1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
75 #include "coretypes.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "insn-attr.h"
94 /* Number of attempts to combine instructions in this function. */
96 static int combine_attempts;
98 /* Number of attempts that got as far as substitution in this function. */
100 static int combine_merges;
102 /* Number of instructions combined with added SETs in this function. */
104 static int combine_extras;
106 /* Number of instructions combined in this function. */
108 static int combine_successes;
110 /* Totals over entire compilation. */
112 static int total_attempts, total_merges, total_extras, total_successes;
115 /* Vector mapping INSN_UIDs to cuids.
116 The cuids are like uids but increase monotonically always.
117 Combine always uses cuids so that it can compare them.
118 But actually renumbering the uids, which we used to do,
119 proves to be a bad idea because it makes it hard to compare
120 the dumps produced by earlier passes with those from later passes. */
122 static int *uid_cuid;
123 static int max_uid_cuid;
125 /* Get the cuid of an insn. */
127 #define INSN_CUID(INSN) \
128 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
130 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
131 BITS_PER_WORD would invoke undefined behavior. Work around it. */
133 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
134 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
136 #define nonzero_bits(X, M) \
137 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
139 #define num_sign_bit_copies(X, M) \
140 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 /* Record last point of death of (hard or pseudo) register n. */
148 static rtx *reg_last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
152 static rtx *reg_last_set;
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
157 static int mem_last_set;
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
162 static int last_call_cuid;
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
170 static rtx subst_insn;
172 /* This is the lowest CUID that `subst' is currently dealing with.
173 get_last_value will not return a value if the register was set at or
174 after this CUID. If not for this mechanism, we could get confused if
175 I2 or I1 in try_combine were an insn that used the old value of a register
176 to obtain a new value. In that case, we might erroneously get the
177 new value of the register when we wanted the old one. */
179 static int subst_low_cuid;
181 /* This contains any hard registers that are used in newpat; reg_dead_at_p
182 must consider all these registers to be always live. */
184 static HARD_REG_SET newpat_used_regs;
186 /* This is an insn to which a LOG_LINKS entry has been added. If this
187 insn is the earlier than I2 or I3, combine should rescan starting at
190 static rtx added_links_insn;
192 /* Basic block in which we are performing combines. */
193 static basic_block this_basic_block;
195 /* A bitmap indicating which blocks had registers go dead at entry.
196 After combine, we'll need to re-do global life analysis with
197 those blocks as starting points. */
198 static sbitmap refresh_blocks;
200 /* The next group of arrays allows the recording of the last value assigned
201 to (hard or pseudo) register n. We use this information to see if an
202 operation being processed is redundant given a prior operation performed
203 on the register. For example, an `and' with a constant is redundant if
204 all the zero bits are already known to be turned off.
206 We use an approach similar to that used by cse, but change it in the
209 (1) We do not want to reinitialize at each label.
210 (2) It is useful, but not critical, to know the actual value assigned
211 to a register. Often just its form is helpful.
213 Therefore, we maintain the following arrays:
215 reg_last_set_value the last value assigned
216 reg_last_set_label records the value of label_tick when the
217 register was assigned
218 reg_last_set_table_tick records the value of label_tick when a
219 value using the register is assigned
220 reg_last_set_invalid set to nonzero when it is not valid
221 to use the value of this register in some
224 To understand the usage of these tables, it is important to understand
225 the distinction between the value in reg_last_set_value being valid
226 and the register being validly contained in some other expression in the
229 Entry I in reg_last_set_value is valid if it is nonzero, and either
230 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
232 Register I may validly appear in any expression returned for the value
233 of another register if reg_n_sets[i] is 1. It may also appear in the
234 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
235 reg_last_set_invalid[j] is zero.
237 If an expression is found in the table containing a register which may
238 not validly appear in an expression, the register is replaced by
239 something that won't match, (clobber (const_int 0)).
241 reg_last_set_invalid[i] is set nonzero when register I is being assigned
242 to and reg_last_set_table_tick[i] == label_tick. */
244 /* Record last value assigned to (hard or pseudo) register n. */
246 static rtx *reg_last_set_value;
248 /* Record the value of label_tick when the value for register n is placed in
249 reg_last_set_value[n]. */
251 static int *reg_last_set_label;
253 /* Record the value of label_tick when an expression involving register n
254 is placed in reg_last_set_value. */
256 static int *reg_last_set_table_tick;
258 /* Set nonzero if references to register n in expressions should not be
261 static char *reg_last_set_invalid;
263 /* Incremented for each label. */
265 static int label_tick;
267 /* Some registers that are set more than once and used in more than one
268 basic block are nevertheless always set in similar ways. For example,
269 a QImode register may be loaded from memory in two places on a machine
270 where byte loads zero extend.
272 We record in the following array what we know about the nonzero
273 bits of a register, specifically which bits are known to be zero.
275 If an entry is zero, it means that we don't know anything special. */
277 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
279 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
280 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
282 static enum machine_mode nonzero_bits_mode;
284 /* Nonzero if we know that a register has some leading bits that are always
285 equal to the sign bit. */
287 static unsigned char *reg_sign_bit_copies;
289 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
290 It is zero while computing them and after combine has completed. This
291 former test prevents propagating values based on previously set values,
292 which can be incorrect if a variable is modified in a loop. */
294 static int nonzero_sign_valid;
296 /* These arrays are maintained in parallel with reg_last_set_value
297 and are used to store the mode in which the register was last set,
298 the bits that were known to be zero when it was last set, and the
299 number of sign bits copies it was known to have when it was last set. */
301 static enum machine_mode *reg_last_set_mode;
302 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
303 static char *reg_last_set_sign_bit_copies;
305 /* Record one modification to rtl structure
306 to be undone by storing old_contents into *where.
307 is_int is 1 if the contents are an int. */
313 union {rtx r; int i;} old_contents;
314 union {rtx *r; int *i;} where;
317 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
318 num_undo says how many are currently recorded.
320 other_insn is nonzero if we have modified some other insn in the process
321 of working on subst_insn. It must be verified too. */
330 static struct undobuf undobuf;
332 /* Number of times the pseudo being substituted for
333 was found and replaced. */
335 static int n_occurrences;
337 static void do_SUBST (rtx *, rtx);
338 static void do_SUBST_INT (int *, int);
339 static void init_reg_last_arrays (void);
340 static void setup_incoming_promotions (void);
341 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
342 static int cant_combine_insn_p (rtx);
343 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
344 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
345 static int contains_muldiv (rtx);
346 static rtx try_combine (rtx, rtx, rtx, int *);
347 static void undo_all (void);
348 static void undo_commit (void);
349 static rtx *find_split_point (rtx *, rtx);
350 static rtx subst (rtx, rtx, rtx, int, int);
351 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
352 static rtx simplify_if_then_else (rtx);
353 static rtx simplify_set (rtx);
354 static rtx simplify_logical (rtx, int);
355 static rtx expand_compound_operation (rtx);
356 static rtx expand_field_assignment (rtx);
357 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
358 rtx, unsigned HOST_WIDE_INT, int, int, int);
359 static rtx extract_left_shift (rtx, int);
360 static rtx make_compound_operation (rtx, enum rtx_code);
361 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
362 unsigned HOST_WIDE_INT *);
363 static rtx force_to_mode (rtx, enum machine_mode,
364 unsigned HOST_WIDE_INT, rtx, int);
365 static rtx if_then_else_cond (rtx, rtx *, rtx *);
366 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
367 static int rtx_equal_for_field_assignment_p (rtx, rtx);
368 static rtx make_field_assignment (rtx);
369 static rtx apply_distributive_law (rtx);
370 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
371 unsigned HOST_WIDE_INT);
372 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
373 rtx, enum machine_mode,
374 unsigned HOST_WIDE_INT);
375 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
377 unsigned HOST_WIDE_INT);
378 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
381 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
382 enum machine_mode, unsigned int);
383 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
384 HOST_WIDE_INT, enum machine_mode, int *);
385 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
387 static int recog_for_combine (rtx *, rtx, rtx *);
388 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
389 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
390 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
391 static void update_table_tick (rtx);
392 static void record_value_for_reg (rtx, rtx, rtx);
393 static void check_promoted_subreg (rtx, rtx);
394 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
395 static void record_dead_and_set_regs (rtx);
396 static int get_last_value_validate (rtx *, rtx, int, int);
397 static rtx get_last_value (rtx);
398 static int use_crosses_set_p (rtx, int);
399 static void reg_dead_at_p_1 (rtx, rtx, void *);
400 static int reg_dead_at_p (rtx, rtx);
401 static void move_deaths (rtx, rtx, int, rtx, rtx *);
402 static int reg_bitfield_target_p (rtx, rtx);
403 static void distribute_notes (rtx, rtx, rtx, rtx);
404 static void distribute_links (rtx);
405 static void mark_used_regs_combine (rtx);
406 static int insn_cuid (rtx);
407 static void record_promoted_value (rtx, rtx);
408 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
409 static enum rtx_code combine_reversed_comparison_code (rtx);
410 static int unmentioned_reg_p_1 (rtx *, void *);
411 static bool unmentioned_reg_p (rtx, rtx);
413 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
414 insn. The substitution can be undone by undo_all. If INTO is already
415 set to NEWVAL, do not record this change. Because computing NEWVAL might
416 also call SUBST, we have to compute it before we put anything into
420 do_SUBST (rtx *into, rtx newval)
425 if (oldval == newval)
428 /* We'd like to catch as many invalid transformations here as
429 possible. Unfortunately, there are way too many mode changes
430 that are perfectly valid, so we'd waste too much effort for
431 little gain doing the checks here. Focus on catching invalid
432 transformations involving integer constants. */
433 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
434 && GET_CODE (newval) == CONST_INT)
436 /* Sanity check that we're replacing oldval with a CONST_INT
437 that is a valid sign-extension for the original mode. */
438 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
442 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
443 CONST_INT is not valid, because after the replacement, the
444 original mode would be gone. Unfortunately, we can't tell
445 when do_SUBST is called to replace the operand thereof, so we
446 perform this test on oldval instead, checking whether an
447 invalid replacement took place before we got here. */
448 if ((GET_CODE (oldval) == SUBREG
449 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
450 || (GET_CODE (oldval) == ZERO_EXTEND
451 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
456 buf = undobuf.frees, undobuf.frees = buf->next;
458 buf = xmalloc (sizeof (struct undo));
462 buf->old_contents.r = oldval;
465 buf->next = undobuf.undos, undobuf.undos = buf;
468 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
470 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
471 for the value of a HOST_WIDE_INT value (including CONST_INT) is
475 do_SUBST_INT (int *into, int newval)
480 if (oldval == newval)
484 buf = undobuf.frees, undobuf.frees = buf->next;
486 buf = xmalloc (sizeof (struct undo));
490 buf->old_contents.i = oldval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return nonzero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (rtx f, unsigned int nregs)
511 rtx links, nextlinks;
513 int new_direct_jump_p = 0;
515 combine_attempts = 0;
518 combine_successes = 0;
520 combine_max_regno = nregs;
522 /* It is not safe to use ordinary gen_lowpart in combine.
523 See comments in gen_lowpart_for_combine. */
524 gen_lowpart = gen_lowpart_for_combine;
526 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
527 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = xmalloc (nregs * sizeof (rtx));
530 reg_last_set = xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
533 reg_last_set_label = xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
535 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
536 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
537 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
539 init_reg_last_arrays ();
541 init_recog_no_volatile ();
543 /* Compute maximum uid value so uid_cuid can be allocated. */
545 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
546 if (INSN_UID (insn) > i)
549 uid_cuid = xmalloc ((i + 1) * sizeof (int));
552 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
554 /* Don't use reg_nonzero_bits when computing it. This can cause problems
555 when, for example, we have j <<= 1 in a loop. */
557 nonzero_sign_valid = 0;
559 /* Compute the mapping from uids to cuids.
560 Cuids are numbers assigned to insns, like uids,
561 except that cuids increase monotonically through the code.
563 Scan all SETs and see if we can deduce anything about what
564 bits are known to be zero for some registers and how many copies
565 of the sign bit are known to exist for those registers.
567 Also set any known values so that we can use it while searching
568 for what bits are known to be set. */
572 setup_incoming_promotions ();
574 refresh_blocks = sbitmap_alloc (last_basic_block);
575 sbitmap_zero (refresh_blocks);
577 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
579 uid_cuid[INSN_UID (insn)] = ++i;
585 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
587 record_dead_and_set_regs (insn);
590 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
591 if (REG_NOTE_KIND (links) == REG_INC)
592 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
597 if (GET_CODE (insn) == CODE_LABEL)
601 nonzero_sign_valid = 1;
603 /* Now scan all the insns in forward order. */
608 init_reg_last_arrays ();
609 setup_incoming_promotions ();
611 FOR_EACH_BB (this_basic_block)
613 for (insn = BB_HEAD (this_basic_block);
614 insn != NEXT_INSN (BB_END (this_basic_block));
615 insn = next ? next : NEXT_INSN (insn))
619 if (GET_CODE (insn) == CODE_LABEL)
622 else if (INSN_P (insn))
624 /* See if we know about function return values before this
625 insn based upon SUBREG flags. */
626 check_promoted_subreg (insn, PATTERN (insn));
628 /* Try this insn with each insn it links back to. */
630 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
631 if ((next = try_combine (insn, XEXP (links, 0),
632 NULL_RTX, &new_direct_jump_p)) != 0)
635 /* Try each sequence of three linked insns ending with this one. */
637 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
639 rtx link = XEXP (links, 0);
641 /* If the linked insn has been replaced by a note, then there
642 is no point in pursuing this chain any further. */
643 if (GET_CODE (link) == NOTE)
646 for (nextlinks = LOG_LINKS (link);
648 nextlinks = XEXP (nextlinks, 1))
649 if ((next = try_combine (insn, link,
651 &new_direct_jump_p)) != 0)
656 /* Try to combine a jump insn that uses CC0
657 with a preceding insn that sets CC0, and maybe with its
658 logical predecessor as well.
659 This is how we make decrement-and-branch insns.
660 We need this special code because data flow connections
661 via CC0 do not get entered in LOG_LINKS. */
663 if (GET_CODE (insn) == JUMP_INSN
664 && (prev = prev_nonnote_insn (insn)) != 0
665 && GET_CODE (prev) == INSN
666 && sets_cc0_p (PATTERN (prev)))
668 if ((next = try_combine (insn, prev,
669 NULL_RTX, &new_direct_jump_p)) != 0)
672 for (nextlinks = LOG_LINKS (prev); nextlinks;
673 nextlinks = XEXP (nextlinks, 1))
674 if ((next = try_combine (insn, prev,
676 &new_direct_jump_p)) != 0)
680 /* Do the same for an insn that explicitly references CC0. */
681 if (GET_CODE (insn) == INSN
682 && (prev = prev_nonnote_insn (insn)) != 0
683 && GET_CODE (prev) == INSN
684 && sets_cc0_p (PATTERN (prev))
685 && GET_CODE (PATTERN (insn)) == SET
686 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
688 if ((next = try_combine (insn, prev,
689 NULL_RTX, &new_direct_jump_p)) != 0)
692 for (nextlinks = LOG_LINKS (prev); nextlinks;
693 nextlinks = XEXP (nextlinks, 1))
694 if ((next = try_combine (insn, prev,
696 &new_direct_jump_p)) != 0)
700 /* Finally, see if any of the insns that this insn links to
701 explicitly references CC0. If so, try this insn, that insn,
702 and its predecessor if it sets CC0. */
703 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
704 if (GET_CODE (XEXP (links, 0)) == INSN
705 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
706 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
707 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
708 && GET_CODE (prev) == INSN
709 && sets_cc0_p (PATTERN (prev))
710 && (next = try_combine (insn, XEXP (links, 0),
711 prev, &new_direct_jump_p)) != 0)
715 /* Try combining an insn with two different insns whose results it
717 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
718 for (nextlinks = XEXP (links, 1); nextlinks;
719 nextlinks = XEXP (nextlinks, 1))
720 if ((next = try_combine (insn, XEXP (links, 0),
722 &new_direct_jump_p)) != 0)
725 /* Try this insn with each REG_EQUAL note it links back to. */
726 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
729 rtx temp = XEXP (links, 0);
730 if ((set = single_set (temp)) != 0
731 && (note = find_reg_equal_equiv_note (temp)) != 0
732 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
733 /* Avoid using a register that may already been marked
734 dead by an earlier instruction. */
735 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
737 /* Temporarily replace the set's source with the
738 contents of the REG_EQUAL note. The insn will
739 be deleted or recognized by try_combine. */
740 rtx orig = SET_SRC (set);
741 SET_SRC (set) = XEXP (note, 0);
742 next = try_combine (insn, temp, NULL_RTX,
746 SET_SRC (set) = orig;
750 if (GET_CODE (insn) != NOTE)
751 record_dead_and_set_regs (insn);
760 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
761 BASIC_BLOCK (i)->flags |= BB_DIRTY);
762 new_direct_jump_p |= purge_all_dead_edges (0);
763 delete_noop_moves (f);
765 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
766 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
767 | PROP_KILL_DEAD_CODE);
770 sbitmap_free (refresh_blocks);
771 free (reg_nonzero_bits);
772 free (reg_sign_bit_copies);
773 free (reg_last_death);
775 free (reg_last_set_value);
776 free (reg_last_set_table_tick);
777 free (reg_last_set_label);
778 free (reg_last_set_invalid);
779 free (reg_last_set_mode);
780 free (reg_last_set_nonzero_bits);
781 free (reg_last_set_sign_bit_copies);
785 struct undo *undo, *next;
786 for (undo = undobuf.frees; undo; undo = next)
794 total_attempts += combine_attempts;
795 total_merges += combine_merges;
796 total_extras += combine_extras;
797 total_successes += combine_successes;
799 nonzero_sign_valid = 0;
800 gen_lowpart = gen_lowpart_general;
802 /* Make recognizer allow volatile MEMs again. */
805 return new_direct_jump_p;
808 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
811 init_reg_last_arrays (void)
813 unsigned int nregs = combine_max_regno;
815 memset (reg_last_death, 0, nregs * sizeof (rtx));
816 memset (reg_last_set, 0, nregs * sizeof (rtx));
817 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
818 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
819 memset (reg_last_set_label, 0, nregs * sizeof (int));
820 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
821 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
822 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
823 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
826 /* Set up any promoted values for incoming argument registers. */
829 setup_incoming_promotions (void)
833 enum machine_mode mode;
835 rtx first = get_insns ();
837 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
839 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
840 /* Check whether this register can hold an incoming pointer
841 argument. FUNCTION_ARG_REGNO_P tests outgoing register
842 numbers, so translate if necessary due to register windows. */
843 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
844 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
847 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
850 gen_rtx_CLOBBER (mode, const0_rtx)));
855 /* Called via note_stores. If X is a pseudo that is narrower than
856 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
858 If we are setting only a portion of X and we can't figure out what
859 portion, assume all bits will be used since we don't know what will
862 Similarly, set how many bits of X are known to be copies of the sign bit
863 at all locations in the function. This is the smallest number implied
867 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
868 void *data ATTRIBUTE_UNUSED)
872 if (GET_CODE (x) == REG
873 && REGNO (x) >= FIRST_PSEUDO_REGISTER
874 /* If this register is undefined at the start of the file, we can't
875 say what its contents were. */
876 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
877 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
879 if (set == 0 || GET_CODE (set) == CLOBBER)
881 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
882 reg_sign_bit_copies[REGNO (x)] = 1;
886 /* If this is a complex assignment, see if we can convert it into a
887 simple assignment. */
888 set = expand_field_assignment (set);
890 /* If this is a simple assignment, or we have a paradoxical SUBREG,
891 set what we know about X. */
893 if (SET_DEST (set) == x
894 || (GET_CODE (SET_DEST (set)) == SUBREG
895 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
896 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
897 && SUBREG_REG (SET_DEST (set)) == x))
899 rtx src = SET_SRC (set);
901 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
902 /* If X is narrower than a word and SRC is a non-negative
903 constant that would appear negative in the mode of X,
904 sign-extend it for use in reg_nonzero_bits because some
905 machines (maybe most) will actually do the sign-extension
906 and this is the conservative approach.
908 ??? For 2.5, try to tighten up the MD files in this regard
909 instead of this kludge. */
911 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
912 && GET_CODE (src) == CONST_INT
914 && 0 != (INTVAL (src)
916 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
917 src = GEN_INT (INTVAL (src)
918 | ((HOST_WIDE_INT) (-1)
919 << GET_MODE_BITSIZE (GET_MODE (x))));
922 /* Don't call nonzero_bits if it cannot change anything. */
923 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
924 reg_nonzero_bits[REGNO (x)]
925 |= nonzero_bits (src, nonzero_bits_mode);
926 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
927 if (reg_sign_bit_copies[REGNO (x)] == 0
928 || reg_sign_bit_copies[REGNO (x)] > num)
929 reg_sign_bit_copies[REGNO (x)] = num;
933 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
934 reg_sign_bit_copies[REGNO (x)] = 1;
939 /* See if INSN can be combined into I3. PRED and SUCC are optionally
940 insns that were previously combined into I3 or that will be combined
941 into the merger of INSN and I3.
943 Return 0 if the combination is not allowed for any reason.
945 If the combination is allowed, *PDEST will be set to the single
946 destination of INSN and *PSRC to the single source, and this function
950 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
951 rtx *pdest, rtx *psrc)
954 rtx set = 0, src, dest;
959 int all_adjacent = (succ ? (next_active_insn (insn) == succ
960 && next_active_insn (succ) == i3)
961 : next_active_insn (insn) == i3);
963 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
964 or a PARALLEL consisting of such a SET and CLOBBERs.
966 If INSN has CLOBBER parallel parts, ignore them for our processing.
967 By definition, these happen during the execution of the insn. When it
968 is merged with another insn, all bets are off. If they are, in fact,
969 needed and aren't also supplied in I3, they may be added by
970 recog_for_combine. Otherwise, it won't match.
972 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
975 Get the source and destination of INSN. If more than one, can't
978 if (GET_CODE (PATTERN (insn)) == SET)
979 set = PATTERN (insn);
980 else if (GET_CODE (PATTERN (insn)) == PARALLEL
981 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
983 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
985 rtx elt = XVECEXP (PATTERN (insn), 0, i);
988 switch (GET_CODE (elt))
990 /* This is important to combine floating point insns
993 /* Combining an isolated USE doesn't make sense.
994 We depend here on combinable_i3pat to reject them. */
995 /* The code below this loop only verifies that the inputs of
996 the SET in INSN do not change. We call reg_set_between_p
997 to verify that the REG in the USE does not change between
999 If the USE in INSN was for a pseudo register, the matching
1000 insn pattern will likely match any register; combining this
1001 with any other USE would only be safe if we knew that the
1002 used registers have identical values, or if there was
1003 something to tell them apart, e.g. different modes. For
1004 now, we forgo such complicated tests and simply disallow
1005 combining of USES of pseudo registers with any other USE. */
1006 if (GET_CODE (XEXP (elt, 0)) == REG
1007 && GET_CODE (PATTERN (i3)) == PARALLEL)
1009 rtx i3pat = PATTERN (i3);
1010 int i = XVECLEN (i3pat, 0) - 1;
1011 unsigned int regno = REGNO (XEXP (elt, 0));
1015 rtx i3elt = XVECEXP (i3pat, 0, i);
1017 if (GET_CODE (i3elt) == USE
1018 && GET_CODE (XEXP (i3elt, 0)) == REG
1019 && (REGNO (XEXP (i3elt, 0)) == regno
1020 ? reg_set_between_p (XEXP (elt, 0),
1021 PREV_INSN (insn), i3)
1022 : regno >= FIRST_PSEUDO_REGISTER))
1029 /* We can ignore CLOBBERs. */
1034 /* Ignore SETs whose result isn't used but not those that
1035 have side-effects. */
1036 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1037 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1038 || INTVAL (XEXP (note, 0)) <= 0)
1039 && ! side_effects_p (elt))
1042 /* If we have already found a SET, this is a second one and
1043 so we cannot combine with this insn. */
1051 /* Anything else means we can't combine. */
1057 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1058 so don't do anything with it. */
1059 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1068 set = expand_field_assignment (set);
1069 src = SET_SRC (set), dest = SET_DEST (set);
1071 /* Don't eliminate a store in the stack pointer. */
1072 if (dest == stack_pointer_rtx
1073 /* Don't combine with an insn that sets a register to itself if it has
1074 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1075 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1076 /* Can't merge an ASM_OPERANDS. */
1077 || GET_CODE (src) == ASM_OPERANDS
1078 /* Can't merge a function call. */
1079 || GET_CODE (src) == CALL
1080 /* Don't eliminate a function call argument. */
1081 || (GET_CODE (i3) == CALL_INSN
1082 && (find_reg_fusage (i3, USE, dest)
1083 || (GET_CODE (dest) == REG
1084 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1085 && global_regs[REGNO (dest)])))
1086 /* Don't substitute into an incremented register. */
1087 || FIND_REG_INC_NOTE (i3, dest)
1088 || (succ && FIND_REG_INC_NOTE (succ, dest))
1090 /* Don't combine the end of a libcall into anything. */
1091 /* ??? This gives worse code, and appears to be unnecessary, since no
1092 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1093 use REG_RETVAL notes for noconflict blocks, but other code here
1094 makes sure that those insns don't disappear. */
1095 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1097 /* Make sure that DEST is not used after SUCC but before I3. */
1098 || (succ && ! all_adjacent
1099 && reg_used_between_p (dest, succ, i3))
1100 /* Make sure that the value that is to be substituted for the register
1101 does not use any registers whose values alter in between. However,
1102 If the insns are adjacent, a use can't cross a set even though we
1103 think it might (this can happen for a sequence of insns each setting
1104 the same destination; reg_last_set of that register might point to
1105 a NOTE). If INSN has a REG_EQUIV note, the register is always
1106 equivalent to the memory so the substitution is valid even if there
1107 are intervening stores. Also, don't move a volatile asm or
1108 UNSPEC_VOLATILE across any other insns. */
1110 && (((GET_CODE (src) != MEM
1111 || ! find_reg_note (insn, REG_EQUIV, src))
1112 && use_crosses_set_p (src, INSN_CUID (insn)))
1113 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1114 || GET_CODE (src) == UNSPEC_VOLATILE))
1115 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1116 better register allocation by not doing the combine. */
1117 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1118 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1119 /* Don't combine across a CALL_INSN, because that would possibly
1120 change whether the life span of some REGs crosses calls or not,
1121 and it is a pain to update that information.
1122 Exception: if source is a constant, moving it later can't hurt.
1123 Accept that special case, because it helps -fforce-addr a lot. */
1124 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1127 /* DEST must either be a REG or CC0. */
1128 if (GET_CODE (dest) == REG)
1130 /* If register alignment is being enforced for multi-word items in all
1131 cases except for parameters, it is possible to have a register copy
1132 insn referencing a hard register that is not allowed to contain the
1133 mode being copied and which would not be valid as an operand of most
1134 insns. Eliminate this problem by not combining with such an insn.
1136 Also, on some machines we don't want to extend the life of a hard
1139 if (GET_CODE (src) == REG
1140 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1141 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1142 /* Don't extend the life of a hard register unless it is
1143 user variable (if we have few registers) or it can't
1144 fit into the desired register (meaning something special
1146 Also avoid substituting a return register into I3, because
1147 reload can't handle a conflict with constraints of other
1149 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1150 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1153 else if (GET_CODE (dest) != CC0)
1156 /* Don't substitute for a register intended as a clobberable operand.
1157 Similarly, don't substitute an expression containing a register that
1158 will be clobbered in I3. */
1159 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1160 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1161 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1162 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1164 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1167 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1168 or not), reject, unless nothing volatile comes between it and I3 */
1170 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1172 /* Make sure succ doesn't contain a volatile reference. */
1173 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1176 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1177 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1181 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1182 to be an explicit register variable, and was chosen for a reason. */
1184 if (GET_CODE (src) == ASM_OPERANDS
1185 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1188 /* If there are any volatile insns between INSN and I3, reject, because
1189 they might affect machine state. */
1191 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1192 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1195 /* If INSN or I2 contains an autoincrement or autodecrement,
1196 make sure that register is not used between there and I3,
1197 and not already used in I3 either.
1198 Also insist that I3 not be a jump; if it were one
1199 and the incremented register were spilled, we would lose. */
1202 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1203 if (REG_NOTE_KIND (link) == REG_INC
1204 && (GET_CODE (i3) == JUMP_INSN
1205 || reg_used_between_p (XEXP (link, 0), insn, i3)
1206 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1211 /* Don't combine an insn that follows a CC0-setting insn.
1212 An insn that uses CC0 must not be separated from the one that sets it.
1213 We do, however, allow I2 to follow a CC0-setting insn if that insn
1214 is passed as I1; in that case it will be deleted also.
1215 We also allow combining in this case if all the insns are adjacent
1216 because that would leave the two CC0 insns adjacent as well.
1217 It would be more logical to test whether CC0 occurs inside I1 or I2,
1218 but that would be much slower, and this ought to be equivalent. */
1220 p = prev_nonnote_insn (insn);
1221 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1226 /* If we get here, we have passed all the tests and the combination is
1235 /* LOC is the location within I3 that contains its pattern or the component
1236 of a PARALLEL of the pattern. We validate that it is valid for combining.
1238 One problem is if I3 modifies its output, as opposed to replacing it
1239 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1240 so would produce an insn that is not equivalent to the original insns.
1244 (set (reg:DI 101) (reg:DI 100))
1245 (set (subreg:SI (reg:DI 101) 0) <foo>)
1247 This is NOT equivalent to:
1249 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1250 (set (reg:DI 101) (reg:DI 100))])
1252 Not only does this modify 100 (in which case it might still be valid
1253 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1255 We can also run into a problem if I2 sets a register that I1
1256 uses and I1 gets directly substituted into I3 (not via I2). In that
1257 case, we would be getting the wrong value of I2DEST into I3, so we
1258 must reject the combination. This case occurs when I2 and I1 both
1259 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1260 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1261 of a SET must prevent combination from occurring.
1263 Before doing the above check, we first try to expand a field assignment
1264 into a set of logical operations.
1266 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1267 we place a register that is both set and used within I3. If more than one
1268 such register is detected, we fail.
1270 Return 1 if the combination is valid, zero otherwise. */
1273 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1274 int i1_not_in_src, rtx *pi3dest_killed)
1278 if (GET_CODE (x) == SET)
1281 rtx dest = SET_DEST (set);
1282 rtx src = SET_SRC (set);
1283 rtx inner_dest = dest;
1285 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1286 || GET_CODE (inner_dest) == SUBREG
1287 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1288 inner_dest = XEXP (inner_dest, 0);
1290 /* Check for the case where I3 modifies its output, as discussed
1291 above. We don't want to prevent pseudos from being combined
1292 into the address of a MEM, so only prevent the combination if
1293 i1 or i2 set the same MEM. */
1294 if ((inner_dest != dest &&
1295 (GET_CODE (inner_dest) != MEM
1296 || rtx_equal_p (i2dest, inner_dest)
1297 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1298 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1299 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1301 /* This is the same test done in can_combine_p except we can't test
1302 all_adjacent; we don't have to, since this instruction will stay
1303 in place, thus we are not considering increasing the lifetime of
1306 Also, if this insn sets a function argument, combining it with
1307 something that might need a spill could clobber a previous
1308 function argument; the all_adjacent test in can_combine_p also
1309 checks this; here, we do a more specific test for this case. */
1311 || (GET_CODE (inner_dest) == REG
1312 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1313 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1314 GET_MODE (inner_dest))))
1315 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1318 /* If DEST is used in I3, it is being killed in this insn,
1319 so record that for later.
1320 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1321 STACK_POINTER_REGNUM, since these are always considered to be
1322 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1323 if (pi3dest_killed && GET_CODE (dest) == REG
1324 && reg_referenced_p (dest, PATTERN (i3))
1325 && REGNO (dest) != FRAME_POINTER_REGNUM
1326 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1327 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1329 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1330 && (REGNO (dest) != ARG_POINTER_REGNUM
1331 || ! fixed_regs [REGNO (dest)])
1333 && REGNO (dest) != STACK_POINTER_REGNUM)
1335 if (*pi3dest_killed)
1338 *pi3dest_killed = dest;
1342 else if (GET_CODE (x) == PARALLEL)
1346 for (i = 0; i < XVECLEN (x, 0); i++)
1347 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1348 i1_not_in_src, pi3dest_killed))
1355 /* Return 1 if X is an arithmetic expression that contains a multiplication
1356 and division. We don't count multiplications by powers of two here. */
1359 contains_muldiv (rtx x)
1361 switch (GET_CODE (x))
1363 case MOD: case DIV: case UMOD: case UDIV:
1367 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1368 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1371 return contains_muldiv (XEXP (x, 0))
1372 || contains_muldiv (XEXP (x, 1));
1375 return contains_muldiv (XEXP (x, 0));
1381 /* Determine whether INSN can be used in a combination. Return nonzero if
1382 not. This is used in try_combine to detect early some cases where we
1383 can't perform combinations. */
1386 cant_combine_insn_p (rtx insn)
1391 /* If this isn't really an insn, we can't do anything.
1392 This can occur when flow deletes an insn that it has merged into an
1393 auto-increment address. */
1394 if (! INSN_P (insn))
1397 /* Never combine loads and stores involving hard regs that are likely
1398 to be spilled. The register allocator can usually handle such
1399 reg-reg moves by tying. If we allow the combiner to make
1400 substitutions of likely-spilled regs, we may abort in reload.
1401 As an exception, we allow combinations involving fixed regs; these are
1402 not available to the register allocator so there's no risk involved. */
1404 set = single_set (insn);
1407 src = SET_SRC (set);
1408 dest = SET_DEST (set);
1409 if (GET_CODE (src) == SUBREG)
1410 src = SUBREG_REG (src);
1411 if (GET_CODE (dest) == SUBREG)
1412 dest = SUBREG_REG (dest);
1413 if (REG_P (src) && REG_P (dest)
1414 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1415 && ! fixed_regs[REGNO (src)]
1416 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1417 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1418 && ! fixed_regs[REGNO (dest)]
1419 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1425 /* Adjust INSN after we made a change to its destination.
1427 Changing the destination can invalidate notes that say something about
1428 the results of the insn and a LOG_LINK pointing to the insn. */
1431 adjust_for_new_dest (rtx insn)
1435 /* For notes, be conservative and simply remove them. */
1436 loc = ®_NOTES (insn);
1439 enum reg_note kind = REG_NOTE_KIND (*loc);
1440 if (kind == REG_EQUAL || kind == REG_EQUIV)
1441 *loc = XEXP (*loc, 1);
1443 loc = &XEXP (*loc, 1);
1446 /* The new insn will have a destination that was previously the destination
1447 of an insn just above it. Call distribute_links to make a LOG_LINK from
1448 the next use of that destination. */
1449 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1452 /* Try to combine the insns I1 and I2 into I3.
1453 Here I1 and I2 appear earlier than I3.
1454 I1 can be zero; then we combine just I2 into I3.
1456 If we are combining three insns and the resulting insn is not recognized,
1457 try splitting it into two insns. If that happens, I2 and I3 are retained
1458 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1461 Return 0 if the combination does not work. Then nothing is changed.
1462 If we did the combination, return the insn at which combine should
1465 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1466 new direct jump instruction. */
1469 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1471 /* New patterns for I3 and I2, respectively. */
1472 rtx newpat, newi2pat = 0;
1473 int substed_i2 = 0, substed_i1 = 0;
1474 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1475 int added_sets_1, added_sets_2;
1476 /* Total number of SETs to put into I3. */
1478 /* Nonzero if I2's body now appears in I3. */
1480 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1481 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1482 /* Contains I3 if the destination of I3 is used in its source, which means
1483 that the old life of I3 is being killed. If that usage is placed into
1484 I2 and not in I3, a REG_DEAD note must be made. */
1485 rtx i3dest_killed = 0;
1486 /* SET_DEST and SET_SRC of I2 and I1. */
1487 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1488 /* PATTERN (I2), or a copy of it in certain cases. */
1490 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1491 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1492 int i1_feeds_i3 = 0;
1493 /* Notes that must be added to REG_NOTES in I3 and I2. */
1494 rtx new_i3_notes, new_i2_notes;
1495 /* Notes that we substituted I3 into I2 instead of the normal case. */
1496 int i3_subst_into_i2 = 0;
1497 /* Notes that I1, I2 or I3 is a MULT operation. */
1505 /* Exit early if one of the insns involved can't be used for
1507 if (cant_combine_insn_p (i3)
1508 || cant_combine_insn_p (i2)
1509 || (i1 && cant_combine_insn_p (i1))
1510 /* We also can't do anything if I3 has a
1511 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1514 /* ??? This gives worse code, and appears to be unnecessary, since no
1515 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1516 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1522 undobuf.other_insn = 0;
1524 /* Reset the hard register usage information. */
1525 CLEAR_HARD_REG_SET (newpat_used_regs);
1527 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1528 code below, set I1 to be the earlier of the two insns. */
1529 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1530 temp = i1, i1 = i2, i2 = temp;
1532 added_links_insn = 0;
1534 /* First check for one important special-case that the code below will
1535 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1536 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1537 we may be able to replace that destination with the destination of I3.
1538 This occurs in the common code where we compute both a quotient and
1539 remainder into a structure, in which case we want to do the computation
1540 directly into the structure to avoid register-register copies.
1542 Note that this case handles both multiple sets in I2 and also
1543 cases where I2 has a number of CLOBBER or PARALLELs.
1545 We make very conservative checks below and only try to handle the
1546 most common cases of this. For example, we only handle the case
1547 where I2 and I3 are adjacent to avoid making difficult register
1550 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1551 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1552 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1553 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1554 && GET_CODE (PATTERN (i2)) == PARALLEL
1555 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1556 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1557 below would need to check what is inside (and reg_overlap_mentioned_p
1558 doesn't support those codes anyway). Don't allow those destinations;
1559 the resulting insn isn't likely to be recognized anyway. */
1560 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1561 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1562 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1563 SET_DEST (PATTERN (i3)))
1564 && next_real_insn (i2) == i3)
1566 rtx p2 = PATTERN (i2);
1568 /* Make sure that the destination of I3,
1569 which we are going to substitute into one output of I2,
1570 is not used within another output of I2. We must avoid making this:
1571 (parallel [(set (mem (reg 69)) ...)
1572 (set (reg 69) ...)])
1573 which is not well-defined as to order of actions.
1574 (Besides, reload can't handle output reloads for this.)
1576 The problem can also happen if the dest of I3 is a memory ref,
1577 if another dest in I2 is an indirect memory ref. */
1578 for (i = 0; i < XVECLEN (p2, 0); i++)
1579 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1580 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1581 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1582 SET_DEST (XVECEXP (p2, 0, i))))
1585 if (i == XVECLEN (p2, 0))
1586 for (i = 0; i < XVECLEN (p2, 0); i++)
1587 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1588 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1589 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1594 subst_low_cuid = INSN_CUID (i2);
1596 added_sets_2 = added_sets_1 = 0;
1597 i2dest = SET_SRC (PATTERN (i3));
1599 /* Replace the dest in I2 with our dest and make the resulting
1600 insn the new pattern for I3. Then skip to where we
1601 validate the pattern. Everything was set up above. */
1602 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1603 SET_DEST (PATTERN (i3)));
1606 i3_subst_into_i2 = 1;
1607 goto validate_replacement;
1611 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1612 one of those words to another constant, merge them by making a new
1615 && (temp = single_set (i2)) != 0
1616 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1617 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1618 && GET_CODE (SET_DEST (temp)) == REG
1619 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1620 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1621 && GET_CODE (PATTERN (i3)) == SET
1622 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1623 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1624 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1625 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1626 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1628 HOST_WIDE_INT lo, hi;
1630 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1631 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1634 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1635 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1638 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1640 /* We don't handle the case of the target word being wider
1641 than a host wide int. */
1642 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1645 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1646 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1647 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1649 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1650 hi = INTVAL (SET_SRC (PATTERN (i3)));
1651 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1653 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1654 >> (HOST_BITS_PER_WIDE_INT - 1));
1656 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1657 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1658 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1659 (INTVAL (SET_SRC (PATTERN (i3)))));
1661 hi = lo < 0 ? -1 : 0;
1664 /* We don't handle the case of the higher word not fitting
1665 entirely in either hi or lo. */
1670 subst_low_cuid = INSN_CUID (i2);
1671 added_sets_2 = added_sets_1 = 0;
1672 i2dest = SET_DEST (temp);
1674 SUBST (SET_SRC (temp),
1675 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1677 newpat = PATTERN (i2);
1678 goto validate_replacement;
1682 /* If we have no I1 and I2 looks like:
1683 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1685 make up a dummy I1 that is
1688 (set (reg:CC X) (compare:CC Y (const_int 0)))
1690 (We can ignore any trailing CLOBBERs.)
1692 This undoes a previous combination and allows us to match a branch-and-
1695 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1696 && XVECLEN (PATTERN (i2), 0) >= 2
1697 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1698 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1700 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1701 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1702 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1703 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1704 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1705 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1707 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1708 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1713 /* We make I1 with the same INSN_UID as I2. This gives it
1714 the same INSN_CUID for value tracking. Our fake I1 will
1715 never appear in the insn stream so giving it the same INSN_UID
1716 as I2 will not cause a problem. */
1718 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1719 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1720 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1723 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1724 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1725 SET_DEST (PATTERN (i1)));
1730 /* Verify that I2 and I1 are valid for combining. */
1731 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1732 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1738 /* Record whether I2DEST is used in I2SRC and similarly for the other
1739 cases. Knowing this will help in register status updating below. */
1740 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1741 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1742 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1744 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1746 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1748 /* Ensure that I3's pattern can be the destination of combines. */
1749 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1750 i1 && i2dest_in_i1src && i1_feeds_i3,
1757 /* See if any of the insns is a MULT operation. Unless one is, we will
1758 reject a combination that is, since it must be slower. Be conservative
1760 if (GET_CODE (i2src) == MULT
1761 || (i1 != 0 && GET_CODE (i1src) == MULT)
1762 || (GET_CODE (PATTERN (i3)) == SET
1763 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1766 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1767 We used to do this EXCEPT in one case: I3 has a post-inc in an
1768 output operand. However, that exception can give rise to insns like
1770 which is a famous insn on the PDP-11 where the value of r3 used as the
1771 source was model-dependent. Avoid this sort of thing. */
1774 if (!(GET_CODE (PATTERN (i3)) == SET
1775 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1776 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1777 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1778 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1779 /* It's not the exception. */
1782 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1783 if (REG_NOTE_KIND (link) == REG_INC
1784 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1786 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1793 /* See if the SETs in I1 or I2 need to be kept around in the merged
1794 instruction: whenever the value set there is still needed past I3.
1795 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1797 For the SET in I1, we have two cases: If I1 and I2 independently
1798 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1799 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1800 in I1 needs to be kept around unless I1DEST dies or is set in either
1801 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1802 I1DEST. If so, we know I1 feeds into I2. */
1804 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1807 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1808 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1810 /* If the set in I2 needs to be kept around, we must make a copy of
1811 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1812 PATTERN (I2), we are only substituting for the original I1DEST, not into
1813 an already-substituted copy. This also prevents making self-referential
1814 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1817 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1818 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1822 i2pat = copy_rtx (i2pat);
1826 /* Substitute in the latest insn for the regs set by the earlier ones. */
1828 maxreg = max_reg_num ();
1832 /* It is possible that the source of I2 or I1 may be performing an
1833 unneeded operation, such as a ZERO_EXTEND of something that is known
1834 to have the high part zero. Handle that case by letting subst look at
1835 the innermost one of them.
1837 Another way to do this would be to have a function that tries to
1838 simplify a single insn instead of merging two or more insns. We don't
1839 do this because of the potential of infinite loops and because
1840 of the potential extra memory required. However, doing it the way
1841 we are is a bit of a kludge and doesn't catch all cases.
1843 But only do this if -fexpensive-optimizations since it slows things down
1844 and doesn't usually win. */
1846 if (flag_expensive_optimizations)
1848 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1851 subst_low_cuid = INSN_CUID (i1);
1852 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1856 subst_low_cuid = INSN_CUID (i2);
1857 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1862 /* Many machines that don't use CC0 have insns that can both perform an
1863 arithmetic operation and set the condition code. These operations will
1864 be represented as a PARALLEL with the first element of the vector
1865 being a COMPARE of an arithmetic operation with the constant zero.
1866 The second element of the vector will set some pseudo to the result
1867 of the same arithmetic operation. If we simplify the COMPARE, we won't
1868 match such a pattern and so will generate an extra insn. Here we test
1869 for this case, where both the comparison and the operation result are
1870 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1871 I2SRC. Later we will make the PARALLEL that contains I2. */
1873 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1874 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1875 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1876 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1878 #ifdef SELECT_CC_MODE
1880 enum machine_mode compare_mode;
1883 newpat = PATTERN (i3);
1884 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1888 #ifdef SELECT_CC_MODE
1889 /* See if a COMPARE with the operand we substituted in should be done
1890 with the mode that is currently being used. If not, do the same
1891 processing we do in `subst' for a SET; namely, if the destination
1892 is used only once, try to replace it with a register of the proper
1893 mode and also replace the COMPARE. */
1894 if (undobuf.other_insn == 0
1895 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1896 &undobuf.other_insn))
1897 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1899 != GET_MODE (SET_DEST (newpat))))
1901 unsigned int regno = REGNO (SET_DEST (newpat));
1902 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1904 if (regno < FIRST_PSEUDO_REGISTER
1905 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1906 && ! REG_USERVAR_P (SET_DEST (newpat))))
1908 if (regno >= FIRST_PSEUDO_REGISTER)
1909 SUBST (regno_reg_rtx[regno], new_dest);
1911 SUBST (SET_DEST (newpat), new_dest);
1912 SUBST (XEXP (*cc_use, 0), new_dest);
1913 SUBST (SET_SRC (newpat),
1914 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1917 undobuf.other_insn = 0;
1924 n_occurrences = 0; /* `subst' counts here */
1926 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1927 need to make a unique copy of I2SRC each time we substitute it
1928 to avoid self-referential rtl. */
1930 subst_low_cuid = INSN_CUID (i2);
1931 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1932 ! i1_feeds_i3 && i1dest_in_i1src);
1935 /* Record whether i2's body now appears within i3's body. */
1936 i2_is_used = n_occurrences;
1939 /* If we already got a failure, don't try to do more. Otherwise,
1940 try to substitute in I1 if we have it. */
1942 if (i1 && GET_CODE (newpat) != CLOBBER)
1944 /* Before we can do this substitution, we must redo the test done
1945 above (see detailed comments there) that ensures that I1DEST
1946 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1948 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1956 subst_low_cuid = INSN_CUID (i1);
1957 newpat = subst (newpat, i1dest, i1src, 0, 0);
1961 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1962 to count all the ways that I2SRC and I1SRC can be used. */
1963 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1964 && i2_is_used + added_sets_2 > 1)
1965 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1966 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1968 /* Fail if we tried to make a new register (we used to abort, but there's
1969 really no reason to). */
1970 || max_reg_num () != maxreg
1971 /* Fail if we couldn't do something and have a CLOBBER. */
1972 || GET_CODE (newpat) == CLOBBER
1973 /* Fail if this new pattern is a MULT and we didn't have one before
1974 at the outer level. */
1975 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1982 /* If the actions of the earlier insns must be kept
1983 in addition to substituting them into the latest one,
1984 we must make a new PARALLEL for the latest insn
1985 to hold additional the SETs. */
1987 if (added_sets_1 || added_sets_2)
1991 if (GET_CODE (newpat) == PARALLEL)
1993 rtvec old = XVEC (newpat, 0);
1994 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1995 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1996 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1997 sizeof (old->elem[0]) * old->num_elem);
2002 total_sets = 1 + added_sets_1 + added_sets_2;
2003 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2004 XVECEXP (newpat, 0, 0) = old;
2008 XVECEXP (newpat, 0, --total_sets)
2009 = (GET_CODE (PATTERN (i1)) == PARALLEL
2010 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2014 /* If there is no I1, use I2's body as is. We used to also not do
2015 the subst call below if I2 was substituted into I3,
2016 but that could lose a simplification. */
2018 XVECEXP (newpat, 0, --total_sets) = i2pat;
2020 /* See comment where i2pat is assigned. */
2021 XVECEXP (newpat, 0, --total_sets)
2022 = subst (i2pat, i1dest, i1src, 0, 0);
2026 /* We come here when we are replacing a destination in I2 with the
2027 destination of I3. */
2028 validate_replacement:
2030 /* Note which hard regs this insn has as inputs. */
2031 mark_used_regs_combine (newpat);
2033 /* Is the result of combination a valid instruction? */
2034 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2036 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2037 the second SET's destination is a register that is unused and isn't
2038 marked as an instruction that might trap in an EH region. In that case,
2039 we just need the first SET. This can occur when simplifying a divmod
2040 insn. We *must* test for this case here because the code below that
2041 splits two independent SETs doesn't handle this case correctly when it
2042 updates the register status.
2044 It's pointless doing this if we originally had two sets, one from
2045 i3, and one from i2. Combining then splitting the parallel results
2046 in the original i2 again plus an invalid insn (which we delete).
2047 The net effect is only to move instructions around, which makes
2048 debug info less accurate.
2050 Also check the case where the first SET's destination is unused.
2051 That would not cause incorrect code, but does cause an unneeded
2054 if (insn_code_number < 0
2055 && !(added_sets_2 && i1 == 0)
2056 && GET_CODE (newpat) == PARALLEL
2057 && XVECLEN (newpat, 0) == 2
2058 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2059 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2060 && asm_noperands (newpat) < 0)
2062 rtx set0 = XVECEXP (newpat, 0, 0);
2063 rtx set1 = XVECEXP (newpat, 0, 1);
2066 if (((GET_CODE (SET_DEST (set1)) == REG
2067 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2068 || (GET_CODE (SET_DEST (set1)) == SUBREG
2069 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2070 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2071 || INTVAL (XEXP (note, 0)) <= 0)
2072 && ! side_effects_p (SET_SRC (set1)))
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2078 else if (((GET_CODE (SET_DEST (set0)) == REG
2079 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2080 || (GET_CODE (SET_DEST (set0)) == SUBREG
2081 && find_reg_note (i3, REG_UNUSED,
2082 SUBREG_REG (SET_DEST (set0)))))
2083 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2084 || INTVAL (XEXP (note, 0)) <= 0)
2085 && ! side_effects_p (SET_SRC (set0)))
2088 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2090 if (insn_code_number >= 0)
2092 /* If we will be able to accept this, we have made a
2093 change to the destination of I3. This requires us to
2094 do a few adjustments. */
2096 PATTERN (i3) = newpat;
2097 adjust_for_new_dest (i3);
2102 /* If we were combining three insns and the result is a simple SET
2103 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2104 insns. There are two ways to do this. It can be split using a
2105 machine-specific method (like when you have an addition of a large
2106 constant) or by combine in the function find_split_point. */
2108 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2109 && asm_noperands (newpat) < 0)
2111 rtx m_split, *split;
2112 rtx ni2dest = i2dest;
2114 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2115 use I2DEST as a scratch register will help. In the latter case,
2116 convert I2DEST to the mode of the source of NEWPAT if we can. */
2118 m_split = split_insns (newpat, i3);
2120 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2121 inputs of NEWPAT. */
2123 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2124 possible to try that as a scratch reg. This would require adding
2125 more code to make it work though. */
2127 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2129 /* If I2DEST is a hard register or the only use of a pseudo,
2130 we can change its mode. */
2131 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2132 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2133 && GET_CODE (i2dest) == REG
2134 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2135 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2136 && ! REG_USERVAR_P (i2dest))))
2137 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2140 m_split = split_insns (gen_rtx_PARALLEL
2142 gen_rtvec (2, newpat,
2143 gen_rtx_CLOBBER (VOIDmode,
2146 /* If the split with the mode-changed register didn't work, try
2147 the original register. */
2148 if (! m_split && ni2dest != i2dest)
2151 m_split = split_insns (gen_rtx_PARALLEL
2153 gen_rtvec (2, newpat,
2154 gen_rtx_CLOBBER (VOIDmode,
2160 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2162 m_split = PATTERN (m_split);
2163 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2164 if (insn_code_number >= 0)
2167 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2168 && (next_real_insn (i2) == i3
2169 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2172 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2173 newi2pat = PATTERN (m_split);
2175 i3set = single_set (NEXT_INSN (m_split));
2176 i2set = single_set (m_split);
2178 /* In case we changed the mode of I2DEST, replace it in the
2179 pseudo-register table here. We can't do it above in case this
2180 code doesn't get executed and we do a split the other way. */
2182 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2183 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2185 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2187 /* If I2 or I3 has multiple SETs, we won't know how to track
2188 register status, so don't use these insns. If I2's destination
2189 is used between I2 and I3, we also can't use these insns. */
2191 if (i2_code_number >= 0 && i2set && i3set
2192 && (next_real_insn (i2) == i3
2193 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2194 insn_code_number = recog_for_combine (&newi3pat, i3,
2196 if (insn_code_number >= 0)
2199 /* It is possible that both insns now set the destination of I3.
2200 If so, we must show an extra use of it. */
2202 if (insn_code_number >= 0)
2204 rtx new_i3_dest = SET_DEST (i3set);
2205 rtx new_i2_dest = SET_DEST (i2set);
2207 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2208 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2209 || GET_CODE (new_i3_dest) == SUBREG)
2210 new_i3_dest = XEXP (new_i3_dest, 0);
2212 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2213 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2214 || GET_CODE (new_i2_dest) == SUBREG)
2215 new_i2_dest = XEXP (new_i2_dest, 0);
2217 if (GET_CODE (new_i3_dest) == REG
2218 && GET_CODE (new_i2_dest) == REG
2219 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2220 REG_N_SETS (REGNO (new_i2_dest))++;
2224 /* If we can split it and use I2DEST, go ahead and see if that
2225 helps things be recognized. Verify that none of the registers
2226 are set between I2 and I3. */
2227 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2229 && GET_CODE (i2dest) == REG
2231 /* We need I2DEST in the proper mode. If it is a hard register
2232 or the only use of a pseudo, we can change its mode. */
2233 && (GET_MODE (*split) == GET_MODE (i2dest)
2234 || GET_MODE (*split) == VOIDmode
2235 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2236 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2237 && ! REG_USERVAR_P (i2dest)))
2238 && (next_real_insn (i2) == i3
2239 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2240 /* We can't overwrite I2DEST if its value is still used by
2242 && ! reg_referenced_p (i2dest, newpat))
2244 rtx newdest = i2dest;
2245 enum rtx_code split_code = GET_CODE (*split);
2246 enum machine_mode split_mode = GET_MODE (*split);
2248 /* Get NEWDEST as a register in the proper mode. We have already
2249 validated that we can do this. */
2250 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2252 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2254 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2255 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2258 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2259 an ASHIFT. This can occur if it was inside a PLUS and hence
2260 appeared to be a memory address. This is a kludge. */
2261 if (split_code == MULT
2262 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2263 && INTVAL (XEXP (*split, 1)) > 0
2264 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2266 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2267 XEXP (*split, 0), GEN_INT (i)));
2268 /* Update split_code because we may not have a multiply
2270 split_code = GET_CODE (*split);
2273 #ifdef INSN_SCHEDULING
2274 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2275 be written as a ZERO_EXTEND. */
2276 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2278 #ifdef LOAD_EXTEND_OP
2279 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2280 what it really is. */
2281 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2283 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2284 SUBREG_REG (*split)));
2287 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2288 SUBREG_REG (*split)));
2292 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2293 SUBST (*split, newdest);
2294 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2296 /* If the split point was a MULT and we didn't have one before,
2297 don't use one now. */
2298 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2299 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2303 /* Check for a case where we loaded from memory in a narrow mode and
2304 then sign extended it, but we need both registers. In that case,
2305 we have a PARALLEL with both loads from the same memory location.
2306 We can split this into a load from memory followed by a register-register
2307 copy. This saves at least one insn, more if register allocation can
2310 We cannot do this if the destination of the first assignment is a
2311 condition code register or cc0. We eliminate this case by making sure
2312 the SET_DEST and SET_SRC have the same mode.
2314 We cannot do this if the destination of the second assignment is
2315 a register that we have already assumed is zero-extended. Similarly
2316 for a SUBREG of such a register. */
2318 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2319 && GET_CODE (newpat) == PARALLEL
2320 && XVECLEN (newpat, 0) == 2
2321 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2322 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2323 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2324 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2325 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2326 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2327 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2328 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2331 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2332 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2333 (GET_CODE (temp) == REG
2334 && reg_nonzero_bits[REGNO (temp)] != 0
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2336 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2337 && (reg_nonzero_bits[REGNO (temp)]
2338 != GET_MODE_MASK (word_mode))))
2339 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2340 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2341 (GET_CODE (temp) == REG
2342 && reg_nonzero_bits[REGNO (temp)] != 0
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2344 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2345 && (reg_nonzero_bits[REGNO (temp)]
2346 != GET_MODE_MASK (word_mode)))))
2347 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2348 SET_SRC (XVECEXP (newpat, 0, 1)))
2349 && ! find_reg_note (i3, REG_UNUSED,
2350 SET_DEST (XVECEXP (newpat, 0, 0))))
2354 newi2pat = XVECEXP (newpat, 0, 0);
2355 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2356 newpat = XVECEXP (newpat, 0, 1);
2357 SUBST (SET_SRC (newpat),
2358 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2359 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2361 if (i2_code_number >= 0)
2362 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2364 if (insn_code_number >= 0)
2369 /* If we will be able to accept this, we have made a change to the
2370 destination of I3. This requires us to do a few adjustments. */
2371 PATTERN (i3) = newpat;
2372 adjust_for_new_dest (i3);
2374 /* I3 now uses what used to be its destination and which is
2375 now I2's destination. That means we need a LOG_LINK from
2376 I3 to I2. But we used to have one, so we still will.
2378 However, some later insn might be using I2's dest and have
2379 a LOG_LINK pointing at I3. We must remove this link.
2380 The simplest way to remove the link is to point it at I1,
2381 which we know will be a NOTE. */
2383 for (insn = NEXT_INSN (i3);
2384 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2385 || insn != BB_HEAD (this_basic_block->next_bb));
2386 insn = NEXT_INSN (insn))
2388 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2390 for (link = LOG_LINKS (insn); link;
2391 link = XEXP (link, 1))
2392 if (XEXP (link, 0) == i3)
2393 XEXP (link, 0) = i1;
2401 /* Similarly, check for a case where we have a PARALLEL of two independent
2402 SETs but we started with three insns. In this case, we can do the sets
2403 as two separate insns. This case occurs when some SET allows two
2404 other insns to combine, but the destination of that SET is still live. */
2406 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2407 && GET_CODE (newpat) == PARALLEL
2408 && XVECLEN (newpat, 0) == 2
2409 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2410 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2411 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2412 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2413 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2414 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2415 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2417 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2418 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2420 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2421 XVECEXP (newpat, 0, 0))
2422 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2423 XVECEXP (newpat, 0, 1))
2424 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2425 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2427 /* Normally, it doesn't matter which of the two is done first,
2428 but it does if one references cc0. In that case, it has to
2431 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2433 newi2pat = XVECEXP (newpat, 0, 0);
2434 newpat = XVECEXP (newpat, 0, 1);
2439 newi2pat = XVECEXP (newpat, 0, 1);
2440 newpat = XVECEXP (newpat, 0, 0);
2443 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2445 if (i2_code_number >= 0)
2446 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2449 /* If it still isn't recognized, fail and change things back the way they
2451 if ((insn_code_number < 0
2452 /* Is the result a reasonable ASM_OPERANDS? */
2453 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2459 /* If we had to change another insn, make sure it is valid also. */
2460 if (undobuf.other_insn)
2462 rtx other_pat = PATTERN (undobuf.other_insn);
2463 rtx new_other_notes;
2466 CLEAR_HARD_REG_SET (newpat_used_regs);
2468 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2471 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2477 PATTERN (undobuf.other_insn) = other_pat;
2479 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2480 are still valid. Then add any non-duplicate notes added by
2481 recog_for_combine. */
2482 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2484 next = XEXP (note, 1);
2486 if (REG_NOTE_KIND (note) == REG_UNUSED
2487 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2489 if (GET_CODE (XEXP (note, 0)) == REG)
2490 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2492 remove_note (undobuf.other_insn, note);
2496 for (note = new_other_notes; note; note = XEXP (note, 1))
2497 if (GET_CODE (XEXP (note, 0)) == REG)
2498 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2500 distribute_notes (new_other_notes, undobuf.other_insn,
2501 undobuf.other_insn, NULL_RTX);
2504 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2505 they are adjacent to each other or not. */
2507 rtx p = prev_nonnote_insn (i3);
2508 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2509 && sets_cc0_p (newi2pat))
2517 /* We now know that we can do this combination. Merge the insns and
2518 update the status of registers and LOG_LINKS. */
2521 rtx i3notes, i2notes, i1notes = 0;
2522 rtx i3links, i2links, i1links = 0;
2526 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2528 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2529 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2531 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2533 /* Ensure that we do not have something that should not be shared but
2534 occurs multiple times in the new insns. Check this by first
2535 resetting all the `used' flags and then copying anything is shared. */
2537 reset_used_flags (i3notes);
2538 reset_used_flags (i2notes);
2539 reset_used_flags (i1notes);
2540 reset_used_flags (newpat);
2541 reset_used_flags (newi2pat);
2542 if (undobuf.other_insn)
2543 reset_used_flags (PATTERN (undobuf.other_insn));
2545 i3notes = copy_rtx_if_shared (i3notes);
2546 i2notes = copy_rtx_if_shared (i2notes);
2547 i1notes = copy_rtx_if_shared (i1notes);
2548 newpat = copy_rtx_if_shared (newpat);
2549 newi2pat = copy_rtx_if_shared (newi2pat);
2550 if (undobuf.other_insn)
2551 reset_used_flags (PATTERN (undobuf.other_insn));
2553 INSN_CODE (i3) = insn_code_number;
2554 PATTERN (i3) = newpat;
2556 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2558 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2560 reset_used_flags (call_usage);
2561 call_usage = copy_rtx (call_usage);
2564 replace_rtx (call_usage, i2dest, i2src);
2567 replace_rtx (call_usage, i1dest, i1src);
2569 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2572 if (undobuf.other_insn)
2573 INSN_CODE (undobuf.other_insn) = other_code_number;
2575 /* We had one special case above where I2 had more than one set and
2576 we replaced a destination of one of those sets with the destination
2577 of I3. In that case, we have to update LOG_LINKS of insns later
2578 in this basic block. Note that this (expensive) case is rare.
2580 Also, in this case, we must pretend that all REG_NOTEs for I2
2581 actually came from I3, so that REG_UNUSED notes from I2 will be
2582 properly handled. */
2584 if (i3_subst_into_i2)
2586 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2587 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2588 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2589 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2590 && ! find_reg_note (i2, REG_UNUSED,
2591 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2592 for (temp = NEXT_INSN (i2);
2593 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2594 || BB_HEAD (this_basic_block) != temp);
2595 temp = NEXT_INSN (temp))
2596 if (temp != i3 && INSN_P (temp))
2597 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2598 if (XEXP (link, 0) == i2)
2599 XEXP (link, 0) = i3;
2604 while (XEXP (link, 1))
2605 link = XEXP (link, 1);
2606 XEXP (link, 1) = i2notes;
2620 INSN_CODE (i2) = i2_code_number;
2621 PATTERN (i2) = newi2pat;
2625 PUT_CODE (i2, NOTE);
2626 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2627 NOTE_SOURCE_FILE (i2) = 0;
2634 PUT_CODE (i1, NOTE);
2635 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2636 NOTE_SOURCE_FILE (i1) = 0;
2639 /* Get death notes for everything that is now used in either I3 or
2640 I2 and used to die in a previous insn. If we built two new
2641 patterns, move from I1 to I2 then I2 to I3 so that we get the
2642 proper movement on registers that I2 modifies. */
2646 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2647 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2650 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2653 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2655 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2657 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2659 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2661 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2663 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2664 know these are REG_UNUSED and want them to go to the desired insn,
2665 so we always pass it as i3. We have not counted the notes in
2666 reg_n_deaths yet, so we need to do so now. */
2668 if (newi2pat && new_i2_notes)
2670 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2671 if (GET_CODE (XEXP (temp, 0)) == REG)
2672 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2674 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2679 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2680 if (GET_CODE (XEXP (temp, 0)) == REG)
2681 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2683 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2686 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2687 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2688 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2689 in that case, it might delete I2. Similarly for I2 and I1.
2690 Show an additional death due to the REG_DEAD note we make here. If
2691 we discard it in distribute_notes, we will decrement it again. */
2695 if (GET_CODE (i3dest_killed) == REG)
2696 REG_N_DEATHS (REGNO (i3dest_killed))++;
2698 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2699 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2701 NULL_RTX, i2, NULL_RTX);
2703 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2705 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2708 if (i2dest_in_i2src)
2710 if (GET_CODE (i2dest) == REG)
2711 REG_N_DEATHS (REGNO (i2dest))++;
2713 if (newi2pat && reg_set_p (i2dest, newi2pat))
2714 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2715 NULL_RTX, i2, NULL_RTX);
2717 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2718 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2721 if (i1dest_in_i1src)
2723 if (GET_CODE (i1dest) == REG)
2724 REG_N_DEATHS (REGNO (i1dest))++;
2726 if (newi2pat && reg_set_p (i1dest, newi2pat))
2727 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2728 NULL_RTX, i2, NULL_RTX);
2730 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2731 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2734 distribute_links (i3links);
2735 distribute_links (i2links);
2736 distribute_links (i1links);
2738 if (GET_CODE (i2dest) == REG)
2741 rtx i2_insn = 0, i2_val = 0, set;
2743 /* The insn that used to set this register doesn't exist, and
2744 this life of the register may not exist either. See if one of
2745 I3's links points to an insn that sets I2DEST. If it does,
2746 that is now the last known value for I2DEST. If we don't update
2747 this and I2 set the register to a value that depended on its old
2748 contents, we will get confused. If this insn is used, thing
2749 will be set correctly in combine_instructions. */
2751 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2752 if ((set = single_set (XEXP (link, 0))) != 0
2753 && rtx_equal_p (i2dest, SET_DEST (set)))
2754 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2756 record_value_for_reg (i2dest, i2_insn, i2_val);
2758 /* If the reg formerly set in I2 died only once and that was in I3,
2759 zero its use count so it won't make `reload' do any work. */
2761 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2762 && ! i2dest_in_i2src)
2764 regno = REGNO (i2dest);
2765 REG_N_SETS (regno)--;
2769 if (i1 && GET_CODE (i1dest) == REG)
2772 rtx i1_insn = 0, i1_val = 0, set;
2774 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2775 if ((set = single_set (XEXP (link, 0))) != 0
2776 && rtx_equal_p (i1dest, SET_DEST (set)))
2777 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2779 record_value_for_reg (i1dest, i1_insn, i1_val);
2781 regno = REGNO (i1dest);
2782 if (! added_sets_1 && ! i1dest_in_i1src)
2783 REG_N_SETS (regno)--;
2786 /* Update reg_nonzero_bits et al for any changes that may have been made
2787 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2788 important. Because newi2pat can affect nonzero_bits of newpat */
2790 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2791 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2793 /* Set new_direct_jump_p if a new return or simple jump instruction
2796 If I3 is now an unconditional jump, ensure that it has a
2797 BARRIER following it since it may have initially been a
2798 conditional jump. It may also be the last nonnote insn. */
2800 if (returnjump_p (i3) || any_uncondjump_p (i3))
2802 *new_direct_jump_p = 1;
2803 mark_jump_label (PATTERN (i3), i3, 0);
2805 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2806 || GET_CODE (temp) != BARRIER)
2807 emit_barrier_after (i3);
2810 if (undobuf.other_insn != NULL_RTX
2811 && (returnjump_p (undobuf.other_insn)
2812 || any_uncondjump_p (undobuf.other_insn)))
2814 *new_direct_jump_p = 1;
2816 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2817 || GET_CODE (temp) != BARRIER)
2818 emit_barrier_after (undobuf.other_insn);
2821 /* An NOOP jump does not need barrier, but it does need cleaning up
2823 if (GET_CODE (newpat) == SET
2824 && SET_SRC (newpat) == pc_rtx
2825 && SET_DEST (newpat) == pc_rtx)
2826 *new_direct_jump_p = 1;
2829 combine_successes++;
2832 if (added_links_insn
2833 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2834 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2835 return added_links_insn;
2837 return newi2pat ? i2 : i3;
2840 /* Undo all the modifications recorded in undobuf. */
2845 struct undo *undo, *next;
2847 for (undo = undobuf.undos; undo; undo = next)
2851 *undo->where.i = undo->old_contents.i;
2853 *undo->where.r = undo->old_contents.r;
2855 undo->next = undobuf.frees;
2856 undobuf.frees = undo;
2862 /* We've committed to accepting the changes we made. Move all
2863 of the undos to the free list. */
2868 struct undo *undo, *next;
2870 for (undo = undobuf.undos; undo; undo = next)
2873 undo->next = undobuf.frees;
2874 undobuf.frees = undo;
2880 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2881 where we have an arithmetic expression and return that point. LOC will
2884 try_combine will call this function to see if an insn can be split into
2888 find_split_point (rtx *loc, rtx insn)
2891 enum rtx_code code = GET_CODE (x);
2893 unsigned HOST_WIDE_INT len = 0;
2894 HOST_WIDE_INT pos = 0;
2896 rtx inner = NULL_RTX;
2898 /* First special-case some codes. */
2902 #ifdef INSN_SCHEDULING
2903 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2905 if (GET_CODE (SUBREG_REG (x)) == MEM)
2908 return find_split_point (&SUBREG_REG (x), insn);
2912 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2913 using LO_SUM and HIGH. */
2914 if (GET_CODE (XEXP (x, 0)) == CONST
2915 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2918 gen_rtx_LO_SUM (Pmode,
2919 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2921 return &XEXP (XEXP (x, 0), 0);
2925 /* If we have a PLUS whose second operand is a constant and the
2926 address is not valid, perhaps will can split it up using
2927 the machine-specific way to split large constants. We use
2928 the first pseudo-reg (one of the virtual regs) as a placeholder;
2929 it will not remain in the result. */
2930 if (GET_CODE (XEXP (x, 0)) == PLUS
2931 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2932 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2934 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2935 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2938 /* This should have produced two insns, each of which sets our
2939 placeholder. If the source of the second is a valid address,
2940 we can make put both sources together and make a split point
2944 && NEXT_INSN (seq) != NULL_RTX
2945 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2946 && GET_CODE (seq) == INSN
2947 && GET_CODE (PATTERN (seq)) == SET
2948 && SET_DEST (PATTERN (seq)) == reg
2949 && ! reg_mentioned_p (reg,
2950 SET_SRC (PATTERN (seq)))
2951 && GET_CODE (NEXT_INSN (seq)) == INSN
2952 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2953 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2954 && memory_address_p (GET_MODE (x),
2955 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2957 rtx src1 = SET_SRC (PATTERN (seq));
2958 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2960 /* Replace the placeholder in SRC2 with SRC1. If we can
2961 find where in SRC2 it was placed, that can become our
2962 split point and we can replace this address with SRC2.
2963 Just try two obvious places. */
2965 src2 = replace_rtx (src2, reg, src1);
2967 if (XEXP (src2, 0) == src1)
2968 split = &XEXP (src2, 0);
2969 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2970 && XEXP (XEXP (src2, 0), 0) == src1)
2971 split = &XEXP (XEXP (src2, 0), 0);
2975 SUBST (XEXP (x, 0), src2);
2980 /* If that didn't work, perhaps the first operand is complex and
2981 needs to be computed separately, so make a split point there.
2982 This will occur on machines that just support REG + CONST
2983 and have a constant moved through some previous computation. */
2985 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
2986 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2987 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
2988 return &XEXP (XEXP (x, 0), 0);
2994 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2995 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2996 we need to put the operand into a register. So split at that
2999 if (SET_DEST (x) == cc0_rtx
3000 && GET_CODE (SET_SRC (x)) != COMPARE
3001 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3002 && !OBJECT_P (SET_SRC (x))
3003 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3004 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3005 return &SET_SRC (x);
3008 /* See if we can split SET_SRC as it stands. */
3009 split = find_split_point (&SET_SRC (x), insn);
3010 if (split && split != &SET_SRC (x))
3013 /* See if we can split SET_DEST as it stands. */
3014 split = find_split_point (&SET_DEST (x), insn);
3015 if (split && split != &SET_DEST (x))
3018 /* See if this is a bitfield assignment with everything constant. If
3019 so, this is an IOR of an AND, so split it into that. */
3020 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3021 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3022 <= HOST_BITS_PER_WIDE_INT)
3023 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3024 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3025 && GET_CODE (SET_SRC (x)) == CONST_INT
3026 && ((INTVAL (XEXP (SET_DEST (x), 1))
3027 + INTVAL (XEXP (SET_DEST (x), 2)))
3028 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3029 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3031 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3032 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3033 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3034 rtx dest = XEXP (SET_DEST (x), 0);
3035 enum machine_mode mode = GET_MODE (dest);
3036 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3038 if (BITS_BIG_ENDIAN)
3039 pos = GET_MODE_BITSIZE (mode) - len - pos;
3043 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3046 gen_binary (IOR, mode,
3047 gen_binary (AND, mode, dest,
3048 gen_int_mode (~(mask << pos),
3050 GEN_INT (src << pos)));
3052 SUBST (SET_DEST (x), dest);
3054 split = find_split_point (&SET_SRC (x), insn);
3055 if (split && split != &SET_SRC (x))
3059 /* Otherwise, see if this is an operation that we can split into two.
3060 If so, try to split that. */
3061 code = GET_CODE (SET_SRC (x));
3066 /* If we are AND'ing with a large constant that is only a single
3067 bit and the result is only being used in a context where we
3068 need to know if it is zero or nonzero, replace it with a bit
3069 extraction. This will avoid the large constant, which might
3070 have taken more than one insn to make. If the constant were
3071 not a valid argument to the AND but took only one insn to make,
3072 this is no worse, but if it took more than one insn, it will
3075 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3076 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3077 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3078 && GET_CODE (SET_DEST (x)) == REG
3079 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3080 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3081 && XEXP (*split, 0) == SET_DEST (x)
3082 && XEXP (*split, 1) == const0_rtx)
3084 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3085 XEXP (SET_SRC (x), 0),
3086 pos, NULL_RTX, 1, 1, 0, 0);
3087 if (extraction != 0)
3089 SUBST (SET_SRC (x), extraction);
3090 return find_split_point (loc, insn);
3096 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3097 is known to be on, this can be converted into a NEG of a shift. */
3098 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3099 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3100 && 1 <= (pos = exact_log2
3101 (nonzero_bits (XEXP (SET_SRC (x), 0),
3102 GET_MODE (XEXP (SET_SRC (x), 0))))))
3104 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3108 gen_rtx_LSHIFTRT (mode,
3109 XEXP (SET_SRC (x), 0),
3112 split = find_split_point (&SET_SRC (x), insn);
3113 if (split && split != &SET_SRC (x))
3119 inner = XEXP (SET_SRC (x), 0);
3121 /* We can't optimize if either mode is a partial integer
3122 mode as we don't know how many bits are significant
3124 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3125 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3129 len = GET_MODE_BITSIZE (GET_MODE (inner));
3135 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3136 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3138 inner = XEXP (SET_SRC (x), 0);
3139 len = INTVAL (XEXP (SET_SRC (x), 1));
3140 pos = INTVAL (XEXP (SET_SRC (x), 2));
3142 if (BITS_BIG_ENDIAN)
3143 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3144 unsignedp = (code == ZERO_EXTRACT);
3152 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3154 enum machine_mode mode = GET_MODE (SET_SRC (x));
3156 /* For unsigned, we have a choice of a shift followed by an
3157 AND or two shifts. Use two shifts for field sizes where the
3158 constant might be too large. We assume here that we can
3159 always at least get 8-bit constants in an AND insn, which is
3160 true for every current RISC. */
3162 if (unsignedp && len <= 8)
3167 (mode, gen_lowpart (mode, inner),
3169 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3171 split = find_split_point (&SET_SRC (x), insn);
3172 if (split && split != &SET_SRC (x))
3179 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3180 gen_rtx_ASHIFT (mode,
3181 gen_lowpart (mode, inner),
3182 GEN_INT (GET_MODE_BITSIZE (mode)
3184 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3186 split = find_split_point (&SET_SRC (x), insn);
3187 if (split && split != &SET_SRC (x))
3192 /* See if this is a simple operation with a constant as the second
3193 operand. It might be that this constant is out of range and hence
3194 could be used as a split point. */
3195 if (BINARY_P (SET_SRC (x))
3196 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3197 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3198 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3199 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3200 return &XEXP (SET_SRC (x), 1);
3202 /* Finally, see if this is a simple operation with its first operand
3203 not in a register. The operation might require this operand in a
3204 register, so return it as a split point. We can always do this
3205 because if the first operand were another operation, we would have
3206 already found it as a split point. */
3207 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3208 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3209 return &XEXP (SET_SRC (x), 0);
3215 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3216 it is better to write this as (not (ior A B)) so we can split it.
3217 Similarly for IOR. */
3218 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3221 gen_rtx_NOT (GET_MODE (x),
3222 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3224 XEXP (XEXP (x, 0), 0),
3225 XEXP (XEXP (x, 1), 0))));
3226 return find_split_point (loc, insn);
3229 /* Many RISC machines have a large set of logical insns. If the
3230 second operand is a NOT, put it first so we will try to split the
3231 other operand first. */
3232 if (GET_CODE (XEXP (x, 1)) == NOT)
3234 rtx tem = XEXP (x, 0);
3235 SUBST (XEXP (x, 0), XEXP (x, 1));
3236 SUBST (XEXP (x, 1), tem);
3244 /* Otherwise, select our actions depending on our rtx class. */
3245 switch (GET_RTX_CLASS (code))
3247 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3249 split = find_split_point (&XEXP (x, 2), insn);
3252 /* ... fall through ... */
3254 case RTX_COMM_ARITH:
3256 case RTX_COMM_COMPARE:
3257 split = find_split_point (&XEXP (x, 1), insn);
3260 /* ... fall through ... */
3262 /* Some machines have (and (shift ...) ...) insns. If X is not
3263 an AND, but XEXP (X, 0) is, use it as our split point. */
3264 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3265 return &XEXP (x, 0);
3267 split = find_split_point (&XEXP (x, 0), insn);
3273 /* Otherwise, we don't have a split point. */
3278 /* Throughout X, replace FROM with TO, and return the result.
3279 The result is TO if X is FROM;
3280 otherwise the result is X, but its contents may have been modified.
3281 If they were modified, a record was made in undobuf so that
3282 undo_all will (among other things) return X to its original state.
3284 If the number of changes necessary is too much to record to undo,
3285 the excess changes are not made, so the result is invalid.
3286 The changes already made can still be undone.
3287 undobuf.num_undo is incremented for such changes, so by testing that
3288 the caller can tell whether the result is valid.
3290 `n_occurrences' is incremented each time FROM is replaced.
3292 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3294 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3295 by copying if `n_occurrences' is nonzero. */
3298 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3300 enum rtx_code code = GET_CODE (x);
3301 enum machine_mode op0_mode = VOIDmode;
3306 /* Two expressions are equal if they are identical copies of a shared
3307 RTX or if they are both registers with the same register number
3310 #define COMBINE_RTX_EQUAL_P(X,Y) \
3312 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3313 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3315 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3318 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3321 /* If X and FROM are the same register but different modes, they will
3322 not have been seen as equal above. However, flow.c will make a
3323 LOG_LINKS entry for that case. If we do nothing, we will try to
3324 rerecognize our original insn and, when it succeeds, we will
3325 delete the feeding insn, which is incorrect.
3327 So force this insn not to match in this (rare) case. */
3328 if (! in_dest && code == REG && GET_CODE (from) == REG
3329 && REGNO (x) == REGNO (from))
3330 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3332 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3333 of which may contain things that can be combined. */
3334 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3337 /* It is possible to have a subexpression appear twice in the insn.
3338 Suppose that FROM is a register that appears within TO.
3339 Then, after that subexpression has been scanned once by `subst',
3340 the second time it is scanned, TO may be found. If we were
3341 to scan TO here, we would find FROM within it and create a
3342 self-referent rtl structure which is completely wrong. */
3343 if (COMBINE_RTX_EQUAL_P (x, to))
3346 /* Parallel asm_operands need special attention because all of the
3347 inputs are shared across the arms. Furthermore, unsharing the
3348 rtl results in recognition failures. Failure to handle this case
3349 specially can result in circular rtl.
3351 Solve this by doing a normal pass across the first entry of the
3352 parallel, and only processing the SET_DESTs of the subsequent
3355 if (code == PARALLEL
3356 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3357 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3359 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3361 /* If this substitution failed, this whole thing fails. */
3362 if (GET_CODE (new) == CLOBBER
3363 && XEXP (new, 0) == const0_rtx)
3366 SUBST (XVECEXP (x, 0, 0), new);
3368 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3370 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3372 if (GET_CODE (dest) != REG
3373 && GET_CODE (dest) != CC0
3374 && GET_CODE (dest) != PC)
3376 new = subst (dest, from, to, 0, unique_copy);
3378 /* If this substitution failed, this whole thing fails. */
3379 if (GET_CODE (new) == CLOBBER
3380 && XEXP (new, 0) == const0_rtx)
3383 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3389 len = GET_RTX_LENGTH (code);
3390 fmt = GET_RTX_FORMAT (code);
3392 /* We don't need to process a SET_DEST that is a register, CC0,
3393 or PC, so set up to skip this common case. All other cases
3394 where we want to suppress replacing something inside a
3395 SET_SRC are handled via the IN_DEST operand. */
3397 && (GET_CODE (SET_DEST (x)) == REG
3398 || GET_CODE (SET_DEST (x)) == CC0
3399 || GET_CODE (SET_DEST (x)) == PC))
3402 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3405 op0_mode = GET_MODE (XEXP (x, 0));
3407 for (i = 0; i < len; i++)
3412 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3414 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3416 new = (unique_copy && n_occurrences
3417 ? copy_rtx (to) : to);
3422 new = subst (XVECEXP (x, i, j), from, to, 0,
3425 /* If this substitution failed, this whole thing
3427 if (GET_CODE (new) == CLOBBER
3428 && XEXP (new, 0) == const0_rtx)
3432 SUBST (XVECEXP (x, i, j), new);
3435 else if (fmt[i] == 'e')
3437 /* If this is a register being set, ignore it. */
3440 && (code == SUBREG || code == STRICT_LOW_PART
3441 || code == ZERO_EXTRACT)
3443 && GET_CODE (new) == REG)
3446 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3448 /* In general, don't install a subreg involving two
3449 modes not tieable. It can worsen register
3450 allocation, and can even make invalid reload
3451 insns, since the reg inside may need to be copied
3452 from in the outside mode, and that may be invalid
3453 if it is an fp reg copied in integer mode.
3455 We allow two exceptions to this: It is valid if
3456 it is inside another SUBREG and the mode of that
3457 SUBREG and the mode of the inside of TO is
3458 tieable and it is valid if X is a SET that copies
3461 if (GET_CODE (to) == SUBREG
3462 && ! MODES_TIEABLE_P (GET_MODE (to),
3463 GET_MODE (SUBREG_REG (to)))
3464 && ! (code == SUBREG
3465 && MODES_TIEABLE_P (GET_MODE (x),
3466 GET_MODE (SUBREG_REG (to))))
3468 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3471 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3473 #ifdef CANNOT_CHANGE_MODE_CLASS
3475 && GET_CODE (to) == REG
3476 && REGNO (to) < FIRST_PSEUDO_REGISTER
3477 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3480 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3483 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3487 /* If we are in a SET_DEST, suppress most cases unless we
3488 have gone inside a MEM, in which case we want to
3489 simplify the address. We assume here that things that
3490 are actually part of the destination have their inner
3491 parts in the first expression. This is true for SUBREG,
3492 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3493 things aside from REG and MEM that should appear in a
3495 new = subst (XEXP (x, i), from, to,
3497 && (code == SUBREG || code == STRICT_LOW_PART
3498 || code == ZERO_EXTRACT))
3500 && i == 0), unique_copy);
3502 /* If we found that we will have to reject this combination,
3503 indicate that by returning the CLOBBER ourselves, rather than
3504 an expression containing it. This will speed things up as
3505 well as prevent accidents where two CLOBBERs are considered
3506 to be equal, thus producing an incorrect simplification. */
3508 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3511 if (GET_CODE (x) == SUBREG
3512 && (GET_CODE (new) == CONST_INT
3513 || GET_CODE (new) == CONST_DOUBLE))
3515 enum machine_mode mode = GET_MODE (x);
3517 x = simplify_subreg (GET_MODE (x), new,
3518 GET_MODE (SUBREG_REG (x)),
3521 x = gen_rtx_CLOBBER (mode, const0_rtx);
3523 else if (GET_CODE (new) == CONST_INT
3524 && GET_CODE (x) == ZERO_EXTEND)
3526 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3527 new, GET_MODE (XEXP (x, 0)));
3532 SUBST (XEXP (x, i), new);
3537 /* Try to simplify X. If the simplification changed the code, it is likely
3538 that further simplification will help, so loop, but limit the number
3539 of repetitions that will be performed. */
3541 for (i = 0; i < 4; i++)
3543 /* If X is sufficiently simple, don't bother trying to do anything
3545 if (code != CONST_INT && code != REG && code != CLOBBER)
3546 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3548 if (GET_CODE (x) == code)
3551 code = GET_CODE (x);
3553 /* We no longer know the original mode of operand 0 since we
3554 have changed the form of X) */
3555 op0_mode = VOIDmode;
3561 /* Simplify X, a piece of RTL. We just operate on the expression at the
3562 outer level; call `subst' to simplify recursively. Return the new
3565 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3566 will be the iteration even if an expression with a code different from
3567 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3570 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3573 enum rtx_code code = GET_CODE (x);
3574 enum machine_mode mode = GET_MODE (x);
3579 /* If this is a commutative operation, put a constant last and a complex
3580 expression first. We don't need to do this for comparisons here. */
3581 if (COMMUTATIVE_ARITH_P (x)
3582 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3585 SUBST (XEXP (x, 0), XEXP (x, 1));
3586 SUBST (XEXP (x, 1), temp);
3589 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3590 sign extension of a PLUS with a constant, reverse the order of the sign
3591 extension and the addition. Note that this not the same as the original
3592 code, but overflow is undefined for signed values. Also note that the
3593 PLUS will have been partially moved "inside" the sign-extension, so that
3594 the first operand of X will really look like:
3595 (ashiftrt (plus (ashift A C4) C5) C4).
3597 (plus (ashiftrt (ashift A C4) C2) C4)
3598 and replace the first operand of X with that expression. Later parts
3599 of this function may simplify the expression further.
3601 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3602 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3603 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3605 We do this to simplify address expressions. */
3607 if ((code == PLUS || code == MINUS || code == MULT)
3608 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3609 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3610 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3611 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3612 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3613 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3614 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3615 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3616 XEXP (XEXP (XEXP (x, 0), 0), 1),
3617 XEXP (XEXP (x, 0), 1))) != 0)
3620 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3621 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3622 INTVAL (XEXP (XEXP (x, 0), 1)));
3624 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3625 INTVAL (XEXP (XEXP (x, 0), 1)));
3627 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3630 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3631 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3632 things. Check for cases where both arms are testing the same
3635 Don't do anything if all operands are very simple. */
3638 && ((!OBJECT_P (XEXP (x, 0))
3639 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3640 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3641 || (!OBJECT_P (XEXP (x, 1))
3642 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3643 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3645 && (!OBJECT_P (XEXP (x, 0))
3646 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3647 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3649 rtx cond, true_rtx, false_rtx;
3651 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3653 /* If everything is a comparison, what we have is highly unlikely
3654 to be simpler, so don't use it. */
3655 && ! (COMPARISON_P (x)
3656 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3658 rtx cop1 = const0_rtx;
3659 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3661 if (cond_code == NE && COMPARISON_P (cond))
3664 /* Simplify the alternative arms; this may collapse the true and
3665 false arms to store-flag values. Be careful to use copy_rtx
3666 here since true_rtx or false_rtx might share RTL with x as a
3667 result of the if_then_else_cond call above. */
3668 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3669 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3671 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3672 is unlikely to be simpler. */
3673 if (general_operand (true_rtx, VOIDmode)
3674 && general_operand (false_rtx, VOIDmode))
3676 enum rtx_code reversed;
3678 /* Restarting if we generate a store-flag expression will cause
3679 us to loop. Just drop through in this case. */
3681 /* If the result values are STORE_FLAG_VALUE and zero, we can
3682 just make the comparison operation. */
3683 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3684 x = gen_binary (cond_code, mode, cond, cop1);
3685 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3686 && ((reversed = reversed_comparison_code_parts
3687 (cond_code, cond, cop1, NULL))
3689 x = gen_binary (reversed, mode, cond, cop1);
3691 /* Likewise, we can make the negate of a comparison operation
3692 if the result values are - STORE_FLAG_VALUE and zero. */
3693 else if (GET_CODE (true_rtx) == CONST_INT
3694 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3695 && false_rtx == const0_rtx)
3696 x = simplify_gen_unary (NEG, mode,
3697 gen_binary (cond_code, mode, cond,
3700 else if (GET_CODE (false_rtx) == CONST_INT
3701 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3702 && true_rtx == const0_rtx
3703 && ((reversed = reversed_comparison_code_parts
3704 (cond_code, cond, cop1, NULL))
3706 x = simplify_gen_unary (NEG, mode,
3707 gen_binary (reversed, mode,
3711 return gen_rtx_IF_THEN_ELSE (mode,
3712 gen_binary (cond_code, VOIDmode,
3714 true_rtx, false_rtx);
3716 code = GET_CODE (x);
3717 op0_mode = VOIDmode;
3722 /* Try to fold this expression in case we have constants that weren't
3725 switch (GET_RTX_CLASS (code))
3728 if (op0_mode == VOIDmode)
3729 op0_mode = GET_MODE (XEXP (x, 0));
3730 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3733 case RTX_COMM_COMPARE:
3735 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3736 if (cmp_mode == VOIDmode)
3738 cmp_mode = GET_MODE (XEXP (x, 1));
3739 if (cmp_mode == VOIDmode)
3740 cmp_mode = op0_mode;
3742 temp = simplify_relational_operation (code, mode, cmp_mode,
3743 XEXP (x, 0), XEXP (x, 1));
3746 case RTX_COMM_ARITH:
3748 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3750 case RTX_BITFIELD_OPS:
3752 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3753 XEXP (x, 1), XEXP (x, 2));
3762 code = GET_CODE (temp);
3763 op0_mode = VOIDmode;
3764 mode = GET_MODE (temp);
3767 /* First see if we can apply the inverse distributive law. */
3768 if (code == PLUS || code == MINUS
3769 || code == AND || code == IOR || code == XOR)
3771 x = apply_distributive_law (x);
3772 code = GET_CODE (x);
3773 op0_mode = VOIDmode;
3776 /* If CODE is an associative operation not otherwise handled, see if we
3777 can associate some operands. This can win if they are constants or
3778 if they are logically related (i.e. (a & b) & a). */
3779 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3780 || code == AND || code == IOR || code == XOR
3781 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3782 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3783 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3785 if (GET_CODE (XEXP (x, 0)) == code)
3787 rtx other = XEXP (XEXP (x, 0), 0);
3788 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3789 rtx inner_op1 = XEXP (x, 1);
3792 /* Make sure we pass the constant operand if any as the second
3793 one if this is a commutative operation. */
3794 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3796 rtx tem = inner_op0;
3797 inner_op0 = inner_op1;
3800 inner = simplify_binary_operation (code == MINUS ? PLUS
3801 : code == DIV ? MULT
3803 mode, inner_op0, inner_op1);
3805 /* For commutative operations, try the other pair if that one