1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2010, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
40 #include "langhooks.h"
41 #include "pointer-set.h"
43 #include "tree-dump.h"
44 #include "tree-inline.h"
45 #include "tree-iterator.h"
62 #ifndef MAX_BITS_PER_WORD
63 #define MAX_BITS_PER_WORD BITS_PER_WORD
66 /* If nonzero, pretend we are allocating at global level. */
69 /* The default alignment of "double" floating-point types, i.e. floating
70 point types whose size is equal to 64 bits, or 0 if this alignment is
71 not specifically capped. */
72 int double_float_alignment;
74 /* The default alignment of "double" or larger scalar types, i.e. scalar
75 types whose size is greater or equal to 64 bits, or 0 if this alignment
76 is not specifically capped. */
77 int double_scalar_alignment;
79 /* Tree nodes for the various types and decls we create. */
80 tree gnat_std_decls[(int) ADT_LAST];
82 /* Functions to call for each of the possible raise reasons. */
83 tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
85 /* Forward declarations for handlers of attributes. */
86 static tree handle_const_attribute (tree *, tree, tree, int, bool *);
87 static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
88 static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
89 static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
90 static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
91 static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
92 static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
93 static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
94 static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
95 static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *);
96 static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *);
98 /* Fake handler for attributes we don't properly support, typically because
99 they'd require dragging a lot of the common-c front-end circuitry. */
100 static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
102 /* Table of machine-independent internal attributes for Ada. We support
103 this minimal set of attributes to accommodate the needs of builtins. */
104 const struct attribute_spec gnat_internal_attribute_table[] =
106 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
107 { "const", 0, 0, true, false, false, handle_const_attribute },
108 { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute },
109 { "pure", 0, 0, true, false, false, handle_pure_attribute },
110 { "no vops", 0, 0, true, false, false, handle_novops_attribute },
111 { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute },
112 { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute },
113 { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute },
114 { "malloc", 0, 0, true, false, false, handle_malloc_attribute },
115 { "type generic", 0, 0, false, true, true, handle_type_generic_attribute },
117 { "vector_size", 1, 1, false, true, false, handle_vector_size_attribute },
118 { "vector_type", 0, 0, false, true, false, handle_vector_type_attribute },
119 { "may_alias", 0, 0, false, true, false, NULL },
121 /* ??? format and format_arg are heavy and not supported, which actually
122 prevents support for stdio builtins, which we however declare as part
123 of the common builtins.def contents. */
124 { "format", 3, 3, false, true, true, fake_attribute_handler },
125 { "format_arg", 1, 1, false, true, true, fake_attribute_handler },
127 { NULL, 0, 0, false, false, false, NULL }
130 /* Associates a GNAT tree node to a GCC tree node. It is used in
131 `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
132 of `save_gnu_tree' for more info. */
133 static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
135 #define GET_GNU_TREE(GNAT_ENTITY) \
136 associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
138 #define SET_GNU_TREE(GNAT_ENTITY,VAL) \
139 associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
141 #define PRESENT_GNU_TREE(GNAT_ENTITY) \
142 (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
144 /* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
145 static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
147 #define GET_DUMMY_NODE(GNAT_ENTITY) \
148 dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
150 #define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
151 dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
153 #define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
154 (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
156 /* This variable keeps a table for types for each precision so that we only
157 allocate each of them once. Signed and unsigned types are kept separate.
159 Note that these types are only used when fold-const requests something
160 special. Perhaps we should NOT share these types; we'll see how it
162 static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
164 /* Likewise for float types, but record these by mode. */
165 static GTY(()) tree float_types[NUM_MACHINE_MODES];
167 /* For each binding contour we allocate a binding_level structure to indicate
168 the binding depth. */
170 struct GTY((chain_next ("%h.chain"))) gnat_binding_level {
171 /* The binding level containing this one (the enclosing binding level). */
172 struct gnat_binding_level *chain;
173 /* The BLOCK node for this level. */
175 /* If nonzero, the setjmp buffer that needs to be updated for any
176 variable-sized definition within this context. */
180 /* The binding level currently in effect. */
181 static GTY(()) struct gnat_binding_level *current_binding_level;
183 /* A chain of gnat_binding_level structures awaiting reuse. */
184 static GTY((deletable)) struct gnat_binding_level *free_binding_level;
186 /* An array of global declarations. */
187 static GTY(()) VEC(tree,gc) *global_decls;
189 /* An array of builtin function declarations. */
190 static GTY(()) VEC(tree,gc) *builtin_decls;
192 /* An array of global renaming pointers. */
193 static GTY(()) VEC(tree,gc) *global_renaming_pointers;
195 /* A chain of unused BLOCK nodes. */
196 static GTY((deletable)) tree free_block_chain;
198 static tree merge_sizes (tree, tree, tree, bool, bool);
199 static tree compute_related_constant (tree, tree);
200 static tree split_plus (tree, tree *);
201 static tree float_type_for_precision (int, enum machine_mode);
202 static tree convert_to_fat_pointer (tree, tree);
203 static tree convert_to_thin_pointer (tree, tree);
204 static tree make_descriptor_field (const char *,tree, tree, tree);
205 static bool potential_alignment_gap (tree, tree, tree);
207 /* Initialize the association of GNAT nodes to GCC trees. */
210 init_gnat_to_gnu (void)
212 associate_gnat_to_gnu
213 = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
216 /* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree
217 which is to be associated with GNAT_ENTITY. Such GCC tree node is always
218 a ..._DECL node. If NO_CHECK is true, the latter check is suppressed.
220 If GNU_DECL is zero, a previous association is to be reset. */
223 save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
225 /* Check that GNAT_ENTITY is not already defined and that it is being set
226 to something which is a decl. Raise gigi 401 if not. Usually, this
227 means GNAT_ENTITY is defined twice, but occasionally is due to some
229 gcc_assert (!(gnu_decl
230 && (PRESENT_GNU_TREE (gnat_entity)
231 || (!no_check && !DECL_P (gnu_decl)))));
233 SET_GNU_TREE (gnat_entity, gnu_decl);
236 /* GNAT_ENTITY is a GNAT tree node for a defining identifier.
237 Return the ..._DECL node that was associated with it. If there is no tree
238 node associated with GNAT_ENTITY, abort.
240 In some cases, such as delayed elaboration or expressions that need to
241 be elaborated only once, GNAT_ENTITY is really not an entity. */
244 get_gnu_tree (Entity_Id gnat_entity)
246 gcc_assert (PRESENT_GNU_TREE (gnat_entity));
247 return GET_GNU_TREE (gnat_entity);
250 /* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
253 present_gnu_tree (Entity_Id gnat_entity)
255 return PRESENT_GNU_TREE (gnat_entity);
258 /* Initialize the association of GNAT nodes to GCC trees as dummies. */
261 init_dummy_type (void)
264 = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree));
267 /* Make a dummy type corresponding to GNAT_TYPE. */
270 make_dummy_type (Entity_Id gnat_type)
272 Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type);
275 /* If there is an equivalent type, get its underlying type. */
276 if (Present (gnat_underlying))
277 gnat_underlying = Underlying_Type (gnat_underlying);
279 /* If there was no equivalent type (can only happen when just annotating
280 types) or underlying type, go back to the original type. */
281 if (No (gnat_underlying))
282 gnat_underlying = gnat_type;
284 /* If it there already a dummy type, use that one. Else make one. */
285 if (PRESENT_DUMMY_NODE (gnat_underlying))
286 return GET_DUMMY_NODE (gnat_underlying);
288 /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
290 gnu_type = make_node (Is_Record_Type (gnat_underlying)
291 ? tree_code_for_record_type (gnat_underlying)
293 TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
294 TYPE_DUMMY_P (gnu_type) = 1;
295 TYPE_STUB_DECL (gnu_type)
296 = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
297 if (AGGREGATE_TYPE_P (gnu_type))
298 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_type);
300 SET_DUMMY_NODE (gnat_underlying, gnu_type);
305 /* Return nonzero if we are currently in the global binding level. */
308 global_bindings_p (void)
310 return ((force_global || !current_function_decl) ? -1 : 0);
313 /* Enter a new binding level. */
316 gnat_pushlevel (void)
318 struct gnat_binding_level *newlevel = NULL;
320 /* Reuse a struct for this binding level, if there is one. */
321 if (free_binding_level)
323 newlevel = free_binding_level;
324 free_binding_level = free_binding_level->chain;
328 = (struct gnat_binding_level *)
329 ggc_alloc (sizeof (struct gnat_binding_level));
331 /* Use a free BLOCK, if any; otherwise, allocate one. */
332 if (free_block_chain)
334 newlevel->block = free_block_chain;
335 free_block_chain = BLOCK_CHAIN (free_block_chain);
336 BLOCK_CHAIN (newlevel->block) = NULL_TREE;
339 newlevel->block = make_node (BLOCK);
341 /* Point the BLOCK we just made to its parent. */
342 if (current_binding_level)
343 BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
345 BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
346 TREE_USED (newlevel->block) = 1;
348 /* Add this level to the front of the chain (stack) of levels that are
350 newlevel->chain = current_binding_level;
351 newlevel->jmpbuf_decl = NULL_TREE;
352 current_binding_level = newlevel;
355 /* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
356 and point FNDECL to this BLOCK. */
359 set_current_block_context (tree fndecl)
361 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
362 DECL_INITIAL (fndecl) = current_binding_level->block;
365 /* Set the jmpbuf_decl for the current binding level to DECL. */
368 set_block_jmpbuf_decl (tree decl)
370 current_binding_level->jmpbuf_decl = decl;
373 /* Get the jmpbuf_decl, if any, for the current binding level. */
376 get_block_jmpbuf_decl (void)
378 return current_binding_level->jmpbuf_decl;
381 /* Exit a binding level. Set any BLOCK into the current code group. */
386 struct gnat_binding_level *level = current_binding_level;
387 tree block = level->block;
389 BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
390 BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block));
392 /* If this is a function-level BLOCK don't do anything. Otherwise, if there
393 are no variables free the block and merge its subblocks into those of its
394 parent block. Otherwise, add it to the list of its parent. */
395 if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
397 else if (BLOCK_VARS (block) == NULL_TREE)
399 BLOCK_SUBBLOCKS (level->chain->block)
400 = chainon (BLOCK_SUBBLOCKS (block),
401 BLOCK_SUBBLOCKS (level->chain->block));
402 BLOCK_CHAIN (block) = free_block_chain;
403 free_block_chain = block;
407 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
408 BLOCK_SUBBLOCKS (level->chain->block) = block;
409 TREE_USED (block) = 1;
410 set_block_for_group (block);
413 /* Free this binding structure. */
414 current_binding_level = level->chain;
415 level->chain = free_binding_level;
416 free_binding_level = level;
420 /* Records a ..._DECL node DECL as belonging to the current lexical scope
421 and uses GNAT_NODE for location information and propagating flags. */
424 gnat_pushdecl (tree decl, Node_Id gnat_node)
426 /* If this decl is public external or at toplevel, there is no context.
427 But PARM_DECLs always go in the level of its function. */
428 if (TREE_CODE (decl) != PARM_DECL
429 && ((DECL_EXTERNAL (decl) && TREE_PUBLIC (decl))
430 || global_bindings_p ()))
431 DECL_CONTEXT (decl) = 0;
434 DECL_CONTEXT (decl) = current_function_decl;
436 /* Functions imported in another function are not really nested.
437 For really nested functions mark them initially as needing
438 a static chain for uses of that flag before unnesting;
439 lower_nested_functions will then recompute it. */
440 if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
441 DECL_STATIC_CHAIN (decl) = 1;
444 TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node));
446 /* Set the location of DECL and emit a declaration for it. */
447 if (Present (gnat_node))
448 Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
449 add_decl_expr (decl, gnat_node);
451 /* Put the declaration on the list. The list of declarations is in reverse
452 order. The list will be reversed later. Put global variables in the
453 globals list and builtin functions in a dedicated list to speed up
454 further lookups. Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into
455 the list, as they will cause trouble with the debugger and aren't needed
457 if (TREE_CODE (decl) != TYPE_DECL
458 || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE)
460 if (global_bindings_p ())
462 VEC_safe_push (tree, gc, global_decls, decl);
464 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
465 VEC_safe_push (tree, gc, builtin_decls, decl);
469 TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
470 BLOCK_VARS (current_binding_level->block) = decl;
474 /* For the declaration of a type, set its name if it either is not already
475 set or if the previous type name was not derived from a source name.
476 We'd rather have the type named with a real name and all the pointer
477 types to the same object have the same POINTER_TYPE node. Code in the
478 equivalent function of c-decl.c makes a copy of the type node here, but
479 that may cause us trouble with incomplete types. We make an exception
480 for fat pointer types because the compiler automatically builds them
481 for unconstrained array types and the debugger uses them to represent
482 both these and pointers to these. */
483 if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
485 tree t = TREE_TYPE (decl);
487 if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL))
489 else if (TYPE_IS_FAT_POINTER_P (t))
491 tree tt = build_variant_type_copy (t);
492 TYPE_NAME (tt) = decl;
493 TREE_USED (tt) = TREE_USED (t);
494 TREE_TYPE (decl) = tt;
495 if (DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
496 DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t));
498 DECL_ORIGINAL_TYPE (decl) = t;
500 DECL_ARTIFICIAL (decl) = 0;
502 else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
507 /* Propagate the name to all the variants. This is needed for
508 the type qualifiers machinery to work properly. */
510 for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
511 TYPE_NAME (t) = decl;
515 /* Do little here. Set up the standard declarations later after the
516 front end has been run. */
519 gnat_init_decl_processing (void)
521 /* Make the binding_level structure for global names. */
522 current_function_decl = 0;
523 current_binding_level = 0;
524 free_binding_level = 0;
527 build_common_tree_nodes (true, true);
529 /* In Ada, we use a signed type for SIZETYPE. Use the signed type
530 corresponding to the width of Pmode. In most cases when ptr_mode
531 and Pmode differ, C will use the width of ptr_mode for SIZETYPE.
532 But we get far better code using the width of Pmode. */
533 size_type_node = gnat_type_for_mode (Pmode, 0);
534 set_sizetype (size_type_node);
536 /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
537 boolean_type_node = make_unsigned_type (8);
538 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
539 SET_TYPE_RM_MAX_VALUE (boolean_type_node,
540 build_int_cst (boolean_type_node, 1));
541 SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
543 build_common_tree_nodes_2 (0);
544 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
546 ptr_void_type_node = build_pointer_type (void_type_node);
549 /* Record TYPE as a builtin type for Ada. NAME is the name of the type. */
552 record_builtin_type (const char *name, tree type)
554 tree type_decl = build_decl (input_location,
555 TYPE_DECL, get_identifier (name), type);
557 gnat_pushdecl (type_decl, Empty);
559 if (debug_hooks->type_decl)
560 debug_hooks->type_decl (type_decl, false);
563 /* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
564 finish constructing the record or union type. If REP_LEVEL is zero, this
565 record has no representation clause and so will be entirely laid out here.
566 If REP_LEVEL is one, this record has a representation clause and has been
567 laid out already; only set the sizes and alignment. If REP_LEVEL is two,
568 this record is derived from a parent record and thus inherits its layout;
569 only make a pass on the fields to finalize them. DEBUG_INFO_P is true if
570 we need to write debug information about this type. */
573 finish_record_type (tree record_type, tree field_list, int rep_level,
576 enum tree_code code = TREE_CODE (record_type);
577 tree name = TYPE_NAME (record_type);
578 tree ada_size = bitsize_zero_node;
579 tree size = bitsize_zero_node;
580 bool had_size = TYPE_SIZE (record_type) != 0;
581 bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
582 bool had_align = TYPE_ALIGN (record_type) != 0;
585 TYPE_FIELDS (record_type) = field_list;
587 /* Always attach the TYPE_STUB_DECL for a record type. It is required to
588 generate debug info and have a parallel type. */
589 if (name && TREE_CODE (name) == TYPE_DECL)
590 name = DECL_NAME (name);
591 TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type);
593 /* Globally initialize the record first. If this is a rep'ed record,
594 that just means some initializations; otherwise, layout the record. */
597 TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));
598 SET_TYPE_MODE (record_type, BLKmode);
601 TYPE_SIZE_UNIT (record_type) = size_zero_node;
603 TYPE_SIZE (record_type) = bitsize_zero_node;
605 /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
606 out just like a UNION_TYPE, since the size will be fixed. */
607 else if (code == QUAL_UNION_TYPE)
612 /* Ensure there isn't a size already set. There can be in an error
613 case where there is a rep clause but all fields have errors and
614 no longer have a position. */
615 TYPE_SIZE (record_type) = 0;
616 layout_type (record_type);
619 /* At this point, the position and size of each field is known. It was
620 either set before entry by a rep clause, or by laying out the type above.
622 We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
623 to compute the Ada size; the GCC size and alignment (for rep'ed records
624 that are not padding types); and the mode (for rep'ed records). We also
625 clear the DECL_BIT_FIELD indication for the cases we know have not been
626 handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
628 if (code == QUAL_UNION_TYPE)
629 field_list = nreverse (field_list);
631 for (field = field_list; field; field = TREE_CHAIN (field))
633 tree type = TREE_TYPE (field);
634 tree pos = bit_position (field);
635 tree this_size = DECL_SIZE (field);
638 if ((TREE_CODE (type) == RECORD_TYPE
639 || TREE_CODE (type) == UNION_TYPE
640 || TREE_CODE (type) == QUAL_UNION_TYPE)
641 && !TYPE_FAT_POINTER_P (type)
642 && !TYPE_CONTAINS_TEMPLATE_P (type)
643 && TYPE_ADA_SIZE (type))
644 this_ada_size = TYPE_ADA_SIZE (type);
646 this_ada_size = this_size;
648 /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
649 if (DECL_BIT_FIELD (field)
650 && operand_equal_p (this_size, TYPE_SIZE (type), 0))
652 unsigned int align = TYPE_ALIGN (type);
654 /* In the general case, type alignment is required. */
655 if (value_factor_p (pos, align))
657 /* The enclosing record type must be sufficiently aligned.
658 Otherwise, if no alignment was specified for it and it
659 has been laid out already, bump its alignment to the
660 desired one if this is compatible with its size. */
661 if (TYPE_ALIGN (record_type) >= align)
663 DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
664 DECL_BIT_FIELD (field) = 0;
668 && value_factor_p (TYPE_SIZE (record_type), align))
670 TYPE_ALIGN (record_type) = align;
671 DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
672 DECL_BIT_FIELD (field) = 0;
676 /* In the non-strict alignment case, only byte alignment is. */
677 if (!STRICT_ALIGNMENT
678 && DECL_BIT_FIELD (field)
679 && value_factor_p (pos, BITS_PER_UNIT))
680 DECL_BIT_FIELD (field) = 0;
683 /* If we still have DECL_BIT_FIELD set at this point, we know that the
684 field is technically not addressable. Except that it can actually
685 be addressed if it is BLKmode and happens to be properly aligned. */
686 if (DECL_BIT_FIELD (field)
687 && !(DECL_MODE (field) == BLKmode
688 && value_factor_p (pos, BITS_PER_UNIT)))
689 DECL_NONADDRESSABLE_P (field) = 1;
691 /* A type must be as aligned as its most aligned field that is not
692 a bit-field. But this is already enforced by layout_type. */
693 if (rep_level > 0 && !DECL_BIT_FIELD (field))
694 TYPE_ALIGN (record_type)
695 = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));
700 ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
701 size = size_binop (MAX_EXPR, size, this_size);
704 case QUAL_UNION_TYPE:
706 = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
707 this_ada_size, ada_size);
708 size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
713 /* Since we know here that all fields are sorted in order of
714 increasing bit position, the size of the record is one
715 higher than the ending bit of the last field processed
716 unless we have a rep clause, since in that case we might
717 have a field outside a QUAL_UNION_TYPE that has a higher ending
718 position. So use a MAX in that case. Also, if this field is a
719 QUAL_UNION_TYPE, we need to take into account the previous size in
720 the case of empty variants. */
722 = merge_sizes (ada_size, pos, this_ada_size,
723 TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
725 = merge_sizes (size, pos, this_size,
726 TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
734 if (code == QUAL_UNION_TYPE)
735 nreverse (field_list);
739 /* If this is a padding record, we never want to make the size smaller
740 than what was specified in it, if any. */
741 if (TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
742 size = TYPE_SIZE (record_type);
744 /* Now set any of the values we've just computed that apply. */
745 if (!TYPE_FAT_POINTER_P (record_type)
746 && !TYPE_CONTAINS_TEMPLATE_P (record_type))
747 SET_TYPE_ADA_SIZE (record_type, ada_size);
751 tree size_unit = had_size_unit
752 ? TYPE_SIZE_UNIT (record_type)
754 size_binop (CEIL_DIV_EXPR, size,
756 unsigned int align = TYPE_ALIGN (record_type);
758 TYPE_SIZE (record_type) = variable_size (round_up (size, align));
759 TYPE_SIZE_UNIT (record_type)
760 = variable_size (round_up (size_unit, align / BITS_PER_UNIT));
762 compute_record_mode (record_type);
767 rest_of_record_type_compilation (record_type);
770 /* Wrap up compilation of RECORD_TYPE, i.e. output all the debug information
771 associated with it. It need not be invoked directly in most cases since
772 finish_record_type takes care of doing so, but this can be necessary if
773 a parallel type is to be attached to the record type. */
776 rest_of_record_type_compilation (tree record_type)
778 tree field_list = TYPE_FIELDS (record_type);
780 enum tree_code code = TREE_CODE (record_type);
781 bool var_size = false;
783 for (field = field_list; field; field = TREE_CHAIN (field))
785 /* We need to make an XVE/XVU record if any field has variable size,
786 whether or not the record does. For example, if we have a union,
787 it may be that all fields, rounded up to the alignment, have the
788 same size, in which case we'll use that size. But the debug
789 output routines (except Dwarf2) won't be able to output the fields,
790 so we need to make the special record. */
791 if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
792 /* If a field has a non-constant qualifier, the record will have
793 variable size too. */
794 || (code == QUAL_UNION_TYPE
795 && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
802 /* If this record is of variable size, rename it so that the
803 debugger knows it is and make a new, parallel, record
804 that tells the debugger how the record is laid out. See
805 exp_dbug.ads. But don't do this for records that are padding
806 since they confuse GDB. */
807 if (var_size && !TYPE_IS_PADDING_P (record_type))
810 = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
811 ? UNION_TYPE : TREE_CODE (record_type));
812 tree orig_name = TYPE_NAME (record_type), new_name;
813 tree last_pos = bitsize_zero_node;
814 tree old_field, prev_old_field = NULL_TREE;
816 if (TREE_CODE (orig_name) == TYPE_DECL)
817 orig_name = DECL_NAME (orig_name);
820 = concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE
822 TYPE_NAME (new_record_type) = new_name;
823 TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
824 TYPE_STUB_DECL (new_record_type)
825 = create_type_stub_decl (new_name, new_record_type);
826 DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
827 = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
828 TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
829 TYPE_SIZE_UNIT (new_record_type)
830 = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
832 add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type);
834 /* Now scan all the fields, replacing each field with a new
835 field corresponding to the new encoding. */
836 for (old_field = TYPE_FIELDS (record_type); old_field;
837 old_field = TREE_CHAIN (old_field))
839 tree field_type = TREE_TYPE (old_field);
840 tree field_name = DECL_NAME (old_field);
842 tree curpos = bit_position (old_field);
844 unsigned int align = 0;
847 /* See how the position was modified from the last position.
849 There are two basic cases we support: a value was added
850 to the last position or the last position was rounded to
851 a boundary and they something was added. Check for the
852 first case first. If not, see if there is any evidence
853 of rounding. If so, round the last position and try
856 If this is a union, the position can be taken as zero. */
858 /* Some computations depend on the shape of the position expression,
859 so strip conversions to make sure it's exposed. */
860 curpos = remove_conversions (curpos, true);
862 if (TREE_CODE (new_record_type) == UNION_TYPE)
863 pos = bitsize_zero_node, align = 0;
865 pos = compute_related_constant (curpos, last_pos);
867 if (!pos && TREE_CODE (curpos) == MULT_EXPR
868 && host_integerp (TREE_OPERAND (curpos, 1), 1))
870 tree offset = TREE_OPERAND (curpos, 0);
871 align = tree_low_cst (TREE_OPERAND (curpos, 1), 1);
873 /* An offset which is a bitwise AND with a negative power of 2
874 means an alignment corresponding to this power of 2. */
875 offset = remove_conversions (offset, true);
876 if (TREE_CODE (offset) == BIT_AND_EXPR
877 && host_integerp (TREE_OPERAND (offset, 1), 0)
878 && tree_int_cst_sgn (TREE_OPERAND (offset, 1)) < 0)
881 = - tree_low_cst (TREE_OPERAND (offset, 1), 0);
882 if (exact_log2 (pow) > 0)
886 pos = compute_related_constant (curpos,
887 round_up (last_pos, align));
889 else if (!pos && TREE_CODE (curpos) == PLUS_EXPR
890 && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST
891 && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
892 && host_integerp (TREE_OPERAND
893 (TREE_OPERAND (curpos, 0), 1),
898 (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1);
899 pos = compute_related_constant (curpos,
900 round_up (last_pos, align));
902 else if (potential_alignment_gap (prev_old_field, old_field,
905 align = TYPE_ALIGN (field_type);
906 pos = compute_related_constant (curpos,
907 round_up (last_pos, align));
910 /* If we can't compute a position, set it to zero.
912 ??? We really should abort here, but it's too much work
913 to get this correct for all cases. */
916 pos = bitsize_zero_node;
918 /* See if this type is variable-sized and make a pointer type
919 and indicate the indirection if so. Beware that the debug
920 back-end may adjust the position computed above according
921 to the alignment of the field type, i.e. the pointer type
922 in this case, if we don't preventively counter that. */
923 if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
925 field_type = build_pointer_type (field_type);
926 if (align != 0 && TYPE_ALIGN (field_type) > align)
928 field_type = copy_node (field_type);
929 TYPE_ALIGN (field_type) = align;
934 /* Make a new field name, if necessary. */
935 if (var || align != 0)
940 sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
941 align / BITS_PER_UNIT);
943 strcpy (suffix, "XVL");
945 field_name = concat_name (field_name, suffix);
948 new_field = create_field_decl (field_name, field_type,
950 DECL_SIZE (old_field), pos, 0);
951 TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
952 TYPE_FIELDS (new_record_type) = new_field;
954 /* If old_field is a QUAL_UNION_TYPE, take its size as being
955 zero. The only time it's not the last field of the record
956 is when there are other components at fixed positions after
957 it (meaning there was a rep clause for every field) and we
958 want to be able to encode them. */
959 last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
960 (TREE_CODE (TREE_TYPE (old_field))
963 : DECL_SIZE (old_field));
964 prev_old_field = old_field;
967 TYPE_FIELDS (new_record_type)
968 = nreverse (TYPE_FIELDS (new_record_type));
970 rest_of_type_decl_compilation (TYPE_STUB_DECL (new_record_type));
973 rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type));
976 /* Append PARALLEL_TYPE on the chain of parallel types for decl. */
979 add_parallel_type (tree decl, tree parallel_type)
983 while (DECL_PARALLEL_TYPE (d))
984 d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d));
986 SET_DECL_PARALLEL_TYPE (d, parallel_type);
989 /* Return the parallel type associated to a type, if any. */
992 get_parallel_type (tree type)
994 if (TYPE_STUB_DECL (type))
995 return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
1000 /* Utility function of above to merge LAST_SIZE, the previous size of a record
1001 with FIRST_BIT and SIZE that describe a field. SPECIAL is true if this
1002 represents a QUAL_UNION_TYPE in which case we must look for COND_EXPRs and
1003 replace a value of zero with the old size. If HAS_REP is true, we take the
1004 MAX of the end position of this field with LAST_SIZE. In all other cases,
1005 we use FIRST_BIT plus SIZE. Return an expression for the size. */
1008 merge_sizes (tree last_size, tree first_bit, tree size, bool special,
1011 tree type = TREE_TYPE (last_size);
1014 if (!special || TREE_CODE (size) != COND_EXPR)
1016 new_size = size_binop (PLUS_EXPR, first_bit, size);
1018 new_size = size_binop (MAX_EXPR, last_size, new_size);
1022 new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
1023 integer_zerop (TREE_OPERAND (size, 1))
1024 ? last_size : merge_sizes (last_size, first_bit,
1025 TREE_OPERAND (size, 1),
1027 integer_zerop (TREE_OPERAND (size, 2))
1028 ? last_size : merge_sizes (last_size, first_bit,
1029 TREE_OPERAND (size, 2),
1032 /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
1033 when fed through substitute_in_expr) into thinking that a constant
1034 size is not constant. */
1035 while (TREE_CODE (new_size) == NON_LVALUE_EXPR)
1036 new_size = TREE_OPERAND (new_size, 0);
1041 /* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
1042 related by the addition of a constant. Return that constant if so. */
1045 compute_related_constant (tree op0, tree op1)
1047 tree op0_var, op1_var;
1048 tree op0_con = split_plus (op0, &op0_var);
1049 tree op1_con = split_plus (op1, &op1_var);
1050 tree result = size_binop (MINUS_EXPR, op0_con, op1_con);
1052 if (operand_equal_p (op0_var, op1_var, 0))
1054 else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
1060 /* Utility function of above to split a tree OP which may be a sum, into a
1061 constant part, which is returned, and a variable part, which is stored
1062 in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
1066 split_plus (tree in, tree *pvar)
1068 /* Strip NOPS in order to ease the tree traversal and maximize the
1069 potential for constant or plus/minus discovery. We need to be careful
1070 to always return and set *pvar to bitsizetype trees, but it's worth
1074 *pvar = convert (bitsizetype, in);
1076 if (TREE_CODE (in) == INTEGER_CST)
1078 *pvar = bitsize_zero_node;
1079 return convert (bitsizetype, in);
1081 else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
1083 tree lhs_var, rhs_var;
1084 tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
1085 tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
1087 if (lhs_var == TREE_OPERAND (in, 0)
1088 && rhs_var == TREE_OPERAND (in, 1))
1089 return bitsize_zero_node;
1091 *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
1092 return size_binop (TREE_CODE (in), lhs_con, rhs_con);
1095 return bitsize_zero_node;
1098 /* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the
1099 subprogram. If it is void_type_node, then we are dealing with a procedure,
1100 otherwise we are dealing with a function. PARAM_DECL_LIST is a list of
1101 PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the
1102 copy-in/copy-out list to be stored into TYPE_CICO_LIST.
1103 RETURNS_UNCONSTRAINED is true if the function returns an unconstrained
1104 object. RETURNS_BY_REF is true if the function returns by reference.
1105 RETURNS_BY_TARGET_PTR is true if the function is to be passed (as its
1106 first parameter) the address of the place to copy its result. */
1109 create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
1110 bool returns_unconstrained, bool returns_by_ref,
1111 bool returns_by_target_ptr)
1113 /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of
1114 the subprogram formal parameters. This list is generated by traversing the
1115 input list of PARM_DECL nodes. */
1116 tree param_type_list = NULL;
1120 for (param_decl = param_decl_list; param_decl;
1121 param_decl = TREE_CHAIN (param_decl))
1122 param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl),
1125 /* The list of the function parameter types has to be terminated by the void
1126 type to signal to the back-end that we are not dealing with a variable
1127 parameter subprogram, but that the subprogram has a fixed number of
1129 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
1131 /* The list of argument types has been created in reverse
1133 param_type_list = nreverse (param_type_list);
1135 type = build_function_type (return_type, param_type_list);
1137 /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST
1138 or the new type should, make a copy of TYPE. Likewise for
1139 RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */
1140 if (TYPE_CI_CO_LIST (type) || cico_list
1141 || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained
1142 || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref
1143 || TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr)
1144 type = copy_type (type);
1146 TYPE_CI_CO_LIST (type) = cico_list;
1147 TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained;
1148 TYPE_RETURNS_BY_REF_P (type) = returns_by_ref;
1149 TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr;
1153 /* Return a copy of TYPE but safe to modify in any way. */
1156 copy_type (tree type)
1158 tree new_type = copy_node (type);
1160 /* Unshare the language-specific data. */
1161 if (TYPE_LANG_SPECIFIC (type))
1163 TYPE_LANG_SPECIFIC (new_type) = NULL;
1164 SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type));
1167 /* And the contents of the language-specific slot if needed. */
1168 if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE)
1169 && TYPE_RM_VALUES (type))
1171 TYPE_RM_VALUES (new_type) = NULL_TREE;
1172 SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type));
1173 SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type));
1174 SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type));
1177 /* copy_node clears this field instead of copying it, because it is
1178 aliased with TREE_CHAIN. */
1179 TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type);
1181 TYPE_POINTER_TO (new_type) = 0;
1182 TYPE_REFERENCE_TO (new_type) = 0;
1183 TYPE_MAIN_VARIANT (new_type) = new_type;
1184 TYPE_NEXT_VARIANT (new_type) = 0;
1189 /* Return a subtype of sizetype with range MIN to MAX and whose
1190 TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position
1191 of the associated TYPE_DECL. */
1194 create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
1196 /* First build a type for the desired range. */
1197 tree type = build_index_2_type (min, max);
1199 /* If this type has the TYPE_INDEX_TYPE we want, return it. */
1200 if (TYPE_INDEX_TYPE (type) == index)
1203 /* Otherwise, if TYPE_INDEX_TYPE is set, make a copy. Note that we have
1204 no way of sharing these types, but that's only a small hole. */
1205 if (TYPE_INDEX_TYPE (type))
1206 type = copy_type (type);
1208 SET_TYPE_INDEX_TYPE (type, index);
1209 create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node);
1214 /* Return a subtype of TYPE with range MIN to MAX. If TYPE is NULL,
1215 sizetype is used. */
1218 create_range_type (tree type, tree min, tree max)
1222 if (type == NULL_TREE)
1225 /* First build a type with the base range. */
1227 = build_range_type (type, TYPE_MIN_VALUE (type), TYPE_MAX_VALUE (type));
1229 min = convert (type, min);
1230 max = convert (type, max);
1232 /* If this type has the TYPE_RM_{MIN,MAX}_VALUE we want, return it. */
1233 if (TYPE_RM_MIN_VALUE (range_type)
1234 && TYPE_RM_MAX_VALUE (range_type)
1235 && operand_equal_p (TYPE_RM_MIN_VALUE (range_type), min, 0)
1236 && operand_equal_p (TYPE_RM_MAX_VALUE (range_type), max, 0))
1239 /* Otherwise, if TYPE_RM_{MIN,MAX}_VALUE is set, make a copy. */
1240 if (TYPE_RM_MIN_VALUE (range_type) || TYPE_RM_MAX_VALUE (range_type))
1241 range_type = copy_type (range_type);
1243 /* Then set the actual range. */
1244 SET_TYPE_RM_MIN_VALUE (range_type, min);
1245 SET_TYPE_RM_MAX_VALUE (range_type, max);
1250 /* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of a type.
1251 TYPE_NAME gives the name of the type and TYPE is a ..._TYPE node giving
1255 create_type_stub_decl (tree type_name, tree type)
1257 /* Using a named TYPE_DECL ensures that a type name marker is emitted in
1258 STABS while setting DECL_ARTIFICIAL ensures that no DW_TAG_typedef is
1259 emitted in DWARF. */
1260 tree type_decl = build_decl (input_location,
1261 TYPE_DECL, type_name, type);
1262 DECL_ARTIFICIAL (type_decl) = 1;
1266 /* Return a TYPE_DECL node. TYPE_NAME gives the name of the type and TYPE
1267 is a ..._TYPE node giving its data type. ARTIFICIAL_P is true if this
1268 is a declaration that was generated by the compiler. DEBUG_INFO_P is
1269 true if we need to write debug information about this type. GNAT_NODE
1270 is used for the position of the decl. */
1273 create_type_decl (tree type_name, tree type, struct attrib *attr_list,
1274 bool artificial_p, bool debug_info_p, Node_Id gnat_node)
1276 enum tree_code code = TREE_CODE (type);
1277 bool named = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL;
1280 /* Only the builtin TYPE_STUB_DECL should be used for dummy types. */
1281 gcc_assert (!TYPE_IS_DUMMY_P (type));
1283 /* If the type hasn't been named yet, we're naming it; preserve an existing
1284 TYPE_STUB_DECL that has been attached to it for some purpose. */
1285 if (!named && TYPE_STUB_DECL (type))
1287 type_decl = TYPE_STUB_DECL (type);
1288 DECL_NAME (type_decl) = type_name;
1291 type_decl = build_decl (input_location,
1292 TYPE_DECL, type_name, type);
1294 DECL_ARTIFICIAL (type_decl) = artificial_p;
1295 gnat_pushdecl (type_decl, gnat_node);
1296 process_attributes (type_decl, attr_list);
1298 /* If we're naming the type, equate the TYPE_STUB_DECL to the name.
1299 This causes the name to be also viewed as a "tag" by the debug
1300 back-end, with the advantage that no DW_TAG_typedef is emitted
1301 for artificial "tagged" types in DWARF. */
1303 TYPE_STUB_DECL (type) = type_decl;
1305 /* Pass the type declaration to the debug back-end unless this is an
1306 UNCONSTRAINED_ARRAY_TYPE that the back-end does not support, or a
1307 type for which debugging information was not requested, or else an
1308 ENUMERAL_TYPE or RECORD_TYPE (except for fat pointers) which are
1309 handled separately. And do not pass dummy types either. */
1310 if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
1311 DECL_IGNORED_P (type_decl) = 1;
1312 else if (code != ENUMERAL_TYPE
1313 && (code != RECORD_TYPE || TYPE_FAT_POINTER_P (type))
1314 && !((code == POINTER_TYPE || code == REFERENCE_TYPE)
1315 && TYPE_IS_DUMMY_P (TREE_TYPE (type)))
1316 && !(code == RECORD_TYPE
1318 (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))))))
1319 rest_of_type_decl_compilation (type_decl);
1324 /* Return a VAR_DECL or CONST_DECL node.
1326 VAR_NAME gives the name of the variable. ASM_NAME is its assembler name
1327 (if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is
1328 the GCC tree for an optional initial expression; NULL_TREE if none.
1330 CONST_FLAG is true if this variable is constant, in which case we might
1331 return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
1333 PUBLIC_FLAG is true if this is for a reference to a public entity or for a
1334 definition to be made visible outside of the current compilation unit, for
1335 instance variable definitions in a package specification.
1337 EXTERN_FLAG is true when processing an external variable declaration (as
1338 opposed to a definition: no storage is to be allocated for the variable).
1340 STATIC_FLAG is only relevant when not at top level. In that case
1341 it indicates whether to always allocate storage to the variable.
1343 GNAT_NODE is used for the position of the decl. */
1346 create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init,
1347 bool const_flag, bool public_flag, bool extern_flag,
1348 bool static_flag, bool const_decl_allowed_p,
1349 struct attrib *attr_list, Node_Id gnat_node)
1353 && gnat_types_compatible_p (type, TREE_TYPE (var_init))
1354 && (global_bindings_p () || static_flag
1355 ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0
1356 : TREE_CONSTANT (var_init)));
1358 /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
1359 case the initializer may be used in-lieu of the DECL node (as done in
1360 Identifier_to_gnu). This is useful to prevent the need of elaboration
1361 code when an identifier for which such a decl is made is in turn used as
1362 an initializer. We used to rely on CONST vs VAR_DECL for this purpose,
1363 but extra constraints apply to this choice (see below) and are not
1364 relevant to the distinction we wish to make. */
1365 bool constant_p = const_flag && init_const;
1367 /* The actual DECL node. CONST_DECL was initially intended for enumerals
1368 and may be used for scalars in general but not for aggregates. */
1370 = build_decl (input_location,
1371 (constant_p && const_decl_allowed_p
1372 && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL,
1375 /* If this is external, throw away any initializations (they will be done
1376 elsewhere) unless this is a constant for which we would like to remain
1377 able to get the initializer. If we are defining a global here, leave a
1378 constant initialization and save any variable elaborations for the
1379 elaboration routine. If we are just annotating types, throw away the
1380 initialization if it isn't a constant. */
1381 if ((extern_flag && !constant_p)
1382 || (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
1383 var_init = NULL_TREE;
1385 /* At the global level, an initializer requiring code to be generated
1386 produces elaboration statements. Check that such statements are allowed,
1387 that is, not violating a No_Elaboration_Code restriction. */
1388 if (global_bindings_p () && var_init != 0 && !init_const)
1389 Check_Elaboration_Code_Allowed (gnat_node);
1391 DECL_INITIAL (var_decl) = var_init;
1392 TREE_READONLY (var_decl) = const_flag;
1393 DECL_EXTERNAL (var_decl) = extern_flag;
1394 TREE_PUBLIC (var_decl) = public_flag || extern_flag;
1395 TREE_CONSTANT (var_decl) = constant_p;
1396 TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl)
1397 = TYPE_VOLATILE (type);
1399 /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
1400 try to fiddle with DECL_COMMON. However, on platforms that don't
1401 support global BSS sections, uninitialized global variables would
1402 go in DATA instead, thus increasing the size of the executable. */
1404 && TREE_CODE (var_decl) == VAR_DECL
1405 && TREE_PUBLIC (var_decl)
1406 && !have_global_bss_p ())
1407 DECL_COMMON (var_decl) = 1;
1409 /* If it's public and not external, always allocate storage for it.
1410 At the global binding level we need to allocate static storage for the
1411 variable if and only if it's not external. If we are not at the top level
1412 we allocate automatic storage unless requested not to. */
1413 TREE_STATIC (var_decl)
1414 = !extern_flag && (public_flag || static_flag || global_bindings_p ());
1416 /* For an external constant whose initializer is not absolute, do not emit
1417 debug info. In DWARF this would mean a global relocation in a read-only
1418 section which runs afoul of the PE-COFF runtime relocation mechanism. */
1421 && initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
1422 != null_pointer_node)
1423 DECL_IGNORED_P (var_decl) = 1;
1425 if (TREE_CODE (var_decl) == VAR_DECL)
1428 SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
1429 process_attributes (var_decl, attr_list);
1432 /* Add this decl to the current binding level. */
1433 gnat_pushdecl (var_decl, gnat_node);
1435 if (TREE_SIDE_EFFECTS (var_decl))
1436 TREE_ADDRESSABLE (var_decl) = 1;
1438 if (TREE_CODE (var_decl) != CONST_DECL)
1440 if (global_bindings_p ())
1441 rest_of_decl_compilation (var_decl, true, 0);
1444 expand_decl (var_decl);
1449 /* Return true if TYPE, an aggregate type, contains (or is) an array. */
1452 aggregate_type_contains_array_p (tree type)
1454 switch (TREE_CODE (type))
1458 case QUAL_UNION_TYPE:
1461 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1462 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1463 && aggregate_type_contains_array_p (TREE_TYPE (field)))
1476 /* Return a FIELD_DECL node. FIELD_NAME is the field's name, FIELD_TYPE is
1477 its type and RECORD_TYPE is the type of the enclosing record. PACKED is
1478 1 if the enclosing record is packed, -1 if it has Component_Alignment of
1479 Storage_Unit. If SIZE is nonzero, it is the specified size of the field.
1480 If POS is nonzero, it is the bit position. If ADDRESSABLE is nonzero, it
1481 means we are allowed to take the address of the field; if it is negative,
1482 we should not make a bitfield, which is used by make_aligning_type. */
1485 create_field_decl (tree field_name, tree field_type, tree record_type,
1486 int packed, tree size, tree pos, int addressable)
1488 tree field_decl = build_decl (input_location,
1489 FIELD_DECL, field_name, field_type);
1491 DECL_CONTEXT (field_decl) = record_type;
1492 TREE_READONLY (field_decl) = TYPE_READONLY (field_type);
1494 /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
1495 byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
1496 Likewise for an aggregate without specified position that contains an
1497 array, because in this case slices of variable length of this array
1498 must be handled by GCC and variable-sized objects need to be aligned
1499 to at least a byte boundary. */
1500 if (packed && (TYPE_MODE (field_type) == BLKmode
1502 && AGGREGATE_TYPE_P (field_type)
1503 && aggregate_type_contains_array_p (field_type))))
1504 DECL_ALIGN (field_decl) = BITS_PER_UNIT;
1506 /* If a size is specified, use it. Otherwise, if the record type is packed
1507 compute a size to use, which may differ from the object's natural size.
1508 We always set a size in this case to trigger the checks for bitfield
1509 creation below, which is typically required when no position has been
1512 size = convert (bitsizetype, size);
1513 else if (packed == 1)
1515 size = rm_size (field_type);
1516 if (TYPE_MODE (field_type) == BLKmode)
1517 size = round_up (size, BITS_PER_UNIT);
1520 /* If we may, according to ADDRESSABLE, make a bitfield if a size is
1521 specified for two reasons: first if the size differs from the natural
1522 size. Second, if the alignment is insufficient. There are a number of
1523 ways the latter can be true.
1525 We never make a bitfield if the type of the field has a nonconstant size,
1526 because no such entity requiring bitfield operations should reach here.
1528 We do *preventively* make a bitfield when there might be the need for it
1529 but we don't have all the necessary information to decide, as is the case
1530 of a field with no specified position in a packed record.
1532 We also don't look at STRICT_ALIGNMENT here, and rely on later processing
1533 in layout_decl or finish_record_type to clear the bit_field indication if
1534 it is in fact not needed. */
1535 if (addressable >= 0
1537 && TREE_CODE (size) == INTEGER_CST
1538 && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
1539 && (!tree_int_cst_equal (size, TYPE_SIZE (field_type))
1540 || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
1542 || (TYPE_ALIGN (record_type) != 0
1543 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
1545 DECL_BIT_FIELD (field_decl) = 1;
1546 DECL_SIZE (field_decl) = size;
1547 if (!packed && !pos)
1549 if (TYPE_ALIGN (record_type) != 0
1550 && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))
1551 DECL_ALIGN (field_decl) = TYPE_ALIGN (record_type);
1553 DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
1557 DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
1559 /* Bump the alignment if need be, either for bitfield/packing purposes or
1560 to satisfy the type requirements if no such consideration applies. When
1561 we get the alignment from the type, indicate if this is from an explicit
1562 user request, which prevents stor-layout from lowering it later on. */
1564 unsigned int bit_align
1565 = (DECL_BIT_FIELD (field_decl) ? 1
1566 : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0);
1568 if (bit_align > DECL_ALIGN (field_decl))
1569 DECL_ALIGN (field_decl) = bit_align;
1570 else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl))
1572 DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
1573 DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type);
1579 /* We need to pass in the alignment the DECL is known to have.
1580 This is the lowest-order bit set in POS, but no more than
1581 the alignment of the record, if one is specified. Note
1582 that an alignment of 0 is taken as infinite. */
1583 unsigned int known_align;
1585 if (host_integerp (pos, 1))
1586 known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1);
1588 known_align = BITS_PER_UNIT;
1590 if (TYPE_ALIGN (record_type)
1591 && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
1592 known_align = TYPE_ALIGN (record_type);
1594 layout_decl (field_decl, known_align);
1595 SET_DECL_OFFSET_ALIGN (field_decl,
1596 host_integerp (pos, 1) ? BIGGEST_ALIGNMENT
1598 pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
1599 &DECL_FIELD_BIT_OFFSET (field_decl),
1600 DECL_OFFSET_ALIGN (field_decl), pos);
1603 /* In addition to what our caller says, claim the field is addressable if we
1604 know that its type is not suitable.
1606 The field may also be "technically" nonaddressable, meaning that even if
1607 we attempt to take the field's address we will actually get the address
1608 of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
1609 value we have at this point is not accurate enough, so we don't account
1610 for this here and let finish_record_type decide. */
1611 if (!addressable && !type_for_nonaliased_component_p (field_type))
1614 DECL_NONADDRESSABLE_P (field_decl) = !addressable;
1619 /* Return a PARM_DECL node. PARAM_NAME is the name of the parameter and
1620 PARAM_TYPE is its type. READONLY is true if the parameter is readonly
1621 (either an In parameter or an address of a pass-by-ref parameter). */
1624 create_param_decl (tree param_name, tree param_type, bool readonly)
1626 tree param_decl = build_decl (input_location,
1627 PARM_DECL, param_name, param_type);
1629 /* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so
1630 can lead to various ABI violations. */
1631 if (targetm.calls.promote_prototypes (NULL_TREE)
1632 && INTEGRAL_TYPE_P (param_type)
1633 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
1635 /* We have to be careful about biased types here. Make a subtype
1636 of integer_type_node with the proper biasing. */
1637 if (TREE_CODE (param_type) == INTEGER_TYPE
1638 && TYPE_BIASED_REPRESENTATION_P (param_type))
1641 = make_unsigned_type (TYPE_PRECISION (integer_type_node));
1642 TREE_TYPE (subtype) = integer_type_node;
1643 TYPE_BIASED_REPRESENTATION_P (subtype) = 1;
1644 SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (param_type));
1645 SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (param_type));
1646 param_type = subtype;
1649 param_type = integer_type_node;
1652 DECL_ARG_TYPE (param_decl) = param_type;
1653 TREE_READONLY (param_decl) = readonly;
1657 /* Given a DECL and ATTR_LIST, process the listed attributes. */
1660 process_attributes (tree decl, struct attrib *attr_list)
1662 for (; attr_list; attr_list = attr_list->next)
1663 switch (attr_list->type)
1665 case ATTR_MACHINE_ATTRIBUTE:
1666 decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args,
1668 ATTR_FLAG_TYPE_IN_PLACE);
1671 case ATTR_LINK_ALIAS:
1672 if (! DECL_EXTERNAL (decl))
1674 TREE_STATIC (decl) = 1;
1675 assemble_alias (decl, attr_list->name);
1679 case ATTR_WEAK_EXTERNAL:
1681 declare_weak (decl);
1683 post_error ("?weak declarations not supported on this target",
1684 attr_list->error_point);
1687 case ATTR_LINK_SECTION:
1688 if (targetm.have_named_sections)
1690 DECL_SECTION_NAME (decl)
1691 = build_string (IDENTIFIER_LENGTH (attr_list->name),
1692 IDENTIFIER_POINTER (attr_list->name));
1693 DECL_COMMON (decl) = 0;
1696 post_error ("?section attributes are not supported for this target",
1697 attr_list->error_point);
1700 case ATTR_LINK_CONSTRUCTOR:
1701 DECL_STATIC_CONSTRUCTOR (decl) = 1;
1702 TREE_USED (decl) = 1;
1705 case ATTR_LINK_DESTRUCTOR:
1706 DECL_STATIC_DESTRUCTOR (decl) = 1;
1707 TREE_USED (decl) = 1;
1710 case ATTR_THREAD_LOCAL_STORAGE:
1711 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
1712 DECL_COMMON (decl) = 0;
1717 /* Record DECL as a global renaming pointer. */
1720 record_global_renaming_pointer (tree decl)
1722 gcc_assert (DECL_RENAMED_OBJECT (decl));
1723 VEC_safe_push (tree, gc, global_renaming_pointers, decl);
1726 /* Invalidate the global renaming pointers. */
1729 invalidate_global_renaming_pointers (void)
1734 for (i = 0; VEC_iterate(tree, global_renaming_pointers, i, iter); i++)
1735 SET_DECL_RENAMED_OBJECT (iter, NULL_TREE);
1737 VEC_free (tree, gc, global_renaming_pointers);
1740 /* Return true if VALUE is a known to be a multiple of FACTOR, which must be
1744 value_factor_p (tree value, HOST_WIDE_INT factor)
1746 if (host_integerp (value, 1))
1747 return tree_low_cst (value, 1) % factor == 0;
1749 if (TREE_CODE (value) == MULT_EXPR)
1750 return (value_factor_p (TREE_OPERAND (value, 0), factor)
1751 || value_factor_p (TREE_OPERAND (value, 1), factor));
1756 /* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true
1757 unless we can prove these 2 fields are laid out in such a way that no gap
1758 exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
1759 is the distance in bits between the end of PREV_FIELD and the starting
1760 position of CURR_FIELD. It is ignored if null. */
1763 potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
1765 /* If this is the first field of the record, there cannot be any gap */
1769 /* If the previous field is a union type, then return False: The only
1770 time when such a field is not the last field of the record is when
1771 there are other components at fixed positions after it (meaning there
1772 was a rep clause for every field), in which case we don't want the
1773 alignment constraint to override them. */
1774 if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
1777 /* If the distance between the end of prev_field and the beginning of
1778 curr_field is constant, then there is a gap if the value of this
1779 constant is not null. */
1780 if (offset && host_integerp (offset, 1))
1781 return !integer_zerop (offset);
1783 /* If the size and position of the previous field are constant,
1784 then check the sum of this size and position. There will be a gap
1785 iff it is not multiple of the current field alignment. */
1786 if (host_integerp (DECL_SIZE (prev_field), 1)
1787 && host_integerp (bit_position (prev_field), 1))
1788 return ((tree_low_cst (bit_position (prev_field), 1)
1789 + tree_low_cst (DECL_SIZE (prev_field), 1))
1790 % DECL_ALIGN (curr_field) != 0);
1792 /* If both the position and size of the previous field are multiples
1793 of the current field alignment, there cannot be any gap. */
1794 if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
1795 && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
1798 /* Fallback, return that there may be a potential gap */
1802 /* Returns a LABEL_DECL node for LABEL_NAME. */
1805 create_label_decl (tree label_name)
1807 tree label_decl = build_decl (input_location,
1808 LABEL_DECL, label_name, void_type_node);
1810 DECL_CONTEXT (label_decl) = current_function_decl;
1811 DECL_MODE (label_decl) = VOIDmode;
1812 DECL_SOURCE_LOCATION (label_decl) = input_location;
1817 /* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram,
1818 ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
1819 node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
1820 PARM_DECL nodes chained through the TREE_CHAIN field).
1822 INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the
1823 appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */
1826 create_subprog_decl (tree subprog_name, tree asm_name,
1827 tree subprog_type, tree param_decl_list, bool inline_flag,
1828 bool public_flag, bool extern_flag,
1829 struct attrib *attr_list, Node_Id gnat_node)
1831 tree return_type = TREE_TYPE (subprog_type);
1832 tree subprog_decl = build_decl (input_location,
1833 FUNCTION_DECL, subprog_name, subprog_type);
1835 /* If this is a non-inline function nested inside an inlined external
1836 function, we cannot honor both requests without cloning the nested
1837 function in the current unit since it is private to the other unit.
1838 We could inline the nested function as well but it's probably better
1839 to err on the side of too little inlining. */
1841 && current_function_decl
1842 && DECL_DECLARED_INLINE_P (current_function_decl)
1843 && DECL_EXTERNAL (current_function_decl))
1844 DECL_DECLARED_INLINE_P (current_function_decl) = 0;
1846 DECL_EXTERNAL (subprog_decl) = extern_flag;
1847 TREE_PUBLIC (subprog_decl) = public_flag;
1848 TREE_STATIC (subprog_decl) = 1;
1849 TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
1850 TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
1851 TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);
1852 DECL_DECLARED_INLINE_P (subprog_decl) = inline_flag;
1853 DECL_ARGUMENTS (subprog_decl) = param_decl_list;
1854 DECL_RESULT (subprog_decl) = build_decl (input_location,
1855 RESULT_DECL, 0, return_type);
1856 DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1;
1857 DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1;
1859 /* TREE_ADDRESSABLE is set on the result type to request the use of the
1860 target by-reference return mechanism. This is not supported all the
1861 way down to RTL expansion with GCC 4, which ICEs on temporary creation
1862 attempts with such a type and expects DECL_BY_REFERENCE to be set on
1863 the RESULT_DECL instead - see gnat_genericize for more details. */
1864 if (TREE_ADDRESSABLE (TREE_TYPE (DECL_RESULT (subprog_decl))))
1866 tree result_decl = DECL_RESULT (subprog_decl);
1868 TREE_ADDRESSABLE (TREE_TYPE (result_decl)) = 0;
1869 DECL_BY_REFERENCE (result_decl) = 1;
1874 SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);
1876 /* The expand_main_function circuitry expects "main_identifier_node" to
1877 designate the DECL_NAME of the 'main' entry point, in turn expected
1878 to be declared as the "main" function literally by default. Ada
1879 program entry points are typically declared with a different name
1880 within the binder generated file, exported as 'main' to satisfy the
1881 system expectations. Force main_identifier_node in this case. */
1882 if (asm_name == main_identifier_node)
1883 DECL_NAME (subprog_decl) = main_identifier_node;
1886 process_attributes (subprog_decl, attr_list);
1888 /* Add this decl to the current binding level. */
1889 gnat_pushdecl (subprog_decl, gnat_node);
1891 /* Output the assembler code and/or RTL for the declaration. */
1892 rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
1894 return subprog_decl;
1897 /* Set up the framework for generating code for SUBPROG_DECL, a subprogram
1898 body. This routine needs to be invoked before processing the declarations
1899 appearing in the subprogram. */
1902 begin_subprog_body (tree subprog_decl)
1906 current_function_decl = subprog_decl;
1907 announce_function (subprog_decl);
1909 /* Enter a new binding level and show that all the parameters belong to
1912 for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
1913 param_decl = TREE_CHAIN (param_decl))
1914 DECL_CONTEXT (param_decl) = subprog_decl;
1916 make_decl_rtl (subprog_decl);
1918 /* We handle pending sizes via the elaboration of types, so we don't need to
1919 save them. This causes them to be marked as part of the outer function
1920 and then discarded. */
1921 get_pending_sizes ();
1925 /* Helper for the genericization callback. Return a dereference of VAL
1926 if it is of a reference type. */
1929 convert_from_reference (tree val)
1931 tree value_type, ref;
1933 if (TREE_CODE (TREE_TYPE (val)) != REFERENCE_TYPE)
1936 value_type = TREE_TYPE (TREE_TYPE (val));
1937 ref = build1 (INDIRECT_REF, value_type, val);
1939 /* See if what we reference is CONST or VOLATILE, which requires
1940 looking into array types to get to the component type. */
1942 while (TREE_CODE (value_type) == ARRAY_TYPE)
1943 value_type = TREE_TYPE (value_type);
1946 = (TYPE_QUALS (value_type) & TYPE_QUAL_CONST);
1947 TREE_THIS_VOLATILE (ref)
1948 = (TYPE_QUALS (value_type) & TYPE_QUAL_VOLATILE);
1950 TREE_SIDE_EFFECTS (ref)
1951 = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val));
1956 /* Helper for the genericization callback. Returns true if T denotes
1957 a RESULT_DECL with DECL_BY_REFERENCE set. */
1960 is_byref_result (tree t)
1962 return (TREE_CODE (t) == RESULT_DECL && DECL_BY_REFERENCE (t));
1966 /* Tree walking callback for gnat_genericize. Currently ...
1968 o Adjust references to the function's DECL_RESULT if it is marked
1969 DECL_BY_REFERENCE and so has had its type turned into a reference
1970 type at the end of the function compilation. */
1973 gnat_genericize_r (tree *stmt_p, int *walk_subtrees, void *data)
1975 /* This implementation is modeled after what the C++ front-end is
1976 doing, basis of the downstream passes behavior. */
1978 tree stmt = *stmt_p;
1979 struct pointer_set_t *p_set = (struct pointer_set_t*) data;
1981 /* If we have a direct mention of the result decl, dereference. */
1982 if (is_byref_result (stmt))
1984 *stmt_p = convert_from_reference (stmt);
1989 /* Otherwise, no need to walk the same tree twice. */
1990 if (pointer_set_contains (p_set, stmt))
1996 /* If we are taking the address of what now is a reference, just get the
1998 if (TREE_CODE (stmt) == ADDR_EXPR
1999 && is_byref_result (TREE_OPERAND (stmt, 0)))
2001 *stmt_p = convert (TREE_TYPE (stmt), TREE_OPERAND (stmt, 0));
2005 /* Don't dereference an by-reference RESULT_DECL inside a RETURN_EXPR. */
2006 else if (TREE_CODE (stmt) == RETURN_EXPR
2007 && TREE_OPERAND (stmt, 0)
2008 && is_byref_result (TREE_OPERAND (stmt, 0)))
2011 /* Don't look inside trees that cannot embed references of interest. */
2012 else if (IS_TYPE_OR_DECL_P (stmt))
2015 pointer_set_insert (p_set, *stmt_p);
2020 /* Perform lowering of Ada trees to GENERIC. In particular:
2022 o Turn a DECL_BY_REFERENCE RESULT_DECL into a real by-reference decl
2023 and adjust all the references to this decl accordingly. */
2026 gnat_genericize (tree fndecl)
2028 /* Prior to GCC 4, an explicit By_Reference result mechanism for a function
2029 was handled by simply setting TREE_ADDRESSABLE on the result type.
2030 Everything required to actually pass by invisible ref using the target
2031 mechanism (e.g. extra parameter) was handled at RTL expansion time.
2033 This doesn't work with GCC 4 any more for several reasons. First, the
2034 gimplification process might need the creation of temporaries of this
2035 type, and the gimplifier ICEs on such attempts. Second, the middle-end
2036 now relies on a different attribute for such cases (DECL_BY_REFERENCE on
2037 RESULT/PARM_DECLs), and expects the user invisible by-reference-ness to
2038 be explicitly accounted for by the front-end in the function body.
2040 We achieve the complete transformation in two steps:
2042 1/ create_subprog_decl performs early attribute tweaks: it clears
2043 TREE_ADDRESSABLE from the result type and sets DECL_BY_REFERENCE on
2044 the result decl. The former ensures that the bit isn't set in the GCC
2045 tree saved for the function, so prevents ICEs on temporary creation.
2046 The latter we use here to trigger the rest of the processing.
2048 2/ This function performs the type transformation on the result decl
2049 and adjusts all the references to this decl from the function body
2052 Clearing TREE_ADDRESSABLE from the type differs from the C++ front-end
2053 strategy, which escapes the gimplifier temporary creation issues by
2054 creating it's own temporaries using TARGET_EXPR nodes. Our way relies
2055 on simple specific support code in aggregate_value_p to look at the
2056 target function result decl explicitly. */
2058 struct pointer_set_t *p_set;
2059 tree decl_result = DECL_RESULT (fndecl);
2061 if (!DECL_BY_REFERENCE (decl_result))
2064 /* Make the DECL_RESULT explicitly by-reference and adjust all the
2065 occurrences in the function body using the common tree-walking facility.
2066 We want to see every occurrence of the result decl to adjust the
2067 referencing tree, so need to use our own pointer set to control which
2068 trees should be visited again or not. */
2070 p_set = pointer_set_create ();
2072 TREE_TYPE (decl_result) = build_reference_type (TREE_TYPE (decl_result));
2073 TREE_ADDRESSABLE (decl_result) = 0;
2074 relayout_decl (decl_result);
2076 walk_tree (&DECL_SAVED_TREE (fndecl), gnat_genericize_r, p_set, NULL);
2078 pointer_set_destroy (p_set);
2081 /* Finish the definition of the current subprogram BODY and finalize it. */
2084 end_subprog_body (tree body)
2086 tree fndecl = current_function_decl;
2088 /* Mark the BLOCK for this level as being for this function and pop the
2089 level. Since the vars in it are the parameters, clear them. */
2090 BLOCK_VARS (current_binding_level->block) = 0;
2091 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
2092 DECL_INITIAL (fndecl) = current_binding_level->block;
2095 /* We handle pending sizes via the elaboration of types, so we don't
2096 need to save them. */
2097 get_pending_sizes ();
2099 /* Mark the RESULT_DECL as being in this subprogram. */
2100 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
2102 DECL_SAVED_TREE (fndecl) = body;
2104 current_function_decl = DECL_CONTEXT (fndecl);
2107 /* We cannot track the location of errors past this point. */
2108 error_gnat_node = Empty;
2110 /* If we're only annotating types, don't actually compile this function. */
2111 if (type_annotate_only)
2114 /* Perform the required pre-gimplification transformations on the tree. */
2115 gnat_genericize (fndecl);
2117 /* Dump functions before gimplification. */
2118 dump_function (TDI_original, fndecl);
2120 /* ??? This special handling of nested functions is probably obsolete. */
2121 if (!DECL_CONTEXT (fndecl))
2122 cgraph_finalize_function (fndecl, false);
2124 /* Register this function with cgraph just far enough to get it
2125 added to our parent's nested function list. */
2126 (void) cgraph_node (fndecl);
2130 gnat_builtin_function (tree decl)
2132 gnat_pushdecl (decl, Empty);
2136 /* Return an integer type with the number of bits of precision given by
2137 PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
2138 it is a signed type. */
2141 gnat_type_for_size (unsigned precision, int unsignedp)
2146 if (precision <= 2 * MAX_BITS_PER_WORD
2147 && signed_and_unsigned_types[precision][unsignedp])
2148 return signed_and_unsigned_types[precision][unsignedp];
2151 t = make_unsigned_type (precision);
2153 t = make_signed_type (precision);
2155 if (precision <= 2 * MAX_BITS_PER_WORD)
2156 signed_and_unsigned_types[precision][unsignedp] = t;
2160 sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision);
2161 TYPE_NAME (t) = get_identifier (type_name);
2167 /* Likewise for floating-point types. */
2170 float_type_for_precision (int precision, enum machine_mode mode)
2175 if (float_types[(int) mode])
2176 return float_types[(int) mode];
2178 float_types[(int) mode] = t = make_node (REAL_TYPE);
2179 TYPE_PRECISION (t) = precision;
2182 gcc_assert (TYPE_MODE (t) == mode);
2185 sprintf (type_name, "FLOAT_%d", precision);
2186 TYPE_NAME (t) = get_identifier (type_name);
2192 /* Return a data type that has machine mode MODE. UNSIGNEDP selects
2193 an unsigned type; otherwise a signed type is returned. */
2196 gnat_type_for_mode (enum machine_mode mode, int unsignedp)
2198 if (mode == BLKmode)
2201 if (mode == VOIDmode)
2202 return void_type_node;
2204 if (COMPLEX_MODE_P (mode))
2207 if (SCALAR_FLOAT_MODE_P (mode))
2208 return float_type_for_precision (GET_MODE_PRECISION (mode), mode);
2210 if (SCALAR_INT_MODE_P (mode))
2211 return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
2213 if (VECTOR_MODE_P (mode))
2215 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2216 tree inner_type = gnat_type_for_mode (inner_mode, unsignedp);
2218 return build_vector_type_for_mode (inner_type, mode);
2224 /* Return the unsigned version of a TYPE_NODE, a scalar type. */
2227 gnat_unsigned_type (tree type_node)
2229 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);
2231 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
2233 type = copy_node (type);
2234 TREE_TYPE (type) = type_node;
2236 else if (TREE_TYPE (type_node)
2237 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
2238 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
2240 type = copy_node (type);
2241 TREE_TYPE (type) = TREE_TYPE (type_node);
2247 /* Return the signed version of a TYPE_NODE, a scalar type. */
2250 gnat_signed_type (tree type_node)
2252 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);
2254 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
2256 type = copy_node (type);
2257 TREE_TYPE (type) = type_node;
2259 else if (TREE_TYPE (type_node)
2260 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
2261 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
2263 type = copy_node (type);
2264 TREE_TYPE (type) = TREE_TYPE (type_node);
2270 /* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
2271 transparently converted to each other. */
2274 gnat_types_compatible_p (tree t1, tree t2)
2276 enum tree_code code;
2278 /* This is the default criterion. */
2279 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
2282 /* We only check structural equivalence here. */
2283 if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
2286 /* Vector types are also compatible if they have the same number of subparts
2287 and the same form of (scalar) element type. */
2288 if (code == VECTOR_TYPE
2289 && TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
2290 && TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
2291 && TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2)))
2294 /* Array types are also compatible if they are constrained and have
2295 the same component type and the same domain. */
2296 if (code == ARRAY_TYPE
2297 && TREE_TYPE (t1) == TREE_TYPE (t2)
2298 && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
2299 || (TYPE_DOMAIN (t1)
2301 && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
2302 TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
2303 && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
2304 TYPE_MAX_VALUE (TYPE_DOMAIN (t2))))))
2307 /* Padding record types are also compatible if they pad the same
2308 type and have the same constant size. */
2309 if (code == RECORD_TYPE
2310 && TYPE_PADDING_P (t1) && TYPE_PADDING_P (t2)
2311 && TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2))
2312 && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
2318 /* EXP is an expression for the size of an object. If this size contains
2319 discriminant references, replace them with the maximum (if MAX_P) or
2320 minimum (if !MAX_P) possible value of the discriminant. */
2323 max_size (tree exp, bool max_p)
2325 enum tree_code code = TREE_CODE (exp);
2326 tree type = TREE_TYPE (exp);
2328 switch (TREE_CODE_CLASS (code))
2330 case tcc_declaration:
2335 if (code == CALL_EXPR)
2340 t = maybe_inline_call_in_expr (exp);
2342 return max_size (t, max_p);
2344 n = call_expr_nargs (exp);
2346 argarray = (tree *) alloca (n * sizeof (tree));
2347 for (i = 0; i < n; i++)
2348 argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
2349 return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
2354 /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
2355 modify. Otherwise, we treat it like a variable. */
2356 if (!CONTAINS_PLACEHOLDER_P (exp))
2359 type = TREE_TYPE (TREE_OPERAND (exp, 1));
2361 max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true);
2363 case tcc_comparison:
2364 return max_p ? size_one_node : size_zero_node;
2368 case tcc_expression:
2369 switch (TREE_CODE_LENGTH (code))
2372 if (code == NON_LVALUE_EXPR)
2373 return max_size (TREE_OPERAND (exp, 0), max_p);
2376 fold_build1 (code, type,
2377 max_size (TREE_OPERAND (exp, 0),
2378 code == NEGATE_EXPR ? !max_p : max_p));
2381 if (code == COMPOUND_EXPR)
2382 return max_size (TREE_OPERAND (exp, 1), max_p);
2384 /* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which
2385 may provide a tighter bound on max_size. */
2386 if (code == MINUS_EXPR
2387 && TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR)
2389 tree lhs = fold_build2 (MINUS_EXPR, type,
2390 TREE_OPERAND (TREE_OPERAND (exp, 0), 1),
2391 TREE_OPERAND (exp, 1));
2392 tree rhs = fold_build2 (MINUS_EXPR, type,
2393 TREE_OPERAND (TREE_OPERAND (exp, 0), 2),
2394 TREE_OPERAND (exp, 1));
2395 return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
2396 max_size (lhs, max_p),
2397 max_size (rhs, max_p));
2401 tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
2402 tree rhs = max_size (TREE_OPERAND (exp, 1),
2403 code == MINUS_EXPR ? !max_p : max_p);
2405 /* Special-case wanting the maximum value of a MIN_EXPR.
2406 In that case, if one side overflows, return the other.
2407 sizetype is signed, but we know sizes are non-negative.
2408 Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
2409 overflowing or the maximum possible value and the RHS
2413 && TREE_CODE (rhs) == INTEGER_CST
2414 && TREE_OVERFLOW (rhs))
2418 && TREE_CODE (lhs) == INTEGER_CST
2419 && TREE_OVERFLOW (lhs))
2421 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
2422 && ((TREE_CODE (lhs) == INTEGER_CST
2423 && TREE_OVERFLOW (lhs))
2424 || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0))
2425 && !TREE_CONSTANT (rhs))
2428 return fold_build2 (code, type, lhs, rhs);
2432 if (code == SAVE_EXPR)
2434 else if (code == COND_EXPR)
2435 return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
2436 max_size (TREE_OPERAND (exp, 1), max_p),
2437 max_size (TREE_OPERAND (exp, 2), max_p));
2440 /* Other tree classes cannot happen. */
2448 /* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
2449 EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
2450 Return a constructor for the template. */
2453 build_template (tree template_type, tree array_type, tree expr)
2455 tree template_elts = NULL_TREE;
2456 tree bound_list = NULL_TREE;
2459 while (TREE_CODE (array_type) == RECORD_TYPE
2460 && (TYPE_PADDING_P (array_type)
2461 || TYPE_JUSTIFIED_MODULAR_P (array_type)))
2462 array_type = TREE_TYPE (TYPE_FIELDS (array_type));
2464 if (TREE_CODE (array_type) == ARRAY_TYPE
2465 || (TREE_CODE (array_type) == INTEGER_TYPE
2466 && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
2467 bound_list = TYPE_ACTUAL_BOUNDS (array_type);
2469 /* First make the list for a CONSTRUCTOR for the template. Go down the
2470 field list of the template instead of the type chain because this
2471 array might be an Ada array of arrays and we can't tell where the
2472 nested arrays stop being the underlying object. */
2474 for (field = TYPE_FIELDS (template_type); field;
2476 ? (bound_list = TREE_CHAIN (bound_list))
2477 : (array_type = TREE_TYPE (array_type))),
2478 field = TREE_CHAIN (TREE_CHAIN (field)))
2480 tree bounds, min, max;
2482 /* If we have a bound list, get the bounds from there. Likewise
2483 for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
2484 DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
2485 This will give us a maximum range. */
2487 bounds = TREE_VALUE (bound_list);
2488 else if (TREE_CODE (array_type) == ARRAY_TYPE)
2489 bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
2490 else if (expr && TREE_CODE (expr) == PARM_DECL
2491 && DECL_BY_COMPONENT_PTR_P (expr))
2492 bounds = TREE_TYPE (field);
2496 min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
2497 max = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MAX_VALUE (bounds));
2499 /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
2500 substitute it from OBJECT. */
2501 min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
2502 max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
2504 template_elts = tree_cons (TREE_CHAIN (field), max,
2505 tree_cons (field, min, template_elts));
2508 return gnat_build_constructor (template_type, nreverse (template_elts));
2511 /* Build a 32bit VMS descriptor from a Mechanism_Type, which must specify
2512 a descriptor type, and the GCC type of an object. Each FIELD_DECL
2513 in the type contains in its DECL_INITIAL the expression to use when
2514 a constructor is made for the type. GNAT_ENTITY is an entity used
2515 to print out an error message if the mechanism cannot be applied to
2516 an object of that type and also for the name. */
2519 build_vms_descriptor32 (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
2521 tree record_type = make_node (RECORD_TYPE);
2522 tree pointer32_type;
2523 tree field_list = 0;
2532 /* If TYPE is an unconstrained array, use the underlying array type. */
2533 if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
2534 type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
2536 /* If this is an array, compute the number of dimensions in the array,
2537 get the index types, and point to the inner type. */
2538 if (TREE_CODE (type) != ARRAY_TYPE)
2541 for (ndim = 1, inner_type = type;
2542 TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
2543 && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
2544 ndim++, inner_type = TREE_TYPE (inner_type))
2547 idx_arr = (tree *) alloca (ndim * sizeof (tree));
2549 if (mech != By_Descriptor_NCA && mech != By_Short_Descriptor_NCA
2550 && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
2551 for (i = ndim - 1, inner_type = type;
2553 i--, inner_type = TREE_TYPE (inner_type))
2554 idx_arr[i] = TYPE_DOMAIN (inner_type);
2556 for (i = 0, inner_type = type;
2558 i++, inner_type = TREE_TYPE (inner_type))
2559 idx_arr[i] = TYPE_DOMAIN (inner_type);
2561 /* Now get the DTYPE value. */
2562 switch (TREE_CODE (type))
2567 if (TYPE_VAX_FLOATING_POINT_P (type))
2568 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2581 switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
2584 dtype = TYPE_UNSIGNED (type) ? 2 : 6;
2587 dtype = TYPE_UNSIGNED (type) ? 3 : 7;
2590 dtype = TYPE_UNSIGNED (type) ? 4 : 8;
2593 dtype = TYPE_UNSIGNED (type) ? 5 : 9;
2596 dtype = TYPE_UNSIGNED (type) ? 25 : 26;
2602 dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
2606 if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
2607 && TYPE_VAX_FLOATING_POINT_P (type))
2608 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2620 dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
2631 /* Get the CLASS value. */
2634 case By_Descriptor_A:
2635 case By_Short_Descriptor_A:
2638 case By_Descriptor_NCA:
2639 case By_Short_Descriptor_NCA:
2642 case By_Descriptor_SB:
2643 case By_Short_Descriptor_SB:
2647 case By_Short_Descriptor:
2648 case By_Descriptor_S:
2649 case By_Short_Descriptor_S:
2655 /* Make the type for a descriptor for VMS. The first four fields
2656 are the same for all types. */
2659 = chainon (field_list,
2660 make_descriptor_field
2661 ("LENGTH", gnat_type_for_size (16, 1), record_type,
2662 size_in_bytes ((mech == By_Descriptor_A ||
2663 mech == By_Short_Descriptor_A)
2664 ? inner_type : type)));
2666 field_list = chainon (field_list,
2667 make_descriptor_field ("DTYPE",
2668 gnat_type_for_size (8, 1),
2669 record_type, size_int (dtype)));
2670 field_list = chainon (field_list,
2671 make_descriptor_field ("CLASS",
2672 gnat_type_for_size (8, 1),
2673 record_type, size_int (klass)));
2675 /* Of course this will crash at run-time if the address space is not
2676 within the low 32 bits, but there is nothing else we can do. */
2677 pointer32_type = build_pointer_type_for_mode (type, SImode, false);
2680 = chainon (field_list,
2681 make_descriptor_field
2682 ("POINTER", pointer32_type, record_type,
2683 build_unary_op (ADDR_EXPR,
2685 build0 (PLACEHOLDER_EXPR, type))));
2690 case By_Short_Descriptor:
2691 case By_Descriptor_S:
2692 case By_Short_Descriptor_S:
2695 case By_Descriptor_SB:
2696 case By_Short_Descriptor_SB:
2698 = chainon (field_list,
2699 make_descriptor_field
2700 ("SB_L1", gnat_type_for_size (32, 1), record_type,
2701 TREE_CODE (type) == ARRAY_TYPE
2702 ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
2704 = chainon (field_list,
2705 make_descriptor_field
2706 ("SB_U1", gnat_type_for_size (32, 1), record_type,
2707 TREE_CODE (type) == ARRAY_TYPE
2708 ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
2711 case By_Descriptor_A:
2712 case By_Short_Descriptor_A:
2713 case By_Descriptor_NCA:
2714 case By_Short_Descriptor_NCA:
2715 field_list = chainon (field_list,
2716 make_descriptor_field ("SCALE",
2717 gnat_type_for_size (8, 1),
2721 field_list = chainon (field_list,
2722 make_descriptor_field ("DIGITS",
2723 gnat_type_for_size (8, 1),
2728 = chainon (field_list,
2729 make_descriptor_field
2730 ("AFLAGS", gnat_type_for_size (8, 1), record_type,
2731 size_int ((mech == By_Descriptor_NCA ||
2732 mech == By_Short_Descriptor_NCA)
2734 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
2735 : (TREE_CODE (type) == ARRAY_TYPE
2736 && TYPE_CONVENTION_FORTRAN_P (type)
2739 field_list = chainon (field_list,
2740 make_descriptor_field ("DIMCT",
2741 gnat_type_for_size (8, 1),
2745 field_list = chainon (field_list,
2746 make_descriptor_field ("ARSIZE",
2747 gnat_type_for_size (32, 1),
2749 size_in_bytes (type)));
2751 /* Now build a pointer to the 0,0,0... element. */
2752 tem = build0 (PLACEHOLDER_EXPR, type);
2753 for (i = 0, inner_type = type; i < ndim;
2754 i++, inner_type = TREE_TYPE (inner_type))
2755 tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
2756 convert (TYPE_DOMAIN (inner_type), size_zero_node),
2757 NULL_TREE, NULL_TREE);
2760 = chainon (field_list,
2761 make_descriptor_field
2763 build_pointer_type_for_mode (inner_type, SImode, false),
2766 build_pointer_type_for_mode (inner_type, SImode,
2770 /* Next come the addressing coefficients. */
2771 tem = size_one_node;
2772 for (i = 0; i < ndim; i++)
2776 = size_binop (MULT_EXPR, tem,
2777 size_binop (PLUS_EXPR,
2778 size_binop (MINUS_EXPR,
2779 TYPE_MAX_VALUE (idx_arr[i]),
2780 TYPE_MIN_VALUE (idx_arr[i])),
2783 fname[0] = ((mech == By_Descriptor_NCA ||
2784 mech == By_Short_Descriptor_NCA) ? 'S' : 'M');
2785 fname[1] = '0' + i, fname[2] = 0;
2787 = chainon (field_list,
2788 make_descriptor_field (fname,
2789 gnat_type_for_size (32, 1),
2790 record_type, idx_length));
2792 if (mech == By_Descriptor_NCA || mech == By_Short_Descriptor_NCA)
2796 /* Finally here are the bounds. */
2797 for (i = 0; i < ndim; i++)
2801 fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
2803 = chainon (field_list,
2804 make_descriptor_field
2805 (fname, gnat_type_for_size (32, 1), record_type,
2806 TYPE_MIN_VALUE (idx_arr[i])));
2810 = chainon (field_list,
2811 make_descriptor_field
2812 (fname, gnat_type_for_size (32, 1), record_type,
2813 TYPE_MAX_VALUE (idx_arr[i])));
2818 post_error ("unsupported descriptor type for &", gnat_entity);
2821 TYPE_NAME (record_type) = create_concat_name (gnat_entity, "DESC");
2822 finish_record_type (record_type, field_list, 0, false);
2826 /* Build a 64bit VMS descriptor from a Mechanism_Type, which must specify
2827 a descriptor type, and the GCC type of an object. Each FIELD_DECL
2828 in the type contains in its DECL_INITIAL the expression to use when
2829 a constructor is made for the type. GNAT_ENTITY is an entity used
2830 to print out an error message if the mechanism cannot be applied to
2831 an object of that type and also for the name. */
2834 build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity)
2836 tree record64_type = make_node (RECORD_TYPE);
2837 tree pointer64_type;
2838 tree field_list64 = 0;
2847 /* If TYPE is an unconstrained array, use the underlying array type. */
2848 if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
2849 type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type))));
2851 /* If this is an array, compute the number of dimensions in the array,
2852 get the index types, and point to the inner type. */
2853 if (TREE_CODE (type) != ARRAY_TYPE)
2856 for (ndim = 1, inner_type = type;
2857 TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE
2858 && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type));
2859 ndim++, inner_type = TREE_TYPE (inner_type))
2862 idx_arr = (tree *) alloca (ndim * sizeof (tree));
2864 if (mech != By_Descriptor_NCA
2865 && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type))
2866 for (i = ndim - 1, inner_type = type;
2868 i--, inner_type = TREE_TYPE (inner_type))
2869 idx_arr[i] = TYPE_DOMAIN (inner_type);
2871 for (i = 0, inner_type = type;
2873 i++, inner_type = TREE_TYPE (inner_type))
2874 idx_arr[i] = TYPE_DOMAIN (inner_type);
2876 /* Now get the DTYPE value. */
2877 switch (TREE_CODE (type))
2882 if (TYPE_VAX_FLOATING_POINT_P (type))
2883 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2896 switch (GET_MODE_BITSIZE (TYPE_MODE (type)))
2899 dtype = TYPE_UNSIGNED (type) ? 2 : 6;
2902 dtype = TYPE_UNSIGNED (type) ? 3 : 7;
2905 dtype = TYPE_UNSIGNED (type) ? 4 : 8;
2908 dtype = TYPE_UNSIGNED (type) ? 5 : 9;
2911 dtype = TYPE_UNSIGNED (type) ? 25 : 26;
2917 dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53;
2921 if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
2922 && TYPE_VAX_FLOATING_POINT_P (type))
2923 switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1))
2935 dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55;
2946 /* Get the CLASS value. */
2949 case By_Descriptor_A:
2952 case By_Descriptor_NCA:
2955 case By_Descriptor_SB:
2959 case By_Descriptor_S:
2965 /* Make the type for a 64bit descriptor for VMS. The first six fields
2966 are the same for all types. */
2968 field_list64 = chainon (field_list64,
2969 make_descriptor_field ("MBO",
2970 gnat_type_for_size (16, 1),
2971 record64_type, size_int (1)));
2973 field_list64 = chainon (field_list64,
2974 make_descriptor_field ("DTYPE",
2975 gnat_type_for_size (8, 1),
2976 record64_type, size_int (dtype)));
2977 field_list64 = chainon (field_list64,
2978 make_descriptor_field ("CLASS",
2979 gnat_type_for_size (8, 1),
2980 record64_type, size_int (klass)));
2982 field_list64 = chainon (field_list64,
2983 make_descriptor_field ("MBMO",
2984 gnat_type_for_size (32, 1),
2985 record64_type, ssize_int (-1)));
2988 = chainon (field_list64,
2989 make_descriptor_field
2990 ("LENGTH", gnat_type_for_size (64, 1), record64_type,
2991 size_in_bytes (mech == By_Descriptor_A ? inner_type : type)));
2993 pointer64_type = build_pointer_type_for_mode (type, DImode, false);
2996 = chainon (field_list64,
2997 make_descriptor_field
2998 ("POINTER", pointer64_type, record64_type,
2999 build_unary_op (ADDR_EXPR,
3001 build0 (PLACEHOLDER_EXPR, type))));
3006 case By_Descriptor_S:
3009 case By_Descriptor_SB:
3011 = chainon (field_list64,
3012 make_descriptor_field
3013 ("SB_L1", gnat_type_for_size (64, 1), record64_type,
3014 TREE_CODE (type) == ARRAY_TYPE
3015 ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
3017 = chainon (field_list64,
3018 make_descriptor_field
3019 ("SB_U1", gnat_type_for_size (64, 1), record64_type,
3020 TREE_CODE (type) == ARRAY_TYPE
3021 ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node));
3024 case By_Descriptor_A:
3025 case By_Descriptor_NCA:
3026 field_list64 = chainon (field_list64,
3027 make_descriptor_field ("SCALE",
3028 gnat_type_for_size (8, 1),
3032 field_list64 = chainon (field_list64,
3033 make_descriptor_field ("DIGITS",
3034 gnat_type_for_size (8, 1),
3039 = chainon (field_list64,
3040 make_descriptor_field
3041 ("AFLAGS", gnat_type_for_size (8, 1), record64_type,
3042 size_int (mech == By_Descriptor_NCA
3044 /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */
3045 : (TREE_CODE (type) == ARRAY_TYPE
3046 && TYPE_CONVENTION_FORTRAN_P (type)
3049 field_list64 = chainon (field_list64,
3050 make_descriptor_field ("DIMCT",
3051 gnat_type_for_size (8, 1),
3055 field_list64 = chainon (field_list64,
3056 make_descriptor_field ("MBZ",
3057 gnat_type_for_size (32, 1),
3060 field_list64 = chainon (field_list64,
3061 make_descriptor_field ("ARSIZE",
3062 gnat_type_for_size (64, 1),
3064 size_in_bytes (type)));
3066 /* Now build a pointer to the 0,0,0... element. */
3067 tem = build0 (PLACEHOLDER_EXPR, type);
3068 for (i = 0, inner_type = type; i < ndim;
3069 i++, inner_type = TREE_TYPE (inner_type))
3070 tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem,
3071 convert (TYPE_DOMAIN (inner_type), size_zero_node),
3072 NULL_TREE, NULL_TREE);
3075 = chainon (field_list64,
3076 make_descriptor_field
3078 build_pointer_type_for_mode (inner_type, DImode, false),
3081 build_pointer_type_for_mode (inner_type, DImode,
3085 /* Next come the addressing coefficients. */
3086 tem = size_one_node;
3087 for (i = 0; i < ndim; i++)
3091 = size_binop (MULT_EXPR, tem,
3092 size_binop (PLUS_EXPR,
3093 size_binop (MINUS_EXPR,
3094 TYPE_MAX_VALUE (idx_arr[i]),
3095 TYPE_MIN_VALUE (idx_arr[i])),
3098 fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M');
3099 fname[1] = '0' + i, fname[2] = 0;
3101 = chainon (field_list64,
3102 make_descriptor_field (fname,
3103 gnat_type_for_size (64, 1),
3104 record64_type, idx_length));
3106 if (mech == By_Descriptor_NCA)
3110 /* Finally here are the bounds. */
3111 for (i = 0; i < ndim; i++)
3115 fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0;
3117 = chainon (field_list64,
3118 make_descriptor_field
3119 (fname, gnat_type_for_size (64, 1), record64_type,
3120 TYPE_MIN_VALUE (idx_arr[i])));
3124 = chainon (field_list64,
3125 make_descriptor_field
3126 (fname, gnat_type_for_size (64, 1), record64_type,
3127 TYPE_MAX_VALUE (idx_arr[i])));
3132 post_error ("unsupported descriptor type for &", gnat_entity);
3135 TYPE_NAME (record64_type) = create_concat_name (gnat_entity, "DESC64");
3136 finish_record_type (record64_type, field_list64, 0, false);
3137 return record64_type;
3140 /* Utility routine for above code to make a field. */
3143 make_descriptor_field (const char *name, tree type,
3144 tree rec_type, tree initial)
3147 = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0);
3149 DECL_INITIAL (field) = initial;
3153 /* Convert GNU_EXPR, a pointer to a 64bit VMS descriptor, to GNU_TYPE, a
3154 regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
3155 which the VMS descriptor is passed. */
3158 convert_vms_descriptor64 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
3160 tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
3161 tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
3162 /* The CLASS field is the 3rd field in the descriptor. */
3163 tree klass = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
3164 /* The POINTER field is the 6th field in the descriptor. */
3165 tree pointer64 = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (klass)));
3167 /* Retrieve the value of the POINTER field. */
3169 = build3 (COMPONENT_REF, TREE_TYPE (pointer64), desc, pointer64, NULL_TREE);
3171 if (POINTER_TYPE_P (gnu_type))
3172 return convert (gnu_type, gnu_expr64);
3174 else if (TYPE_IS_FAT_POINTER_P (gnu_type))
3176 tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
3177 tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
3178 tree template_type = TREE_TYPE (p_bounds_type);
3179 tree min_field = TYPE_FIELDS (template_type);
3180 tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
3181 tree template_tree, template_addr, aflags, dimct, t, u;
3182 /* See the head comment of build_vms_descriptor. */
3183 int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass));
3184 tree lfield, ufield;
3186 /* Convert POINTER to the type of the P_ARRAY field. */
3187 gnu_expr64 = convert (p_array_type, gnu_expr64);
3191 case 1: /* Class S */
3192 case 15: /* Class SB */
3193 /* Build {1, LENGTH} template; LENGTH64 is the 5th field. */
3194 t = TREE_CHAIN (TREE_CHAIN (klass));
3195 t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3196 t = tree_cons (min_field,
3197 convert (TREE_TYPE (min_field), integer_one_node),
3198 tree_cons (max_field,
3199 convert (TREE_TYPE (max_field), t),
3201 template_tree = gnat_build_constructor (template_type, t);
3202 template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree);
3204 /* For class S, we are done. */
3208 /* Test that we really have a SB descriptor, like DEC Ada. */
3209 t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL);
3210 u = convert (TREE_TYPE (klass), DECL_INITIAL (klass));
3211 u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
3212 /* If so, there is already a template in the descriptor and
3213 it is located right after the POINTER field. The fields are
3214 64bits so they must be repacked. */
3215 t = TREE_CHAIN (pointer64);
3216 lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3217 lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
3220 ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3222 (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
3224 /* Build the template in the form of a constructor. */
3225 t = tree_cons (TYPE_FIELDS (template_type), lfield,
3226 tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
3227 ufield, NULL_TREE));
3228 template_tree = gnat_build_constructor (template_type, t);
3230 /* Otherwise use the {1, LENGTH} template we build above. */
3231 template_addr = build3 (COND_EXPR, p_bounds_type, u,
3232 build_unary_op (ADDR_EXPR, p_bounds_type,
3237 case 4: /* Class A */
3238 /* The AFLAGS field is the 3rd field after the pointer in the
3240 t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer64)));
3241 aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3242 /* The DIMCT field is the next field in the descriptor after
3245 dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3246 /* Raise CONSTRAINT_ERROR if either more than 1 dimension
3247 or FL_COEFF or FL_BOUNDS not set. */
3248 u = build_int_cst (TREE_TYPE (aflags), 192);
3249 u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
3250 build_binary_op (NE_EXPR, integer_type_node,
3252 convert (TREE_TYPE (dimct),
3254 build_binary_op (NE_EXPR, integer_type_node,
3255 build2 (BIT_AND_EXPR,
3259 /* There is already a template in the descriptor and it is located
3260 in block 3. The fields are 64bits so they must be repacked. */
3261 t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN
3263 lfield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3264 lfield = convert (TREE_TYPE (TYPE_FIELDS (template_type)), lfield);
3267 ufield = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3269 (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (template_type))), ufield);
3271 /* Build the template in the form of a constructor. */
3272 t = tree_cons (TYPE_FIELDS (template_type), lfield,
3273 tree_cons (TREE_CHAIN (TYPE_FIELDS (template_type)),
3274 ufield, NULL_TREE));
3275 template_tree = gnat_build_constructor (template_type, t);
3276 template_tree = build3 (COND_EXPR, template_type, u,
3277 build_call_raise (CE_Length_Check_Failed, Empty,
3278 N_Raise_Constraint_Error),
3281 = build_unary_op (ADDR_EXPR, p_bounds_type, template_tree);
3284 case 10: /* Class NCA */
3286 post_error ("unsupported descriptor type for &", gnat_subprog);
3287 template_addr = integer_zero_node;
3291 /* Build the fat pointer in the form of a constructor. */
3292 t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr64,
3293 tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
3294 template_addr, NULL_TREE));
3295 return gnat_build_constructor (gnu_type, t);
3302 /* Convert GNU_EXPR, a pointer to a 32bit VMS descriptor, to GNU_TYPE, a
3303 regular pointer or fat pointer type. GNAT_SUBPROG is the subprogram to
3304 which the VMS descriptor is passed. */
3307 convert_vms_descriptor32 (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog)
3309 tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
3310 tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
3311 /* The CLASS field is the 3rd field in the descriptor. */
3312 tree klass = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type)));
3313 /* The POINTER field is the 4th field in the descriptor. */
3314 tree pointer = TREE_CHAIN (klass);
3316 /* Retrieve the value of the POINTER field. */
3318 = build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE);
3320 if (POINTER_TYPE_P (gnu_type))
3321 return convert (gnu_type, gnu_expr32);
3323 else if (TYPE_IS_FAT_POINTER_P (gnu_type))
3325 tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type));
3326 tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)));
3327 tree template_type = TREE_TYPE (p_bounds_type);
3328 tree min_field = TYPE_FIELDS (template_type);
3329 tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type));
3330 tree template_tree, template_addr, aflags, dimct, t, u;
3331 /* See the head comment of build_vms_descriptor. */
3332 int iklass = TREE_INT_CST_LOW (DECL_INITIAL (klass));
3334 /* Convert POINTER to the type of the P_ARRAY field. */
3335 gnu_expr32 = convert (p_array_type, gnu_expr32);
3339 case 1: /* Class S */
3340 case 15: /* Class SB */
3341 /* Build {1, LENGTH} template; LENGTH is the 1st field. */
3342 t = TYPE_FIELDS (desc_type);
3343 t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3344 t = tree_cons (min_field,
3345 convert (TREE_TYPE (min_field), integer_one_node),
3346 tree_cons (max_field,
3347 convert (TREE_TYPE (max_field), t),
3349 template_tree = gnat_build_constructor (template_type, t);
3350 template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template_tree);
3352 /* For class S, we are done. */
3356 /* Test that we really have a SB descriptor, like DEC Ada. */
3357 t = build3 (COMPONENT_REF, TREE_TYPE (klass), desc, klass, NULL);
3358 u = convert (TREE_TYPE (klass), DECL_INITIAL (klass));
3359 u = build_binary_op (EQ_EXPR, integer_type_node, t, u);
3360 /* If so, there is already a template in the descriptor and
3361 it is located right after the POINTER field. */
3362 t = TREE_CHAIN (pointer);
3364 = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3365 /* Otherwise use the {1, LENGTH} template we build above. */
3366 template_addr = build3 (COND_EXPR, p_bounds_type, u,
3367 build_unary_op (ADDR_EXPR, p_bounds_type,
3372 case 4: /* Class A */
3373 /* The AFLAGS field is the 7th field in the descriptor. */
3374 t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer)));
3375 aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3376 /* The DIMCT field is the 8th field in the descriptor. */
3378 dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3379 /* Raise CONSTRAINT_ERROR if either more than 1 dimension
3380 or FL_COEFF or FL_BOUNDS not set. */
3381 u = build_int_cst (TREE_TYPE (aflags), 192);
3382 u = build_binary_op (TRUTH_OR_EXPR, integer_type_node,
3383 build_binary_op (NE_EXPR, integer_type_node,
3385 convert (TREE_TYPE (dimct),
3387 build_binary_op (NE_EXPR, integer_type_node,
3388 build2 (BIT_AND_EXPR,
3392 /* There is already a template in the descriptor and it is
3393 located at the start of block 3 (12th field). */
3394 t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (t))));
3396 = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE);
3397 template_tree = build3 (COND_EXPR, TREE_TYPE (t), u,
3398 build_call_raise (CE_Length_Check_Failed, Empty,
3399 N_Raise_Constraint_Error),
3402 = build_unary_op (ADDR_EXPR, p_bounds_type, template_tree);
3405 case 10: /* Class NCA */
3407 post_error ("unsupported descriptor type for &", gnat_subprog);
3408 template_addr = integer_zero_node;
3412 /* Build the fat pointer in the form of a constructor. */
3413 t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr32,
3414 tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)),
3415 template_addr, NULL_TREE));
3417 return gnat_build_constructor (gnu_type, t);
3424 /* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular
3425 pointer or fat pointer type. GNU_EXPR_ALT_TYPE is the alternate (32-bit)
3426 pointer type of GNU_EXPR. GNAT_SUBPROG is the subprogram to which the
3427 VMS descriptor is passed. */
3430 convert_vms_descriptor (tree gnu_type, tree gnu_expr, tree gnu_expr_alt_type,
3431 Entity_Id gnat_subprog)
3433 tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr));
3434 tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr);
3435 tree mbo = TYPE_FIELDS (desc_type);
3436 const char *mbostr = IDENTIFIER_POINTER (DECL_NAME (mbo));
3437 tree mbmo = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (mbo)));
3438 tree is64bit, gnu_expr32, gnu_expr64;
3440 /* If the field name is not MBO, it must be 32-bit and no alternate.
3441 Otherwise primary must be 64-bit and alternate 32-bit. */
3442 if (strcmp (mbostr, "MBO") != 0)
3443 return convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
3445 /* Build the test for 64-bit descriptor. */
3446 mbo = build3 (COMPONENT_REF, TREE_TYPE (mbo), desc, mbo, NULL_TREE);
3447 mbmo = build3 (COMPONENT_REF, TREE_TYPE (mbmo), desc, mbmo, NULL_TREE);
3449 = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node,
3450 build_binary_op (EQ_EXPR, integer_type_node,
3451 convert (integer_type_node, mbo),
3453 build_binary_op (EQ_EXPR, integer_type_node,
3454 convert (integer_type_node, mbmo),
3455 integer_minus_one_node));
3457 /* Build the 2 possible end results. */
3458 gnu_expr64 = convert_vms_descriptor64 (gnu_type, gnu_expr, gnat_subprog);
3459 gnu_expr = fold_convert (gnu_expr_alt_type, gnu_expr);
3460 gnu_expr32 = convert_vms_descriptor32 (gnu_type, gnu_expr, gnat_subprog);
3462 return build3 (COND_EXPR, gnu_type, is64bit, gnu_expr64, gnu_expr32);
3465 /* Build a stub for the subprogram specified by the GCC tree GNU_SUBPROG
3466 and the GNAT node GNAT_SUBPROG. */
3469 build_function_stub (tree gnu_subprog, Entity_Id gnat_subprog)
3471 tree gnu_subprog_type, gnu_subprog_addr, gnu_subprog_call;
3472 tree gnu_stub_param, gnu_param_list, gnu_arg_types, gnu_param;
3473 tree gnu_stub_decl = DECL_FUNCTION_STUB (gnu_subprog);
3476 gnu_subprog_type = TREE_TYPE (gnu_subprog);
3477 gnu_param_list = NULL_TREE;
3479 begin_subprog_body (gnu_stub_decl);
3482 start_stmt_group ();
3484 /* Loop over the parameters of the stub and translate any of them
3485 passed by descriptor into a by reference one. */
3486 for (gnu_stub_param = DECL_ARGUMENTS (gnu_stub_decl),
3487 gnu_arg_types = TYPE_ARG_TYPES (gnu_subprog_type);
3489 gnu_stub_param = TREE_CHAIN (gnu_stub_param),
3490 gnu_arg_types = TREE_CHAIN (gnu_arg_types))
3492 if (DECL_BY_DESCRIPTOR_P (gnu_stub_param))
3494 = convert_vms_descriptor (TREE_VALUE (gnu_arg_types),
3496 DECL_PARM_ALT_TYPE (gnu_stub_param),
3499 gnu_param = gnu_stub_param;
3501 gnu_param_list = tree_cons (NULL_TREE, gnu_param, gnu_param_list);
3504 gnu_body = end_stmt_group ();
3506 /* Invoke the internal subprogram. */
3507 gnu_subprog_addr = build1 (ADDR_EXPR, build_pointer_type (gnu_subprog_type),
3509 gnu_subprog_call = build_call_list (TREE_TYPE (gnu_subprog_type),
3511 nreverse (gnu_param_list));
3513 /* Propagate the return value, if any. */
3514 if (VOID_TYPE_P (TREE_TYPE (gnu_subprog_type)))
3515 append_to_statement_list (gnu_subprog_call, &gnu_body);
3517 append_to_statement_list (build_return_expr (DECL_RESULT (gnu_stub_decl),
3523 allocate_struct_function (gnu_stub_decl, false);
3524 end_subprog_body (gnu_body);
3527 /* Build a type to be used to represent an aliased object whose nominal
3528 type is an unconstrained array. This consists of a RECORD_TYPE containing
3529 a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an
3530 ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this
3531 is used to represent an arbitrary unconstrained object. Use NAME
3532 as the name of the record. */
3535 build_unc_object_type (tree template_type, tree object_type, tree name)
3537 tree type = make_node (RECORD_TYPE);
3538 tree template_field = create_field_decl (get_identifier ("BOUNDS"),
3539 template_type, type, 0, 0, 0, 1);
3540 tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type,
3543 TYPE_NAME (type) = name;
3544 TYPE_CONTAINS_TEMPLATE_P (type) = 1;
3545 finish_record_type (type,
3546 chainon (chainon (NULL_TREE, template_field),
3553 /* Same, taking a thin or fat pointer type instead of a template type. */
3556 build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
3561 gcc_assert (TYPE_IS_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
3564 = (TYPE_IS_FAT_POINTER_P (thin_fat_ptr_type)
3565 ? TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
3566 : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
3567 return build_unc_object_type (template_type, object_type, name);
3570 /* Shift the component offsets within an unconstrained object TYPE to make it
3571 suitable for use as a designated type for thin pointers. */
3574 shift_unc_components_for_thin_pointers (tree type)
3576 /* Thin pointer values designate the ARRAY data of an unconstrained object,
3577 allocated past the BOUNDS template. The designated type is adjusted to
3578 have ARRAY at position zero and the template at a negative offset, so
3579 that COMPONENT_REFs on (*thin_ptr) designate the proper location. */
3581 tree bounds_field = TYPE_FIELDS (type);
3582 tree array_field = TREE_CHAIN (TYPE_FIELDS (type));
3584 DECL_FIELD_OFFSET (bounds_field)
3585 = size_binop (MINUS_EXPR, size_zero_node, byte_position (array_field));
3587 DECL_FIELD_OFFSET (array_field) = size_zero_node;
3588 DECL_FIELD_BIT_OFFSET (array_field) = bitsize_zero_node;
3591 /* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE.
3592 In the normal case this is just two adjustments, but we have more to
3593 do if NEW_TYPE is an UNCONSTRAINED_ARRAY_TYPE. */
3596 update_pointer_to (tree old_type, tree new_type)
3598 tree ptr = TYPE_POINTER_TO (old_type);
3599 tree ref = TYPE_REFERENCE_TO (old_type);
3603 /* If this is the main variant, process all the other variants first. */
3604 if (TYPE_MAIN_VARIANT (old_type) == old_type)
3605 for (type = TYPE_NEXT_VARIANT (old_type); type;
3606 type = TYPE_NEXT_VARIANT (type))
3607 update_pointer_to (type, new_type);
3609 /* If no pointers and no references, we are done. */
3613 /* Merge the old type qualifiers in the new type.
3615 Each old variant has qualifiers for specific reasons, and the new
3616 designated type as well. Each set of qualifiers represents useful
3617 information grabbed at some point, and merging the two simply unifies
3618 these inputs into the final type description.
3620 Consider for instance a volatile type frozen after an access to constant
3621 type designating it; after the designated type's freeze, we get here with
3622 a volatile NEW_TYPE and a dummy OLD_TYPE with a readonly variant, created
3623 when the access type was processed. We will make a volatile and readonly
3624 designated type, because that's what it really is.
3626 We might also get here for a non-dummy OLD_TYPE variant with different
3627 qualifiers than those of NEW_TYPE, for instance in some cases of pointers
3628 to private record type elaboration (see the comments around the call to
3629 this routine in gnat_to_gnu_entity <E_Access_Type>). We have to merge
3630 the qualifiers in those cases too, to avoid accidentally discarding the
3631 initial set, and will often end up with OLD_TYPE == NEW_TYPE then. */
3633 = build_qualified_type (new_type,
3634 TYPE_QUALS (old_type) | TYPE_QUALS (new_type));
3636 /* If old type and new type are identical, there is nothing to do. */
3637 if (old_type == new_type)
3640 /* Otherwise, first handle the simple case. */
3641 if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
3643 TYPE_POINTER_TO (new_type) = ptr;
3644 TYPE_REFERENCE_TO (new_type) = ref;
3646 for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
3647 for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1;
3648 ptr1 = TYPE_NEXT_VARIANT (ptr1))
3649 TREE_TYPE (ptr1) = new_type;
3651 for (; ref; ref = TYPE_NEXT_REF_TO (ref))
3652 for (ref1 = TYPE_MAIN_VARIANT (ref); ref1;
3653 ref1 = TYPE_NEXT_VARIANT (ref1))
3654 TREE_TYPE (ref1) = new_type;
3657 /* Now deal with the unconstrained array case. In this case the "pointer"
3658 is actually a RECORD_TYPE where both fields are pointers to dummy nodes.
3659 Turn them into pointers to the correct types using update_pointer_to. */
3660 else if (!TYPE_IS_FAT_POINTER_P (ptr))
3665 tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type);
3666 tree array_field = TYPE_FIELDS (ptr);
3667 tree bounds_field = TREE_CHAIN (TYPE_FIELDS (ptr));
3668 tree new_ptr = TYPE_POINTER_TO (new_type);
3672 /* Make pointers to the dummy template point to the real template. */
3674 (TREE_TYPE (TREE_TYPE (bounds_field)),
3675 TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_ptr)))));
3677 /* The references to the template bounds present in the array type
3678 are made through a PLACEHOLDER_EXPR of type NEW_PTR. Since we
3679 are updating PTR to make it a full replacement for NEW_PTR as
3680 pointer to NEW_TYPE, we must rework the PLACEHOLDER_EXPR so as
3681 to make it of type PTR. */
3682 new_ref = build3 (COMPONENT_REF, TREE_TYPE (bounds_field),
3683 build0 (PLACEHOLDER_EXPR, ptr),
3684 bounds_field, NULL_TREE);
3686 /* Create the new array for the new PLACEHOLDER_EXPR and make pointers
3687 to the dummy array point to it. */
3689 (TREE_TYPE (TREE_TYPE (array_field)),
3690 substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))),
3691 TREE_CHAIN (TYPE_FIELDS (new_ptr)), new_ref));
3693 /* Make PTR the pointer to NEW_TYPE. */
3694 TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type)
3695 = TREE_TYPE (new_type) = ptr;
3697 /* And show the original pointer NEW_PTR to the debugger. This is the
3698 counterpart of the equivalent processing in gnat_pushdecl when the
3699 unconstrained array type is frozen after access types to it. Note
3700 that update_pointer_to can be invoked multiple times on the same
3701 couple of types because of the type variants. */
3703 && TREE_CODE (TYPE_NAME (ptr)) == TYPE_DECL
3704 && !DECL_ORIGINAL_TYPE (TYPE_NAME (ptr)))
3706 DECL_ORIGINAL_TYPE (TYPE_NAME (ptr)) = new_ptr;
3707 DECL_ARTIFICIAL (TYPE_NAME (ptr)) = 0;
3709 for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var))
3710 SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type);
3712 /* Now handle updating the allocation record, what the thin pointer
3713 points to. Update all pointers from the old record into the new
3714 one, update the type of the array field, and recompute the size. */
3715 update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec);
3717 TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec)))
3718 = TREE_TYPE (TREE_TYPE (array_field));
3720 /* The size recomputation needs to account for alignment constraints, so
3721 we let layout_type work it out. This will reset the field offsets to
3722 what they would be in a regular record, so we shift them back to what
3723 we want them to be for a thin pointer designated type afterwards. */
3724 DECL_SIZE (TYPE_FIELDS (new_obj_rec)) = 0;
3725 DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))) = 0;
3726 TYPE_SIZE (new_obj_rec) = 0;
3727 layout_type (new_obj_rec);
3729 shift_unc_components_for_thin_pointers (new_obj_rec);
3731 /* We are done, at last. */
3732 rest_of_record_type_compilation (ptr);