OSDN Git Service

* gcse.c (gcse_main): Do jump bypassing in CPROP2.
[pf3gnuchains/gcc-fork.git] / gcc / basic-block.h
1 /* Define control and data flow tables, and regsets.
2    Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3    Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
24
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
33
34 /* Head of register set linked list.  */
35 typedef bitmap_head regset_head;
36
37 /* A pointer to a regset_head.  */
38 typedef bitmap regset;
39
40 /* Allocate a register set with oballoc.  */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42
43 /* Do any cleanup needed on a regset when it is no longer used.  */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45
46 /* Initialize a new regset.  */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48
49 /* Clear a register set by freeing up the linked list.  */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51
52 /* Copy a register set to another register set.  */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54
55 /* Compare two register sets.  */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57
58 /* `and' a register set with a second register set.  */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60
61 /* `and' the complement of a register set with a register set.  */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63
64 /* Inclusive or a register set with a second register set.  */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66
67 /* Exclusive or a register set with a second register set.  */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2.  */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72   bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73
74 /* Clear a single register in a register set.  */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76
77 /* Set a single register in a register set.  */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79
80 /* Return true if a register is set in a register set.  */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82
83 /* Copy the hard registers in a register set to the hard register set.  */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM)                               \
86 do {                                                                    \
87   CLEAR_HARD_REG_SET (TO);                                              \
88   reg_set_to_hard_reg_set (&TO, FROM);                                  \
89 } while (0)
90
91 typedef bitmap_iterator reg_set_iterator;
92
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94    register number and executing CODE for all registers that are set.  */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI)     \
96   EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99    REGNUM to the register number and executing CODE for all registers that are
100    set in the first regset and not set in the second.  */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102   EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105    REGNUM to the register number and executing CODE for all registers that are
106    set in both regsets.  */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108   EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109
110 /* Type we use to hold basic block counters.  Should be at least
111    64bit.  Although a counter cannot be negative, we use a signed
112    type, because erroneous negative counts can be generated when the
113    flow graph is manipulated by various optimizations.  A signed type
114    makes those easy to detect.  */
115 typedef HOST_WIDEST_INT gcov_type;
116
117 /* Control flow edge information.  */
118 struct edge_def GTY(())
119 {
120   /* The two blocks at the ends of the edge.  */
121   struct basic_block_def *src;
122   struct basic_block_def *dest;
123
124   /* Instructions queued on the edge.  */
125   union edge_def_insns {
126     tree GTY ((tag ("true"))) t;
127     rtx GTY ((tag ("false"))) r;
128   } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129
130   /* Auxiliary info specific to a pass.  */
131   PTR GTY ((skip (""))) aux;
132
133   /* Location of any goto implicit in the edge, during tree-ssa.  */
134   source_locus goto_locus;
135
136   int flags;                    /* see EDGE_* below  */
137   int probability;              /* biased by REG_BR_PROB_BASE */
138   gcov_type count;              /* Expected number of executions calculated
139                                    in profile.c  */
140
141   /* The index number corresponding to this edge in the edge vector
142      dest->preds.  */
143   unsigned int dest_idx;
144 };
145
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
150
151 #define EDGE_FALLTHRU           1       /* 'Straight line' flow */
152 #define EDGE_ABNORMAL           2       /* Strange flow, like computed
153                                            label, or eh */
154 #define EDGE_ABNORMAL_CALL      4       /* Call with abnormal exit
155                                            like an exception, or sibcall */
156 #define EDGE_EH                 8       /* Exception throw */
157 #define EDGE_FAKE               16      /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK           32      /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU       64      /* Candidate for straight line
160                                            flow.  */
161 #define EDGE_IRREDUCIBLE_LOOP   128     /* Part of irreducible loop.  */
162 #define EDGE_SIBCALL            256     /* Edge from sibcall to exit.  */
163 #define EDGE_LOOP_EXIT          512     /* Exit of a loop.  */
164 #define EDGE_TRUE_VALUE         1024    /* Edge taken when controlling
165                                            predicate is nonzero.  */
166 #define EDGE_FALSE_VALUE        2048    /* Edge taken when controlling
167                                            predicate is zero.  */
168 #define EDGE_EXECUTABLE         4096    /* Edge is executable.  Only
169                                            valid during SSA-CCP.  */
170 #define EDGE_CROSSING           8192    /* Edge crosses between hot
171                                            and cold sections, when we
172                                            do partitioning.  */
173 #define EDGE_ALL_FLAGS         16383
174
175 #define EDGE_COMPLEX    (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176
177 /* Counter summary from the last set of coverage counts read by
178    profile.c.  */
179 extern const struct gcov_ctr_summary *profile_info;
180
181 /* Declared in cfgloop.h.  */
182 struct loop;
183
184 /* Declared in tree-flow.h.  */
185 struct edge_prediction;
186 struct rtl_bb_info;
187
188 /* A basic block is a sequence of instructions with only entry and
189    only one exit.  If any one of the instructions are executed, they
190    will all be executed, and in sequence from first to last.
191
192    There may be COND_EXEC instructions in the basic block.  The
193    COND_EXEC *instructions* will be executed -- but if the condition
194    is false the conditionally executed *expressions* will of course
195    not be executed.  We don't consider the conditionally executed
196    expression (which might have side-effects) to be in a separate
197    basic block because the program counter will always be at the same
198    location after the COND_EXEC instruction, regardless of whether the
199    condition is true or not.
200
201    Basic blocks need not start with a label nor end with a jump insn.
202    For example, a previous basic block may just "conditionally fall"
203    into the succeeding basic block, and the last basic block need not
204    end with a jump insn.  Block 0 is a descendant of the entry block.
205
206    A basic block beginning with two labels cannot have notes between
207    the labels.
208
209    Data for jump tables are stored in jump_insns that occur in no
210    basic block even though these insns can follow or precede insns in
211    basic blocks.  */
212
213 /* Basic block information indexed by block number.  */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
215 {
216   /* The edges into and out of the block.  */
217   VEC(edge,gc) *preds;
218   VEC(edge,gc) *succs;
219
220   /* Auxiliary info specific to a pass.  */
221   PTR GTY ((skip (""))) aux;
222
223   /* Innermost loop containing the block.  */
224   struct loop * GTY ((skip (""))) loop_father;
225
226   /* The dominance and postdominance information node.  */
227   struct et_node * GTY ((skip (""))) dom[2];
228
229   /* Previous and next blocks in the chain.  */
230   struct basic_block_def *prev_bb;
231   struct basic_block_def *next_bb;
232
233   union basic_block_il_dependent {
234       struct tree_bb_info * GTY ((tag ("0"))) tree;
235       struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236     } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
237
238   /* Expected number of executions: calculated in profile.c.  */
239   gcov_type count;
240
241   /* The index of this block.  */
242   int index;
243
244   /* The loop depth of this block.  */
245   int loop_depth;
246
247   /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
248   int frequency;
249
250   /* Various flags.  See BB_* below.  */
251   int flags;
252 };
253
254 struct rtl_bb_info GTY(())
255 {
256   /* The first and last insns of the block.  */
257   rtx head_;
258   rtx end_;
259
260   /* The registers that are live on entry to this block.  */
261   bitmap GTY ((skip (""))) global_live_at_start;
262
263   /* The registers that are live on exit from this block.  */
264   bitmap GTY ((skip (""))) global_live_at_end;
265
266   /* In CFGlayout mode points to insn notes/jumptables to be placed just before
267      and after the block.   */
268   rtx header;
269   rtx footer;
270
271   /* This field is used by the bb-reorder and tracer passes.  */
272   int visited;
273 };
274
275 struct tree_bb_info GTY(())
276 {
277   /* Pointers to the first and last trees of the block.  */
278   tree stmt_list;
279
280   /* Chain of PHI nodes for this block.  */
281   tree phi_nodes;
282 };
283
284 typedef struct basic_block_def *basic_block;
285
286 DEF_VEC_P(basic_block);
287 DEF_VEC_ALLOC_P(basic_block,gc);
288 DEF_VEC_ALLOC_P(basic_block,heap);
289
290 #define BB_FREQ_MAX 10000
291
292 /* Masks for basic_block.flags.
293
294    BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
295    the compilation, so they are never cleared.
296
297    All other flags may be cleared by clear_bb_flags().  It is generally
298    a bad idea to rely on any flags being up-to-date.  */
299
300 enum bb_flags
301 {
302
303   /* Set if insns in BB have are modified.  Used for updating liveness info.  */
304   BB_DIRTY = 1,
305
306   /* Only set on blocks that have just been created by create_bb.  */
307   BB_NEW = 2,
308
309   /* Set by find_unreachable_blocks.  Do not rely on this being set in any
310      pass.  */
311   BB_REACHABLE = 4,
312
313   /* Set for blocks in an irreducible loop by loop analysis.  */
314   BB_IRREDUCIBLE_LOOP = 8,
315
316   /* Set on blocks that may actually not be single-entry single-exit block.  */
317   BB_SUPERBLOCK = 16,
318
319   /* Set on basic blocks that the scheduler should not touch.  This is used
320      by SMS to prevent other schedulers from messing with the loop schedule.  */
321   BB_DISABLE_SCHEDULE = 32,
322
323   /* Set on blocks that should be put in a hot section.  */
324   BB_HOT_PARTITION = 64,
325
326   /* Set on blocks that should be put in a cold section.  */
327   BB_COLD_PARTITION = 128,
328
329   /* Set on block that was duplicated.  */
330   BB_DUPLICATED = 256,
331
332   /* Set on blocks that are in RTL format.  */
333   BB_RTL = 1024,
334
335   /* Set on blocks that are forwarder blocks.
336      Only used in cfgcleanup.c.  */
337   BB_FORWARDER_BLOCK = 2048,
338
339   /* Set on blocks that cannot be threaded through.
340      Only used in cfgcleanup.c.  */
341   BB_NONTHREADABLE_BLOCK = 4096
342 };
343
344 /* Dummy flag for convenience in the hot/cold partitioning code.  */
345 #define BB_UNPARTITIONED        0
346
347 /* Partitions, to be used when partitioning hot and cold basic blocks into
348    separate sections.  */
349 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
350 #define BB_SET_PARTITION(bb, part) do {                                 \
351   basic_block bb_ = (bb);                                               \
352   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))    \
353                 | (part));                                              \
354 } while (0)
355
356 #define BB_COPY_PARTITION(dstbb, srcbb) \
357   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
358
359 /* A structure to group all the per-function control flow graph data.
360    The x_* prefixing is necessary because otherwise references to the
361    fields of this struct are interpreted as the defines for backward
362    source compatibility following the definition of this struct.  */
363 struct control_flow_graph GTY(())
364 {
365   /* Block pointers for the exit and entry of a function.
366      These are always the head and tail of the basic block list.  */
367   basic_block x_entry_block_ptr;
368   basic_block x_exit_block_ptr;
369
370   /* Index by basic block number, get basic block struct info.  */
371   VEC(basic_block,gc) *x_basic_block_info;
372
373   /* Number of basic blocks in this flow graph.  */
374   int x_n_basic_blocks;
375
376   /* Number of edges in this flow graph.  */
377   int x_n_edges;
378
379   /* The first free basic block number.  */
380   int x_last_basic_block;
381
382   /* Mapping of labels to their associated blocks.  At present
383      only used for the tree CFG.  */
384   VEC(basic_block,gc) *x_label_to_block_map;
385
386   enum profile_status {
387     PROFILE_ABSENT,
388     PROFILE_GUESSED,
389     PROFILE_READ
390   } x_profile_status;
391 };
392
393 /* Defines for accessing the fields of the CFG structure for function FN.  */
394 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN)     ((FN)->cfg->x_entry_block_ptr)
395 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN)      ((FN)->cfg->x_exit_block_ptr)
396 #define basic_block_info_for_function(FN)    ((FN)->cfg->x_basic_block_info)
397 #define n_basic_blocks_for_function(FN)      ((FN)->cfg->x_n_basic_blocks)
398 #define n_edges_for_function(FN)             ((FN)->cfg->x_n_edges)
399 #define last_basic_block_for_function(FN)    ((FN)->cfg->x_last_basic_block)
400 #define label_to_block_map_for_function(FN)  ((FN)->cfg->x_label_to_block_map)
401
402 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
403   (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
404
405 /* Defines for textual backward source compatibility.  */
406 #define ENTRY_BLOCK_PTR         (cfun->cfg->x_entry_block_ptr)
407 #define EXIT_BLOCK_PTR          (cfun->cfg->x_exit_block_ptr)
408 #define basic_block_info        (cfun->cfg->x_basic_block_info)
409 #define n_basic_blocks          (cfun->cfg->x_n_basic_blocks)
410 #define n_edges                 (cfun->cfg->x_n_edges)
411 #define last_basic_block        (cfun->cfg->x_last_basic_block)
412 #define label_to_block_map      (cfun->cfg->x_label_to_block_map)
413 #define profile_status          (cfun->cfg->x_profile_status)
414
415 #define BASIC_BLOCK(N)          (VEC_index (basic_block, basic_block_info, (N)))
416 #define SET_BASIC_BLOCK(N,BB)   (VEC_replace (basic_block, basic_block_info, (N), (BB)))
417
418 /* For iterating over basic blocks.  */
419 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
420   for (BB = FROM; BB != TO; BB = BB->DIR)
421
422 #define FOR_EACH_BB_FN(BB, FN) \
423   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
424
425 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
426
427 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
428   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
429
430 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
431
432 /* For iterating over insns in basic block.  */
433 #define FOR_BB_INSNS(BB, INSN)                  \
434   for ((INSN) = BB_HEAD (BB);                   \
435        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));     \
436        (INSN) = NEXT_INSN (INSN))
437
438 #define FOR_BB_INSNS_REVERSE(BB, INSN)          \
439   for ((INSN) = BB_END (BB);                    \
440        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));    \
441        (INSN) = PREV_INSN (INSN))
442
443 /* Cycles through _all_ basic blocks, even the fake ones (entry and
444    exit block).  */
445
446 #define FOR_ALL_BB(BB) \
447   for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
448
449 #define FOR_ALL_BB_FN(BB, FN) \
450   for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
451
452 extern bitmap_obstack reg_obstack;
453
454 /* Indexed by n, gives number of basic block that  (REG n) is used in.
455    If the value is REG_BLOCK_GLOBAL (-2),
456    it means (REG n) is used in more than one basic block.
457    REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
458    This information remains valid for the rest of the compilation
459    of the current function; it is used to control register allocation.  */
460
461 #define REG_BLOCK_UNKNOWN -1
462 #define REG_BLOCK_GLOBAL -2
463
464 #define REG_BASIC_BLOCK(N)                              \
465   (VEC_index (reg_info_p, reg_n_info, N)->basic_block)
466 \f
467 /* Stuff for recording basic block info.  */
468
469 #define BB_HEAD(B)      (B)->il.rtl->head_
470 #define BB_END(B)       (B)->il.rtl->end_
471
472 /* Special block numbers [markers] for entry and exit.  */
473 #define ENTRY_BLOCK (0)
474 #define EXIT_BLOCK (1)
475
476 /* The two blocks that are always in the cfg.  */
477 #define NUM_FIXED_BLOCKS (2)
478
479
480 #define BLOCK_NUM(INSN)       (BLOCK_FOR_INSN (INSN)->index + 0)
481 #define set_block_for_insn(INSN, BB)  (BLOCK_FOR_INSN (INSN) = BB)
482
483 extern void compute_bb_for_insn (void);
484 extern unsigned int free_bb_for_insn (void);
485 extern void update_bb_for_insn (basic_block);
486
487 extern void free_basic_block_vars (void);
488
489 extern void insert_insn_on_edge (rtx, edge);
490 basic_block split_edge_and_insert (edge, rtx);
491
492 extern void commit_edge_insertions (void);
493
494 extern void remove_fake_edges (void);
495 extern void remove_fake_exit_edges (void);
496 extern void add_noreturn_fake_exit_edges (void);
497 extern void connect_infinite_loops_to_exit (void);
498 extern edge unchecked_make_edge (basic_block, basic_block, int);
499 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
500 extern edge make_edge (basic_block, basic_block, int);
501 extern edge make_single_succ_edge (basic_block, basic_block, int);
502 extern void remove_edge (edge);
503 extern void redirect_edge_succ (edge, basic_block);
504 extern edge redirect_edge_succ_nodup (edge, basic_block);
505 extern void redirect_edge_pred (edge, basic_block);
506 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
507 extern void clear_bb_flags (void);
508 extern int post_order_compute (int *, bool);
509 extern int pre_and_rev_post_order_compute (int *, int *, bool);
510 extern int dfs_enumerate_from (basic_block, int,
511                                bool (*)(basic_block, void *),
512                                basic_block *, int, void *);
513 extern void compute_dominance_frontiers (bitmap *);
514 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
515 extern void dump_edge_info (FILE *, edge, int);
516 extern void brief_dump_cfg (FILE *);
517 extern void clear_edges (void);
518 extern rtx first_insn_after_basic_block_note (basic_block);
519 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
520 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
521                                              gcov_type);
522
523 /* Structure to group all of the information to process IF-THEN and
524    IF-THEN-ELSE blocks for the conditional execution support.  This
525    needs to be in a public file in case the IFCVT macros call
526    functions passing the ce_if_block data structure.  */
527
528 typedef struct ce_if_block
529 {
530   basic_block test_bb;                  /* First test block.  */
531   basic_block then_bb;                  /* THEN block.  */
532   basic_block else_bb;                  /* ELSE block or NULL.  */
533   basic_block join_bb;                  /* Join THEN/ELSE blocks.  */
534   basic_block last_test_bb;             /* Last bb to hold && or || tests.  */
535   int num_multiple_test_blocks;         /* # of && and || basic blocks.  */
536   int num_and_and_blocks;               /* # of && blocks.  */
537   int num_or_or_blocks;                 /* # of || blocks.  */
538   int num_multiple_test_insns;          /* # of insns in && and || blocks.  */
539   int and_and_p;                        /* Complex test is &&.  */
540   int num_then_insns;                   /* # of insns in THEN block.  */
541   int num_else_insns;                   /* # of insns in ELSE block.  */
542   int pass;                             /* Pass number.  */
543
544 #ifdef IFCVT_EXTRA_FIELDS
545   IFCVT_EXTRA_FIELDS                    /* Any machine dependent fields.  */
546 #endif
547
548 } ce_if_block_t;
549
550 /* This structure maintains an edge list vector.  */
551 struct edge_list
552 {
553   int num_blocks;
554   int num_edges;
555   edge *index_to_edge;
556 };
557
558 /* The base value for branch probability notes and edge probabilities.  */
559 #define REG_BR_PROB_BASE  10000
560
561 /* This is the value which indicates no edge is present.  */
562 #define EDGE_INDEX_NO_EDGE      -1
563
564 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
565    if there is no edge between the 2 basic blocks.  */
566 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
567
568 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
569    block which is either the pred or succ end of the indexed edge.  */
570 #define INDEX_EDGE_PRED_BB(el, index)   ((el)->index_to_edge[(index)]->src)
571 #define INDEX_EDGE_SUCC_BB(el, index)   ((el)->index_to_edge[(index)]->dest)
572
573 /* INDEX_EDGE returns a pointer to the edge.  */
574 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
575
576 /* Number of edges in the compressed edge list.  */
577 #define NUM_EDGES(el)                   ((el)->num_edges)
578
579 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
580 #define FALLTHRU_EDGE(bb)               (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
581                                          ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
582
583 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
584 #define BRANCH_EDGE(bb)                 (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
585                                          ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
586
587 /* Return expected execution frequency of the edge E.  */
588 #define EDGE_FREQUENCY(e)               (((e)->src->frequency \
589                                           * (e)->probability \
590                                           + REG_BR_PROB_BASE / 2) \
591                                          / REG_BR_PROB_BASE)
592
593 /* Return nonzero if edge is critical.  */
594 #define EDGE_CRITICAL_P(e)              (EDGE_COUNT ((e)->src->succs) >= 2 \
595                                          && EDGE_COUNT ((e)->dest->preds) >= 2)
596
597 #define EDGE_COUNT(ev)                  VEC_length (edge, (ev))
598 #define EDGE_I(ev,i)                    VEC_index  (edge, (ev), (i))
599 #define EDGE_PRED(bb,i)                 VEC_index  (edge, (bb)->preds, (i))
600 #define EDGE_SUCC(bb,i)                 VEC_index  (edge, (bb)->succs, (i))
601
602 /* Returns true if BB has precisely one successor.  */
603
604 static inline bool
605 single_succ_p (basic_block bb)
606 {
607   return EDGE_COUNT (bb->succs) == 1;
608 }
609
610 /* Returns true if BB has precisely one predecessor.  */
611
612 static inline bool
613 single_pred_p (basic_block bb)
614 {
615   return EDGE_COUNT (bb->preds) == 1;
616 }
617
618 /* Returns the single successor edge of basic block BB.  Aborts if
619    BB does not have exactly one successor.  */
620
621 static inline edge
622 single_succ_edge (basic_block bb)
623 {
624   gcc_assert (single_succ_p (bb));
625   return EDGE_SUCC (bb, 0);
626 }
627
628 /* Returns the single predecessor edge of basic block BB.  Aborts
629    if BB does not have exactly one predecessor.  */
630
631 static inline edge
632 single_pred_edge (basic_block bb)
633 {
634   gcc_assert (single_pred_p (bb));
635   return EDGE_PRED (bb, 0);
636 }
637
638 /* Returns the single successor block of basic block BB.  Aborts
639    if BB does not have exactly one successor.  */
640
641 static inline basic_block
642 single_succ (basic_block bb)
643 {
644   return single_succ_edge (bb)->dest;
645 }
646
647 /* Returns the single predecessor block of basic block BB.  Aborts
648    if BB does not have exactly one predecessor.*/
649
650 static inline basic_block
651 single_pred (basic_block bb)
652 {
653   return single_pred_edge (bb)->src;
654 }
655
656 /* Iterator object for edges.  */
657
658 typedef struct {
659   unsigned index;
660   VEC(edge,gc) **container;
661 } edge_iterator;
662
663 static inline VEC(edge,gc) *
664 ei_container (edge_iterator i)
665 {
666   gcc_assert (i.container);
667   return *i.container;
668 }
669
670 #define ei_start(iter) ei_start_1 (&(iter))
671 #define ei_last(iter) ei_last_1 (&(iter))
672
673 /* Return an iterator pointing to the start of an edge vector.  */
674 static inline edge_iterator
675 ei_start_1 (VEC(edge,gc) **ev)
676 {
677   edge_iterator i;
678
679   i.index = 0;
680   i.container = ev;
681
682   return i;
683 }
684
685 /* Return an iterator pointing to the last element of an edge
686    vector.  */
687 static inline edge_iterator
688 ei_last_1 (VEC(edge,gc) **ev)
689 {
690   edge_iterator i;
691
692   i.index = EDGE_COUNT (*ev) - 1;
693   i.container = ev;
694
695   return i;
696 }
697
698 /* Is the iterator `i' at the end of the sequence?  */
699 static inline bool
700 ei_end_p (edge_iterator i)
701 {
702   return (i.index == EDGE_COUNT (ei_container (i)));
703 }
704
705 /* Is the iterator `i' at one position before the end of the
706    sequence?  */
707 static inline bool
708 ei_one_before_end_p (edge_iterator i)
709 {
710   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
711 }
712
713 /* Advance the iterator to the next element.  */
714 static inline void
715 ei_next (edge_iterator *i)
716 {
717   gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
718   i->index++;
719 }
720
721 /* Move the iterator to the previous element.  */
722 static inline void
723 ei_prev (edge_iterator *i)
724 {
725   gcc_assert (i->index > 0);
726   i->index--;
727 }
728
729 /* Return the edge pointed to by the iterator `i'.  */
730 static inline edge
731 ei_edge (edge_iterator i)
732 {
733   return EDGE_I (ei_container (i), i.index);
734 }
735
736 /* Return an edge pointed to by the iterator.  Do it safely so that
737    NULL is returned when the iterator is pointing at the end of the
738    sequence.  */
739 static inline edge
740 ei_safe_edge (edge_iterator i)
741 {
742   return !ei_end_p (i) ? ei_edge (i) : NULL;
743 }
744
745 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
746    *Edge P is set to the next edge if we are to continue to iterate
747    and NULL otherwise.  */
748
749 static inline bool
750 ei_cond (edge_iterator ei, edge *p)
751 {
752   if (!ei_end_p (ei))
753     {
754       *p = ei_edge (ei);
755       return 1;
756     }
757   else
758     {
759       *p = NULL;
760       return 0;
761     }
762 }
763
764 /* This macro serves as a convenient way to iterate each edge in a
765    vector of predecessor or successor edges.  It must not be used when
766    an element might be removed during the traversal, otherwise
767    elements will be missed.  Instead, use a for-loop like that shown
768    in the following pseudo-code:
769
770    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
771      {
772         IF (e != taken_edge)
773           remove_edge (e);
774         ELSE
775           ei_next (&ei);
776      }
777 */
778
779 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)       \
780   for ((ITER) = ei_start ((EDGE_VEC));          \
781        ei_cond ((ITER), &(EDGE));               \
782        ei_next (&(ITER)))
783
784 struct edge_list * create_edge_list (void);
785 void free_edge_list (struct edge_list *);
786 void print_edge_list (FILE *, struct edge_list *);
787 void verify_edge_list (FILE *, struct edge_list *);
788 int find_edge_index (struct edge_list *, basic_block, basic_block);
789 edge find_edge (basic_block, basic_block);
790
791
792 enum update_life_extent
793 {
794   UPDATE_LIFE_LOCAL = 0,
795   UPDATE_LIFE_GLOBAL = 1,
796   UPDATE_LIFE_GLOBAL_RM_NOTES = 2
797 };
798
799 /* Flags for life_analysis and update_life_info.  */
800
801 #define PROP_DEATH_NOTES        1       /* Create DEAD and UNUSED notes.  */
802 #define PROP_LOG_LINKS          2       /* Create LOG_LINKS.  */
803 #define PROP_REG_INFO           4       /* Update regs_ever_live et al.  */
804 #define PROP_KILL_DEAD_CODE     8       /* Remove dead code.  */
805 #define PROP_SCAN_DEAD_CODE     16      /* Scan for dead code.  */
806 #define PROP_ALLOW_CFG_CHANGES  32      /* Allow the CFG to be changed
807                                            by dead code removal.  */
808 #define PROP_AUTOINC            64      /* Create autoinc mem references.  */
809 #define PROP_SCAN_DEAD_STORES   128     /* Scan for dead code.  */
810 #define PROP_ASM_SCAN           256     /* Internal flag used within flow.c
811                                            to flag analysis of asms.  */
812 #define PROP_DEAD_INSN          1024    /* Internal flag used within flow.c
813                                            to flag analysis of dead insn.  */
814 #define PROP_POST_REGSTACK      2048    /* We run after reg-stack and need
815                                            to preserve REG_DEAD notes for
816                                            stack regs.  */
817 #define PROP_FINAL              (PROP_DEATH_NOTES | PROP_LOG_LINKS  \
818                                  | PROP_REG_INFO | PROP_KILL_DEAD_CODE  \
819                                  | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
820                                  | PROP_ALLOW_CFG_CHANGES \
821                                  | PROP_SCAN_DEAD_STORES)
822 #define PROP_POSTRELOAD         (PROP_DEATH_NOTES  \
823                                  | PROP_KILL_DEAD_CODE  \
824                                  | PROP_SCAN_DEAD_CODE \
825                                  | PROP_SCAN_DEAD_STORES)
826
827 #define CLEANUP_EXPENSIVE       1       /* Do relatively expensive optimizations
828                                            except for edge forwarding */
829 #define CLEANUP_CROSSJUMP       2       /* Do crossjumping.  */
830 #define CLEANUP_POST_REGSTACK   4       /* We run after reg-stack and need
831                                            to care REG_DEAD notes.  */
832 #define CLEANUP_UPDATE_LIFE     8       /* Keep life information up to date.  */
833 #define CLEANUP_THREADING       16      /* Do jump threading.  */
834 #define CLEANUP_NO_INSN_DEL     32      /* Do not try to delete trivially dead
835                                            insns.  */
836 #define CLEANUP_CFGLAYOUT       64      /* Do cleanup in cfglayout mode.  */
837 #define CLEANUP_LOG_LINKS       128     /* Update log links.  */
838
839 /* The following are ORed in on top of the CLEANUP* flags in calls to
840    struct_equiv_block_eq.  */
841 #define STRUCT_EQUIV_START      256      /* Initializes the search range.  */
842 #define STRUCT_EQUIV_RERUN      512     /* Rerun to find register use in
843                                            found equivalence.  */
844 #define STRUCT_EQUIV_FINAL      1024    /* Make any changes necessary to get
845                                            actual equivalence.  */
846 #define STRUCT_EQUIV_NEED_FULL_BLOCK 2048 /* struct_equiv_block_eq is required
847                                              to match only full blocks  */
848 #define STRUCT_EQUIV_MATCH_JUMPS 4096   /* Also include the jumps at the end of the block in the comparison.  */
849
850 extern void life_analysis (int);
851 extern int update_life_info (sbitmap, enum update_life_extent, int);
852 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
853 extern int count_or_remove_death_notes (sbitmap, int);
854 extern int propagate_block (basic_block, regset, regset, regset, int);
855
856 struct propagate_block_info;
857 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
858 extern struct propagate_block_info *init_propagate_block_info
859  (basic_block, regset, regset, regset, int);
860 extern void free_propagate_block_info (struct propagate_block_info *);
861
862 /* In lcm.c */
863 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
864                                        sbitmap *, sbitmap *, sbitmap **,
865                                        sbitmap **);
866 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
867                                            sbitmap *, sbitmap *,
868                                            sbitmap *, sbitmap **,
869                                            sbitmap **);
870 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
871
872 /* In predict.c */
873 extern bool maybe_hot_bb_p (basic_block);
874 extern bool probably_cold_bb_p (basic_block);
875 extern bool probably_never_executed_bb_p (basic_block);
876 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
877 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
878 extern void tree_predict_edge (edge, enum br_predictor, int);
879 extern void rtl_predict_edge (edge, enum br_predictor, int);
880 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
881 extern void guess_outgoing_edge_probabilities (basic_block);
882 extern void remove_predictions_associated_with_edge (edge);
883 extern bool edge_probability_reliable_p (edge);
884 extern bool br_prob_note_reliable_p (rtx);
885
886 /* In flow.c */
887 extern void init_flow (void);
888 extern void debug_bb (basic_block);
889 extern basic_block debug_bb_n (int);
890 extern void dump_regset (regset, FILE *);
891 extern void debug_regset (regset);
892 extern void allocate_reg_life_data (void);
893 extern void expunge_block (basic_block);
894 extern void link_block (basic_block, basic_block);
895 extern void unlink_block (basic_block);
896 extern void compact_blocks (void);
897 extern basic_block alloc_block (void);
898 extern void find_unreachable_blocks (void);
899 extern int delete_noop_moves (void);
900 extern basic_block force_nonfallthru (edge);
901 extern rtx block_label (basic_block);
902 extern bool forwarder_block_p (basic_block);
903 extern bool purge_all_dead_edges (void);
904 extern bool purge_dead_edges (basic_block);
905 extern void find_many_sub_basic_blocks (sbitmap);
906 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
907 extern bool can_fallthru (basic_block, basic_block);
908 extern bool could_fall_through (basic_block, basic_block);
909 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
910 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
911 extern void alloc_aux_for_block (basic_block, int);
912 extern void alloc_aux_for_blocks (int);
913 extern void clear_aux_for_blocks (void);
914 extern void free_aux_for_blocks (void);
915 extern void alloc_aux_for_edge (edge, int);
916 extern void alloc_aux_for_edges (int);
917 extern void clear_aux_for_edges (void);
918 extern void free_aux_for_edges (void);
919 extern void find_basic_blocks (rtx);
920 extern bool cleanup_cfg (int);
921 extern bool delete_unreachable_blocks (void);
922 extern bool merge_seq_blocks (void);
923
924 extern bool mark_dfs_back_edges (void);
925 extern void set_edge_can_fallthru_flag (void);
926 extern void update_br_prob_note (basic_block);
927 extern void fixup_abnormal_edges (void);
928 extern bool inside_basic_block_p (rtx);
929 extern bool control_flow_insn_p (rtx);
930 extern rtx get_last_bb_insn (basic_block);
931
932 /* In bb-reorder.c */
933 extern void reorder_basic_blocks (void);
934
935 /* In dominance.c */
936
937 enum cdi_direction
938 {
939   CDI_DOMINATORS = 1,
940   CDI_POST_DOMINATORS = 2
941 };
942
943 enum dom_state
944 {
945   DOM_NONE,             /* Not computed at all.  */
946   DOM_NO_FAST_QUERY,    /* The data is OK, but the fast query data are not usable.  */
947   DOM_OK                /* Everything is ok.  */
948 };
949
950 extern enum dom_state dom_info_state (enum cdi_direction);
951 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
952 extern bool dom_info_available_p (enum cdi_direction);
953 extern void calculate_dominance_info (enum cdi_direction);
954 extern void free_dominance_info (enum cdi_direction);
955 extern basic_block nearest_common_dominator (enum cdi_direction,
956                                              basic_block, basic_block);
957 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
958                                                      bitmap);
959 extern void set_immediate_dominator (enum cdi_direction, basic_block,
960                                      basic_block);
961 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
962 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
963 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
964 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
965                                          unsigned, basic_block *);
966 extern void add_to_dominance_info (enum cdi_direction, basic_block);
967 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
968 basic_block recount_dominator (enum cdi_direction, basic_block);
969 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
970                                            basic_block);
971 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
972 extern void verify_dominators (enum cdi_direction);
973 extern basic_block first_dom_son (enum cdi_direction, basic_block);
974 extern basic_block next_dom_son (enum cdi_direction, basic_block);
975 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
976 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
977
978 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
979 extern void break_superblocks (void);
980 extern void relink_block_chain (bool);
981 extern void check_bb_profile (basic_block, FILE *);
982 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
983 extern void init_rtl_bb_info (basic_block);
984
985 extern void initialize_original_copy_tables (void);
986 extern void free_original_copy_tables (void);
987 extern void set_bb_original (basic_block, basic_block);
988 extern basic_block get_bb_original (basic_block);
989 extern void set_bb_copy (basic_block, basic_block);
990 extern basic_block get_bb_copy (basic_block);
991
992 extern rtx insert_insn_end_bb_new (rtx, basic_block);
993
994 #include "cfghooks.h"
995
996 /* In struct-equiv.c */
997
998 /* Constants used to size arrays in struct equiv_info (currently only one).
999    When these limits are exceeded, struct_equiv returns zero.
1000    The maximum number of pseudo registers that are different in the two blocks,
1001    but appear in equivalent places and are dead at the end (or where one of
1002    a pair is dead at the end).  */
1003 #define STRUCT_EQUIV_MAX_LOCAL 16
1004 /* The maximum number of references to an input register that struct_equiv
1005    can handle.  */
1006
1007 /* Structure used to track state during struct_equiv that can be rolled
1008    back when we find we can't match an insn, or if we want to match part
1009    of it in a different way.
1010    This information pertains to the pair of partial blocks that has been
1011    matched so far.  Since this pair is structurally equivalent, this is
1012    conceptually just one partial block expressed in two potentially
1013    different ways.  */
1014 struct struct_equiv_checkpoint
1015 {
1016   int ninsns;       /* Insns are matched so far.  */
1017   int local_count;  /* Number of block-local registers.  */
1018   int input_count;  /* Number of inputs to the block.  */
1019
1020   /* X_START and Y_START are the first insns (in insn stream order)
1021      of the partial blocks that have been considered for matching so far.
1022      Since we are scanning backwards, they are also the instructions that
1023      are currently considered - or the last ones that have been considered -
1024      for matching (Unless we tracked back to these because a preceding
1025      instruction failed to match).  */
1026   rtx x_start, y_start;
1027
1028   /*  INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1029       during the current pass; we keep X_INPUT / Y_INPUT around between passes
1030       so that we can match REG_EQUAL / REG_EQUIV notes referring to these.  */
1031   bool input_valid;
1032
1033   /* Some information would be expensive to exactly checkpoint, so we
1034      merely increment VERSION any time information about local
1035      registers, inputs and/or register liveness changes.  When backtracking,
1036      it is decremented for changes that can be undone, and if a discrepancy
1037      remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1038      that a new pass should be made over the entire block match to get
1039      accurate register information.  */
1040   int version;
1041 };
1042
1043 /* A struct equiv_info is used to pass information to struct_equiv and
1044    to gather state while two basic blocks are checked for structural
1045    equivalence.  */
1046
1047 struct equiv_info
1048 {
1049   /* Fields set up by the caller to struct_equiv_block_eq */
1050
1051   basic_block x_block, y_block;  /* The two blocks being matched.  */
1052
1053   /* MODE carries the mode bits from cleanup_cfg if we are called from
1054      try_crossjump_to_edge, and additionally it carries the
1055      STRUCT_EQUIV_* bits described above.  */
1056   int mode;
1057
1058   /* INPUT_COST is the cost that adding an extra input to the matched blocks
1059      is supposed to have, and is taken into account when considering if the
1060      matched sequence should be extended backwards.  input_cost < 0 means
1061      don't accept any inputs at all.  */
1062   int input_cost;
1063
1064
1065   /* Fields to track state inside of struct_equiv_block_eq.  Some of these
1066      are also outputs.  */
1067
1068   /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1069      is used as an input parameter, i.e. where different registers are used
1070      as sources.  This is only used for a register that is live at the end
1071      of the blocks, or in some identical code at the end of the blocks;
1072      Inputs that are dead at the end go into X_LOCAL / Y_LOCAL.  */
1073   rtx x_input, y_input;
1074   /* When a previous pass has identified a valid input, INPUT_REG is set
1075      by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1076      for the input.  */
1077   rtx input_reg;
1078
1079   /* COMMON_LIVE keeps track of the registers which are currently live
1080      (as we scan backwards from the end) and have the same numbers in both
1081      blocks.  N.B. a register that is in common_live is unsuitable to become
1082      a local reg.  */
1083   regset common_live;
1084   /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1085      local to one of the blocks; these registers must not be accepted as
1086      identical when encountered in both blocks.  */
1087   regset x_local_live, y_local_live;
1088
1089   /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1090      being used, to avoid having to backtrack in the next pass, so that we
1091      get accurate life info for this insn then.  For each such insn,
1092      the bit with the number corresponding to the CUR.NINSNS value at the
1093      time of scanning is set.  */
1094   bitmap equiv_used;
1095
1096   /* Current state that can be saved & restored easily.  */
1097   struct struct_equiv_checkpoint cur;
1098   /* BEST_MATCH is used to store the best match so far, weighing the
1099      cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1100      CUR.INPUT_COUNT * INPUT_COST of setting up the inputs.  */
1101   struct struct_equiv_checkpoint best_match;
1102   /* If a checkpoint restore failed, or an input conflict newly arises,
1103      NEED_RERUN is set.  This has to be tested by the caller to re-run
1104      the comparison if the match appears otherwise sound.  The state kept in
1105      x_start, y_start, equiv_used and check_input_conflict ensures that
1106      we won't loop indefinitely.  */
1107   bool need_rerun;
1108   /* If there is indication of an input conflict at the end,
1109      CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1110      for each insn in the next pass.  This is needed so that we won't discard
1111      a partial match if there is a longer match that has to be abandoned due
1112      to an input conflict.  */
1113   bool check_input_conflict;
1114   /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1115      have passed a point where there were multiple dying inputs.  This helps
1116      us decide if we should set check_input_conflict for the next pass.  */
1117   bool had_input_conflict;
1118
1119   /* LIVE_UPDATE controls if we want to change any life info at all.  We
1120      set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1121      pass so that we don't introduce new registers just for the note; if we
1122      can't match the notes without the current register information, we drop
1123      them.  */
1124   bool live_update;
1125
1126   /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1127      that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1128      to the next free entry.  */
1129   rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1130   /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1131      was a source operand (including STRICT_LOW_PART) for the last invocation
1132      of struct_equiv mentioning it, zero if it was a destination-only operand.
1133      Since we are scanning backwards, this means the register is input/local
1134      for the (partial) block scanned so far.  */
1135   bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1136
1137
1138   /* Additional fields that are computed for the convenience of the caller.  */
1139
1140   /* DYING_INPUTS is set to the number of local registers that turn out
1141      to be inputs to the (possibly partial) block.  */
1142   int dying_inputs;
1143   /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1144      that are being compared.  A final jump insn will not be included.  */
1145   rtx x_end, y_end;
1146
1147   /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1148      Y_LABEL in Y_BLOCK.  */
1149   rtx x_label, y_label;
1150
1151 };
1152
1153 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1154 extern int struct_equiv_block_eq (int, struct equiv_info *);
1155 extern bool struct_equiv_init (int, struct equiv_info *);
1156 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1157
1158 /* In cfgrtl.c */
1159 extern bool condjump_equiv_p (struct equiv_info *, bool);
1160
1161 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
1162 static inline bool
1163 bb_has_eh_pred (basic_block bb)
1164 {
1165   edge e;
1166   edge_iterator ei;
1167
1168   FOR_EACH_EDGE (e, ei, bb->preds)
1169     {
1170       if (e->flags & EDGE_EH)
1171         return true;
1172     }
1173   return false;
1174 }
1175
1176 #endif /* GCC_BASIC_BLOCK_H */