int);
216 static int ia64_register_move_cost (enum machine_mode, reg_class_t,
218 static int ia64_memory_move_cost (enum machine_mode mode, reg_class_t,
220 static bool ia64_rtx_costs (rtx, int, int, int, int *, bool);
221 static int ia64_unspec_may_trap_p (const_rtx, unsigned);
222 static void fix_range (const char *);
223 static struct machine_function * ia64_init_machine_status (void);
224 static void emit_insn_group_barriers (FILE *);
225 static void emit_all_insn_group_barriers (FILE *);
226 static void final_emit_insn_group_barriers (FILE *);
227 static void emit_predicate_relation_info (void);
228 static void ia64_reorg (void);
229 static bool ia64_in_small_data_p (const_tree);
230 static void process_epilogue (FILE *, rtx, bool, bool);
232 static bool ia64_assemble_integer (rtx, unsigned int, int);
233 static void ia64_output_function_prologue (FILE *, HOST_WIDE_INT);
234 static void ia64_output_function_epilogue (FILE *, HOST_WIDE_INT);
235 static void ia64_output_function_end_prologue (FILE *);
237 static void ia64_print_operand (FILE *, rtx, int);
238 static void ia64_print_operand_address (FILE *, rtx);
239 static bool ia64_print_operand_punct_valid_p (unsigned char code);
241 static int ia64_issue_rate (void);
242 static int ia64_adjust_cost_2 (rtx, int, rtx, int, dw_t);
243 static void ia64_sched_init (FILE *, int, int);
244 static void ia64_sched_init_global (FILE *, int, int);
245 static void ia64_sched_finish_global (FILE *, int);
246 static void ia64_sched_finish (FILE *, int);
247 static int ia64_dfa_sched_reorder (FILE *, int, rtx *, int *, int, int);
248 static int ia64_sched_reorder (FILE *, int, rtx *, int *, int);
249 static int ia64_sched_reorder2 (FILE *, int, rtx *, int *, int);
250 static int ia64_variable_issue (FILE *, int, rtx, int);
252 static void ia64_asm_unwind_emit (FILE *, rtx);
253 static void ia64_asm_emit_except_personality (rtx);
254 static void ia64_asm_init_sections (void);
256 static enum unwind_info_type ia64_debug_unwind_info (void);
258 static struct bundle_state *get_free_bundle_state (void);
259 static void free_bundle_state (struct bundle_state *);
260 static void initiate_bundle_states (void);
261 static void finish_bundle_states (void);
262 static unsigned bundle_state_hash (const void *);
263 static int bundle_state_eq_p (const void *, const void *);
264 static int insert_bundle_state (struct bundle_state *);
265 static void initiate_bundle_state_table (void);
266 static void finish_bundle_state_table (void);
267 static int try_issue_nops (struct bundle_state *, int);
268 static int try_issue_insn (struct bundle_state *, rtx);
269 static void issue_nops_and_insn (struct bundle_state *, int, rtx, int, int);
270 static int get_max_pos (state_t);
271 static int get_template (state_t, int);
273 static rtx get_next_important_insn (rtx, rtx);
274 static bool important_for_bundling_p (rtx);
275 static void bundling (FILE *, int, rtx, rtx);
277 static void ia64_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
278 HOST_WIDE_INT, tree);
279 static void ia64_file_start (void);
280 static void ia64_globalize_decl_name (FILE *, tree);
282 static int ia64_hpux_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
283 static int ia64_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
284 static section *ia64_select_rtx_section (enum machine_mode, rtx,
285 unsigned HOST_WIDE_INT);
286 static void ia64_output_dwarf_dtprel (FILE *, int, rtx)
288 static unsigned int ia64_section_type_flags (tree, const char *, int);
289 static void ia64_init_libfuncs (void)
291 static void ia64_hpux_init_libfuncs (void)
293 static void ia64_sysv4_init_libfuncs (void)
295 static void ia64_vms_init_libfuncs (void)
297 static void ia64_soft_fp_init_libfuncs (void)
299 static bool ia64_vms_valid_pointer_mode (enum machine_mode mode)
301 static tree ia64_vms_common_object_attribute (tree *, tree, tree, int, bool *)
304 static tree ia64_handle_model_attribute (tree *, tree, tree, int, bool *);
305 static tree ia64_handle_version_id_attribute (tree *, tree, tree, int, bool *);
306 static void ia64_encode_section_info (tree, rtx, int);
307 static rtx ia64_struct_value_rtx (tree, int);
308 static tree ia64_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
309 static bool ia64_scalar_mode_supported_p (enum machine_mode mode);
310 static bool ia64_vector_mode_supported_p (enum machine_mode mode);
311 static bool ia64_legitimate_constant_p (enum machine_mode, rtx);
312 static bool ia64_legitimate_address_p (enum machine_mode, rtx, bool);
313 static bool ia64_cannot_force_const_mem (enum machine_mode, rtx);
314 static const char *ia64_mangle_type (const_tree);
315 static const char *ia64_invalid_conversion (const_tree, const_tree);
316 static const char *ia64_invalid_unary_op (int, const_tree);
317 static const char *ia64_invalid_binary_op (int, const_tree, const_tree);
318 static enum machine_mode ia64_c_mode_for_suffix (char);
319 static void ia64_trampoline_init (rtx, tree, rtx);
320 static void ia64_override_options_after_change (void);
322 static tree ia64_builtin_decl (unsigned, bool);
324 static reg_class_t ia64_preferred_reload_class (rtx, reg_class_t);
325 static enum machine_mode ia64_get_reg_raw_mode (int regno);
326 static section * ia64_hpux_function_section (tree, enum node_frequency,
329 static bool ia64_vectorize_vec_perm_const_ok (enum machine_mode vmode,
330 const unsigned char *sel);
332 #define MAX_VECT_LEN 8
334 struct expand_vec_perm_d
336 rtx target, op0, op1;
337 unsigned char perm[MAX_VECT_LEN];
338 enum machine_mode vmode;
344 static bool ia64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d);
347 /* Table of valid machine attributes. */
348 static const struct attribute_spec ia64_attribute_table[] =
350 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
351 affects_type_identity } */
352 { "syscall_linkage", 0, 0, false, true, true, NULL, false },
353 { "model", 1, 1, true, false, false, ia64_handle_model_attribute,
355 #if TARGET_ABI_OPEN_VMS
356 { "common_object", 1, 1, true, false, false,
357 ia64_vms_common_object_attribute, false },
359 { "version_id", 1, 1, true, false, false,
360 ia64_handle_version_id_attribute, false },
361 { NULL, 0, 0, false, false, false, NULL, false }
364 /* Initialize the GCC target structure. */
365 #undef TARGET_ATTRIBUTE_TABLE
366 #define TARGET_ATTRIBUTE_TABLE ia64_attribute_table
368 #undef TARGET_INIT_BUILTINS
369 #define TARGET_INIT_BUILTINS ia64_init_builtins
371 #undef TARGET_EXPAND_BUILTIN
372 #define TARGET_EXPAND_BUILTIN ia64_expand_builtin
374 #undef TARGET_BUILTIN_DECL
375 #define TARGET_BUILTIN_DECL ia64_builtin_decl
377 #undef TARGET_ASM_BYTE_OP
378 #define TARGET_ASM_BYTE_OP "\tdata1\t"
379 #undef TARGET_ASM_ALIGNED_HI_OP
380 #define TARGET_ASM_ALIGNED_HI_OP "\tdata2\t"
381 #undef TARGET_ASM_ALIGNED_SI_OP
382 #define TARGET_ASM_ALIGNED_SI_OP "\tdata4\t"
383 #undef TARGET_ASM_ALIGNED_DI_OP
384 #define TARGET_ASM_ALIGNED_DI_OP "\tdata8\t"
385 #undef TARGET_ASM_UNALIGNED_HI_OP
386 #define TARGET_ASM_UNALIGNED_HI_OP "\tdata2.ua\t"
387 #undef TARGET_ASM_UNALIGNED_SI_OP
388 #define TARGET_ASM_UNALIGNED_SI_OP "\tdata4.ua\t"
389 #undef TARGET_ASM_UNALIGNED_DI_OP
390 #define TARGET_ASM_UNALIGNED_DI_OP "\tdata8.ua\t"
391 #undef TARGET_ASM_INTEGER
392 #define TARGET_ASM_INTEGER ia64_assemble_integer
394 #undef TARGET_OPTION_OVERRIDE
395 #define TARGET_OPTION_OVERRIDE ia64_option_override
397 #undef TARGET_ASM_FUNCTION_PROLOGUE
398 #define TARGET_ASM_FUNCTION_PROLOGUE ia64_output_function_prologue
399 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
400 #define TARGET_ASM_FUNCTION_END_PROLOGUE ia64_output_function_end_prologue
401 #undef TARGET_ASM_FUNCTION_EPILOGUE
402 #define TARGET_ASM_FUNCTION_EPILOGUE ia64_output_function_epilogue
404 #undef TARGET_PRINT_OPERAND
405 #define TARGET_PRINT_OPERAND ia64_print_operand
406 #undef TARGET_PRINT_OPERAND_ADDRESS
407 #define TARGET_PRINT_OPERAND_ADDRESS ia64_print_operand_address
408 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
409 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P ia64_print_operand_punct_valid_p
411 #undef TARGET_IN_SMALL_DATA_P
412 #define TARGET_IN_SMALL_DATA_P ia64_in_small_data_p
414 #undef TARGET_SCHED_ADJUST_COST_2
415 #define TARGET_SCHED_ADJUST_COST_2 ia64_adjust_cost_2
416 #undef TARGET_SCHED_ISSUE_RATE
417 #define TARGET_SCHED_ISSUE_RATE ia64_issue_rate
418 #undef TARGET_SCHED_VARIABLE_ISSUE
419 #define TARGET_SCHED_VARIABLE_ISSUE ia64_variable_issue
420 #undef TARGET_SCHED_INIT
421 #define TARGET_SCHED_INIT ia64_sched_init
422 #undef TARGET_SCHED_FINISH
423 #define TARGET_SCHED_FINISH ia64_sched_finish
424 #undef TARGET_SCHED_INIT_GLOBAL
425 #define TARGET_SCHED_INIT_GLOBAL ia64_sched_init_global
426 #undef TARGET_SCHED_FINISH_GLOBAL
427 #define TARGET_SCHED_FINISH_GLOBAL ia64_sched_finish_global
428 #undef TARGET_SCHED_REORDER
429 #define TARGET_SCHED_REORDER ia64_sched_reorder
430 #undef TARGET_SCHED_REORDER2
431 #define TARGET_SCHED_REORDER2 ia64_sched_reorder2
433 #undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
434 #define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK ia64_dependencies_evaluation_hook
436 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
437 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ia64_first_cycle_multipass_dfa_lookahead
439 #undef TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN
440 #define TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN ia64_init_dfa_pre_cycle_insn
441 #undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
442 #define TARGET_SCHED_DFA_PRE_CYCLE_INSN ia64_dfa_pre_cycle_insn
444 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
445 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD\
446 ia64_first_cycle_multipass_dfa_lookahead_guard
448 #undef TARGET_SCHED_DFA_NEW_CYCLE
449 #define TARGET_SCHED_DFA_NEW_CYCLE ia64_dfa_new_cycle
451 #undef TARGET_SCHED_H_I_D_EXTENDED
452 #define TARGET_SCHED_H_I_D_EXTENDED ia64_h_i_d_extended
454 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
455 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT ia64_alloc_sched_context
457 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
458 #define TARGET_SCHED_INIT_SCHED_CONTEXT ia64_init_sched_context
460 #undef TARGET_SCHED_SET_SCHED_CONTEXT
461 #define TARGET_SCHED_SET_SCHED_CONTEXT ia64_set_sched_context
463 #undef TARGET_SCHED_CLEAR_SCHED_CONTEXT
464 #define TARGET_SCHED_CLEAR_SCHED_CONTEXT ia64_clear_sched_context
466 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
467 #define TARGET_SCHED_FREE_SCHED_CONTEXT ia64_free_sched_context
469 #undef TARGET_SCHED_SET_SCHED_FLAGS
470 #define TARGET_SCHED_SET_SCHED_FLAGS ia64_set_sched_flags
472 #undef TARGET_SCHED_GET_INSN_SPEC_DS
473 #define TARGET_SCHED_GET_INSN_SPEC_DS ia64_get_insn_spec_ds
475 #undef TARGET_SCHED_GET_INSN_CHECKED_DS
476 #define TARGET_SCHED_GET_INSN_CHECKED_DS ia64_get_insn_checked_ds
478 #undef TARGET_SCHED_SPECULATE_INSN
479 #define TARGET_SCHED_SPECULATE_INSN ia64_speculate_insn
481 #undef TARGET_SCHED_NEEDS_BLOCK_P
482 #define TARGET_SCHED_NEEDS_BLOCK_P ia64_needs_block_p
484 #undef TARGET_SCHED_GEN_SPEC_CHECK
485 #define TARGET_SCHED_GEN_SPEC_CHECK ia64_gen_spec_check
487 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
488 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC\
489 ia64_first_cycle_multipass_dfa_lookahead_guard_spec
491 #undef TARGET_SCHED_SKIP_RTX_P
492 #define TARGET_SCHED_SKIP_RTX_P ia64_skip_rtx_p
494 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
495 #define TARGET_FUNCTION_OK_FOR_SIBCALL ia64_function_ok_for_sibcall
496 #undef TARGET_ARG_PARTIAL_BYTES
497 #define TARGET_ARG_PARTIAL_BYTES ia64_arg_partial_bytes
498 #undef TARGET_FUNCTION_ARG
499 #define TARGET_FUNCTION_ARG ia64_function_arg
500 #undef TARGET_FUNCTION_INCOMING_ARG
501 #define TARGET_FUNCTION_INCOMING_ARG ia64_function_incoming_arg
502 #undef TARGET_FUNCTION_ARG_ADVANCE
503 #define TARGET_FUNCTION_ARG_ADVANCE ia64_function_arg_advance
504 #undef TARGET_FUNCTION_ARG_BOUNDARY
505 #define TARGET_FUNCTION_ARG_BOUNDARY ia64_function_arg_boundary
507 #undef TARGET_ASM_OUTPUT_MI_THUNK
508 #define TARGET_ASM_OUTPUT_MI_THUNK ia64_output_mi_thunk
509 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
510 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
512 #undef TARGET_ASM_FILE_START
513 #define TARGET_ASM_FILE_START ia64_file_start
515 #undef TARGET_ASM_GLOBALIZE_DECL_NAME
516 #define TARGET_ASM_GLOBALIZE_DECL_NAME ia64_globalize_decl_name
518 #undef TARGET_REGISTER_MOVE_COST
519 #define TARGET_REGISTER_MOVE_COST ia64_register_move_cost
520 #undef TARGET_MEMORY_MOVE_COST
521 #define TARGET_MEMORY_MOVE_COST ia64_memory_move_cost
522 #undef TARGET_RTX_COSTS
523 #define TARGET_RTX_COSTS ia64_rtx_costs
524 #undef TARGET_ADDRESS_COST
525 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
527 #undef TARGET_UNSPEC_MAY_TRAP_P
528 #define TARGET_UNSPEC_MAY_TRAP_P ia64_unspec_may_trap_p
530 #undef TARGET_MACHINE_DEPENDENT_REORG
531 #define TARGET_MACHINE_DEPENDENT_REORG ia64_reorg
533 #undef TARGET_ENCODE_SECTION_INFO
534 #define TARGET_ENCODE_SECTION_INFO ia64_encode_section_info
536 #undef TARGET_SECTION_TYPE_FLAGS
537 #define TARGET_SECTION_TYPE_FLAGS ia64_section_type_flags
540 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
541 #define TARGET_ASM_OUTPUT_DWARF_DTPREL ia64_output_dwarf_dtprel
544 /* ??? Investigate. */
546 #undef TARGET_PROMOTE_PROTOTYPES
547 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
550 #undef TARGET_FUNCTION_VALUE
551 #define TARGET_FUNCTION_VALUE ia64_function_value
552 #undef TARGET_LIBCALL_VALUE
553 #define TARGET_LIBCALL_VALUE ia64_libcall_value
554 #undef TARGET_FUNCTION_VALUE_REGNO_P
555 #define TARGET_FUNCTION_VALUE_REGNO_P ia64_function_value_regno_p
557 #undef TARGET_STRUCT_VALUE_RTX
558 #define TARGET_STRUCT_VALUE_RTX ia64_struct_value_rtx
559 #undef TARGET_RETURN_IN_MEMORY
560 #define TARGET_RETURN_IN_MEMORY ia64_return_in_memory
561 #undef TARGET_SETUP_INCOMING_VARARGS
562 #define TARGET_SETUP_INCOMING_VARARGS ia64_setup_incoming_varargs
563 #undef TARGET_STRICT_ARGUMENT_NAMING
564 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
565 #undef TARGET_MUST_PASS_IN_STACK
566 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
567 #undef TARGET_GET_RAW_RESULT_MODE
568 #define TARGET_GET_RAW_RESULT_MODE ia64_get_reg_raw_mode
569 #undef TARGET_GET_RAW_ARG_MODE
570 #define TARGET_GET_RAW_ARG_MODE ia64_get_reg_raw_mode
572 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
573 #define TARGET_GIMPLIFY_VA_ARG_EXPR ia64_gimplify_va_arg
575 #undef TARGET_ASM_UNWIND_EMIT
576 #define TARGET_ASM_UNWIND_EMIT ia64_asm_unwind_emit
577 #undef TARGET_ASM_EMIT_EXCEPT_PERSONALITY
578 #define TARGET_ASM_EMIT_EXCEPT_PERSONALITY ia64_asm_emit_except_personality
579 #undef TARGET_ASM_INIT_SECTIONS
580 #define TARGET_ASM_INIT_SECTIONS ia64_asm_init_sections
582 #undef TARGET_DEBUG_UNWIND_INFO
583 #define TARGET_DEBUG_UNWIND_INFO ia64_debug_unwind_info
585 #undef TARGET_SCALAR_MODE_SUPPORTED_P
586 #define TARGET_SCALAR_MODE_SUPPORTED_P ia64_scalar_mode_supported_p
587 #undef TARGET_VECTOR_MODE_SUPPORTED_P
588 #define TARGET_VECTOR_MODE_SUPPORTED_P ia64_vector_mode_supported_p
590 /* ia64 architecture manual 4.4.7: ... reads, writes, and flushes may occur
591 in an order different from the specified program order. */
592 #undef TARGET_RELAXED_ORDERING
593 #define TARGET_RELAXED_ORDERING true
595 #undef TARGET_LEGITIMATE_CONSTANT_P
596 #define TARGET_LEGITIMATE_CONSTANT_P ia64_legitimate_constant_p
597 #undef TARGET_LEGITIMATE_ADDRESS_P
598 #define TARGET_LEGITIMATE_ADDRESS_P ia64_legitimate_address_p
600 #undef TARGET_CANNOT_FORCE_CONST_MEM
601 #define TARGET_CANNOT_FORCE_CONST_MEM ia64_cannot_force_const_mem
603 #undef TARGET_MANGLE_TYPE
604 #define TARGET_MANGLE_TYPE ia64_mangle_type
606 #undef TARGET_INVALID_CONVERSION
607 #define TARGET_INVALID_CONVERSION ia64_invalid_conversion
608 #undef TARGET_INVALID_UNARY_OP
609 #define TARGET_INVALID_UNARY_OP ia64_invalid_unary_op
610 #undef TARGET_INVALID_BINARY_OP
611 #define TARGET_INVALID_BINARY_OP ia64_invalid_binary_op
613 #undef TARGET_C_MODE_FOR_SUFFIX
614 #define TARGET_C_MODE_FOR_SUFFIX ia64_c_mode_for_suffix
616 #undef TARGET_CAN_ELIMINATE
617 #define TARGET_CAN_ELIMINATE ia64_can_eliminate
619 #undef TARGET_TRAMPOLINE_INIT
620 #define TARGET_TRAMPOLINE_INIT ia64_trampoline_init
622 #undef TARGET_INVALID_WITHIN_DOLOOP
623 #define TARGET_INVALID_WITHIN_DOLOOP hook_constcharptr_const_rtx_null
625 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
626 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE ia64_override_options_after_change
628 #undef TARGET_PREFERRED_RELOAD_CLASS
629 #define TARGET_PREFERRED_RELOAD_CLASS ia64_preferred_reload_class
631 #undef TARGET_DELAY_SCHED2
632 #define TARGET_DELAY_SCHED2 true
634 /* Variable tracking should be run after all optimizations which
635 change order of insns. It also needs a valid CFG. */
636 #undef TARGET_DELAY_VARTRACK
637 #define TARGET_DELAY_VARTRACK true
639 #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
640 #define TARGET_VECTORIZE_VEC_PERM_CONST_OK ia64_vectorize_vec_perm_const_ok
642 struct gcc_target targetm = TARGET_INITIALIZER;
646 ADDR_AREA_NORMAL, /* normal address area */
647 ADDR_AREA_SMALL /* addressable by "addl" (-2MB < addr < 2MB) */
651 static GTY(()) tree small_ident1;
652 static GTY(()) tree small_ident2;
657 if (small_ident1 == 0)
659 small_ident1 = get_identifier ("small");
660 small_ident2 = get_identifier ("__small__");
664 /* Retrieve the address area that has been chosen for the given decl. */
666 static ia64_addr_area
667 ia64_get_addr_area (tree decl)
671 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
677 id = TREE_VALUE (TREE_VALUE (model_attr));
678 if (id == small_ident1 || id == small_ident2)
679 return ADDR_AREA_SMALL;
681 return ADDR_AREA_NORMAL;
685 ia64_handle_model_attribute (tree *node, tree name, tree args,
686 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
688 ia64_addr_area addr_area = ADDR_AREA_NORMAL;
690 tree arg, decl = *node;
693 arg = TREE_VALUE (args);
694 if (arg == small_ident1 || arg == small_ident2)
696 addr_area = ADDR_AREA_SMALL;
700 warning (OPT_Wattributes, "invalid argument of %qE attribute",
702 *no_add_attrs = true;
705 switch (TREE_CODE (decl))
708 if ((DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl))
710 && !TREE_STATIC (decl))
712 error_at (DECL_SOURCE_LOCATION (decl),
713 "an address area attribute cannot be specified for "
715 *no_add_attrs = true;
717 area = ia64_get_addr_area (decl);
718 if (area != ADDR_AREA_NORMAL && addr_area != area)
720 error ("address area of %q+D conflicts with previous "
721 "declaration", decl);
722 *no_add_attrs = true;
727 error_at (DECL_SOURCE_LOCATION (decl),
728 "address area attribute cannot be specified for "
730 *no_add_attrs = true;
734 warning (OPT_Wattributes, "%qE attribute ignored",
736 *no_add_attrs = true;
743 /* The section must have global and overlaid attributes. */
744 #define SECTION_VMS_OVERLAY SECTION_MACH_DEP
746 /* Part of the low level implementation of DEC Ada pragma Common_Object which
747 enables the shared use of variables stored in overlaid linker areas
748 corresponding to the use of Fortran COMMON. */
751 ia64_vms_common_object_attribute (tree *node, tree name, tree args,
752 int flags ATTRIBUTE_UNUSED,
760 DECL_COMMON (decl) = 1;
761 id = TREE_VALUE (args);
762 if (TREE_CODE (id) == IDENTIFIER_NODE)
763 val = build_string (IDENTIFIER_LENGTH (id), IDENTIFIER_POINTER (id));
764 else if (TREE_CODE (id) == STRING_CST)
768 warning (OPT_Wattributes,
769 "%qE attribute requires a string constant argument", name);
770 *no_add_attrs = true;
773 DECL_SECTION_NAME (decl) = val;
777 /* Part of the low level implementation of DEC Ada pragma Common_Object. */
780 ia64_vms_output_aligned_decl_common (FILE *file, tree decl, const char *name,
781 unsigned HOST_WIDE_INT size,
784 tree attr = DECL_ATTRIBUTES (decl);
786 /* As common_object attribute set DECL_SECTION_NAME check it before
787 looking up the attribute. */
788 if (DECL_SECTION_NAME (decl) && attr)
789 attr = lookup_attribute ("common_object", attr);
795 /* Code from elfos.h. */
796 fprintf (file, "%s", COMMON_ASM_OP);
797 assemble_name (file, name);
798 fprintf (file, ","HOST_WIDE_INT_PRINT_UNSIGNED",%u\n",
799 size, align / BITS_PER_UNIT);
803 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
804 ASM_OUTPUT_LABEL (file, name);
805 ASM_OUTPUT_SKIP (file, size ? size : 1);
809 /* Definition of TARGET_ASM_NAMED_SECTION for VMS. */
812 ia64_vms_elf_asm_named_section (const char *name, unsigned int flags,
815 if (!(flags & SECTION_VMS_OVERLAY))
817 default_elf_asm_named_section (name, flags, decl);
820 if (flags != (SECTION_VMS_OVERLAY | SECTION_WRITE))
823 if (flags & SECTION_DECLARED)
825 fprintf (asm_out_file, "\t.section\t%s\n", name);
829 fprintf (asm_out_file, "\t.section\t%s,\"awgO\"\n", name);
833 ia64_encode_addr_area (tree decl, rtx symbol)
837 flags = SYMBOL_REF_FLAGS (symbol);
838 switch (ia64_get_addr_area (decl))
840 case ADDR_AREA_NORMAL: break;
841 case ADDR_AREA_SMALL: flags |= SYMBOL_FLAG_SMALL_ADDR; break;
842 default: gcc_unreachable ();
844 SYMBOL_REF_FLAGS (symbol) = flags;
848 ia64_encode_section_info (tree decl, rtx rtl, int first)
850 default_encode_section_info (decl, rtl, first);
852 /* Careful not to prod global register variables. */
853 if (TREE_CODE (decl) == VAR_DECL
854 && GET_CODE (DECL_RTL (decl)) == MEM
855 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF
856 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
857 ia64_encode_addr_area (decl, XEXP (rtl, 0));
860 /* Return 1 if the operands of a move are ok. */
863 ia64_move_ok (rtx dst, rtx src)
865 /* If we're under init_recog_no_volatile, we'll not be able to use
866 memory_operand. So check the code directly and don't worry about
867 the validity of the underlying address, which should have been
868 checked elsewhere anyway. */
869 if (GET_CODE (dst) != MEM)
871 if (GET_CODE (src) == MEM)
873 if (register_operand (src, VOIDmode))
876 /* Otherwise, this must be a constant, and that either 0 or 0.0 or 1.0. */
877 if (INTEGRAL_MODE_P (GET_MODE (dst)))
878 return src == const0_rtx;
880 return satisfies_constraint_G (src);
883 /* Return 1 if the operands are ok for a floating point load pair. */
886 ia64_load_pair_ok (rtx dst, rtx src)
888 if (GET_CODE (dst) != REG || !FP_REGNO_P (REGNO (dst)))
890 if (GET_CODE (src) != MEM || MEM_VOLATILE_P (src))
892 switch (GET_CODE (XEXP (src, 0)))
901 rtx adjust = XEXP (XEXP (XEXP (src, 0), 1), 1);
903 if (GET_CODE (adjust) != CONST_INT
904 || INTVAL (adjust) != GET_MODE_SIZE (GET_MODE (src)))
915 addp4_optimize_ok (rtx op1, rtx op2)
917 return (basereg_operand (op1, GET_MODE(op1)) !=
918 basereg_operand (op2, GET_MODE(op2)));
921 /* Check if OP is a mask suitable for use with SHIFT in a dep.z instruction.
922 Return the length of the field, or <= 0 on failure. */
925 ia64_depz_field_mask (rtx rop, rtx rshift)
927 unsigned HOST_WIDE_INT op = INTVAL (rop);
928 unsigned HOST_WIDE_INT shift = INTVAL (rshift);
930 /* Get rid of the zero bits we're shifting in. */
933 /* We must now have a solid block of 1's at bit 0. */
934 return exact_log2 (op + 1);
937 /* Return the TLS model to use for ADDR. */
939 static enum tls_model
940 tls_symbolic_operand_type (rtx addr)
942 enum tls_model tls_kind = TLS_MODEL_NONE;
944 if (GET_CODE (addr) == CONST)
946 if (GET_CODE (XEXP (addr, 0)) == PLUS
947 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
948 tls_kind = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (addr, 0), 0));
950 else if (GET_CODE (addr) == SYMBOL_REF)
951 tls_kind = SYMBOL_REF_TLS_MODEL (addr);
956 /* Returns true if REG (assumed to be a `reg' RTX) is valid for use
957 as a base register. */
960 ia64_reg_ok_for_base_p (const_rtx reg, bool strict)
963 && REGNO_OK_FOR_BASE_P (REGNO (reg)))
966 && (GENERAL_REGNO_P (REGNO (reg))
967 || !HARD_REGISTER_P (reg)))
974 ia64_legitimate_address_reg (const_rtx reg, bool strict)
976 if ((REG_P (reg) && ia64_reg_ok_for_base_p (reg, strict))
977 || (GET_CODE (reg) == SUBREG && REG_P (XEXP (reg, 0))
978 && ia64_reg_ok_for_base_p (XEXP (reg, 0), strict)))
985 ia64_legitimate_address_disp (const_rtx reg, const_rtx disp, bool strict)
987 if (GET_CODE (disp) == PLUS
988 && rtx_equal_p (reg, XEXP (disp, 0))
989 && (ia64_legitimate_address_reg (XEXP (disp, 1), strict)
990 || (CONST_INT_P (XEXP (disp, 1))
991 && IN_RANGE (INTVAL (XEXP (disp, 1)), -256, 255))))
997 /* Implement TARGET_LEGITIMATE_ADDRESS_P. */
1000 ia64_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1003 if (ia64_legitimate_address_reg (x, strict))
1005 else if ((GET_CODE (x) == POST_INC || GET_CODE (x) == POST_DEC)
1006 && ia64_legitimate_address_reg (XEXP (x, 0), strict)
1007 && XEXP (x, 0) != arg_pointer_rtx)
1009 else if (GET_CODE (x) == POST_MODIFY
1010 && ia64_legitimate_address_reg (XEXP (x, 0), strict)
1011 && XEXP (x, 0) != arg_pointer_rtx
1012 && ia64_legitimate_address_disp (XEXP (x, 0), XEXP (x, 1), strict))
1018 /* Return true if X is a constant that is valid for some immediate
1019 field in an instruction. */
1022 ia64_legitimate_constant_p (enum machine_mode mode, rtx x)
1024 switch (GET_CODE (x))
1031 if (GET_MODE (x) == VOIDmode || mode == SFmode || mode == DFmode)
1033 return satisfies_constraint_G (x);
1037 /* ??? Short term workaround for PR 28490. We must make the code here
1038 match the code in ia64_expand_move and move_operand, even though they
1039 are both technically wrong. */
1040 if (tls_symbolic_operand_type (x) == 0)
1042 HOST_WIDE_INT addend = 0;
1045 if (GET_CODE (op) == CONST
1046 && GET_CODE (XEXP (op, 0)) == PLUS
1047 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
1049 addend = INTVAL (XEXP (XEXP (op, 0), 1));
1050 op = XEXP (XEXP (op, 0), 0);
1053 if (any_offset_symbol_operand (op, mode)
1054 || function_operand (op, mode))
1056 if (aligned_offset_symbol_operand (op, mode))
1057 return (addend & 0x3fff) == 0;
1063 if (mode == V2SFmode)
1064 return satisfies_constraint_Y (x);
1066 return (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
1067 && GET_MODE_SIZE (mode) <= 8);
1074 /* Don't allow TLS addresses to get spilled to memory. */
1077 ia64_cannot_force_const_mem (enum machine_mode mode, rtx x)
1081 return tls_symbolic_operand_type (x) != 0;
1084 /* Expand a symbolic constant load. */
1087 ia64_expand_load_address (rtx dest, rtx src)
1089 gcc_assert (GET_CODE (dest) == REG);
1091 /* ILP32 mode still loads 64-bits of data from the GOT. This avoids
1092 having to pointer-extend the value afterward. Other forms of address
1093 computation below are also more natural to compute as 64-bit quantities.
1094 If we've been given an SImode destination register, change it. */
1095 if (GET_MODE (dest) != Pmode)
1096 dest = gen_rtx_REG_offset (dest, Pmode, REGNO (dest),
1097 byte_lowpart_offset (Pmode, GET_MODE (dest)));
1101 if (small_addr_symbolic_operand (src, VOIDmode))
1104 if (TARGET_AUTO_PIC)
1105 emit_insn (gen_load_gprel64 (dest, src));
1106 else if (GET_CODE (src) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (src))
1107 emit_insn (gen_load_fptr (dest, src));
1108 else if (sdata_symbolic_operand (src, VOIDmode))
1109 emit_insn (gen_load_gprel (dest, src));
1112 HOST_WIDE_INT addend = 0;
1115 /* We did split constant offsets in ia64_expand_move, and we did try
1116 to keep them split in move_operand, but we also allowed reload to
1117 rematerialize arbitrary constants rather than spill the value to
1118 the stack and reload it. So we have to be prepared here to split
1119 them apart again. */
1120 if (GET_CODE (src) == CONST)
1122 HOST_WIDE_INT hi, lo;
1124 hi = INTVAL (XEXP (XEXP (src, 0), 1));
1125 lo = ((hi & 0x3fff) ^ 0x2000) - 0x2000;
1131 src = plus_constant (XEXP (XEXP (src, 0), 0), hi);
1135 tmp = gen_rtx_HIGH (Pmode, src);
1136 tmp = gen_rtx_PLUS (Pmode, tmp, pic_offset_table_rtx);
1137 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
1139 tmp = gen_rtx_LO_SUM (Pmode, gen_const_mem (Pmode, dest), src);
1140 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
1144 tmp = gen_rtx_PLUS (Pmode, dest, GEN_INT (addend));
1145 emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
1152 static GTY(()) rtx gen_tls_tga;
1154 gen_tls_get_addr (void)
1157 gen_tls_tga = init_one_libfunc ("__tls_get_addr");
1161 static GTY(()) rtx thread_pointer_rtx;
1163 gen_thread_pointer (void)
1165 if (!thread_pointer_rtx)
1166 thread_pointer_rtx = gen_rtx_REG (Pmode, 13);
1167 return thread_pointer_rtx;
1171 ia64_expand_tls_address (enum tls_model tls_kind, rtx op0, rtx op1,
1172 rtx orig_op1, HOST_WIDE_INT addend)
1174 rtx tga_op1, tga_op2, tga_ret, tga_eqv, tmp, insns;
1176 HOST_WIDE_INT addend_lo, addend_hi;
1180 case TLS_MODEL_GLOBAL_DYNAMIC:
1183 tga_op1 = gen_reg_rtx (Pmode);
1184 emit_insn (gen_load_dtpmod (tga_op1, op1));
1186 tga_op2 = gen_reg_rtx (Pmode);
1187 emit_insn (gen_load_dtprel (tga_op2, op1));
1189 tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
1190 LCT_CONST, Pmode, 2, tga_op1,
1191 Pmode, tga_op2, Pmode);
1193 insns = get_insns ();
1196 if (GET_MODE (op0) != Pmode)
1198 emit_libcall_block (insns, op0, tga_ret, op1);
1201 case TLS_MODEL_LOCAL_DYNAMIC:
1202 /* ??? This isn't the completely proper way to do local-dynamic
1203 If the call to __tls_get_addr is used only by a single symbol,
1204 then we should (somehow) move the dtprel to the second arg
1205 to avoid the extra add. */
1208 tga_op1 = gen_reg_rtx (Pmode);
1209 emit_insn (gen_load_dtpmod (tga_op1, op1));
1211 tga_op2 = const0_rtx;
1213 tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
1214 LCT_CONST, Pmode, 2, tga_op1,
1215 Pmode, tga_op2, Pmode);
1217 insns = get_insns ();
1220 tga_eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
1222 tmp = gen_reg_rtx (Pmode);
1223 emit_libcall_block (insns, tmp, tga_ret, tga_eqv);
1225 if (!register_operand (op0, Pmode))
1226 op0 = gen_reg_rtx (Pmode);
1229 emit_insn (gen_load_dtprel (op0, op1));
1230 emit_insn (gen_adddi3 (op0, tmp, op0));
1233 emit_insn (gen_add_dtprel (op0, op1, tmp));
1236 case TLS_MODEL_INITIAL_EXEC:
1237 addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
1238 addend_hi = addend - addend_lo;
1240 op1 = plus_constant (op1, addend_hi);
1243 tmp = gen_reg_rtx (Pmode);
1244 emit_insn (gen_load_tprel (tmp, op1));
1246 if (!register_operand (op0, Pmode))
1247 op0 = gen_reg_rtx (Pmode);
1248 emit_insn (gen_adddi3 (op0, tmp, gen_thread_pointer ()));
1251 case TLS_MODEL_LOCAL_EXEC:
1252 if (!register_operand (op0, Pmode))
1253 op0 = gen_reg_rtx (Pmode);
1259 emit_insn (gen_load_tprel (op0, op1));
1260 emit_insn (gen_adddi3 (op0, op0, gen_thread_pointer ()));
1263 emit_insn (gen_add_tprel (op0, op1, gen_thread_pointer ()));
1271 op0 = expand_simple_binop (Pmode, PLUS, op0, GEN_INT (addend),
1272 orig_op0, 1, OPTAB_DIRECT);
1273 if (orig_op0 == op0)
1275 if (GET_MODE (orig_op0) == Pmode)
1277 return gen_lowpart (GET_MODE (orig_op0), op0);
1281 ia64_expand_move (rtx op0, rtx op1)
1283 enum machine_mode mode = GET_MODE (op0);
1285 if (!reload_in_progress && !reload_completed && !ia64_move_ok (op0, op1))
1286 op1 = force_reg (mode, op1);
1288 if ((mode == Pmode || mode == ptr_mode) && symbolic_operand (op1, VOIDmode))
1290 HOST_WIDE_INT addend = 0;
1291 enum tls_model tls_kind;
1294 if (GET_CODE (op1) == CONST
1295 && GET_CODE (XEXP (op1, 0)) == PLUS
1296 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT)
1298 addend = INTVAL (XEXP (XEXP (op1, 0), 1));
1299 sym = XEXP (XEXP (op1, 0), 0);
1302 tls_kind = tls_symbolic_operand_type (sym);
1304 return ia64_expand_tls_address (tls_kind, op0, sym, op1, addend);
1306 if (any_offset_symbol_operand (sym, mode))
1308 else if (aligned_offset_symbol_operand (sym, mode))
1310 HOST_WIDE_INT addend_lo, addend_hi;
1312 addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
1313 addend_hi = addend - addend_lo;
1317 op1 = plus_constant (sym, addend_hi);
1326 if (reload_completed)
1328 /* We really should have taken care of this offset earlier. */
1329 gcc_assert (addend == 0);
1330 if (ia64_expand_load_address (op0, op1))
1336 rtx subtarget = !can_create_pseudo_p () ? op0 : gen_reg_rtx (mode);
1338 emit_insn (gen_rtx_SET (VOIDmode, subtarget, op1));
1340 op1 = expand_simple_binop (mode, PLUS, subtarget,
1341 GEN_INT (addend), op0, 1, OPTAB_DIRECT);
1350 /* Split a move from OP1 to OP0 conditional on COND. */
1353 ia64_emit_cond_move (rtx op0, rtx op1, rtx cond)
1355 rtx insn, first = get_last_insn ();
1357 emit_move_insn (op0, op1);
1359 for (insn = get_last_insn (); insn != first; insn = PREV_INSN (insn))
1361 PATTERN (insn) = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond),
1365 /* Split a post-reload TImode or TFmode reference into two DImode
1366 components. This is made extra difficult by the fact that we do
1367 not get any scratch registers to work with, because reload cannot
1368 be prevented from giving us a scratch that overlaps the register
1369 pair involved. So instead, when addressing memory, we tweak the
1370 pointer register up and back down with POST_INCs. Or up and not
1371 back down when we can get away with it.
1373 REVERSED is true when the loads must be done in reversed order
1374 (high word first) for correctness. DEAD is true when the pointer
1375 dies with the second insn we generate and therefore the second
1376 address must not carry a postmodify.
1378 May return an insn which is to be emitted after the moves. */
1381 ia64_split_tmode (rtx out[2], rtx in, bool reversed, bool dead)
1385 switch (GET_CODE (in))
1388 out[reversed] = gen_rtx_REG (DImode, REGNO (in));
1389 out[!reversed] = gen_rtx_REG (DImode, REGNO (in) + 1);
1394 /* Cannot occur reversed. */
1395 gcc_assert (!reversed);
1397 if (GET_MODE (in) != TFmode)
1398 split_double (in, &out[0], &out[1]);
1400 /* split_double does not understand how to split a TFmode
1401 quantity into a pair of DImode constants. */
1404 unsigned HOST_WIDE_INT p[2];
1405 long l[4]; /* TFmode is 128 bits */
1407 REAL_VALUE_FROM_CONST_DOUBLE (r, in);
1408 real_to_target (l, &r, TFmode);
1410 if (FLOAT_WORDS_BIG_ENDIAN)
1412 p[0] = (((unsigned HOST_WIDE_INT) l[0]) << 32) + l[1];
1413 p[1] = (((unsigned HOST_WIDE_INT) l[2]) << 32) + l[3];
1417 p[0] = (((unsigned HOST_WIDE_INT) l[1]) << 32) + l[0];
1418 p[1] = (((unsigned HOST_WIDE_INT) l[3]) << 32) + l[2];
1420 out[0] = GEN_INT (p[0]);
1421 out[1] = GEN_INT (p[1]);
1427 rtx base = XEXP (in, 0);
1430 switch (GET_CODE (base))
1435 out[0] = adjust_automodify_address
1436 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1437 out[1] = adjust_automodify_address
1438 (in, DImode, dead ? 0 : gen_rtx_POST_DEC (Pmode, base), 8);
1442 /* Reversal requires a pre-increment, which can only
1443 be done as a separate insn. */
1444 emit_insn (gen_adddi3 (base, base, GEN_INT (8)));
1445 out[0] = adjust_automodify_address
1446 (in, DImode, gen_rtx_POST_DEC (Pmode, base), 8);
1447 out[1] = adjust_address (in, DImode, 0);
1452 gcc_assert (!reversed && !dead);
1454 /* Just do the increment in two steps. */
1455 out[0] = adjust_automodify_address (in, DImode, 0, 0);
1456 out[1] = adjust_automodify_address (in, DImode, 0, 8);
1460 gcc_assert (!reversed && !dead);
1462 /* Add 8, subtract 24. */
1463 base = XEXP (base, 0);
1464 out[0] = adjust_automodify_address
1465 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1466 out[1] = adjust_automodify_address
1468 gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, -24)),
1473 gcc_assert (!reversed && !dead);
1475 /* Extract and adjust the modification. This case is
1476 trickier than the others, because we might have an
1477 index register, or we might have a combined offset that
1478 doesn't fit a signed 9-bit displacement field. We can
1479 assume the incoming expression is already legitimate. */
1480 offset = XEXP (base, 1);
1481 base = XEXP (base, 0);
1483 out[0] = adjust_automodify_address
1484 (in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
1486 if (GET_CODE (XEXP (offset, 1)) == REG)
1488 /* Can't adjust the postmodify to match. Emit the
1489 original, then a separate addition insn. */
1490 out[1] = adjust_automodify_address (in, DImode, 0, 8);
1491 fixup = gen_adddi3 (base, base, GEN_INT (-8));
1495 gcc_assert (GET_CODE (XEXP (offset, 1)) == CONST_INT);
1496 if (INTVAL (XEXP (offset, 1)) < -256 + 8)
1498 /* Again the postmodify cannot be made to match,
1499 but in this case it's more efficient to get rid
1500 of the postmodify entirely and fix up with an
1502 out[1] = adjust_automodify_address (in, DImode, base, 8);
1504 (base, base, GEN_INT (INTVAL (XEXP (offset, 1)) - 8));
1508 /* Combined offset still fits in the displacement field.
1509 (We cannot overflow it at the high end.) */
1510 out[1] = adjust_automodify_address
1511 (in, DImode, gen_rtx_POST_MODIFY
1512 (Pmode, base, gen_rtx_PLUS
1514 GEN_INT (INTVAL (XEXP (offset, 1)) - 8))),
1533 /* Split a TImode or TFmode move instruction after reload.
1534 This is used by *movtf_internal and *movti_internal. */
1536 ia64_split_tmode_move (rtx operands[])
1538 rtx in[2], out[2], insn;
1541 bool reversed = false;
1543 /* It is possible for reload to decide to overwrite a pointer with
1544 the value it points to. In that case we have to do the loads in
1545 the appropriate order so that the pointer is not destroyed too
1546 early. Also we must not generate a postmodify for that second
1547 load, or rws_access_regno will die. */
1548 if (GET_CODE (operands[1]) == MEM
1549 && reg_overlap_mentioned_p (operands[0], operands[1]))
1551 rtx base = XEXP (operands[1], 0);
1552 while (GET_CODE (base) != REG)
1553 base = XEXP (base, 0);
1555 if (REGNO (base) == REGNO (operands[0]))
1559 /* Another reason to do the moves in reversed order is if the first
1560 element of the target register pair is also the second element of
1561 the source register pair. */
1562 if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
1563 && REGNO (operands[0]) == REGNO (operands[1]) + 1)
1566 fixup[0] = ia64_split_tmode (in, operands[1], reversed, dead);
1567 fixup[1] = ia64_split_tmode (out, operands[0], reversed, dead);
1569 #define MAYBE_ADD_REG_INC_NOTE(INSN, EXP) \
1570 if (GET_CODE (EXP) == MEM \
1571 && (GET_CODE (XEXP (EXP, 0)) == POST_MODIFY \
1572 || GET_CODE (XEXP (EXP, 0)) == POST_INC \
1573 || GET_CODE (XEXP (EXP, 0)) == POST_DEC)) \
1574 add_reg_note (insn, REG_INC, XEXP (XEXP (EXP, 0), 0))
1576 insn = emit_insn (gen_rtx_SET (VOIDmode, out[0], in[0]));
1577 MAYBE_ADD_REG_INC_NOTE (insn, in[0]);
1578 MAYBE_ADD_REG_INC_NOTE (insn, out[0]);
1580 insn = emit_insn (gen_rtx_SET (VOIDmode, out[1], in[1]));
1581 MAYBE_ADD_REG_INC_NOTE (insn, in[1]);
1582 MAYBE_ADD_REG_INC_NOTE (insn, out[1]);
1585 emit_insn (fixup[0]);
1587 emit_insn (fixup[1]);
1589 #undef MAYBE_ADD_REG_INC_NOTE
1592 /* ??? Fixing GR->FR XFmode moves during reload is hard. You need to go
1593 through memory plus an extra GR scratch register. Except that you can
1594 either get the first from SECONDARY_MEMORY_NEEDED or the second from
1595 SECONDARY_RELOAD_CLASS, but not both.
1597 We got into problems in the first place by allowing a construct like
1598 (subreg:XF (reg:TI)), which we got from a union containing a long double.
1599 This solution attempts to prevent this situation from occurring. When
1600 we see something like the above, we spill the inner register to memory. */
1603 spill_xfmode_rfmode_operand (rtx in, int force, enum machine_mode mode)
1605 if (GET_CODE (in) == SUBREG
1606 && GET_MODE (SUBREG_REG (in)) == TImode
1607 && GET_CODE (SUBREG_REG (in)) == REG)
1609 rtx memt = assign_stack_temp (TImode, 16, 0);
1610 emit_move_insn (memt, SUBREG_REG (in));
1611 return adjust_address (memt, mode, 0);
1613 else if (force && GET_CODE (in) == REG)
1615 rtx memx = assign_stack_temp (mode, 16, 0);
1616 emit_move_insn (memx, in);
1623 /* Expand the movxf or movrf pattern (MODE says which) with the given
1624 OPERANDS, returning true if the pattern should then invoke
1628 ia64_expand_movxf_movrf (enum machine_mode mode, rtx operands[])
1630 rtx op0 = operands[0];
1632 if (GET_CODE (op0) == SUBREG)
1633 op0 = SUBREG_REG (op0);
1635 /* We must support XFmode loads into general registers for stdarg/vararg,
1636 unprototyped calls, and a rare case where a long double is passed as
1637 an argument after a float HFA fills the FP registers. We split them into
1638 DImode loads for convenience. We also need to support XFmode stores
1639 for the last case. This case does not happen for stdarg/vararg routines,
1640 because we do a block store to memory of unnamed arguments. */
1642 if (GET_CODE (op0) == REG && GR_REGNO_P (REGNO (op0)))
1646 /* We're hoping to transform everything that deals with XFmode
1647 quantities and GR registers early in the compiler. */
1648 gcc_assert (can_create_pseudo_p ());
1650 /* Struct to register can just use TImode instead. */
1651 if ((GET_CODE (operands[1]) == SUBREG
1652 && GET_MODE (SUBREG_REG (operands[1])) == TImode)
1653 || (GET_CODE (operands[1]) == REG
1654 && GR_REGNO_P (REGNO (operands[1]))))
1656 rtx op1 = operands[1];
1658 if (GET_CODE (op1) == SUBREG)
1659 op1 = SUBREG_REG (op1);
1661 op1 = gen_rtx_REG (TImode, REGNO (op1));
1663 emit_move_insn (gen_rtx_REG (TImode, REGNO (op0)), op1);
1667 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1669 /* Don't word-swap when reading in the constant. */
1670 emit_move_insn (gen_rtx_REG (DImode, REGNO (op0)),
1671 operand_subword (operands[1], WORDS_BIG_ENDIAN,
1673 emit_move_insn (gen_rtx_REG (DImode, REGNO (op0) + 1),
1674 operand_subword (operands[1], !WORDS_BIG_ENDIAN,
1679 /* If the quantity is in a register not known to be GR, spill it. */
1680 if (register_operand (operands[1], mode))
1681 operands[1] = spill_xfmode_rfmode_operand (operands[1], 1, mode);
1683 gcc_assert (GET_CODE (operands[1]) == MEM);
1685 /* Don't word-swap when reading in the value. */
1686 out[0] = gen_rtx_REG (DImode, REGNO (op0));
1687 out[1] = gen_rtx_REG (DImode, REGNO (op0) + 1);
1689 emit_move_insn (out[0], adjust_address (operands[1], DImode, 0));
1690 emit_move_insn (out[1], adjust_address (operands[1], DImode, 8));
1694 if (GET_CODE (operands[1]) == REG && GR_REGNO_P (REGNO (operands[1])))
1696 /* We're hoping to transform everything that deals with XFmode
1697 quantities and GR registers early in the compiler. */
1698 gcc_assert (can_create_pseudo_p ());
1700 /* Op0 can't be a GR_REG here, as that case is handled above.
1701 If op0 is a register, then we spill op1, so that we now have a
1702 MEM operand. This requires creating an XFmode subreg of a TImode reg
1703 to force the spill. */
1704 if (register_operand (operands[0], mode))
1706 rtx op1 = gen_rtx_REG (TImode, REGNO (operands[1]));
1707 op1 = gen_rtx_SUBREG (mode, op1, 0);
1708 operands[1] = spill_xfmode_rfmode_operand (op1, 0, mode);
1715 gcc_assert (GET_CODE (operands[0]) == MEM);
1717 /* Don't word-swap when writing out the value. */
1718 in[0] = gen_rtx_REG (DImode, REGNO (operands[1]));
1719 in[1] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
1721 emit_move_insn (adjust_address (operands[0], DImode, 0), in[0]);
1722 emit_move_insn (adjust_address (operands[0], DImode, 8), in[1]);
1727 if (!reload_in_progress && !reload_completed)
1729 operands[1] = spill_xfmode_rfmode_operand (operands[1], 0, mode);
1731 if (GET_MODE (op0) == TImode && GET_CODE (op0) == REG)
1733 rtx memt, memx, in = operands[1];
1734 if (CONSTANT_P (in))
1735 in = validize_mem (force_const_mem (mode, in));
1736 if (GET_CODE (in) == MEM)
1737 memt = adjust_address (in, TImode, 0);
1740 memt = assign_stack_temp (TImode, 16, 0);
1741 memx = adjust_address (memt, mode, 0);
1742 emit_move_insn (memx, in);
1744 emit_move_insn (op0, memt);
1748 if (!ia64_move_ok (operands[0], operands[1]))
1749 operands[1] = force_reg (mode, operands[1]);
1755 /* Emit comparison instruction if necessary, replacing *EXPR, *OP0, *OP1
1756 with the expression that holds the compare result (in VOIDmode). */
1758 static GTY(()) rtx cmptf_libfunc;
1761 ia64_expand_compare (rtx *expr, rtx *op0, rtx *op1)
1763 enum rtx_code code = GET_CODE (*expr);
1766 /* If we have a BImode input, then we already have a compare result, and
1767 do not need to emit another comparison. */
1768 if (GET_MODE (*op0) == BImode)
1770 gcc_assert ((code == NE || code == EQ) && *op1 == const0_rtx);
1773 /* HPUX TFmode compare requires a library call to _U_Qfcmp, which takes a
1774 magic number as its third argument, that indicates what to do.
1775 The return value is an integer to be compared against zero. */
1776 else if (TARGET_HPUX && GET_MODE (*op0) == TFmode)
1779 QCMP_INV = 1, /* Raise FP_INVALID on SNaN as a side effect. */
1786 enum rtx_code ncode;
1789 gcc_assert (cmptf_libfunc && GET_MODE (*op1) == TFmode);
1792 /* 1 = equal, 0 = not equal. Equality operators do
1793 not raise FP_INVALID when given an SNaN operand. */
1794 case EQ: magic = QCMP_EQ; ncode = NE; break;
1795 case NE: magic = QCMP_EQ; ncode = EQ; break;
1796 /* isunordered() from C99. */
1797 case UNORDERED: magic = QCMP_UNORD; ncode = NE; break;
1798 case ORDERED: magic = QCMP_UNORD; ncode = EQ; break;
1799 /* Relational operators raise FP_INVALID when given
1801 case LT: magic = QCMP_LT |QCMP_INV; ncode = NE; break;
1802 case LE: magic = QCMP_LT|QCMP_EQ|QCMP_INV; ncode = NE; break;
1803 case GT: magic = QCMP_GT |QCMP_INV; ncode = NE; break;
1804 case GE: magic = QCMP_GT|QCMP_EQ|QCMP_INV; ncode = NE; break;
1805 /* FUTURE: Implement UNEQ, UNLT, UNLE, UNGT, UNGE, LTGT.
1806 Expanders for buneq etc. weuld have to be added to ia64.md
1807 for this to be useful. */
1808 default: gcc_unreachable ();
1813 ret = emit_library_call_value (cmptf_libfunc, 0, LCT_CONST, DImode, 3,
1814 *op0, TFmode, *op1, TFmode,
1815 GEN_INT (magic), DImode);
1816 cmp = gen_reg_rtx (BImode);
1817 emit_insn (gen_rtx_SET (VOIDmode, cmp,
1818 gen_rtx_fmt_ee (ncode, BImode,
1821 insns = get_insns ();
1824 emit_libcall_block (insns, cmp, cmp,
1825 gen_rtx_fmt_ee (code, BImode, *op0, *op1));
1830 cmp = gen_reg_rtx (BImode);
1831 emit_insn (gen_rtx_SET (VOIDmode, cmp,
1832 gen_rtx_fmt_ee (code, BImode, *op0, *op1)));
1836 *expr = gen_rtx_fmt_ee (code, VOIDmode, cmp, const0_rtx);
1841 /* Generate an integral vector comparison. Return true if the condition has
1842 been reversed, and so the sense of the comparison should be inverted. */
1845 ia64_expand_vecint_compare (enum rtx_code code, enum machine_mode mode,
1846 rtx dest, rtx op0, rtx op1)
1848 bool negate = false;
1851 /* Canonicalize the comparison to EQ, GT, GTU. */
1862 code = reverse_condition (code);
1868 code = reverse_condition (code);
1874 code = swap_condition (code);
1875 x = op0, op0 = op1, op1 = x;
1882 /* Unsigned parallel compare is not supported by the hardware. Play some
1883 tricks to turn this into a signed comparison against 0. */
1892 /* Subtract (-(INT MAX) - 1) from both operands to make
1894 mask = GEN_INT (0x80000000);
1895 mask = gen_rtx_CONST_VECTOR (V2SImode, gen_rtvec (2, mask, mask));
1896 mask = force_reg (mode, mask);
1897 t1 = gen_reg_rtx (mode);
1898 emit_insn (gen_subv2si3 (t1, op0, mask));
1899 t2 = gen_reg_rtx (mode);
1900 emit_insn (gen_subv2si3 (t2, op1, mask));
1909 /* Perform a parallel unsigned saturating subtraction. */
1910 x = gen_reg_rtx (mode);
1911 emit_insn (gen_rtx_SET (VOIDmode, x,
1912 gen_rtx_US_MINUS (mode, op0, op1)));
1916 op1 = CONST0_RTX (mode);
1925 x = gen_rtx_fmt_ee (code, mode, op0, op1);
1926 emit_insn (gen_rtx_SET (VOIDmode, dest, x));
1931 /* Emit an integral vector conditional move. */
1934 ia64_expand_vecint_cmov (rtx operands[])
1936 enum machine_mode mode = GET_MODE (operands[0]);
1937 enum rtx_code code = GET_CODE (operands[3]);
1941 cmp = gen_reg_rtx (mode);
1942 negate = ia64_expand_vecint_compare (code, mode, cmp,
1943 operands[4], operands[5]);
1945 ot = operands[1+negate];
1946 of = operands[2-negate];
1948 if (ot == CONST0_RTX (mode))
1950 if (of == CONST0_RTX (mode))
1952 emit_move_insn (operands[0], ot);
1956 x = gen_rtx_NOT (mode, cmp);
1957 x = gen_rtx_AND (mode, x, of);
1958 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1960 else if (of == CONST0_RTX (mode))
1962 x = gen_rtx_AND (mode, cmp, ot);
1963 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1969 t = gen_reg_rtx (mode);
1970 x = gen_rtx_AND (mode, cmp, operands[1+negate]);
1971 emit_insn (gen_rtx_SET (VOIDmode, t, x));
1973 f = gen_reg_rtx (mode);
1974 x = gen_rtx_NOT (mode, cmp);
1975 x = gen_rtx_AND (mode, x, operands[2-negate]);
1976 emit_insn (gen_rtx_SET (VOIDmode, f, x));
1978 x = gen_rtx_IOR (mode, t, f);
1979 emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
1983 /* Emit an integral vector min or max operation. Return true if all done. */
1986 ia64_expand_vecint_minmax (enum rtx_code code, enum machine_mode mode,
1991 /* These four combinations are supported directly. */
1992 if (mode == V8QImode && (code == UMIN || code == UMAX))
1994 if (mode == V4HImode && (code == SMIN || code == SMAX))
1997 /* This combination can be implemented with only saturating subtraction. */
1998 if (mode == V4HImode && code == UMAX)
2000 rtx x, tmp = gen_reg_rtx (mode);
2002 x = gen_rtx_US_MINUS (mode, operands[1], operands[2]);
2003 emit_insn (gen_rtx_SET (VOIDmode, tmp, x));
2005 emit_insn (gen_addv4hi3 (operands[0], tmp, operands[2]));
2009 /* Everything else implemented via vector comparisons. */
2010 xops[0] = operands[0];
2011 xops[4] = xops[1] = operands[1];
2012 xops[5] = xops[2] = operands[2];
2031 xops[3] = gen_rtx_fmt_ee (code, VOIDmode, operands[1], operands[2]);
2033 ia64_expand_vecint_cmov (xops);
2037 /* The vectors LO and HI each contain N halves of a double-wide vector.
2038 Reassemble either the first N/2 or the second N/2 elements. */
2041 ia64_unpack_assemble (rtx out, rtx lo, rtx hi, bool highp)
2043 enum machine_mode vmode = GET_MODE (lo);
2044 unsigned int i, high, nelt = GET_MODE_NUNITS (vmode);
2045 struct expand_vec_perm_d d;
2048 d.target = gen_lowpart (vmode, out);
2049 d.op0 = (TARGET_BIG_ENDIAN ? hi : lo);
2050 d.op1 = (TARGET_BIG_ENDIAN ? lo : hi);
2053 d.one_operand_p = false;
2054 d.testing_p = false;
2056 high = (highp ? nelt / 2 : 0);
2057 for (i = 0; i < nelt / 2; ++i)
2059 d.perm[i * 2] = i + high;
2060 d.perm[i * 2 + 1] = i + high + nelt;
2063 ok = ia64_expand_vec_perm_const_1 (&d);
2067 /* Return a vector of the sign-extension of VEC. */
2070 ia64_unpack_sign (rtx vec, bool unsignedp)
2072 enum machine_mode mode = GET_MODE (vec);
2073 rtx zero = CONST0_RTX (mode);
2079 rtx sign = gen_reg_rtx (mode);
2082 neg = ia64_expand_vecint_compare (LT, mode, sign, vec, zero);
2089 /* Emit an integral vector unpack operation. */
2092 ia64_expand_unpack (rtx operands[3], bool unsignedp, bool highp)
2094 rtx sign = ia64_unpack_sign (operands[1], unsignedp);
2095 ia64_unpack_assemble (operands[0], operands[1], sign, highp);
2098 /* Emit an integral vector widening sum operations. */
2101 ia64_expand_widen_sum (rtx operands[3], bool unsignedp)
2103 enum machine_mode wmode;
2106 sign = ia64_unpack_sign (operands[1], unsignedp);
2108 wmode = GET_MODE (operands[0]);
2109 l = gen_reg_rtx (wmode);
2110 h = gen_reg_rtx (wmode);
2112 ia64_unpack_assemble (l, operands[1], sign, false);
2113 ia64_unpack_assemble (h, operands[1], sign, true);
2115 t = expand_binop (wmode, add_optab, l, operands[2], NULL, 0, OPTAB_DIRECT);
2116 t = expand_binop (wmode, add_optab, h, t, operands[0], 0, OPTAB_DIRECT);
2117 if (t != operands[0])
2118 emit_move_insn (operands[0], t);
2121 /* Emit a signed or unsigned V8QI dot product operation. */
2124 ia64_expand_dot_prod_v8qi (rtx operands[4], bool unsignedp)
2126 rtx op1, op2, sn1, sn2, l1, l2, h1, h2;
2127 rtx p1, p2, p3, p4, s1, s2, s3;
2131 sn1 = ia64_unpack_sign (op1, unsignedp);
2132 sn2 = ia64_unpack_sign (op2, unsignedp);
2134 l1 = gen_reg_rtx (V4HImode);
2135 l2 = gen_reg_rtx (V4HImode);
2136 h1 = gen_reg_rtx (V4HImode);
2137 h2 = gen_reg_rtx (V4HImode);
2138 ia64_unpack_assemble (l1, op1, sn1, false);
2139 ia64_unpack_assemble (l2, op2, sn2, false);
2140 ia64_unpack_assemble (h1, op1, sn1, true);
2141 ia64_unpack_assemble (h2, op2, sn2, true);
2143 p1 = gen_reg_rtx (V2SImode);
2144 p2 = gen_reg_rtx (V2SImode);
2145 p3 = gen_reg_rtx (V2SImode);
2146 p4 = gen_reg_rtx (V2SImode);
2147 emit_insn (gen_pmpy2_even (p1, l1, l2));
2148 emit_insn (gen_pmpy2_even (p2, h1, h2));
2149 emit_insn (gen_pmpy2_odd (p3, l1, l2));
2150 emit_insn (gen_pmpy2_odd (p4, h1, h2));
2152 s1 = gen_reg_rtx (V2SImode);
2153 s2 = gen_reg_rtx (V2SImode);
2154 s3 = gen_reg_rtx (V2SImode);
2155 emit_insn (gen_addv2si3 (s1, p1, p2));
2156 emit_insn (gen_addv2si3 (s2, p3, p4));
2157 emit_insn (gen_addv2si3 (s3, s1, operands[3]));
2158 emit_insn (gen_addv2si3 (operands[0], s2, s3));
2161 /* Emit the appropriate sequence for a call. */
2164 ia64_expand_call (rtx retval, rtx addr, rtx nextarg ATTRIBUTE_UNUSED,
2169 addr = XEXP (addr, 0);
2170 addr = convert_memory_address (DImode, addr);
2171 b0 = gen_rtx_REG (DImode, R_BR (0));
2173 /* ??? Should do this for functions known to bind local too. */
2174 if (TARGET_NO_PIC || TARGET_AUTO_PIC)
2177 insn = gen_sibcall_nogp (addr);
2179 insn = gen_call_nogp (addr, b0);
2181 insn = gen_call_value_nogp (retval, addr, b0);
2182 insn = emit_call_insn (insn);
2187 insn = gen_sibcall_gp (addr);
2189 insn = gen_call_gp (addr, b0);
2191 insn = gen_call_value_gp (retval, addr, b0);
2192 insn = emit_call_insn (insn);
2194 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
2198 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), b0);
2200 if (TARGET_ABI_OPEN_VMS)
2201 use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
2202 gen_rtx_REG (DImode, GR_REG (25)));
2206 reg_emitted (enum ia64_frame_regs r)
2208 if (emitted_frame_related_regs[r] == 0)
2209 emitted_frame_related_regs[r] = current_frame_info.r[r];
2211 gcc_assert (emitted_frame_related_regs[r] == current_frame_info.r[r]);
2215 get_reg (enum ia64_frame_regs r)
2218 return current_frame_info.r[r];
2222 is_emitted (int regno)
2226 for (r = reg_fp; r < number_of_ia64_frame_regs; r++)
2227 if (emitted_frame_related_regs[r] == regno)
2233 ia64_reload_gp (void)
2237 if (current_frame_info.r[reg_save_gp])
2239 tmp = gen_rtx_REG (DImode, get_reg (reg_save_gp));
2243 HOST_WIDE_INT offset;
2246 offset = (current_frame_info.spill_cfa_off
2247 + current_frame_info.spill_size);
2248 if (frame_pointer_needed)
2250 tmp = hard_frame_pointer_rtx;
2255 tmp = stack_pointer_rtx;
2256 offset = current_frame_info.total_size - offset;
2259 offset_r = GEN_INT (offset);
2260 if (satisfies_constraint_I (offset_r))
2261 emit_insn (gen_adddi3 (pic_offset_table_rtx, tmp, offset_r));
2264 emit_move_insn (pic_offset_table_rtx, offset_r);
2265 emit_insn (gen_adddi3 (pic_offset_table_rtx,
2266 pic_offset_table_rtx, tmp));
2269 tmp = gen_rtx_MEM (DImode, pic_offset_table_rtx);
2272 emit_move_insn (pic_offset_table_rtx, tmp);
2276 ia64_split_call (rtx retval, rtx addr, rtx retaddr, rtx scratch_r,
2277 rtx scratch_b, int noreturn_p, int sibcall_p)
2280 bool is_desc = false;
2282 /* If we find we're calling through a register, then we're actually
2283 calling through a descriptor, so load up the values. */
2284 if (REG_P (addr) && GR_REGNO_P (REGNO (addr)))
2289 /* ??? We are currently constrained to *not* use peep2, because
2290 we can legitimately change the global lifetime of the GP
2291 (in the form of killing where previously live). This is
2292 because a call through a descriptor doesn't use the previous
2293 value of the GP, while a direct call does, and we do not
2294 commit to either form until the split here.
2296 That said, this means that we lack precise life info for
2297 whether ADDR is dead after this call. This is not terribly
2298 important, since we can fix things up essentially for free
2299 with the POST_DEC below, but it's nice to not use it when we
2300 can immediately tell it's not necessary. */
2301 addr_dead_p = ((noreturn_p || sibcall_p
2302 || TEST_HARD_REG_BIT (regs_invalidated_by_call,
2304 && !FUNCTION_ARG_REGNO_P (REGNO (addr)));
2306 /* Load the code address into scratch_b. */
2307 tmp = gen_rtx_POST_INC (Pmode, addr);
2308 tmp = gen_rtx_MEM (Pmode, tmp);
2309 emit_move_insn (scratch_r, tmp);
2310 emit_move_insn (scratch_b, scratch_r);
2312 /* Load the GP address. If ADDR is not dead here, then we must
2313 revert the change made above via the POST_INCREMENT. */
2315 tmp = gen_rtx_POST_DEC (Pmode, addr);
2318 tmp = gen_rtx_MEM (Pmode, tmp);
2319 emit_move_insn (pic_offset_table_rtx, tmp);
2326 insn = gen_sibcall_nogp (addr);
2328 insn = gen_call_value_nogp (retval, addr, retaddr);
2330 insn = gen_call_nogp (addr, retaddr);
2331 emit_call_insn (insn);
2333 if ((!TARGET_CONST_GP || is_desc) && !noreturn_p && !sibcall_p)
2337 /* Expand an atomic operation. We want to perform MEM <CODE>= VAL atomically.
2339 This differs from the generic code in that we know about the zero-extending
2340 properties of cmpxchg, and the zero-extending requirements of ar.ccv. We
2341 also know that ld.acq+cmpxchg.rel equals a full barrier.
2343 The loop we want to generate looks like
2348 new_reg = cmp_reg op val;
2349 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
2350 if (cmp_reg != old_reg)
2353 Note that we only do the plain load from memory once. Subsequent
2354 iterations use the value loaded by the compare-and-swap pattern. */
2357 ia64_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
2358 rtx old_dst, rtx new_dst, enum memmodel model)
2360 enum machine_mode mode = GET_MODE (mem);
2361 rtx old_reg, new_reg, cmp_reg, ar_ccv, label;
2362 enum insn_code icode;
2364 /* Special case for using fetchadd. */
2365 if ((mode == SImode || mode == DImode)
2366 && (code == PLUS || code == MINUS)
2367 && fetchadd_operand (val, mode))
2370 val = GEN_INT (-INTVAL (val));
2373 old_dst = gen_reg_rtx (mode);
2377 case MEMMODEL_ACQ_REL:
2378 case MEMMODEL_SEQ_CST:
2379 emit_insn (gen_memory_barrier ());
2381 case MEMMODEL_RELAXED:
2382 case MEMMODEL_ACQUIRE:
2383 case MEMMODEL_CONSUME:
2385 icode = CODE_FOR_fetchadd_acq_si;
2387 icode = CODE_FOR_fetchadd_acq_di;
2389 case MEMMODEL_RELEASE:
2391 icode = CODE_FOR_fetchadd_rel_si;
2393 icode = CODE_FOR_fetchadd_rel_di;
2400 emit_insn (GEN_FCN (icode) (old_dst, mem, val));
2404 new_reg = expand_simple_binop (mode, PLUS, old_dst, val, new_dst,
2406 if (new_reg != new_dst)
2407 emit_move_insn (new_dst, new_reg);
2412 /* Because of the volatile mem read, we get an ld.acq, which is the
2413 front half of the full barrier. The end half is the cmpxchg.rel.
2414 For relaxed and release memory models, we don't need this. But we
2415 also don't bother trying to prevent it either. */
2416 gcc_assert (model == MEMMODEL_RELAXED
2417 || model == MEMMODEL_RELEASE
2418 || MEM_VOLATILE_P (mem));
2420 old_reg = gen_reg_rtx (DImode);
2421 cmp_reg = gen_reg_rtx (DImode);
2422 label = gen_label_rtx ();
2426 val = simplify_gen_subreg (DImode, val, mode, 0);
2427 emit_insn (gen_extend_insn (cmp_reg, mem, DImode, mode, 1));
2430 emit_move_insn (cmp_reg, mem);
2434 ar_ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
2435 emit_move_insn (old_reg, cmp_reg);
2436 emit_move_insn (ar_ccv, cmp_reg);
2439 emit_move_insn (old_dst, gen_lowpart (mode, cmp_reg));
2444 new_reg = expand_simple_binop (DImode, AND, new_reg, val, NULL_RTX,
2445 true, OPTAB_DIRECT);
2446 new_reg = expand_simple_unop (DImode, code, new_reg, NULL_RTX, true);
2449 new_reg = expand_simple_binop (DImode, code, new_reg, val, NULL_RTX,
2450 true, OPTAB_DIRECT);
2453 new_reg = gen_lowpart (mode, new_reg);
2455 emit_move_insn (new_dst, new_reg);
2459 case MEMMODEL_RELAXED:
2460 case MEMMODEL_ACQUIRE:
2461 case MEMMODEL_CONSUME:
2464 case QImode: icode = CODE_FOR_cmpxchg_acq_qi; break;
2465 case HImode: icode = CODE_FOR_cmpxchg_acq_hi; break;
2466 case SImode: icode = CODE_FOR_cmpxchg_acq_si; break;
2467 case DImode: icode = CODE_FOR_cmpxchg_acq_di; break;
2473 case MEMMODEL_RELEASE:
2474 case MEMMODEL_ACQ_REL:
2475 case MEMMODEL_SEQ_CST:
2478 case QImode: icode = CODE_FOR_cmpxchg_rel_qi; break;
2479 case HImode: icode = CODE_FOR_cmpxchg_rel_hi; break;
2480 case SImode: icode = CODE_FOR_cmpxchg_rel_si; break;
2481 case DImode: icode = CODE_FOR_cmpxchg_rel_di; break;
2491 emit_insn (GEN_FCN (icode) (cmp_reg, mem, ar_ccv, new_reg));
2493 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, NULL, DImode, true, label);
2496 /* Begin the assembly file. */
2499 ia64_file_start (void)
2501 default_file_start ();
2502 emit_safe_across_calls ();
2506 emit_safe_across_calls (void)
2508 unsigned int rs, re;
2515 while (rs < 64 && call_used_regs[PR_REG (rs)])
2519 for (re = rs + 1; re < 64 && ! call_used_regs[PR_REG (re)]; re++)
2523 fputs ("\t.pred.safe_across_calls ", asm_out_file);
2527 fputc (',', asm_out_file);
2529 fprintf (asm_out_file, "p%u", rs);
2531 fprintf (asm_out_file, "p%u-p%u", rs, re - 1);
2535 fputc ('\n', asm_out_file);
2538 /* Globalize a declaration. */
2541 ia64_globalize_decl_name (FILE * stream, tree decl)
2543 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
2544 tree version_attr = lookup_attribute ("version_id", DECL_ATTRIBUTES (decl));
2547 tree v = TREE_VALUE (TREE_VALUE (version_attr));
2548 const char *p = TREE_STRING_POINTER (v);
2549 fprintf (stream, "\t.alias %s#, \"%s{%s}\"\n", name, name, p);
2551 targetm.asm_out.globalize_label (stream, name);
2552 if (TREE_CODE (decl) == FUNCTION_DECL)
2553 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
2556 /* Helper function for ia64_compute_frame_size: find an appropriate general
2557 register to spill some special register to. SPECIAL_SPILL_MASK contains
2558 bits in GR0 to GR31 that have already been allocated by this routine.
2559 TRY_LOCALS is true if we should attempt to locate a local regnum. */
2562 find_gr_spill (enum ia64_frame_regs r, int try_locals)
2566 if (emitted_frame_related_regs[r] != 0)
2568 regno = emitted_frame_related_regs[r];
2569 if (regno >= LOC_REG (0) && regno < LOC_REG (80 - frame_pointer_needed)
2570 && current_frame_info.n_local_regs < regno - LOC_REG (0) + 1)
2571 current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
2572 else if (current_function_is_leaf
2573 && regno >= GR_REG (1) && regno <= GR_REG (31))
2574 current_frame_info.gr_used_mask |= 1 << regno;
2579 /* If this is a leaf function, first try an otherwise unused
2580 call-clobbered register. */
2581 if (current_function_is_leaf)
2583 for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
2584 if (! df_regs_ever_live_p (regno)
2585 && call_used_regs[regno]
2586 && ! fixed_regs[regno]
2587 && ! global_regs[regno]
2588 && ((current_frame_info.gr_used_mask >> regno) & 1) == 0
2589 && ! is_emitted (regno))
2591 current_frame_info.gr_used_mask |= 1 << regno;
2598 regno = current_frame_info.n_local_regs;
2599 /* If there is a frame pointer, then we can't use loc79, because
2600 that is HARD_FRAME_POINTER_REGNUM. In particular, see the
2601 reg_name switching code in ia64_expand_prologue. */
2602 while (regno < (80 - frame_pointer_needed))
2603 if (! is_emitted (LOC_REG (regno++)))
2605 current_frame_info.n_local_regs = regno;
2606 return LOC_REG (regno - 1);
2610 /* Failed to find a general register to spill to. Must use stack. */
2614 /* In order to make for nice schedules, we try to allocate every temporary
2615 to a different register. We must of course stay away from call-saved,
2616 fixed, and global registers. We must also stay away from registers
2617 allocated in current_frame_info.gr_used_mask, since those include regs
2618 used all through the prologue.
2620 Any register allocated here must be used immediately. The idea is to
2621 aid scheduling, not to solve data flow problems. */
2623 static int last_scratch_gr_reg;
2626 next_scratch_gr_reg (void)
2630 for (i = 0; i < 32; ++i)
2632 regno = (last_scratch_gr_reg + i + 1) & 31;
2633 if (call_used_regs[regno]
2634 && ! fixed_regs[regno]
2635 && ! global_regs[regno]
2636 && ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
2638 last_scratch_gr_reg = regno;
2643 /* There must be _something_ available. */
2647 /* Helper function for ia64_compute_frame_size, called through
2648 diddle_return_value. Mark REG in current_frame_info.gr_used_mask. */
2651 mark_reg_gr_used_mask (rtx reg, void *data ATTRIBUTE_UNUSED)
2653 unsigned int regno = REGNO (reg);
2656 unsigned int i, n = hard_regno_nregs[regno][GET_MODE (reg)];
2657 for (i = 0; i < n; ++i)
2658 current_frame_info.gr_used_mask |= 1 << (regno + i);
2663 /* Returns the number of bytes offset between the frame pointer and the stack
2664 pointer for the current function. SIZE is the number of bytes of space
2665 needed for local variables. */
2668 ia64_compute_frame_size (HOST_WIDE_INT size)
2670 HOST_WIDE_INT total_size;
2671 HOST_WIDE_INT spill_size = 0;
2672 HOST_WIDE_INT extra_spill_size = 0;
2673 HOST_WIDE_INT pretend_args_size;
2676 int spilled_gr_p = 0;
2677 int spilled_fr_p = 0;
2683 if (current_frame_info.initialized)
2686 memset (¤t_frame_info, 0, sizeof current_frame_info);
2687 CLEAR_HARD_REG_SET (mask);
2689 /* Don't allocate scratches to the return register. */
2690 diddle_return_value (mark_reg_gr_used_mask, NULL);
2692 /* Don't allocate scratches to the EH scratch registers. */
2693 if (cfun->machine->ia64_eh_epilogue_sp)
2694 mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_sp, NULL);
2695 if (cfun->machine->ia64_eh_epilogue_bsp)
2696 mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_bsp, NULL);
2698 /* Find the size of the register stack frame. We have only 80 local
2699 registers, because we reserve 8 for the inputs and 8 for the
2702 /* Skip HARD_FRAME_POINTER_REGNUM (loc79) when frame_pointer_needed,
2703 since we'll be adjusting that down later. */
2704 regno = LOC_REG (78) + ! frame_pointer_needed;
2705 for (; regno >= LOC_REG (0); regno--)
2706 if (df_regs_ever_live_p (regno) && !is_emitted (regno))
2708 current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
2710 /* For functions marked with the syscall_linkage attribute, we must mark
2711 all eight input registers as in use, so that locals aren't visible to
2714 if (cfun->machine->n_varargs > 0
2715 || lookup_attribute ("syscall_linkage",
2716 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2717 current_frame_info.n_input_regs = 8;
2720 for (regno = IN_REG (7); regno >= IN_REG (0); regno--)
2721 if (df_regs_ever_live_p (regno))
2723 current_frame_info.n_input_regs = regno - IN_REG (0) + 1;
2726 for (regno = OUT_REG (7); regno >= OUT_REG (0); regno--)
2727 if (df_regs_ever_live_p (regno))
2729 i = regno - OUT_REG (0) + 1;
2731 #ifndef PROFILE_HOOK
2732 /* When -p profiling, we need one output register for the mcount argument.
2733 Likewise for -a profiling for the bb_init_func argument. For -ax
2734 profiling, we need two output registers for the two bb_init_trace_func
2739 current_frame_info.n_output_regs = i;
2741 /* ??? No rotating register support yet. */
2742 current_frame_info.n_rotate_regs = 0;
2744 /* Discover which registers need spilling, and how much room that
2745 will take. Begin with floating point and general registers,
2746 which will always wind up on the stack. */
2748 for (regno = FR_REG (2); regno <= FR_REG (127); regno++)
2749 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2751 SET_HARD_REG_BIT (mask, regno);
2757 for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
2758 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2760 SET_HARD_REG_BIT (mask, regno);
2766 for (regno = BR_REG (1); regno <= BR_REG (7); regno++)
2767 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2769 SET_HARD_REG_BIT (mask, regno);
2774 /* Now come all special registers that might get saved in other
2775 general registers. */
2777 if (frame_pointer_needed)
2779 current_frame_info.r[reg_fp] = find_gr_spill (reg_fp, 1);
2780 /* If we did not get a register, then we take LOC79. This is guaranteed
2781 to be free, even if regs_ever_live is already set, because this is
2782 HARD_FRAME_POINTER_REGNUM. This requires incrementing n_local_regs,
2783 as we don't count loc79 above. */
2784 if (current_frame_info.r[reg_fp] == 0)
2786 current_frame_info.r[reg_fp] = LOC_REG (79);
2787 current_frame_info.n_local_regs = LOC_REG (79) - LOC_REG (0) + 1;
2791 if (! current_function_is_leaf)
2793 /* Emit a save of BR0 if we call other functions. Do this even
2794 if this function doesn't return, as EH depends on this to be
2795 able to unwind the stack. */
2796 SET_HARD_REG_BIT (mask, BR_REG (0));
2798 current_frame_info.r[reg_save_b0] = find_gr_spill (reg_save_b0, 1);
2799 if (current_frame_info.r[reg_save_b0] == 0)
2801 extra_spill_size += 8;
2805 /* Similarly for ar.pfs. */
2806 SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
2807 current_frame_info.r[reg_save_ar_pfs] = find_gr_spill (reg_save_ar_pfs, 1);
2808 if (current_frame_info.r[reg_save_ar_pfs] == 0)
2810 extra_spill_size += 8;
2814 /* Similarly for gp. Note that if we're calling setjmp, the stacked
2815 registers are clobbered, so we fall back to the stack. */
2816 current_frame_info.r[reg_save_gp]
2817 = (cfun->calls_setjmp ? 0 : find_gr_spill (reg_save_gp, 1));
2818 if (current_frame_info.r[reg_save_gp] == 0)
2820 SET_HARD_REG_BIT (mask, GR_REG (1));
2827 if (df_regs_ever_live_p (BR_REG (0)) && ! call_used_regs[BR_REG (0)])
2829 SET_HARD_REG_BIT (mask, BR_REG (0));
2830 extra_spill_size += 8;
2834 if (df_regs_ever_live_p (AR_PFS_REGNUM))
2836 SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
2837 current_frame_info.r[reg_save_ar_pfs]
2838 = find_gr_spill (reg_save_ar_pfs, 1);
2839 if (current_frame_info.r[reg_save_ar_pfs] == 0)
2841 extra_spill_size += 8;
2847 /* Unwind descriptor hackery: things are most efficient if we allocate
2848 consecutive GR save registers for RP, PFS, FP in that order. However,
2849 it is absolutely critical that FP get the only hard register that's
2850 guaranteed to be free, so we allocated it first. If all three did
2851 happen to be allocated hard regs, and are consecutive, rearrange them
2852 into the preferred order now.
2854 If we have already emitted code for any of those registers,
2855 then it's already too late to change. */
2856 min_regno = MIN (current_frame_info.r[reg_fp],
2857 MIN (current_frame_info.r[reg_save_b0],
2858 current_frame_info.r[reg_save_ar_pfs]));
2859 max_regno = MAX (current_frame_info.r[reg_fp],
2860 MAX (current_frame_info.r[reg_save_b0],
2861 current_frame_info.r[reg_save_ar_pfs]));
2863 && min_regno + 2 == max_regno
2864 && (current_frame_info.r[reg_fp] == min_regno + 1
2865 || current_frame_info.r[reg_save_b0] == min_regno + 1
2866 || current_frame_info.r[reg_save_ar_pfs] == min_regno + 1)
2867 && (emitted_frame_related_regs[reg_save_b0] == 0
2868 || emitted_frame_related_regs[reg_save_b0] == min_regno)
2869 && (emitted_frame_related_regs[reg_save_ar_pfs] == 0
2870 || emitted_frame_related_regs[reg_save_ar_pfs] == min_regno + 1)
2871 && (emitted_frame_related_regs[reg_fp] == 0
2872 || emitted_frame_related_regs[reg_fp] == min_regno + 2))
2874 current_frame_info.r[reg_save_b0] = min_regno;
2875 current_frame_info.r[reg_save_ar_pfs] = min_regno + 1;
2876 current_frame_info.r[reg_fp] = min_regno + 2;
2879 /* See if we need to store the predicate register block. */
2880 for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
2881 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2883 if (regno <= PR_REG (63))
2885 SET_HARD_REG_BIT (mask, PR_REG (0));
2886 current_frame_info.r[reg_save_pr] = find_gr_spill (reg_save_pr, 1);
2887 if (current_frame_info.r[reg_save_pr] == 0)
2889 extra_spill_size += 8;
2893 /* ??? Mark them all as used so that register renaming and such
2894 are free to use them. */
2895 for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
2896 df_set_regs_ever_live (regno, true);
2899 /* If we're forced to use st8.spill, we're forced to save and restore
2900 ar.unat as well. The check for existing liveness allows inline asm
2901 to touch ar.unat. */
2902 if (spilled_gr_p || cfun->machine->n_varargs
2903 || df_regs_ever_live_p (AR_UNAT_REGNUM))
2905 df_set_regs_ever_live (AR_UNAT_REGNUM, true);
2906 SET_HARD_REG_BIT (mask, AR_UNAT_REGNUM);
2907 current_frame_info.r[reg_save_ar_unat]
2908 = find_gr_spill (reg_save_ar_unat, spill_size == 0);
2909 if (current_frame_info.r[reg_save_ar_unat] == 0)
2911 extra_spill_size += 8;
2916 if (df_regs_ever_live_p (AR_LC_REGNUM))
2918 SET_HARD_REG_BIT (mask, AR_LC_REGNUM);
2919 current_frame_info.r[reg_save_ar_lc]
2920 = find_gr_spill (reg_save_ar_lc, spill_size == 0);
2921 if (current_frame_info.r[reg_save_ar_lc] == 0)
2923 extra_spill_size += 8;
2928 /* If we have an odd number of words of pretend arguments written to
2929 the stack, then the FR save area will be unaligned. We round the
2930 size of this area up to keep things 16 byte aligned. */
2932 pretend_args_size = IA64_STACK_ALIGN (crtl->args.pretend_args_size);
2934 pretend_args_size = crtl->args.pretend_args_size;
2936 total_size = (spill_size + extra_spill_size + size + pretend_args_size
2937 + crtl->outgoing_args_size);
2938 total_size = IA64_STACK_ALIGN (total_size);
2940 /* We always use the 16-byte scratch area provided by the caller, but
2941 if we are a leaf function, there's no one to which we need to provide
2943 if (current_function_is_leaf)
2944 total_size = MAX (0, total_size - 16);
2946 current_frame_info.total_size = total_size;
2947 current_frame_info.spill_cfa_off = pretend_args_size - 16;
2948 current_frame_info.spill_size = spill_size;
2949 current_frame_info.extra_spill_size = extra_spill_size;
2950 COPY_HARD_REG_SET (current_frame_info.mask, mask);
2951 current_frame_info.n_spilled = n_spilled;
2952 current_frame_info.initialized = reload_completed;
2955 /* Worker function for TARGET_CAN_ELIMINATE. */
2958 ia64_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
2960 return (to == BR_REG (0) ? current_function_is_leaf : true);
2963 /* Compute the initial difference between the specified pair of registers. */
2966 ia64_initial_elimination_offset (int from, int to)
2968 HOST_WIDE_INT offset;
2970 ia64_compute_frame_size (get_frame_size ());
2973 case FRAME_POINTER_REGNUM:
2976 case HARD_FRAME_POINTER_REGNUM:
2977 if (current_function_is_leaf)
2978 offset = -current_frame_info.total_size;
2980 offset = -(current_frame_info.total_size
2981 - crtl->outgoing_args_size - 16);
2984 case STACK_POINTER_REGNUM:
2985 if (current_function_is_leaf)
2988 offset = 16 + crtl->outgoing_args_size;
2996 case ARG_POINTER_REGNUM:
2997 /* Arguments start above the 16 byte save area, unless stdarg
2998 in which case we store through the 16 byte save area. */
3001 case HARD_FRAME_POINTER_REGNUM:
3002 offset = 16 - crtl->args.pretend_args_size;
3005 case STACK_POINTER_REGNUM:
3006 offset = (current_frame_info.total_size
3007 + 16 - crtl->args.pretend_args_size);
3022 /* If there are more than a trivial number of register spills, we use
3023 two interleaved iterators so that we can get two memory references
3026 In order to simplify things in the prologue and epilogue expanders,
3027 we use helper functions to fix up the memory references after the
3028 fact with the appropriate offsets to a POST_MODIFY memory mode.
3029 The following data structure tracks the state of the two iterators
3030 while insns are being emitted. */
3032 struct spill_fill_data
3034 rtx init_after; /* point at which to emit initializations */
3035 rtx init_reg[2]; /* initial base register */
3036 rtx iter_reg[2]; /* the iterator registers */
3037 rtx *prev_addr[2]; /* address of last memory use */
3038 rtx prev_insn[2]; /* the insn corresponding to prev_addr */
3039 HOST_WIDE_INT prev_off[2]; /* last offset */
3040 int n_iter; /* number of iterators in use */
3041 int next_iter; /* next iterator to use */
3042 unsigned int save_gr_used_mask;
3045 static struct spill_fill_data spill_fill_data;
3048 setup_spill_pointers (int n_spills, rtx init_reg, HOST_WIDE_INT cfa_off)
3052 spill_fill_data.init_after = get_last_insn ();
3053 spill_fill_data.init_reg[0] = init_reg;
3054 spill_fill_data.init_reg[1] = init_reg;
3055 spill_fill_data.prev_addr[0] = NULL;
3056 spill_fill_data.prev_addr[1] = NULL;
3057 spill_fill_data.prev_insn[0] = NULL;
3058 spill_fill_data.prev_insn[1] = NULL;
3059 spill_fill_data.prev_off[0] = cfa_off;
3060 spill_fill_data.prev_off[1] = cfa_off;
3061 spill_fill_data.next_iter = 0;
3062 spill_fill_data.save_gr_used_mask = current_frame_info.gr_used_mask;
3064 spill_fill_data.n_iter = 1 + (n_spills > 2);
3065 for (i = 0; i < spill_fill_data.n_iter; ++i)
3067 int regno = next_scratch_gr_reg ();
3068 spill_fill_data.iter_reg[i] = gen_rtx_REG (DImode, regno);
3069 current_frame_info.gr_used_mask |= 1 << regno;
3074 finish_spill_pointers (void)
3076 current_frame_info.gr_used_mask = spill_fill_data.save_gr_used_mask;
3080 spill_restore_mem (rtx reg, HOST_WIDE_INT cfa_off)
3082 int iter = spill_fill_data.next_iter;
3083 HOST_WIDE_INT disp = spill_fill_data.prev_off[iter] - cfa_off;
3084 rtx disp_rtx = GEN_INT (disp);
3087 if (spill_fill_data.prev_addr[iter])
3089 if (satisfies_constraint_N (disp_rtx))
3091 *spill_fill_data.prev_addr[iter]
3092 = gen_rtx_POST_MODIFY (DImode, spill_fill_data.iter_reg[iter],
3093 gen_rtx_PLUS (DImode,
3094 spill_fill_data.iter_reg[iter],
3096 add_reg_note (spill_fill_data.prev_insn[iter],
3097 REG_INC, spill_fill_data.iter_reg[iter]);
3101 /* ??? Could use register post_modify for loads. */
3102 if (!satisfies_constraint_I (disp_rtx))
3104 rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
3105 emit_move_insn (tmp, disp_rtx);
3108 emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
3109 spill_fill_data.iter_reg[iter], disp_rtx));
3112 /* Micro-optimization: if we've created a frame pointer, it's at
3113 CFA 0, which may allow the real iterator to be initialized lower,
3114 slightly increasing parallelism. Also, if there are few saves
3115 it may eliminate the iterator entirely. */
3117 && spill_fill_data.init_reg[iter] == stack_pointer_rtx
3118 && frame_pointer_needed)
3120 mem = gen_rtx_MEM (GET_MODE (reg), hard_frame_pointer_rtx);
3121 set_mem_alias_set (mem, get_varargs_alias_set ());
3129 seq = gen_movdi (spill_fill_data.iter_reg[iter],
3130 spill_fill_data.init_reg[iter]);
3135 if (!satisfies_constraint_I (disp_rtx))
3137 rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
3138 emit_move_insn (tmp, disp_rtx);
3142 emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
3143 spill_fill_data.init_reg[iter],
3150 /* Careful for being the first insn in a sequence. */
3151 if (spill_fill_data.init_after)
3152 insn = emit_insn_after (seq, spill_fill_data.init_after);
3155 rtx first = get_insns ();
3157 insn = emit_insn_before (seq, first);
3159 insn = emit_insn (seq);
3161 spill_fill_data.init_after = insn;
3164 mem = gen_rtx_MEM (GET_MODE (reg), spill_fill_data.iter_reg[iter]);
3166 /* ??? Not all of the spills are for varargs, but some of them are.
3167 The rest of the spills belong in an alias set of their own. But
3168 it doesn't actually hurt to include them here. */
3169 set_mem_alias_set (mem, get_varargs_alias_set ());
3171 spill_fill_data.prev_addr[iter] = &XEXP (mem, 0);
3172 spill_fill_data.prev_off[iter] = cfa_off;
3174 if (++iter >= spill_fill_data.n_iter)
3176 spill_fill_data.next_iter = iter;
3182 do_spill (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off,
3185 int iter = spill_fill_data.next_iter;
3188 mem = spill_restore_mem (reg, cfa_off);
3189 insn = emit_insn ((*move_fn) (mem, reg, GEN_INT (cfa_off)));
3190 spill_fill_data.prev_insn[iter] = insn;
3197 RTX_FRAME_RELATED_P (insn) = 1;
3199 /* Don't even pretend that the unwind code can intuit its way
3200 through a pair of interleaved post_modify iterators. Just
3201 provide the correct answer. */
3203 if (frame_pointer_needed)
3205 base = hard_frame_pointer_rtx;
3210 base = stack_pointer_rtx;
3211 off = current_frame_info.total_size - cfa_off;
3214 add_reg_note (insn, REG_CFA_OFFSET,
3215 gen_rtx_SET (VOIDmode,
3216 gen_rtx_MEM (GET_MODE (reg),
3217 plus_constant (base, off)),
3223 do_restore (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off)
3225 int iter = spill_fill_data.next_iter;
3228 insn = emit_insn ((*move_fn) (reg, spill_restore_mem (reg, cfa_off),
3229 GEN_INT (cfa_off)));
3230 spill_fill_data.prev_insn[iter] = insn;
3233 /* Wrapper functions that discards the CONST_INT spill offset. These
3234 exist so that we can give gr_spill/gr_fill the offset they need and
3235 use a consistent function interface. */
3238 gen_movdi_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
3240 return gen_movdi (dest, src);
3244 gen_fr_spill_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
3246 return gen_fr_spill (dest, src);
3250 gen_fr_restore_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
3252 return gen_fr_restore (dest, src);
3255 /* Called after register allocation to add any instructions needed for the
3256 prologue. Using a prologue insn is favored compared to putting all of the
3257 instructions in output_function_prologue(), since it allows the scheduler
3258 to intermix instructions with the saves of the caller saved registers. In
3259 some cases, it might be necessary to emit a barrier instruction as the last
3260 insn to prevent such scheduling.
3262 Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
3263 so that the debug info generation code can handle them properly.
3265 The register save area is layed out like so:
3267 [ varargs spill area ]
3268 [ fr register spill area ]
3269 [ br register spill area ]
3270 [ ar register spill area ]
3271 [ pr register spill area ]
3272 [ gr register spill area ] */
3274 /* ??? Get inefficient code when the frame size is larger than can fit in an
3275 adds instruction. */
3278 ia64_expand_prologue (void)
3280 rtx insn, ar_pfs_save_reg, ar_unat_save_reg;
3281 int i, epilogue_p, regno, alt_regno, cfa_off, n_varargs;
3284 ia64_compute_frame_size (get_frame_size ());
3285 last_scratch_gr_reg = 15;
3287 if (flag_stack_usage_info)
3288 current_function_static_stack_size = current_frame_info.total_size;
3292 fprintf (dump_file, "ia64 frame related registers "
3293 "recorded in current_frame_info.r[]:\n");
3294 #define PRINTREG(a) if (current_frame_info.r[a]) \
3295 fprintf(dump_file, "%s = %d\n", #a, current_frame_info.r[a])
3297 PRINTREG(reg_save_b0);
3298 PRINTREG(reg_save_pr);
3299 PRINTREG(reg_save_ar_pfs);
3300 PRINTREG(reg_save_ar_unat);
3301 PRINTREG(reg_save_ar_lc);
3302 PRINTREG(reg_save_gp);
3306 /* If there is no epilogue, then we don't need some prologue insns.
3307 We need to avoid emitting the dead prologue insns, because flow
3308 will complain about them. */
3314 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3315 if ((e->flags & EDGE_FAKE) == 0
3316 && (e->flags & EDGE_FALLTHRU) != 0)
3318 epilogue_p = (e != NULL);
3323 /* Set the local, input, and output register names. We need to do this
3324 for GNU libc, which creates crti.S/crtn.S by splitting initfini.c in
3325 half. If we use in/loc/out register names, then we get assembler errors
3326 in crtn.S because there is no alloc insn or regstk directive in there. */
3327 if (! TARGET_REG_NAMES)
3329 int inputs = current_frame_info.n_input_regs;
3330 int locals = current_frame_info.n_local_regs;
3331 int outputs = current_frame_info.n_output_regs;
3333 for (i = 0; i < inputs; i++)
3334 reg_names[IN_REG (i)] = ia64_reg_numbers[i];
3335 for (i = 0; i < locals; i++)
3336 reg_names[LOC_REG (i)] = ia64_reg_numbers[inputs + i];
3337 for (i = 0; i < outputs; i++)
3338 reg_names[OUT_REG (i)] = ia64_reg_numbers[inputs + locals + i];
3341 /* Set the frame pointer register name. The regnum is logically loc79,
3342 but of course we'll not have allocated that many locals. Rather than
3343 worrying about renumbering the existing rtxs, we adjust the name. */
3344 /* ??? This code means that we can never use one local register when
3345 there is a frame pointer. loc79 gets wasted in this case, as it is
3346 renamed to a register that will never be used. See also the try_locals
3347 code in find_gr_spill. */
3348 if (current_frame_info.r[reg_fp])
3350 const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
3351 reg_names[HARD_FRAME_POINTER_REGNUM]
3352 = reg_names[current_frame_info.r[reg_fp]];
3353 reg_names[current_frame_info.r[reg_fp]] = tmp;
3356 /* We don't need an alloc instruction if we've used no outputs or locals. */
3357 if (current_frame_info.n_local_regs == 0
3358 && current_frame_info.n_output_regs == 0
3359 && current_frame_info.n_input_regs <= crtl->args.info.int_regs
3360 && !TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
3362 /* If there is no alloc, but there are input registers used, then we
3363 need a .regstk directive. */
3364 current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
3365 ar_pfs_save_reg = NULL_RTX;
3369 current_frame_info.need_regstk = 0;
3371 if (current_frame_info.r[reg_save_ar_pfs])
3373 regno = current_frame_info.r[reg_save_ar_pfs];
3374 reg_emitted (reg_save_ar_pfs);
3377 regno = next_scratch_gr_reg ();
3378 ar_pfs_save_reg = gen_rtx_REG (DImode, regno);
3380 insn = emit_insn (gen_alloc (ar_pfs_save_reg,
3381 GEN_INT (current_frame_info.n_input_regs),
3382 GEN_INT (current_frame_info.n_local_regs),
3383 GEN_INT (current_frame_info.n_output_regs),
3384 GEN_INT (current_frame_info.n_rotate_regs)));
3385 if (current_frame_info.r[reg_save_ar_pfs])
3387 RTX_FRAME_RELATED_P (insn) = 1;
3388 add_reg_note (insn, REG_CFA_REGISTER,
3389 gen_rtx_SET (VOIDmode,
3391 gen_rtx_REG (DImode, AR_PFS_REGNUM)));
3395 /* Set up frame pointer, stack pointer, and spill iterators. */
3397 n_varargs = cfun->machine->n_varargs;
3398 setup_spill_pointers (current_frame_info.n_spilled + n_varargs,
3399 stack_pointer_rtx, 0);
3401 if (frame_pointer_needed)
3403 insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
3404 RTX_FRAME_RELATED_P (insn) = 1;
3406 /* Force the unwind info to recognize this as defining a new CFA,
3407 rather than some temp register setup. */
3408 add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL_RTX);
3411 if (current_frame_info.total_size != 0)
3413 rtx frame_size_rtx = GEN_INT (- current_frame_info.total_size);
3416 if (satisfies_constraint_I (frame_size_rtx))
3417 offset = frame_size_rtx;
3420 regno = next_scratch_gr_reg ();
3421 offset = gen_rtx_REG (DImode, regno);
3422 emit_move_insn (offset, frame_size_rtx);
3425 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
3426 stack_pointer_rtx, offset));
3428 if (! frame_pointer_needed)
3430 RTX_FRAME_RELATED_P (insn) = 1;
3431 add_reg_note (insn, REG_CFA_ADJUST_CFA,
3432 gen_rtx_SET (VOIDmode,
3434 gen_rtx_PLUS (DImode,
3439 /* ??? At this point we must generate a magic insn that appears to
3440 modify the stack pointer, the frame pointer, and all spill
3441 iterators. This would allow the most scheduling freedom. For
3442 now, just hard stop. */
3443 emit_insn (gen_blockage ());
3446 /* Must copy out ar.unat before doing any integer spills. */
3447 if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
3449 if (current_frame_info.r[reg_save_ar_unat])
3452 = gen_rtx_REG (DImode, current_frame_info.r[reg_save_ar_unat]);
3453 reg_emitted (reg_save_ar_unat);
3457 alt_regno = next_scratch_gr_reg ();
3458 ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
3459 current_frame_info.gr_used_mask |= 1 << alt_regno;
3462 reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
3463 insn = emit_move_insn (ar_unat_save_reg, reg);
3464 if (current_frame_info.r[reg_save_ar_unat])
3466 RTX_FRAME_RELATED_P (insn) = 1;
3467 add_reg_note (insn, REG_CFA_REGISTER, NULL_RTX);
3470 /* Even if we're not going to generate an epilogue, we still
3471 need to save the register so that EH works. */
3472 if (! epilogue_p && current_frame_info.r[reg_save_ar_unat])
3473 emit_insn (gen_prologue_use (ar_unat_save_reg));
3476 ar_unat_save_reg = NULL_RTX;
3478 /* Spill all varargs registers. Do this before spilling any GR registers,
3479 since we want the UNAT bits for the GR registers to override the UNAT
3480 bits from varargs, which we don't care about. */
3483 for (regno = GR_ARG_FIRST + 7; n_varargs > 0; --n_varargs, --regno)
3485 reg = gen_rtx_REG (DImode, regno);
3486 do_spill (gen_gr_spill, reg, cfa_off += 8, NULL_RTX);
3489 /* Locate the bottom of the register save area. */
3490 cfa_off = (current_frame_info.spill_cfa_off
3491 + current_frame_info.spill_size
3492 + current_frame_info.extra_spill_size);
3494 /* Save the predicate register block either in a register or in memory. */
3495 if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
3497 reg = gen_rtx_REG (DImode, PR_REG (0));
3498 if (current_frame_info.r[reg_save_pr] != 0)
3500 alt_reg = gen_rtx_REG (DImode, current_frame_info.r[reg_save_pr]);
3501 reg_emitted (reg_save_pr);
3502 insn = emit_move_insn (alt_reg, reg);
3504 /* ??? Denote pr spill/fill by a DImode move that modifies all
3505 64 hard registers. */
3506 RTX_FRAME_RELATED_P (insn) = 1;