OSDN Git Service

../svn-commit.tmp
[pf3gnuchains/gcc-fork.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2    Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING.  If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA.  */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32
33 /* Checks whether BB is executed exactly once in each LOOP iteration.  */
34
35 bool
36 just_once_each_iteration_p (const struct loop *loop, basic_block bb)
37 {
38   /* It must be executed at least once each iteration.  */
39   if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40     return false;
41
42   /* And just once.  */
43   if (bb->loop_father != loop)
44     return false;
45
46   /* But this was not enough.  We might have some irreducible loop here.  */
47   if (bb->flags & BB_IRREDUCIBLE_LOOP)
48     return false;
49
50   return true;
51 }
52
53 /* Structure representing edge of a graph.  */
54
55 struct edge
56 {
57   int src, dest;        /* Source and destination.  */
58   struct edge *pred_next, *succ_next;
59                         /* Next edge in predecessor and successor lists.  */
60   void *data;           /* Data attached to the edge.  */
61 };
62
63 /* Structure representing vertex of a graph.  */
64
65 struct vertex
66 {
67   struct edge *pred, *succ;
68                         /* Lists of predecessors and successors.  */
69   int component;        /* Number of dfs restarts before reaching the
70                            vertex.  */
71   int post;             /* Postorder number.  */
72 };
73
74 /* Structure representing a graph.  */
75
76 struct graph
77 {
78   int n_vertices;       /* Number of vertices.  */
79   struct vertex *vertices;
80                         /* The vertices.  */
81 };
82
83 /* Dumps graph G into F.  */
84
85 extern void dump_graph (FILE *, struct graph *);
86
87 void
88 dump_graph (FILE *f, struct graph *g)
89 {
90   int i;
91   struct edge *e;
92
93   for (i = 0; i < g->n_vertices; i++)
94     {
95       if (!g->vertices[i].pred
96           && !g->vertices[i].succ)
97         continue;
98
99       fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
100       for (e = g->vertices[i].pred; e; e = e->pred_next)
101         fprintf (f, " %d", e->src);
102       fprintf (f, "\n");
103
104       fprintf (f, "\t->");
105       for (e = g->vertices[i].succ; e; e = e->succ_next)
106         fprintf (f, " %d", e->dest);
107       fprintf (f, "\n");
108     }
109 }
110
111 /* Creates a new graph with N_VERTICES vertices.  */
112
113 static struct graph *
114 new_graph (int n_vertices)
115 {
116   struct graph *g = XNEW (struct graph);
117
118   g->n_vertices = n_vertices;
119   g->vertices = XCNEWVEC (struct vertex, n_vertices);
120
121   return g;
122 }
123
124 /* Adds an edge from F to T to graph G, with DATA attached.  */
125
126 static void
127 add_edge (struct graph *g, int f, int t, void *data)
128 {
129   struct edge *e = xmalloc (sizeof (struct edge));
130
131   e->src = f;
132   e->dest = t;
133   e->data = data;
134
135   e->pred_next = g->vertices[t].pred;
136   g->vertices[t].pred = e;
137
138   e->succ_next = g->vertices[f].succ;
139   g->vertices[f].succ = e;
140 }
141
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143    The vertices in postorder are stored into QT.  If FORWARD is false,
144    backward dfs is run.  */
145
146 static void
147 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
148 {
149   int i, tick = 0, v, comp = 0, top;
150   struct edge *e;
151   struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
152
153   for (i = 0; i < g->n_vertices; i++)
154     {
155       g->vertices[i].component = -1;
156       g->vertices[i].post = -1;
157     }
158
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
163
164   for (i = 0; i < nq; i++)
165     {
166       v = qs[i];
167       if (g->vertices[v].post != -1)
168         continue;
169
170       g->vertices[v].component = comp++;
171       e = FST_EDGE (v);
172       top = 0;
173
174       while (1)
175         {
176           while (e && g->vertices[EDGE_DEST (e)].component != -1)
177             e = NEXT_EDGE (e);
178
179           if (!e)
180             {
181               if (qt)
182                 qt[tick] = v;
183               g->vertices[v].post = tick++;
184
185               if (!top)
186                 break;
187
188               e = stack[--top];
189               v = EDGE_SRC (e);
190               e = NEXT_EDGE (e);
191               continue;
192             }
193
194           stack[top++] = e;
195           v = EDGE_DEST (e);
196           e = FST_EDGE (v);
197           g->vertices[v].component = comp - 1;
198         }
199     }
200
201   free (stack);
202 }
203
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
205    same scc.  */
206
207 static void
208 check_irred (struct graph *g, struct edge *e)
209 {
210   edge real = e->data;
211
212   /* All edges should lead from a component with higher number to the
213      one with lower one.  */
214   gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
215
216   if (g->vertices[e->src].component != g->vertices[e->dest].component)
217     return;
218
219   real->flags |= EDGE_IRREDUCIBLE_LOOP;
220   if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
221     real->src->flags |= BB_IRREDUCIBLE_LOOP;
222 }
223
224 /* Runs CALLBACK for all edges in G.  */
225
226 static void
227 for_each_edge (struct graph *g,
228                void (callback) (struct graph *, struct edge *))
229 {
230   struct edge *e;
231   int i;
232
233   for (i = 0; i < g->n_vertices; i++)
234     for (e = g->vertices[i].succ; e; e = e->succ_next)
235       callback (g, e);
236 }
237
238 /* Releases the memory occupied by G.  */
239
240 static void
241 free_graph (struct graph *g)
242 {
243   struct edge *e, *n;
244   int i;
245
246   for (i = 0; i < g->n_vertices; i++)
247     for (e = g->vertices[i].succ; e; e = n)
248       {
249         n = e->succ_next;
250         free (e);
251       }
252   free (g->vertices);
253   free (g);
254 }
255
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257    throw away all latch edges and mark blocks inside any remaining cycle.
258    Everything is a bit complicated due to fact we do not want to do this
259    for parts of cycles that only "pass" through some loop -- i.e. for
260    each cycle, we want to mark blocks that belong directly to innermost
261    loop containing the whole cycle.
262
263    LOOPS is the loop tree.  */
264
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
267
268 void
269 mark_irreducible_loops (struct loops *loops)
270 {
271   basic_block act;
272   edge e;
273   edge_iterator ei;
274   int i, src, dest;
275   struct graph *g;
276   int *queue1 = XNEWVEC (int, last_basic_block + loops->num);
277   int *queue2 = XNEWVEC (int, last_basic_block + loops->num);
278   int nq, depth;
279   struct loop *cloop;
280
281   /* Reset the flags.  */
282   FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
283     {
284       act->flags &= ~BB_IRREDUCIBLE_LOOP;
285       FOR_EACH_EDGE (e, ei, act->succs)
286         e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
287     }
288
289   /* Create the edge lists.  */
290   g = new_graph (last_basic_block + loops->num);
291
292   FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
293     FOR_EACH_EDGE (e, ei, act->succs)
294       {
295         /* Ignore edges to exit.  */
296         if (e->dest == EXIT_BLOCK_PTR)
297           continue;
298
299         /* And latch edges.  */
300         if (e->dest->loop_father->header == e->dest
301             && e->dest->loop_father->latch == act)
302           continue;
303
304         /* Edges inside a single loop should be left where they are.  Edges
305            to subloop headers should lead to representative of the subloop,
306            but from the same place.
307
308            Edges exiting loops should lead from representative
309            of the son of nearest common ancestor of the loops in that
310            act lays.  */
311
312         src = BB_REPR (act);
313         dest = BB_REPR (e->dest);
314
315         if (e->dest->loop_father->header == e->dest)
316           dest = LOOP_REPR (e->dest->loop_father);
317
318         if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
319           {
320             depth = find_common_loop (act->loop_father,
321                                       e->dest->loop_father)->depth + 1;
322             if (depth == act->loop_father->depth)
323               cloop = act->loop_father;
324             else
325               cloop = act->loop_father->pred[depth];
326
327             src = LOOP_REPR (cloop);
328           }
329
330         add_edge (g, src, dest, e);
331       }
332
333   /* Find the strongly connected components.  Use the algorithm of Tarjan --
334      first determine the postorder dfs numbering in reversed graph, then
335      run the dfs on the original graph in the order given by decreasing
336      numbers assigned by the previous pass.  */
337   nq = 0;
338   FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
339     {
340       queue1[nq++] = BB_REPR (act);
341     }
342   for (i = 1; i < (int) loops->num; i++)
343     if (loops->parray[i])
344       queue1[nq++] = LOOP_REPR (loops->parray[i]);
345   dfs (g, queue1, nq, queue2, false);
346   for (i = 0; i < nq; i++)
347     queue1[i] = queue2[nq - i - 1];
348   dfs (g, queue1, nq, NULL, true);
349
350   /* Mark the irreducible loops.  */
351   for_each_edge (g, check_irred);
352
353   free_graph (g);
354   free (queue1);
355   free (queue2);
356
357   loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
358 }
359
360 /* Counts number of insns inside LOOP.  */
361 int
362 num_loop_insns (struct loop *loop)
363 {
364   basic_block *bbs, bb;
365   unsigned i, ninsns = 0;
366   rtx insn;
367
368   bbs = get_loop_body (loop);
369   for (i = 0; i < loop->num_nodes; i++)
370     {
371       bb = bbs[i];
372       ninsns++;
373       for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
374         if (INSN_P (insn))
375           ninsns++;
376     }
377   free(bbs);
378
379   return ninsns;
380 }
381
382 /* Counts number of insns executed on average per iteration LOOP.  */
383 int
384 average_num_loop_insns (struct loop *loop)
385 {
386   basic_block *bbs, bb;
387   unsigned i, binsns, ninsns, ratio;
388   rtx insn;
389
390   ninsns = 0;
391   bbs = get_loop_body (loop);
392   for (i = 0; i < loop->num_nodes; i++)
393     {
394       bb = bbs[i];
395
396       binsns = 1;
397       for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
398         if (INSN_P (insn))
399           binsns++;
400
401       ratio = loop->header->frequency == 0
402               ? BB_FREQ_MAX
403               : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
404       ninsns += binsns * ratio;
405     }
406   free(bbs);
407
408   ninsns /= BB_FREQ_MAX;
409   if (!ninsns)
410     ninsns = 1; /* To avoid division by zero.  */
411
412   return ninsns;
413 }
414
415 /* Returns expected number of LOOP iterations.
416    Compute upper bound on number of iterations in case they do not fit integer
417    to help loop peeling heuristics.  Use exact counts if at all possible.  */
418 unsigned
419 expected_loop_iterations (const struct loop *loop)
420 {
421   edge e;
422   edge_iterator ei;
423
424   if (loop->latch->count || loop->header->count)
425     {
426       gcov_type count_in, count_latch, expected;
427
428       count_in = 0;
429       count_latch = 0;
430
431       FOR_EACH_EDGE (e, ei, loop->header->preds)
432         if (e->src == loop->latch)
433           count_latch = e->count;
434         else
435           count_in += e->count;
436
437       if (count_in == 0)
438         expected = count_latch * 2;
439       else
440         expected = (count_latch + count_in - 1) / count_in;
441
442       /* Avoid overflows.  */
443       return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
444     }
445   else
446     {
447       int freq_in, freq_latch;
448
449       freq_in = 0;
450       freq_latch = 0;
451
452       FOR_EACH_EDGE (e, ei, loop->header->preds)
453         if (e->src == loop->latch)
454           freq_latch = EDGE_FREQUENCY (e);
455         else
456           freq_in += EDGE_FREQUENCY (e);
457
458       if (freq_in == 0)
459         return freq_latch * 2;
460
461       return (freq_latch + freq_in - 1) / freq_in;
462     }
463 }
464
465 /* Returns the maximum level of nesting of subloops of LOOP.  */
466
467 unsigned
468 get_loop_level (const struct loop *loop)
469 {
470   const struct loop *ploop;
471   unsigned mx = 0, l;
472
473   for (ploop = loop->inner; ploop; ploop = ploop->next)
474     {
475       l = get_loop_level (ploop);
476       if (l >= mx)
477         mx = l + 1;
478     }
479   return mx;
480 }
481
482 /* Returns estimate on cost of computing SEQ.  */
483
484 static unsigned
485 seq_cost (rtx seq)
486 {
487   unsigned cost = 0;
488   rtx set;
489
490   for (; seq; seq = NEXT_INSN (seq))
491     {
492       set = single_set (seq);
493       if (set)
494         cost += rtx_cost (set, SET);
495       else
496         cost++;
497     }
498
499   return cost;
500 }
501
502 /* The properties of the target.  */
503
504 unsigned target_avail_regs;     /* Number of available registers.  */
505 unsigned target_res_regs;       /* Number of reserved registers.  */
506 unsigned target_small_cost;     /* The cost for register when there is a free one.  */
507 unsigned target_pres_cost;      /* The cost for register when there are not too many
508                                    free ones.  */
509 unsigned target_spill_cost;     /* The cost for register when we need to spill.  */
510
511 /* Initialize the constants for computing set costs.  */
512
513 void
514 init_set_costs (void)
515 {
516   rtx seq;
517   rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
518   rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
519   rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
520   rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
521   unsigned i;
522
523   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
524     if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
525         && !fixed_regs[i])
526       target_avail_regs++;
527
528   target_res_regs = 3;
529
530   /* These are really just heuristic values.  */
531
532   start_sequence ();
533   emit_move_insn (reg1, reg2);
534   seq = get_insns ();
535   end_sequence ();
536   target_small_cost = seq_cost (seq);
537   target_pres_cost = 2 * target_small_cost;
538
539   start_sequence ();
540   emit_move_insn (mem, reg1);
541   emit_move_insn (reg2, mem);
542   seq = get_insns ();
543   end_sequence ();
544   target_spill_cost = seq_cost (seq);
545 }
546
547 /* Calculates cost for having SIZE new loop global variables.  REGS_USED is the
548    number of global registers used in loop.  N_USES is the number of relevant
549    variable uses.  */
550
551 unsigned
552 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
553 {
554   unsigned regs_needed = regs_used + size;
555   unsigned cost = 0;
556
557   if (regs_needed + target_res_regs <= target_avail_regs)
558     cost += target_small_cost * size;
559   else if (regs_needed <= target_avail_regs)
560     cost += target_pres_cost * size;
561   else
562     {
563       cost += target_pres_cost * size;
564       cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
565     }
566
567   return cost;
568 }
569
570 /* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS.  */
571
572 void
573 mark_loop_exit_edges (struct loops *loops)
574 {
575   basic_block bb;
576   edge e;
577
578   if (loops->num <= 1)
579     return;
580
581   FOR_EACH_BB (bb)
582     {
583       edge_iterator ei;
584
585       FOR_EACH_EDGE (e, ei, bb->succs)
586         {
587           if (bb->loop_father->outer
588               && loop_exit_edge_p (bb->loop_father, e))
589             e->flags |= EDGE_LOOP_EXIT;
590           else
591             e->flags &= ~EDGE_LOOP_EXIT;
592         }
593     }
594 }
595