OSDN Git Service

* basic-block.h: Remove the prototype for
[pf3gnuchains/gcc-fork.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2    Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3    Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
24
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
33
34 /* Head of register set linked list.  */
35 typedef bitmap_head regset_head;
36
37 /* A pointer to a regset_head.  */
38 typedef bitmap regset;
39
40 /* Allocate a register set with oballoc.  */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42
43 /* Do any cleanup needed on a regset when it is no longer used.  */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45
46 /* Initialize a new regset.  */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48
49 /* Clear a register set by freeing up the linked list.  */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51
52 /* Copy a register set to another register set.  */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54
55 /* Compare two register sets.  */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57
58 /* `and' a register set with a second register set.  */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60
61 /* `and' the complement of a register set with a register set.  */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63
64 /* Inclusive or a register set with a second register set.  */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66
67 /* Exclusive or a register set with a second register set.  */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2.  */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72   bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73
74 /* Clear a single register in a register set.  */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76
77 /* Set a single register in a register set.  */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79
80 /* Return true if a register is set in a register set.  */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82
83 /* Copy the hard registers in a register set to the hard register set.  */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM)                               \
86 do {                                                                    \
87   CLEAR_HARD_REG_SET (TO);                                              \
88   reg_set_to_hard_reg_set (&TO, FROM);                                  \
89 } while (0)
90
91 typedef bitmap_iterator reg_set_iterator;
92
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94    register number and executing CODE for all registers that are set.  */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI)     \
96   EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99    REGNUM to the register number and executing CODE for all registers that are
100    set in the first regset and not set in the second.  */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102   EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105    REGNUM to the register number and executing CODE for all registers that are
106    set in both regsets.  */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108   EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109
110 /* Type we use to hold basic block counters.  Should be at least
111    64bit.  Although a counter cannot be negative, we use a signed
112    type, because erroneous negative counts can be generated when the
113    flow graph is manipulated by various optimizations.  A signed type
114    makes those easy to detect.  */
115 typedef HOST_WIDEST_INT gcov_type;
116
117 /* Control flow edge information.  */
118 struct edge_def GTY(())
119 {
120   /* The two blocks at the ends of the edge.  */
121   struct basic_block_def *src;
122   struct basic_block_def *dest;
123
124   /* Instructions queued on the edge.  */
125   union edge_def_insns {
126     tree GTY ((tag ("true"))) t;
127     rtx GTY ((tag ("false"))) r;
128   } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129
130   /* Auxiliary info specific to a pass.  */
131   PTR GTY ((skip (""))) aux;
132
133   /* Location of any goto implicit in the edge, during tree-ssa.  */
134   source_locus goto_locus;
135
136   int flags;                    /* see EDGE_* below  */
137   int probability;              /* biased by REG_BR_PROB_BASE */
138   gcov_type count;              /* Expected number of executions calculated
139                                    in profile.c  */
140
141   /* The index number corresponding to this edge in the edge vector
142      dest->preds.  */
143   unsigned int dest_idx;
144 };
145
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
150
151 #define EDGE_FALLTHRU           1       /* 'Straight line' flow */
152 #define EDGE_ABNORMAL           2       /* Strange flow, like computed
153                                            label, or eh */
154 #define EDGE_ABNORMAL_CALL      4       /* Call with abnormal exit
155                                            like an exception, or sibcall */
156 #define EDGE_EH                 8       /* Exception throw */
157 #define EDGE_FAKE               16      /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK           32      /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU       64      /* Candidate for straight line
160                                            flow.  */
161 #define EDGE_IRREDUCIBLE_LOOP   128     /* Part of irreducible loop.  */
162 #define EDGE_SIBCALL            256     /* Edge from sibcall to exit.  */
163 #define EDGE_LOOP_EXIT          512     /* Exit of a loop.  */
164 #define EDGE_TRUE_VALUE         1024    /* Edge taken when controlling
165                                            predicate is nonzero.  */
166 #define EDGE_FALSE_VALUE        2048    /* Edge taken when controlling
167                                            predicate is zero.  */
168 #define EDGE_EXECUTABLE         4096    /* Edge is executable.  Only
169                                            valid during SSA-CCP.  */
170 #define EDGE_CROSSING           8192    /* Edge crosses between hot
171                                            and cold sections, when we
172                                            do partitioning.  */
173 #define EDGE_ALL_FLAGS         16383
174
175 #define EDGE_COMPLEX    (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176
177 /* Counter summary from the last set of coverage counts read by
178    profile.c.  */
179 extern const struct gcov_ctr_summary *profile_info;
180
181 /* Declared in cfgloop.h.  */
182 struct loop;
183
184 /* Declared in tree-flow.h.  */
185 struct edge_prediction;
186 struct rtl_bb_info;
187
188 /* A basic block is a sequence of instructions with only entry and
189    only one exit.  If any one of the instructions are executed, they
190    will all be executed, and in sequence from first to last.
191
192    There may be COND_EXEC instructions in the basic block.  The
193    COND_EXEC *instructions* will be executed -- but if the condition
194    is false the conditionally executed *expressions* will of course
195    not be executed.  We don't consider the conditionally executed
196    expression (which might have side-effects) to be in a separate
197    basic block because the program counter will always be at the same
198    location after the COND_EXEC instruction, regardless of whether the
199    condition is true or not.
200
201    Basic blocks need not start with a label nor end with a jump insn.
202    For example, a previous basic block may just "conditionally fall"
203    into the succeeding basic block, and the last basic block need not
204    end with a jump insn.  Block 0 is a descendant of the entry block.
205
206    A basic block beginning with two labels cannot have notes between
207    the labels.
208
209    Data for jump tables are stored in jump_insns that occur in no
210    basic block even though these insns can follow or precede insns in
211    basic blocks.  */
212
213 /* Basic block information indexed by block number.  */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
215 {
216   /* Pointers to the first and last trees of the block.  */
217   tree stmt_list;
218
219   /* The edges into and out of the block.  */
220   VEC(edge,gc) *preds;
221   VEC(edge,gc) *succs;
222
223   /* Auxiliary info specific to a pass.  */
224   PTR GTY ((skip (""))) aux;
225
226   /* Innermost loop containing the block.  */
227   struct loop * GTY ((skip (""))) loop_father;
228
229   /* The dominance and postdominance information node.  */
230   struct et_node * GTY ((skip (""))) dom[2];
231
232   /* Previous and next blocks in the chain.  */
233   struct basic_block_def *prev_bb;
234   struct basic_block_def *next_bb;
235
236   union basic_block_il_dependent {
237       struct rtl_bb_info * GTY ((tag ("1"))) rtl;
238     } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
239
240   /* Chain of PHI nodes for this block.  */
241   tree phi_nodes;
242
243   /* A list of predictions.  */
244   struct edge_prediction *predictions;
245
246   /* Expected number of executions: calculated in profile.c.  */
247   gcov_type count;
248
249   /* The index of this block.  */
250   int index;
251
252   /* The loop depth of this block.  */
253   int loop_depth;
254
255   /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
256   int frequency;
257
258   /* Various flags.  See BB_* below.  */
259   int flags;
260 };
261
262 struct rtl_bb_info GTY(())
263 {
264   /* The first and last insns of the block.  */
265   rtx head_;
266   rtx end_;
267
268   /* The registers that are live on entry to this block.  */
269   bitmap GTY ((skip (""))) global_live_at_start;
270
271   /* The registers that are live on exit from this block.  */
272   bitmap GTY ((skip (""))) global_live_at_end;
273
274   /* In CFGlayout mode points to insn notes/jumptables to be placed just before
275      and after the block.   */
276   rtx header;
277   rtx footer;
278
279   /* This field is used by the bb-reorder and tracer passes.  */
280   int visited;
281 };
282
283 typedef struct basic_block_def *basic_block;
284
285 DEF_VEC_P(basic_block);
286 DEF_VEC_ALLOC_P(basic_block,gc);
287 DEF_VEC_ALLOC_P(basic_block,heap);
288
289 #define BB_FREQ_MAX 10000
290
291 /* Masks for basic_block.flags.
292
293    BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
294    the compilation, so they are never cleared.
295
296    All other flags may be cleared by clear_bb_flags().  It is generally
297    a bad idea to rely on any flags being up-to-date.  */
298
299 enum bb_flags
300 {
301
302   /* Set if insns in BB have are modified.  Used for updating liveness info.  */
303   BB_DIRTY = 1,
304
305   /* Only set on blocks that have just been created by create_bb.  */
306   BB_NEW = 2,
307
308   /* Set by find_unreachable_blocks.  Do not rely on this being set in any
309      pass.  */
310   BB_REACHABLE = 4,
311
312   /* Set for blocks in an irreducible loop by loop analysis.  */
313   BB_IRREDUCIBLE_LOOP = 8,
314
315   /* Set on blocks that may actually not be single-entry single-exit block.  */
316   BB_SUPERBLOCK = 16,
317
318   /* Set on basic blocks that the scheduler should not touch.  This is used
319      by SMS to prevent other schedulers from messing with the loop schedule.  */
320   BB_DISABLE_SCHEDULE = 32,
321
322   /* Set on blocks that should be put in a hot section.  */
323   BB_HOT_PARTITION = 64,
324
325   /* Set on blocks that should be put in a cold section.  */
326   BB_COLD_PARTITION = 128,
327
328   /* Set on block that was duplicated.  */
329   BB_DUPLICATED = 256,
330
331   /* Set on blocks that are in RTL format.  */
332   BB_RTL = 1024,
333
334   /* Set on blocks that are forwarder blocks.
335      Only used in cfgcleanup.c.  */
336   BB_FORWARDER_BLOCK = 2048,
337
338   /* Set on blocks that cannot be threaded through.
339      Only used in cfgcleanup.c.  */
340   BB_NONTHREADABLE_BLOCK = 4096
341 };
342
343 /* Dummy flag for convenience in the hot/cold partitioning code.  */
344 #define BB_UNPARTITIONED        0
345
346 /* Partitions, to be used when partitioning hot and cold basic blocks into
347    separate sections.  */
348 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
349 #define BB_SET_PARTITION(bb, part) do {                                 \
350   basic_block bb_ = (bb);                                               \
351   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))    \
352                 | (part));                                              \
353 } while (0)
354
355 #define BB_COPY_PARTITION(dstbb, srcbb) \
356   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
357
358 /* A structure to group all the per-function control flow graph data.
359    The x_* prefixing is necessary because otherwise references to the
360    fields of this struct are interpreted as the defines for backward
361    source compatibility following the definition of this struct.  */
362 struct control_flow_graph GTY(())
363 {
364   /* Block pointers for the exit and entry of a function.
365      These are always the head and tail of the basic block list.  */
366   basic_block x_entry_block_ptr;
367   basic_block x_exit_block_ptr;
368
369   /* Index by basic block number, get basic block struct info.  */
370   VEC(basic_block,gc) *x_basic_block_info;
371
372   /* Number of basic blocks in this flow graph.  */
373   int x_n_basic_blocks;
374
375   /* Number of edges in this flow graph.  */
376   int x_n_edges;
377
378   /* The first free basic block number.  */
379   int x_last_basic_block;
380
381   /* Mapping of labels to their associated blocks.  At present
382      only used for the tree CFG.  */
383   VEC(basic_block,gc) *x_label_to_block_map;
384
385   enum profile_status {
386     PROFILE_ABSENT,
387     PROFILE_GUESSED,
388     PROFILE_READ
389   } x_profile_status;
390 };
391
392 /* Defines for accessing the fields of the CFG structure for function FN.  */
393 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN)     ((FN)->cfg->x_entry_block_ptr)
394 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN)      ((FN)->cfg->x_exit_block_ptr)
395 #define basic_block_info_for_function(FN)    ((FN)->cfg->x_basic_block_info)
396 #define n_basic_blocks_for_function(FN)      ((FN)->cfg->x_n_basic_blocks)
397 #define n_edges_for_function(FN)             ((FN)->cfg->x_n_edges)
398 #define last_basic_block_for_function(FN)    ((FN)->cfg->x_last_basic_block)
399 #define label_to_block_map_for_function(FN)  ((FN)->cfg->x_label_to_block_map)
400
401 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
402   (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
403
404 /* Defines for textual backward source compatibility.  */
405 #define ENTRY_BLOCK_PTR         (cfun->cfg->x_entry_block_ptr)
406 #define EXIT_BLOCK_PTR          (cfun->cfg->x_exit_block_ptr)
407 #define basic_block_info        (cfun->cfg->x_basic_block_info)
408 #define n_basic_blocks          (cfun->cfg->x_n_basic_blocks)
409 #define n_edges                 (cfun->cfg->x_n_edges)
410 #define last_basic_block        (cfun->cfg->x_last_basic_block)
411 #define label_to_block_map      (cfun->cfg->x_label_to_block_map)
412 #define profile_status          (cfun->cfg->x_profile_status)
413
414 #define BASIC_BLOCK(N)          (VEC_index (basic_block, basic_block_info, (N)))
415 #define SET_BASIC_BLOCK(N,BB)   (VEC_replace (basic_block, basic_block_info, (N), (BB)))
416
417 /* For iterating over basic blocks.  */
418 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
419   for (BB = FROM; BB != TO; BB = BB->DIR)
420
421 #define FOR_EACH_BB_FN(BB, FN) \
422   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
423
424 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
425
426 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
427   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
428
429 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
430
431 /* For iterating over insns in basic block.  */
432 #define FOR_BB_INSNS(BB, INSN)                  \
433   for ((INSN) = BB_HEAD (BB);                   \
434        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));     \
435        (INSN) = NEXT_INSN (INSN))
436
437 #define FOR_BB_INSNS_REVERSE(BB, INSN)          \
438   for ((INSN) = BB_END (BB);                    \
439        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));    \
440        (INSN) = PREV_INSN (INSN))
441
442 /* Cycles through _all_ basic blocks, even the fake ones (entry and
443    exit block).  */
444
445 #define FOR_ALL_BB(BB) \
446   for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
447
448 #define FOR_ALL_BB_FN(BB, FN) \
449   for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
450
451 extern bitmap_obstack reg_obstack;
452
453 /* Indexed by n, gives number of basic block that  (REG n) is used in.
454    If the value is REG_BLOCK_GLOBAL (-2),
455    it means (REG n) is used in more than one basic block.
456    REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
457    This information remains valid for the rest of the compilation
458    of the current function; it is used to control register allocation.  */
459
460 #define REG_BLOCK_UNKNOWN -1
461 #define REG_BLOCK_GLOBAL -2
462
463 #define REG_BASIC_BLOCK(N)                              \
464   (VEC_index (reg_info_p, reg_n_info, N)->basic_block)
465 \f
466 /* Stuff for recording basic block info.  */
467
468 #define BB_HEAD(B)      (B)->il.rtl->head_
469 #define BB_END(B)       (B)->il.rtl->end_
470
471 /* Special block numbers [markers] for entry and exit.  */
472 #define ENTRY_BLOCK (0)
473 #define EXIT_BLOCK (1)
474
475 /* The two blocks that are always in the cfg.  */
476 #define NUM_FIXED_BLOCKS (2)
477
478
479 #define BLOCK_NUM(INSN)       (BLOCK_FOR_INSN (INSN)->index + 0)
480 #define set_block_for_insn(INSN, BB)  (BLOCK_FOR_INSN (INSN) = BB)
481
482 extern void compute_bb_for_insn (void);
483 extern unsigned int free_bb_for_insn (void);
484 extern void update_bb_for_insn (basic_block);
485
486 extern void free_basic_block_vars (void);
487
488 extern void insert_insn_on_edge (rtx, edge);
489 basic_block split_edge_and_insert (edge, rtx);
490
491 extern void commit_edge_insertions (void);
492
493 extern void remove_fake_edges (void);
494 extern void remove_fake_exit_edges (void);
495 extern void add_noreturn_fake_exit_edges (void);
496 extern void connect_infinite_loops_to_exit (void);
497 extern edge unchecked_make_edge (basic_block, basic_block, int);
498 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
499 extern edge make_edge (basic_block, basic_block, int);
500 extern edge make_single_succ_edge (basic_block, basic_block, int);
501 extern void remove_edge (edge);
502 extern void redirect_edge_succ (edge, basic_block);
503 extern edge redirect_edge_succ_nodup (edge, basic_block);
504 extern void redirect_edge_pred (edge, basic_block);
505 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
506 extern void clear_bb_flags (void);
507 extern int post_order_compute (int *, bool);
508 extern int pre_and_rev_post_order_compute (int *, int *, bool);
509 extern int dfs_enumerate_from (basic_block, int,
510                                bool (*)(basic_block, void *),
511                                basic_block *, int, void *);
512 extern void compute_dominance_frontiers (bitmap *);
513 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
514 extern void dump_edge_info (FILE *, edge, int);
515 extern void brief_dump_cfg (FILE *);
516 extern void clear_edges (void);
517 extern rtx first_insn_after_basic_block_note (basic_block);
518 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
519 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
520                                              gcov_type);
521
522 /* Structure to group all of the information to process IF-THEN and
523    IF-THEN-ELSE blocks for the conditional execution support.  This
524    needs to be in a public file in case the IFCVT macros call
525    functions passing the ce_if_block data structure.  */
526
527 typedef struct ce_if_block
528 {
529   basic_block test_bb;                  /* First test block.  */
530   basic_block then_bb;                  /* THEN block.  */
531   basic_block else_bb;                  /* ELSE block or NULL.  */
532   basic_block join_bb;                  /* Join THEN/ELSE blocks.  */
533   basic_block last_test_bb;             /* Last bb to hold && or || tests.  */
534   int num_multiple_test_blocks;         /* # of && and || basic blocks.  */
535   int num_and_and_blocks;               /* # of && blocks.  */
536   int num_or_or_blocks;                 /* # of || blocks.  */
537   int num_multiple_test_insns;          /* # of insns in && and || blocks.  */
538   int and_and_p;                        /* Complex test is &&.  */
539   int num_then_insns;                   /* # of insns in THEN block.  */
540   int num_else_insns;                   /* # of insns in ELSE block.  */
541   int pass;                             /* Pass number.  */
542
543 #ifdef IFCVT_EXTRA_FIELDS
544   IFCVT_EXTRA_FIELDS                    /* Any machine dependent fields.  */
545 #endif
546
547 } ce_if_block_t;
548
549 /* This structure maintains an edge list vector.  */
550 struct edge_list
551 {
552   int num_blocks;
553   int num_edges;
554   edge *index_to_edge;
555 };
556
557 /* The base value for branch probability notes and edge probabilities.  */
558 #define REG_BR_PROB_BASE  10000
559
560 /* This is the value which indicates no edge is present.  */
561 #define EDGE_INDEX_NO_EDGE      -1
562
563 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
564    if there is no edge between the 2 basic blocks.  */
565 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
566
567 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
568    block which is either the pred or succ end of the indexed edge.  */
569 #define INDEX_EDGE_PRED_BB(el, index)   ((el)->index_to_edge[(index)]->src)
570 #define INDEX_EDGE_SUCC_BB(el, index)   ((el)->index_to_edge[(index)]->dest)
571
572 /* INDEX_EDGE returns a pointer to the edge.  */
573 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
574
575 /* Number of edges in the compressed edge list.  */
576 #define NUM_EDGES(el)                   ((el)->num_edges)
577
578 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
579 #define FALLTHRU_EDGE(bb)               (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
580                                          ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
581
582 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
583 #define BRANCH_EDGE(bb)                 (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
584                                          ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
585
586 /* Return expected execution frequency of the edge E.  */
587 #define EDGE_FREQUENCY(e)               (((e)->src->frequency \
588                                           * (e)->probability \
589                                           + REG_BR_PROB_BASE / 2) \
590                                          / REG_BR_PROB_BASE)
591
592 /* Return nonzero if edge is critical.  */
593 #define EDGE_CRITICAL_P(e)              (EDGE_COUNT ((e)->src->succs) >= 2 \
594                                          && EDGE_COUNT ((e)->dest->preds) >= 2)
595
596 #define EDGE_COUNT(ev)                  VEC_length (edge, (ev))
597 #define EDGE_I(ev,i)                    VEC_index  (edge, (ev), (i))
598 #define EDGE_PRED(bb,i)                 VEC_index  (edge, (bb)->preds, (i))
599 #define EDGE_SUCC(bb,i)                 VEC_index  (edge, (bb)->succs, (i))
600
601 /* Returns true if BB has precisely one successor.  */
602
603 static inline bool
604 single_succ_p (basic_block bb)
605 {
606   return EDGE_COUNT (bb->succs) == 1;
607 }
608
609 /* Returns true if BB has precisely one predecessor.  */
610
611 static inline bool
612 single_pred_p (basic_block bb)
613 {
614   return EDGE_COUNT (bb->preds) == 1;
615 }
616
617 /* Returns the single successor edge of basic block BB.  Aborts if
618    BB does not have exactly one successor.  */
619
620 static inline edge
621 single_succ_edge (basic_block bb)
622 {
623   gcc_assert (single_succ_p (bb));
624   return EDGE_SUCC (bb, 0);
625 }
626
627 /* Returns the single predecessor edge of basic block BB.  Aborts
628    if BB does not have exactly one predecessor.  */
629
630 static inline edge
631 single_pred_edge (basic_block bb)
632 {
633   gcc_assert (single_pred_p (bb));
634   return EDGE_PRED (bb, 0);
635 }
636
637 /* Returns the single successor block of basic block BB.  Aborts
638    if BB does not have exactly one successor.  */
639
640 static inline basic_block
641 single_succ (basic_block bb)
642 {
643   return single_succ_edge (bb)->dest;
644 }
645
646 /* Returns the single predecessor block of basic block BB.  Aborts
647    if BB does not have exactly one predecessor.*/
648
649 static inline basic_block
650 single_pred (basic_block bb)
651 {
652   return single_pred_edge (bb)->src;
653 }
654
655 /* Iterator object for edges.  */
656
657 typedef struct {
658   unsigned index;
659   VEC(edge,gc) **container;
660 } edge_iterator;
661
662 static inline VEC(edge,gc) *
663 ei_container (edge_iterator i)
664 {
665   gcc_assert (i.container);
666   return *i.container;
667 }
668
669 #define ei_start(iter) ei_start_1 (&(iter))
670 #define ei_last(iter) ei_last_1 (&(iter))
671
672 /* Return an iterator pointing to the start of an edge vector.  */
673 static inline edge_iterator
674 ei_start_1 (VEC(edge,gc) **ev)
675 {
676   edge_iterator i;
677
678   i.index = 0;
679   i.container = ev;
680
681   return i;
682 }
683
684 /* Return an iterator pointing to the last element of an edge
685    vector.  */
686 static inline edge_iterator
687 ei_last_1 (VEC(edge,gc) **ev)
688 {
689   edge_iterator i;
690
691   i.index = EDGE_COUNT (*ev) - 1;
692   i.container = ev;
693
694   return i;
695 }
696
697 /* Is the iterator `i' at the end of the sequence?  */
698 static inline bool
699 ei_end_p (edge_iterator i)
700 {
701   return (i.index == EDGE_COUNT (ei_container (i)));
702 }
703
704 /* Is the iterator `i' at one position before the end of the
705    sequence?  */
706 static inline bool
707 ei_one_before_end_p (edge_iterator i)
708 {
709   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
710 }
711
712 /* Advance the iterator to the next element.  */
713 static inline void
714 ei_next (edge_iterator *i)
715 {
716   gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
717   i->index++;
718 }
719
720 /* Move the iterator to the previous element.  */
721 static inline void
722 ei_prev (edge_iterator *i)
723 {
724   gcc_assert (i->index > 0);
725   i->index--;
726 }
727
728 /* Return the edge pointed to by the iterator `i'.  */
729 static inline edge
730 ei_edge (edge_iterator i)
731 {
732   return EDGE_I (ei_container (i), i.index);
733 }
734
735 /* Return an edge pointed to by the iterator.  Do it safely so that
736    NULL is returned when the iterator is pointing at the end of the
737    sequence.  */
738 static inline edge
739 ei_safe_edge (edge_iterator i)
740 {
741   return !ei_end_p (i) ? ei_edge (i) : NULL;
742 }
743
744 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
745    *Edge P is set to the next edge if we are to continue to iterate
746    and NULL otherwise.  */
747
748 static inline bool
749 ei_cond (edge_iterator ei, edge *p)
750 {
751   if (!ei_end_p (ei))
752     {
753       *p = ei_edge (ei);
754       return 1;
755     }
756   else
757     {
758       *p = NULL;
759       return 0;
760     }
761 }
762
763 /* This macro serves as a convenient way to iterate each edge in a
764    vector of predecessor or successor edges.  It must not be used when
765    an element might be removed during the traversal, otherwise
766    elements will be missed.  Instead, use a for-loop like that shown
767    in the following pseudo-code:
768
769    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
770      {
771         IF (e != taken_edge)
772           remove_edge (e);
773         ELSE
774           ei_next (&ei);
775      }
776 */
777
778 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)       \
779   for ((ITER) = ei_start ((EDGE_VEC));          \
780        ei_cond ((ITER), &(EDGE));               \
781        ei_next (&(ITER)))
782
783 struct edge_list * create_edge_list (void);
784 void free_edge_list (struct edge_list *);
785 void print_edge_list (FILE *, struct edge_list *);
786 void verify_edge_list (FILE *, struct edge_list *);
787 int find_edge_index (struct edge_list *, basic_block, basic_block);
788 edge find_edge (basic_block, basic_block);
789
790
791 enum update_life_extent
792 {
793   UPDATE_LIFE_LOCAL = 0,
794   UPDATE_LIFE_GLOBAL = 1,
795   UPDATE_LIFE_GLOBAL_RM_NOTES = 2
796 };
797
798 /* Flags for life_analysis and update_life_info.  */
799
800 #define PROP_DEATH_NOTES        1       /* Create DEAD and UNUSED notes.  */
801 #define PROP_LOG_LINKS          2       /* Create LOG_LINKS.  */
802 #define PROP_REG_INFO           4       /* Update regs_ever_live et al.  */
803 #define PROP_KILL_DEAD_CODE     8       /* Remove dead code.  */
804 #define PROP_SCAN_DEAD_CODE     16      /* Scan for dead code.  */
805 #define PROP_ALLOW_CFG_CHANGES  32      /* Allow the CFG to be changed
806                                            by dead code removal.  */
807 #define PROP_AUTOINC            64      /* Create autoinc mem references.  */
808 #define PROP_SCAN_DEAD_STORES   128     /* Scan for dead code.  */
809 #define PROP_ASM_SCAN           256     /* Internal flag used within flow.c
810                                            to flag analysis of asms.  */
811 #define PROP_DEAD_INSN          1024    /* Internal flag used within flow.c
812                                            to flag analysis of dead insn.  */
813 #define PROP_POST_REGSTACK      2048    /* We run after reg-stack and need
814                                            to preserve REG_DEAD notes for
815                                            stack regs.  */
816 #define PROP_FINAL              (PROP_DEATH_NOTES | PROP_LOG_LINKS  \
817                                  | PROP_REG_INFO | PROP_KILL_DEAD_CODE  \
818                                  | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
819                                  | PROP_ALLOW_CFG_CHANGES \
820                                  | PROP_SCAN_DEAD_STORES)
821 #define PROP_POSTRELOAD         (PROP_DEATH_NOTES  \
822                                  | PROP_KILL_DEAD_CODE  \
823                                  | PROP_SCAN_DEAD_CODE \
824                                  | PROP_SCAN_DEAD_STORES)
825
826 #define CLEANUP_EXPENSIVE       1       /* Do relatively expensive optimizations
827                                            except for edge forwarding */
828 #define CLEANUP_CROSSJUMP       2       /* Do crossjumping.  */
829 #define CLEANUP_POST_REGSTACK   4       /* We run after reg-stack and need
830                                            to care REG_DEAD notes.  */
831 #define CLEANUP_UPDATE_LIFE     8       /* Keep life information up to date.  */
832 #define CLEANUP_THREADING       16      /* Do jump threading.  */
833 #define CLEANUP_NO_INSN_DEL     32      /* Do not try to delete trivially dead
834                                            insns.  */
835 #define CLEANUP_CFGLAYOUT       64      /* Do cleanup in cfglayout mode.  */
836 #define CLEANUP_LOG_LINKS       128     /* Update log links.  */
837
838 /* The following are ORed in on top of the CLEANUP* flags in calls to
839    struct_equiv_block_eq.  */
840 #define STRUCT_EQUIV_START      256      /* Initializes the search range.  */
841 #define STRUCT_EQUIV_RERUN      512     /* Rerun to find register use in
842                                            found equivalence.  */
843 #define STRUCT_EQUIV_FINAL      1024    /* Make any changes necessary to get
844                                            actual equivalence.  */
845 #define STRUCT_EQUIV_NEED_FULL_BLOCK 2048 /* struct_equiv_block_eq is required
846                                              to match only full blocks  */
847 #define STRUCT_EQUIV_MATCH_JUMPS 4096   /* Also include the jumps at the end of the block in the comparison.  */
848
849 extern void life_analysis (int);
850 extern int update_life_info (sbitmap, enum update_life_extent, int);
851 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
852 extern int count_or_remove_death_notes (sbitmap, int);
853 extern int propagate_block (basic_block, regset, regset, regset, int);
854
855 struct propagate_block_info;
856 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
857 extern struct propagate_block_info *init_propagate_block_info
858  (basic_block, regset, regset, regset, int);
859 extern void free_propagate_block_info (struct propagate_block_info *);
860
861 /* In lcm.c */
862 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
863                                        sbitmap *, sbitmap *, sbitmap **,
864                                        sbitmap **);
865 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
866                                            sbitmap *, sbitmap *,
867                                            sbitmap *, sbitmap **,
868                                            sbitmap **);
869 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
870
871 /* In predict.c */
872 extern void expected_value_to_br_prob (void);
873 extern bool maybe_hot_bb_p (basic_block);
874 extern bool probably_cold_bb_p (basic_block);
875 extern bool probably_never_executed_bb_p (basic_block);
876 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
877 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
878 extern void tree_predict_edge (edge, enum br_predictor, int);
879 extern void rtl_predict_edge (edge, enum br_predictor, int);
880 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
881 extern void guess_outgoing_edge_probabilities (basic_block);
882 extern void remove_predictions_associated_with_edge (edge);
883 extern bool edge_probability_reliable_p (edge);
884 extern bool br_prob_note_reliable_p (rtx);
885
886 /* In flow.c */
887 extern void init_flow (void);
888 extern void debug_bb (basic_block);
889 extern basic_block debug_bb_n (int);
890 extern void dump_regset (regset, FILE *);
891 extern void debug_regset (regset);
892 extern void allocate_reg_life_data (void);
893 extern void expunge_block (basic_block);
894 extern void link_block (basic_block, basic_block);
895 extern void unlink_block (basic_block);
896 extern void compact_blocks (void);
897 extern basic_block alloc_block (void);
898 extern void find_unreachable_blocks (void);
899 extern int delete_noop_moves (void);
900 extern basic_block force_nonfallthru (edge);
901 extern rtx block_label (basic_block);
902 extern bool forwarder_block_p (basic_block);
903 extern bool purge_all_dead_edges (void);
904 extern bool purge_dead_edges (basic_block);
905 extern void find_many_sub_basic_blocks (sbitmap);
906 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
907 extern bool can_fallthru (basic_block, basic_block);
908 extern bool could_fall_through (basic_block, basic_block);
909 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
910 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
911 extern void alloc_aux_for_block (basic_block, int);
912 extern void alloc_aux_for_blocks (int);
913 extern void clear_aux_for_blocks (void);
914 extern void free_aux_for_blocks (void);
915 extern void alloc_aux_for_edge (edge, int);
916 extern void alloc_aux_for_edges (int);
917 extern void clear_aux_for_edges (void);
918 extern void free_aux_for_edges (void);
919 extern void find_basic_blocks (rtx);
920 extern bool cleanup_cfg (int);
921 extern bool delete_unreachable_blocks (void);
922 extern bool merge_seq_blocks (void);
923
924 typedef struct conflict_graph_def *conflict_graph;
925
926 /* Callback function when enumerating conflicts.  The arguments are
927    the smaller and larger regno in the conflict.  Returns zero if
928    enumeration is to continue, nonzero to halt enumeration.  */
929 typedef int (*conflict_graph_enum_fn) (int, int, void *);
930
931
932 /* Prototypes of operations on conflict graphs.  */
933
934 extern conflict_graph conflict_graph_new
935  (int);
936 extern void conflict_graph_delete (conflict_graph);
937 extern int conflict_graph_add (conflict_graph, int, int);
938 extern int conflict_graph_conflict_p (conflict_graph, int, int);
939 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
940                                  void *);
941 extern void conflict_graph_merge_regs (conflict_graph, int, int);
942 extern void conflict_graph_print (conflict_graph, FILE*);
943 extern bool mark_dfs_back_edges (void);
944 extern void set_edge_can_fallthru_flag (void);
945 extern void update_br_prob_note (basic_block);
946 extern void fixup_abnormal_edges (void);
947 extern bool inside_basic_block_p (rtx);
948 extern bool control_flow_insn_p (rtx);
949 extern rtx get_last_bb_insn (basic_block);
950
951 /* In bb-reorder.c */
952 extern void reorder_basic_blocks (unsigned int);
953
954 /* In dominance.c */
955
956 enum cdi_direction
957 {
958   CDI_DOMINATORS,
959   CDI_POST_DOMINATORS
960 };
961
962 enum dom_state
963 {
964   DOM_NONE,             /* Not computed at all.  */
965   DOM_NO_FAST_QUERY,    /* The data is OK, but the fast query data are not usable.  */
966   DOM_OK                /* Everything is ok.  */
967 };
968
969 extern enum dom_state dom_computed[2];
970
971 extern bool dom_info_available_p (enum cdi_direction);
972 extern void calculate_dominance_info (enum cdi_direction);
973 extern void free_dominance_info (enum cdi_direction);
974 extern basic_block nearest_common_dominator (enum cdi_direction,
975                                              basic_block, basic_block);
976 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
977                                                      bitmap);
978 extern void set_immediate_dominator (enum cdi_direction, basic_block,
979                                      basic_block);
980 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
981 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
982 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
983 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
984                                          unsigned, basic_block *);
985 extern void add_to_dominance_info (enum cdi_direction, basic_block);
986 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
987 basic_block recount_dominator (enum cdi_direction, basic_block);
988 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
989                                            basic_block);
990 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
991 extern void verify_dominators (enum cdi_direction);
992 extern basic_block first_dom_son (enum cdi_direction, basic_block);
993 extern basic_block next_dom_son (enum cdi_direction, basic_block);
994 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
995 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
996
997 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
998 extern void break_superblocks (void);
999 extern void check_bb_profile (basic_block, FILE *);
1000 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
1001 extern void init_rtl_bb_info (basic_block);
1002
1003 extern void initialize_original_copy_tables (void);
1004 extern void free_original_copy_tables (void);
1005 extern void set_bb_original (basic_block, basic_block);
1006 extern basic_block get_bb_original (basic_block);
1007 extern void set_bb_copy (basic_block, basic_block);
1008 extern basic_block get_bb_copy (basic_block);
1009
1010 extern rtx insert_insn_end_bb_new (rtx, basic_block);
1011
1012 #include "cfghooks.h"
1013
1014 /* In struct-equiv.c */
1015
1016 /* Constants used to size arrays in struct equiv_info (currently only one).
1017    When these limits are exceeded, struct_equiv returns zero.
1018    The maximum number of pseudo registers that are different in the two blocks,
1019    but appear in equivalent places and are dead at the end (or where one of
1020    a pair is dead at the end).  */
1021 #define STRUCT_EQUIV_MAX_LOCAL 16
1022 /* The maximum number of references to an input register that struct_equiv
1023    can handle.  */
1024
1025 /* Structure used to track state during struct_equiv that can be rolled
1026    back when we find we can't match an insn, or if we want to match part
1027    of it in a different way.
1028    This information pertains to the pair of partial blocks that has been
1029    matched so far.  Since this pair is structurally equivalent, this is
1030    conceptually just one partial block expressed in two potentially
1031    different ways.  */
1032 struct struct_equiv_checkpoint
1033 {
1034   int ninsns;       /* Insns are matched so far.  */
1035   int local_count;  /* Number of block-local registers.  */
1036   int input_count;  /* Number of inputs to the block.  */
1037
1038   /* X_START and Y_START are the first insns (in insn stream order)
1039      of the partial blocks that have been considered for matching so far.
1040      Since we are scanning backwards, they are also the instructions that
1041      are currently considered - or the last ones that have been considered -
1042      for matching (Unless we tracked back to these because a preceding
1043      instruction failed to match).  */
1044   rtx x_start, y_start;
1045
1046   /*  INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1047       during the current pass; we keep X_INPUT / Y_INPUT around between passes
1048       so that we can match REG_EQUAL / REG_EQUIV notes referring to these.  */
1049   bool input_valid;
1050
1051   /* Some information would be expensive to exactly checkpoint, so we
1052      merely increment VERSION any time information about local
1053      registers, inputs and/or register liveness changes.  When backtracking,
1054      it is decremented for changes that can be undone, and if a discrepancy
1055      remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1056      that a new pass should be made over the entire block match to get
1057      accurate register information.  */
1058   int version;
1059 };
1060
1061 /* A struct equiv_info is used to pass information to struct_equiv and
1062    to gather state while two basic blocks are checked for structural
1063    equivalence.  */
1064
1065 struct equiv_info
1066 {
1067   /* Fields set up by the caller to struct_equiv_block_eq */
1068
1069   basic_block x_block, y_block;  /* The two blocks being matched.  */
1070
1071   /* MODE carries the mode bits from cleanup_cfg if we are called from
1072      try_crossjump_to_edge, and additionally it carries the
1073      STRUCT_EQUIV_* bits described above.  */
1074   int mode;
1075
1076   /* INPUT_COST is the cost that adding an extra input to the matched blocks
1077      is supposed to have, and is taken into account when considering if the
1078      matched sequence should be extended backwards.  input_cost < 0 means
1079      don't accept any inputs at all.  */
1080   int input_cost;
1081
1082
1083   /* Fields to track state inside of struct_equiv_block_eq.  Some of these
1084      are also outputs.  */
1085
1086   /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1087      is used as an input parameter, i.e. where different registers are used
1088      as sources.  This is only used for a register that is live at the end
1089      of the blocks, or in some identical code at the end of the blocks;
1090      Inputs that are dead at the end go into X_LOCAL / Y_LOCAL.  */
1091   rtx x_input, y_input;
1092   /* When a previous pass has identified a valid input, INPUT_REG is set
1093      by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1094      for the input.  */
1095   rtx input_reg;
1096
1097   /* COMMON_LIVE keeps track of the registers which are currently live
1098      (as we scan backwards from the end) and have the same numbers in both
1099      blocks.  N.B. a register that is in common_live is unsuitable to become
1100      a local reg.  */
1101   regset common_live;
1102   /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1103      local to one of the blocks; these registers must not be accepted as
1104      identical when encountered in both blocks.  */
1105   regset x_local_live, y_local_live;
1106
1107   /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1108      being used, to avoid having to backtrack in the next pass, so that we
1109      get accurate life info for this insn then.  For each such insn,
1110      the bit with the number corresponding to the CUR.NINSNS value at the
1111      time of scanning is set.  */
1112   bitmap equiv_used;
1113
1114   /* Current state that can be saved & restored easily.  */
1115   struct struct_equiv_checkpoint cur;
1116   /* BEST_MATCH is used to store the best match so far, weighing the
1117      cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1118      CUR.INPUT_COUNT * INPUT_COST of setting up the inputs.  */
1119   struct struct_equiv_checkpoint best_match;
1120   /* If a checkpoint restore failed, or an input conflict newly arises,
1121      NEED_RERUN is set.  This has to be tested by the caller to re-run
1122      the comparison if the match appears otherwise sound.  The state kept in
1123      x_start, y_start, equiv_used and check_input_conflict ensures that
1124      we won't loop indefinitely.  */
1125   bool need_rerun;
1126   /* If there is indication of an input conflict at the end,
1127      CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1128      for each insn in the next pass.  This is needed so that we won't discard
1129      a partial match if there is a longer match that has to be abandoned due
1130      to an input conflict.  */
1131   bool check_input_conflict;
1132   /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1133      have passed a point where there were multiple dying inputs.  This helps
1134      us decide if we should set check_input_conflict for the next pass.  */
1135   bool had_input_conflict;
1136
1137   /* LIVE_UPDATE controls if we want to change any life info at all.  We
1138      set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1139      pass so that we don't introduce new registers just for the note; if we
1140      can't match the notes without the current register information, we drop
1141      them.  */
1142   bool live_update;
1143
1144   /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1145      that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1146      to the next free entry.  */
1147   rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1148   /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1149      was a source operand (including STRICT_LOW_PART) for the last invocation
1150      of struct_equiv mentioning it, zero if it was a destination-only operand.
1151      Since we are scanning backwards, this means the register is input/local
1152      for the (partial) block scanned so far.  */
1153   bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1154
1155
1156   /* Additional fields that are computed for the convenience of the caller.  */
1157
1158   /* DYING_INPUTS is set to the number of local registers that turn out
1159      to be inputs to the (possibly partial) block.  */
1160   int dying_inputs;
1161   /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1162      that are being compared.  A final jump insn will not be included.  */
1163   rtx x_end, y_end;
1164
1165   /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1166      Y_LABEL in Y_BLOCK.  */
1167   rtx x_label, y_label;
1168
1169 };
1170
1171 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1172 extern int struct_equiv_block_eq (int, struct equiv_info *);
1173 extern bool struct_equiv_init (int, struct equiv_info *);
1174 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1175
1176 /* In cfgrtl.c */
1177 extern bool condjump_equiv_p (struct equiv_info *, bool);
1178
1179 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
1180 static inline bool bb_has_eh_pred (basic_block bb)
1181 {
1182   edge e;
1183   edge_iterator ei;
1184
1185   FOR_EACH_EDGE (e, ei, bb->preds)
1186     {
1187       if (e->flags & EDGE_EH)
1188         return true;
1189     }
1190   return false;
1191 }
1192
1193 #endif /* GCC_BASIC_BLOCK_H */