OSDN Git Service

* config/bfin/bfin-protos.h (bfin_hardware_loop): Declare.
[pf3gnuchains/gcc-fork.git] / gcc / config / bfin / bfin.h
1 /* Definitions for the Blackfin port.
2    Copyright (C) 2005  Free Software Foundation, Inc.
3    Contributed by Analog Devices.
4
5    This file is part of GCC.
6
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 2, or (at your
10    option) any later version.
11
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to
19    the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20    Boston, MA 02110-1301, USA.  */
21
22 #ifndef _BFIN_CONFIG
23 #define _BFIN_CONFIG
24
25 #define OBJECT_FORMAT_ELF
26
27 #define BRT 1
28 #define BRF 0
29
30 /* Print subsidiary information on the compiler version in use.  */
31 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32
33 /* Run-time compilation parameters selecting different hardware subsets.  */
34
35 extern int target_flags;
36
37 /* Predefinition in the preprocessor for this target machine */
38 #ifndef TARGET_CPU_CPP_BUILTINS
39 #define TARGET_CPU_CPP_BUILTINS()               \
40   do                                            \
41     {                                           \
42       builtin_define ("bfin");                  \
43       builtin_define ("BFIN");                  \
44       builtin_define ("__ADSPBLACKFIN__");      \
45       if (TARGET_FDPIC)                         \
46         builtin_define ("__BFIN_FDPIC__");      \
47       if (TARGET_ID_SHARED_LIBRARY)             \
48         builtin_define ("__ID_SHARED_LIB__");   \
49     }                                           \
50   while (0)
51 #endif
52
53 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS   "\
54  %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
55             %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
56 "
57 #ifndef SUBTARGET_DRIVER_SELF_SPECS
58 # define SUBTARGET_DRIVER_SELF_SPECS
59 #endif
60
61 #define LINK_GCC_C_SEQUENCE_SPEC \
62   "%{mfdpic:%{!static: %L} %{static: %G %L %G}} \
63   %{!mfdpic:%G %L %G}"
64
65 /* A C string constant that tells the GCC driver program options to pass to
66    the assembler.  It can also specify how to translate options you give to GNU
67    CC into options for GCC to pass to the assembler.  See the file `sun3.h'
68    for an example of this.
69
70    Do not define this macro if it does not need to do anything.
71
72    Defined in svr4.h.  */
73 #undef  ASM_SPEC
74 #define ASM_SPEC "\
75 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
76     %{mno-fdpic:-mnopic} %{mfdpic}"
77
78 #define LINK_SPEC "\
79 %{h*} %{v:-V} \
80 %{b} \
81 %{mfdpic:-melf32bfinfd -z text} \
82 %{static:-dn -Bstatic} \
83 %{shared:-G -Bdynamic} \
84 %{symbolic:-Bsymbolic} \
85 %{G*} \
86 %{YP,*} \
87 %{Qy:} %{!Qn:-Qy} \
88 -init __init -fini __fini "
89
90 /* Generate DSP instructions, like DSP halfword loads */
91 #define TARGET_DSP                      (1)
92
93 #define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
94
95 /* Maximum number of library ids we permit */
96 #define MAX_LIBRARY_ID 255
97
98 extern const char *bfin_library_id_string;
99
100 /* Sometimes certain combinations of command options do not make
101    sense on a particular target machine.  You can define a macro
102    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
103    defined, is executed once just after all the command options have
104    been parsed.
105  
106    Don't use this macro to turn on various extra optimizations for
107    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
108  
109 #define OVERRIDE_OPTIONS override_options ()
110
111 #define FUNCTION_MODE    SImode
112 #define Pmode            SImode
113
114 /* store-condition-codes instructions store 0 for false
115    This is the value stored for true.  */
116 #define STORE_FLAG_VALUE 1
117
118 /* Define this if pushing a word on the stack
119    makes the stack pointer a smaller address.  */
120 #define STACK_GROWS_DOWNWARD
121
122 #define STACK_PUSH_CODE PRE_DEC
123
124 /* Define this to nonzero if the nominal address of the stack frame
125    is at the high-address end of the local variables;
126    that is, each additional local variable allocated
127    goes at a more negative offset in the frame.  */
128 #define FRAME_GROWS_DOWNWARD 1
129
130 /* We define a dummy ARGP register; the parameters start at offset 0 from
131    it. */
132 #define FIRST_PARM_OFFSET(DECL) 0
133
134 /* Offset within stack frame to start allocating local variables at.
135    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
136    first local allocated.  Otherwise, it is the offset to the BEGINNING
137    of the first local allocated.  */
138 #define STARTING_FRAME_OFFSET 0
139
140 /* Register to use for pushing function arguments.  */
141 #define STACK_POINTER_REGNUM REG_P6
142
143 /* Base register for access to local variables of the function.  */
144 #define FRAME_POINTER_REGNUM REG_P7
145
146 /* A dummy register that will be eliminated to either FP or SP.  */
147 #define ARG_POINTER_REGNUM REG_ARGP
148
149 /* `PIC_OFFSET_TABLE_REGNUM'
150      The register number of the register used to address a table of
151      static data addresses in memory.  In some cases this register is
152      defined by a processor's "application binary interface" (ABI).
153      When this macro is defined, RTL is generated for this register
154      once, as with the stack pointer and frame pointer registers.  If
155      this macro is not defined, it is up to the machine-dependent files
156      to allocate such a register (if necessary). */
157 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
158
159 #define FDPIC_FPTR_REGNO REG_P1
160 #define FDPIC_REGNO REG_P3
161 #define OUR_FDPIC_REG   get_hard_reg_initial_val (SImode, FDPIC_REGNO)
162
163 /* A static chain register for nested functions.  We need to use a
164    call-clobbered register for this.  */
165 #define STATIC_CHAIN_REGNUM REG_P2
166
167 /* Define this if functions should assume that stack space has been
168    allocated for arguments even when their values are passed in
169    registers.
170
171    The value of this macro is the size, in bytes, of the area reserved for
172    arguments passed in registers.
173
174    This space can either be allocated by the caller or be a part of the
175    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
176    says which.  */
177 #define FIXED_STACK_AREA 12
178 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
179
180 /* Define this if the above stack space is to be considered part of the
181  * space allocated by the caller.  */
182 #define OUTGOING_REG_PARM_STACK_SPACE
183           
184 /* Define this if the maximum size of all the outgoing args is to be
185    accumulated and pushed during the prologue.  The amount can be
186    found in the variable current_function_outgoing_args_size. */ 
187 #define ACCUMULATE_OUTGOING_ARGS 1
188
189 /* Value should be nonzero if functions must have frame pointers.
190    Zero means the frame pointer need not be set up (and parms
191    may be accessed via the stack pointer) in functions that seem suitable.
192    This is computed in `reload', in reload1.c.  
193 */
194 #define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
195
196 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
197
198 /* Make strings word-aligned so strcpy from constants will be faster.  */
199 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
200   (TREE_CODE (EXP) == STRING_CST        \
201    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))    
202
203 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
204 #define TRAMPOLINE_TEMPLATE(FILE)                                       \
205   if (TARGET_FDPIC)                                                     \
206     {                                                                   \
207       fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */                     \
208       fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */                     \
209       fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */         \
210       fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */        \
211       fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */         \
212       fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */        \
213       fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */             \
214       fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */                 \
215       fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/                  \
216     }                                                                   \
217   else                                                                  \
218     {                                                                   \
219       fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */         \
220       fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */        \
221       fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */         \
222       fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */        \
223       fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/                  \
224     }
225
226 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
227   initialize_trampoline (TRAMP, FNADDR, CXT)
228 \f
229 /* Definitions for register eliminations.
230
231    This is an array of structures.  Each structure initializes one pair
232    of eliminable registers.  The "from" register number is given first,
233    followed by "to".  Eliminations of the same "from" register are listed
234    in order of preference.
235
236    There are two registers that can always be eliminated on the i386.
237    The frame pointer and the arg pointer can be replaced by either the
238    hard frame pointer or to the stack pointer, depending upon the
239    circumstances.  The hard frame pointer is not used before reload and
240    so it is not eligible for elimination.  */
241
242 #define ELIMINABLE_REGS                         \
243 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
244  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
245  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
246
247 /* Given FROM and TO register numbers, say whether this elimination is
248    allowed.  Frame pointer elimination is automatically handled.
249
250    All other eliminations are valid.  */
251
252 #define CAN_ELIMINATE(FROM, TO) \
253   ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
254
255 /* Define the offset between two registers, one to be eliminated, and the other
256    its replacement, at the start of a routine.  */
257
258 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
259   ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
260 \f
261 /* This processor has
262    8 data register for doing arithmetic
263    8  pointer register for doing addressing, including
264       1  stack pointer P6
265       1  frame pointer P7
266    4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
267    1  condition code flag register CC
268    5  return address registers RETS/I/X/N/E
269    1  arithmetic status register (ASTAT).  */
270
271 #define FIRST_PSEUDO_REGISTER 50
272
273 #define D_REGNO_P(X) ((X) <= REG_R7)
274 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
275 #define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
276 #define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
277 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
278 #define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
279 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
280 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
281 #define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
282
283 #define REGISTER_NAMES { \
284   "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
285   "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
286   "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
287   "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
288   "A0", "A1", \
289   "CC", \
290   "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
291   "ARGP", \
292   "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
293 }
294
295 #define SHORT_REGISTER_NAMES { \
296         "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
297         "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
298         "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
299         "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
300
301 #define HIGH_REGISTER_NAMES { \
302         "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
303         "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
304         "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
305         "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
306
307 #define DREGS_PAIR_NAMES { \
308   "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
309
310 #define BYTE_REGISTER_NAMES { \
311   "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
312
313
314 /* 1 for registers that have pervasive standard uses
315    and are not available for the register allocator.  */
316
317 #define FIXED_REGISTERS \
318 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
319 { 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
320 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
321   0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
322 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
323   0, 0, 0, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,    \
324 /*lb0/1 */ \
325   1, 1  \
326 }
327
328 /* 1 for registers not available across function calls.
329    These must include the FIXED_REGISTERS and also any
330    registers that can be used without being saved.
331    The latter must include the registers where values are returned
332    and the register where structure-value addresses are passed.
333    Aside from that, you can include as many other registers as you like.  */
334
335 #define CALL_USED_REGISTERS \
336 /*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
337 { 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
338 /*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
339   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
340 /*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
341   1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1, \
342 /*lb0/1 */ \
343   1, 1  \
344 }
345
346 /* Order in which to allocate registers.  Each register must be
347    listed once, even those in FIXED_REGISTERS.  List frame pointer
348    late and fixed registers last.  Note that, in general, we prefer
349    registers listed in CALL_USED_REGISTERS, keeping the others
350    available for storage of persistent values. */
351
352 #define REG_ALLOC_ORDER \
353 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
354   REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
355   REG_A0, REG_A1, \
356   REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
357   REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
358   REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,               \
359   REG_ASTAT, REG_SEQSTAT, REG_USP,                                \
360   REG_CC, REG_ARGP,                                               \
361   REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1            \
362 }
363
364 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
365 #define CONDITIONAL_REGISTER_USAGE                      \
366   {                                                     \
367     conditional_register_usage();                       \
368     if (TARGET_FDPIC)                                   \
369       call_used_regs[FDPIC_REGNO] = 1;                  \
370     if (!TARGET_FDPIC && flag_pic)                      \
371       {                                                 \
372         fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;        \
373         call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
374       }                                                 \
375   }
376
377 /* Define the classes of registers for register constraints in the
378    machine description.  Also define ranges of constants.
379
380    One of the classes must always be named ALL_REGS and include all hard regs.
381    If there is more than one class, another class must be named NO_REGS
382    and contain no registers.
383
384    The name GENERAL_REGS must be the name of a class (or an alias for
385    another name such as ALL_REGS).  This is the class of registers
386    that is allowed by "g" or "r" in a register constraint.
387    Also, registers outside this class are allocated only when
388    instructions express preferences for them.
389
390    The classes must be numbered in nondecreasing order; that is,
391    a larger-numbered class must never be contained completely
392    in a smaller-numbered class.
393
394    For any two classes, it is very desirable that there be another
395    class that represents their union. */
396
397
398 enum reg_class
399 {
400   NO_REGS,
401   IREGS,
402   BREGS,
403   LREGS,
404   MREGS,
405   CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
406   DAGREGS,
407   EVEN_AREGS,
408   ODD_AREGS,
409   AREGS,
410   CCREGS,
411   EVEN_DREGS,
412   ODD_DREGS,
413   DREGS,
414   FDPIC_REGS,
415   FDPIC_FPTR_REGS,
416   PREGS_CLOBBERED,
417   PREGS,
418   IPREGS,
419   DPREGS,
420   MOST_REGS,
421   LT_REGS,
422   LC_REGS,
423   LB_REGS,
424   PROLOGUE_REGS,
425   NON_A_CC_REGS,
426   ALL_REGS, LIM_REG_CLASSES
427 };
428
429 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
430
431 #define GENERAL_REGS DPREGS
432
433 /* Give names of register classes as strings for dump file.   */
434
435 #define REG_CLASS_NAMES \
436 {  "NO_REGS",           \
437    "IREGS",             \
438    "BREGS",             \
439    "LREGS",             \
440    "MREGS",             \
441    "CIRCREGS",          \
442    "DAGREGS",           \
443    "EVEN_AREGS",        \
444    "ODD_AREGS",         \
445    "AREGS",             \
446    "CCREGS",            \
447    "EVEN_DREGS",        \
448    "ODD_DREGS",         \
449    "DREGS",             \
450    "FDPIC_REGS",        \
451    "FDPIC_FPTR_REGS",   \
452    "PREGS_CLOBBERED",   \
453    "PREGS",             \
454    "IPREGS",            \
455    "DPREGS",            \
456    "MOST_REGS",         \
457    "LT_REGS",           \
458    "LC_REGS",           \
459    "LB_REGS",           \
460    "PROLOGUE_REGS",     \
461    "NON_A_CC_REGS",     \
462    "ALL_REGS" }
463
464 /* An initializer containing the contents of the register classes, as integers
465    which are bit masks.  The Nth integer specifies the contents of class N.
466    The way the integer MASK is interpreted is that register R is in the class
467    if `MASK & (1 << R)' is 1.
468
469    When the machine has more than 32 registers, an integer does not suffice.
470    Then the integers are replaced by sub-initializers, braced groupings
471    containing several integers.  Each sub-initializer must be suitable as an
472    initializer for the type `HARD_REG_SET' which is defined in
473    `hard-reg-set.h'.  */
474
475 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
476    MOST_REGS as the union of DPREGS and DAGREGS.  */
477
478 #define REG_CLASS_CONTENTS \
479     /* 31 - 0       63-32   */ \
480 {   { 0x00000000,    0 },               /* NO_REGS */   \
481     { 0x000f0000,    0 },               /* IREGS */     \
482     { 0x00f00000,    0 },               /* BREGS */             \
483     { 0x0f000000,    0 },               /* LREGS */     \
484     { 0xf0000000,    0 },               /* MREGS */   \
485     { 0x0fff0000,    0 },               /* CIRCREGS */   \
486     { 0xffff0000,    0 },               /* DAGREGS */   \
487     { 0x00000000,    0x1 },             /* EVEN_AREGS */   \
488     { 0x00000000,    0x2 },             /* ODD_AREGS */   \
489     { 0x00000000,    0x3 },             /* AREGS */   \
490     { 0x00000000,    0x4 },             /* CCREGS */  \
491     { 0x00000055,    0 },               /* EVEN_DREGS */   \
492     { 0x000000aa,    0 },               /* ODD_DREGS */   \
493     { 0x000000ff,    0 },               /* DREGS */   \
494     { 0x00000800,    0x000 },           /* FDPIC_REGS */   \
495     { 0x00000200,    0x000 },           /* FDPIC_FPTR_REGS */   \
496     { 0x00004700,    0x800 },           /* PREGS_CLOBBERED */   \
497     { 0x0000ff00,    0x800 },           /* PREGS */   \
498     { 0x000fff00,    0x800 },           /* IPREGS */    \
499     { 0x0000ffff,    0x800 },           /* DPREGS */   \
500     { 0xffffffff,    0x800 },           /* MOST_REGS */\
501     { 0x00000000,    0x3000 },          /* LT_REGS */\
502     { 0x00000000,    0xc000 },          /* LC_REGS */\
503     { 0x00000000,    0x30000 },         /* LB_REGS */\
504     { 0x00000000,    0x3f7f8 },         /* PROLOGUE_REGS */\
505     { 0xffffffff,    0x3fff8 },         /* NON_A_CC_REGS */\
506     { 0xffffffff,    0x3ffff }}         /* ALL_REGS */
507
508 #define IREG_POSSIBLE_P(OUTER)                               \
509   ((OUTER) == POST_INC || (OUTER) == PRE_INC                 \
510    || (OUTER) == POST_DEC || (OUTER) == PRE_DEC              \
511    || (OUTER) == MEM || (OUTER) == ADDRESS)
512
513 #define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX)                    \
514   ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
515
516 #define INDEX_REG_CLASS         PREGS
517
518 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX)       \
519   (P_REGNO_P (X) || (X) == REG_ARGP                             \
520    || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode              \
521        && I_REGNO_P (X)))
522
523 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX)    \
524   ((X) >= FIRST_PSEUDO_REGISTER                                 \
525    || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
526
527 #ifdef REG_OK_STRICT
528 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
529   REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
530 #else
531 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
532   REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
533 #endif
534
535 #define REGNO_OK_FOR_INDEX_P(X)   0
536
537 /* Get reg_class from a letter such as appears in the machine description.  */
538
539 #define REG_CLASS_FROM_LETTER(LETTER)   \
540   ((LETTER) == 'a' ? PREGS :            \
541    (LETTER) == 'Z' ? FDPIC_REGS :       \
542    (LETTER) == 'Y' ? FDPIC_FPTR_REGS :  \
543    (LETTER) == 'd' ? DREGS :            \
544    (LETTER) == 'z' ? PREGS_CLOBBERED :  \
545    (LETTER) == 'D' ? EVEN_DREGS :       \
546    (LETTER) == 'W' ? ODD_DREGS :        \
547    (LETTER) == 'e' ? AREGS :            \
548    (LETTER) == 'A' ? EVEN_AREGS :       \
549    (LETTER) == 'B' ? ODD_AREGS :        \
550    (LETTER) == 'b' ? IREGS :            \
551    (LETTER) == 'B' ? BREGS :            \
552    (LETTER) == 'f' ? MREGS :            \
553    (LETTER) == 'c' ? CIRCREGS :         \
554    (LETTER) == 'C' ? CCREGS :           \
555    (LETTER) == 't' ? LT_REGS :          \
556    (LETTER) == 'k' ? LC_REGS :          \
557    (LETTER) == 'l' ? LB_REGS :          \
558    (LETTER) == 'x' ? MOST_REGS :        \
559    (LETTER) == 'y' ? PROLOGUE_REGS :    \
560    (LETTER) == 'w' ? NON_A_CC_REGS :    \
561    NO_REGS)
562
563 /* The same information, inverted:
564    Return the class number of the smallest class containing
565    reg number REGNO.  This could be a conditional expression
566    or could index an array.  */
567
568 #define REGNO_REG_CLASS(REGNO) \
569  ((REGNO) < REG_P0 ? DREGS                              \
570  : (REGNO) < REG_I0 ? PREGS                             \
571  : (REGNO) == REG_ARGP ? PREGS                          \
572  : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS       \
573  : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS       \
574  : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS       \
575  : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS       \
576  : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS       \
577  : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS   \
578  : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS   \
579  : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS   \
580  : (REGNO) == REG_CC ? CCREGS                           \
581  : (REGNO) >= REG_RETS ? PROLOGUE_REGS                  \
582  : NO_REGS)
583
584 /* When defined, the compiler allows registers explicitly used in the
585    rtl to be used as spill registers but prevents the compiler from
586    extending the lifetime of these registers. */
587 #define SMALL_REGISTER_CLASSES 1
588
589 #define CLASS_LIKELY_SPILLED_P(CLASS) \
590     ((CLASS) == PREGS_CLOBBERED \
591      || (CLASS) == PROLOGUE_REGS \
592      || (CLASS) == CCREGS)
593
594 /* Do not allow to store a value in REG_CC for any mode */
595 /* Do not allow to store value in pregs if mode is not SI*/
596 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
597
598 /* Return the maximum number of consecutive registers
599    needed to represent mode MODE in a register of class CLASS.  */
600 #define CLASS_MAX_NREGS(CLASS, MODE)                                    \
601   ((MODE) == V2PDImode && (CLASS) == AREGS ? 2                          \
602    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
603
604 #define HARD_REGNO_NREGS(REGNO, MODE) \
605   ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1    \
606    : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
607    : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
608
609 /* A C expression that is nonzero if hard register TO can be
610    considered for use as a rename register for FROM register */
611 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
612
613 /* A C expression that is nonzero if it is desirable to choose
614    register allocation so as to avoid move instructions between a
615    value of mode MODE1 and a value of mode MODE2.
616
617    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
618    MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
619    MODE2)' must be zero. */
620 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
621
622 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
623    A C expression that places additional restrictions on the register
624    class to use when it is necessary to copy value X into a register
625    in class CLASS.  The value is a register class; perhaps CLASS, or
626    perhaps another, smaller class.  */
627 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
628
629 /* Function Calling Conventions. */
630
631 /* The type of the current function; normal functions are of type
632    SUBROUTINE.  */
633 typedef enum {
634   SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
635 } e_funkind;
636
637 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
638
639 /* Flags for the call/call_value rtl operations set up by function_arg */
640 #define CALL_NORMAL             0x00000000      /* no special processing */
641 #define CALL_LONG               0x00000001      /* always call indirect */
642 #define CALL_SHORT              0x00000002      /* always call by symbol */
643
644 typedef struct {
645   int words;                    /* # words passed so far */
646   int nregs;                    /* # registers available for passing */
647   int *arg_regs;                /* array of register -1 terminated */
648   int call_cookie;              /* Do special things for this call */
649 } CUMULATIVE_ARGS;
650
651 /* Define where to put the arguments to a function.
652    Value is zero to push the argument on the stack,
653    or a hard register in which to store the argument.
654
655    MODE is the argument's machine mode.
656    TYPE is the data type of the argument (as a tree).
657     This is null for libcalls where that information may
658     not be available.
659    CUM is a variable of type CUMULATIVE_ARGS which gives info about
660     the preceding args and about the function being called.
661    NAMED is nonzero if this argument is a named parameter
662     (otherwise it is an extra parameter matching an ellipsis).  */
663
664 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
665   (function_arg (&CUM, MODE, TYPE, NAMED))
666
667 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
668
669
670 /* Initialize a variable CUM of type CUMULATIVE_ARGS
671    for a call to a function whose data type is FNTYPE.
672    For a library call, FNTYPE is 0.  */
673 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
674   (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
675
676 /* Update the data in CUM to advance over an argument
677    of mode MODE and data type TYPE.
678    (TYPE is null for libcalls where that information may not be available.)  */
679 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
680   (function_arg_advance (&CUM, MODE, TYPE, NAMED))
681
682 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
683
684 /* Define how to find the value returned by a function.
685    VALTYPE is the data type of the value (as a tree).
686    If the precise function being called is known, FUNC is its FUNCTION_DECL;
687    otherwise, FUNC is 0.
688 */
689
690 #define VALUE_REGNO(MODE) (REG_R0)
691
692 #define FUNCTION_VALUE(VALTYPE, FUNC)           \
693   gen_rtx_REG (TYPE_MODE (VALTYPE),             \
694                VALUE_REGNO(TYPE_MODE(VALTYPE)))
695
696 /* Define how to find the value returned by a library function
697    assuming the value has mode MODE.  */
698
699 #define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
700
701 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
702
703 #define DEFAULT_PCC_STRUCT_RETURN 0
704 #define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
705
706 /* Before the prologue, the return address is in the RETS register.  */
707 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
708
709 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
710
711 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
712
713 /* Call instructions don't modify the stack pointer on the Blackfin.  */
714 #define INCOMING_FRAME_SP_OFFSET 0
715
716 /* Describe how we implement __builtin_eh_return.  */
717 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
718 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, REG_P2)
719 #define EH_RETURN_HANDLER_RTX \
720     gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
721
722 /* Addressing Modes */
723
724 /* Recognize any constant value that is a valid address.  */
725 #define CONSTANT_ADDRESS_P(X)   (CONSTANT_P (X))
726
727 /* Nonzero if the constant value X is a legitimate general operand.
728    symbol_ref are not legitimate and will be put into constant pool.
729    See force_const_mem().
730    If -mno-pool, all constants are legitimate.
731  */
732 #define LEGITIMATE_CONSTANT_P(x) 1
733
734 /*   A number, the maximum number of registers that can appear in a
735      valid memory address.  Note that it is up to you to specify a
736      value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
737      would ever accept. */
738 #define MAX_REGS_PER_ADDRESS 1
739
740 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
741    that is a valid memory address for an instruction.
742    The MODE argument is the machine mode for the MEM expression
743    that wants to use this address. 
744
745    Blackfin addressing modes are as follows:
746
747       [preg]
748       [preg + imm16]
749
750       B [ Preg + uimm15 ]
751       W [ Preg + uimm16m2 ]
752       [ Preg + uimm17m4 ] 
753
754       [preg++]
755       [preg--]
756       [--sp]
757 */
758
759 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
760       (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
761
762 #ifdef REG_OK_STRICT
763 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)          \
764   do {                                                  \
765     if (bfin_legitimate_address_p (MODE, X, 1))         \
766       goto WIN;                                         \
767   } while (0);
768 #else
769 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN)          \
770   do {                                                  \
771     if (bfin_legitimate_address_p (MODE, X, 0))         \
772       goto WIN;                                         \
773   } while (0);
774 #endif
775
776 /* Try machine-dependent ways of modifying an illegitimate address
777    to be legitimate.  If we find one, return the new, valid address.
778    This macro is used in only one place: `memory_address' in explow.c.
779
780    OLDX is the address as it was before break_out_memory_refs was called.
781    In some cases it is useful to look at this to decide what needs to be done.
782
783    MODE and WIN are passed so that this macro can use
784    GO_IF_LEGITIMATE_ADDRESS.
785
786    It is always safe for this macro to do nothing.  It exists to recognize
787    opportunities to optimize the output.
788  */
789 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)    \
790 do {                                           \
791    rtx _q = legitimize_address(X, OLDX, MODE); \
792    if (_q) { X = _q; goto WIN; }               \
793 } while (0)
794
795 #define HAVE_POST_INCREMENT 1
796 #define HAVE_POST_DECREMENT 1
797 #define HAVE_PRE_DECREMENT  1
798
799 /* `LEGITIMATE_PIC_OPERAND_P (X)'
800      A C expression that is nonzero if X is a legitimate immediate
801      operand on the target machine when generating position independent
802      code.  You can assume that X satisfies `CONSTANT_P', so you need
803      not check this.  You can also assume FLAG_PIC is true, so you need
804      not check it either.  You need not define this macro if all
805      constants (including `SYMBOL_REF') can be immediate operands when
806      generating position independent code. */
807 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
808
809 #define SYMBOLIC_CONST(X)       \
810 (GET_CODE (X) == SYMBOL_REF                                             \
811  || GET_CODE (X) == LABEL_REF                                           \
812  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
813
814 /*
815      A C statement or compound statement with a conditional `goto
816      LABEL;' executed if memory address X (an RTX) can have different
817      meanings depending on the machine mode of the memory reference it
818      is used for or if the address is valid for some modes but not
819      others.
820
821      Autoincrement and autodecrement addresses typically have
822      mode-dependent effects because the amount of the increment or
823      decrement is the size of the operand being addressed.  Some
824      machines have other mode-dependent addresses.  Many RISC machines
825      have no mode-dependent addresses.
826
827      You may assume that ADDR is a valid address for the machine.
828 */
829 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
830 do {                                              \
831  if (GET_CODE (ADDR) == POST_INC                  \
832      || GET_CODE (ADDR) == POST_DEC               \
833      || GET_CODE (ADDR) == PRE_DEC)               \
834    goto LABEL;                                    \
835 } while (0)
836
837 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
838
839 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
840    is done just by pretending it is already truncated.  */
841 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
842
843 /* Max number of bytes we can move from memory to memory
844    in one reasonably fast instruction.  */
845 #define MOVE_MAX UNITS_PER_WORD
846
847
848 /* STORAGE LAYOUT: target machine storage layout
849    Define this macro as a C expression which is nonzero if accessing
850    less than a word of memory (i.e. a `char' or a `short') is no
851    faster than accessing a word of memory, i.e., if such access
852    require more than one instruction or if there is no difference in
853    cost between byte and (aligned) word loads.
854
855    When this macro is not defined, the compiler will access a field by
856    finding the smallest containing object; when it is defined, a
857    fullword load will be used if alignment permits.  Unless bytes
858    accesses are faster than word accesses, using word accesses is
859    preferable since it may eliminate subsequent memory access if
860    subsequent accesses occur to other fields in the same word of the
861    structure, but to different bytes.  */
862 #define SLOW_BYTE_ACCESS  0
863 #define SLOW_SHORT_ACCESS 0
864
865 /* Define this if most significant bit is lowest numbered
866    in instructions that operate on numbered bit-fields. */
867 #define BITS_BIG_ENDIAN  0
868
869 /* Define this if most significant byte of a word is the lowest numbered.
870    We can't access bytes but if we could we would in the Big Endian order. */
871 #define BYTES_BIG_ENDIAN 0
872
873 /* Define this if most significant word of a multiword number is numbered. */
874 #define WORDS_BIG_ENDIAN 0
875
876 /* number of bits in an addressable storage unit */
877 #define BITS_PER_UNIT 8
878
879 /* Width in bits of a "word", which is the contents of a machine register.
880    Note that this is not necessarily the width of data type `int';
881    if using 16-bit ints on a 68000, this would still be 32.
882    But on a machine with 16-bit registers, this would be 16.  */
883 #define BITS_PER_WORD 32
884
885 /* Width of a word, in units (bytes).  */
886 #define UNITS_PER_WORD 4
887
888 /* Width in bits of a pointer.
889    See also the macro `Pmode1' defined below.  */
890 #define POINTER_SIZE 32
891
892 /* Allocation boundary (in *bits*) for storing pointers in memory.  */
893 #define POINTER_BOUNDARY 32
894
895 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
896 #define PARM_BOUNDARY 32
897
898 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
899 #define STACK_BOUNDARY 32
900
901 /* Allocation boundary (in *bits*) for the code of a function.  */
902 #define FUNCTION_BOUNDARY 32
903
904 /* Alignment of field after `int : 0' in a structure.  */
905 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
906
907 /* No data type wants to be aligned rounder than this.  */
908 #define BIGGEST_ALIGNMENT 32
909
910 /* Define this if move instructions will actually fail to work
911    when given unaligned data.  */
912 #define STRICT_ALIGNMENT 1
913
914 /* (shell-command "rm c-decl.o stor-layout.o")
915  *  never define PCC_BITFIELD_TYPE_MATTERS
916  *  really cause some alignment problem
917  */
918
919 #define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
920                            BITS_PER_UNIT)
921
922 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
923                            BITS_PER_UNIT)
924
925
926 /* what is the 'type' of size_t */
927 #define SIZE_TYPE "long unsigned int"
928
929 /* Define this as 1 if `char' should by default be signed; else as 0.  */
930 #define DEFAULT_SIGNED_CHAR 1
931 #define FLOAT_TYPE_SIZE BITS_PER_WORD
932 #define SHORT_TYPE_SIZE 16 
933 #define CHAR_TYPE_SIZE  8
934 #define INT_TYPE_SIZE   32
935 #define LONG_TYPE_SIZE  32
936 #define LONG_LONG_TYPE_SIZE 64 
937
938 /* Note: Fix this to depend on target switch. -- lev */
939
940 /* Note: Try to implement double and force long double. -- tonyko
941  * #define __DOUBLES_ARE_FLOATS__
942  * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
943  * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
944  * #define DOUBLES_ARE_FLOATS 1
945  */
946
947 #define DOUBLE_TYPE_SIZE        64
948 #define LONG_DOUBLE_TYPE_SIZE   64
949
950 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
951      A macro to update M and UNSIGNEDP when an object whose type is
952      TYPE and which has the specified mode and signedness is to be
953      stored in a register.  This macro is only called when TYPE is a
954      scalar type.
955
956      On most RISC machines, which only have operations that operate on
957      a full register, define this macro to set M to `word_mode' if M is
958      an integer mode narrower than `BITS_PER_WORD'.  In most cases,
959      only integer modes should be widened because wider-precision
960      floating-point operations are usually more expensive than their
961      narrower counterparts.
962
963      For most machines, the macro definition does not change UNSIGNEDP.
964      However, some machines, have instructions that preferentially
965      handle either signed or unsigned quantities of certain modes.  For
966      example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
967      instructions sign-extend the result to 64 bits.  On such machines,
968      set UNSIGNEDP according to which kind of extension is more
969      efficient.
970
971      Do not define this macro if it would never modify M.*/
972
973 #define BFIN_PROMOTE_MODE_P(MODE) \
974     (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT   \
975       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
976
977 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
978   if (BFIN_PROMOTE_MODE_P(MODE))                \
979     {                                           \
980       if (MODE == QImode)                       \
981         UNSIGNEDP = 1;                          \
982       else if (MODE == HImode)                  \
983         UNSIGNEDP = 0;                          \
984       (MODE) = SImode;                          \
985     }
986
987 /* Describing Relative Costs of Operations */
988
989 /* Do not put function addr into constant pool */
990 #define NO_FUNCTION_CSE 1
991
992 /* A C expression for the cost of moving data from a register in class FROM to
993    one in class TO.  The classes are expressed using the enumeration values
994    such as `GENERAL_REGS'.  A value of 2 is the default; other values are
995    interpreted relative to that.
996
997    It is not required that the cost always equal 2 when FROM is the same as TO;
998    on some machines it is expensive to move between registers if they are not
999    general registers.  */
1000
1001 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1002    bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1003
1004 /* A C expression for the cost of moving data of mode M between a
1005    register and memory.  A value of 2 is the default; this cost is
1006    relative to those in `REGISTER_MOVE_COST'.
1007
1008    If moving between registers and memory is more expensive than
1009    between two registers, you should define this macro to express the
1010    relative cost.  */
1011
1012 #define MEMORY_MOVE_COST(MODE, CLASS, IN)       \
1013   bfin_memory_move_cost ((MODE), (CLASS), (IN))
1014
1015 /* Specify the machine mode that this machine uses
1016    for the index in the tablejump instruction.  */
1017 #define CASE_VECTOR_MODE SImode
1018
1019 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1020
1021 /* Define if operations between registers always perform the operation
1022    on the full register even if a narrower mode is specified. 
1023 #define WORD_REGISTER_OPERATIONS
1024 */
1025
1026 #define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
1027 #define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
1028 #define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
1029 #define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
1030 #define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
1031 #define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
1032 #define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
1033 #define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
1034 #define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
1035 #define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
1036
1037 #define CONSTRAINT_LEN(C, STR)                  \
1038     ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
1039      : (C) == 'K' ? 3                           \
1040      : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1041
1042 #define CONST_OK_FOR_P(VALUE, STR)    \
1043     ((STR)[1] == '0' ? (VALUE) == 0   \
1044      : (STR)[1] == '1' ? (VALUE) == 1 \
1045      : (STR)[1] == '2' ? (VALUE) == 2 \
1046      : (STR)[1] == '3' ? (VALUE) == 3 \
1047      : (STR)[1] == '4' ? (VALUE) == 4 \
1048      : 0)
1049
1050 #define CONST_OK_FOR_K(VALUE, STR)                      \
1051     ((STR)[1] == 'u'                                    \
1052      ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE)     \
1053         : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE)   \
1054         : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE)   \
1055         : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE)  \
1056         : 0)                                            \
1057      : (STR)[1] == 's'                                  \
1058      ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE)      \
1059         : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE)    \
1060         : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE)    \
1061         : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE)   \
1062         : 0)                                            \
1063      : (STR)[1] == 'n'                                  \
1064      ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE)     \
1065         : 0)                                            \
1066      : 0)
1067
1068 #define CONST_OK_FOR_M(VALUE, STR)                      \
1069     ((STR)[1] == '1' ? (VALUE) == 255                   \
1070      : (STR)[1] == '2' ? (VALUE) == 65535               \
1071      : 0)
1072
1073 /* The letters I, J, K, L and M in a register constraint string
1074    can be used to stand for particular ranges of immediate operands.
1075    This macro defines what the ranges are.
1076    C is the letter, and VALUE is a constant value.
1077    Return 1 if VALUE is in the range specified by C. 
1078    
1079    bfin constant operands are as follows
1080    
1081      J   2**N       5bit imm scaled
1082      Ks7 -64 .. 63  signed 7bit imm
1083      Ku5 0..31      unsigned 5bit imm
1084      Ks4 -8 .. 7    signed 4bit imm
1085      Ks3 -4 .. 3    signed 3bit imm
1086      Ku3 0 .. 7     unsigned 3bit imm
1087      Pn  0, 1, 2    constants 0, 1 or 2, corresponding to n
1088 */
1089 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR)                \
1090   ((C) == 'J' ? (log2constp (VALUE))                            \
1091    : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR)                   \
1092    : (C) == 'L' ? log2constp (~(VALUE))                         \
1093    : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR)                   \
1094    : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR)                   \
1095    : 0)
1096
1097      /*Constant Output Formats */
1098 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1099   ((C) == 'H' ? 1 : 0)
1100
1101 #define EXTRA_CONSTRAINT(VALUE, D) \
1102     ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1103
1104 /* Switch into a generic section.  */
1105 #define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
1106
1107 #define PRINT_OPERAND(FILE, RTX, CODE)   print_operand (FILE, RTX, CODE)
1108 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1109
1110 typedef enum sections {
1111     CODE_DIR,
1112     DATA_DIR,
1113     LAST_SECT_NM
1114 } SECT_ENUM_T;
1115
1116 typedef enum directives {
1117     LONG_CONST_DIR,
1118     SHORT_CONST_DIR,
1119     BYTE_CONST_DIR,
1120     SPACE_DIR,
1121     INIT_DIR,
1122     LAST_DIR_NM
1123 } DIR_ENUM_T;
1124
1125 #define TEXT_SECTION_ASM_OP ".text;"
1126 #define DATA_SECTION_ASM_OP ".data;"
1127
1128 #define ASM_APP_ON  ""
1129 #define ASM_APP_OFF ""
1130
1131 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1132   do {  fputs (".global ", FILE);               \
1133         assemble_name (FILE, NAME);             \
1134         fputc (';',FILE);                       \
1135         fputc ('\n',FILE);                      \
1136       } while (0)
1137
1138 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1139   do {                                  \
1140     fputs (".type ", FILE);             \
1141     assemble_name (FILE, NAME);         \
1142     fputs (", STT_FUNC", FILE);         \
1143     fputc (';',FILE);                   \
1144     fputc ('\n',FILE);                  \
1145     ASM_OUTPUT_LABEL(FILE, NAME);       \
1146   } while (0)
1147
1148 #define ASM_OUTPUT_LABEL(FILE, NAME)    \
1149   do {  assemble_name (FILE, NAME);             \
1150         fputs (":\n",FILE);                     \
1151       } while (0)
1152
1153 #define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1154     do {  fprintf (FILE, "_%s", NAME); \
1155         } while (0)
1156
1157 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)            \
1158 do { char __buf[256];                                   \
1159      fprintf (FILE, "\t.dd\t");                         \
1160      ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);   \
1161      assemble_name (FILE, __buf);                       \
1162      fputc (';', FILE);                                 \
1163      fputc ('\n', FILE);                                \
1164    } while (0)
1165
1166 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1167     MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1168
1169 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)           \
1170     do {                                                        \
1171         char __buf[256];                                        \
1172         fprintf (FILE, "\t.dd\t");                              \
1173         ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);        \
1174         assemble_name (FILE, __buf);                            \
1175         fputs (" - ", FILE);                                    \
1176         ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);          \
1177         assemble_name (FILE, __buf);                            \
1178         fputc (';', FILE);                                      \
1179         fputc ('\n', FILE);                                     \
1180     } while (0)
1181
1182 #define ASM_OUTPUT_ALIGN(FILE,LOG)                              \
1183     do {                                                        \
1184       if ((LOG) != 0)                                           \
1185         fprintf (FILE, "\t.align %d\n", 1 << (LOG));            \
1186     } while (0)
1187
1188 #define ASM_OUTPUT_SKIP(FILE,SIZE)              \
1189     do {                                        \
1190         asm_output_skip (FILE, SIZE);           \
1191     } while (0)
1192
1193 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)     \
1194 do {                                            \
1195     switch_to_section (data_section);                           \
1196     if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);  \
1197     ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);               \
1198     ASM_OUTPUT_LABEL (FILE, NAME);                              \
1199     fprintf (FILE, "%s %ld;\n", ASM_SPACE,                      \
1200              (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);     \
1201 } while (0)
1202
1203 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)    \
1204      do {                                               \
1205         ASM_GLOBALIZE_LABEL1(FILE,NAME);                \
1206         ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1207
1208 #define ASM_COMMENT_START "//"
1209
1210 #define FUNCTION_PROFILER(FILE, LABELNO) \
1211   do {\
1212     fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1213        LABELNO, LABELNO);\
1214   } while(0)
1215
1216 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1217 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1218
1219 extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1220 extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1221
1222 /* This works for GAS and some other assemblers.  */
1223 #define SET_ASM_OP              ".set "
1224
1225 /* DBX register number for a given compiler register number */
1226 #define DBX_REGISTER_NUMBER(REGNO)  (REGNO) 
1227
1228 #define SIZE_ASM_OP     "\t.size\t"
1229
1230 #endif /*  _BFIN_CONFIG */