OSDN Git Service

* config/bfin/bfin.h (REGISTER_NAMES, SHORT_REGISTER_NAMES,
[pf3gnuchains/gcc-fork.git] / gcc / config / bfin / bfin.h
1 /* Definitions for the Blackfin port.
2    Copyright (C) 2005  Free Software Foundation, Inc.
3    Contributed by Analog Devices.
4
5    This file is part of GCC.
6
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 2, or (at your
10    option) any later version.
11
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to
19    the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20    Boston, MA 02110-1301, USA.  */
21
22 #ifndef _BFIN_CONFIG
23 #define _BFIN_CONFIG
24
25 #define OBJECT_FORMAT_ELF
26
27 #define BRT 1
28 #define BRF 0
29
30 /* Print subsidiary information on the compiler version in use.  */
31 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32
33 /* Run-time compilation parameters selecting different hardware subsets.  */
34
35 extern int target_flags;
36
37 /* Predefinition in the preprocessor for this target machine */
38 #ifndef TARGET_CPU_CPP_BUILTINS
39 #define TARGET_CPU_CPP_BUILTINS()               \
40   do                                            \
41     {                                           \
42       builtin_define ("bfin");                  \
43       builtin_define ("BFIN");                  \
44     }                                           \
45   while (0)
46 #endif
47
48 /* Generate DSP instructions, like DSP halfword loads */
49 #define TARGET_DSP                      (1)
50
51 #define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
52
53 /* Maximum number of library ids we permit */
54 #define MAX_LIBRARY_ID 255
55
56 extern const char *bfin_library_id_string;
57
58 /* Sometimes certain combinations of command options do not make
59    sense on a particular target machine.  You can define a macro
60    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
61    defined, is executed once just after all the command options have
62    been parsed.
63  
64    Don't use this macro to turn on various extra optimizations for
65    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
66  
67 #define OVERRIDE_OPTIONS override_options ()
68
69 #define FUNCTION_MODE    SImode
70 #define Pmode            SImode
71
72 /* store-condition-codes instructions store 0 for false
73    This is the value stored for true.  */
74 #define STORE_FLAG_VALUE 1
75
76 /* Define this if pushing a word on the stack
77    makes the stack pointer a smaller address.  */
78 #define STACK_GROWS_DOWNWARD
79
80 #define STACK_PUSH_CODE PRE_DEC
81
82 /* Define this to nonzero if the nominal address of the stack frame
83    is at the high-address end of the local variables;
84    that is, each additional local variable allocated
85    goes at a more negative offset in the frame.  */
86 #define FRAME_GROWS_DOWNWARD 1
87
88 /* We define a dummy ARGP register; the parameters start at offset 0 from
89    it. */
90 #define FIRST_PARM_OFFSET(DECL) 0
91
92 /* Offset within stack frame to start allocating local variables at.
93    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
94    first local allocated.  Otherwise, it is the offset to the BEGINNING
95    of the first local allocated.  */
96 #define STARTING_FRAME_OFFSET 0
97
98 /* Register to use for pushing function arguments.  */
99 #define STACK_POINTER_REGNUM REG_P6
100
101 /* Base register for access to local variables of the function.  */
102 #define FRAME_POINTER_REGNUM REG_P7
103
104 /* A dummy register that will be eliminated to either FP or SP.  */
105 #define ARG_POINTER_REGNUM REG_ARGP
106
107 /* `PIC_OFFSET_TABLE_REGNUM'
108      The register number of the register used to address a table of
109      static data addresses in memory.  In some cases this register is
110      defined by a processor's "application binary interface" (ABI).
111      When this macro is defined, RTL is generated for this register
112      once, as with the stack pointer and frame pointer registers.  If
113      this macro is not defined, it is up to the machine-dependent files
114      to allocate such a register (if necessary). */
115 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
116
117 /* A static chain register for nested functions.  We need to use a
118    call-clobbered register for this.  */
119 #define STATIC_CHAIN_REGNUM REG_P2
120
121 /* Define this if functions should assume that stack space has been
122    allocated for arguments even when their values are passed in
123    registers.
124
125    The value of this macro is the size, in bytes, of the area reserved for
126    arguments passed in registers.
127
128    This space can either be allocated by the caller or be a part of the
129    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
130    says which.  */
131 #define FIXED_STACK_AREA 12
132 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
133
134 /* Define this if the above stack space is to be considered part of the
135  * space allocated by the caller.  */
136 #define OUTGOING_REG_PARM_STACK_SPACE
137           
138 /* Define this if the maximum size of all the outgoing args is to be
139    accumulated and pushed during the prologue.  The amount can be
140    found in the variable current_function_outgoing_args_size. */ 
141 #define ACCUMULATE_OUTGOING_ARGS 1
142
143 /* Value should be nonzero if functions must have frame pointers.
144    Zero means the frame pointer need not be set up (and parms
145    may be accessed via the stack pointer) in functions that seem suitable.
146    This is computed in `reload', in reload1.c.  
147 */
148 #define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
149
150 #define PARM_BOUNDRY            32
151
152 #define STACK_BOUNDRY           32
153
154 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
155
156 /* Make strings word-aligned so strcpy from constants will be faster.  */
157 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
158   (TREE_CODE (EXP) == STRING_CST        \
159    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))    
160
161 #define TRAMPOLINE_SIZE 18
162 #define TRAMPOLINE_TEMPLATE(FILE)                                       \
163   fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */             \
164   fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */;           \
165   fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */;            \
166   fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */;           \
167   fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/
168
169 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
170   initialize_trampoline (TRAMP, FNADDR, CXT)
171 \f
172 /* Definitions for register eliminations.
173
174    This is an array of structures.  Each structure initializes one pair
175    of eliminable registers.  The "from" register number is given first,
176    followed by "to".  Eliminations of the same "from" register are listed
177    in order of preference.
178
179    There are two registers that can always be eliminated on the i386.
180    The frame pointer and the arg pointer can be replaced by either the
181    hard frame pointer or to the stack pointer, depending upon the
182    circumstances.  The hard frame pointer is not used before reload and
183    so it is not eligible for elimination.  */
184
185 #define ELIMINABLE_REGS                         \
186 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
187  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
188  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
189
190 /* Given FROM and TO register numbers, say whether this elimination is
191    allowed.  Frame pointer elimination is automatically handled.
192
193    All other eliminations are valid.  */
194
195 #define CAN_ELIMINATE(FROM, TO) \
196   ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
197
198 /* Define the offset between two registers, one to be eliminated, and the other
199    its replacement, at the start of a routine.  */
200
201 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
202   ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
203 \f
204 /* This processor has
205    8 data register for doing arithmetic
206    8  pointer register for doing addressing, including
207       1  stack pointer P6
208       1  frame pointer P7
209    4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
210    1  condition code flag register CC
211    5  return address registers RETS/I/X/N/E
212    1  arithmetic status register (ASTAT).  */
213
214 #define FIRST_PSEUDO_REGISTER 44
215
216 #define PREG_P(X) (REG_P (X) && REGNO (X) >= REG_P0 && REGNO (X) <= REG_P7)
217 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
218 #define D_REGNO_P(X) ((X) <= REG_R7)
219
220 #define REGISTER_NAMES { \
221   "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
222   "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
223   "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
224   "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
225   "A0", "A1", \
226   "CC", \
227   "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
228   "ARGP" \
229 }
230
231 #define SHORT_REGISTER_NAMES { \
232         "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
233         "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
234         "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
235         "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
236
237 #define HIGH_REGISTER_NAMES { \
238         "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
239         "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
240         "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
241         "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
242
243 #define DREGS_PAIR_NAMES { \
244   "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
245
246 #define BYTE_REGISTER_NAMES { \
247   "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
248
249
250 /* 1 for registers that have pervasive standard uses
251    and are not available for the register allocator.  */
252
253 #define FIXED_REGISTERS \
254 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
255 { 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
256 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
257   0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
258 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp */ \
259   0, 0, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1   \
260 }
261
262 /* 1 for registers not available across function calls.
263    These must include the FIXED_REGISTERS and also any
264    registers that can be used without being saved.
265    The latter must include the registers where values are returned
266    and the register where structure-value addresses are passed.
267    Aside from that, you can include as many other registers as you like.  */
268
269 #define CALL_USED_REGISTERS \
270 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
271 { 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
272 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
273   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
274 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp */ \
275   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1   \
276 }
277
278 /* Order in which to allocate registers.  Each register must be
279    listed once, even those in FIXED_REGISTERS.  List frame pointer
280    late and fixed registers last.  Note that, in general, we prefer
281    registers listed in CALL_USED_REGISTERS, keeping the others
282    available for storage of persistent values. */
283
284 #define REG_ALLOC_ORDER \
285 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
286   REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
287   REG_A0, REG_A1, \
288   REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
289   REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
290   REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,               \
291   REG_ASTAT, REG_SEQSTAT, REG_USP,                                \
292   REG_CC, REG_ARGP                                                \
293 }
294
295 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
296 #define CONDITIONAL_REGISTER_USAGE                      \
297   {                                                     \
298     conditional_register_usage();                       \
299     if (flag_pic)                                       \
300       {                                                 \
301         fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;        \
302         call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
303       }                                                 \
304   }
305
306 /* Define the classes of registers for register constraints in the
307    machine description.  Also define ranges of constants.
308
309    One of the classes must always be named ALL_REGS and include all hard regs.
310    If there is more than one class, another class must be named NO_REGS
311    and contain no registers.
312
313    The name GENERAL_REGS must be the name of a class (or an alias for
314    another name such as ALL_REGS).  This is the class of registers
315    that is allowed by "g" or "r" in a register constraint.
316    Also, registers outside this class are allocated only when
317    instructions express preferences for them.
318
319    The classes must be numbered in nondecreasing order; that is,
320    a larger-numbered class must never be contained completely
321    in a smaller-numbered class.
322
323    For any two classes, it is very desirable that there be another
324    class that represents their union. */
325
326
327 enum reg_class
328 {
329   NO_REGS,
330   IREGS,
331   BREGS,
332   LREGS,
333   MREGS,
334   CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
335   DAGREGS,
336   EVEN_AREGS,
337   ODD_AREGS,
338   AREGS,
339   CCREGS,
340   EVEN_DREGS,
341   ODD_DREGS,
342   DREGS,
343   PREGS_CLOBBERED,
344   PREGS,
345   DPREGS,
346   MOST_REGS,
347   PROLOGUE_REGS,
348   NON_A_CC_REGS,
349   ALL_REGS, LIM_REG_CLASSES
350 };
351
352 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
353
354 #define GENERAL_REGS DPREGS
355
356 /* Give names of register classes as strings for dump file.   */
357
358 #define REG_CLASS_NAMES \
359 {  "NO_REGS",           \
360    "IREGS",             \
361    "BREGS",             \
362    "LREGS",             \
363    "MREGS",             \
364    "CIRCREGS",          \
365    "DAGREGS",           \
366    "EVEN_AREGS",        \
367    "ODD_AREGS",         \
368    "AREGS",             \
369    "CCREGS",            \
370    "EVEN_DREGS",        \
371    "ODD_DREGS",         \
372    "DREGS",             \
373    "PREGS_CLOBBERED",   \
374    "PREGS",             \
375    "DPREGS",            \
376    "MOST_REGS",         \
377    "PROLOGUE_REGS",     \
378    "NON_A_CC_REGS",     \
379    "ALL_REGS" }
380
381 /* An initializer containing the contents of the register classes, as integers
382    which are bit masks.  The Nth integer specifies the contents of class N.
383    The way the integer MASK is interpreted is that register R is in the class
384    if `MASK & (1 << R)' is 1.
385
386    When the machine has more than 32 registers, an integer does not suffice.
387    Then the integers are replaced by sub-initializers, braced groupings
388    containing several integers.  Each sub-initializer must be suitable as an
389    initializer for the type `HARD_REG_SET' which is defined in
390    `hard-reg-set.h'.  */
391
392 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
393    MOST_REGS as the union of DPREGS and DAGREGS.  */
394
395 #define REG_CLASS_CONTENTS \
396     /* 31 - 0       63-32   */ \
397 {   { 0x00000000,    0 },               /* NO_REGS */   \
398     { 0x000f0000,    0 },               /* IREGS */     \
399     { 0x00f00000,    0 },               /* BREGS */             \
400     { 0x0f000000,    0 },               /* LREGS */     \
401     { 0xf0000000,    0 },               /* MREGS */   \
402     { 0x0fff0000,    0 },               /* CIRCREGS */   \
403     { 0xffff0000,    0 },               /* DAGREGS */   \
404     { 0x00000000,    0x1 },             /* EVEN_AREGS */   \
405     { 0x00000000,    0x2 },             /* ODD_AREGS */   \
406     { 0x00000000,    0x3 },             /* AREGS */   \
407     { 0x00000000,    0x4 },             /* CCREGS */  \
408     { 0x00000055,    0 },               /* EVEN_DREGS */   \
409     { 0x000000aa,    0 },               /* ODD_DREGS */   \
410     { 0x000000ff,    0 },               /* DREGS */   \
411     { 0x00004700,    0x800 },           /* PREGS_CLOBBERED */   \
412     { 0x0000ff00,    0x800 },           /* PREGS */   \
413     { 0x0000ffff,    0x800 },           /* DPREGS */   \
414     { 0xffffffff,    0x800 },           /* MOST_REGS */\
415     { 0x00000000,    0x7f8 },           /* PROLOGUE_REGS */\
416     { 0xffffffff,    0xff8 },           /* NON_A_CC_REGS */\
417     { 0xffffffff,    0xfff }}           /* ALL_REGS */
418
419 #define BASE_REG_CLASS          PREGS
420 #define INDEX_REG_CLASS         PREGS
421
422 #define REGNO_OK_FOR_BASE_STRICT_P(X) (REGNO_REG_CLASS (X) == BASE_REG_CLASS)
423 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X)  \
424  (((X) >= FIRST_PSEUDO_REGISTER) || REGNO_REG_CLASS (X) == BASE_REG_CLASS)
425
426 #ifdef REG_OK_STRICT
427 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
428 #else
429 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
430 #endif
431
432 #define REG_OK_FOR_BASE_P(X)    (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
433 #define REG_OK_FOR_INDEX_P(X)   0
434 #define REGNO_OK_FOR_INDEX_P(X)   0
435
436 /* Get reg_class from a letter such as appears in the machine description.  */
437
438 #define REG_CLASS_FROM_LETTER(LETTER)   \
439   ((LETTER) == 'a' ? PREGS :            \
440    (LETTER) == 'd' ? DREGS :            \
441    (LETTER) == 'z' ? PREGS_CLOBBERED :  \
442    (LETTER) == 'D' ? EVEN_DREGS :       \
443    (LETTER) == 'W' ? ODD_DREGS :        \
444    (LETTER) == 'e' ? AREGS :            \
445    (LETTER) == 'A' ? EVEN_AREGS :       \
446    (LETTER) == 'B' ? ODD_AREGS :        \
447    (LETTER) == 'b' ? IREGS :            \
448    (LETTER) == 'B' ? BREGS :            \
449    (LETTER) == 'f' ? MREGS :            \
450    (LETTER) == 'c' ? CIRCREGS :         \
451    (LETTER) == 'C' ? CCREGS :           \
452    (LETTER) == 'x' ? MOST_REGS :        \
453    (LETTER) == 'y' ? PROLOGUE_REGS :    \
454    (LETTER) == 'w' ? NON_A_CC_REGS :    \
455    NO_REGS)
456
457 /* The same information, inverted:
458    Return the class number of the smallest class containing
459    reg number REGNO.  This could be a conditional expression
460    or could index an array.  */
461
462 #define REGNO_REG_CLASS(REGNO) \
463  ((REGNO) < REG_P0 ? DREGS                              \
464  : (REGNO) < REG_I0 ? PREGS                             \
465  : (REGNO) == REG_ARGP ? BASE_REG_CLASS                 \
466  : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS       \
467  : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS       \
468  : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS       \
469  : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS       \
470  : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS       \
471  : (REGNO) == REG_CC ? CCREGS                           \
472  : (REGNO) >= REG_RETS ? PROLOGUE_REGS                  \
473  : NO_REGS)
474
475 /* When defined, the compiler allows registers explicitly used in the
476    rtl to be used as spill registers but prevents the compiler from
477    extending the lifetime of these registers. */
478 #define SMALL_REGISTER_CLASSES 1
479
480 #define CLASS_LIKELY_SPILLED_P(CLASS) \
481     ((CLASS) == PREGS_CLOBBERED \
482      || (CLASS) == PROLOGUE_REGS \
483      || (CLASS) == CCREGS)
484
485 /* Do not allow to store a value in REG_CC for any mode */
486 /* Do not allow to store value in pregs if mode is not SI*/
487 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
488
489 /* Return the maximum number of consecutive registers
490    needed to represent mode MODE in a register of class CLASS.  */
491 #define CLASS_MAX_NREGS(CLASS, MODE)    \
492   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
493
494 #define HARD_REGNO_NREGS(REGNO, MODE) \
495 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) \
496  ? 1 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
497
498 /* A C expression that is nonzero if hard register TO can be
499    considered for use as a rename register for FROM register */
500 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
501
502 /* A C expression that is nonzero if it is desirable to choose
503    register allocation so as to avoid move instructions between a
504    value of mode MODE1 and a value of mode MODE2.
505
506    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
507    MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
508    MODE2)' must be zero. */
509 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
510
511 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
512    A C expression that places additional restrictions on the register
513    class to use when it is necessary to copy value X into a register
514    in class CLASS.  The value is a register class; perhaps CLASS, or
515    perhaps another, smaller class.  */
516 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
517
518 #define  SECONDARY_OUTPUT_RELOAD_CLASS(class,mode,x) \
519     secondary_output_reload_class(class,mode,x)
520 #define  SECONDARY_INPUT_RELOAD_CLASS(class,mode,x)  \
521     secondary_input_reload_class(class,mode,x)
522
523 /* Function Calling Conventions. */
524
525 /* The type of the current function; normal functions are of type
526    SUBROUTINE.  */
527 typedef enum {
528   SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
529 } e_funkind;
530
531 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
532
533 /* Flags for the call/call_value rtl operations set up by function_arg */
534 #define CALL_NORMAL             0x00000000      /* no special processing */
535 #define CALL_LONG               0x00000001      /* always call indirect */
536 #define CALL_SHORT              0x00000002      /* always call by symbol */
537
538 typedef struct {
539   int words;                    /* # words passed so far */
540   int nregs;                    /* # registers available for passing */
541   int *arg_regs;                /* array of register -1 terminated */
542   int call_cookie;              /* Do special things for this call */
543 } CUMULATIVE_ARGS;
544
545 /* Define where to put the arguments to a function.
546    Value is zero to push the argument on the stack,
547    or a hard register in which to store the argument.
548
549    MODE is the argument's machine mode.
550    TYPE is the data type of the argument (as a tree).
551     This is null for libcalls where that information may
552     not be available.
553    CUM is a variable of type CUMULATIVE_ARGS which gives info about
554     the preceding args and about the function being called.
555    NAMED is nonzero if this argument is a named parameter
556     (otherwise it is an extra parameter matching an ellipsis).  */
557
558 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
559   (function_arg (&CUM, MODE, TYPE, NAMED))
560
561 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
562
563
564 /* Initialize a variable CUM of type CUMULATIVE_ARGS
565    for a call to a function whose data type is FNTYPE.
566    For a library call, FNTYPE is 0.  */
567 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
568   (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
569
570 /* Update the data in CUM to advance over an argument
571    of mode MODE and data type TYPE.
572    (TYPE is null for libcalls where that information may not be available.)  */
573 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
574   (function_arg_advance (&CUM, MODE, TYPE, NAMED))
575
576 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
577
578 /* Define how to find the value returned by a function.
579    VALTYPE is the data type of the value (as a tree).
580    If the precise function being called is known, FUNC is its FUNCTION_DECL;
581    otherwise, FUNC is 0.
582 */
583
584 #define VALUE_REGNO(MODE) (REG_R0)
585
586 #define FUNCTION_VALUE(VALTYPE, FUNC)           \
587   gen_rtx_REG (TYPE_MODE (VALTYPE),             \
588                VALUE_REGNO(TYPE_MODE(VALTYPE)))
589
590 /* Define how to find the value returned by a library function
591    assuming the value has mode MODE.  */
592
593 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
594
595 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
596
597 #define DEFAULT_PCC_STRUCT_RETURN 0
598 #define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
599
600 /* Before the prologue, the return address is in the RETS register.  */
601 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
602
603 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
604
605 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
606
607 /* Call instructions don't modify the stack pointer on the Blackfin.  */
608 #define INCOMING_FRAME_SP_OFFSET 0
609
610 /* Describe how we implement __builtin_eh_return.  */
611 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
612 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, REG_P2)
613 #define EH_RETURN_HANDLER_RTX \
614     gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
615
616 /* Addressing Modes */
617
618 /* Recognize any constant value that is a valid address.  */
619 #define CONSTANT_ADDRESS_P(X)   (CONSTANT_P (X))
620
621 /* Nonzero if the constant value X is a legitimate general operand.
622    symbol_ref are not legitimate and will be put into constant pool.
623    See force_const_mem().
624    If -mno-pool, all constants are legitimate.
625  */
626 #define LEGITIMATE_CONSTANT_P(x) 1
627
628 /*   A number, the maximum number of registers that can appear in a
629      valid memory address.  Note that it is up to you to specify a
630      value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
631      would ever accept. */
632 #define MAX_REGS_PER_ADDRESS 1
633
634 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
635    that is a valid memory address for an instruction.
636    The MODE argument is the machine mode for the MEM expression
637    that wants to use this address. 
638
639    Blackfin addressing modes are as follows:
640
641       [preg]
642       [preg + imm16]
643
644       B [ Preg + uimm15 ]
645       W [ Preg + uimm16m2 ]
646       [ Preg + uimm17m4 ] 
647
648       [preg++]
649       [preg--]
650       [--sp]
651 */
652
653 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
654       (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
655
656 #ifdef REG_OK_STRICT
657 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)          \
658   do {                                                  \
659     if (bfin_legitimate_address_p (MODE, X, 1))         \
660       goto WIN;                                         \
661   } while (0);
662 #else
663 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)          \
664   do {                                                  \
665     if (bfin_legitimate_address_p (MODE, X, 0))         \
666       goto WIN;                                         \
667   } while (0);
668 #endif
669
670 /* Try machine-dependent ways of modifying an illegitimate address
671    to be legitimate.  If we find one, return the new, valid address.
672    This macro is used in only one place: `memory_address' in explow.c.
673
674    OLDX is the address as it was before break_out_memory_refs was called.
675    In some cases it is useful to look at this to decide what needs to be done.
676
677    MODE and WIN are passed so that this macro can use
678    GO_IF_LEGITIMATE_ADDRESS.
679
680    It is always safe for this macro to do nothing.  It exists to recognize
681    opportunities to optimize the output.
682  */
683 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)    \
684 do {                                           \
685    rtx _q = legitimize_address(X, OLDX, MODE); \
686    if (_q) { X = _q; goto WIN; }               \
687 } while (0)
688
689 #define HAVE_POST_INCREMENT 1
690 #define HAVE_POST_DECREMENT 1
691 #define HAVE_PRE_DECREMENT  1
692
693 /* `LEGITIMATE_PIC_OPERAND_P (X)'
694      A C expression that is nonzero if X is a legitimate immediate
695      operand on the target machine when generating position independent
696      code.  You can assume that X satisfies `CONSTANT_P', so you need
697      not check this.  You can also assume FLAG_PIC is true, so you need
698      not check it either.  You need not define this macro if all
699      constants (including `SYMBOL_REF') can be immediate operands when
700      generating position independent code. */
701 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
702
703 #define SYMBOLIC_CONST(X)       \
704 (GET_CODE (X) == SYMBOL_REF                                             \
705  || GET_CODE (X) == LABEL_REF                                           \
706  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
707
708 /*
709      A C statement or compound statement with a conditional `goto
710      LABEL;' executed if memory address X (an RTX) can have different
711      meanings depending on the machine mode of the memory reference it
712      is used for or if the address is valid for some modes but not
713      others.
714
715      Autoincrement and autodecrement addresses typically have
716      mode-dependent effects because the amount of the increment or
717      decrement is the size of the operand being addressed.  Some
718      machines have other mode-dependent addresses.  Many RISC machines
719      have no mode-dependent addresses.
720
721      You may assume that ADDR is a valid address for the machine.
722 */
723 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
724 do {                                              \
725  if (GET_CODE (ADDR) == POST_INC                  \
726      || GET_CODE (ADDR) == POST_DEC               \
727      || GET_CODE (ADDR) == PRE_DEC)               \
728    goto LABEL;                                    \
729 } while (0)
730
731 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
732
733 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
734    is done just by pretending it is already truncated.  */
735 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
736
737 /* Max number of bytes we can move from memory to memory
738    in one reasonably fast instruction.  */
739 #define MOVE_MAX UNITS_PER_WORD
740
741
742 /* STORAGE LAYOUT: target machine storage layout
743    Define this macro as a C expression which is nonzero if accessing
744    less than a word of memory (i.e. a `char' or a `short') is no
745    faster than accessing a word of memory, i.e., if such access
746    require more than one instruction or if there is no difference in
747    cost between byte and (aligned) word loads.
748
749    When this macro is not defined, the compiler will access a field by
750    finding the smallest containing object; when it is defined, a
751    fullword load will be used if alignment permits.  Unless bytes
752    accesses are faster than word accesses, using word accesses is
753    preferable since it may eliminate subsequent memory access if
754    subsequent accesses occur to other fields in the same word of the
755    structure, but to different bytes.  */
756 #define SLOW_BYTE_ACCESS  0
757 #define SLOW_SHORT_ACCESS 0
758
759 /* Define this if most significant bit is lowest numbered
760    in instructions that operate on numbered bit-fields. */
761 #define BITS_BIG_ENDIAN  0
762
763 /* Define this if most significant byte of a word is the lowest numbered.
764    We can't access bytes but if we could we would in the Big Endian order. */
765 #define BYTES_BIG_ENDIAN 0
766
767 /* Define this if most significant word of a multiword number is numbered. */
768 #define WORDS_BIG_ENDIAN 0
769
770 /* number of bits in an addressable storage unit */
771 #define BITS_PER_UNIT 8
772
773 /* Width in bits of a "word", which is the contents of a machine register.
774    Note that this is not necessarily the width of data type `int';
775    if using 16-bit ints on a 68000, this would still be 32.
776    But on a machine with 16-bit registers, this would be 16.  */
777 #define BITS_PER_WORD 32
778
779 /* Width of a word, in units (bytes).  */
780 #define UNITS_PER_WORD 4
781
782 /* Width in bits of a pointer.
783    See also the macro `Pmode1' defined below.  */
784 #define POINTER_SIZE 32
785
786 /* Allocation boundary (in *bits*) for storing pointers in memory.  */
787 #define POINTER_BOUNDARY 32
788
789 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
790 #define PARM_BOUNDARY 32
791
792 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
793 #define STACK_BOUNDARY 32
794
795 /* Allocation boundary (in *bits*) for the code of a function.  */
796 #define FUNCTION_BOUNDARY 32
797
798 /* Alignment of field after `int : 0' in a structure.  */
799 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
800
801 /* No data type wants to be aligned rounder than this.  */
802 #define BIGGEST_ALIGNMENT 32
803
804 /* Define this if move instructions will actually fail to work
805    when given unaligned data.  */
806 #define STRICT_ALIGNMENT 1
807
808 /* (shell-command "rm c-decl.o stor-layout.o")
809  *  never define PCC_BITFIELD_TYPE_MATTERS
810  *  really cause some alignment problem
811  */
812
813 #define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
814                            BITS_PER_UNIT)
815
816 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
817                            BITS_PER_UNIT)
818
819
820 /* what is the 'type' of size_t */
821 #define SIZE_TYPE "long unsigned int"
822
823 /* Define this as 1 if `char' should by default be signed; else as 0.  */
824 #define DEFAULT_SIGNED_CHAR 1
825 #define FLOAT_TYPE_SIZE BITS_PER_WORD
826 #define SHORT_TYPE_SIZE 16 
827 #define CHAR_TYPE_SIZE  8
828 #define INT_TYPE_SIZE   32
829 #define LONG_TYPE_SIZE  32
830 #define LONG_LONG_TYPE_SIZE 64 
831
832 /* Note: Fix this to depend on target switch. -- lev */
833
834 /* Note: Try to implement double and force long double. -- tonyko
835  * #define __DOUBLES_ARE_FLOATS__
836  * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
837  * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
838  * #define DOUBLES_ARE_FLOATS 1
839  */
840
841 #define DOUBLE_TYPE_SIZE        64
842 #define LONG_DOUBLE_TYPE_SIZE   64
843
844 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
845      A macro to update M and UNSIGNEDP when an object whose type is
846      TYPE and which has the specified mode and signedness is to be
847      stored in a register.  This macro is only called when TYPE is a
848      scalar type.
849
850      On most RISC machines, which only have operations that operate on
851      a full register, define this macro to set M to `word_mode' if M is
852      an integer mode narrower than `BITS_PER_WORD'.  In most cases,
853      only integer modes should be widened because wider-precision
854      floating-point operations are usually more expensive than their
855      narrower counterparts.
856
857      For most machines, the macro definition does not change UNSIGNEDP.
858      However, some machines, have instructions that preferentially
859      handle either signed or unsigned quantities of certain modes.  For
860      example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
861      instructions sign-extend the result to 64 bits.  On such machines,
862      set UNSIGNEDP according to which kind of extension is more
863      efficient.
864
865      Do not define this macro if it would never modify M.*/
866
867 #define BFIN_PROMOTE_MODE_P(MODE) \
868     (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT   \
869       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
870
871 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
872   if (BFIN_PROMOTE_MODE_P(MODE))                \
873     {                                           \
874       if (MODE == QImode)                       \
875         UNSIGNEDP = 1;                          \
876       else if (MODE == HImode)                  \
877         UNSIGNEDP = 0;                          \
878       (MODE) = SImode;                          \
879     }
880
881 /* Describing Relative Costs of Operations */
882
883 /* Do not put function addr into constant pool */
884 #define NO_FUNCTION_CSE 1
885
886 /* A C expression for the cost of moving data from a register in class FROM to
887    one in class TO.  The classes are expressed using the enumeration values
888    such as `GENERAL_REGS'.  A value of 2 is the default; other values are
889    interpreted relative to that.
890
891    It is not required that the cost always equal 2 when FROM is the same as TO;
892    on some machines it is expensive to move between registers if they are not
893    general registers.  */
894
895 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
896    bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
897
898 /* A C expression for the cost of moving data of mode M between a
899    register and memory.  A value of 2 is the default; this cost is
900    relative to those in `REGISTER_MOVE_COST'.
901
902    If moving between registers and memory is more expensive than
903    between two registers, you should define this macro to express the
904    relative cost.  */
905
906 #define MEMORY_MOVE_COST(MODE, CLASS, IN)       \
907   bfin_memory_move_cost ((MODE), (CLASS), (IN))
908
909 /* Specify the machine mode that this machine uses
910    for the index in the tablejump instruction.  */
911 #define CASE_VECTOR_MODE SImode
912
913 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
914
915 /* Define if operations between registers always perform the operation
916    on the full register even if a narrower mode is specified. 
917 #define WORD_REGISTER_OPERATIONS
918 */
919
920 #define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
921 #define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
922 #define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
923 #define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
924 #define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
925 #define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
926 #define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
927 #define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
928 #define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
929 #define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
930
931 #define CONSTRAINT_LEN(C, STR)                  \
932     ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
933      : (C) == 'K' ? 3                           \
934      : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
935
936 #define CONST_OK_FOR_P(VALUE, STR)    \
937     ((STR)[1] == '0' ? (VALUE) == 0   \
938      : (STR)[1] == '1' ? (VALUE) == 1 \
939      : (STR)[1] == '2' ? (VALUE) == 2 \
940      : (STR)[1] == '3' ? (VALUE) == 3 \
941      : (STR)[1] == '4' ? (VALUE) == 4 \
942      : 0)
943
944 #define CONST_OK_FOR_K(VALUE, STR)                      \
945     ((STR)[1] == 'u'                                    \
946      ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE)     \
947         : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE)   \
948         : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE)   \
949         : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE)  \
950         : 0)                                            \
951      : (STR)[1] == 's'                                  \
952      ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE)      \
953         : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE)    \
954         : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE)    \
955         : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE)   \
956         : 0)                                            \
957      : (STR)[1] == 'n'                                  \
958      ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE)     \
959         : 0)                                            \
960      : 0)
961
962 #define CONST_OK_FOR_M(VALUE, STR)                      \
963     ((STR)[1] == '1' ? (VALUE) == 255                   \
964      : (STR)[1] == '2' ? (VALUE) == 65535               \
965      : 0)
966
967 /* The letters I, J, K, L and M in a register constraint string
968    can be used to stand for particular ranges of immediate operands.
969    This macro defines what the ranges are.
970    C is the letter, and VALUE is a constant value.
971    Return 1 if VALUE is in the range specified by C. 
972    
973    bfin constant operands are as follows
974    
975      J   2**N       5bit imm scaled
976      Ks7 -64 .. 63  signed 7bit imm
977      Ku5 0..31      unsigned 5bit imm
978      Ks4 -8 .. 7    signed 4bit imm
979      Ks3 -4 .. 3    signed 3bit imm
980      Ku3 0 .. 7     unsigned 3bit imm
981      Pn  0, 1, 2    constants 0, 1 or 2, corresponding to n
982 */
983 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR)                \
984   ((C) == 'J' ? (log2constp (VALUE))                            \
985    : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR)                   \
986    : (C) == 'L' ? log2constp (~(VALUE))                         \
987    : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR)                   \
988    : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR)                   \
989    : 0)
990
991      /*Constant Output Formats */
992 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
993   ((C) == 'H' ? 1 : 0)
994
995 #define EXTRA_CONSTRAINT(VALUE, D) \
996     ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
997
998 /* Switch into a generic section.  */
999 #define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
1000
1001 #define PRINT_OPERAND(FILE, RTX, CODE)   print_operand (FILE, RTX, CODE)
1002 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1003
1004 typedef enum sections {
1005     CODE_DIR,
1006     DATA_DIR,
1007     LAST_SECT_NM
1008 } SECT_ENUM_T;
1009
1010 typedef enum directives {
1011     LONG_CONST_DIR,
1012     SHORT_CONST_DIR,
1013     BYTE_CONST_DIR,
1014     SPACE_DIR,
1015     INIT_DIR,
1016     LAST_DIR_NM
1017 } DIR_ENUM_T;
1018
1019 #define TEXT_SECTION_ASM_OP ".text;"
1020 #define DATA_SECTION_ASM_OP ".data;"
1021
1022 #define ASM_APP_ON  ""
1023 #define ASM_APP_OFF ""
1024
1025 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1026   do {  fputs (".global ", FILE);               \
1027         assemble_name (FILE, NAME);             \
1028         fputc (';',FILE);                       \
1029         fputc ('\n',FILE);                      \
1030       } while (0)
1031
1032 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1033   do {                                  \
1034     fputs (".type ", FILE);             \
1035     assemble_name (FILE, NAME);         \
1036     fputs (", STT_FUNC", FILE);         \
1037     fputc (';',FILE);                   \
1038     fputc ('\n',FILE);                  \
1039     ASM_OUTPUT_LABEL(FILE, NAME);       \
1040   } while (0)
1041
1042 #define ASM_OUTPUT_LABEL(FILE, NAME)    \
1043   do {  assemble_name (FILE, NAME);             \
1044         fputs (":\n",FILE);                     \
1045       } while (0)
1046
1047 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1048     do {  fprintf (FILE, "_%s", NAME); \
1049         } while (0)
1050
1051 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)                  \
1052   do {                                                                  \
1053     int len = strlen (NAME);                                            \
1054     char *temp = (char *) alloca (len + 4);                             \
1055     temp[0] = 'L';                                                      \
1056     temp[1] = '_';                                                      \
1057     strcpy (&temp[2], (NAME));                                          \
1058     temp[len + 2] = '_';                                                \
1059     temp[len + 3] = 0;                                                  \
1060     (OUTPUT) = (char *) alloca (strlen (NAME) + 13);                    \
1061     sprintf (OUTPUT, "_%s$%d", temp, LABELNO);                          \
1062   } while (0)
1063
1064 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)            \
1065 do { char __buf[256];                                   \
1066      fprintf (FILE, "\t.dd\t");                         \
1067      ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);   \
1068      assemble_name (FILE, __buf);                       \
1069      fputc (';', FILE);                                 \
1070      fputc ('\n', FILE);                                \
1071    } while (0)
1072
1073 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1074     MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1075
1076 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)           \
1077     do {                                                        \
1078         char __buf[256];                                        \
1079         fprintf (FILE, "\t.dd\t");                              \
1080         ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);        \
1081         assemble_name (FILE, __buf);                            \
1082         fputs (" - ", FILE);                                    \
1083         ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);          \
1084         assemble_name (FILE, __buf);                            \
1085         fputc (';', FILE);                                      \
1086         fputc ('\n', FILE);                                     \
1087     } while (0)
1088
1089 #define ASM_OUTPUT_ALIGN(FILE,LOG)                              \
1090     do {                                                        \
1091       if ((LOG) != 0)                                           \
1092         fprintf (FILE, "\t.align %d\n", 1 << (LOG));            \
1093     } while (0)
1094
1095 #define ASM_OUTPUT_SKIP(FILE,SIZE)              \
1096     do {                                        \
1097         asm_output_skip (FILE, SIZE);           \
1098     } while (0)
1099
1100 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)     \
1101 do {                                            \
1102     data_section();                             \
1103     if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);  \
1104     ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);               \
1105     ASM_OUTPUT_LABEL (FILE, NAME);                              \
1106     fprintf (FILE, "%s %ld;\n", ASM_SPACE,                      \
1107              (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);     \
1108 } while (0)
1109
1110 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)    \
1111      do {                                               \
1112         ASM_GLOBALIZE_LABEL1(FILE,NAME);                \
1113         ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1114
1115 #define ASM_COMMENT_START "//"
1116
1117 #define FUNCTION_PROFILER(FILE, LABELNO) \
1118   do {\
1119     fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1120        LABELNO, LABELNO);\
1121   } while(0)
1122
1123 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1124 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1125
1126 extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1127 extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1128
1129 /* This works for GAS and some other assemblers.  */
1130 #define SET_ASM_OP              ".set "
1131
1132 /* Don't know how to order these.  UNALIGNED_WORD_ASM_OP is in
1133    dwarf2.out. */
1134 #define UNALIGNED_WORD_ASM_OP ".4byte"
1135
1136 /* DBX register number for a given compiler register number */
1137 #define DBX_REGISTER_NUMBER(REGNO)  (REGNO) 
1138
1139 #define SIZE_ASM_OP     "\t.size\t"
1140
1141 #endif /*  _BFIN_CONFIG */