OSDN Git Service

5c033dfbd4bedb5d732eb28957c496fb099b771d
[pf3gnuchains/gcc-fork.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2    Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3    Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
24
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
33
34 /* Head of register set linked list.  */
35 typedef bitmap_head regset_head;
36
37 /* A pointer to a regset_head.  */
38 typedef bitmap regset;
39
40 /* Allocate a register set with oballoc.  */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42
43 /* Do any cleanup needed on a regset when it is no longer used.  */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45
46 /* Initialize a new regset.  */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48
49 /* Clear a register set by freeing up the linked list.  */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51
52 /* Copy a register set to another register set.  */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54
55 /* Compare two register sets.  */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57
58 /* `and' a register set with a second register set.  */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60
61 /* `and' the complement of a register set with a register set.  */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63
64 /* Inclusive or a register set with a second register set.  */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66
67 /* Exclusive or a register set with a second register set.  */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2.  */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72   bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73
74 /* Clear a single register in a register set.  */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76
77 /* Set a single register in a register set.  */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79
80 /* Return true if a register is set in a register set.  */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82
83 /* Copy the hard registers in a register set to the hard register set.  */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM)                               \
86 do {                                                                    \
87   CLEAR_HARD_REG_SET (TO);                                              \
88   reg_set_to_hard_reg_set (&TO, FROM);                                  \
89 } while (0)
90
91 typedef bitmap_iterator reg_set_iterator;
92
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94    register number and executing CODE for all registers that are set.  */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI)     \
96   EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99    REGNUM to the register number and executing CODE for all registers that are
100    set in the first regset and not set in the second.  */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102   EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105    REGNUM to the register number and executing CODE for all registers that are
106    set in both regsets.  */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108   EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109
110 /* Type we use to hold basic block counters.  Should be at least
111    64bit.  Although a counter cannot be negative, we use a signed
112    type, because erroneous negative counts can be generated when the
113    flow graph is manipulated by various optimizations.  A signed type
114    makes those easy to detect.  */
115 typedef HOST_WIDEST_INT gcov_type;
116
117 /* Control flow edge information.  */
118 struct edge_def GTY(())
119 {
120   /* The two blocks at the ends of the edge.  */
121   struct basic_block_def *src;
122   struct basic_block_def *dest;
123
124   /* Instructions queued on the edge.  */
125   union edge_def_insns {
126     rtx GTY ((tag ("0"))) r;
127     tree GTY ((tag ("1"))) t;
128   } GTY ((desc ("ir_type ()"))) insns;
129
130   /* Auxiliary info specific to a pass.  */
131   PTR GTY ((skip (""))) aux;
132
133   /* Location of any goto implicit in the edge, during tree-ssa.  */
134   source_locus goto_locus;
135
136   int flags;                    /* see EDGE_* below  */
137   int probability;              /* biased by REG_BR_PROB_BASE */
138   gcov_type count;              /* Expected number of executions calculated
139                                    in profile.c  */
140
141   /* The index number corresponding to this edge in the edge vector
142      dest->preds.  */
143   unsigned int dest_idx;
144 };
145
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149
150 #define EDGE_FALLTHRU           1       /* 'Straight line' flow */
151 #define EDGE_ABNORMAL           2       /* Strange flow, like computed
152                                            label, or eh */
153 #define EDGE_ABNORMAL_CALL      4       /* Call with abnormal exit
154                                            like an exception, or sibcall */
155 #define EDGE_EH                 8       /* Exception throw */
156 #define EDGE_FAKE               16      /* Not a real edge (profile.c) */
157 #define EDGE_DFS_BACK           32      /* A backwards edge */
158 #define EDGE_CAN_FALLTHRU       64      /* Candidate for straight line
159                                            flow.  */
160 #define EDGE_IRREDUCIBLE_LOOP   128     /* Part of irreducible loop.  */
161 #define EDGE_SIBCALL            256     /* Edge from sibcall to exit.  */
162 #define EDGE_LOOP_EXIT          512     /* Exit of a loop.  */
163 #define EDGE_TRUE_VALUE         1024    /* Edge taken when controlling
164                                            predicate is nonzero.  */
165 #define EDGE_FALSE_VALUE        2048    /* Edge taken when controlling
166                                            predicate is zero.  */
167 #define EDGE_EXECUTABLE         4096    /* Edge is executable.  Only
168                                            valid during SSA-CCP.  */
169 #define EDGE_CROSSING           8192    /* Edge crosses between hot
170                                            and cold sections, when we
171                                            do partitioning.  */
172 #define EDGE_ALL_FLAGS         16383
173
174 #define EDGE_COMPLEX    (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
175
176 /* Counter summary from the last set of coverage counts read by
177    profile.c.  */
178 extern const struct gcov_ctr_summary *profile_info;
179
180 /* Declared in cfgloop.h.  */
181 struct loop;
182 struct loops;
183
184 /* Declared in tree-flow.h.  */
185 struct edge_prediction;
186
187 /* A basic block is a sequence of instructions with only entry and
188    only one exit.  If any one of the instructions are executed, they
189    will all be executed, and in sequence from first to last.
190
191    There may be COND_EXEC instructions in the basic block.  The
192    COND_EXEC *instructions* will be executed -- but if the condition
193    is false the conditionally executed *expressions* will of course
194    not be executed.  We don't consider the conditionally executed
195    expression (which might have side-effects) to be in a separate
196    basic block because the program counter will always be at the same
197    location after the COND_EXEC instruction, regardless of whether the
198    condition is true or not.
199
200    Basic blocks need not start with a label nor end with a jump insn.
201    For example, a previous basic block may just "conditionally fall"
202    into the succeeding basic block, and the last basic block need not
203    end with a jump insn.  Block 0 is a descendant of the entry block.
204
205    A basic block beginning with two labels cannot have notes between
206    the labels.
207
208    Data for jump tables are stored in jump_insns that occur in no
209    basic block even though these insns can follow or precede insns in
210    basic blocks.  */
211
212 /* Basic block information indexed by block number.  */
213 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
214 {
215   /* The first and last insns of the block.  */
216   rtx head_;
217   rtx end_;
218
219   /* Pointers to the first and last trees of the block.  */
220   tree stmt_list;
221
222   /* The edges into and out of the block.  */
223   VEC(edge,gc) *preds;
224   VEC(edge,gc) *succs;
225
226   /* The registers that are live on entry to this block.  */
227   bitmap GTY ((skip (""))) global_live_at_start;
228
229   /* The registers that are live on exit from this block.  */
230   bitmap GTY ((skip (""))) global_live_at_end;
231
232   /* Auxiliary info specific to a pass.  */
233   PTR GTY ((skip (""))) aux;
234
235   /* Innermost loop containing the block.  */
236   struct loop * GTY ((skip (""))) loop_father;
237
238   /* The dominance and postdominance information node.  */
239   struct et_node * GTY ((skip (""))) dom[2];
240
241   /* Previous and next blocks in the chain.  */
242   struct basic_block_def *prev_bb;
243   struct basic_block_def *next_bb;
244
245   /* The data used by basic block copying and reordering functions.  */
246   struct reorder_block_def * rbi;
247
248   /* Chain of PHI nodes for this block.  */
249   tree phi_nodes;
250
251   /* A list of predictions.  */
252   struct edge_prediction *predictions;
253
254   /* Expected number of executions: calculated in profile.c.  */
255   gcov_type count;
256
257   /* The index of this block.  */
258   int index;
259
260   /* The loop depth of this block.  */
261   int loop_depth;
262
263   /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
264   int frequency;
265
266   /* Various flags.  See BB_* below.  */
267   int flags;
268 };
269
270 typedef struct basic_block_def *basic_block;
271
272 /* Structure to hold information about the blocks during reordering and
273    copying.  Needs to be put on a diet.  */
274
275 struct reorder_block_def GTY(())
276 {
277   rtx header;
278   rtx footer;
279
280   basic_block next;
281
282   /* These pointers may be unreliable as the first is only used for
283      debugging (and should probably be removed, and the second is only
284      used by copying.  The basic blocks pointed to may be removed and
285      that leaves these pointers pointing to garbage.  */
286   basic_block GTY ((skip (""))) original;
287   basic_block GTY ((skip (""))) copy;
288
289   int duplicated;
290   int copy_number;
291
292   /* This field is used by the bb-reorder and tracer passes.  */
293   int visited;
294 };
295
296 typedef struct reorder_block_def *reorder_block_def;
297
298 #define BB_FREQ_MAX 10000
299
300 /* Masks for basic_block.flags.
301
302    BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
303    the compilation, so they are never cleared.
304
305    All other flags may be cleared by clear_bb_flags().  It is generally
306    a bad idea to rely on any flags being up-to-date.  */
307
308 enum
309 {
310
311   /* Set if insns in BB have are modified.  Used for updating liveness info.  */
312   BB_DIRTY = 1,
313
314   /* Only set on blocks that have just been created by create_bb.  */
315   BB_NEW = 2,
316
317   /* Set by find_unreachable_blocks.  Do not rely on this being set in any
318      pass.  */
319   BB_REACHABLE = 4,
320
321   /* Set for blocks in an irreducible loop by loop analysis.  */
322   BB_IRREDUCIBLE_LOOP = 8,
323
324   /* Set on blocks that may actually not be single-entry single-exit block.  */
325   BB_SUPERBLOCK = 16,
326
327   /* Set on basic blocks that the scheduler should not touch.  This is used
328      by SMS to prevent other schedulers from messing with the loop schedule.  */
329   BB_DISABLE_SCHEDULE = 32,
330
331   /* Set on blocks that should be put in a hot section.  */
332   BB_HOT_PARTITION = 64,
333
334   /* Set on blocks that should be put in a cold section.  */
335   BB_COLD_PARTITION = 128
336 };
337
338 /* Dummy flag for convenience in the hot/cold partitioning code.  */
339 #define BB_UNPARTITIONED        0
340
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342    separate sections.  */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do {                                 \
345   basic_block bb_ = (bb);                                               \
346   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))    \
347                 | (part));                                              \
348 } while (0)
349
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
352
353 /* A structure to group all the per-function control flow graph data.
354    The x_* prefixing is necessary because otherwise references to the
355    fields of this struct are interpreted as the defines for backward
356    source compatibility following the definition of this struct.  */
357 struct control_flow_graph GTY(())
358 {
359   /* Block pointers for the exit and entry of a function.
360      These are always the head and tail of the basic block list.  */
361   basic_block x_entry_block_ptr;
362   basic_block x_exit_block_ptr;
363
364   /* Index by basic block number, get basic block struct info.  */
365   varray_type x_basic_block_info;
366
367   /* Number of basic blocks in this flow graph.  */
368   int x_n_basic_blocks;
369
370   /* Number of edges in this flow graph.  */
371   int x_n_edges;
372
373   /* The first free basic block number.  */
374   int x_last_basic_block;
375
376   /* Mapping of labels to their associated blocks.  At present
377      only used for the tree CFG.  */
378   varray_type x_label_to_block_map;
379
380   enum profile_status {
381     PROFILE_ABSENT,
382     PROFILE_GUESSED,
383     PROFILE_READ
384   } x_profile_status;
385 };
386
387 /* Defines for accessing the fields of the CFG structure for function FN.  */
388 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN)     ((FN)->cfg->x_entry_block_ptr)
389 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN)      ((FN)->cfg->x_exit_block_ptr)
390 #define basic_block_info_for_function(FN)    ((FN)->cfg->x_basic_block_info)
391 #define n_basic_blocks_for_function(FN)      ((FN)->cfg->x_n_basic_blocks)
392 #define n_edges_for_function(FN)             ((FN)->cfg->x_n_edges)
393 #define last_basic_block_for_function(FN)    ((FN)->cfg->x_last_basic_block)
394 #define label_to_block_map_for_function(FN)  ((FN)->cfg->x_label_to_block_map)
395
396 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
397   (VARRAY_BB (basic_block_info_for_function(FN), (N)))
398
399 /* Defines for textual backward source compatibility.  */
400 #define ENTRY_BLOCK_PTR         (cfun->cfg->x_entry_block_ptr)
401 #define EXIT_BLOCK_PTR          (cfun->cfg->x_exit_block_ptr)
402 #define basic_block_info        (cfun->cfg->x_basic_block_info)
403 #define n_basic_blocks          (cfun->cfg->x_n_basic_blocks)
404 #define n_edges                 (cfun->cfg->x_n_edges)
405 #define last_basic_block        (cfun->cfg->x_last_basic_block)
406 #define label_to_block_map      (cfun->cfg->x_label_to_block_map)
407 #define profile_status          (cfun->cfg->x_profile_status)
408
409 #define BASIC_BLOCK(N)          (VARRAY_BB (basic_block_info, (N)))
410
411 /* TRUE if we should re-run loop discovery after threading jumps, FALSE
412    otherwise.  */
413 extern bool rediscover_loops_after_threading;
414
415 /* For iterating over basic blocks.  */
416 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
417   for (BB = FROM; BB != TO; BB = BB->DIR)
418
419 #define FOR_EACH_BB_FN(BB, FN) \
420   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
421
422 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
423
424 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
425   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
426
427 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
428
429 /* For iterating over insns in basic block.  */
430 #define FOR_BB_INSNS(BB, INSN)                  \
431   for ((INSN) = BB_HEAD (BB);                   \
432        (INSN) != NEXT_INSN (BB_END (BB));       \
433        (INSN) = NEXT_INSN (INSN))
434
435 #define FOR_BB_INSNS_REVERSE(BB, INSN)          \
436   for ((INSN) = BB_END (BB);                    \
437        (INSN) != PREV_INSN (BB_HEAD (BB));      \
438        (INSN) = PREV_INSN (INSN))
439
440 /* Cycles through _all_ basic blocks, even the fake ones (entry and
441    exit block).  */
442
443 #define FOR_ALL_BB(BB) \
444   for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
445
446 #define FOR_ALL_BB_FN(BB, FN) \
447   for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
448
449 /* Special labels found during CFG build.  */
450
451 extern GTY(()) rtx label_value_list;
452
453 extern bitmap_obstack reg_obstack;
454
455 /* Indexed by n, gives number of basic block that  (REG n) is used in.
456    If the value is REG_BLOCK_GLOBAL (-2),
457    it means (REG n) is used in more than one basic block.
458    REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
459    This information remains valid for the rest of the compilation
460    of the current function; it is used to control register allocation.  */
461
462 #define REG_BLOCK_UNKNOWN -1
463 #define REG_BLOCK_GLOBAL -2
464
465 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
466 \f
467 /* Stuff for recording basic block info.  */
468
469 #define BB_HEAD(B)      (B)->head_
470 #define BB_END(B)       (B)->end_
471
472 /* Special block numbers [markers] for entry and exit.  */
473 #define ENTRY_BLOCK (-1)
474 #define EXIT_BLOCK (-2)
475
476 /* Special block number not valid for any block.  */
477 #define INVALID_BLOCK (-3)
478
479 #define BLOCK_NUM(INSN)       (BLOCK_FOR_INSN (INSN)->index + 0)
480 #define set_block_for_insn(INSN, BB)  (BLOCK_FOR_INSN (INSN) = BB)
481
482 extern void compute_bb_for_insn (void);
483 extern void free_bb_for_insn (void);
484 extern void update_bb_for_insn (basic_block);
485
486 extern void free_basic_block_vars (void);
487
488 extern void insert_insn_on_edge (rtx, edge);
489 bool safe_insert_insn_on_edge (rtx, edge);
490
491 extern void commit_edge_insertions (void);
492 extern void commit_edge_insertions_watch_calls (void);
493
494 extern void remove_fake_edges (void);
495 extern void remove_fake_exit_edges (void);
496 extern void add_noreturn_fake_exit_edges (void);
497 extern void connect_infinite_loops_to_exit (void);
498 extern edge unchecked_make_edge (basic_block, basic_block, int);
499 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
500 extern edge make_edge (basic_block, basic_block, int);
501 extern edge make_single_succ_edge (basic_block, basic_block, int);
502 extern void remove_edge (edge);
503 extern void redirect_edge_succ (edge, basic_block);
504 extern edge redirect_edge_succ_nodup (edge, basic_block);
505 extern void redirect_edge_pred (edge, basic_block);
506 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
507 extern void clear_bb_flags (void);
508 extern void flow_reverse_top_sort_order_compute (int *);
509 extern int flow_depth_first_order_compute (int *, int *);
510 extern int dfs_enumerate_from (basic_block, int,
511                                bool (*)(basic_block, void *),
512                                basic_block *, int, void *);
513 extern void compute_dominance_frontiers (bitmap *);
514 extern void dump_edge_info (FILE *, edge, int);
515 extern void brief_dump_cfg (FILE *);
516 extern void clear_edges (void);
517 extern rtx first_insn_after_basic_block_note (basic_block);
518 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
519 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type, 
520                                              gcov_type);
521
522 /* Structure to group all of the information to process IF-THEN and
523    IF-THEN-ELSE blocks for the conditional execution support.  This
524    needs to be in a public file in case the IFCVT macros call
525    functions passing the ce_if_block data structure.  */
526
527 typedef struct ce_if_block
528 {
529   basic_block test_bb;                  /* First test block.  */
530   basic_block then_bb;                  /* THEN block.  */
531   basic_block else_bb;                  /* ELSE block or NULL.  */
532   basic_block join_bb;                  /* Join THEN/ELSE blocks.  */
533   basic_block last_test_bb;             /* Last bb to hold && or || tests.  */
534   int num_multiple_test_blocks;         /* # of && and || basic blocks.  */
535   int num_and_and_blocks;               /* # of && blocks.  */
536   int num_or_or_blocks;                 /* # of || blocks.  */
537   int num_multiple_test_insns;          /* # of insns in && and || blocks.  */
538   int and_and_p;                        /* Complex test is &&.  */
539   int num_then_insns;                   /* # of insns in THEN block.  */
540   int num_else_insns;                   /* # of insns in ELSE block.  */
541   int pass;                             /* Pass number.  */
542
543 #ifdef IFCVT_EXTRA_FIELDS
544   IFCVT_EXTRA_FIELDS                    /* Any machine dependent fields.  */
545 #endif
546
547 } ce_if_block_t;
548
549 /* This structure maintains an edge list vector.  */
550 struct edge_list
551 {
552   int num_blocks;
553   int num_edges;
554   edge *index_to_edge;
555 };
556
557 /* The base value for branch probability notes and edge probabilities.  */
558 #define REG_BR_PROB_BASE  10000
559
560 /* This is the value which indicates no edge is present.  */
561 #define EDGE_INDEX_NO_EDGE      -1
562
563 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
564    if there is no edge between the 2 basic blocks.  */
565 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
566
567 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
568    block which is either the pred or succ end of the indexed edge.  */
569 #define INDEX_EDGE_PRED_BB(el, index)   ((el)->index_to_edge[(index)]->src)
570 #define INDEX_EDGE_SUCC_BB(el, index)   ((el)->index_to_edge[(index)]->dest)
571
572 /* INDEX_EDGE returns a pointer to the edge.  */
573 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
574
575 /* Number of edges in the compressed edge list.  */
576 #define NUM_EDGES(el)                   ((el)->num_edges)
577
578 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
579 #define FALLTHRU_EDGE(bb)               (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
580                                          ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
581
582 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
583 #define BRANCH_EDGE(bb)                 (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
584                                          ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
585
586 /* Return expected execution frequency of the edge E.  */
587 #define EDGE_FREQUENCY(e)               (((e)->src->frequency \
588                                           * (e)->probability \
589                                           + REG_BR_PROB_BASE / 2) \
590                                          / REG_BR_PROB_BASE)
591
592 /* Return nonzero if edge is critical.  */
593 #define EDGE_CRITICAL_P(e)              (EDGE_COUNT ((e)->src->succs) >= 2 \
594                                          && EDGE_COUNT ((e)->dest->preds) >= 2)
595
596 #define EDGE_COUNT(ev)                  VEC_length (edge, (ev))
597 #define EDGE_I(ev,i)                    VEC_index  (edge, (ev), (i))
598 #define EDGE_PRED(bb,i)                 VEC_index  (edge, (bb)->preds, (i))
599 #define EDGE_SUCC(bb,i)                 VEC_index  (edge, (bb)->succs, (i))
600
601 /* Returns true if BB has precisely one successor.  */
602
603 static inline bool
604 single_succ_p (basic_block bb)
605 {
606   return EDGE_COUNT (bb->succs) == 1;
607 }
608
609 /* Returns true if BB has precisely one predecessor.  */
610
611 static inline bool
612 single_pred_p (basic_block bb)
613 {
614   return EDGE_COUNT (bb->preds) == 1;
615 }
616
617 /* Returns the single successor edge of basic block BB.  Aborts if
618    BB does not have exactly one successor.  */
619
620 static inline edge
621 single_succ_edge (basic_block bb)
622 {
623   gcc_assert (single_succ_p (bb));
624   return EDGE_SUCC (bb, 0);
625 }
626
627 /* Returns the single predecessor edge of basic block BB.  Aborts
628    if BB does not have exactly one predecessor.  */
629
630 static inline edge
631 single_pred_edge (basic_block bb)
632 {
633   gcc_assert (single_pred_p (bb));
634   return EDGE_PRED (bb, 0);
635 }
636
637 /* Returns the single successor block of basic block BB.  Aborts
638    if BB does not have exactly one successor.  */
639
640 static inline basic_block
641 single_succ (basic_block bb)
642 {
643   return single_succ_edge (bb)->dest;
644 }
645
646 /* Returns the single predecessor block of basic block BB.  Aborts
647    if BB does not have exactly one predecessor.*/
648
649 static inline basic_block
650 single_pred (basic_block bb)
651 {
652   return single_pred_edge (bb)->src;
653 }
654
655 /* Iterator object for edges.  */
656
657 typedef struct {
658   unsigned index;
659   VEC(edge,gc) **container;
660 } edge_iterator;
661
662 static inline VEC(edge,gc) *
663 ei_container (edge_iterator i)
664 {
665   gcc_assert (i.container);
666   return *i.container;
667 }
668
669 #define ei_start(iter) ei_start_1 (&(iter))
670 #define ei_last(iter) ei_last_1 (&(iter))
671
672 /* Return an iterator pointing to the start of an edge vector.  */
673 static inline edge_iterator
674 ei_start_1 (VEC(edge,gc) **ev)
675 {
676   edge_iterator i;
677
678   i.index = 0;
679   i.container = ev;
680
681   return i;
682 }
683
684 /* Return an iterator pointing to the last element of an edge
685    vector.  */
686 static inline edge_iterator
687 ei_last_1 (VEC(edge,gc) **ev)
688 {
689   edge_iterator i;
690
691   i.index = EDGE_COUNT (*ev) - 1;
692   i.container = ev;
693
694   return i;
695 }
696
697 /* Is the iterator `i' at the end of the sequence?  */
698 static inline bool
699 ei_end_p (edge_iterator i)
700 {
701   return (i.index == EDGE_COUNT (ei_container (i)));
702 }
703
704 /* Is the iterator `i' at one position before the end of the
705    sequence?  */
706 static inline bool
707 ei_one_before_end_p (edge_iterator i)
708 {
709   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
710 }
711
712 /* Advance the iterator to the next element.  */
713 static inline void
714 ei_next (edge_iterator *i)
715 {
716   gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
717   i->index++;
718 }
719
720 /* Move the iterator to the previous element.  */
721 static inline void
722 ei_prev (edge_iterator *i)
723 {
724   gcc_assert (i->index > 0);
725   i->index--;
726 }
727
728 /* Return the edge pointed to by the iterator `i'.  */
729 static inline edge
730 ei_edge (edge_iterator i)
731 {
732   return EDGE_I (ei_container (i), i.index);
733 }
734
735 /* Return an edge pointed to by the iterator.  Do it safely so that
736    NULL is returned when the iterator is pointing at the end of the
737    sequence.  */
738 static inline edge
739 ei_safe_edge (edge_iterator i)
740 {
741   return !ei_end_p (i) ? ei_edge (i) : NULL;
742 }
743
744 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
745    *Edge P is set to the next edge if we are to continue to iterate
746    and NULL otherwise.  */
747
748 static inline bool
749 ei_cond (edge_iterator ei, edge *p)
750 {
751   if (!ei_end_p (ei))
752     {
753       *p = ei_edge (ei);
754       return 1;
755     }
756   else
757     {
758       *p = NULL;
759       return 0;
760     }
761 }
762
763 /* This macro serves as a convenient way to iterate each edge in a
764    vector of predecessor or successor edges.  It must not be used when
765    an element might be removed during the traversal, otherwise
766    elements will be missed.  Instead, use a for-loop like that shown
767    in the following pseudo-code:
768    
769    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
770      {
771         IF (e != taken_edge)
772           remove_edge (e);
773         ELSE
774           ei_next (&ei);
775      }
776 */
777
778 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)       \
779   for ((ITER) = ei_start ((EDGE_VEC));          \
780        ei_cond ((ITER), &(EDGE));               \
781        ei_next (&(ITER)))
782
783 struct edge_list * create_edge_list (void);
784 void free_edge_list (struct edge_list *);
785 void print_edge_list (FILE *, struct edge_list *);
786 void verify_edge_list (FILE *, struct edge_list *);
787 int find_edge_index (struct edge_list *, basic_block, basic_block);
788 edge find_edge (basic_block, basic_block);
789
790
791 enum update_life_extent
792 {
793   UPDATE_LIFE_LOCAL = 0,
794   UPDATE_LIFE_GLOBAL = 1,
795   UPDATE_LIFE_GLOBAL_RM_NOTES = 2
796 };
797
798 /* Flags for life_analysis and update_life_info.  */
799
800 #define PROP_DEATH_NOTES        1       /* Create DEAD and UNUSED notes.  */
801 #define PROP_LOG_LINKS          2       /* Create LOG_LINKS.  */
802 #define PROP_REG_INFO           4       /* Update regs_ever_live et al.  */
803 #define PROP_KILL_DEAD_CODE     8       /* Remove dead code.  */
804 #define PROP_SCAN_DEAD_CODE     16      /* Scan for dead code.  */
805 #define PROP_ALLOW_CFG_CHANGES  32      /* Allow the CFG to be changed
806                                            by dead code removal.  */
807 #define PROP_AUTOINC            64      /* Create autoinc mem references.  */
808 #define PROP_SCAN_DEAD_STORES   128     /* Scan for dead code.  */
809 #define PROP_ASM_SCAN           256     /* Internal flag used within flow.c
810                                            to flag analysis of asms.  */
811 #define PROP_DEAD_INSN          1024    /* Internal flag used within flow.c
812                                            to flag analysis of dead insn.  */
813 #define PROP_FINAL              (PROP_DEATH_NOTES | PROP_LOG_LINKS  \
814                                  | PROP_REG_INFO | PROP_KILL_DEAD_CODE  \
815                                  | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
816                                  | PROP_ALLOW_CFG_CHANGES \
817                                  | PROP_SCAN_DEAD_STORES)
818 #define PROP_POSTRELOAD         (PROP_DEATH_NOTES  \
819                                  | PROP_KILL_DEAD_CODE  \
820                                  | PROP_SCAN_DEAD_CODE \
821                                  | PROP_SCAN_DEAD_STORES)
822
823 #define CLEANUP_EXPENSIVE       1       /* Do relatively expensive optimizations
824                                            except for edge forwarding */
825 #define CLEANUP_CROSSJUMP       2       /* Do crossjumping.  */
826 #define CLEANUP_POST_REGSTACK   4       /* We run after reg-stack and need
827                                            to care REG_DEAD notes.  */
828 #define CLEANUP_PRE_LOOP        8       /* Take care to preserve syntactic loop
829                                            notes.  */
830 #define CLEANUP_UPDATE_LIFE     16      /* Keep life information up to date.  */
831 #define CLEANUP_THREADING       32      /* Do jump threading.  */
832 #define CLEANUP_NO_INSN_DEL     64      /* Do not try to delete trivially dead
833                                            insns.  */
834 #define CLEANUP_CFGLAYOUT       128     /* Do cleanup in cfglayout mode.  */
835 #define CLEANUP_LOG_LINKS       256     /* Update log links.  */
836
837 extern void life_analysis (FILE *, int);
838 extern int update_life_info (sbitmap, enum update_life_extent, int);
839 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
840 extern int count_or_remove_death_notes (sbitmap, int);
841 extern int propagate_block (basic_block, regset, regset, regset, int);
842
843 struct propagate_block_info;
844 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
845 extern struct propagate_block_info *init_propagate_block_info
846  (basic_block, regset, regset, regset, int);
847 extern void free_propagate_block_info (struct propagate_block_info *);
848
849 /* In lcm.c */
850 extern struct edge_list *pre_edge_lcm (FILE *, int, sbitmap *, sbitmap *,
851                                        sbitmap *, sbitmap *, sbitmap **,
852                                        sbitmap **);
853 extern struct edge_list *pre_edge_rev_lcm (FILE *, int, sbitmap *,
854                                            sbitmap *, sbitmap *,
855                                            sbitmap *, sbitmap **,
856                                            sbitmap **);
857 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
858 extern int optimize_mode_switching (FILE *);
859
860 /* In predict.c */
861 extern void estimate_probability (struct loops *);
862 extern void expected_value_to_br_prob (void);
863 extern bool maybe_hot_bb_p (basic_block);
864 extern bool probably_cold_bb_p (basic_block);
865 extern bool probably_never_executed_bb_p (basic_block);
866 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
867 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
868 extern void tree_predict_edge (edge, enum br_predictor, int);
869 extern void rtl_predict_edge (edge, enum br_predictor, int);
870 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
871 extern void guess_outgoing_edge_probabilities (basic_block);
872 extern void remove_predictions_associated_with_edge (edge);
873
874 /* In flow.c */
875 extern void init_flow (void);
876 extern void debug_bb (basic_block);
877 extern basic_block debug_bb_n (int);
878 extern void dump_regset (regset, FILE *);
879 extern void debug_regset (regset);
880 extern void allocate_reg_life_data (void);
881 extern void expunge_block (basic_block);
882 extern void link_block (basic_block, basic_block);
883 extern void unlink_block (basic_block);
884 extern void compact_blocks (void);
885 extern basic_block alloc_block (void);
886 extern void find_unreachable_blocks (void);
887 extern int delete_noop_moves (void);
888 extern basic_block force_nonfallthru (edge);
889 extern rtx block_label (basic_block);
890 extern bool forwarder_block_p (basic_block);
891 extern bool purge_all_dead_edges (void);
892 extern bool purge_dead_edges (basic_block);
893 extern void find_many_sub_basic_blocks (sbitmap);
894 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
895 extern bool can_fallthru (basic_block, basic_block);
896 extern bool could_fall_through (basic_block, basic_block);
897 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
898 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
899 extern void alloc_aux_for_block (basic_block, int);
900 extern void alloc_aux_for_blocks (int);
901 extern void clear_aux_for_blocks (void);
902 extern void free_aux_for_blocks (void);
903 extern void alloc_aux_for_edge (edge, int);
904 extern void alloc_aux_for_edges (int);
905 extern void clear_aux_for_edges (void);
906 extern void free_aux_for_edges (void);
907 extern void find_basic_blocks (rtx);
908 extern bool cleanup_cfg (int);
909 extern bool delete_unreachable_blocks (void);
910 extern bool merge_seq_blocks (void);
911
912 typedef struct conflict_graph_def *conflict_graph;
913
914 /* Callback function when enumerating conflicts.  The arguments are
915    the smaller and larger regno in the conflict.  Returns zero if
916    enumeration is to continue, nonzero to halt enumeration.  */
917 typedef int (*conflict_graph_enum_fn) (int, int, void *);
918
919
920 /* Prototypes of operations on conflict graphs.  */
921
922 extern conflict_graph conflict_graph_new
923  (int);
924 extern void conflict_graph_delete (conflict_graph);
925 extern int conflict_graph_add (conflict_graph, int, int);
926 extern int conflict_graph_conflict_p (conflict_graph, int, int);
927 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
928                                  void *);
929 extern void conflict_graph_merge_regs (conflict_graph, int, int);
930 extern void conflict_graph_print (conflict_graph, FILE*);
931 extern bool mark_dfs_back_edges (void);
932 extern void set_edge_can_fallthru_flag (void);
933 extern void update_br_prob_note (basic_block);
934 extern void fixup_abnormal_edges (void);
935 extern bool inside_basic_block_p (rtx);
936 extern bool control_flow_insn_p (rtx);
937
938 /* In bb-reorder.c */
939 extern void reorder_basic_blocks (unsigned int);
940 extern void duplicate_computed_gotos (void);
941 extern void partition_hot_cold_basic_blocks (void);
942
943 /* In cfg.c */
944 extern void initialize_bb_rbi (basic_block bb);
945
946 /* In dominance.c */
947
948 enum cdi_direction
949 {
950   CDI_DOMINATORS,
951   CDI_POST_DOMINATORS
952 };
953
954 enum dom_state
955 {
956   DOM_NONE,             /* Not computed at all.  */
957   DOM_NO_FAST_QUERY,    /* The data is OK, but the fast query data are not usable.  */
958   DOM_OK                /* Everything is ok.  */
959 };
960
961 extern enum dom_state dom_computed[2];
962
963 extern bool dom_info_available_p (enum cdi_direction);
964 extern void calculate_dominance_info (enum cdi_direction);
965 extern void free_dominance_info (enum cdi_direction);
966 extern basic_block nearest_common_dominator (enum cdi_direction,
967                                              basic_block, basic_block);
968 extern basic_block nearest_common_dominator_for_set (enum cdi_direction, 
969                                                      bitmap);
970 extern void set_immediate_dominator (enum cdi_direction, basic_block,
971                                      basic_block);
972 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
973 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
974 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
975 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
976                                          unsigned, basic_block *);
977 extern void add_to_dominance_info (enum cdi_direction, basic_block);
978 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
979 basic_block recount_dominator (enum cdi_direction, basic_block);
980 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
981                                            basic_block);
982 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
983 extern void verify_dominators (enum cdi_direction);
984 extern basic_block first_dom_son (enum cdi_direction, basic_block);
985 extern basic_block next_dom_son (enum cdi_direction, basic_block);
986 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
987 extern void break_superblocks (void);
988 extern void check_bb_profile (basic_block, FILE *);
989 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
990
991 #include "cfghooks.h"
992
993 #endif /* GCC_BASIC_BLOCK_H */