1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
40 #include "langhooks.h"
41 #include "pointer-set.h"
43 #include "tree-dump.h"
44 #include "tree-inline.h"
45 #include "tree-iterator.h"
62 #ifndef MAX_BITS_PER_WORD
63 #define MAX_BITS_PER_WORD BITS_PER_WORD
66 /* If nonzero, pretend we are allocating at global level. */
69 /* The default alignment of "double" floating-point types, i.e. floating
70 point types whose size is equal to 64 bits, or 0 if this alignment is
71 not specifically capped. */
72 int double_float_alignment;
74 /* The default alignment of "double" or larger scalar types, i.e. scalar
75 types whose size is greater or equal to 64 bits, or 0 if this alignment
76 is not specifically capped. */
77 int double_scalar_alignment;
79 /* Tree nodes for the various types and decls we create. */
80 tree gnat_std_decls[(int) ADT_LAST];
82 /* Functions to call for each of the possible raise reasons. */
83 tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
85 /* Forward declarations for handlers of attributes. */
86 static tree handle_const_attribute (tree *, tree, tree, int, bool *);
87 static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
88 static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
89 static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
90 static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
91 static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
92 static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
93 static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
94 static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
95 static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *);
96 static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *);
98 /* Fake handler for attributes we don't properly support, typically because
99 they'd require dragging a lot of the common-c front-end circuitry. */
100 static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
102 /* Table of machine-independent internal attributes for Ada. We support
103 this minimal set of attributes to accommodate the needs of builtins. */
104 const struct attribute_spec gnat_internal_attribute_table[] =
106 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
107 { "const", 0, 0, true, false, false, handle_const_attribute },
108 { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute },
109 { "pure", 0, 0, true, false, false, handle_pure_attribute },
110 { "no vops", 0, 0, true, false, false, handle_novops_attribute },
111 { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute },
112 { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute },
113 { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute },
114 { "malloc", 0, 0, true, false, false, handle_malloc_attribute },
115 { "type generic", 0, 0, false, true, true, handle_type_generic_attribute },
117 { "vector_size", 1, 1, false, true, false, handle_vector_size_attribute },
118 { "vector_type", 0, 0, false, true, false, handle_vector_type_attribute },
119 { "may_alias", 0, 0, false, true, false, NULL },
121 /* ??? format and format_arg are heavy and not supported, which actually
122 prevents support for stdio builtins, which we however declare as part
123 of the common builtins.def contents. */
124 { "format", 3, 3, false, true, true, fake_attribute_handler },
125 { "format_arg", 1, 1, false, true, true, fake_attribute_handler },
127 { NULL, 0, 0, false, false, false, NULL }
130 /* Associates a GNAT tree node to a GCC tree node. It is used in
131 `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
132 of `save_gnu_tree' for more info. */
133 static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
135 #define GET_GNU_TREE(GNAT_ENTITY) \
136 associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
138 #define SET_GNU_TREE(GNAT_ENTITY,VAL) \
139 associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
141 #define PRESENT_GNU_TREE(GNAT_ENTITY) \
142 (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
144 /* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
145 static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
147 #define GET_DUMMY_NODE(GNAT_ENTITY) \
148 dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
150 #define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
151 dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
153 #define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
154 (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
156 /* This variable keeps a table for types for each precision so that we only
157 allocate each of them once. Signed and unsigned types are kept separate.
159 Note that these types are only used when fold-const requests something
160 special. Perhaps we should NOT share these types; we'll see how it
162 static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
164 /* Likewise for float types, but record these by mode. */
165 static GTY(()) tree float_types[NUM_MACHINE_MODES];
167 /* For each binding contour we allocate a binding_level structure to indicate
168 the binding depth. */
170 struct GTY((chain_next ("%h.chain"))) gnat_binding_level {
171 /* The binding level containing this one (the enclosing binding level). */
172 struct gnat_binding_level *chain;
173 /* The BLOCK node for this level. */
175 /* If nonzero, the setjmp buffer that needs to be updated for any
176 variable-sized definition within this context. */
180 /* The binding level currently in effect. */
181 static GTY(()) struct gnat_binding_level *current_binding_level;
183 /* A chain of gnat_binding_level structures awaiting reuse. */
184 static GTY((deletable)) struct gnat_binding_level *free_binding_level;
186 /* An array of global declarations. */
187 static GTY(()) VEC(tree,gc) *global_decls;
189 /* An array of builtin function declarations. */
190 static GTY(()) VEC(tree,gc) *builtin_decls;
192 /* An array of global renaming pointers. */
193 static GTY(()) VEC(tree,gc) *global_renaming_pointers;
195 /* A chain of unused BLOCK nodes. */
196 static GTY((deletable)) tree free_block_chain;
198 static tree merge_sizes (tree, tree, tree, bool, bool);
199 static tree compute_related_constant (tree, tree);
200 static tree split_plus (tree, tree *);
201 static tree float_type_for_precision (int, enum machine_mode);
202 static tree convert_to_fat_pointer (tree, tree);
203 static tree convert_to_thin_pointer (tree, tree);
204 static tree make_descriptor_field (const char *,tree, tree, tree);
205 static bool potential_alignment_gap (tree, tree, tree);
207 /* Initialize the association of GNAT nodes to GCC trees. */
210 init_gnat_to_gnu (void)
212 associate_gnat_to_gnu
213 = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
216 /* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
217 which is to be associated with GNAT_ENTITY. Such GCC tree node is always
218 a ..._DECL node. If NO_CHECK is true, the latter check is suppressed.
220 If GNU_DECL is zero, a previous association is to be reset. */
223 save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
225 /* Check that GNAT_ENTITY is not already defined and that it is being set
226 to something which is a decl. Raise gigi 401 if not. Usually, this
227 means GNAT_ENTITY is defined twice, but occasionally is due to some
229 gcc_assert (!(gnu_decl
230 && (PRESENT_GNU_TREE (gnat_entity)
231 || (!no_check && !DECL_P (gnu_decl)))));
233 SET_GNU_TREE (gnat_entity, gnu_decl);
236 /* GNAT_ENTITY is a GNAT tree node for a defining identifier.
237 Return the ..._DECL node that was associated with it. If there is no tree
238 node associated with GNAT_ENTITY, abort.
240 In some cases, such as delayed elaboration or expressions that need to
241 be elaborated only once, GNAT_ENTITY is really not an entity. */
244 get_gnu_tree (Entity_Id gnat_entity)
246 gcc_assert (PRESENT_GNU_TREE (gnat_entity));
247 return GET_GNU_TREE (gnat_entity);
250 /* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
253 present_gnu_tree (Entity_Id gnat_entity)
255 return PRESENT_GNU_TREE (gnat_entity);
258 /* Initialize the association of GNAT nodes to GCC trees as dummies. */
261 init_dummy_type (void)
264 = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
267 /* Make a dummy type corresponding to GNAT_TYPE. */
270 make_dummy_type (Entity_Id gnat_type)
272 Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type);
275 /* If there is an equivalent type, get its underlying type. */
276 if (Present (gnat_underlying))
277 gnat_underlying = Underlying_Type (gnat_underlying);
279 /* If there was no equivalent type (can only happen when just annotating
280 types) or underlying type, go back to the original type. */
281 if (No (gnat_underlying))
282 gnat_underlying = gnat_type;
284 /* If it there already a dummy type, use that one. Else make one. */
285 if (PRESENT_DUMMY_NODE (gnat_underlying))
286 return GET_DUMMY_NODE (gnat_underlying);
288 /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
290 gnu_type = make_node (Is_Record_Type (gnat_underlying)
291 ? tree_code_for_record_type (gnat_underlying)
293 TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
294 TYPE_DUMMY_P (gnu_type) = 1;
295 TYPE_STUB_DECL (gnu_type)
296 = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
297 if (AGGREGATE_TYPE_P (gnu_type))
298 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_type);
300 SET_DUMMY_NODE (gnat_underlying, gnu_type);
305 /* Return nonzero if we are currently in the global binding level. */
308 global_bindings_p (void)
310 return ((force_global || !current_function_decl) ? -1 : 0);
313 /* Enter a new binding level. */
316 gnat_pushlevel (void)
318 struct gnat_binding_level *newlevel = NULL;
320 /* Reuse a struct for this binding level, if there is one. */
321 if (free_binding_level)
323 newlevel = free_binding_level;
324 free_binding_level = free_binding_level->chain;
328 = (struct gnat_binding_level *)
329 ggc_alloc (sizeof (struct gnat_binding_level));
331 /* Use a free BLOCK, if any; otherwise, allocate one. */
332 if (free_block_chain)
334 newlevel->block = free_block_chain;
335 free_block_chain = BLOCK_CHAIN (free_block_chain);
336 BLOCK_CHAIN (newlevel->block) = NULL_TREE;
339 newlevel->block = make_node (BLOCK);
341 /* Point the BLOCK we just made to its parent. */
342 if (current_binding_level)
343 BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
345 BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
346 TREE_USED (newlevel->block) = 1;
348 /* Add this level to the front of the chain (stack) of levels that are
350 newlevel->chain = current_binding_level;
351 newlevel->jmpbuf_decl = NULL_TREE;
352 current_binding_level = newlevel;
355 /* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
356 and point FNDECL to this BLOCK. */
359 set_current_block_context (tree fndecl)
361 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
362 DECL_INITIAL (fndecl) = current_binding_level->block;
365 /* Set the jmpbuf_decl for the current binding level to DECL. */
368 set_block_jmpbuf_decl (tree decl)
370 current_binding_level->jmpbuf_decl = decl;
373 /* Get the jmpbuf_decl, if any, for the current binding level. */
376 get_block_jmpbuf_decl (void)
378 return current_binding_level->jmpbuf_decl;
381 /* Exit a binding level. Set any BLOCK into the current code group. */
386 struct gnat_binding_level *level = current_binding_level;
387 tree block = level->block;
389 BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
390 BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
392 /* If this is a function-level BLOCK don't do anything. Otherwise, if there
393 are no variables free the block and merge its subblocks into those of its
394 parent block. Otherwise, add it to the list of its parent. */
395 if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
397 else if (BLOCK_VARS (block) == NULL_TREE)
399 BLOCK_SUBBLOCKS (level->chain->block)
400 = chainon (BLOCK_SUBBLOCKS (block),
401 BLOCK_SUBBLOCKS (level->chain->block));
402 BLOCK_CHAIN (block) = free_block_chain;
403 free_block_chain = block;
407 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
408 BLOCK_SUBBLOCKS (level->chain->block) = block;
409 TREE_USED (block) = 1;
410 set_block_for_group (block);
413 /* Free this binding structure. */
414 current_binding_level = level->chain;
415 level->chain = free_binding_level;
416 free_binding_level = level;
420 /* Records a ..._DECL node DECL as belonging to the current lexical scope
421 and uses GNAT_NODE for location information and propagating flags. */
424 gnat_pushdecl (tree decl, Node_Id gnat_node)
426 /* If this decl is public external or at toplevel, there is no context.
427 But PARM_DECLs always go in the level of its function. */
428 if (TREE_CODE (decl) != PARM_DECL
429 && ((DECL_EXTERNAL (decl) && TREE_PUBLIC (decl))
430 || global_bindings_p ()))
431 DECL_CONTEXT (decl) = 0;
434 DECL_CONTEXT (decl) = current_function_decl;
436 /* Functions imported in another function are not really nested.
437 For really nested functions mark them initially as needing
438 a static chain for uses of that flag before unnesting;
439 lower_nested_functions will then recompute it. */
440 if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
441 DECL_STATIC_CHAIN (decl) = 1;
444 TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node));
446 /* Set the location of DECL and emit a declaration for it. */
447 if (Present (gnat_node))
448 Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
449 add_decl_expr (decl, gnat_node);
451 /* Put the declaration on the list. The list of declarations is in reverse
452 order. The list will be reversed later. Put global variables in the
453 globals list and builtin functions in a dedicated list to speed up
454 further lookups. Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
455 the list, as they will cause trouble with the debugger and aren't needed
457 if (TREE_CODE (decl) != TYPE_DECL
458 || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
460 if (global_bindings_p ())
462 VEC_safe_push (tree, gc, global_decls, decl);
464 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
465 VEC_safe_push (tree, gc, builtin_decls, decl);
469 TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
470 BLOCK_VARS (current_binding_level->block) = decl;
474 /* For the declaration of a type, set its name if it either is not already
475 set or if the previous type name was not derived from a source name.
476 We'd rather have the type named with a real name and all the pointer
477 types to the same object have the same POINTER_TYPE node. Code in the
478 equivalent function of c-decl.c makes a copy of the type node here, but
479 that may cause us trouble with incomplete types. We make an exception
480 for fat pointer types because the compiler automatically builds them
481 for unconstrained array types and the debugger uses them to represent
482 both these and pointers to these. */
483 if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
485 tree t = TREE_TYPE (decl);
487 if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL))
489 else if (TYPE_IS_FAT_POINTER_P (t))
491 tree tt = build_variant_type_copy (t);
492 TYPE_NAME (tt) = decl;
493 TREE_USED (tt) = TREE_USED (t);
494 TREE_TYPE (decl) = tt;
495 if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
496 DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t));
498 DECL_ORIGINAL_TYPE (decl) = t;
500 DECL_ARTIFICIAL (decl) = 0;
502 else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
507 /* Propagate the name to all the variants. This is needed for
508 the type qualifiers machinery to work properly. */
510 for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
511 TYPE_NAME (t) = decl;
515 /* Do little here. Set up the standard declarations later after the
516 front end has been run. */
519 gnat_init_decl_processing (void)
521 /* Make the binding_level structure for global names. */
522 current_function_decl = 0;
523 current_binding_level = 0;
524 free_binding_level = 0;
527 build_common_tree_nodes (true, true);
529 /* In Ada, we use a signed type for SIZETYPE. Use the signed type
530 corresponding to the width of Pmode. In most cases when ptr_mode
531 and Pmode differ, C will use the width of ptr_mode for SIZETYPE.
532 But we get far better code using the width of Pmode. */
533 size_type_node = gnat_type_for_mode (Pmode, 0);
534 set_sizetype (size_type_node);
536 /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
537 boolean_type_node = make_unsigned_type (8);
538 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
539 SET_TYPE_RM_MAX_VALUE (boolean_type_node,
540 build_int_cst (boolean_type_node, 1));
541 SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
543 build_common_tree_nodes_2 (0);
544 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
546 ptr_void_type_node = build_pointer_type (void_type_node);
549 /* Record TYPE as a builtin type for Ada. NAME is the name of the type. */
552 record_builtin_type (const char *name, tree type)
554 tree type_decl = build_decl (input_location,
555 TYPE_DECL, get_identifier (name), type);
557 gnat_pushdecl (type_decl, Empty);
559 if (debug_hooks->type_decl)
560 debug_hooks->type_decl (type_decl, false);
563 /* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
564 finish constructing the record or union type. If REP_LEVEL is zero, this
565 record has no representation clause and so will be entirely laid out here.
566 If REP_LEVEL is one, this record has a representation clause and has been
567 laid out already; only set the sizes and alignment. If REP_LEVEL is two,
568 this record is derived from a parent record and thus inherits its layout;
569 only make a pass on the fields to finalize them. DEBUG_INFO_P is true if
570 we need to write debug information about this type. */
573 finish_record_type (tree record_type, tree field_list, int rep_level,
576 enum tree_code code = TREE_CODE (record_type);
577 tree name = TYPE_NAME (record_type);
578 tree ada_size = bitsize_zero_node;
579 tree size = bitsize_zero_node;
580 bool had_size = TYPE_SIZE (record_type) != 0;
581 bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
582 bool had_align = TYPE_ALIGN (record_type) != 0;
585 TYPE_FIELDS (record_type) = field_list;
587 /* Always attach the TYPE_STUB_DECL for a record type. It is required to
588 generate debug info and have a parallel type. */
589 if (name && TREE_CODE (name) == TYPE_DECL)
590 name = DECL_NAME (name);
591 TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type);
593 /* Globally initialize the record first. If this is a rep'ed record,
594 that just means some initializations; otherwise, layout the record. */
597 TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
598 SET_TYPE_MODE (record_type, BLKmode);
601 TYPE_SIZE_UNIT (record_type) = size_zero_node;
603 TYPE_SIZE (record_type) = bitsize_zero_node;
605 /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
606 out just like a UNION_TYPE, since the size will be fixed. */
607 else if (code == QUAL_UNION_TYPE)
612 /* Ensure there isn't a size already set. There can be in an error
613 case where there is a rep clause but all fields have errors and
614 no longer have a position. */
615 TYPE_SIZE (record_type) = 0;
616 layout_type (record_type);
619 /* At this point, the position and size of each field is known. It was
620 either set before entry by a rep clause, or by laying out the type above.
622 We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
623 to compute the Ada size; the GCC size and alignment (for rep'ed records
624 that are not padding types); and the mode (for rep'ed records). We also
625 clear the DECL_BIT_FIELD indication for the cases we know have not been
626 handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
628 if (code == QUAL_UNION_TYPE)
629 field_list = nreverse (field_list);
631 for (field = field_list; field; field = TREE_CHAIN (field))
633 tree type = TREE_TYPE (field);
634 tree pos = bit_position (field);
635 tree this_size = DECL_SIZE (field);
638 if ((TREE_CODE (type) == RECORD_TYPE
639 || TREE_CODE (type) == UNION_TYPE
640 || TREE_CODE (type) == QUAL_UNION_TYPE)
641 && !TYPE_FAT_POINTER_P (type)
642 && !TYPE_CONTAINS_TEMPLATE_P (type)
643 && TYPE_ADA_SIZE (type))
644 this_ada_size = TYPE_ADA_SIZE (type);
646 this_ada_size = this_size;
648 /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
649 if (DECL_BIT_FIELD (field)
650 && operand_equal_p (this_size, TYPE_SIZE (type), 0))
652 unsigned int align = TYPE_ALIGN (type);
654 /* In the general case, type alignment is required. */
655 if (value_factor_p (pos, align))
657 /* The enclosing record type must be sufficiently aligned.
658 Otherwise, if no alignment was specified for it and it
659 has been laid out already, bump its alignment to the
660 desired one if this is compatible with its size. */
661 if (TYPE_ALIGN (record_type) >= align)
663 DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
664 DECL_BIT_FIELD (field) = 0;
668 && value_factor_p (TYPE_SIZE (record_type), align))
670 TYPE_ALIGN (record_type) = align;
671 DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
672 DECL_BIT_FIELD (field) = 0;
676 /* In the non-strict alignment case, only byte alignment is. */
677 if (!STRICT_ALIGNMENT
678 && DECL_BIT_FIELD (field)
679 && value_factor_p (pos, BITS_PER_UNIT))
680 DECL_BIT_FIELD (field) = 0;
683 /* If we still have DECL_BIT_FIELD set at this point, we know that the
684 field is technically not addressable. Except that it can actually
685 be addressed if it is BLKmode and happens to be properly aligned. */
686 if (DECL_BIT_FIELD (field)
687 && !(DECL_MODE (field) == BLKmode
688 && value_factor_p (pos, BITS_PER_UNIT)))
689 DECL_NONADDRESSABLE_P (field) = 1;
691 /* A type must be as aligned as its most aligned field that is not
692 a bit-field. But this is already enforced by layout_type. */
693 if (rep_level > 0 && !DECL_BIT_FIELD (field))
694 TYPE_ALIGN (record_type)
695 = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
700 ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
701 size = size_binop (MAX_EXPR, size, this_size);
704 case QUAL_UNION_TYPE:
706 = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
707 this_ada_size, ada_size);
708 size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
713 /* Since we know here that all fields are sorted in order of
714 increasing bit position, the size of the record is one
715 higher than the ending bit of the last field processed
716 unless we have a rep clause, since in that case we might
717 have a field outside a QUAL_UNION_TYPE that has a higher ending
718 position. So use a MAX in that case. Also, if this field is a
719 QUAL_UNION_TYPE, we need to take into account the previous size in
720 the case of empty variants. */
722 = merge_sizes (ada_size, pos, this_ada_size,
723 TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
725 = merge_sizes (size, pos, this_size,
726 TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
734 if (code == QUAL_UNION_TYPE)
735 nreverse (field_list);
739 /* If this is a padding record, we never want to make the size smaller
740 than what was specified in it, if any. */
741 if (TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
742 size = TYPE_SIZE (record_type);
744 /* Now set any of the values we've just computed that apply. */
745 if (!TYPE_FAT_POINTER_P (record_type)
746 && !TYPE_CONTAINS_TEMPLATE_P (record_type))
747 SET_TYPE_ADA_SIZE (record_type, ada_size);
751 tree size_unit = had_size_unit
752 ? TYPE_SIZE_UNIT (record_type)
754 size_binop (CEIL_DIV_EXPR, size,
756 unsigned int align = TYPE_ALIGN (record_type);
758 TYPE_SIZE (record_type) = variable_size (round_up (size, align));
759 TYPE_SIZE_UNIT (record_type)
760 = variable_size (round_up (size_unit, align / BITS_PER_UNIT));
762 compute_record_mode (record_type);
767 rest_of_record_type_compilation (record_type);
770 /* Wrap up compilation of RECORD_TYPE, i.e. output all the debug information
771 associated with it. It need not be invoked directly in most cases since
772 finish_record_type takes care of doing so, but this can be necessary if
773 a parallel type is to be attached to the record type. */
776 rest_of_record_type_compilation (tree record_type)
778 tree field_list = TYPE_FIELDS (record_type);
780 enum tree_code code = TREE_CODE (record_type);
781 bool var_size = false;
783 for (field = field_list; field; field = TREE_CHAIN (field))
785 /* We need to make an XVE/XVU record if any field has variable size,
786 whether or not the record does. For example, if we have a union,
787 it may be that all fields, rounded up to the alignment, have the
788 same size, in which case we'll use that size. But the debug
789 output routines (except Dwarf2) won't be able to output the fields,
790 so we need to make the special record. */
791 if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
792 /* If a field has a non-constant qualifier, the record will have
793 variable size too. */
794 || (code == QUAL_UNION_TYPE
795 && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
802 /* If this record is of variable size, rename it so that the
803 debugger knows it is and make a new, parallel, record
804 that tells the debugger how the record is laid out. See
805 exp_dbug.ads. But don't do this for records that are padding
806 since they confuse GDB. */
807 if (var_size && !TYPE_IS_PADDING_P (record_type))
810 = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
811 ? UNION_TYPE : TREE_CODE (record_type));
812 tree orig_name = TYPE_NAME (record_type), new_name;
813 tree last_pos = bitsize_zero_node;
814 tree old_field, prev_old_field = NULL_TREE;
816 if (TREE_CODE (orig_name) == TYPE_DECL)
817 orig_name = DECL_NAME (orig_name);
820 = concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE
822 TYPE_NAME (new_record_type) = new_name;
823 TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
824 TYPE_STUB_DECL (new_record_type)
825 = create_type_stub_decl (new_name, new_record_type);
826 DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
827 = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
828 TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
829 TYPE_SIZE_UNIT (new_record_type)
830 = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
832 add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type);
834 /* Now scan all the fields, replacing each field with a new
835 field corresponding to the new encoding. */
836 for (old_field = TYPE_FIELDS (record_type); old_field;
837 old_field = TREE_CHAIN (old_field))
839 tree field_type = TREE_TYPE (old_field);
840 tree field_name = DECL_NAME (old_field);
842 tree curpos = bit_position (old_field);
844 unsigned int align = 0;
847 /* See how the position was modified from the last position.
849 There are two basic cases we support: a value was added
850 to the last position or the last position was rounded to
851 a boundary and they something was added. Check for the
852 first case first. If not, see if there is any evidence
853 of rounding. If so, round the last position and try
856 If this is a union, the position can be taken as zero. */
858 /* Some computations depend on the shape of the position expression,
859 so strip conversions to make sure it's exposed. */
860 curpos = remove_conversions (curpos, true);
862 if (TREE_CODE (new_record_type) == UNION_TYPE)
863 pos = bitsize_zero_node, align = 0;
865 pos = compute_related_constant (curpos, last_pos);
867 if (!pos && TREE_CODE (curpos) == MULT_EXPR
868 && host_integerp (TREE_OPERAND (curpos, 1), 1))
870 tree offset = TREE_OPERAND (curpos, 0);
871 align = tree_low_cst (TREE_OPERAND (curpos, 1), 1);
873 /* An offset which is a bitwise AND with a negative power of 2
874 means an alignment corresponding to this power of 2. */
875 offset = remove_conversions (offset, true);
876 if (TREE_CODE (offset) == BIT_AND_EXPR
877 && host_integerp (TREE_OPERAND (offset, 1), 0)
878 && tree_int_cst_sgn (TREE_OPERAND (offset, 1)) < 0)
881 = - tree_low_cst (TREE_OPERAND (offset, 1), 0);
882 if (exact_log2 (pow) > 0)
886 pos = compute_related_constant (curpos,
887 round_up (last_pos, align));
889 else if (!pos && TREE_CODE (curpos) == PLUS_EXPR
890 && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
891 && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
892 && host_integerp (TREE_OPERAND
893 (TREE_OPERAND (curpos, 0), 1),
898 (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
899 pos = compute_related_constant (curpos,
900 round_up (last_pos, align));
902 else if (potential_alignment_gap (prev_old_field, old_field,
905 align = TYPE_ALIGN (field_type);
906 pos = compute_related_constant (curpos,
907 round_up (last_pos, align));
910 /* If we can't compute a position, set it to zero.
912 ??? We really should abort here, but it's too much work
913 to get this correct for all cases. */
916 pos = bitsize_zero_node;
918 /* See if this type is variable-sized and make a pointer type
919 and indicate the indirection if so. Beware that the debug
920 back-end may adjust the position computed above according
921 to the alignment of the field type, i.e. the pointer type
922 in this case, if we don't preventively counter that. */
923 if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
925 field_type = build_pointer_type (field_type);
926 if (align != 0 && TYPE_ALIGN (field_type) > align)
928 field_type = copy_node (field_type);
929 TYPE_ALIGN (field_type) = align;
934 /* Make a new field name, if necessary. */
935 if (var || align != 0)
940 sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
941 align / BITS_PER_UNIT);
943 strcpy (suffix, "XVL");
945 field_name = concat_name (field_name, suffix);
948 new_field = create_field_decl (field_name, field_type,
950 DECL_SIZE (old_field), pos, 0);
951 TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
952 TYPE_FIELDS (new_record_type) = new_field;
954 /* If old_field is a QUAL_UNION_TYPE, take its size as being
955 zero. The only time it's not the last field of the record
956 is when there are other components at fixed positions after
957 it (meaning there was a rep clause for every field) and we
958 want to be able to encode them. */
959 last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
960 (TREE_CODE (TREE_TYPE (old_field))
963 : DECL_SIZE (old_field));
964 prev_old_field = old_field;
967 TYPE_FIELDS (new_record_type)
968 = nreverse (TYPE_FIELDS (new_record_type));
970 rest_of_type_decl_compilation (TYPE_STUB_DECL (new_record_type));
973 rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type));
976 /* Append PARALLEL_TYPE on the chain of parallel types for decl. */
979 add_parallel_type (tree decl, tree parallel_type)
983 while (DECL_PARALLEL_TYPE (d))
984 d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d));
986 SET_DECL_PARALLEL_TYPE (d, parallel_type);
989 /* Return the parallel type associated to a type, if any. */
992 get_parallel_type (tree type)
994 if (TYPE_STUB_DECL (type))
995 return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
1000 /* Utility function of above to merge LAST_SIZE, the previous size of a record
1001 with FIRST_BIT and SIZE that describe a field. SPECIAL is true if this
1002 represents a QUAL_UNION_TYPE in which case we must look for COND_EXPRs and
1003 replace a value of zero with the old size. If HAS_REP is true, we take the
1004 MAX of the end position of this field with LAST_SIZE. In all other cases,
1005 we use FIRST_BIT plus SIZE. Return an expression for the size. */
1008 merge_sizes (tree last_size, tree first_bit, tree size, bool special,
1011 tree type = TREE_TYPE (last_size);
1014 if (!special || TREE_CODE (size) != COND_EXPR)
1016 new_size = size_binop (PLUS_EXPR, first_bit, size);
1018 new_size = size_binop (MAX_EXPR, last_size, new_size);
1022 new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
1023 integer_zerop (TREE_OPERAND (size, 1))
1024 ? last_size : merge_sizes (last_size, first_bit,
1025 TREE_OPERAND (size, 1),
1027 integer_zerop (TREE_OPERAND (size, 2))
1028 ? last_size : merge_sizes (last_size, first_bit,
1029 TREE_OPERAND (size, 2),
1032 /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
1033 when fed through substitute_in_expr) into thinking that a constant
1034 size is not constant. */
1035 while (TREE_CODE (new_size) == NON_LVALUE_EXPR)
1036 new_size = TREE_OPERAND (new_size, 0);
1041 /* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
1042 related by the addition of a constant. Return that constant if so. */
1045 compute_related_constant (tree op0, tree op1)
1047 tree op0_var, op1_var;
1048 tree op0_con = split_plus (op0, &op0_var);
1049 tree op1_con = split_plus (op1, &op1_var);
1050 tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
1052 if (operand_equal_p (op0_var, op1_var, 0))
1054 else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
1060 /* Utility function of above to split a tree OP which may be a sum, into a
1061 constant part, which is returned, and a variable part, which is stored
1062 in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
1066 split_plus (tree in, tree *pvar)
1068 /* Strip NOPS in order to ease the tree traversal and maximize the
1069 potential for constant or plus/minus discovery. We need to be careful
1070 to always return and set *pvar to bitsizetype trees, but it's worth
1074 *pvar = convert (bitsizetype, in);
1076 if (TREE_CODE (in) == INTEGER_CST)
1078 *pvar = bitsize_zero_node;
1079 return convert (bitsizetype, in);
1081 else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
1083 tree lhs_var, rhs_var;
1084 tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
1085 tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
1087 if (lhs_var == TREE_OPERAND (in, 0)
1088 && rhs_var == TREE_OPERAND (in, 1))
1089 return bitsize_zero_node;
1091 *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
1092 return size_binop (TREE_CODE (in), lhs_con, rhs_con);
1095 return bitsize_zero_node;
1098 /* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
1099 subprogram. If it is void_type_node, then we are dealing with a procedure,
1100 otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
1101 PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
1102 copy-in/copy-out list to be stored into TYPE_CICO_LIST.
1103 RETURNS_UNCONSTRAINED is true if the function returns an unconstrained
1104 object. RETURNS_BY_REF is true if the function returns by reference.
1105 RETURNS_BY_TARGET_PTR is true if the function is to be passed (as its
1106 first parameter) the address of the place to copy its result. */
1109 create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
1110 bool returns_unconstrained, bool returns_by_ref,
1111 bool returns_by_target_ptr)
1113 /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
1114 the subprogram formal parameters. This list is generated by traversing the
1115 input list of PARM_DECL nodes. */
1116 tree param_type_list = NULL;
1120 for (param_decl = param_decl_list; param_decl;
1121 param_decl = TREE_CHAIN (param_decl))
1122 param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
1125 /* The list of the function parameter types has to be terminated by the void
1126 type to signal to the back-end that we are not dealing with a variable
1127 parameter subprogram, but that the subprogram has a fixed number of
1129 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
1131 /* The list of argument types has been created in reverse
1133 param_type_list = nreverse (param_type_list);
1135 type = build_function_type (return_type, param_type_list);
1137 /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
1138 or the new type should, make a copy of TYPE. Likewise for
1139 RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
1140 if (TYPE_CI_CO_LIST (type) || cico_list
1141 || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
1142 || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref
1143 || TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr)
1144 type = copy_type (type);
1146 TYPE_CI_CO_LIST (type) = cico_list;
1147 TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
1148 TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
1149 TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr;
1153 /* Return a copy of TYPE but safe to modify in any way. */
1156 copy_type (tree type)
1158 tree new_type = copy_node (type);
1160 /* Unshare the language-specific data. */
1161 if (TYPE_LANG_SPECIFIC (type))
1163 TYPE_LANG_SPECIFIC (new_type) = NULL;
1164 SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type));
1167 /* And the contents of the language-specific slot if needed. */
1168 if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE)
1169 && TYPE_RM_VALUES (type))
1171 TYPE_RM_VALUES (new_type) = NULL_TREE;
1172 SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type));
1173 SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type));
1174 SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type));
1177 /* copy_node clears this field instead of copying it, because it is
1178 aliased with TREE_CHAIN. */
1179 TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type);
1181 TYPE_POINTER_TO (new_type) = 0;
1182 TYPE_REFERENCE_TO (new_type) = 0;
1183 TYPE_MAIN_VARIANT (new_type) = new_type;
1184 TYPE_NEXT_VARIANT (new_type) = 0;
1189 /* Return a subtype of sizetype with range MIN to MAX and whose
1190 TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position
1191 of the associated TYPE_DECL. */
1194 create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
1196 /* First build a type for the desired range. */
1197 tree type = build_index_2_type (min, max);
1199 /* If this type has the TYPE_INDEX_TYPE we want, return it. */
1200 if (TYPE_INDEX_TYPE (type) == index)
1203 /* Otherwise, if TYPE_INDEX_TYPE is set, make a copy. Note that we have
1204 no way of sharing these types, but that's only a small hole. */
1205 if (TYPE_INDEX_TYPE (type))
1206 type = copy_type (type);
1208 SET_TYPE_INDEX_TYPE (type, index);
1209 create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node);
1214 /* Return a subtype of TYPE with range MIN to MAX. If TYPE is NULL,
1215 sizetype is used. */
1218 create_range_type (tree type, tree min, tree max)
1222 if (type == NULL_TREE)
1225 /* First build a type with the base range. */
1227 = build_range_type (type, TYPE_MIN_VALUE (type), TYPE_MAX_VALUE (type));
1229 min = convert (type, min);
1230 max = convert (type, max);
1232 /* If this type has the TYPE_RM_{MIN,MAX}_VALUE we want, return it. */
1233 if (TYPE_RM_MIN_VALUE (range_type)
1234 && TYPE_RM_MAX_VALUE (range_type)
1235 && operand_equal_p (TYPE_RM_MIN_VALUE (range_type), min, 0)
1236 && operand_equal_p (TYPE_RM_MAX_VALUE (range_type), max, 0))
1239 /* Otherwise, if TYPE_RM_{MIN,MAX}_VALUE is set, make a copy. */
1240 if (TYPE_RM_MIN_VALUE (range_type) || TYPE_RM_MAX_VALUE (range_type))
1241 range_type = copy_type (range_type);
1243 /* Then set the actual range. */
1244 SET_TYPE_RM_MIN_VALUE (range_type, min);
1245 SET_TYPE_RM_MAX_VALUE (range_type, max);
1250 /* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of a type.
1251 TYPE_NAME gives the name of the type and TYPE is a ..._TYPE node giving
1255 create_type_stub_decl (tree type_name, tree type)
1257 /* Using a named TYPE_DECL ensures that a type name marker is emitted in
1258 STABS while setting DECL_ARTIFICIAL ensures that no DW_TAG_typedef is
1259 emitted in DWARF. */
1260 tree type_decl = build_decl (input_location,
1261 TYPE_DECL, type_name, type);
1262 DECL_ARTIFICIAL (type_decl) = 1;
1266 /* Return a TYPE_DECL node. TYPE_NAME gives the name of the type and TYPE
1267 is a ..._TYPE node giving its data type. ARTIFICIAL_P is true if this
1268 is a declaration that was generated by the compiler. DEBUG_INFO_P is
1269 true if we need to write debug information about this type. GNAT_NODE
1270 is used for the position of the decl. */
1273 create_type_decl (tree type_name, tree type, struct attrib *attr_list,
1274 bool artificial_p, bool debug_info_p, Node_Id gnat_node)
1276 enum tree_code code = TREE_CODE (type);
1277 bool named = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL;
1280 /* Only the builtin TYPE_STUB_DECL should be used for dummy types. */
1281 gcc_assert (!TYPE_IS_DUMMY_P (type));
1283 /* If the type hasn't been named yet, we're naming it; preserve an existing
1284 TYPE_STUB_DECL that has been attached to it for some purpose. */
1285 if (!named && TYPE_STUB_DECL (type))
1287 type_decl = TYPE_STUB_DECL (type);
1288 DECL_NAME (type_decl) = type_name;
1291 type_decl = build_decl (input_location,
1292 TYPE_DECL, type_name, type);
1294 DECL_ARTIFICIAL (type_decl) = artificial_p;
1295 gnat_pushdecl (type_decl, gnat_node);
1296 process_attributes (type_decl, attr_list);
1298 /* If we're naming the type, equate the TYPE_STUB_DECL to the name.
1299 This causes the name to be also viewed as a "tag" by the debug
1300 back-end, with the advantage that no DW_TAG_typedef is emitted
1301 for artificial "tagged" types in DWARF. */
1303 TYPE_STUB_DECL (type) = type_decl;
1305 /* Pass the type declaration to the debug back-end unless this is an
1306 UNCONSTRAINED_ARRAY_TYPE that the back-end does not support, or a
1307 type for which debugging information was not requested, or else an
1308 ENUMERAL_TYPE or RECORD_TYPE (except for fat pointers) which are
1309 handled separately. And do not pass dummy types either. */
1310 if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
1311 DECL_IGNORED_P (type_decl) = 1;
1312 else if (code != ENUMERAL_TYPE
1313 && (code != RECORD_TYPE || TYPE_FAT_POINTER_P (type))
1314 && !((code == POINTER_TYPE || code == REFERENCE_TYPE)
1315 && TYPE_IS_DUMMY_P (TREE_TYPE (type)))
1316 && !(code == RECORD_TYPE
1318 (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))))))
1319 rest_of_type_decl_compilation (type_decl);
1324 /* Return a VAR_DECL or CONST_DECL node.
1326 VAR_NAME gives the name of the variable. ASM_NAME is its assembler name
1327 (if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is
1328 the GCC tree for an optional initial expression; NULL_TREE if none.
1330 CONST_FLAG is true if this variable is constant, in which case we might
1331 return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
1333 PUBLIC_FLAG is true if this is for a reference to a public entity or for a
1334 definition to be made visible outside of the current compilation unit, for
1335 instance variable definitions in a package specification.
1337 EXTERN_FLAG is true when processing an external variable declaration (as
1338 opposed to a definition: no storage is to be allocated for the variable).
1340 STATIC_FLAG is only relevant when not at top level. In that case
1341 it indicates whether to always allocate storage to the variable.
1343 GNAT_NODE is used for the position of the decl. */
1346 create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init,
1347 bool const_flag, bool public_flag, bool extern_flag,
1348 bool static_flag, bool const_decl_allowed_p,
1349 struct attrib *attr_list, Node_Id gnat_node)
1353 && gnat_types_compatible_p (type, TREE_TYPE (var_init))
1354 && (global_bindings_p () || static_flag
1355 ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0
1356 : TREE_CONSTANT (var_init)));
1358 /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
1359 case the initializer may be used in-lieu of the DECL node (as done in
1360 Identifier_to_gnu). This is useful to prevent the need of elaboration
1361 code when an identifier for which such a decl is made is in turn used as
1362 an initializer. We used to rely on CONST vs VAR_DECL for this purpose,
1363 but extra constraints apply to this choice (see below) and are not
1364 relevant to the distinction we wish to make. */
1365 bool constant_p = const_flag && init_const;
1367 /* The actual DECL node. CONST_DECL was initially intended for enumerals
1368 and may be used for scalars in general but not for aggregates. */
1370 = build_decl (input_location,
1371 (constant_p && const_decl_allowed_p
1372 && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL,
1375 /* If this is external, throw away any initializations (they will be done
1376 elsewhere) unless this is a constant for which we would like to remain
1377 able to get the initializer. If we are defining a global here, leave a
1378 constant initialization and save any variable elaborations for the
1379 elaboration routine. If we are just annotating types, throw away the
1380 initialization if it isn't a constant. */
1381 if ((extern_flag && !constant_p)
1382 || (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
1383 var_init = NULL_TREE;
1385 /* At the global level, an initializer requiring code to be generated
1386 produces elaboration statements. Check that such statements are allowed,
1387 that is, not violating a No_Elaboration_Code restriction. */
1388 if (global_bindings_p () && var_init != 0 && ! init_const)
1389 Check_Elaboration_Code_Allowed (gnat_node);
1390 DECL_INITIAL (var_decl) = var_init;
1391 TREE_READONLY (var_decl) = const_flag;
1392 DECL_EXTERNAL (var_decl) = extern_flag;
1393 TREE_PUBLIC (var_decl) = public_flag || extern_flag;
1394 TREE_CONSTANT (var_decl) = constant_p;
1395 TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
1396 = TYPE_VOLATILE (type);
1398 /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
1399 try to fiddle with DECL_COMMON. However, on platforms that don't
1400 support global BSS sections, uninitialized global variables would
1401 go in DATA instead, thus increasing the size of the executable. */
1403 && TREE_CODE (var_decl) == VAR_DECL
1404 && TREE_PUBLIC (var_decl)
1405 && !have_global_bss_p ())
1406 DECL_COMMON (var_decl) = 1;
1408 /* If it's public and not external, always allocate storage for it.
1409 At the global binding level we need to allocate static storage for the
1410 variable if and only if it's not external. If we are not at the top level
1411 we allocate automatic storage unless requested not to. */
1412 TREE_STATIC (var_decl)
1413 = !extern_flag && (public_flag || static_flag || global_bindings_p ());
1415 /* For an external constant whose initializer is not absolute, do not emit
1416 debug info. In DWARF this would mean a global relocation in a read-only
1417 section which runs afoul of the PE-COFF runtime relocation mechanism. */
1420 && initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
1421 != null_pointer_node)
1422 DECL_IGNORED_P (var_decl) = 1;
1424 if (TREE_CODE (var_decl) == VAR_DECL)
1427 SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
1428 process_attributes (var_decl, attr_list);
1431 /* Add this decl to the current binding level. */
1432 gnat_pushdecl (var_decl, gnat_node);
1434 if (TREE_SIDE_EFFECTS (var_decl))
1435 TREE_ADDRESSABLE (var_decl) = 1;
1437 if (TREE_CODE (var_decl) != CONST_DECL)
1439 if (global_bindings_p ())
1440 rest_of_decl_compilation (var_decl, true, 0);
1443 expand_decl (var_decl);
1448 /* Return true if TYPE, an aggregate type, contains (or is) an array. */
1451 aggregate_type_contains_array_p (tree type)
1453 switch (TREE_CODE (type))
1457 case QUAL_UNION_TYPE:
1460 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1461 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1462 && aggregate_type_contains_array_p (TREE_TYPE (field)))
1475 /* Return a FIELD_DECL node. FIELD_NAME is the field's name, FIELD_TYPE is
1476 its type and RECORD_TYPE is the type of the enclosing record. PACKED is
1477 1 if the enclosing record is packed, -1 if it has Component_Alignment of
1478 Storage_Unit. If SIZE is nonzero, it is the specified size of the field.
1479 If POS is nonzero, it is the bit position. If ADDRESSABLE is nonzero, it
1480 means we are allowed to take the address of the field; if it is negative,
1481 we should not make a bitfield, which is used by make_aligning_type. */
1484 create_field_decl (tree field_name, tree field_type, tree record_type,
1485 int packed, tree size, tree pos, int addressable)
1487 tree field_decl = build_decl (input_location,
1488 FIELD_DECL, field_name, field_type);
1490 DECL_CONTEXT (field_decl) = record_type;
1491 TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
1493 /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
1494 byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
1495 Likewise for an aggregate without specified position that contains an
1496 array, because in this case slices of variable length of this array
1497 must be handled by GCC and variable-sized objects need to be aligned
1498 to at least a byte boundary. */
1499 if (packed && (TYPE_MODE (field_type) == BLKmode
1501 && AGGREGATE_TYPE_P (field_type)
1502 && aggregate_type_contains_array_p (field_type))))
1503 DECL_ALIGN (field_decl) = BITS_PER_UNIT;
1505 /* If a size is specified, use it. Otherwise, if the record type is packed
1506 compute a size to use, which may differ from the object's natural size.
1507 We always set a size in this case to trigger the checks for bitfield
1508 creation below, which is typically required when no position has been
1511 size = convert (bitsizetype, size);
1512 else if (packed == 1)
1514 size = rm_size (field_type);
1515 if (TYPE_MODE (field_type) == BLKmode)
1516 size = round_up (size, BITS_PER_UNIT);
1519 /* If we may, according to ADDRESSABLE, make a bitfield if a size is
1520 specified for two reasons: first if the size differs from the natural
1521 size. Second, if the alignment is insufficient. There are a number of
1522 ways the latter can be true.
1524 We never make a bitfield if the type of the field has a nonconstant size,
1525 because no such entity requiring bitfield operations should reach here.
1527 We do *preventively* make a bitfield when there might be the need for it
1528 but we don't have all the necessary information to decide, as is the case
1529 of a field with no specified position in a packed record.
1531 We also don't look at STRICT_ALIGNMENT here, and rely on later processing
1532 in layout_decl or finish_record_type to clear the bit_field indication if
1533 it is in fact not needed. */
1534 if (addressable >= 0
1536 && TREE_CODE (size) == INTEGER_CST
1537 && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
1538 && (!tree_int_cst_equal (size, TYPE_SIZE (field_type))
1539 || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
1541 || (TYPE_ALIGN (record_type) != 0
1542 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
1544 DECL_BIT_FIELD (field_decl) = 1;
1545 DECL_SIZE (field_decl) = size;
1546 if (!packed && !pos)
1548 if (TYPE_ALIGN (record_type) != 0
1549 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))
1550 DECL_ALIGN (field_decl) = TYPE_ALIGN (record_type);
1552 DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
1556 DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
1558 /* Bump the alignment if need be, either for bitfield/packing purposes or
1559 to satisfy the type requirements if no such consideration applies. When
1560 we get the alignment from the type, indicate if this is from an explicit
1561 user request, which prevents stor-layout from lowering it later on. */
1563 unsigned int bit_align
1564 = (DECL_BIT_FIELD (field_decl) ? 1
1565 : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0);
1567 if (bit_align > DECL_ALIGN (field_decl))
1568 DECL_ALIGN (field_decl) = bit_align;
1569 else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl))
1571 DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
1572 DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type);
1578 /* We need to pass in the alignment the DECL is known to have.
1579 This is the lowest-order bit set in POS, but no more than
1580 the alignment of the record, if one is specified. Note
1581 that an alignment of 0 is taken as infinite. */
1582 unsigned int known_align;
1584 if (host_integerp (pos, 1))
1585 known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
1587 known_align = BITS_PER_UNIT;
1589 if (TYPE_ALIGN (record_type)
1590 && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
1591 known_align = TYPE_ALIGN (record_type);
1593 layout_decl (field_decl, known_align);
1594 SET_DECL_OFFSET_ALIGN (field_decl,
1595 host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
1597 pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
1598 &DECL_FIELD_BIT_OFFSET (field_decl),
1599 DECL_OFFSET_ALIGN (field_decl), pos);
1602 /* In addition to what our caller says, claim the field is addressable if we
1603 know that its type is not suitable.
1605 The field may also be "technically" nonaddressable, meaning that even if
1606 we attempt to take the field's address we will actually get the address
1607 of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
1608 value we have at this point is not accurate enough, so we don't account
1609 for this here and let finish_record_type decide. */
1610 if (!addressable && !type_for_nonaliased_component_p (field_type))
1613 DECL_NONADDRESSABLE_P (field_decl) = !addressable;
1618 /* Return a PARM_DECL node. PARAM_NAME is the name of the parameter and
1619 PARAM_TYPE is its type. READONLY is true if the parameter is readonly
1620 (either an In parameter or an address of a pass-by-ref parameter). */
1623 create_param_decl (tree param_name, tree param_type, bool readonly)
1625 tree param_decl = build_decl (input_location,
1626 PARM_DECL, param_name, param_type);
1628 /* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so
1629 can lead to various ABI violations. */
1630 if (targetm.calls.promote_prototypes (NULL_TREE)
1631 && INTEGRAL_TYPE_P (param_type)
1632 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
1634 /* We have to be careful about biased types here. Make a subtype
1635 of integer_type_node with the proper biasing. */
1636 if (TREE_CODE (param_type) == INTEGER_TYPE
1637 && TYPE_BIASED_REPRESENTATION_P (param_type))
1640 = make_unsigned_type (TYPE_PRECISION (integer_type_node));
1641 TREE_TYPE (subtype) = integer_type_node;
1642 TYPE_BIASED_REPRESENTATION_P (subtype) = 1;
1643 SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (param_type));
1644 SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (param_type));
1645 param_type = subtype;
1648 param_type = integer_type_node;
1651 DECL_ARG_TYPE (param_decl) = param_type;
1652 TREE_READONLY (param_decl) = readonly;
1656 /* Given a DECL and ATTR_LIST, process the listed attributes. */
1659 process_attributes (tree decl, struct attrib *attr_list)
1661 for (; attr_list; attr_list = attr_list->next)
1662 switch (attr_list->type)
1664 case ATTR_MACHINE_ATTRIBUTE:
1665 decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args,
1667 ATTR_FLAG_TYPE_IN_PLACE);
1670 case ATTR_LINK_ALIAS:
1671 if (! DECL_EXTERNAL (decl))
1673 TREE_STATIC (decl) = 1;
1674 assemble_alias (decl, attr_list->name);
1678 case ATTR_WEAK_EXTERNAL:
1680 declare_weak (decl);
1682 post_error ("?weak declarations not supported on this target",
1683 attr_list->error_point);
1686 case ATTR_LINK_SECTION:
1687 if (targetm.have_named_sections)
1689 DECL_SECTION_NAME (decl)
1690 = build_string (IDENTIFIER_LENGTH (attr_list->name),
1691 IDENTIFIER_POINTER (attr_list->name));
1692 DECL_COMMON (decl) = 0;
1695 post_error ("?section attributes are not supported for this target",
1696 attr_list->error_point);
1699 case ATTR_LINK_CONSTRUCTOR:
1700 DECL_STATIC_CONSTRUCTOR (decl) = 1;
1701 TREE_USED (decl) = 1;
1704 case ATTR_LINK_DESTRUCTOR:
1705 DECL_STATIC_DESTRUCTOR (decl) = 1;
1706 TREE_USED (decl) = 1;
1709 case ATTR_THREAD_LOCAL_STORAGE:
1710 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
1711 DECL_COMMON (decl) = 0;
1716 /* Record DECL as a global renaming pointer. */
1719 record_global_renaming_pointer (tree decl)
1721 gcc_assert (DECL_RENAMED_OBJECT (decl));
1722 VEC_safe_push (tree, gc, global_renaming_pointers, decl);
1725 /* Invalidate the global renaming pointers. */
1728 invalidate_global_renaming_pointers (void)
1733 for (i = 0; VEC_iterate(tree, global_renaming_pointers, i, iter); i++)
1734 SET_DECL_RENAMED_OBJECT (iter, NULL_TREE);
1736 VEC_free (tree, gc, global_renaming_pointers);
1739 /* Return true if VALUE is a known to be a multiple of FACTOR, which must be
1743 value_factor_p (tree value, HOST_WIDE_INT factor)
1745 if (host_integerp (value, 1))
1746 return tree_low_cst (value, 1) % factor == 0;
1748 if (TREE_CODE (value) == MULT_EXPR)
1749 return (value_factor_p (TREE_OPERAND (value, 0), factor)
1750 || value_factor_p (TREE_OPERAND (value, 1), factor));
1755 /* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
1756 unless we can prove these 2 fields are laid out in such a way that no gap
1757 exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
1758 is the distance in bits between the end of PREV_FIELD and the starting
1759 position of CURR_FIELD. It is ignored if null. */
1762 potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
1764 /* If this is the first field of the record, there cannot be any gap */
1768 /* If the previous field is a union type, then return False: The only
1769 time when such a field is not the last field of the record is when
1770 there are other components at fixed positions after it (meaning there
1771 was a rep clause for every field), in which case we don't want the
1772 alignment constraint to override them. */
1773 if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
1776 /* If the distance between the end of prev_field and the beginning of
1777 curr_field is constant, then there is a gap if the value of this
1778 constant is not null. */
1779 if (offset && host_integerp (offset, 1))
1780 return !integer_zerop (offset);
1782 /* If the size and position of the previous field are constant,
1783 then check the sum of this size and position. There will be a gap
1784 iff it is not multiple of the current field alignment. */
1785 if (host_integerp (DECL_SIZE (prev_field), 1)
1786 && host_integerp (bit_position (prev_field), 1))
1787 return ((tree_low_cst (bit_position (prev_field), 1)
1788 + tree_low_cst (DECL_SIZE (prev_field), 1))
1789 % DECL_ALIGN (curr_field) != 0);
1791 /* If both the position and size of the previous field are multiples
1792 of the current field alignment, there cannot be any gap. */
1793 if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
1794 && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
1797 /* Fallback, return that there may be a potential gap */
1801 /* Returns a LABEL_DECL node for LABEL_NAME. */
1804 create_label_decl (tree label_name)
1806 tree label_decl = build_decl (input_location,
1807 LABEL_DECL, label_name, void_type_node);
1809 DECL_CONTEXT (label_decl) = current_function_decl;
1810 DECL_MODE (label_decl) = VOIDmode;
1811 DECL_SOURCE_LOCATION (label_decl) = input_location;
1816 /* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
1817 ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
1818 node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
1819 PARM_DECL nodes chained through the TREE_CHAIN field).
1821 INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
1822 appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
1825 create_subprog_decl (tree subprog_name, tree asm_name,
1826 tree subprog_type, tree param_decl_list, bool inline_flag,
1827 bool public_flag, bool extern_flag,
1828 struct attrib *attr_list, Node_Id gnat_node)
1830 tree return_type = TREE_TYPE (subprog_type);
1831 tree subprog_decl = build_decl (input_location,
1832 FUNCTION_DECL, subprog_name, subprog_type);
1834 /* If this is a non-inline function nested inside an inlined external
1835 function, we cannot honor both requests without cloning the nested
1836 function in the current unit since it is private to the other unit.
1837 We could inline the nested function as well but it's probably better
1838 to err on the side of too little inlining. */
1840 && current_function_decl
1841 && DECL_DECLARED_INLINE_P (current_function_decl)
1842 && DECL_EXTERNAL (current_function_decl))
1843 DECL_DECLARED_INLINE_P (current_function_decl) = 0;
1845 DECL_EXTERNAL (subprog_decl) = extern_flag;
1846 TREE_PUBLIC (subprog_decl) = public_flag;
1847 TREE_STATIC (subprog_decl) = 1;
1848 TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
1849 TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
1850 TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
1851 DECL_DECLARED_INLINE_P (subprog_decl) = inline_flag;
1852 DECL_ARGUMENTS (subprog_decl) = param_decl_list;
1853 DECL_RESULT (subprog_decl) = build_decl (input_location,
1854 RESULT_DECL, 0, return_type);
1855 DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1;
1856 DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1;
1858 /* TREE_ADDRESSABLE is set on the result type to request the use of the
1859 target by-reference return mechanism. This is not supported all the
1860 way down to RTL expansion with GCC 4, which ICEs on temporary creation
1861 attempts with such a type and expects DECL_BY_REFERENCE to be set on
1862 the RESULT_DECL instead - see gnat_genericize for more details. */
1863 if (TREE_ADDRESSABLE (TREE_TYPE (DECL_RESULT (subprog_decl))))
1865 tree result_decl = DECL_RESULT (subprog_decl);
1867 TREE_ADDRESSABLE (TREE_TYPE (result_decl)) = 0;
1868 DECL_BY_REFERENCE (result_decl) = 1;
1873 SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
1875 /* The expand_main_function circuitry expects "main_identifier_node" to
1876 designate the DECL_NAME of the 'main' entry point, in turn expected
1877 to be declared as the "main" function literally by default. Ada
1878 program entry points are typically declared with a different name
1879 within the binder generated file, exported as 'main' to satisfy the
1880 system expectations. Force main_identifier_node in this case. */
1881 if (asm_name == main_identifier_node)
1882 DECL_NAME (subprog_decl) = main_identifier_node;
1885 process_attributes (subprog_decl, attr_list);
1887 /* Add this decl to the current binding level. */
1888 gnat_pushdecl (subprog_decl, gnat_node);
1890 /* Output the assembler code and/or RTL for the declaration. */
1891 rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
1893 return subprog_decl;
1896 /* Set up the framework for generating code for SUBPROG_DECL, a subprogram
1897 body. This routine needs to be invoked before processing the declarations
1898 appearing in the subprogram. */
1901 begin_subprog_body (tree subprog_decl)
1905 current_function_decl = subprog_decl;
1906 announce_function (subprog_decl);
1908 /* Enter a new binding level and show that all the parameters belong to
1911 for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
1912 param_decl = TREE_CHAIN (param_decl))
1913 DECL_CONTEXT (param_decl) = subprog_decl;
1915 make_decl_rtl (subprog_decl);
1917 /* We handle pending sizes via the elaboration of types, so we don't need to
1918 save them. This causes them to be marked as part of the outer function
1919 and then discarded. */
1920 get_pending_sizes ();
1924 /* Helper for the genericization callback. Return a dereference of VAL
1925 if it is of a reference type. */
1928 convert_from_reference (tree val)
1930 tree value_type, ref;
1932 if (TREE_CODE (TREE_TYPE (val)) != REFERENCE_TYPE)
1935 value_type = TREE_TYPE (TREE_TYPE (val));
1936 ref = build1 (INDIRECT_REF, value_type, val);
1938 /* See if what we reference is CONST or VOLATILE, which requires
1939 looking into array types to get to the component type. */
1941 while (TREE_CODE (value_type) == ARRAY_TYPE)
1942 value_type = TREE_TYPE (value_type);
1945 = (TYPE_QUALS (value_type) & TYPE_QUAL_CONST);
1946 TREE_THIS_VOLATILE (ref)
1947 = (TYPE_QUALS (value_type) & TYPE_QUAL_VOLATILE);
1949 TREE_SIDE_EFFECTS (ref)
1950 = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val));
1955 /* Helper for the genericization callback. Returns true if T denotes
1956 a RESULT_DECL with DECL_BY_REFERENCE set. */
1959 is_byref_result (tree t)
1961 return (TREE_CODE (t) == RESULT_DECL && DECL_BY_REFERENCE (t));
1965 /* Tree walking callback for gnat_genericize. Currently ...
1967 o Adjust references to the function's DECL_RESULT if it is marked
1968 DECL_BY_REFERENCE and so has had its type turned into a reference
1969 type at the end of the function compilation. */
1972 gnat_genericize_r (tree *stmt_p, int *walk_subtrees, void *data)
1974 /* This implementation is modeled after what the C++ front-end is
1975 doing, basis of the downstream passes behavior. */
1977 tree stmt = *stmt_p;
1978 struct pointer_set_t *p_set = (struct pointer_set_t*) data;
1980 /* If we have a direct mention of the result decl, dereference. */
1981 if (is_byref_result (stmt))
1983 *stmt_p = convert_from_reference (stmt);
1988 /* Otherwise, no need to walk the same tree twice. */
1989 if (pointer_set_contains (p_set, stmt))
1995 /* If we are taking the address of what now is a reference, just get the
1997 if (TREE_CODE (stmt) == ADDR_EXPR
1998 && is_byref_result (TREE_OPERAND (stmt, 0)))
2000 *stmt_p = convert (TREE_TYPE (stmt), TREE_OPERAND (stmt, 0));
2004 /* Don't dereference an by-reference RESULT_DECL inside a RETURN_EXPR. */
2005 else if (TREE_CODE (stmt) == RETURN_EXPR
2006 && TREE_OPERAND (stmt, 0)
2007 && is_byref_result (TREE_OPERAND (stmt, 0)))
2010 /* Don't look inside trees that cannot embed references of interest. */
2011 else if (IS_TYPE_OR_DECL_P (stmt))
2014 pointer_set_insert (p_set, *stmt_p);
2019 /* Perform lowering of Ada trees to GENERIC. In particular:
2021 o Turn a DECL_BY_REFERENCE RESULT_DECL into a real by-reference decl
2022 and adjust all the references to this decl accordingly. */
2025 gnat_genericize (tree fndecl)
2027 /* Prior to GCC 4, an explicit By_Reference result mechanism for a function
2028 was handled by simply setting TREE_ADDRESSABLE on the result type.
2029 Everything required to actually pass by invisible ref using the target
2030 mechanism (e.g. extra parameter) was handled at RTL expansion time.
2032 This doesn't work with GCC 4 any more for several reasons. First, the
2033 gimplification process might need the creation of temporaries of this
2034 type, and the gimplifier ICEs on such attempts. Second, the middle-end
2035 now relies on a different attribute for such cases (DECL_BY_REFERENCE on
2036 RESULT/PARM_DECLs), and expects the user invisible by-reference-ness to
2037 be explicitly accounted for by the front-end in the function body.
2039 We achieve the complete transformation in two steps:
2041 1/ create_subprog_decl performs early attribute tweaks: it clears
2042 TREE_ADDRESSABLE from the result type and sets DECL_BY_REFERENCE on
2043 the result decl. The former ensures that the bit isn't set in the GCC
2044 tree saved for the function, so prevents ICEs on temporary creation.
2045 The latter we use here to trigger the rest of the processing.
2047 2/ This function performs the type transformation on the result decl
2048 and adjusts all the references to this decl from the function body
2051 Clearing TREE_ADDRESSABLE from the type differs from the C++ front-end
2052 strategy, which escapes the gimplifier temporary creation issues by
2053 creating it's own temporaries using TARGET_EXPR nodes. Our way relies
2054 on simple specific support code in aggregate_value_p to look at the
2055 target function result decl explicitly. */
2057 struct pointer_set_t *p_set;
2058 tree decl_result = DECL_RESULT (fndecl);
2060 if (!DECL_BY_REFERENCE (decl_result))
2063 /* Make the DECL_RESULT explicitly by-reference and adjust all the
2064 occurrences in the function body using the common tree-walking facility.
2065 We want to see every occurrence of the result decl to adjust the
2066 referencing tree, so need to use our own pointer set to control which
2067 trees should be visited again or not. */
2069 p_set = pointer_set_create ();
2071 TREE_TYPE (decl_result) = build_reference_type (TREE_TYPE (decl_result));
2072 TREE_ADDRESSABLE (decl_result) = 0;
2073 relayout_decl (decl_result);
2075 walk_tree (&DECL_SAVED_TREE (fndecl), gnat_genericize_r, p_set, NULL);
2077 pointer_set_destroy (p_set);
2080 /* Finish the definition of the current subprogram BODY and finalize it. */
2083 end_subprog_body (tree body)
2085 tree fndecl = current_function_decl;
2087 /* Mark the BLOCK for this level as being for this function and pop the
2088 level. Since the vars in it are the parameters, clear them. */
2089 BLOCK_VARS (current_binding_level->block) = 0;
2090 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
2091 DECL_INITIAL (fndecl) = current_binding_level->block;
2094 /* We handle pending sizes via the elaboration of types, so we don't
2095 need to save them. */
2096 get_pending_sizes ();
2098 /* Mark the RESULT_DECL as being in this subprogram. */
2099 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
2101 DECL_SAVED_TREE (fndecl) = body;
2103 current_function_decl = DECL_CONTEXT (fndecl);
2106 /* We cannot track the location of errors past this point. */
2107 error_gnat_node = Empty;
2109 /* If we're only annotating types, don't actually compile this function. */
2110 if (type_annotate_only)
2113 /* Perform the required pre-gimplification transformations on the tree. */
2114 gnat_genericize (fndecl);
2116 /* Dump functions before gimplification. */
2117 dump_function (TDI_original, fndecl);
2119 /* ??? This special handling of nested functions is probably obsolete. */
2120 if (!DECL_CONTEXT (fndecl))
2121 cgraph_finalize_function (fndecl, false);
2123 /* Register this function with cgraph just far enough to get it
2124 added to our parent's nested function list. */
2125 (void) cgraph_node (fndecl);
2129 gnat_builtin_function (tree decl)
2131 gnat_pushdecl (decl, Empty);
2135 /* Return an integer type with the number of bits of precision given by
2136 PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
2137 it is a signed type. */
2140 gnat_type_for_size (unsigned precision, int unsignedp)
2145 if (precision <= 2 * MAX_BITS_PER_WORD
2146 && signed_and_unsigned_types[precision][unsignedp])
2147 return signed_and_unsigned_types[precision][unsignedp];
2150 t = make_unsigned_type (precision);
2152 t = make_signed_type (precision);
2154 if (precision <= 2 * MAX_BITS_PER_WORD)
2155 signed_and_unsigned_types[precision][unsignedp] = t;
2159 sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
2160 TYPE_NAME (t) = get_identifier (type_name);
2166 /* Likewise for floating-point types. */
2169 float_type_for_precision (int precision, enum machine_mode mode)
2174 if (float_types[(int) mode])
2175 return float_types[(int) mode];
2177 float_types[(int) mode] = t = make_node (REAL_TYPE);
2178 TYPE_PRECISION (t) = precision;
2181 gcc_assert (TYPE_MODE (t) == mode);
2184 sprintf (type_name, "FLOAT_%d", precision);
2185 TYPE_NAME (t) = get_identifier (type_name);
2191 /* Return a data type that has machine mode MODE. UNSIGNEDP selects
2192 an unsigned type; otherwise a signed type is returned. */
2195 gnat_type_for_mode (enum machine_mode mode, int unsignedp)
2197 if (mode == BLKmode)
2200 if (mode == VOIDmode)
2201 return void_type_node;
2203 if (COMPLEX_MODE_P (mode))
2206 if (SCALAR_FLOAT_MODE_P (mode))
2207 return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
2209 if (SCALAR_INT_MODE_P (mode))
2210 return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
2212 if (VECTOR_MODE_P (mode))
2214 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2215 tree inner_type = gnat_type_for_mode (inner_mode, unsignedp);
2217 return build_vector_type_for_mode (inner_type, mode);
2223 /* Return the unsigned version of a TYPE_NODE, a scalar type. */
2226 gnat_unsigned_type (tree type_node)
2228 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
2230 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
2232 type = copy_node (type);
2233 TREE_TYPE (type) = type_node;
2235 else if (TREE_TYPE (type_node)
2236 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
2237 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
2239 type = copy_node (type);
2240 TREE_TYPE (type) = TREE_TYPE (type_node);
2246 /* Return the signed version of a TYPE_NODE, a scalar type. */
2249 gnat_signed_type (tree type_node)
2251 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
2253 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
2255 type = copy_node (type);
2256 TREE_TYPE (type) = type_node;
2258 else if (TREE_TYPE (type_node)
2259 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
2260 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
2262 type = copy_node (type);
2263 TREE_TYPE (type) = TREE_TYPE (type_node);
2269 /* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
2270 transparently converted to each other. */
2273 gnat_types_compatible_p (tree t1, tree t2)
2275 enum tree_code code;
2277 /* This is the default criterion. */
2278 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
2281 /* We only check structural equivalence here. */
2282 if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
2285 /* Vector types are also compatible if they have the same number of subparts
2286 and the same form of (scalar) element type. */
2287 if (code == VECTOR_TYPE
2288 && TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
2289 && TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
2290 && TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2)))
2293 /* Array types are also compatible if they are constrained and have
2294 the same component type and the same domain. */
2295 if (code == ARRAY_TYPE
2296 && TREE_TYPE (t1) == TREE_TYPE (t2)
2297 && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
2298 || (TYPE_DOMAIN (t1)
2300 && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
2301 TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
2302 && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
2303 TYPE_MAX_VALUE (TYPE_DOMAIN (t2))))))
2306 /* Padding record types are also compatible if they pad the same
2307 type and have the same constant size. */
2308 if (code == RECORD_TYPE
2309 && TYPE_PADDING_P (t1) && TYPE_PADDING_P (t2)
2310 && TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2))
2311 && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
2317 /* EXP is an expression for the size of an object. If this size contains
2318 discriminant references, replace them with the maximum (if MAX_P) or
2319 minimum (if !MAX_P) possible value of the discriminant. */
2322 max_size (tree exp, bool max_p)
2324 enum tree_code code = TREE_CODE (exp);
2325 tree type = TREE_TYPE (exp);
2327 switch (TREE_CODE_CLASS (code))
2329 case tcc_declaration:
2334 if (code == CALL_EXPR)
2339 t = maybe_inline_call_in_expr (exp);
2341 return max_size (t, max_p);
2343 n = call_expr_nargs (exp);
2345 argarray = (tree *) alloca (n * sizeof (tree));
2346 for (i = 0; i < n; i++)
2347 argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
2348 return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
2353 /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
2354 modify. Otherwise, we treat it like a variable. */
2355 if (!CONTAINS_PLACEHOLDER_P (exp))
2358 type = TREE_TYPE (TREE_OPERAND (exp, 1));
2360 max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true);
2362 case tcc_comparison:
2363 return max_p ? size_one_node : size_zero_node;
2367 case tcc_expression:
2368 switch (TREE_CODE_LENGTH (code))
2371 if (code == NON_LVALUE_EXPR)
2372 return max_size (TREE_OPERAND (exp, 0), max_p);
2375 fold_build1 (code, type,
2376 max_size (TREE_OPERAND (exp, 0),
2377 code == NEGATE_EXPR ? !max_p : max_p));
2380 if (code == COMPOUND_EXPR)
2381 return max_size (TREE_OPERAND (exp, 1), max_p);
2383 /* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which
2384 may provide a tighter bound on max_size. */
2385 if (code == MINUS_EXPR
2386 && TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR)
2388 tree lhs = fold_build2 (MINUS_EXPR, type,
2389 TREE_OPERAND (TREE_OPERAND (exp, 0), 1),
2390 TREE_OPERAND (exp, 1));
2391 tree rhs = fold_build2 (MINUS_EXPR, type,
2392 TREE_OPERAND (TREE_OPERAND (exp, 0), 2),
2393 TREE_OPERAND (exp, 1));
2394 return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
2395 max_size (lhs, max_p),
2396 max_size (rhs, max_p));
2400 tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
2401 tree rhs = max_size (TREE_OPERAND (exp, 1),
2402 code == MINUS_EXPR ? !max_p : max_p);
2404 /* Special-case wanting the maximum value of a MIN_EXPR.
2405 In that case, if one side overflows, return the other.
2406 sizetype is signed, but we know sizes are non-negative.
2407 Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
2408 overflowing or the maximum possible value and the RHS
2412 && TREE_CODE (rhs) == INTEGER_CST
2413 && TREE_OVERFLOW (rhs))
2417 && TREE_CODE (lhs) == INTEGER_CST
2418 && TREE_OVERFLOW (lhs))
2420 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
2421 && ((TREE_CODE (lhs) == INTEGER_CST
2422 && TREE_OVERFLOW (lhs))
2423 || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
2424 && !TREE_CONSTANT (rhs))
2427 return fold_build2 (code, type, lhs, rhs);
2431 if (code == SAVE_EXPR)
2433 else if (code == COND_EXPR)
2434 return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
2435 max_size (TREE_OPERAND (exp, 1), max_p),
2436 max_size (TREE_OPERAND (exp, 2), max_p));
2439 /* Other tree classes cannot happen. */
2447 /* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
2448 EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
2449 Return a constructor for the template. */
2452 build_template (tree template_type, tree array_type, tree expr)
2454 tree template_elts = NULL_TREE;
2455 tree bound_list = NULL_TREE;
2458 while (TREE_CODE (array_type) == RECORD_TYPE
2459 && (TYPE_PADDING_P (array_type)
2460 || TYPE_JUSTIFIED_MODULAR_P (array_type)))
2461 array_type = TREE_TYPE (TYPE_FIELDS (array_type));
2463 if (TREE_CODE (array_type) == ARRAY_TYPE
2464 || (TREE_CODE (array_type) == INTEGER_TYPE
2465 && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
2466 bound_list = TYPE_ACTUAL_BOUNDS (array_type);
2468 /* First make the list for a CONSTRUCTOR for the template. Go down the
2469 field list of the template instead of the type chain because this
2470 array might be an Ada array of arrays and we can't tell where the
2471 nested arrays stop being the underlying object. */
2473 for (field = TYPE_FIELDS (template_type); field;
2475 ? (bound_list = TREE_CHAIN (bound_list))
2476 : (array_type = TREE_TYPE (array_type))),
2477 field = TREE_CHAIN (TREE_CHAIN (field)))
2479 tree bounds, min, max;
2481 /* If we have a bound list, get the bounds from there. Likewise
2482 for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
2483 DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
2484 This will give us a maximum range. */
2486 bounds = TREE_VALUE (bound_list);
2487 else if (TREE_CODE (array_type) == ARRAY_TYPE)
2488 bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
2489 else if (expr && TREE_CODE (expr) == PARM_DECL
2490 && DECL_BY_COMPONENT_PTR_P (expr))
2491 bounds = TREE_TYPE (field);
2495 min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
2496 max = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MAX_VALUE (bounds));
2498 /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
2499 substitute it from OBJECT. */
2500 min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
2501 max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
2503 template_elts = tree_cons (TREE_CHAIN (field), max,
2504 tree_cons (field, min, template_elts));
2507 return gnat_build_constructor (template_type, nreverse (template_elts));
2510 /* Build a 32bit VMS descriptor from a Mechanism_Type, which must specify
2511 a descriptor type, and the GCC type of an object. Each FIELD_DECL
2512 in the type contains in its DECL_INITIAL the expression to use when
2513 a constructor is made for the type. GNAT_ENTITY is an entity used
2514 to print out an error message if the mechanism cannot be applied to
2515 an object of that type and also for the name. */
2518 build_vms_descriptor32 (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
2520 tree record_type = make_node (RECORD_TYPE);
2521 tree pointer32_type;
2522 tree field_list = 0;
2531 /* If TYPE is an unconstrained array, use the underlying array type. */
2532 if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
2533 type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
2535 /* If this is an array, compute the number of dimensions in the array,
2536 get the index types, and point to the inner type. */
2537 if (TREE_CODE (type) != ARRAY_TYPE)
2540 for (ndim = 1, inner_type = type;
2541 TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
2542 && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
2543 ndim++, inner_type = TREE_TYPE (inner_type))
2546 idx_arr = (tree *) alloca (ndim * sizeof (tree));
2548 if (mech != By_Descriptor_NCA && mech != By_Short_Descriptor_NCA
2549 && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
2550 for (i = ndim - 1, inner_type = type;
2552 i--, inner_type = TREE_TYPE (inner_type))
2553 idx_arr[i] = TYPE_DOMAIN (inner_type);
2555 for (i = 0, inner_type = type;
2557 i++, inner_type = TREE_TYPE (inner_type))
2558 idx_arr[i] = TYPE_DOMAIN (inner_type);
2560 /* Now get the DTYPE value. */
2561 switch (TREE_CODE (type))
2566 if (TYPE_VAX_FLOATING_POINT_P (type))
2567 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2580 switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
2583 dtype = TYPE_UNSIGNED (type) ? 2 : 6;
2586 dtype = TYPE_UNSIGNED (type) ? 3 : 7;
2589 dtype = TYPE_UNSIGNED (type) ? 4 : 8;
2592 dtype = TYPE_UNSIGNED (type) ? 5 : 9;
2595 dtype = TYPE_UNSIGNED (type) ? 25 : 26;
2601 dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
2605 if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
2606 && TYPE_VAX_FLOATING_POINT_P (type))
2607 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2619 dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
2630 /* Get the CLASS value. */
2633 case By_Descriptor_A:
2634 case By_Short_Descriptor_A:
2637 case By_Descriptor_NCA:
2638 case By_Short_Descriptor_NCA:
2641 case By_Descriptor_SB:
2642 case By_Short_Descriptor_SB:
2646 case By_Short_Descriptor:
2647 case By_Descriptor_S:
2648 case By_Short_Descriptor_S:
2654 /* Make the type for a descriptor for VMS. The first four fields
2655 are the same for all types. */
2658 = chainon (field_list,
2659 make_descriptor_field
2660 ("LENGTH", gnat_type_for_size (16, 1), record_type,
2661 size_in_bytes ((mech == By_Descriptor_A ||
2662 mech == By_Short_Descriptor_A)
2663 ? inner_type : type)));
2665 field_list = chainon (field_list,
2666 make_descriptor_field ("DTYPE",
2667 gnat_type_for_size (8, 1),
2668 record_type, size_int (dtype)));
2669 field_list = chainon (field_list,
2670 make_descriptor_field ("CLASS",
2671 gnat_type_for_size (8, 1),
2672 record_type, size_int (klass)));
2674 /* Of course this will crash at run-time if the address space is not
2675 within the low 32 bits, but there is nothing else we can do. */
2676 pointer32_type = build_pointer_type_for_mode (type, SImode, false);
2679 = chainon (field_list,
2680 make_descriptor_field
2681 ("POINTER", pointer32_type, record_type,
2682 build_unary_op (ADDR_EXPR,
2684 build0 (PLACEHOLDER_EXPR, type))));
2689 case By_Short_Descriptor:
2690 case By_Descriptor_S:
2691 case By_Short_Descriptor_S:
2694 case By_Descriptor_SB:
2695 case By_Short_Descriptor_SB:
2697 = chainon (field_list,
2698 make_descriptor_field
2699 ("SB_L1", gnat_type_for_size (32, 1), record_type,
2700 TREE_CODE (type) == ARRAY_TYPE
2701 ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
2703 = chainon (field_list,
2704 make_descriptor_field
2705 ("SB_U1", gnat_type_for_size (32, 1), record_type,
2706 TREE_CODE (type) == ARRAY_TYPE
2707 ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
2710 case By_Descriptor_A:
2711 case By_Short_Descriptor_A:
2712 case By_Descriptor_NCA:
2713 case By_Short_Descriptor_NCA:
2714 field_list = chainon (field_list,
2715 make_descriptor_field ("SCALE",
2716 gnat_type_for_size (8, 1),
2720 field_list = chainon (field_list,
2721 make_descriptor_field ("DIGITS",
2722 gnat_type_for_size (8, 1),
2727 = chainon (field_list,
2728 make_descriptor_field
2729 ("AFLAGS", gnat_type_for_size (8, 1), record_type,
2730 size_int ((mech == By_Descriptor_NCA ||
2731 mech == By_Short_Descriptor_NCA)
2733 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
2734 : (TREE_CODE (type) == ARRAY_TYPE
2735 && TYPE_CONVENTION_FORTRAN_P (type)
2738 field_list = chainon (field_list,
2739 make_descriptor_field ("DIMCT",
2740 gnat_type_for_size (8, 1),
2744 field_list = chainon (field_list,
2745 make_descriptor_field ("ARSIZE",
2746 gnat_type_for_size (32, 1),
2748 size_in_bytes (type)));
2750 /* Now build a pointer to the 0,0,0... element. */
2751 tem = build0 (PLACEHOLDER_EXPR, type);
2752 for (i = 0, inner_type = type; i < ndim;
2753 i++, inner_type = TREE_TYPE (inner_type))
2754 tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
2755 convert (TYPE_DOMAIN (inner_type), size_zero_node),
2756 NULL_TREE, NULL_TREE);
2759 = chainon (field_list,
2760 make_descriptor_field
2762 build_pointer_type_for_mode (inner_type, SImode, false),
2765 build_pointer_type_for_mode (inner_type, SImode,
2769 /* Next come the addressing coefficients. */
2770 tem = size_one_node;
2771 for (i = 0; i < ndim; i++)
2775 = size_binop (MULT_EXPR, tem,
2776 size_binop (PLUS_EXPR,
2777 size_binop (MINUS_EXPR,
2778 TYPE_MAX_VALUE (idx_arr[i]),
2779 TYPE_MIN_VALUE (idx_arr[i])),
2782 fname[0] = ((mech == By_Descriptor_NCA ||
2783 mech == By_Short_Descriptor_NCA) ? 'S' : 'M');
2784 fname[1] = '0' + i, fname[2] = 0;
2786 = chainon (field_list,
2787 make_descriptor_field (fname,
2788 gnat_type_for_size (32, 1),
2789 record_type, idx_length));
2791 if (mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA)
2795 /* Finally here are the bounds. */
2796 for (i = 0; i < ndim; i++)
2800 fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
2802 = chainon (field_list,
2803 make_descriptor_field
2804 (fname, gnat_type_for_size (32, 1), record_type,
2805 TYPE_MIN_VALUE (idx_arr[i])));
2809 = chainon (field_list,
2810 make_descriptor_field
2811 (fname, gnat_type_for_size (32, 1), record_type,
2812 TYPE_MAX_VALUE (idx_arr[i])));
2817 post_error ("unsupported descriptor type for &", gnat_entity);
2820 TYPE_NAME (record_type) = create_concat_name (gnat_entity, "DESC");
2821 finish_record_type (record_type, field_list, 0, false);
2825 /* Build a 64bit VMS descriptor from a Mechanism_Type, which must specify
2826 a descriptor type, and the GCC type of an object. Each FIELD_DECL
2827 in the type contains in its DECL_INITIAL the expression to use when
2828 a constructor is made for the type. GNAT_ENTITY is an entity used
2829 to print out an error message if the mechanism cannot be applied to
2830 an object of that type and also for the name. */
2833 build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
2835 tree record64_type = make_node (RECORD_TYPE);
2836 tree pointer64_type;
2837 tree field_list64 = 0;
2846 /* If TYPE is an unconstrained array, use the underlying array type. */
2847 if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
2848 type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
2850 /* If this is an array, compute the number of dimensions in the array,
2851 get the index types, and point to the inner type. */
2852 if (TREE_CODE (type) != ARRAY_TYPE)
2855 for (ndim = 1, inner_type = type;
2856 TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
2857 && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
2858 ndim++, inner_type = TREE_TYPE (inner_type))
2861 idx_arr = (tree *) alloca (ndim * sizeof (tree));
2863 if (mech != By_Descriptor_NCA
2864 && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
2865 for (i = ndim - 1, inner_type = type;
2867 i--, inner_type = TREE_TYPE (inner_type))
2868 idx_arr[i] = TYPE_DOMAIN (inner_type);
2870 for (i = 0, inner_type = type;
2872 i++, inner_type = TREE_TYPE (inner_type))
2873 idx_arr[i] = TYPE_DOMAIN (inner_type);
2875 /* Now get the DTYPE value. */
2876 switch (TREE_CODE (type))
2881 if (TYPE_VAX_FLOATING_POINT_P (type))
2882 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2895 switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
2898 dtype = TYPE_UNSIGNED (type) ? 2 : 6;
2901 dtype = TYPE_UNSIGNED (type) ? 3 : 7;
2904 dtype = TYPE_UNSIGNED (type) ? 4 : 8;
2907 dtype = TYPE_UNSIGNED (type) ? 5 : 9;
2910 dtype = TYPE_UNSIGNED (type) ? 25 : 26;
2916 dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
2920 if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
2921 && TYPE_VAX_FLOATING_POINT_P (type))
2922 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2934 dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
2945 /* Get the CLASS value. */
2948 case By_Descriptor_A:
2951 case By_Descriptor_NCA:
2954 case By_Descriptor_SB:
2958 case By_Descriptor_S:
2964 /* Make the type for a 64bit descriptor for VMS. The first six fields
2965 are the same for all types. */
2967 field_list64 = chainon (field_list64,
2968 make_descriptor_field ("MBO",
2969 gnat_type_for_size (16, 1),
2970 record64_type, size_int (1)));
2972 field_list64 = chainon (field_list64,
2973 make_descriptor_field ("DTYPE",
2974 gnat_type_for_size (8, 1),
2975 record64_type, size_int (dtype)));
2976 field_list64 = chainon (field_list64,
2977 make_descriptor_field ("CLASS",
2978 gnat_type_for_size (8, 1),
2979 record64_type, size_int (klass)));
2981 field_list64 = chainon (field_list64,
2982 make_descriptor_field ("MBMO",
2983 gnat_type_for_size (32, 1),
2984 record64_type, ssize_int (-1)));
2987 = chainon (field_list64,
2988 make_descriptor_field
2989 ("LENGTH", gnat_type_for_size (64, 1), record64_type,
2990 size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
2992 pointer64_type = build_pointer_type_for_mode (type, DImode, false);
2995 = chainon (field_list64,
2996 make_descriptor_field
2997 ("POINTER", pointer64_type, record64_type,
2998 build_unary_op (ADDR_EXPR,
3000 build0 (PLACEHOLDER_EXPR, type))));
3005 case By_Descriptor_S:
3008 case By_Descriptor_SB:
3010 = chainon (field_list64,
3011 make_descriptor_field
3012 ("SB_L1", gnat_type_for_size (64, 1), record64_type,
3013 TREE_CODE (type) == ARRAY_TYPE
3014 ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
3016 = chainon (field_list64,
3017 make_descriptor_field
3018 ("SB_U1", gnat_type_for_size (64, 1), record64_type,
3019 TREE_CODE (type) == ARRAY_TYPE
3020 ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
3023 case By_Descriptor_A:
3024 case By_Descriptor_NCA:
3025 field_list64 = chainon (field_list64,
3026 make_descriptor_field ("SCALE",
3027 gnat_type_for_size (8, 1),
3031 field_list64 = chainon (field_list64,
3032 make_descriptor_field ("DIGITS",
3033 gnat_type_for_size (8, 1),
3038 = chainon (field_list64,
3039 make_descriptor_field
3040 ("AFLAGS", gnat_type_for_size (8, 1), record64_type,
3041 size_int (mech == By_Descriptor_NCA
3043 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
3044 : (TREE_CODE (type) == ARRAY_TYPE
3045 && TYPE_CONVENTION_FORTRAN_P (type)
3048 field_list64 = chainon (field_list64,
3049 make_descriptor_field ("DIMCT",
3050 gnat_type_for_size (8, 1),
3054 field_list64 = chainon (field_list64,
3055 make_descriptor_field ("MBZ",
3056 gnat_type_for_size (32, 1),
3059 field_list64 = chainon (field_list64,
3060 make_descriptor_field ("ARSIZE",
3061 gnat_type_for_size (64, 1),
3063 size_in_bytes (type)));
3065 /* Now build a pointer to the 0,0,0... element. */
3066 tem = build0 (PLACEHOLDER_EXPR, type);
3067 for (i = 0, inner_type = type; i < ndim;
3068 i++, inner_type = TREE_TYPE (inner_type))
3069 tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
3070 convert (TYPE_DOMAIN (inner_type), size_zero_node),
3071 NULL_TREE, NULL_TREE);
3074 = chainon (field_list64,
3075 make_descriptor_field
3077 build_pointer_type_for_mode (inner_type, DImode, false),
3080 build_pointer_type_for_mode (inner_type, DImode,
3084 /* Next come the addressing coefficients. */
3085 tem = size_one_node;
3086 for (i = 0; i < ndim; i++)
3090 = size_binop (MULT_EXPR, tem,
3091 size_binop (PLUS_EXPR,
3092 size_binop (MINUS_EXPR,
3093 TYPE_MAX_VALUE (idx_arr[i]),
3094 TYPE_MIN_VALUE (idx_arr[i])),
3097 fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
3098 fname[1] = '0' + i, fname[2] = 0;
3100 = chainon (field_list64,
3101 make_descriptor_field (fname,
3102 gnat_type_for_size (64, 1),
3103 record64_type, idx_length));
3105 if (mech == By_Descriptor_NCA)
3109 /* Finally here are the bounds. */
3110 for (i = 0; i < ndim; i++)
3114 fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
3116 = chainon (field_list64,
3117 make_descriptor_field
3118 (fname, gnat_type_for_size (64, 1), record64_type,
3119 TYPE_MIN_VALUE (idx_arr[i])));
3123 = chainon (field_list64,
3124 make_descriptor_field
3125 (fname, gnat_type_for_size (64, 1), record64_type,
3126 TYPE_MAX_VALUE (idx_arr[i])));
3131 post_error ("unsupported descriptor type for &", gnat_entity);
3134 TYPE_NAME (record64_type) = create_concat_name (gnat_entity, "DESC64");
3135 finish_record_type (record64_type, field_list64, 0, false);
3136 return record64_type;
3139 /* Utility routine for above code to make a field. */
3142 make_descriptor_field (const char *name, tree type,
3143 tree rec_type, tree initial)
3146 = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
3148 DECL_INITIAL (field) = initial;
3152 /* Convert GNU_EXPR, a pointer to a 64bit VMS descriptor, to GNU_TYPE, a
3153 regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
3154 which the VMS descriptor is passed. */
3157 convert_vms_descriptor64 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
3159 tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
3160 tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
3161 /* The CLASS field is the 3rd field in the descriptor. */
3162 tree klass = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
3163 /* The POINTER field is the 6th field in the descriptor. */
3164 tree pointer64 = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (klass)));
3166 /* Retrieve the value of the POINTER field. */
3168 = build3 (COMPONENT_REF, TREE_TYPE (pointer64), desc, pointer64, NULL_TREE);
3170 if (POINTER_TYPE_P (gnu_type))
3171 return convert (gnu_type, gnu_expr64);
3173 else if (TYPE_IS_FAT_POINTER_P (gnu_type))
3175 tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
3176 tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
3177 tree template_type = TREE_TYPE (p_bounds_type);
3178 tree min_field = TYPE_FIELDS (template_type);
3179 tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
3180 tree template_tree, template_addr, aflags, dimct, t, u;
3181 /* See the head comment of build_vms_descriptor. */
3182 int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass));
3183 tree lfield, ufield;
3185 /* Convert POINTER to the type of the P_ARRAY field. */
3186 gnu_expr64 = convert (p_array_type, gnu_expr64);
3190 case 1: /* Class S */
3191 case 15: /* Class SB */
3192 /* Build {1, LENGTH} template; LENGTH64 is the 5th field. */
3193 t = TREE_CHAIN (TREE_CHAIN (klass));
3194 t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3195 t = tree_cons (min_field,
3196 convert (TREE_TYPE (min_field), integer_one_node),
3197 tree_cons (max_field,
3198 convert (TREE_TYPE (max_field), t),
3200 template_tree = gnat_build_constructor (template_type, t);
3201 template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree);
3203 /* For class S, we are done. */
3207 /* Test that we really have a SB descriptor, like DEC Ada. */
3208 t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL);
3209 u = convert (TREE_TYPE (klass), DECL_INITIAL (klass));
3210 u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
3211 /* If so, there is already a template in the descriptor and
3212 it is located right after the POINTER field. The fields are
3213 64bits so they must be repacked. */
3214 t = TREE_CHAIN (pointer64);
3215 lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3216 lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
3219 ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3221 (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
3223 /* Build the template in the form of a constructor. */
3224 t = tree_cons (TYPE_FIELDS (template_type), lfield,
3225 tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
3226 ufield, NULL_TREE));
3227 template_tree = gnat_build_constructor (template_type, t);
3229 /* Otherwise use the {1, LENGTH} template we build above. */
3230 template_addr = build3 (COND_EXPR, p_bounds_type, u,
3231 build_unary_op (ADDR_EXPR, p_bounds_type,
3236 case 4: /* Class A */
3237 /* The AFLAGS field is the 3rd field after the pointer in the
3239 t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer64)));
3240 aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3241 /* The DIMCT field is the next field in the descriptor after
3244 dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3245 /* Raise CONSTRAINT_ERROR if either more than 1 dimension
3246 or FL_COEFF or FL_BOUNDS not set. */