1 /* Process declarations and variables for C compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* Process declarations and symbol lookup for C front end.
23 Also constructs types; the standard scalar types at initialization,
24 and structure, union, array and enum types when they are declared. */
26 /* ??? not all decl nodes are given the most useful possible
27 line numbers. For example, the CONST_DECLs for enum values. */
33 #include "tree-inline.h"
50 /* In grokdeclarator, distinguish syntactic contexts of declarators. */
52 { NORMAL, /* Ordinary declaration */
53 FUNCDEF, /* Function definition */
54 PARM, /* Declaration of parm before function body */
55 FIELD, /* Declaration inside struct or union */
56 BITFIELD, /* Likewise but with specified width */
57 TYPENAME}; /* Typename (inside cast or sizeof) */
60 /* Nonzero if we have seen an invalid cross reference
61 to a struct, union, or enum, but not yet printed the message. */
63 tree pending_invalid_xref;
64 /* File and line to appear in the eventual error message. */
65 const char *pending_invalid_xref_file;
66 int pending_invalid_xref_line;
68 /* While defining an enum type, this is 1 plus the last enumerator
69 constant value. Note that will do not have to save this or `enum_overflow'
70 around nested function definition since such a definition could only
71 occur in an enum value expression and we don't use these variables in
74 static tree enum_next_value;
76 /* Nonzero means that there was overflow computing enum_next_value. */
78 static int enum_overflow;
80 /* Parsing a function declarator leaves a list of parameter names
81 or a chain or parameter decls here. */
83 static tree last_function_parms;
85 /* Parsing a function declarator leaves here a chain of structure
86 and enum types declared in the parmlist. */
88 static tree last_function_parm_tags;
90 /* After parsing the declarator that starts a function definition,
91 `start_function' puts here the list of parameter names or chain of decls.
92 `store_parm_decls' finds it here. */
94 static tree current_function_parms;
96 /* Similar, for last_function_parm_tags. */
97 static tree current_function_parm_tags;
99 /* Similar, for the file and line that the prototype came from if this is
100 an old-style definition. */
101 static const char *current_function_prototype_file;
102 static int current_function_prototype_line;
104 /* The current statement tree. */
106 static GTY(()) struct stmt_tree_s c_stmt_tree;
108 /* The current scope statement stack. */
110 static GTY(()) tree c_scope_stmt_stack;
112 /* A list (chain of TREE_LIST nodes) of all LABEL_DECLs in the function
113 that have names. Here so we can clear out their names' definitions
114 at the end of the function. */
116 static GTY(()) tree named_labels;
118 /* A list of LABEL_DECLs from outer contexts that are currently shadowed. */
120 static GTY(()) tree shadowed_labels;
122 /* Set to 0 at beginning of a function definition, set to 1 if
123 a return statement that specifies a return value is seen. */
125 int current_function_returns_value;
127 /* Set to 0 at beginning of a function definition, set to 1 if
128 a return statement with no argument is seen. */
130 int current_function_returns_null;
132 /* Set to 0 at beginning of a function definition, set to 1 if
133 a call to a noreturn function is seen. */
135 int current_function_returns_abnormally;
137 /* Set to nonzero by `grokdeclarator' for a function
138 whose return type is defaulted, if warnings for this are desired. */
140 static int warn_about_return_type;
142 /* Nonzero when starting a function declared `extern inline'. */
144 static int current_extern_inline;
146 /* For each binding contour we allocate a binding_level structure
147 * which records the names defined in that contour.
150 * 1) one for each function definition,
151 * where internal declarations of the parameters appear.
152 * 2) one for each compound statement,
153 * to record its declarations.
155 * The current meaning of a name can be found by searching the levels from
156 * the current one out to the global one.
159 /* Note that the information in the `names' component of the global contour
160 is duplicated in the IDENTIFIER_GLOBAL_VALUEs of all identifiers. */
162 struct binding_level GTY(())
164 /* A chain of _DECL nodes for all variables, constants, functions,
165 and typedef types. These are in the reverse of the order supplied.
169 /* A list of structure, union and enum definitions,
170 * for looking up tag names.
171 * It is a chain of TREE_LIST nodes, each of whose TREE_PURPOSE is a name,
172 * or NULL_TREE; and whose TREE_VALUE is a RECORD_TYPE, UNION_TYPE,
173 * or ENUMERAL_TYPE node.
177 /* For each level, a list of shadowed outer-level local definitions
178 to be restored when this level is popped.
179 Each link is a TREE_LIST whose TREE_PURPOSE is an identifier and
180 whose TREE_VALUE is its old definition (a kind of ..._DECL node). */
183 /* For each level (except not the global one),
184 a chain of BLOCK nodes for all the levels
185 that were entered and exited one level down. */
188 /* The BLOCK node for this level, if one has been preallocated.
189 If 0, the BLOCK is allocated (if needed) when the level is popped. */
192 /* The binding level which this one is contained in (inherits from). */
193 struct binding_level *level_chain;
195 /* Nonzero for the level that holds the parameters of a function. */
198 /* Nonzero if this level "doesn't exist" for tags. */
199 char tag_transparent;
201 /* Nonzero if sublevels of this level "don't exist" for tags.
202 This is set in the parm level of a function definition
203 while reading the function body, so that the outermost block
204 of the function body will be tag-transparent. */
205 char subblocks_tag_transparent;
207 /* Nonzero means make a BLOCK for this level regardless of all else. */
210 /* Nonzero means make a BLOCK if this level has any subblocks. */
211 char keep_if_subblocks;
213 /* List of decls in `names' that have incomplete structure or
215 tree incomplete_list;
217 /* A list of decls giving the (reversed) specified order of parms,
218 not including any forward-decls in the parmlist.
219 This is so we can put the parms in proper order for assign_parms. */
223 #define NULL_BINDING_LEVEL (struct binding_level *) NULL
225 /* The binding level currently in effect. */
227 static GTY(()) struct binding_level *current_binding_level;
229 /* A chain of binding_level structures awaiting reuse. */
231 static GTY((deletable (""))) struct binding_level *free_binding_level;
233 /* The outermost binding level, for names of file scope.
234 This is created when the compiler is started and exists
235 through the entire run. */
237 static GTY(()) struct binding_level *global_binding_level;
239 /* Binding level structures are initialized by copying this one. */
241 static struct binding_level clear_binding_level
242 = {NULL, NULL, NULL, NULL, NULL, NULL_BINDING_LEVEL, 0, 0, 0, 0, 0, NULL,
245 /* Nonzero means unconditionally make a BLOCK for the next level pushed. */
247 static int keep_next_level_flag;
249 /* Nonzero means make a BLOCK for the next level pushed
250 if it has subblocks. */
252 static int keep_next_if_subblocks;
254 /* The chain of outer levels of label scopes.
255 This uses the same data structure used for binding levels,
256 but it works differently: each link in the chain records
257 saved values of named_labels and shadowed_labels for
258 a label binding level outside the current one. */
260 static GTY(()) struct binding_level *label_level_chain;
262 /* Functions called automatically at the beginning and end of execution. */
264 tree static_ctors, static_dtors;
266 /* Forward declarations. */
268 static struct binding_level * make_binding_level PARAMS ((void));
269 static void pop_binding_level PARAMS ((struct binding_level **));
270 static void clear_limbo_values PARAMS ((tree));
271 static int duplicate_decls PARAMS ((tree, tree, int));
272 static int redeclaration_error_message PARAMS ((tree, tree));
273 static void storedecls PARAMS ((tree));
274 static void storetags PARAMS ((tree));
275 static tree lookup_tag PARAMS ((enum tree_code, tree,
276 struct binding_level *, int));
277 static tree lookup_tag_reverse PARAMS ((tree));
278 static tree grokdeclarator PARAMS ((tree, tree, enum decl_context,
280 static tree grokparms PARAMS ((tree, int));
281 static void layout_array_type PARAMS ((tree));
282 static tree c_make_fname_decl PARAMS ((tree, int));
283 static void c_expand_body PARAMS ((tree, int, int));
284 static void warn_if_shadowing PARAMS ((tree, tree));
285 static bool flexible_array_type_p PARAMS ((tree));
287 /* States indicating how grokdeclarator() should handle declspecs marked
288 with __attribute__((deprecated)). An object declared as
289 __attribute__((deprecated)) suppresses warnings of uses of other
292 enum deprecated_states {
297 static enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
300 c_print_identifier (file, node, indent)
305 print_node (file, "global", IDENTIFIER_GLOBAL_VALUE (node), indent + 4);
306 print_node (file, "local", IDENTIFIER_LOCAL_VALUE (node), indent + 4);
307 print_node (file, "label", IDENTIFIER_LABEL_VALUE (node), indent + 4);
308 print_node (file, "implicit", IDENTIFIER_IMPLICIT_DECL (node), indent + 4);
309 print_node (file, "error locus", IDENTIFIER_ERROR_LOCUS (node), indent + 4);
310 print_node (file, "limbo value", IDENTIFIER_LIMBO_VALUE (node), indent + 4);
311 if (C_IS_RESERVED_WORD (node))
313 tree rid = ridpointers[C_RID_CODE (node)];
314 indent_to (file, indent + 4);
315 fprintf (file, "rid ");
316 fprintf (file, HOST_PTR_PRINTF, (void *)rid);
317 fprintf (file, " \"%s\"", IDENTIFIER_POINTER (rid));
321 /* Hook called at end of compilation to assume 1 elt
322 for a top-level tentative array defn that wasn't complete before. */
325 c_finish_incomplete_decl (decl)
328 if (TREE_CODE (decl) == VAR_DECL)
330 tree type = TREE_TYPE (decl);
331 if (type != error_mark_node
332 && TREE_CODE (type) == ARRAY_TYPE
333 && ! DECL_EXTERNAL (decl)
334 && TYPE_DOMAIN (type) == 0)
336 warning_with_decl (decl, "array `%s' assumed to have one element");
338 complete_array_type (type, NULL_TREE, 1);
340 layout_decl (decl, 0);
345 /* Reuse or create a struct for this binding level. */
347 static struct binding_level *
348 make_binding_level ()
350 if (free_binding_level)
352 struct binding_level *result = free_binding_level;
353 free_binding_level = result->level_chain;
357 return (struct binding_level *) ggc_alloc (sizeof (struct binding_level));
360 /* Remove a binding level from a list and add it to the level chain. */
363 pop_binding_level (lp)
364 struct binding_level **lp;
366 struct binding_level *l = *lp;
367 *lp = l->level_chain;
369 memset (l, 0, sizeof (struct binding_level));
370 l->level_chain = free_binding_level;
371 free_binding_level = l;
374 /* Nonzero if we are currently in the global binding level. */
379 return current_binding_level == global_binding_level;
385 keep_next_level_flag = 1;
388 /* Nonzero if the current level needs to have a BLOCK made. */
393 return ((current_binding_level->keep_if_subblocks
394 && current_binding_level->blocks != 0)
395 || current_binding_level->keep
396 || current_binding_level->names != 0
397 || (current_binding_level->tags != 0
398 && !current_binding_level->tag_transparent));
401 /* Identify this binding level as a level of parameters.
402 DEFINITION_FLAG is 1 for a definition, 0 for a declaration.
403 But it turns out there is no way to pass the right value for
404 DEFINITION_FLAG, so we ignore it. */
407 declare_parm_level (definition_flag)
408 int definition_flag ATTRIBUTE_UNUSED;
410 current_binding_level->parm_flag = 1;
413 /* Nonzero if currently making parm declarations. */
418 return current_binding_level->parm_flag;
421 /* Enter a new binding level.
422 If TAG_TRANSPARENT is nonzero, do so only for the name space of variables,
423 not for that of tags. */
426 pushlevel (tag_transparent)
429 struct binding_level *newlevel = NULL_BINDING_LEVEL;
431 /* If this is the top level of a function,
432 just make sure that NAMED_LABELS is 0. */
434 if (current_binding_level == global_binding_level)
439 newlevel = make_binding_level ();
441 /* Add this level to the front of the chain (stack) of levels that
444 *newlevel = clear_binding_level;
445 newlevel->tag_transparent
447 || (current_binding_level
448 ? current_binding_level->subblocks_tag_transparent
450 newlevel->level_chain = current_binding_level;
451 current_binding_level = newlevel;
452 newlevel->keep = keep_next_level_flag;
453 keep_next_level_flag = 0;
454 newlevel->keep_if_subblocks = keep_next_if_subblocks;
455 keep_next_if_subblocks = 0;
458 /* Clear the limbo values of all identifiers defined in BLOCK or a subblock. */
461 clear_limbo_values (block)
466 for (tem = BLOCK_VARS (block); tem; tem = TREE_CHAIN (tem))
467 if (DECL_NAME (tem) != 0)
468 IDENTIFIER_LIMBO_VALUE (DECL_NAME (tem)) = 0;
470 for (tem = BLOCK_SUBBLOCKS (block); tem; tem = TREE_CHAIN (tem))
471 clear_limbo_values (tem);
474 /* Exit a binding level.
475 Pop the level off, and restore the state of the identifier-decl mappings
476 that were in effect when this level was entered.
478 If KEEP is nonzero, this level had explicit declarations, so
479 and create a "block" (a BLOCK node) for the level
480 to record its declarations and subblocks for symbol table output.
482 If FUNCTIONBODY is nonzero, this level is the body of a function,
483 so create a block as if KEEP were set and also clear out all
486 If REVERSE is nonzero, reverse the order of decls before putting
487 them into the BLOCK. */
490 poplevel (keep, reverse, functionbody)
496 /* The chain of decls was accumulated in reverse order.
497 Put it into forward order, just for cleanliness. */
499 tree tags = current_binding_level->tags;
500 tree subblocks = current_binding_level->blocks;
503 int block_previously_created;
505 keep |= current_binding_level->keep;
507 /* This warning is turned off because it causes warnings for
508 declarations like `extern struct foo *x'. */
510 /* Warn about incomplete structure types in this level. */
511 for (link = tags; link; link = TREE_CHAIN (link))
512 if (!COMPLETE_TYPE_P (TREE_VALUE (link)))
514 tree type = TREE_VALUE (link);
515 tree type_name = TYPE_NAME (type);
516 char *id = IDENTIFIER_POINTER (TREE_CODE (type_name) == IDENTIFIER_NODE
518 : DECL_NAME (type_name));
519 switch (TREE_CODE (type))
522 error ("`struct %s' incomplete in scope ending here", id);
525 error ("`union %s' incomplete in scope ending here", id);
528 error ("`enum %s' incomplete in scope ending here", id);
534 /* Get the decls in the order they were written.
535 Usually current_binding_level->names is in reverse order.
536 But parameter decls were previously put in forward order. */
539 current_binding_level->names
540 = decls = nreverse (current_binding_level->names);
542 decls = current_binding_level->names;
544 /* Output any nested inline functions within this block
545 if they weren't already output. */
547 for (decl = decls; decl; decl = TREE_CHAIN (decl))
548 if (TREE_CODE (decl) == FUNCTION_DECL
549 && ! TREE_ASM_WRITTEN (decl)
550 && DECL_INITIAL (decl) != 0
551 && TREE_ADDRESSABLE (decl))
553 /* If this decl was copied from a file-scope decl
554 on account of a block-scope extern decl,
555 propagate TREE_ADDRESSABLE to the file-scope decl.
557 DECL_ABSTRACT_ORIGIN can be set to itself if warn_return_type is
558 true, since then the decl goes through save_for_inline_copying. */
559 if (DECL_ABSTRACT_ORIGIN (decl) != 0
560 && DECL_ABSTRACT_ORIGIN (decl) != decl)
561 TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (decl)) = 1;
564 /* We used to warn about unused variables in expand_end_bindings,
565 i.e. while generating RTL. But in function-at-a-time mode we may
566 choose to never expand a function at all (e.g. auto inlining), so
567 we do this explicitly now. */
568 warn_about_unused_variables (getdecls ());
570 /* If there were any declarations or structure tags in that level,
571 or if this level is a function body,
572 create a BLOCK to record them for the life of this function. */
575 block_previously_created = (current_binding_level->this_block != 0);
576 if (block_previously_created)
577 block = current_binding_level->this_block;
578 else if (keep || functionbody
579 || (current_binding_level->keep_if_subblocks && subblocks != 0))
580 block = make_node (BLOCK);
583 BLOCK_VARS (block) = decls;
584 BLOCK_SUBBLOCKS (block) = subblocks;
587 /* In each subblock, record that this is its superior. */
589 for (link = subblocks; link; link = TREE_CHAIN (link))
590 BLOCK_SUPERCONTEXT (link) = block;
592 /* Clear out the meanings of the local variables of this level. */
594 for (link = decls; link; link = TREE_CHAIN (link))
596 if (DECL_NAME (link) != 0)
598 /* If the ident. was used or addressed via a local extern decl,
599 don't forget that fact. */
600 if (DECL_EXTERNAL (link))
602 if (TREE_USED (link))
603 TREE_USED (DECL_NAME (link)) = 1;
604 if (TREE_ADDRESSABLE (link))
605 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (link)) = 1;
607 IDENTIFIER_LOCAL_VALUE (DECL_NAME (link)) = 0;
611 /* Restore all name-meanings of the outer levels
612 that were shadowed by this level. */
614 for (link = current_binding_level->shadowed; link; link = TREE_CHAIN (link))
615 IDENTIFIER_LOCAL_VALUE (TREE_PURPOSE (link)) = TREE_VALUE (link);
617 /* If the level being exited is the top level of a function,
618 check over all the labels, and clear out the current
619 (function local) meanings of their names. */
623 clear_limbo_values (block);
625 /* If this is the top level block of a function,
626 the vars are the function's parameters.
627 Don't leave them in the BLOCK because they are
628 found in the FUNCTION_DECL instead. */
630 BLOCK_VARS (block) = 0;
632 /* Clear out the definitions of all label names,
633 since their scopes end here,
634 and add them to BLOCK_VARS. */
636 for (link = named_labels; link; link = TREE_CHAIN (link))
638 tree label = TREE_VALUE (link);
640 if (DECL_INITIAL (label) == 0)
642 error_with_decl (label, "label `%s' used but not defined");
643 /* Avoid crashing later. */
644 define_label (input_filename, lineno,
647 else if (warn_unused_label && !TREE_USED (label))
648 warning_with_decl (label, "label `%s' defined but not used");
649 IDENTIFIER_LABEL_VALUE (DECL_NAME (label)) = 0;
651 /* Put the labels into the "variables" of the
652 top-level block, so debugger can see them. */
653 TREE_CHAIN (label) = BLOCK_VARS (block);
654 BLOCK_VARS (block) = label;
658 /* Pop the current level, and free the structure for reuse. */
660 pop_binding_level (¤t_binding_level);
662 /* Dispose of the block that we just made inside some higher level. */
664 DECL_INITIAL (current_function_decl) = block;
667 if (!block_previously_created)
668 current_binding_level->blocks
669 = chainon (current_binding_level->blocks, block);
671 /* If we did not make a block for the level just exited,
672 any blocks made for inner levels
673 (since they cannot be recorded as subblocks in that level)
674 must be carried forward so they will later become subblocks
675 of something else. */
677 current_binding_level->blocks
678 = chainon (current_binding_level->blocks, subblocks);
680 /* Set the TYPE_CONTEXTs for all of the tagged types belonging to this
681 binding contour so that they point to the appropriate construct, i.e.
682 either to the current FUNCTION_DECL node, or else to the BLOCK node
685 Note that for tagged types whose scope is just the formal parameter
686 list for some function type specification, we can't properly set
687 their TYPE_CONTEXTs here, because we don't have a pointer to the
688 appropriate FUNCTION_TYPE node readily available to us. For those
689 cases, the TYPE_CONTEXTs of the relevant tagged type nodes get set
690 in `grokdeclarator' as soon as we have created the FUNCTION_TYPE
691 node which will represent the "scope" for these "parameter list local"
695 for (link = tags; link; link = TREE_CHAIN (link))
696 TYPE_CONTEXT (TREE_VALUE (link)) = current_function_decl;
698 for (link = tags; link; link = TREE_CHAIN (link))
699 TYPE_CONTEXT (TREE_VALUE (link)) = block;
702 TREE_USED (block) = 1;
707 /* Insert BLOCK at the end of the list of subblocks of the
708 current binding level. This is used when a BIND_EXPR is expanded,
709 to handle the BLOCK node inside the BIND_EXPR. */
715 TREE_USED (block) = 1;
716 current_binding_level->blocks
717 = chainon (current_binding_level->blocks, block);
720 /* Set the BLOCK node for the innermost scope
721 (the one we are currently in). */
727 current_binding_level->this_block = block;
728 current_binding_level->names = chainon (current_binding_level->names,
730 current_binding_level->blocks = chainon (current_binding_level->blocks,
731 BLOCK_SUBBLOCKS (block));
737 struct binding_level *newlevel;
739 newlevel = make_binding_level ();
741 /* Add this level to the front of the chain (stack) of label levels. */
743 newlevel->level_chain = label_level_chain;
744 label_level_chain = newlevel;
746 newlevel->names = named_labels;
747 newlevel->shadowed = shadowed_labels;
755 struct binding_level *level = label_level_chain;
758 /* Clear out the definitions of the declared labels in this level.
759 Leave in the list any ordinary, non-declared labels. */
760 for (link = named_labels, prev = 0; link;)
762 if (C_DECLARED_LABEL_FLAG (TREE_VALUE (link)))
764 if (DECL_SOURCE_LINE (TREE_VALUE (link)) == 0)
766 error_with_decl (TREE_VALUE (link),
767 "label `%s' used but not defined");
768 /* Avoid crashing later. */
769 define_label (input_filename, lineno,
770 DECL_NAME (TREE_VALUE (link)));
772 else if (warn_unused_label && !TREE_USED (TREE_VALUE (link)))
773 warning_with_decl (TREE_VALUE (link),
774 "label `%s' defined but not used");
775 IDENTIFIER_LABEL_VALUE (DECL_NAME (TREE_VALUE (link))) = 0;
777 /* Delete this element from the list. */
778 link = TREE_CHAIN (link);
780 TREE_CHAIN (prev) = link;
787 link = TREE_CHAIN (link);
791 /* Bring back all the labels that were shadowed. */
792 for (link = shadowed_labels; link; link = TREE_CHAIN (link))
793 if (DECL_NAME (TREE_VALUE (link)) != 0)
794 IDENTIFIER_LABEL_VALUE (DECL_NAME (TREE_VALUE (link)))
797 named_labels = chainon (named_labels, level->names);
798 shadowed_labels = level->shadowed;
800 /* Pop the current level, and free the structure for reuse. */
801 pop_binding_level (&label_level_chain);
804 /* Push a definition or a declaration of struct, union or enum tag "name".
805 "type" should be the type node.
806 We assume that the tag "name" is not already defined.
808 Note that the definition may really be just a forward reference.
809 In that case, the TYPE_SIZE will be zero. */
815 struct binding_level *b;
817 /* Find the proper binding level for this type tag. */
819 for (b = current_binding_level; b->tag_transparent; b = b->level_chain)
824 /* Record the identifier as the type's name if it has none. */
826 if (TYPE_NAME (type) == 0)
827 TYPE_NAME (type) = name;
830 b->tags = tree_cons (name, type, b->tags);
832 /* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE will be the
833 tagged type we just added to the current binding level. This fake
834 NULL-named TYPE_DECL node helps dwarfout.c to know when it needs
835 to output a representation of a tagged type, and it also gives
836 us a convenient place to record the "scope start" address for the
839 TYPE_STUB_DECL (type) = pushdecl (build_decl (TYPE_DECL, NULL_TREE, type));
841 /* An approximation for now, so we can tell this is a function-scope tag.
842 This will be updated in poplevel. */
843 TYPE_CONTEXT (type) = DECL_CONTEXT (TYPE_STUB_DECL (type));
846 /* Handle when a new declaration NEWDECL
847 has the same name as an old one OLDDECL
848 in the same binding contour.
849 Prints an error message if appropriate.
851 If safely possible, alter OLDDECL to look like NEWDECL, and return 1.
854 When DIFFERENT_BINDING_LEVEL is true, NEWDECL is an external declaration,
855 and OLDDECL is in an outer binding level and should thus not be changed. */
858 duplicate_decls (newdecl, olddecl, different_binding_level)
859 tree newdecl, olddecl;
860 int different_binding_level;
862 int types_match = comptypes (TREE_TYPE (newdecl), TREE_TYPE (olddecl));
863 int new_is_definition = (TREE_CODE (newdecl) == FUNCTION_DECL
864 && DECL_INITIAL (newdecl) != 0);
865 tree oldtype = TREE_TYPE (olddecl);
866 tree newtype = TREE_TYPE (newdecl);
869 if (DECL_P (olddecl))
871 if (TREE_CODE (newdecl) == FUNCTION_DECL
872 && TREE_CODE (olddecl) == FUNCTION_DECL
873 && (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl)))
875 if (DECL_DECLARED_INLINE_P (newdecl)
876 && DECL_UNINLINABLE (newdecl)
877 && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
878 /* Already warned elsewhere. */;
879 else if (DECL_DECLARED_INLINE_P (olddecl)
880 && DECL_UNINLINABLE (olddecl)
881 && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
882 /* Already warned. */;
883 else if (DECL_DECLARED_INLINE_P (newdecl)
884 && ! DECL_DECLARED_INLINE_P (olddecl)
885 && DECL_UNINLINABLE (olddecl)
886 && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
888 warning_with_decl (newdecl,
889 "function `%s' redeclared as inline");
890 warning_with_decl (olddecl,
891 "previous declaration of function `%s' with attribute noinline");
893 else if (DECL_DECLARED_INLINE_P (olddecl)
894 && DECL_UNINLINABLE (newdecl)
895 && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
897 warning_with_decl (newdecl,
898 "function `%s' redeclared with attribute noinline");
899 warning_with_decl (olddecl,
900 "previous declaration of function `%s' was inline");
904 DECL_ATTRIBUTES (newdecl)
905 = (*targetm.merge_decl_attributes) (olddecl, newdecl);
908 if (TREE_CODE (newtype) == ERROR_MARK
909 || TREE_CODE (oldtype) == ERROR_MARK)
912 /* New decl is completely inconsistent with the old one =>
913 tell caller to replace the old one.
914 This is always an error except in the case of shadowing a builtin. */
915 if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
917 if (TREE_CODE (olddecl) == FUNCTION_DECL
918 && (DECL_BUILT_IN (olddecl)
919 || DECL_BUILT_IN_NONANSI (olddecl)))
921 /* If you declare a built-in or predefined function name as static,
922 the old definition is overridden,
923 but optionally warn this was a bad choice of name. */
924 if (!TREE_PUBLIC (newdecl))
928 else if (DECL_BUILT_IN (olddecl))
929 warning_with_decl (newdecl, "shadowing built-in function `%s'");
931 warning_with_decl (newdecl, "shadowing library function `%s'");
933 /* Likewise, if the built-in is not ansi, then programs can
934 override it even globally without an error. */
935 else if (! DECL_BUILT_IN (olddecl))
936 warning_with_decl (newdecl,
937 "library function `%s' declared as non-function");
939 else if (DECL_BUILT_IN_NONANSI (olddecl))
940 warning_with_decl (newdecl,
941 "built-in function `%s' declared as non-function");
943 warning_with_decl (newdecl,
944 "built-in function `%s' declared as non-function");
948 error_with_decl (newdecl, "`%s' redeclared as different kind of symbol");
949 error_with_decl (olddecl, "previous declaration of `%s'");
955 /* For real parm decl following a forward decl,
956 return 1 so old decl will be reused. */
957 if (types_match && TREE_CODE (newdecl) == PARM_DECL
958 && TREE_ASM_WRITTEN (olddecl) && ! TREE_ASM_WRITTEN (newdecl))
961 /* The new declaration is the same kind of object as the old one.
962 The declarations may partially match. Print warnings if they don't
963 match enough. Ultimately, copy most of the information from the new
964 decl to the old one, and keep using the old one. */
966 if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_BUILT_IN (olddecl))
968 /* A function declaration for a built-in function. */
969 if (!TREE_PUBLIC (newdecl))
971 /* If you declare a built-in function name as static, the
972 built-in definition is overridden,
973 but optionally warn this was a bad choice of name. */
975 warning_with_decl (newdecl, "shadowing built-in function `%s'");
976 /* Discard the old built-in function. */
979 else if (!types_match)
981 /* Accept the return type of the new declaration if same modes. */
982 tree oldreturntype = TREE_TYPE (oldtype);
983 tree newreturntype = TREE_TYPE (newtype);
985 if (TYPE_MODE (oldreturntype) == TYPE_MODE (newreturntype))
987 /* Function types may be shared, so we can't just modify
988 the return type of olddecl's function type. */
990 = build_function_type (newreturntype,
991 TYPE_ARG_TYPES (oldtype));
992 trytype = build_type_attribute_variant (trytype,
993 TYPE_ATTRIBUTES (oldtype));
995 types_match = comptypes (newtype, trytype);
999 /* Accept harmless mismatch in first argument type also.
1000 This is for the ffs and fprintf builtins. */
1001 if (TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != 0
1002 && TYPE_ARG_TYPES (oldtype) != 0
1003 && TREE_VALUE (TYPE_ARG_TYPES (newtype)) != 0
1004 && TREE_VALUE (TYPE_ARG_TYPES (oldtype)) != 0
1005 && (TYPE_MODE (TREE_VALUE (TYPE_ARG_TYPES (newtype)))
1006 == TYPE_MODE (TREE_VALUE (TYPE_ARG_TYPES (oldtype)))))
1008 /* Function types may be shared, so we can't just modify
1009 the return type of olddecl's function type. */
1011 = build_function_type (TREE_TYPE (oldtype),
1012 tree_cons (NULL_TREE,
1013 TREE_VALUE (TYPE_ARG_TYPES (newtype)),
1014 TREE_CHAIN (TYPE_ARG_TYPES (oldtype))));
1015 trytype = build_type_attribute_variant (trytype,
1016 TYPE_ATTRIBUTES (oldtype));
1018 types_match = comptypes (newtype, trytype);
1022 if (! different_binding_level)
1023 TREE_TYPE (olddecl) = oldtype;
1025 else if (TYPE_ARG_TYPES (oldtype) == NULL
1026 && TYPE_ARG_TYPES (newtype) != NULL)
1028 /* For bcmp, bzero, fputs the builtin type has arguments not
1029 specified. Use the ones from the prototype so that type checking
1030 is done for them. */
1032 = build_function_type (TREE_TYPE (oldtype),
1033 TYPE_ARG_TYPES (newtype));
1034 trytype = build_type_attribute_variant (trytype,
1035 TYPE_ATTRIBUTES (oldtype));
1038 if (! different_binding_level)
1039 TREE_TYPE (olddecl) = oldtype;
1043 /* If types don't match for a built-in, throw away the built-in. */
1044 warning_with_decl (newdecl, "conflicting types for built-in function `%s'");
1048 else if (TREE_CODE (olddecl) == FUNCTION_DECL
1049 && DECL_SOURCE_LINE (olddecl) == 0)
1051 /* A function declaration for a predeclared function
1052 that isn't actually built in. */
1053 if (!TREE_PUBLIC (newdecl))
1055 /* If you declare it as static, the
1056 default definition is overridden. */
1059 else if (!types_match)
1061 /* If the types don't match, preserve volatility indication.
1062 Later on, we will discard everything else about the
1063 default declaration. */
1064 TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
1067 /* Permit char *foo () to match void *foo (...) if not pedantic,
1068 if one of them came from a system header file. */
1069 else if (!types_match
1070 && TREE_CODE (olddecl) == FUNCTION_DECL
1071 && TREE_CODE (newdecl) == FUNCTION_DECL
1072 && TREE_CODE (TREE_TYPE (oldtype)) == POINTER_TYPE
1073 && TREE_CODE (TREE_TYPE (newtype)) == POINTER_TYPE
1074 && (DECL_IN_SYSTEM_HEADER (olddecl)
1075 || DECL_IN_SYSTEM_HEADER (newdecl))
1076 && ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (newtype))) == void_type_node
1077 && TYPE_ARG_TYPES (oldtype) == 0
1078 && self_promoting_args_p (TYPE_ARG_TYPES (newtype))
1079 && TREE_TYPE (TREE_TYPE (oldtype)) == char_type_node)
1081 (TREE_TYPE (TREE_TYPE (newtype)) == char_type_node
1082 && TYPE_ARG_TYPES (newtype) == 0
1083 && self_promoting_args_p (TYPE_ARG_TYPES (oldtype))
1084 && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (oldtype))) == void_type_node)))
1087 pedwarn_with_decl (newdecl, "conflicting types for `%s'");
1088 /* Make sure we keep void * as ret type, not char *. */
1089 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (oldtype))) == void_type_node)
1090 TREE_TYPE (newdecl) = newtype = oldtype;
1092 /* Set DECL_IN_SYSTEM_HEADER, so that if we see another declaration
1093 we will come back here again. */
1094 DECL_IN_SYSTEM_HEADER (newdecl) = 1;
1096 else if (!types_match
1097 /* Permit char *foo (int, ...); followed by char *foo ();
1099 && ! (TREE_CODE (olddecl) == FUNCTION_DECL
1101 /* Return types must still match. */
1102 && comptypes (TREE_TYPE (oldtype),
1103 TREE_TYPE (newtype))
1104 && TYPE_ARG_TYPES (newtype) == 0))
1106 error_with_decl (newdecl, "conflicting types for `%s'");
1107 /* Check for function type mismatch
1108 involving an empty arglist vs a nonempty one. */
1109 if (TREE_CODE (olddecl) == FUNCTION_DECL
1110 && comptypes (TREE_TYPE (oldtype),
1111 TREE_TYPE (newtype))
1112 && ((TYPE_ARG_TYPES (oldtype) == 0
1113 && DECL_INITIAL (olddecl) == 0)
1115 (TYPE_ARG_TYPES (newtype) == 0
1116 && DECL_INITIAL (newdecl) == 0)))
1118 /* Classify the problem further. */
1119 tree t = TYPE_ARG_TYPES (oldtype);
1121 t = TYPE_ARG_TYPES (newtype);
1122 for (; t; t = TREE_CHAIN (t))
1124 tree type = TREE_VALUE (t);
1126 if (TREE_CHAIN (t) == 0
1127 && TYPE_MAIN_VARIANT (type) != void_type_node)
1129 error ("a parameter list with an ellipsis can't match an empty parameter name list declaration");
1133 if (c_type_promotes_to (type) != type)
1135 error ("an argument type that has a default promotion can't match an empty parameter name list declaration");
1140 error_with_decl (olddecl, "previous declaration of `%s'");
1142 /* TLS cannot follow non-TLS declaration. */
1143 else if (TREE_CODE (olddecl) == VAR_DECL && TREE_CODE (newdecl) == VAR_DECL
1144 && !DECL_THREAD_LOCAL (olddecl) && DECL_THREAD_LOCAL (newdecl))
1146 error_with_decl (newdecl, "thread-local declaration of `%s' follows non thread-local declaration");
1147 error_with_decl (olddecl, "previous declaration of `%s'");
1149 /* non-TLS declaration cannot follow TLS declaration. */
1150 else if (TREE_CODE (olddecl) == VAR_DECL && TREE_CODE (newdecl) == VAR_DECL
1151 && DECL_THREAD_LOCAL (olddecl) && !DECL_THREAD_LOCAL (newdecl))
1153 error_with_decl (newdecl, "non thread-local declaration of `%s' follows thread-local declaration");
1154 error_with_decl (olddecl, "previous declaration of `%s'");
1158 errmsg = redeclaration_error_message (newdecl, olddecl);
1164 error_with_decl (newdecl, "redefinition of `%s'");
1167 error_with_decl (newdecl, "redeclaration of `%s'");
1170 error_with_decl (newdecl, "conflicting declarations of `%s'");
1176 error_with_decl (olddecl,
1177 ((DECL_INITIAL (olddecl)
1178 && current_binding_level == global_binding_level)
1179 ? "`%s' previously defined here"
1180 : "`%s' previously declared here"));
1183 else if (TREE_CODE (newdecl) == TYPE_DECL
1184 && (DECL_IN_SYSTEM_HEADER (olddecl)
1185 || DECL_IN_SYSTEM_HEADER (newdecl)))
1187 warning_with_decl (newdecl, "redefinition of `%s'");
1190 ((DECL_INITIAL (olddecl)
1191 && current_binding_level == global_binding_level)
1192 ? "`%s' previously defined here"
1193 : "`%s' previously declared here"));
1195 else if (TREE_CODE (olddecl) == FUNCTION_DECL
1196 && DECL_INITIAL (olddecl) != 0
1197 && TYPE_ARG_TYPES (oldtype) == 0
1198 && TYPE_ARG_TYPES (newtype) != 0
1199 && TYPE_ACTUAL_ARG_TYPES (oldtype) != 0)
1203 /* Prototype decl follows defn w/o prototype. */
1205 for (parm = TYPE_ACTUAL_ARG_TYPES (oldtype),
1206 type = TYPE_ARG_TYPES (newtype),
1209 parm = TREE_CHAIN (parm), type = TREE_CHAIN (type), nargs++)
1211 if (TYPE_MAIN_VARIANT (TREE_VALUE (parm)) == void_type_node
1212 && TYPE_MAIN_VARIANT (TREE_VALUE (type)) == void_type_node)
1214 warning_with_decl (newdecl, "prototype for `%s' follows");
1215 warning_with_decl (olddecl, "non-prototype definition here");
1218 if (TYPE_MAIN_VARIANT (TREE_VALUE (parm)) == void_type_node
1219 || TYPE_MAIN_VARIANT (TREE_VALUE (type)) == void_type_node)
1221 error_with_decl (newdecl,
1222 "prototype for `%s' follows and number of arguments doesn't match");
1223 error_with_decl (olddecl, "non-prototype definition here");
1227 /* Type for passing arg must be consistent
1228 with that declared for the arg. */
1229 if (! comptypes (TREE_VALUE (parm), TREE_VALUE (type)))
1231 error_with_decl (newdecl,
1232 "prototype for `%s' follows and argument %d doesn't match",
1234 error_with_decl (olddecl, "non-prototype definition here");
1240 /* Warn about mismatches in various flags. */
1243 /* Warn if function is now inline
1244 but was previously declared not inline and has been called. */
1245 if (TREE_CODE (olddecl) == FUNCTION_DECL
1246 && ! DECL_DECLARED_INLINE_P (olddecl)
1247 && DECL_DECLARED_INLINE_P (newdecl)
1248 && TREE_USED (olddecl))
1249 warning_with_decl (newdecl,
1250 "`%s' declared inline after being called");
1251 if (TREE_CODE (olddecl) == FUNCTION_DECL
1252 && ! DECL_DECLARED_INLINE_P (olddecl)
1253 && DECL_DECLARED_INLINE_P (newdecl)
1254 && DECL_INITIAL (olddecl) != 0)
1255 warning_with_decl (newdecl,
1256 "`%s' declared inline after its definition");
1258 /* If pedantic, warn when static declaration follows a non-static
1259 declaration. Otherwise, do so only for functions. */
1260 if ((pedantic || TREE_CODE (olddecl) == FUNCTION_DECL)
1261 && TREE_PUBLIC (olddecl)
1262 && !TREE_PUBLIC (newdecl))
1263 warning_with_decl (newdecl, "static declaration for `%s' follows non-static");
1265 /* If warn_traditional, warn when a non-static function
1266 declaration follows a static one. */
1267 if (warn_traditional && !in_system_header
1268 && TREE_CODE (olddecl) == FUNCTION_DECL
1269 && !TREE_PUBLIC (olddecl)
1270 && TREE_PUBLIC (newdecl))
1271 warning_with_decl (newdecl, "non-static declaration for `%s' follows static");
1273 /* Warn when const declaration follows a non-const
1274 declaration, but not for functions. */
1275 if (TREE_CODE (olddecl) != FUNCTION_DECL
1276 && !TREE_READONLY (olddecl)
1277 && TREE_READONLY (newdecl))
1278 warning_with_decl (newdecl, "const declaration for `%s' follows non-const");
1279 /* These bits are logically part of the type, for variables.
1280 But not for functions
1281 (where qualifiers are not valid ANSI anyway). */
1282 else if (pedantic && TREE_CODE (olddecl) != FUNCTION_DECL
1283 && (TREE_READONLY (newdecl) != TREE_READONLY (olddecl)
1284 || TREE_THIS_VOLATILE (newdecl) != TREE_THIS_VOLATILE (olddecl)))
1285 pedwarn_with_decl (newdecl, "type qualifiers for `%s' conflict with previous decl");
1289 /* Optionally warn about more than one declaration for the same name. */
1290 if (errmsg == 0 && warn_redundant_decls && DECL_SOURCE_LINE (olddecl) != 0
1291 /* Don't warn about a function declaration
1292 followed by a definition. */
1293 && !(TREE_CODE (newdecl) == FUNCTION_DECL && DECL_INITIAL (newdecl) != 0
1294 && DECL_INITIAL (olddecl) == 0)
1295 /* Don't warn about extern decl followed by (tentative) definition. */
1296 && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl)))
1298 warning_with_decl (newdecl, "redundant redeclaration of `%s' in same scope");
1299 warning_with_decl (olddecl, "previous declaration of `%s'");
1302 /* Copy all the DECL_... slots specified in the new decl
1303 except for any that we copy here from the old type.
1305 Past this point, we don't change OLDTYPE and NEWTYPE
1306 even if we change the types of NEWDECL and OLDDECL. */
1310 /* When copying info to olddecl, we store into write_olddecl
1311 instead. This allows us to avoid modifying olddecl when
1312 different_binding_level is true. */
1313 tree write_olddecl = different_binding_level ? newdecl : olddecl;
1315 /* Merge the data types specified in the two decls. */
1316 if (TREE_CODE (newdecl) != FUNCTION_DECL || !DECL_BUILT_IN (olddecl))
1318 if (different_binding_level)
1320 if (TYPE_ARG_TYPES (oldtype) != 0
1321 && TYPE_ARG_TYPES (newtype) == 0)
1322 TREE_TYPE (newdecl) = common_type (newtype, oldtype);
1325 = build_type_attribute_variant
1327 merge_attributes (TYPE_ATTRIBUTES (newtype),
1328 TYPE_ATTRIBUTES (oldtype)));
1332 = TREE_TYPE (olddecl)
1333 = common_type (newtype, oldtype);
1336 /* Lay the type out, unless already done. */
1337 if (oldtype != TREE_TYPE (newdecl))
1339 if (TREE_TYPE (newdecl) != error_mark_node)
1340 layout_type (TREE_TYPE (newdecl));
1341 if (TREE_CODE (newdecl) != FUNCTION_DECL
1342 && TREE_CODE (newdecl) != TYPE_DECL
1343 && TREE_CODE (newdecl) != CONST_DECL)
1344 layout_decl (newdecl, 0);
1348 /* Since the type is OLDDECL's, make OLDDECL's size go with. */
1349 DECL_SIZE (newdecl) = DECL_SIZE (olddecl);
1350 DECL_SIZE_UNIT (newdecl) = DECL_SIZE_UNIT (olddecl);
1351 DECL_MODE (newdecl) = DECL_MODE (olddecl);
1352 if (TREE_CODE (olddecl) != FUNCTION_DECL)
1353 if (DECL_ALIGN (olddecl) > DECL_ALIGN (newdecl))
1355 DECL_ALIGN (newdecl) = DECL_ALIGN (olddecl);
1356 DECL_USER_ALIGN (newdecl) |= DECL_ALIGN (olddecl);
1360 /* Keep the old rtl since we can safely use it. */
1361 COPY_DECL_RTL (olddecl, newdecl);
1363 /* Merge the type qualifiers. */
1364 if (TREE_READONLY (newdecl))
1365 TREE_READONLY (write_olddecl) = 1;
1367 if (TREE_THIS_VOLATILE (newdecl))
1369 TREE_THIS_VOLATILE (write_olddecl) = 1;
1370 if (TREE_CODE (newdecl) == VAR_DECL
1371 /* If an automatic variable is re-declared in the same
1372 function scope, but the old declaration was not
1373 volatile, make_var_volatile() would crash because the
1374 variable would have been assigned to a pseudo, not a
1375 MEM. Since this duplicate declaration is invalid
1376 anyway, we just skip the call. */
1378 make_var_volatile (newdecl);
1381 /* Keep source location of definition rather than declaration. */
1382 /* When called with different_binding_level set, keep the old
1383 information so that meaningful diagnostics can be given. */
1384 if (DECL_INITIAL (newdecl) == 0 && DECL_INITIAL (olddecl) != 0
1385 && ! different_binding_level)
1387 DECL_SOURCE_LINE (newdecl) = DECL_SOURCE_LINE (olddecl);
1388 DECL_SOURCE_FILE (newdecl) = DECL_SOURCE_FILE (olddecl);
1391 /* Merge the unused-warning information. */
1392 if (DECL_IN_SYSTEM_HEADER (olddecl))
1393 DECL_IN_SYSTEM_HEADER (newdecl) = 1;
1394 else if (DECL_IN_SYSTEM_HEADER (newdecl))
1395 DECL_IN_SYSTEM_HEADER (write_olddecl) = 1;
1397 /* Merge the initialization information. */
1398 /* When called with different_binding_level set, don't copy over
1399 DECL_INITIAL, so that we don't accidentally change function
1400 declarations into function definitions. */
1401 if (DECL_INITIAL (newdecl) == 0 && ! different_binding_level)
1402 DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
1404 /* Merge the section attribute.
1405 We want to issue an error if the sections conflict but that must be
1406 done later in decl_attributes since we are called before attributes
1408 if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
1409 DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
1411 /* Copy the assembler name.
1412 Currently, it can only be defined in the prototype. */
1413 COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
1415 if (TREE_CODE (newdecl) == FUNCTION_DECL)
1417 DECL_STATIC_CONSTRUCTOR(newdecl) |= DECL_STATIC_CONSTRUCTOR(olddecl);
1418 DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
1419 DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
1420 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
1421 |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
1424 /* If cannot merge, then use the new type and qualifiers,
1425 and don't preserve the old rtl. */
1426 else if (! different_binding_level)
1428 TREE_TYPE (olddecl) = TREE_TYPE (newdecl);
1429 TREE_READONLY (olddecl) = TREE_READONLY (newdecl);
1430 TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl);
1431 TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl);
1434 /* Merge the storage class information. */
1435 merge_weak (newdecl, olddecl);
1437 /* For functions, static overrides non-static. */
1438 if (TREE_CODE (newdecl) == FUNCTION_DECL)
1440 TREE_PUBLIC (newdecl) &= TREE_PUBLIC (olddecl);
1441 /* This is since we don't automatically
1442 copy the attributes of NEWDECL into OLDDECL. */
1443 /* No need to worry about different_binding_level here because
1444 then TREE_PUBLIC (newdecl) was true. */
1445 TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
1446 /* If this clears `static', clear it in the identifier too. */
1447 if (! TREE_PUBLIC (olddecl))
1448 TREE_PUBLIC (DECL_NAME (olddecl)) = 0;
1450 if (DECL_EXTERNAL (newdecl))
1452 if (! different_binding_level)
1454 /* Don't mess with these flags on local externs; they remain
1455 external even if there's a declaration at file scope which
1457 TREE_STATIC (newdecl) = TREE_STATIC (olddecl);
1458 DECL_EXTERNAL (newdecl) = DECL_EXTERNAL (olddecl);
1460 /* An extern decl does not override previous storage class. */
1461 TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
1462 if (! DECL_EXTERNAL (newdecl))
1463 DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
1467 TREE_STATIC (olddecl) = TREE_STATIC (newdecl);
1468 TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
1471 if (TREE_CODE (newdecl) == FUNCTION_DECL)
1473 /* If we're redefining a function previously defined as extern
1474 inline, make sure we emit debug info for the inline before we
1475 throw it away, in case it was inlined into a function that hasn't
1476 been written out yet. */
1477 if (new_is_definition && DECL_INITIAL (olddecl) && TREE_USED (olddecl))
1479 (*debug_hooks->outlining_inline_function) (olddecl);
1481 /* The new defn must not be inline. */
1482 DECL_INLINE (newdecl) = 0;
1483 DECL_UNINLINABLE (newdecl) = 1;
1487 /* If either decl says `inline', this fn is inline,
1488 unless its definition was passed already. */
1489 if (DECL_DECLARED_INLINE_P (newdecl)
1490 || DECL_DECLARED_INLINE_P (olddecl))
1491 DECL_DECLARED_INLINE_P (newdecl) = 1;
1493 DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
1494 = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
1497 if (DECL_BUILT_IN (olddecl))
1499 /* Get rid of any built-in function if new arg types don't match it
1500 or if we have a function definition. */
1501 if (! types_match || new_is_definition)
1503 if (! different_binding_level)
1505 TREE_TYPE (olddecl) = TREE_TYPE (newdecl);
1506 DECL_BUILT_IN_CLASS (olddecl) = NOT_BUILT_IN;
1511 /* If redeclaring a builtin function, and not a definition,
1512 it stays built in. */
1513 DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
1514 DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
1518 /* Also preserve various other info from the definition. */
1519 if (! new_is_definition)
1521 DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
1522 /* When called with different_binding_level set, don't copy over
1523 DECL_INITIAL, so that we don't accidentally change function
1524 declarations into function definitions. */
1525 if (! different_binding_level)
1526 DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
1527 DECL_SAVED_INSNS (newdecl) = DECL_SAVED_INSNS (olddecl);
1528 DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
1529 DECL_NUM_STMTS (newdecl) = DECL_NUM_STMTS (olddecl);
1530 DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
1532 /* Set DECL_INLINE on the declaration if we've got a body
1533 from which to instantiate. */
1534 if (DECL_INLINE (olddecl) && ! DECL_UNINLINABLE (newdecl))
1536 DECL_INLINE (newdecl) = 1;
1537 DECL_ABSTRACT_ORIGIN (newdecl)
1538 = (different_binding_level
1539 ? DECL_ORIGIN (olddecl)
1540 : DECL_ABSTRACT_ORIGIN (olddecl));
1545 /* If a previous declaration said inline, mark the
1546 definition as inlinable. */
1547 if (DECL_DECLARED_INLINE_P (newdecl)
1548 && ! DECL_UNINLINABLE (newdecl))
1549 DECL_INLINE (newdecl) = 1;
1552 if (different_binding_level)
1555 /* Copy most of the decl-specific fields of NEWDECL into OLDDECL.
1556 But preserve OLDDECL's DECL_UID. */
1558 unsigned olddecl_uid = DECL_UID (olddecl);
1560 memcpy ((char *) olddecl + sizeof (struct tree_common),
1561 (char *) newdecl + sizeof (struct tree_common),
1562 sizeof (struct tree_decl) - sizeof (struct tree_common));
1563 DECL_UID (olddecl) = olddecl_uid;
1566 /* NEWDECL contains the merged attribute lists.
1567 Update OLDDECL to be the same. */
1568 DECL_ATTRIBUTES (olddecl) = DECL_ATTRIBUTES (newdecl);
1573 /* Check whether decl-node X shadows an existing declaration.
1574 OLDLOCAL is the old IDENTIFIER_LOCAL_VALUE of the DECL_NAME of X,
1575 which might be a NULL_TREE. */
1577 warn_if_shadowing (x, oldlocal)
1582 if (DECL_EXTERNAL (x))
1585 name = DECL_NAME (x);
1587 /* Warn if shadowing an argument at the top level of the body. */
1589 /* This warning doesn't apply to the parms of a nested fcn. */
1590 && ! current_binding_level->parm_flag
1591 /* Check that this is one level down from the parms. */
1592 && current_binding_level->level_chain->parm_flag
1593 /* Check that the decl being shadowed
1594 comes from the parm level, one level up. */
1595 && chain_member (oldlocal, current_binding_level->level_chain->names))
1597 if (TREE_CODE (oldlocal) == PARM_DECL)
1598 pedwarn ("declaration of `%s' shadows a parameter",
1599 IDENTIFIER_POINTER (name));
1601 pedwarn ("declaration of `%s' shadows a symbol from the parameter list",
1602 IDENTIFIER_POINTER (name));
1604 /* Maybe warn if shadowing something else. */
1605 else if (warn_shadow
1606 /* No shadow warnings for internally generated vars. */
1607 && DECL_SOURCE_LINE (x) != 0
1608 /* No shadow warnings for vars made for inlining. */
1609 && ! DECL_FROM_INLINE (x))
1611 if (TREE_CODE (x) == PARM_DECL
1612 && current_binding_level->level_chain->parm_flag)
1613 /* Don't warn about the parm names in function declarator
1614 within a function declarator.
1615 It would be nice to avoid warning in any function
1616 declarator in a declaration, as opposed to a definition,
1617 but there is no way to tell it's not a definition. */
1621 if (TREE_CODE (oldlocal) == PARM_DECL)
1622 shadow_warning ("a parameter", name, oldlocal);
1624 shadow_warning ("a previous local", name, oldlocal);
1626 else if (IDENTIFIER_GLOBAL_VALUE (name) != 0
1627 && IDENTIFIER_GLOBAL_VALUE (name) != error_mark_node)
1628 shadow_warning ("a global declaration", name,
1629 IDENTIFIER_GLOBAL_VALUE (name));
1633 /* Record a decl-node X as belonging to the current lexical scope.
1634 Check for errors (such as an incompatible declaration for the same
1635 name already seen in the same scope).
1637 Returns either X or an old decl for the same name.
1638 If an old decl is returned, it may have been smashed
1639 to agree with what X says. */
1646 tree name = DECL_NAME (x);
1647 struct binding_level *b = current_binding_level;
1649 /* Functions need the lang_decl data. */
1650 if (TREE_CODE (x) == FUNCTION_DECL && ! DECL_LANG_SPECIFIC (x))
1651 DECL_LANG_SPECIFIC (x) = (struct lang_decl *)
1652 ggc_alloc_cleared (sizeof (struct lang_decl));
1654 DECL_CONTEXT (x) = current_function_decl;
1655 /* A local extern declaration for a function doesn't constitute nesting.
1656 A local auto declaration does, since it's a forward decl
1657 for a nested function coming later. */
1658 if ((TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == VAR_DECL)
1659 && DECL_INITIAL (x) == 0 && DECL_EXTERNAL (x))
1660 DECL_CONTEXT (x) = 0;
1664 int different_binding_level = 0;
1666 if (warn_nested_externs
1667 && DECL_EXTERNAL (x)
1668 && b != global_binding_level
1669 && x != IDENTIFIER_IMPLICIT_DECL (name)
1670 /* No error messages for __FUNCTION__ and __PRETTY_FUNCTION__. */
1671 && !DECL_IN_SYSTEM_HEADER (x))
1672 warning ("nested extern declaration of `%s'",
1673 IDENTIFIER_POINTER (name));
1675 t = lookup_name_current_level (name);
1676 if (! t && DECL_EXTERNAL (x) && TREE_PUBLIC (x))
1678 t = IDENTIFIER_GLOBAL_VALUE (name);
1679 /* Type decls at global scope don't conflict with externs declared
1680 inside lexical blocks. */
1681 if (! t || TREE_CODE (t) == TYPE_DECL)
1682 /* If there's no visible global declaration, try for an
1684 t = IDENTIFIER_LIMBO_VALUE (name);
1685 different_binding_level = 1;
1687 if (t != 0 && t == error_mark_node)
1688 /* error_mark_node is 0 for a while during initialization! */
1691 error_with_decl (x, "`%s' used prior to declaration");
1694 /* If this decl is `static' and an implicit decl was seen previously,
1696 if (TREE_PUBLIC (name)
1697 /* Don't test for DECL_EXTERNAL, because grokdeclarator
1698 sets this for all functions. */
1699 && ! TREE_PUBLIC (x)
1700 && (TREE_CODE (x) == FUNCTION_DECL || b == global_binding_level)
1701 /* We used to warn also for explicit extern followed by static,
1702 but sometimes you need to do it that way. */
1703 && IDENTIFIER_IMPLICIT_DECL (name) != 0)
1705 pedwarn ("`%s' was declared implicitly `extern' and later `static'",
1706 IDENTIFIER_POINTER (name));
1707 pedwarn_with_file_and_line
1708 (DECL_SOURCE_FILE (IDENTIFIER_IMPLICIT_DECL (name)),
1709 DECL_SOURCE_LINE (IDENTIFIER_IMPLICIT_DECL (name)),
1710 "previous declaration of `%s'",
1711 IDENTIFIER_POINTER (name));
1712 TREE_THIS_VOLATILE (name) = 1;
1715 if (t != 0 && duplicate_decls (x, t, different_binding_level))
1717 if (TREE_CODE (t) == PARM_DECL)
1719 /* Don't allow more than one "real" duplicate
1720 of a forward parm decl. */
1721 TREE_ASM_WRITTEN (t) = TREE_ASM_WRITTEN (x);
1727 /* If we are processing a typedef statement, generate a whole new
1728 ..._TYPE node (which will be just an variant of the existing
1729 ..._TYPE node with identical properties) and then install the
1730 TYPE_DECL node generated to represent the typedef name as the
1731 TYPE_NAME of this brand new (duplicate) ..._TYPE node.
1733 The whole point here is to end up with a situation where each
1734 and every ..._TYPE node the compiler creates will be uniquely
1735 associated with AT MOST one node representing a typedef name.
1736 This way, even though the compiler substitutes corresponding
1737 ..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
1738 early on, later parts of the compiler can always do the reverse
1739 translation and get back the corresponding typedef name. For
1742 typedef struct S MY_TYPE;
1745 Later parts of the compiler might only know that `object' was of
1746 type `struct S' if it were not for code just below. With this
1747 code however, later parts of the compiler see something like:
1749 struct S' == struct S
1750 typedef struct S' MY_TYPE;
1753 And they can then deduce (from the node for type struct S') that
1754 the original object declaration was:
1758 Being able to do this is important for proper support of protoize,
1759 and also for generating precise symbolic debugging information
1760 which takes full account of the programmer's (typedef) vocabulary.
1762 Obviously, we don't want to generate a duplicate ..._TYPE node if
1763 the TYPE_DECL node that we are now processing really represents a
1764 standard built-in type.
1766 Since all standard types are effectively declared at line zero
1767 in the source file, we can easily check to see if we are working
1768 on a standard type by checking the current value of lineno. */
1770 if (TREE_CODE (x) == TYPE_DECL)
1772 if (DECL_SOURCE_LINE (x) == 0)
1774 if (TYPE_NAME (TREE_TYPE (x)) == 0)
1775 TYPE_NAME (TREE_TYPE (x)) = x;
1777 else if (TREE_TYPE (x) != error_mark_node
1778 && DECL_ORIGINAL_TYPE (x) == NULL_TREE)
1780 tree tt = TREE_TYPE (x);
1781 DECL_ORIGINAL_TYPE (x) = tt;
1782 tt = build_type_copy (tt);
1784 TREE_USED (tt) = TREE_USED (x);
1789 /* Multiple external decls of the same identifier ought to match.
1790 We get warnings about inline functions where they are defined.
1791 Avoid duplicate warnings where they are used. */
1793 && ! (TREE_CODE (x) == FUNCTION_DECL && DECL_INLINE (x)))
1797 if (IDENTIFIER_LIMBO_VALUE (name) != 0)
1798 /* Decls in limbo are always extern, so no need to check that. */
1799 decl = IDENTIFIER_LIMBO_VALUE (name);
1803 if (decl && ! comptypes (TREE_TYPE (x), TREE_TYPE (decl))
1804 /* If old decl is built-in, we already warned if we should. */
1805 && !DECL_BUILT_IN (decl))
1807 pedwarn_with_decl (x,
1808 "type mismatch with previous external decl");
1809 pedwarn_with_decl (decl, "previous external decl of `%s'");
1813 /* If a function has had an implicit declaration, and then is defined,
1814 make sure they are compatible. */
1816 if (IDENTIFIER_IMPLICIT_DECL (name) != 0
1817 && IDENTIFIER_GLOBAL_VALUE (name) == 0
1818 && TREE_CODE (x) == FUNCTION_DECL
1819 && ! comptypes (TREE_TYPE (x),
1820 TREE_TYPE (IDENTIFIER_IMPLICIT_DECL (name))))
1822 warning_with_decl (x, "type mismatch with previous implicit declaration");
1823 warning_with_decl (IDENTIFIER_IMPLICIT_DECL (name),
1824 "previous implicit declaration of `%s'");
1827 /* This name is new in its binding level.
1828 Install the new declaration and return it. */
1829 if (b == global_binding_level)
1831 /* Install a global value. */
1833 /* If the first global decl has external linkage,
1834 warn if we later see static one. */
1835 if (IDENTIFIER_GLOBAL_VALUE (name) == 0 && TREE_PUBLIC (x))
1836 TREE_PUBLIC (name) = 1;
1838 IDENTIFIER_GLOBAL_VALUE (name) = x;
1840 /* We no longer care about any previous block level declarations. */
1841 IDENTIFIER_LIMBO_VALUE (name) = 0;
1843 /* Don't forget if the function was used via an implicit decl. */
1844 if (IDENTIFIER_IMPLICIT_DECL (name)
1845 && TREE_USED (IDENTIFIER_IMPLICIT_DECL (name)))
1846 TREE_USED (x) = 1, TREE_USED (name) = 1;
1848 /* Don't forget if its address was taken in that way. */
1849 if (IDENTIFIER_IMPLICIT_DECL (name)
1850 && TREE_ADDRESSABLE (IDENTIFIER_IMPLICIT_DECL (name)))
1851 TREE_ADDRESSABLE (x) = 1;
1853 /* Warn about mismatches against previous implicit decl. */
1854 if (IDENTIFIER_IMPLICIT_DECL (name) != 0
1855 /* If this real decl matches the implicit, don't complain. */
1856 && ! (TREE_CODE (x) == FUNCTION_DECL
1857 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (x)))
1858 == integer_type_node)))
1859 pedwarn ("`%s' was previously implicitly declared to return `int'",
1860 IDENTIFIER_POINTER (name));
1862 /* If this decl is `static' and an `extern' was seen previously,
1863 that is erroneous. */
1864 if (TREE_PUBLIC (name)
1865 && ! TREE_PUBLIC (x) && ! DECL_EXTERNAL (x))
1867 /* Okay to redeclare an ANSI built-in as static. */
1868 if (t != 0 && DECL_BUILT_IN (t))
1870 /* Okay to declare a non-ANSI built-in as anything. */
1871 else if (t != 0 && DECL_BUILT_IN_NONANSI (t))
1873 /* Okay to have global type decl after an earlier extern
1874 declaration inside a lexical block. */
1875 else if (TREE_CODE (x) == TYPE_DECL)
1877 else if (IDENTIFIER_IMPLICIT_DECL (name))
1879 if (! TREE_THIS_VOLATILE (name))
1880 pedwarn ("`%s' was declared implicitly `extern' and later `static'",
1881 IDENTIFIER_POINTER (name));
1884 pedwarn ("`%s' was declared `extern' and later `static'",
1885 IDENTIFIER_POINTER (name));
1890 /* Here to install a non-global value. */
1891 tree oldlocal = IDENTIFIER_LOCAL_VALUE (name);
1892 tree oldglobal = IDENTIFIER_GLOBAL_VALUE (name);
1894 IDENTIFIER_LOCAL_VALUE (name) = x;
1896 /* If this is an extern function declaration, see if we
1897 have a global definition or declaration for the function. */
1900 && TREE_CODE (x) == FUNCTION_DECL
1901 && TREE_CODE (oldglobal) == FUNCTION_DECL
1902 && DECL_EXTERNAL (x)
1903 && ! DECL_DECLARED_INLINE_P (x))
1905 /* We have one. Their types must agree. */
1906 if (! comptypes (TREE_TYPE (x),
1907 TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (name))))
1908 pedwarn_with_decl (x, "extern declaration of `%s' doesn't match global one");
1911 /* Inner extern decl is inline if global one is.
1912 Copy enough to really inline it. */
1913 if (DECL_DECLARED_INLINE_P (oldglobal))
1915 DECL_DECLARED_INLINE_P (x)
1916 = DECL_DECLARED_INLINE_P (oldglobal);
1917 DECL_INLINE (x) = DECL_INLINE (oldglobal);
1918 DECL_INITIAL (x) = (current_function_decl == oldglobal
1919 ? 0 : DECL_INITIAL (oldglobal));
1920 DECL_SAVED_INSNS (x) = DECL_SAVED_INSNS (oldglobal);
1921 DECL_NUM_STMTS (x) = DECL_NUM_STMTS (oldglobal);
1922 DECL_ARGUMENTS (x) = DECL_ARGUMENTS (oldglobal);
1923 DECL_RESULT (x) = DECL_RESULT (oldglobal);
1924 TREE_ASM_WRITTEN (x) = TREE_ASM_WRITTEN (oldglobal);
1925 DECL_ABSTRACT_ORIGIN (x)
1926 = DECL_ABSTRACT_ORIGIN (oldglobal);
1928 /* Inner extern decl is built-in if global one is. */
1929 if (DECL_BUILT_IN (oldglobal))
1931 DECL_BUILT_IN_CLASS (x) = DECL_BUILT_IN_CLASS (oldglobal);
1932 DECL_FUNCTION_CODE (x) = DECL_FUNCTION_CODE (oldglobal);
1934 /* Keep the arg types from a file-scope fcn defn. */
1935 if (TYPE_ARG_TYPES (TREE_TYPE (oldglobal)) != 0
1936 && DECL_INITIAL (oldglobal)
1937 && TYPE_ARG_TYPES (TREE_TYPE (x)) == 0)
1938 TREE_TYPE (x) = TREE_TYPE (oldglobal);
1943 /* This case is probably sometimes the right thing to do. */
1944 /* If we have a local external declaration,
1945 then any file-scope declaration should not
1946 have been static. */
1947 if (oldlocal == 0 && oldglobal != 0
1948 && !TREE_PUBLIC (oldglobal)
1949 && DECL_EXTERNAL (x) && TREE_PUBLIC (x))
1950 warning ("`%s' locally external but globally static",
1951 IDENTIFIER_POINTER (name));
1954 /* If we have a local external declaration,
1955 and no file-scope declaration has yet been seen,
1956 then if we later have a file-scope decl it must not be static. */
1958 && DECL_EXTERNAL (x)
1962 TREE_PUBLIC (name) = 1;
1964 /* Save this decl, so that we can do type checking against
1965 other decls after it falls out of scope.
1967 Only save it once. This prevents temporary decls created in
1968 expand_inline_function from being used here, since this
1969 will have been set when the inline function was parsed.
1970 It also helps give slightly better warnings. */
1971 if (IDENTIFIER_LIMBO_VALUE (name) == 0)
1972 IDENTIFIER_LIMBO_VALUE (name) = x;
1975 warn_if_shadowing (x, oldlocal);
1977 /* If storing a local value, there may already be one (inherited).
1978 If so, record it for restoration when this binding level ends. */
1980 b->shadowed = tree_cons (name, oldlocal, b->shadowed);
1983 /* Keep list of variables in this level with incomplete type.
1984 If the input is erroneous, we can have error_mark in the type
1985 slot (e.g. "f(void a, ...)") - that doesn't count as an
1987 if (TREE_TYPE (x) != error_mark_node
1988 && !COMPLETE_TYPE_P (TREE_TYPE (x)))
1990 tree element = TREE_TYPE (x);
1992 while (TREE_CODE (element) == ARRAY_TYPE)
1993 element = TREE_TYPE (element);
1994 if (TREE_CODE (element) == RECORD_TYPE
1995 || TREE_CODE (element) == UNION_TYPE)
1996 b->incomplete_list = tree_cons (NULL_TREE, x, b->incomplete_list);
2000 /* Put decls on list in reverse order.
2001 We will reverse them later if necessary. */
2002 TREE_CHAIN (x) = b->names;
2008 /* Like pushdecl, only it places X in GLOBAL_BINDING_LEVEL, if appropriate. */
2011 pushdecl_top_level (x)
2015 struct binding_level *b = current_binding_level;
2017 current_binding_level = global_binding_level;
2019 current_binding_level = b;
2023 /* Generate an implicit declaration for identifier FUNCTIONID
2024 as a function of type int (). Print a warning if appropriate. */
2027 implicitly_declare (functionid)
2031 int traditional_warning = 0;
2032 /* Only one "implicit declaration" warning per identifier. */
2033 int implicit_warning;
2035 /* We used to reuse an old implicit decl here,
2036 but this loses with inline functions because it can clobber
2037 the saved decl chains. */
2039 if (IDENTIFIER_IMPLICIT_DECL (functionid) != 0)
2040 decl = IDENTIFIER_IMPLICIT_DECL (functionid);
2043 decl = build_decl (FUNCTION_DECL, functionid, default_function_type);
2045 /* Warn of implicit decl following explicit local extern decl.
2046 This is probably a program designed for traditional C. */
2047 if (TREE_PUBLIC (functionid) && IDENTIFIER_GLOBAL_VALUE (functionid) == 0)
2048 traditional_warning = 1;
2050 /* Warn once of an implicit declaration. */
2051 implicit_warning = (IDENTIFIER_IMPLICIT_DECL (functionid) == 0);
2053 DECL_EXTERNAL (decl) = 1;
2054 TREE_PUBLIC (decl) = 1;
2056 /* Record that we have an implicit decl and this is it. */
2057 IDENTIFIER_IMPLICIT_DECL (functionid) = decl;
2059 /* ANSI standard says implicit declarations are in the innermost block.
2060 So we record the decl in the standard fashion. */
2063 /* This is a no-op in c-lang.c or something real in objc-act.c. */
2065 objc_check_decl (decl);
2067 rest_of_decl_compilation (decl, NULL, 0, 0);
2069 if (implicit_warning)
2070 implicit_decl_warning (functionid);
2071 else if (warn_traditional && traditional_warning)
2072 warning ("function `%s' was previously declared within a block",
2073 IDENTIFIER_POINTER (functionid));
2075 /* Write a record describing this implicit function declaration to the
2076 prototypes file (if requested). */
2078 gen_aux_info_record (decl, 0, 1, 0);
2080 /* Possibly apply some default attributes to this implicit declaration. */
2081 decl_attributes (&decl, NULL_TREE, 0);
2087 implicit_decl_warning (id)
2090 const char *name = IDENTIFIER_POINTER (id);
2091 if (mesg_implicit_function_declaration == 2)
2092 error ("implicit declaration of function `%s'", name);
2093 else if (mesg_implicit_function_declaration == 1)
2094 warning ("implicit declaration of function `%s'", name);
2097 /* Return zero if the declaration NEWDECL is valid
2098 when the declaration OLDDECL (assumed to be for the same name)
2099 has already been seen.
2100 Otherwise return 1 if NEWDECL is a redefinition, 2 if it is a redeclaration,
2101 and 3 if it is a conflicting declaration. */
2104 redeclaration_error_message (newdecl, olddecl)
2105 tree newdecl, olddecl;
2107 if (TREE_CODE (newdecl) == TYPE_DECL)
2109 /* Do not complain about type redeclarations where at least one
2110 declaration was in a system header. */
2111 if (DECL_IN_SYSTEM_HEADER (olddecl) || DECL_IN_SYSTEM_HEADER (newdecl))
2115 else if (TREE_CODE (newdecl) == FUNCTION_DECL)
2117 /* Declarations of functions can insist on internal linkage
2118 but they can't be inconsistent with internal linkage,
2119 so there can be no error on that account.
2120 However defining the same name twice is no good. */
2121 if (DECL_INITIAL (olddecl) != 0 && DECL_INITIAL (newdecl) != 0
2122 /* However, defining once as extern inline and a second
2123 time in another way is ok. */
2124 && ! (DECL_DECLARED_INLINE_P (olddecl) && DECL_EXTERNAL (olddecl)
2125 && ! (DECL_DECLARED_INLINE_P (newdecl)
2126 && DECL_EXTERNAL (newdecl))))
2130 else if (DECL_CONTEXT (newdecl) == NULL_TREE)
2132 /* Objects declared at top level: */
2133 /* If at least one is a reference, it's ok. */
2134 if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl))
2136 /* Reject two definitions. */
2137 if (DECL_INITIAL (olddecl) != 0 && DECL_INITIAL (newdecl) != 0)
2139 /* Now we have two tentative defs, or one tentative and one real def. */
2140 /* Insist that the linkage match. */
2141 if (TREE_PUBLIC (olddecl) != TREE_PUBLIC (newdecl))
2145 else if (current_binding_level->parm_flag
2146 && TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
2150 /* Newdecl has block scope. If olddecl has block scope also, then
2151 reject two definitions, and reject a definition together with an
2152 external reference. Otherwise, it is OK, because newdecl must
2153 be an extern reference to olddecl. */
2154 if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl))
2155 && DECL_CONTEXT (newdecl) == DECL_CONTEXT (olddecl))
2161 /* Get the LABEL_DECL corresponding to identifier ID as a label.
2162 Create one if none exists so far for the current function.
2163 This function is called for both label definitions and label references. */
2169 tree decl = IDENTIFIER_LABEL_VALUE (id);
2171 if (current_function_decl == 0)
2173 error ("label %s referenced outside of any function",
2174 IDENTIFIER_POINTER (id));
2178 /* Use a label already defined or ref'd with this name. */
2181 /* But not if it is inherited and wasn't declared to be inheritable. */
2182 if (DECL_CONTEXT (decl) != current_function_decl
2183 && ! C_DECLARED_LABEL_FLAG (decl))
2184 return shadow_label (id);
2188 decl = build_decl (LABEL_DECL, id, void_type_node);
2190 /* A label not explicitly declared must be local to where it's ref'd. */
2191 DECL_CONTEXT (decl) = current_function_decl;
2193 DECL_MODE (decl) = VOIDmode;
2195 /* Say where one reference is to the label,
2196 for the sake of the error if it is not defined. */
2197 DECL_SOURCE_LINE (decl) = lineno;
2198 DECL_SOURCE_FILE (decl) = input_filename;
2200 IDENTIFIER_LABEL_VALUE (id) = decl;
2202 named_labels = tree_cons (NULL_TREE, decl, named_labels);
2207 /* Make a label named NAME in the current function,
2208 shadowing silently any that may be inherited from containing functions
2209 or containing scopes.
2211 Note that valid use, if the label being shadowed
2212 comes from another scope in the same function,
2213 requires calling declare_nonlocal_label right away. */
2219 tree decl = IDENTIFIER_LABEL_VALUE (name);
2225 /* Check to make sure that the label hasn't already been declared
2226 at this label scope */
2227 for (dup = named_labels; dup; dup = TREE_CHAIN (dup))
2228 if (TREE_VALUE (dup) == decl)
2230 error ("duplicate label declaration `%s'",
2231 IDENTIFIER_POINTER (name));
2232 error_with_decl (TREE_VALUE (dup),
2233 "this is a previous declaration");
2234 /* Just use the previous declaration. */
2235 return lookup_label (name);
2238 shadowed_labels = tree_cons (NULL_TREE, decl, shadowed_labels);
2239 IDENTIFIER_LABEL_VALUE (name) = decl = 0;
2242 return lookup_label (name);
2245 /* Define a label, specifying the location in the source file.
2246 Return the LABEL_DECL node for the label, if the definition is valid.
2247 Otherwise return 0. */
2250 define_label (filename, line, name)
2251 const char *filename;
2255 tree decl = lookup_label (name);
2257 /* If label with this name is known from an outer context, shadow it. */
2258 if (decl != 0 && DECL_CONTEXT (decl) != current_function_decl)
2260 shadowed_labels = tree_cons (NULL_TREE, decl, shadowed_labels);
2261 IDENTIFIER_LABEL_VALUE (name) = 0;
2262 decl = lookup_label (name);
2265 if (warn_traditional && !in_system_header && lookup_name (name))
2266 warning_with_file_and_line (filename, line,
2267 "traditional C lacks a separate namespace for labels, identifier `%s' conflicts",
2268 IDENTIFIER_POINTER (name));
2270 if (DECL_INITIAL (decl) != 0)
2272 error_with_file_and_line (filename, line, "duplicate label `%s'",
2273 IDENTIFIER_POINTER (name));
2278 /* Mark label as having been defined. */
2279 DECL_INITIAL (decl) = error_mark_node;
2280 /* Say where in the source. */
2281 DECL_SOURCE_FILE (decl) = filename;
2282 DECL_SOURCE_LINE (decl) = line;
2287 /* Return the list of declarations of the current level.
2288 Note that this list is in reverse order unless/until
2289 you nreverse it; and when you do nreverse it, you must
2290 store the result back using `storedecls' or you will lose. */
2295 return current_binding_level->names;
2298 /* Return the list of type-tags (for structs, etc) of the current level. */
2303 return current_binding_level->tags;
2306 /* Store the list of declarations of the current level.
2307 This is done for the parameter declarations of a function being defined,
2308 after they are modified in the light of any missing parameters. */
2314 current_binding_level->names = decls;
2317 /* Similarly, store the list of tags of the current level. */
2323 current_binding_level->tags = tags;
2326 /* Given NAME, an IDENTIFIER_NODE,
2327 return the structure (or union or enum) definition for that name.
2328 Searches binding levels from BINDING_LEVEL up to the global level.
2329 If THISLEVEL_ONLY is nonzero, searches only the specified context
2330 (but skips any tag-transparent contexts to find one that is
2331 meaningful for tags).
2332 CODE says which kind of type the caller wants;
2333 it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE.
2334 If the wrong kind of type is found, an error is reported. */
2337 lookup_tag (code, name, binding_level, thislevel_only)
2338 enum tree_code code;
2339 struct binding_level *binding_level;
2343 struct binding_level *level;
2346 for (level = binding_level; level; level = level->level_chain)
2349 for (tail = level->tags; tail; tail = TREE_CHAIN (tail))
2351 if (TREE_PURPOSE (tail) == name)
2353 if (TREE_CODE (TREE_VALUE (tail)) != code)
2355 /* Definition isn't the kind we were looking for. */
2356 pending_invalid_xref = name;
2357 pending_invalid_xref_file = input_filename;
2358 pending_invalid_xref_line = lineno;
2359 /* If in the same binding level as a declaration as a tag
2360 of a different type, this must not be allowed to
2361 shadow that tag, so give the error immediately.
2362 (For example, "struct foo; union foo;" is invalid.) */
2364 pending_xref_error ();
2366 return TREE_VALUE (tail);
2369 if (! level->tag_transparent)
2379 /* Print an error message now
2380 for a recent invalid struct, union or enum cross reference.
2381 We don't print them immediately because they are not invalid
2382 when used in the `struct foo;' construct for shadowing. */
2385 pending_xref_error ()
2387 if (pending_invalid_xref != 0)
2388 error_with_file_and_line (pending_invalid_xref_file,
2389 pending_invalid_xref_line,
2390 "`%s' defined as wrong kind of tag",
2391 IDENTIFIER_POINTER (pending_invalid_xref));
2392 pending_invalid_xref = 0;
2395 /* Given a type, find the tag that was defined for it and return the tag name.
2396 Otherwise return 0. */
2399 lookup_tag_reverse (type)
2402 struct binding_level *level;
2404 for (level = current_binding_level; level; level = level->level_chain)
2407 for (tail = level->tags; tail; tail = TREE_CHAIN (tail))
2409 if (TREE_VALUE (tail) == type)
2410 return TREE_PURPOSE (tail);
2416 /* Look up NAME in the current binding level and its superiors
2417 in the namespace of variables, functions and typedefs.
2418 Return a ..._DECL node of some kind representing its definition,
2419 or return 0 if it is undefined. */
2427 if (current_binding_level != global_binding_level
2428 && IDENTIFIER_LOCAL_VALUE (name))
2429 val = IDENTIFIER_LOCAL_VALUE (name);
2431 val = IDENTIFIER_GLOBAL_VALUE (name);
2435 /* Similar to `lookup_name' but look only at current binding level. */
2438 lookup_name_current_level (name)
2443 if (current_binding_level == global_binding_level)
2444 return IDENTIFIER_GLOBAL_VALUE (name);
2446 if (IDENTIFIER_LOCAL_VALUE (name) == 0)
2449 for (t = current_binding_level->names; t; t = TREE_CHAIN (t))
2450 if (DECL_NAME (t) == name)
2456 /* Create the predefined scalar types of C,
2457 and some nodes representing standard constants (0, 1, (void *) 0).
2458 Initialize the global binding level.
2459 Make definitions for built-in primitive functions. */
2462 c_init_decl_processing ()
2465 tree ptr_ftype_void, ptr_ftype_ptr;
2467 /* Adds some ggc roots, and reserved words for c-parse.in. */
2470 current_function_decl = NULL;
2471 named_labels = NULL;
2472 current_binding_level = NULL_BINDING_LEVEL;
2473 free_binding_level = NULL_BINDING_LEVEL;
2475 /* Make the binding_level structure for global names. */
2477 global_binding_level = current_binding_level;
2479 build_common_tree_nodes (flag_signed_char);
2481 c_common_nodes_and_builtins ();
2483 boolean_type_node = integer_type_node;
2484 boolean_true_node = integer_one_node;
2485 boolean_false_node = integer_zero_node;
2487 c_bool_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
2488 TREE_SET_CODE (c_bool_type_node, BOOLEAN_TYPE);
2489 TYPE_MAX_VALUE (c_bool_type_node) = build_int_2 (1, 0);
2490 TREE_TYPE (TYPE_MAX_VALUE (c_bool_type_node)) = c_bool_type_node;
2491 TYPE_PRECISION (c_bool_type_node) = 1;
2492 pushdecl (build_decl (TYPE_DECL, get_identifier ("_Bool"),
2494 c_bool_false_node = build_int_2 (0, 0);
2495 TREE_TYPE (c_bool_false_node) = c_bool_type_node;
2496 c_bool_true_node = build_int_2 (1, 0);
2497 TREE_TYPE (c_bool_true_node) = c_bool_type_node;
2499 endlink = void_list_node;
2500 ptr_ftype_void = build_function_type (ptr_type_node, endlink);
2502 = build_function_type (ptr_type_node,
2503 tree_cons (NULL_TREE, ptr_type_node, endlink));
2505 pedantic_lvalues = pedantic;
2507 make_fname_decl = c_make_fname_decl;
2508 start_fname_decls ();
2511 /* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the
2512 decl, NAME is the initialization string and TYPE_DEP indicates whether
2513 NAME depended on the type of the function. As we don't yet implement
2514 delayed emission of static data, we mark the decl as emitted
2515 so it is not placed in the output. Anything using it must therefore pull
2516 out the STRING_CST initializer directly. This does mean that these names
2517 are string merging candidates, which is wrong for C99's __func__. FIXME. */
2520 c_make_fname_decl (id, type_dep)
2524 const char *name = fname_as_string (type_dep);
2525 tree decl, type, init;
2526 size_t length = strlen (name);
2528 type = build_array_type
2529 (build_qualified_type (char_type_node, TYPE_QUAL_CONST),
2530 build_index_type (size_int (length)));
2532 decl = build_decl (VAR_DECL, id, type);
2533 /* We don't push the decl, so have to set its context here. */
2534 DECL_CONTEXT (decl) = current_function_decl;
2536 TREE_STATIC (decl) = 1;
2537 TREE_READONLY (decl) = 1;
2538 DECL_ARTIFICIAL (decl) = 1;
2540 init = build_string (length + 1, name);
2541 TREE_TYPE (init) = type;
2542 DECL_INITIAL (decl) = init;
2544 TREE_USED (decl) = 1;
2546 finish_decl (decl, init, NULL_TREE);
2551 /* Return a definition for a builtin function named NAME and whose data type
2552 is TYPE. TYPE should be a function type with argument types.
2553 FUNCTION_CODE tells later passes how to compile calls to this function.
2554 See tree.h for its possible values.
2556 If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
2557 the name to be called if we can't opencode the function. If
2558 ATTRS is nonzero, use that for the function's attribute list. */
2561 builtin_function (name, type, function_code, class, library_name, attrs)
2565 enum built_in_class class;
2566 const char *library_name;
2569 tree decl = build_decl (FUNCTION_DECL, get_identifier (name), type);
2570 DECL_EXTERNAL (decl) = 1;
2571 TREE_PUBLIC (decl) = 1;
2573 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
2574 make_decl_rtl (decl, NULL);
2576 DECL_BUILT_IN_CLASS (decl) = class;
2577 DECL_FUNCTION_CODE (decl) = function_code;
2579 /* Warn if a function in the namespace for users
2580 is used without an occasion to consider it declared. */
2581 if (name[0] != '_' || name[1] != '_')
2582 C_DECL_ANTICIPATED (decl) = 1;
2584 /* Possibly apply some default attributes to this built-in function. */
2586 decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
2588 decl_attributes (&decl, NULL_TREE, 0);
2593 /* Apply default attributes to a function, if a system function with default
2597 c_insert_default_attributes (decl)
2600 if (!TREE_PUBLIC (decl))
2602 c_common_insert_default_attributes (decl);
2605 /* Called when a declaration is seen that contains no names to declare.
2606 If its type is a reference to a structure, union or enum inherited
2607 from a containing scope, shadow that tag name for the current scope
2608 with a forward reference.
2609 If its type defines a new named structure or union
2610 or defines an enum, it is valid but we need not do anything here.
2611 Otherwise, it is an error. */
2614 shadow_tag (declspecs)
2617 shadow_tag_warned (declspecs, 0);
2621 shadow_tag_warned (declspecs, warned)
2624 /* 1 => we have done a pedwarn. 2 => we have done a warning, but
2631 pending_invalid_xref = 0;
2633 /* Remove the attributes from declspecs, since they will confuse the
2635 split_specs_attrs (declspecs, &specs, &attrs);
2637 for (link = specs; link; link = TREE_CHAIN (link))
2639 tree value = TREE_VALUE (link);
2640 enum tree_code code = TREE_CODE (value);
2642 if (code == RECORD_TYPE || code == UNION_TYPE || code == ENUMERAL_TYPE)
2643 /* Used to test also that TYPE_SIZE (value) != 0.
2644 That caused warning for `struct foo;' at top level in the file. */
2646 tree name = lookup_tag_reverse (value);
2653 if (warned != 1 && code != ENUMERAL_TYPE)
2654 /* Empty unnamed enum OK */
2656 pedwarn ("unnamed struct/union that defines no instances");
2662 t = lookup_tag (code, name, current_binding_level, 1);
2666 t = make_node (code);
2673 if (!warned && ! in_system_header)
2675 warning ("useless keyword or type name in empty declaration");
2682 error ("two types specified in one empty declaration");
2687 pedwarn ("empty declaration");
2691 /* Construct an array declarator. EXPR is the expression inside [], or
2692 NULL_TREE. QUALS are the type qualifiers inside the [] (to be applied
2693 to the pointer to which a parameter array is converted). STATIC_P is
2694 non-zero if "static" is inside the [], zero otherwise. VLA_UNSPEC_P
2695 is non-zero is the array is [*], a VLA of unspecified length which is
2696 nevertheless a complete type (not currently implemented by GCC),
2697 zero otherwise. The declarator is constructed as an ARRAY_REF
2698 (to be decoded by grokdeclarator), whose operand 0 is what's on the
2699 left of the [] (filled by in set_array_declarator_type) and operand 1
2700 is the expression inside; whose TREE_TYPE is the type qualifiers and
2701 which has TREE_STATIC set if "static" is used. */
2704 build_array_declarator (expr, quals, static_p, vla_unspec_p)
2711 decl = build_nt (ARRAY_REF, NULL_TREE, expr);
2712 TREE_TYPE (decl) = quals;
2713 TREE_STATIC (decl) = (static_p ? 1 : 0);
2714 if (pedantic && !flag_isoc99)
2716 if (static_p || quals != NULL_TREE)
2717 pedwarn ("ISO C90 does not support `static' or type qualifiers in parameter array declarators");
2719 pedwarn ("ISO C90 does not support `[*]' array declarators");
2722 warning ("GCC does not yet properly implement `[*]' array declarators");
2726 /* Set the type of an array declarator. DECL is the declarator, as
2727 constructed by build_array_declarator; TYPE is what appears on the left
2728 of the [] and goes in operand 0. ABSTRACT_P is non-zero if it is an
2729 abstract declarator, zero otherwise; this is used to reject static and
2730 type qualifiers in abstract declarators, where they are not in the
2734 set_array_declarator_type (decl, type, abstract_p)
2739 TREE_OPERAND (decl, 0) = type;
2740 if (abstract_p && (TREE_TYPE (decl) != NULL_TREE || TREE_STATIC (decl)))
2741 error ("static or type qualifiers in abstract declarator");
2745 /* Decode a "typename", such as "int **", returning a ..._TYPE node. */
2748 groktypename (typename)
2753 if (TREE_CODE (typename) != TREE_LIST)
2756 split_specs_attrs (TREE_PURPOSE (typename), &specs, &attrs);
2758 typename = grokdeclarator (TREE_VALUE (typename), specs, TYPENAME, 0);
2760 /* Apply attributes. */
2761 decl_attributes (&typename, attrs, 0);
2766 /* Return a PARM_DECL node for a given pair of specs and declarator. */
2769 groktypename_in_parm_context (typename)
2772 if (TREE_CODE (typename) != TREE_LIST)
2774 return grokdeclarator (TREE_VALUE (typename),
2775 TREE_PURPOSE (typename),
2779 /* Decode a declarator in an ordinary declaration or data definition.
2780 This is called as soon as the type information and variable name
2781 have been parsed, before parsing the initializer if any.
2782 Here we create the ..._DECL node, fill in its type,
2783 and put it on the list of decls for the current context.
2784 The ..._DECL node is returned as the value.
2786 Exception: for arrays where the length is not specified,
2787 the type is left null, to be filled in by `finish_decl'.
2789 Function definitions do not come here; they go to start_function
2790 instead. However, external and forward declarations of functions
2791 do go through here. Structure field declarations are done by
2792 grokfield and not through here. */
2795 start_decl (declarator, declspecs, initialized, attributes)
2796 tree declarator, declspecs;
2803 /* An object declared as __attribute__((deprecated)) suppresses
2804 warnings of uses of other deprecated items. */
2805 if (lookup_attribute ("deprecated", attributes))
2806 deprecated_state = DEPRECATED_SUPPRESS;
2808 decl = grokdeclarator (declarator, declspecs,
2809 NORMAL, initialized);
2811 deprecated_state = DEPRECATED_NORMAL;
2813 if (warn_main > 0 && TREE_CODE (decl) != FUNCTION_DECL
2814 && MAIN_NAME_P (DECL_NAME (decl)))
2815 warning_with_decl (decl, "`%s' is usually a function");
2818 /* Is it valid for this decl to have an initializer at all?
2819 If not, set INITIALIZED to zero, which will indirectly
2820 tell `finish_decl' to ignore the initializer once it is parsed. */
2821 switch (TREE_CODE (decl))
2824 /* typedef foo = bar means give foo the same type as bar.
2825 We haven't parsed bar yet, so `finish_decl' will fix that up.
2826 Any other case of an initialization in a TYPE_DECL is an error. */
2827 if (pedantic || list_length (declspecs) > 1)
2829 error ("typedef `%s' is initialized",
2830 IDENTIFIER_POINTER (DECL_NAME (decl)));
2836 error ("function `%s' is initialized like a variable",
2837 IDENTIFIER_POINTER (DECL_NAME (decl)));
2842 /* DECL_INITIAL in a PARM_DECL is really DECL_ARG_TYPE. */
2843 error ("parameter `%s' is initialized",
2844 IDENTIFIER_POINTER (DECL_NAME (decl)));
2849 /* Don't allow initializations for incomplete types
2850 except for arrays which might be completed by the initialization. */
2852 /* This can happen if the array size is an undefined macro. We already
2853 gave a warning, so we don't need another one. */
2854 if (TREE_TYPE (decl) == error_mark_node)
2856 else if (COMPLETE_TYPE_P (TREE_TYPE (decl)))
2858 /* A complete type is ok if size is fixed. */
2860 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (decl))) != INTEGER_CST
2861 || C_DECL_VARIABLE_SIZE (decl))
2863 error ("variable-sized object may not be initialized");
2867 else if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
2869 error ("variable `%s' has initializer but incomplete type",
2870 IDENTIFIER_POINTER (DECL_NAME (decl)));
2873 else if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
2875 error ("elements of array `%s' have incomplete type",
2876 IDENTIFIER_POINTER (DECL_NAME (decl)));
2884 /* Seems redundant with grokdeclarator. */
2885 if (current_binding_level != global_binding_level
2886 && DECL_EXTERNAL (decl)
2887 && TREE_CODE (decl) != FUNCTION_DECL)
2888 warning ("declaration of `%s' has `extern' and is initialized",
2889 IDENTIFIER_POINTER (DECL_NAME (decl)));
2891 DECL_EXTERNAL (decl) = 0;
2892 if (current_binding_level == global_binding_level)
2893 TREE_STATIC (decl) = 1;
2895 /* Tell `pushdecl' this is an initialized decl
2896 even though we don't yet have the initializer expression.
2897 Also tell `finish_decl' it may store the real initializer. */
2898 DECL_INITIAL (decl) = error_mark_node;
2901 /* If this is a function declaration, write a record describing it to the
2902 prototypes file (if requested). */
2904 if (TREE_CODE (decl) == FUNCTION_DECL)
2905 gen_aux_info_record (decl, 0, 0, TYPE_ARG_TYPES (TREE_TYPE (decl)) != 0);
2907 /* ANSI specifies that a tentative definition which is not merged with
2908 a non-tentative definition behaves exactly like a definition with an
2909 initializer equal to zero. (Section 3.7.2)
2911 -fno-common gives strict ANSI behavior, though this tends to break
2912 a large body of code that grew up without this rule.
2914 Thread-local variables are never common, since there's no entrenched
2915 body of code to break, and it allows more efficient variable references
2916 in the presense of dynamic linking. */
2918 if (TREE_CODE (decl) == VAR_DECL
2920 && TREE_PUBLIC (decl)
2921 && !DECL_THREAD_LOCAL (decl)
2923 DECL_COMMON (decl) = 1;
2925 /* Set attributes here so if duplicate decl, will have proper attributes. */
2926 decl_attributes (&decl, attributes, 0);
2928 /* If #pragma weak was used, mark the decl weak now. */
2929 if (current_binding_level == global_binding_level)
2930 maybe_apply_pragma_weak (decl);
2932 if (TREE_CODE (decl) == FUNCTION_DECL
2933 && DECL_DECLARED_INLINE_P (decl)
2934 && DECL_UNINLINABLE (decl)
2935 && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
2936 warning_with_decl (decl,
2937 "inline function `%s' given attribute noinline");
2939 /* Add this decl to the current binding level.
2940 TEM may equal DECL or it may be a previous decl of the same name. */
2941 tem = pushdecl (decl);
2943 /* For a local variable, define the RTL now. */
2944 if (current_binding_level != global_binding_level
2945 /* But not if this is a duplicate decl
2946 and we preserved the rtl from the previous one
2947 (which may or may not happen). */
2948 && !DECL_RTL_SET_P (tem)
2949 && !DECL_CONTEXT (tem))
2951 if (TREE_TYPE (tem) != error_mark_node
2952 && COMPLETE_TYPE_P (TREE_TYPE (tem)))
2954 else if (TREE_CODE (TREE_TYPE (tem)) == ARRAY_TYPE
2955 && DECL_INITIAL (tem) != 0)
2962 /* Finish processing of a declaration;
2963 install its initial value.
2964 If the length of an array type is not known before,
2965 it must be determined now, from the initial value, or it is an error. */
2968 finish_decl (decl, init, asmspec_tree)
2972 tree type = TREE_TYPE (decl);
2973 int was_incomplete = (DECL_SIZE (decl) == 0);
2974 const char *asmspec = 0;
2976 /* If a name was specified, get the string. */
2977 if (current_binding_level == global_binding_level)
2978 asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
2980 asmspec = TREE_STRING_POINTER (asmspec_tree);
2982 /* If `start_decl' didn't like having an initialization, ignore it now. */
2983 if (init != 0 && DECL_INITIAL (decl) == 0)
2986 /* Don't crash if parm is initialized. */
2987 if (TREE_CODE (decl) == PARM_DECL)
2992 if (TREE_CODE (decl) != TYPE_DECL)
2993 store_init_value (decl, init);
2996 /* typedef foo = bar; store the type of bar as the type of foo. */
2997 TREE_TYPE (decl) = TREE_TYPE (init);
2998 DECL_INITIAL (decl) = init = 0;
3002 /* Deduce size of array from initialization, if not already known */
3003 if (TREE_CODE (type) == ARRAY_TYPE
3004 && TYPE_DOMAIN (type) == 0
3005 && TREE_CODE (decl) != TYPE_DECL)
3008 = (TREE_STATIC (decl)
3009 /* Even if pedantic, an external linkage array
3010 may have incomplete type at first. */
3011 ? pedantic && !TREE_PUBLIC (decl)
3012 : !DECL_EXTERNAL (decl));
3014 = complete_array_type (type, DECL_INITIAL (decl), do_default);
3016 /* Get the completed type made by complete_array_type. */
3017 type = TREE_TYPE (decl);
3020 error_with_decl (decl, "initializer fails to determine size of `%s'");
3022 else if (failure == 2)
3025 error_with_decl (decl, "array size missing in `%s'");
3026 /* If a `static' var's size isn't known,
3027 make it extern as well as static, so it does not get
3029 If it is not `static', then do not mark extern;
3030 finish_incomplete_decl will give it a default size
3031 and it will get allocated. */
3032 else if (!pedantic && TREE_STATIC (decl) && ! TREE_PUBLIC (decl))
3033 DECL_EXTERNAL (decl) = 1;
3036 /* TYPE_MAX_VALUE is always one less than the number of elements
3037 in the array, because we start counting at zero. Therefore,
3038 warn only if the value is less than zero. */
3039 else if (pedantic && TYPE_DOMAIN (type) != 0
3040 && tree_int_cst_sgn (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) < 0)
3041 error_with_decl (decl, "zero or negative size array `%s'");
3043 layout_decl (decl, 0);
3046 if (TREE_CODE (decl) == VAR_DECL)
3048 if (DECL_SIZE (decl) == 0 && TREE_TYPE (decl) != error_mark_node
3049 && COMPLETE_TYPE_P (TREE_TYPE (decl)))
3050 layout_decl (decl, 0);
3052 if (DECL_SIZE (decl) == 0
3053 /* Don't give an error if we already gave one earlier. */
3054 && TREE_TYPE (decl) != error_mark_node
3055 && (TREE_STATIC (decl)
3057 /* A static variable with an incomplete type
3058 is an error if it is initialized.
3059 Also if it is not file scope.
3060 Otherwise, let it through, but if it is not `extern'
3061 then it may cause an error message later. */
3062 (DECL_INITIAL (decl) != 0
3063 || DECL_CONTEXT (decl) != 0)
3065 /* An automatic variable with an incomplete type
3067 !DECL_EXTERNAL (decl)))
3069 error_with_decl (decl, "storage size of `%s' isn't known");
3070 TREE_TYPE (decl) = error_mark_node;
3073 if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
3074 && DECL_SIZE (decl) != 0)
3076 if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
3077 constant_expression_warning (DECL_SIZE (decl));
3079 error_with_decl (decl, "storage size of `%s' isn't constant");
3082 if (TREE_USED (type))
3083 TREE_USED (decl) = 1;
3086 /* If this is a function and an assembler name is specified, it isn't
3087 builtin any more. Also reset DECL_RTL so we can give it its new
3089 if (TREE_CODE (decl) == FUNCTION_DECL && asmspec)
3091 DECL_BUILT_IN_CLASS (decl) = NOT_BUILT_IN;
3092 SET_DECL_RTL (decl, NULL_RTX);
3093 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (asmspec));
3096 /* Output the assembler code and/or RTL code for variables and functions,
3097 unless the type is an undefined structure or union.
3098 If not, it will get done when the type is completed. */
3100 if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
3102 /* This is a no-op in c-lang.c or something real in objc-act.c. */
3104 objc_check_decl (decl);
3106 if (!DECL_CONTEXT (decl))
3108 if (DECL_INITIAL (decl) == NULL_TREE
3109 || DECL_INITIAL (decl) == error_mark_node)
3110 /* Don't output anything
3111 when a tentative file-scope definition is seen.
3112 But at end of compilation, do output code for them. */
3113 DECL_DEFER_OUTPUT (decl) = 1;
3114 rest_of_decl_compilation (decl, asmspec,
3115 (DECL_CONTEXT (decl) == 0
3116 || TREE_ASM_WRITTEN (decl)), 0);
3120 /* This is a local variable. If there is an ASMSPEC, the
3121 user has requested that we handle it specially. */
3124 /* In conjunction with an ASMSPEC, the `register'
3125 keyword indicates that we should place the variable
3126 in a particular register. */
3127 if (DECL_REGISTER (decl))
3128 DECL_C_HARD_REGISTER (decl) = 1;
3130 /* If this is not a static variable, issue a warning.
3131 It doesn't make any sense to give an ASMSPEC for an
3132 ordinary, non-register local variable. Historically,
3133 GCC has accepted -- but ignored -- the ASMSPEC in
3135 if (TREE_CODE (decl) == VAR_DECL
3136 && !DECL_REGISTER (decl)
3137 && !TREE_STATIC (decl))
3138 warning_with_decl (decl,
3139 "ignoring asm-specifier for non-static local variable `%s'");
3141 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (asmspec));
3144 if (TREE_CODE (decl) != FUNCTION_DECL)
3145 add_decl_stmt (decl);
3148 if (DECL_CONTEXT (decl) != 0)
3150 /* Recompute the RTL of a local array now
3151 if it used to be an incomplete type. */
3153 && ! TREE_STATIC (decl) && ! DECL_EXTERNAL (decl))
3155 /* If we used it already as memory, it must stay in memory. */
3156 TREE_ADDRESSABLE (decl) = TREE_USED (decl);
3157 /* If it's still incomplete now, no init will save it. */
3158 if (DECL_SIZE (decl) == 0)
3159 DECL_INITIAL (decl) = 0;
3164 if (TREE_CODE (decl) == TYPE_DECL)
3166 /* This is a no-op in c-lang.c or something real in objc-act.c. */
3168 objc_check_decl (decl);
3169 rest_of_decl_compilation (decl, NULL, DECL_CONTEXT (decl) == 0, 0);
3172 /* At the end of a declaration, throw away any variable type sizes
3173 of types defined inside that declaration. There is no use
3174 computing them in the following function definition. */
3175 if (current_binding_level == global_binding_level)
3176 get_pending_sizes ();
3179 /* Given a parsed parameter declaration,
3180 decode it into a PARM_DECL and push that on the current binding level.
3181 Also, for the sake of forward parm decls,
3182 record the given order of parms in `parm_order'. */
3185 push_parm_decl (parm)
3189 int old_immediate_size_expand = immediate_size_expand;
3190 /* Don't try computing parm sizes now -- wait till fn is called. */
3191 immediate_size_expand = 0;
3193 decl = grokdeclarator (TREE_VALUE (TREE_PURPOSE (parm)),
3194 TREE_PURPOSE (TREE_PURPOSE (parm)), PARM, 0);
3195 decl_attributes (&decl, TREE_VALUE (parm), 0);
3198 if (DECL_NAME (decl))
3201 olddecl = lookup_name (DECL_NAME (decl));
3202 if (pedantic && olddecl != 0 && TREE_CODE (olddecl) == TYPE_DECL)
3203 pedwarn_with_decl (decl,
3204 "ISO C forbids parameter `%s' shadowing typedef");
3208 decl = pushdecl (decl);
3210 immediate_size_expand = old_immediate_size_expand;
3212 current_binding_level->parm_order
3213 = tree_cons (NULL_TREE, decl, current_binding_level->parm_order);
3215 /* Add this decl to the current binding level. */
3216 finish_decl (decl, NULL_TREE, NULL_TREE);
3219 /* Clear the given order of parms in `parm_order'.
3220 Used at start of parm list,
3221 and also at semicolon terminating forward decls. */
3226 current_binding_level->parm_order = NULL_TREE;
3229 /* Build a COMPOUND_LITERAL_EXPR. TYPE is the type given in the compound
3230 literal, which may be an incomplete array type completed by the
3231 initializer; INIT is a CONSTRUCTOR that initializes the compound
3235 build_compound_literal (type, init)
3239 /* We do not use start_decl here because we have a type, not a declarator;
3240 and do not use finish_decl because the decl should be stored inside
3241 the COMPOUND_LITERAL_EXPR rather than added elsewhere as a DECL_STMT. */
3242 tree decl = build_decl (VAR_DECL, NULL_TREE, type);
3245 DECL_EXTERNAL (decl) = 0;
3246 TREE_PUBLIC (decl) = 0;
3247 TREE_STATIC (decl) = (current_binding_level == global_binding_level);
3248 DECL_CONTEXT (decl) = current_function_decl;
3249 TREE_USED (decl) = 1;
3250 TREE_TYPE (decl) = type;
3251 TREE_READONLY (decl) = TREE_READONLY (type);
3252 store_init_value (decl, init);
3254 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
3256 int failure = complete_array_type (type, DECL_INITIAL (decl), 1);
3261 type = TREE_TYPE (decl);
3262 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
3263 return error_mark_node;
3265 stmt = build_stmt (DECL_STMT, decl);
3266 complit = build1 (COMPOUND_LITERAL_EXPR, TREE_TYPE (decl), stmt);
3267 TREE_SIDE_EFFECTS (complit) = 1;
3269 layout_decl (decl, 0);
3271 if (TREE_STATIC (decl))
3273 /* This decl needs a name for the assembler output. We also need
3274 a unique suffix to be added to the name. */
3276 extern int var_labelno;
3278 ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal", var_labelno);
3280 DECL_NAME (decl) = get_identifier (name);
3281 DECL_DEFER_OUTPUT (decl) = 1;
3282 DECL_COMDAT (decl) = 1;
3283 DECL_ARTIFICIAL (decl) = 1;
3285 rest_of_decl_compilation (decl, NULL, 1, 0);
3291 /* Make TYPE a complete type based on INITIAL_VALUE.
3292 Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
3293 2 if there was no information (in which case assume 1 if DO_DEFAULT). */
3296 complete_array_type (type, initial_value, do_default)
3301 tree maxindex = NULL_TREE;
3306 /* Note MAXINDEX is really the maximum index,
3307 one less than the size. */
3308 if (TREE_CODE (initial_value) == STRING_CST)
3311 = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
3312 maxindex = build_int_2 ((TREE_STRING_LENGTH (initial_value)
3315 else if (TREE_CODE (initial_value) == CONSTRUCTOR)
3317 tree elts = CONSTRUCTOR_ELTS (initial_value);
3318 maxindex = build_int_2 (-1, -1);
3319 for (; elts; elts = TREE_CHAIN (elts))
3321 if (TREE_PURPOSE (elts))
3322 maxindex = TREE_PURPOSE (elts);
3324 maxindex = fold (build (PLUS_EXPR, integer_type_node,
3325 maxindex, integer_one_node));
3327 maxindex = copy_node (maxindex);
3331 /* Make an error message unless that happened already. */
3332 if (initial_value != error_mark_node)
3335 /* Prevent further error messages. */
3336 maxindex = build_int_2 (0, 0);
3343 maxindex = build_int_2 (0, 0);
3349 TYPE_DOMAIN (type) = build_index_type (maxindex);
3350 if (!TREE_TYPE (maxindex))
3351 TREE_TYPE (maxindex) = TYPE_DOMAIN (type);
3354 /* Lay out the type now that we can get the real answer. */
3361 /* Determine whether TYPE is a structure with a flexible array member,
3362 or a union containing such a structure (possibly recursively). */
3365 flexible_array_type_p (type)
3369 switch (TREE_CODE (type))
3372 x = TYPE_FIELDS (type);
3375 while (TREE_CHAIN (x) != NULL_TREE)
3377 if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
3378 && TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
3379 && TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
3380 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
3384 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = TREE_CHAIN (x))
3386 if (flexible_array_type_p (TREE_TYPE (x)))
3395 /* Given declspecs and a declarator,
3396 determine the name and type of the object declared
3397 and construct a ..._DECL node for it.
3398 (In one case we can return a ..._TYPE node instead.
3399 For invalid input we sometimes return 0.)
3401 DECLSPECS is a chain of tree_list nodes whose value fields
3402 are the storage classes and type specifiers.
3404 DECL_CONTEXT says which syntactic context this declaration is in:
3405 NORMAL for most contexts. Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
3406 FUNCDEF for a function definition. Like NORMAL but a few different
3407 error messages in each case. Return value may be zero meaning
3408 this definition is too screwy to try to parse.
3409 PARM for a parameter declaration (either within a function prototype
3410 or before a function body). Make a PARM_DECL, or return void_type_node.
3411 TYPENAME if for a typename (in a cast or sizeof).
3412 Don't make a DECL node; just return the ..._TYPE node.
3413 FIELD for a struct or union field; make a FIELD_DECL.
3414 BITFIELD for a field with specified width.
3415 INITIALIZED is 1 if the decl has an initializer.
3417 In the TYPENAME case, DECLARATOR is really an absolute declarator.
3418 It may also be so in the PARM case, for a prototype where the
3419 argument type is specified but not the name.
3421 This function is where the complicated C meanings of `static'
3422 and `extern' are interpreted. */
3425 grokdeclarator (declarator, declspecs, decl_context, initialized)
3428 enum decl_context decl_context;
3433 tree type = NULL_TREE;
3438 int type_quals = TYPE_UNQUALIFIED;
3440 int explicit_int = 0;
3441 int explicit_char = 0;
3442 int defaulted_int = 0;
3443 tree typedef_decl = 0;
3445 tree typedef_type = 0;
3446 int funcdef_flag = 0;
3447 enum tree_code innermost_code = ERROR_MARK;
3449 int size_varies = 0;
3450 tree decl_attr = NULL_TREE;
3451 tree array_ptr_quals = NULL_TREE;
3452 int array_parm_static = 0;
3453 tree returned_attrs = NULL_TREE;
3455 if (decl_context == BITFIELD)
3456 bitfield = 1, decl_context = FIELD;
3458 if (decl_context == FUNCDEF)
3459 funcdef_flag = 1, decl_context = NORMAL;
3461 /* Look inside a declarator for the name being declared
3462 and get it as a string, for an error message. */
3464 tree decl = declarator;
3468 switch (TREE_CODE (decl))
3473 innermost_code = TREE_CODE (decl);
3474 decl = TREE_OPERAND (decl, 0);
3478 decl = TREE_VALUE (decl);
3481 case IDENTIFIER_NODE:
3482 name = IDENTIFIER_POINTER (decl);
3493 /* A function definition's declarator must have the form of
3494 a function declarator. */
3496 if (funcdef_flag && innermost_code != CALL_EXPR)
3499 /* Anything declared one level down from the top level
3500 must be one of the parameters of a function
3501 (because the body is at least two levels down). */
3503 /* If this looks like a function definition, make it one,
3504 even if it occurs where parms are expected.
3505 Then store_parm_decls will reject it and not use it as a parm. */
3506 if (decl_context == NORMAL && !funcdef_flag
3507 && current_binding_level->parm_flag)
3508 decl_context = PARM;
3510 /* Look through the decl specs and record which ones appear.
3511 Some typespecs are defined as built-in typenames.
3512 Others, the ones that are modifiers of other types,
3513 are represented by bits in SPECBITS: set the bits for
3514 the modifiers that appear. Storage class keywords are also in SPECBITS.
3516 If there is a typedef name or a type, store the type in TYPE.
3517 This includes builtin typedefs such as `int'.
3519 Set EXPLICIT_INT or EXPLICIT_CHAR if the type is `int' or `char'
3520 and did not come from a user typedef.
3522 Set LONGLONG if `long' is mentioned twice. */
3524 for (spec = declspecs; spec; spec = TREE_CHAIN (spec))
3526 tree id = TREE_VALUE (spec);
3528 /* If the entire declaration is itself tagged as deprecated then
3529 suppress reports of deprecated items. */
3530 if (id && TREE_DEPRECATED (id))
3532 if (deprecated_state != DEPRECATED_SUPPRESS)
3533 warn_deprecated_use (id);
3536 if (id == ridpointers[(int) RID_INT])
3538 if (id == ridpointers[(int) RID_CHAR])
3541 if (TREE_CODE (id) == IDENTIFIER_NODE && C_IS_RESERVED_WORD (id))
3543 enum rid i = C_RID_CODE (id);
3544 if ((int) i <= (int) RID_LAST_MODIFIER)
3546 if (i == RID_LONG && (specbits & (1 << (int) RID_LONG)))
3549 error ("`long long long' is too long for GCC");
3552 if (pedantic && !flag_isoc99 && ! in_system_header
3554 pedwarn ("ISO C90 does not support `long long'");
3558 else if (specbits & (1 << (int) i))
3559 pedwarn ("duplicate `%s'", IDENTIFIER_POINTER (id));
3561 /* Diagnose "__thread extern". Recall that this list
3562 is in the reverse order seen in the text. */
3564 && (specbits & (1 << (int) RID_EXTERN
3565 | 1 << (int) RID_STATIC)))
3567 if (specbits & 1 << (int) RID_EXTERN)
3568 error ("`__thread' before `extern'");
3570 error ("`__thread' before `static'");
3573 specbits |= 1 << (int) i;
3578 error ("two or more data types in declaration of `%s'", name);
3579 /* Actual typedefs come to us as TYPE_DECL nodes. */
3580 else if (TREE_CODE (id) == TYPE_DECL)
3582 if (TREE_TYPE (id) == error_mark_node)
3583 ; /* Allow the type to default to int to avoid cascading errors. */
3586 type = TREE_TYPE (id);
3587 decl_attr = DECL_ATTRIBUTES (id);
3591 /* Built-in types come as identifiers. */
3592 else if (TREE_CODE (id) == IDENTIFIER_NODE)
3594 tree t = lookup_name (id);
3595 if (TREE_TYPE (t) == error_mark_node)
3597 else if (!t || TREE_CODE (t) != TYPE_DECL)
3598 error ("`%s' fails to be a typedef or built in type",
3599 IDENTIFIER_POINTER (id));
3602 type = TREE_TYPE (t);
3606 else if (TREE_CODE (id) != ERROR_MARK)
3613 typedef_type = type;
3615 size_varies = C_TYPE_VARIABLE_SIZE (type);
3617 /* No type at all: default to `int', and set DEFAULTED_INT
3618 because it was not a user-defined typedef. */
3622 if ((! (specbits & ((1 << (int) RID_LONG) | (1 << (int) RID_SHORT)
3623 | (1 << (int) RID_SIGNED)
3624 | (1 << (int) RID_UNSIGNED)
3625 | (1 << (int) RID_COMPLEX))))
3626 /* Don't warn about typedef foo = bar. */
3627 && ! (specbits & (1 << (int) RID_TYPEDEF) && initialized)
3628 && ! in_system_header)
3630 /* Issue a warning if this is an ISO C 99 program or if -Wreturn-type
3631 and this is a function, or if -Wimplicit; prefer the former
3632 warning since it is more explicit. */
3633 if ((warn_implicit_int || warn_return_type || flag_isoc99)
3635 warn_about_return_type = 1;
3636 else if (warn_implicit_int || flag_isoc99)
3637 pedwarn_c99 ("type defaults to `int' in declaration of `%s'",
3642 type = integer_type_node;
3645 /* Now process the modifiers that were specified
3646 and check for invalid combinations. */
3648 /* Long double is a special combination. */
3650 if ((specbits & 1 << (int) RID_LONG) && ! longlong
3651 && TYPE_MAIN_VARIANT (type) == double_type_node)
3653 specbits &= ~(1 << (int) RID_LONG);
3654 type = long_double_type_node;
3657 /* Check all other uses of type modifiers. */
3659 if (specbits & ((1 << (int) RID_LONG) | (1 << (int) RID_SHORT)
3660 | (1 << (int) RID_UNSIGNED) | (1 << (int) RID_SIGNED)))
3664 if ((specbits & 1 << (int) RID_LONG)
3665 && (specbits & 1 << (int) RID_SHORT))
3666 error ("both long and short specified for `%s'", name);
3667 else if (((specbits & 1 << (int) RID_LONG)
3668 || (specbits & 1 << (int) RID_SHORT))
3670 error ("long or short specified with char for `%s'", name);
3671 else if (((specbits & 1 << (int) RID_LONG)
3672 || (specbits & 1 << (int) RID_SHORT))
3673 && TREE_CODE (type) == REAL_TYPE)
3675 static int already = 0;
3677 error ("long or short specified with floating type for `%s'", name);
3678 if (! already && ! pedantic)
3680 error ("the only valid combination is `long double'");
3684 else if ((specbits & 1 << (int) RID_SIGNED)
3685 && (specbits & 1 << (int) RID_UNSIGNED))
3686 error ("both signed and unsigned specified for `%s'", name);
3687 else if (TREE_CODE (type) != INTEGER_TYPE)
3688 error ("long, short, signed or unsigned invalid for `%s'", name);
3692 if (!explicit_int && !defaulted_int && !explicit_char && pedantic)
3694 pedwarn ("long, short, signed or unsigned used invalidly for `%s'",
3696 if (flag_pedantic_errors)
3701 /* Discard the type modifiers if they are invalid. */
3704 specbits &= ~((1 << (int) RID_LONG) | (1 << (int) RID_SHORT)
3705 | (1 << (int) RID_UNSIGNED) | (1 << (int) RID_SIGNED));
3710 if ((specbits & (1 << (int) RID_COMPLEX))
3711 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
3713 error ("complex invalid for `%s'", name);
3714 specbits &= ~(1 << (int) RID_COMPLEX);
3717 /* Decide whether an integer type is signed or not.
3718 Optionally treat bitfields as signed by default. */
3719 if (specbits & 1 << (int) RID_UNSIGNED
3720 || (bitfield && ! flag_signed_bitfields
3721 && (explicit_int || defaulted_int || explicit_char
3722 /* A typedef for plain `int' without `signed'
3723 can be controlled just like plain `int'. */
3724 || ! (typedef_decl != 0
3725 && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)))
3726 && TREE_CODE (type) != ENUMERAL_TYPE
3727 && !(specbits & 1 << (int) RID_SIGNED)))
3730 type = long_long_unsigned_type_node;
3731 else if (specbits & 1 << (int) RID_LONG)
3732 type = long_unsigned_type_node;
3733 else if (specbits & 1 << (int) RID_SHORT)
3734 type = short_unsigned_type_node;
3735 else if (type == char_type_node)
3736 type = unsigned_char_type_node;
3737 else if (typedef_decl)
3738 type = c_common_unsigned_type (type);
3740 type = unsigned_type_node;
3742 else if ((specbits & 1 << (int) RID_SIGNED)
3743 && type == char_type_node)
3744 type = signed_char_type_node;
3746 type = long_long_integer_type_node;
3747 else if (specbits & 1 << (int) RID_LONG)
3748 type = long_integer_type_node;
3749 else if (specbits & 1 << (int) RID_SHORT)
3750 type = short_integer_type_node;
3752 if (specbits & 1 << (int) RID_COMPLEX)
3754 if (pedantic && !flag_isoc99)
3755 pedwarn ("ISO C90 does not support complex types");
3756 /* If we just have "complex", it is equivalent to
3757 "complex double", but if any modifiers at all are specified it is
3758 the complex form of TYPE. E.g, "complex short" is
3759 "complex short int". */
3761 if (defaulted_int && ! longlong
3762 && ! (specbits & ((1 << (int) RID_LONG) | (1 << (int) RID_SHORT)
3763 | (1 << (int) RID_SIGNED)
3764 | (1 << (int) RID_UNSIGNED))))
3767 pedwarn ("ISO C does not support plain `complex' meaning `double complex'");
3768 type = complex_double_type_node;
3770 else if (type == integer_type_node)
3773 pedwarn ("ISO C does not support complex integer types");
3774 type = complex_integer_type_node;
3776 else if (type == float_type_node)
3777 type = complex_float_type_node;
3778 else if (type == double_type_node)
3779 type = complex_double_type_node;
3780 else if (type == long_double_type_node)
3781 type = complex_long_double_type_node;
3785 pedwarn ("ISO C does not support complex integer types");
3786 type = build_complex_type (type);
3790 /* Figure out the type qualifiers for the declaration. There are
3791 two ways a declaration can become qualified. One is something
3792 like `const int i' where the `const' is explicit. Another is
3793 something like `typedef const int CI; CI i' where the type of the
3794 declaration contains the `const'. */
3795 constp = !! (specbits & 1 << (int) RID_CONST) + TYPE_READONLY (type);
3796 restrictp = !! (specbits & 1 << (int) RID_RESTRICT) + TYPE_RESTRICT (type);
3797 volatilep = !! (specbits & 1 << (int) RID_VOLATILE) + TYPE_VOLATILE (type);
3798 inlinep = !! (specbits & (1 << (int) RID_INLINE));
3799 if (constp > 1 && ! flag_isoc99)
3800 pedwarn ("duplicate `const'");
3801 if (restrictp > 1 && ! flag_isoc99)
3802 pedwarn ("duplicate `restrict'");
3803 if (volatilep > 1 && ! flag_isoc99)
3804 pedwarn ("duplicate `volatile'");
3805 if (! flag_gen_aux_info && (TYPE_QUALS (type)))
3806 type = TYPE_MAIN_VARIANT (type);
3807 type_quals = ((constp ? TYPE_QUAL_CONST : 0)
3808 | (restrictp ? TYPE_QUAL_RESTRICT : 0)
3809 | (volatilep ? TYPE_QUAL_VOLATILE : 0));
3811 /* Warn if two storage classes are given. Default to `auto'. */
3816 if (specbits & 1 << (int) RID_AUTO) nclasses++;
3817 if (specbits & 1 << (int) RID_STATIC) nclasses++;
3818 if (specbits & 1 << (int) RID_EXTERN) nclasses++;
3819 if (specbits & 1 << (int) RID_REGISTER) nclasses++;
3820 if (specbits & 1 << (int) RID_TYPEDEF) nclasses++;
3822 /* "static __thread" and "extern __thread" are allowed. */
3823 if ((specbits & (1 << (int) RID_THREAD
3824 | 1 << (int) RID_STATIC
3825 | 1 << (int) RID_EXTERN)) == (1 << (int) RID_THREAD))
3828 /* Warn about storage classes that are invalid for certain
3829 kinds of declarations (parameters, typenames, etc.). */
3832 error ("multiple storage classes in declaration of `%s'", name);
3833 else if (funcdef_flag
3835 & ((1 << (int) RID_REGISTER)
3836 | (1 << (int) RID_AUTO)
3837 | (1 << (int) RID_TYPEDEF)
3838 | (1 << (int) RID_THREAD))))
3840 if (specbits & 1 << (int) RID_AUTO
3841 && (pedantic || current_binding_level == global_binding_level))
3842 pedwarn ("function definition declared `auto'");
3843 if (specbits & 1 << (int) RID_REGISTER)
3844 error ("function definition declared `register'");
3845 if (specbits & 1 << (int) RID_TYPEDEF)
3846 error ("function definition declared `typedef'");
3847 if (specbits & 1 << (int) RID_THREAD)
3848 error ("function definition declared `__thread'");
3849 specbits &= ~((1 << (int) RID_TYPEDEF) | (1 << (int) RID_REGISTER)
3850 | (1 << (int) RID_AUTO) | (1 << (int) RID_THREAD));
3852 else if (decl_context != NORMAL && nclasses > 0)
3854 if (decl_context == PARM && specbits & 1 << (int) RID_REGISTER)
3858 switch (decl_context)
3861 error ("storage class specified for structure field `%s'",
3865 error ("storage class specified for parameter `%s'", name);
3868 error ("storage class specified for typename");
3871 specbits &= ~((1 << (int) RID_TYPEDEF) | (1 << (int) RID_REGISTER)
3872 | (1 << (int) RID_AUTO) | (1 << (int) RID_STATIC)
3873 | (1 << (int) RID_EXTERN) | (1 << (int) RID_THREAD));
3876 else if (specbits & 1 << (int) RID_EXTERN && initialized && ! funcdef_flag)
3878 /* `extern' with initialization is invalid if not at top level. */
3879 if (current_binding_level == global_binding_level)
3880 warning ("`%s' initialized and declared `extern'", name);
3882 error ("`%s' has both `extern' and initializer", name);
3884 else if (current_binding_level == global_binding_level)
3886 if (specbits & 1 << (int) RID_AUTO)
3887 error ("top-level declaration of `%s' specifies `auto'", name);
3891 if (specbits & 1 << (int) RID_EXTERN && funcdef_flag)
3892 error ("nested function `%s' declared `extern'", name);
3893 else if ((specbits & (1 << (int) RID_THREAD
3894 | 1 << (int) RID_EXTERN
3895 | 1 << (int) RID_STATIC))
3896 == (1 << (int) RID_THREAD))
3898 error ("function-scope `%s' implicitly auto and declared `__thread'",
3900 specbits &= ~(1 << (int) RID_THREAD);
3905 /* Now figure out the structure of the declarator proper.
3906 Descend through it, creating more complex types, until we reach
3907 the declared identifier (or NULL_TREE, in an absolute declarator). */
3909 while (declarator && TREE_CODE (declarator) != IDENTIFIER_NODE)
3911 if (type == error_mark_node)
3913 declarator = TREE_OPERAND (declarator, 0);
3917 /* Each level of DECLARATOR is either an ARRAY_REF (for ...[..]),
3918 an INDIRECT_REF (for *...),
3919 a CALL_EXPR (for ...(...)),
3920 a TREE_LIST (for nested attributes),
3921 an identifier (for the name being declared)
3922 or a null pointer (for the place in an absolute declarator
3923 where the name was omitted).
3924 For the last two cases, we have just exited the loop.
3926 At this point, TYPE is the type of elements of an array,
3927 or for a function to return, or for a pointer to point to.
3928 After this sequence of ifs, TYPE is the type of the
3929 array or function or pointer, and DECLARATOR has had its
3930 outermost layer removed. */
3932 if (array_ptr_quals != NULL_TREE || array_parm_static)
3934 /* Only the innermost declarator (making a parameter be of
3935 array type which is converted to pointer type)
3936 may have static or type qualifiers. */
3937 error ("static or type qualifiers in non-parameter array declarator");
3938 array_ptr_quals = NULL_TREE;
3939 array_parm_static = 0;
3942 if (TREE_CODE (declarator) == TREE_LIST)
3944 /* We encode a declarator with embedded attributes using
3946 tree attrs = TREE_PURPOSE (declarator);
3949 declarator = TREE_VALUE (declarator);
3950 inner_decl = declarator;
3951 while (inner_decl != NULL_TREE
3952 && TREE_CODE (inner_decl) == TREE_LIST)
3953 inner_decl = TREE_VALUE (inner_decl);
3954 if (inner_decl == NULL_TREE
3955 || TREE_CODE (inner_decl) == IDENTIFIER_NODE)
3956 attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
3957 else if (TREE_CODE (inner_decl) == CALL_EXPR)
3958 attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
3959 else if (TREE_CODE (inner_decl) == ARRAY_REF)
3960 attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
3961 returned_attrs = decl_attributes (&type,
3962 chainon (returned_attrs, attrs),
3965 else if (TREE_CODE (declarator) == ARRAY_REF)
3967 tree itype = NULL_TREE;
3968 tree size = TREE_OPERAND (declarator, 1);
3969 /* The index is a signed object `sizetype' bits wide. */
3970 tree index_type = c_common_signed_type (sizetype);
3972 array_ptr_quals = TREE_TYPE (declarator);
3973 array_parm_static = TREE_STATIC (declarator);
3975 declarator = TREE_OPERAND (declarator, 0);
3977 /* Check for some types that there cannot be arrays of. */
3979 if (VOID_TYPE_P (type))
3981 error ("declaration of `%s' as array of voids", name);
3982 type = error_mark_node;
3985 if (TREE_CODE (type) == FUNCTION_TYPE)
3987 error ("declaration of `%s' as array of functions", name);
3988 type = error_mark_node;
3991 if (pedantic && flexible_array_type_p (type))
3992 pedwarn ("invalid use of structure with flexible array member");
3994 if (size == error_mark_node)
3995 type = error_mark_node;
3997 if (type == error_mark_node)
4000 /* If size was specified, set ITYPE to a range-type for that size.
4001 Otherwise, ITYPE remains null. finish_decl may figure it out
4002 from an initial value. */
4006 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4007 STRIP_TYPE_NOPS (size);
4009 if (! INTEGRAL_TYPE_P (TREE_TYPE (size)))
4011 error ("size of array `%s' has non-integer type", name);
4012 size = integer_one_node;