1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
53 #ifndef MAX_FIXED_MODE_SIZE
54 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
57 /* Convention_Stdcall should be processed in a specific way on Windows targets
58 only. The macro below is a helper to avoid having to check for a Windows
59 specific attribute throughout this unit. */
61 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
62 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
64 #define Has_Stdcall_Convention(E) (0)
67 /* Stack realignment for functions with foreign conventions is provided on a
68 per back-end basis now, as it is handled by the prologue expanders and not
69 as part of the function's body any more. It might be requested by way of a
70 dedicated function type attribute on the targets that support it.
72 We need a way to avoid setting the attribute on the targets that don't
73 support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
75 It is defined on targets where the circuitry is available, and indicates
76 whether the realignment is needed for 'main'. We use this to decide for
77 foreign subprograms as well.
79 It is not defined on targets where the circuitry is not implemented, and
80 we just never set the attribute in these cases.
82 Whether it is defined on all targets that would need it in theory is
83 not entirely clear. We currently trust the base GCC settings for this
86 #ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
87 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
92 struct incomplete *next;
97 /* These variables are used to defer recursively expanding incomplete types
98 while we are processing an array, a record or a subprogram type. */
99 static int defer_incomplete_level = 0;
100 static struct incomplete *defer_incomplete_list;
102 /* This variable is used to delay expanding From_With_Type types until the
104 static struct incomplete *defer_limited_with;
106 /* These variables are used to defer finalizing types. The element of the
107 list is the TYPE_DECL associated with the type. */
108 static int defer_finalize_level = 0;
109 static VEC (tree,heap) *defer_finalize_list;
111 /* A hash table used to cache the result of annotate_value. */
112 static GTY ((if_marked ("tree_int_map_marked_p"),
113 param_is (struct tree_int_map))) htab_t annotate_value_cache;
122 static void relate_alias_sets (tree, tree, enum alias_set_op);
124 static tree substitution_list (Entity_Id, Entity_Id, tree, bool);
125 static bool allocatable_size_p (tree, bool);
126 static void prepend_one_attribute_to (struct attrib **,
127 enum attr_type, tree, tree, Node_Id);
128 static void prepend_attributes (Entity_Id, struct attrib **);
129 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
130 static bool is_variable_size (tree);
131 static tree elaborate_expression_1 (tree, Entity_Id, tree, bool, bool);
132 static tree make_packable_type (tree, bool);
133 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
134 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
136 static bool same_discriminant_p (Entity_Id, Entity_Id);
137 static bool array_type_has_nonaliased_component (Entity_Id, tree);
138 static bool compile_time_known_address_p (Node_Id);
139 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
140 bool, bool, bool, bool);
141 static Uint annotate_value (tree);
142 static void annotate_rep (Entity_Id, tree);
143 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
144 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
145 static void set_rm_size (Uint, tree, Entity_Id);
146 static tree make_type_from_size (tree, tree, bool);
147 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
148 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
149 static void check_ok_for_atomic (tree, Entity_Id, bool);
150 static int compatible_signatures_p (tree ftype1, tree ftype2);
151 static void rest_of_type_decl_compilation_no_defer (tree);
153 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
154 entity, return the equivalent GCC tree for that entity (a ..._DECL node)
155 and associate the ..._DECL node with the input GNAT defining identifier.
157 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
158 initial value (in GCC tree form). This is optional for a variable. For
159 a renamed entity, GNU_EXPR gives the object being renamed.
161 DEFINITION is nonzero if this call is intended for a definition. This is
162 used for separate compilation where it is necessary to know whether an
163 external declaration or a definition must be created if the GCC equivalent
164 was not created previously. The value of 1 is normally used for a nonzero
165 DEFINITION, but a value of 2 is used in special circumstances, defined in
169 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
171 /* Contains the kind of the input GNAT node. */
172 const Entity_Kind kind = Ekind (gnat_entity);
173 /* True if this is a type. */
174 const bool is_type = IN (kind, Type_Kind);
175 /* For a type, contains the equivalent GNAT node to be used in gigi. */
176 Entity_Id gnat_equiv_type = Empty;
177 /* Temporary used to walk the GNAT tree. */
179 /* Contains the GCC DECL node which is equivalent to the input GNAT node.
180 This node will be associated with the GNAT node by calling at the end
181 of the `switch' statement. */
182 tree gnu_decl = NULL_TREE;
183 /* Contains the GCC type to be used for the GCC node. */
184 tree gnu_type = NULL_TREE;
185 /* Contains the GCC size tree to be used for the GCC node. */
186 tree gnu_size = NULL_TREE;
187 /* Contains the GCC name to be used for the GCC node. */
188 tree gnu_entity_name;
189 /* True if we have already saved gnu_decl as a GNAT association. */
191 /* True if we incremented defer_incomplete_level. */
192 bool this_deferred = false;
193 /* True if we incremented force_global. */
194 bool this_global = false;
195 /* True if we should check to see if elaborated during processing. */
196 bool maybe_present = false;
197 /* True if we made GNU_DECL and its type here. */
198 bool this_made_decl = false;
199 /* True if debug info is requested for this entity. */
200 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
201 || debug_info_level == DINFO_LEVEL_VERBOSE);
202 /* True if this entity is to be considered as imported. */
203 bool imported_p = (Is_Imported (gnat_entity)
204 && No (Address_Clause (gnat_entity)));
205 /* Size and alignment of the GCC node, if meaningful. */
206 unsigned int esize = 0, align = 0;
207 /* Contains the list of attributes directly attached to the entity. */
208 struct attrib *attr_list = NULL;
210 /* Since a use of an Itype is a definition, process it as such if it
211 is not in a with'ed unit. */
214 && Is_Itype (gnat_entity)
215 && !present_gnu_tree (gnat_entity)
216 && In_Extended_Main_Code_Unit (gnat_entity))
218 /* Ensure that we are in a subprogram mentioned in the Scope chain of
219 this entity, our current scope is global, or we encountered a task
220 or entry (where we can't currently accurately check scoping). */
221 if (!current_function_decl
222 || DECL_ELABORATION_PROC_P (current_function_decl))
224 process_type (gnat_entity);
225 return get_gnu_tree (gnat_entity);
228 for (gnat_temp = Scope (gnat_entity);
230 gnat_temp = Scope (gnat_temp))
232 if (Is_Type (gnat_temp))
233 gnat_temp = Underlying_Type (gnat_temp);
235 if (Ekind (gnat_temp) == E_Subprogram_Body)
237 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
239 if (IN (Ekind (gnat_temp), Subprogram_Kind)
240 && Present (Protected_Body_Subprogram (gnat_temp)))
241 gnat_temp = Protected_Body_Subprogram (gnat_temp);
243 if (Ekind (gnat_temp) == E_Entry
244 || Ekind (gnat_temp) == E_Entry_Family
245 || Ekind (gnat_temp) == E_Task_Type
246 || (IN (Ekind (gnat_temp), Subprogram_Kind)
247 && present_gnu_tree (gnat_temp)
248 && (current_function_decl
249 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
251 process_type (gnat_entity);
252 return get_gnu_tree (gnat_entity);
256 /* This abort means the Itype has an incorrect scope, i.e. that its
257 scope does not correspond to the subprogram it is declared in. */
261 /* If we've already processed this entity, return what we got last time.
262 If we are defining the node, we should not have already processed it.
263 In that case, we will abort below when we try to save a new GCC tree
264 for this object. We also need to handle the case of getting a dummy
265 type when a Full_View exists. */
266 if ((!definition || (is_type && imported_p))
267 && present_gnu_tree (gnat_entity))
269 gnu_decl = get_gnu_tree (gnat_entity);
271 if (TREE_CODE (gnu_decl) == TYPE_DECL
272 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
273 && IN (kind, Incomplete_Or_Private_Kind)
274 && Present (Full_View (gnat_entity)))
277 = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
278 save_gnu_tree (gnat_entity, NULL_TREE, false);
279 save_gnu_tree (gnat_entity, gnu_decl, false);
285 /* If this is a numeric or enumeral type, or an access type, a nonzero
286 Esize must be specified unless it was specified by the programmer. */
287 gcc_assert (!Unknown_Esize (gnat_entity)
288 || Has_Size_Clause (gnat_entity)
289 || (!IN (kind, Numeric_Kind)
290 && !IN (kind, Enumeration_Kind)
291 && (!IN (kind, Access_Kind)
292 || kind == E_Access_Protected_Subprogram_Type
293 || kind == E_Anonymous_Access_Protected_Subprogram_Type
294 || kind == E_Access_Subtype)));
296 /* The RM size must be specified for all discrete and fixed-point types. */
297 gcc_assert (!(IN (kind, Discrete_Or_Fixed_Point_Kind)
298 && Unknown_RM_Size (gnat_entity)));
300 /* If we get here, it means we have not yet done anything with this entity.
301 If we are not defining it, it must be a type or an entity that is defined
302 elsewhere or externally, otherwise we should have defined it already. */
303 gcc_assert (definition
304 || type_annotate_only
306 || kind == E_Discriminant
307 || kind == E_Component
309 || (kind == E_Constant && Present (Full_View (gnat_entity)))
310 || Is_Public (gnat_entity));
312 /* Get the name of the entity and set up the line number and filename of
313 the original definition for use in any decl we make. */
314 gnu_entity_name = get_entity_name (gnat_entity);
315 Sloc_to_locus (Sloc (gnat_entity), &input_location);
317 /* For cases when we are not defining (i.e., we are referencing from
318 another compilation unit) public entities, show we are at global level
319 for the purpose of computing scopes. Don't do this for components or
320 discriminants since the relevant test is whether or not the record is
323 && kind != E_Component
324 && kind != E_Discriminant
325 && Is_Public (gnat_entity)
326 && !Is_Statically_Allocated (gnat_entity))
327 force_global++, this_global = true;
329 /* Handle any attributes directly attached to the entity. */
330 if (Has_Gigi_Rep_Item (gnat_entity))
331 prepend_attributes (gnat_entity, &attr_list);
333 /* Do some common processing for types. */
336 /* Compute the equivalent type to be used in gigi. */
337 gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
339 /* Machine_Attributes on types are expected to be propagated to
340 subtypes. The corresponding Gigi_Rep_Items are only attached
341 to the first subtype though, so we handle the propagation here. */
342 if (Base_Type (gnat_entity) != gnat_entity
343 && !Is_First_Subtype (gnat_entity)
344 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
345 prepend_attributes (First_Subtype (Base_Type (gnat_entity)),
348 /* Compute a default value for the size of the type. */
349 if (Known_Esize (gnat_entity)
350 && UI_Is_In_Int_Range (Esize (gnat_entity)))
352 unsigned int max_esize;
353 esize = UI_To_Int (Esize (gnat_entity));
355 if (IN (kind, Float_Kind))
356 max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
357 else if (IN (kind, Access_Kind))
358 max_esize = POINTER_SIZE * 2;
360 max_esize = LONG_LONG_TYPE_SIZE;
362 if (esize > max_esize)
366 esize = LONG_LONG_TYPE_SIZE;
372 /* If this is a use of a deferred constant without address clause,
373 get its full definition. */
375 && No (Address_Clause (gnat_entity))
376 && Present (Full_View (gnat_entity)))
379 = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
384 /* If we have an external constant that we are not defining, get the
385 expression that is was defined to represent. We may throw that
386 expression away later if it is not a constant. Do not retrieve the
387 expression if it is an aggregate or allocator, because in complex
388 instantiation contexts it may not be expanded */
390 && Present (Expression (Declaration_Node (gnat_entity)))
391 && !No_Initialization (Declaration_Node (gnat_entity))
392 && (Nkind (Expression (Declaration_Node (gnat_entity)))
394 && (Nkind (Expression (Declaration_Node (gnat_entity)))
396 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
398 /* Ignore deferred constant definitions without address clause since
399 they are processed fully in the front-end. If No_Initialization
400 is set, this is not a deferred constant but a constant whose value
401 is built manually. And constants that are renamings are handled
405 && No (Address_Clause (gnat_entity))
406 && !No_Initialization (Declaration_Node (gnat_entity))
407 && No (Renamed_Object (gnat_entity)))
409 gnu_decl = error_mark_node;
414 /* Ignore constant definitions already marked with the error node. See
415 the N_Object_Declaration case of gnat_to_gnu for the rationale. */
418 && present_gnu_tree (gnat_entity)
419 && get_gnu_tree (gnat_entity) == error_mark_node)
421 maybe_present = true;
428 /* We used to special case VMS exceptions here to directly map them to
429 their associated condition code. Since this code had to be masked
430 dynamically to strip off the severity bits, this caused trouble in
431 the GCC/ZCX case because the "type" pointers we store in the tables
432 have to be static. We now don't special case here anymore, and let
433 the regular processing take place, which leaves us with a regular
434 exception data object for VMS exceptions too. The condition code
435 mapping is taken care of by the front end and the bitmasking by the
442 /* The GNAT record where the component was defined. */
443 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
445 /* If the variable is an inherited record component (in the case of
446 extended record types), just return the inherited entity, which
447 must be a FIELD_DECL. Likewise for discriminants.
448 For discriminants of untagged records which have explicit
449 stored discriminants, return the entity for the corresponding
450 stored discriminant. Also use Original_Record_Component
451 if the record has a private extension. */
452 if (Present (Original_Record_Component (gnat_entity))
453 && Original_Record_Component (gnat_entity) != gnat_entity)
456 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
457 gnu_expr, definition);
462 /* If the enclosing record has explicit stored discriminants,
463 then it is an untagged record. If the Corresponding_Discriminant
464 is not empty then this must be a renamed discriminant and its
465 Original_Record_Component must point to the corresponding explicit
466 stored discriminant (i.e. we should have taken the previous
468 else if (Present (Corresponding_Discriminant (gnat_entity))
469 && Is_Tagged_Type (gnat_record))
471 /* A tagged record has no explicit stored discriminants. */
472 gcc_assert (First_Discriminant (gnat_record)
473 == First_Stored_Discriminant (gnat_record));
475 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
476 gnu_expr, definition);
481 else if (Present (CR_Discriminant (gnat_entity))
482 && type_annotate_only)
484 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
485 gnu_expr, definition);
490 /* If the enclosing record has explicit stored discriminants, then
491 it is an untagged record. If the Corresponding_Discriminant
492 is not empty then this must be a renamed discriminant and its
493 Original_Record_Component must point to the corresponding explicit
494 stored discriminant (i.e. we should have taken the first
496 else if (Present (Corresponding_Discriminant (gnat_entity))
497 && (First_Discriminant (gnat_record)
498 != First_Stored_Discriminant (gnat_record)))
501 /* Otherwise, if we are not defining this and we have no GCC type
502 for the containing record, make one for it. Then we should
503 have made our own equivalent. */
504 else if (!definition && !present_gnu_tree (gnat_record))
506 /* ??? If this is in a record whose scope is a protected
507 type and we have an Original_Record_Component, use it.
508 This is a workaround for major problems in protected type
510 Entity_Id Scop = Scope (Scope (gnat_entity));
511 if ((Is_Protected_Type (Scop)
512 || (Is_Private_Type (Scop)
513 && Present (Full_View (Scop))
514 && Is_Protected_Type (Full_View (Scop))))
515 && Present (Original_Record_Component (gnat_entity)))
518 = gnat_to_gnu_entity (Original_Record_Component
525 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
526 gnu_decl = get_gnu_tree (gnat_entity);
532 /* Here we have no GCC type and this is a reference rather than a
533 definition. This should never happen. Most likely the cause is
534 reference before declaration in the gnat tree for gnat_entity. */
538 case E_Loop_Parameter:
539 case E_Out_Parameter:
542 /* Simple variables, loop variables, Out parameters, and exceptions. */
545 bool used_by_ref = false;
547 = ((kind == E_Constant || kind == E_Variable)
548 && Is_True_Constant (gnat_entity)
549 && !Treat_As_Volatile (gnat_entity)
550 && (((Nkind (Declaration_Node (gnat_entity))
551 == N_Object_Declaration)
552 && Present (Expression (Declaration_Node (gnat_entity))))
553 || Present (Renamed_Object (gnat_entity))));
554 bool inner_const_flag = const_flag;
555 bool static_p = Is_Statically_Allocated (gnat_entity);
556 bool mutable_p = false;
557 tree gnu_ext_name = NULL_TREE;
558 tree renamed_obj = NULL_TREE;
559 tree gnu_object_size;
561 if (Present (Renamed_Object (gnat_entity)) && !definition)
563 if (kind == E_Exception)
564 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
567 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
570 /* Get the type after elaborating the renamed object. */
571 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
573 /* For a debug renaming declaration, build a pure debug entity. */
574 if (Present (Debug_Renaming_Link (gnat_entity)))
577 gnu_decl = build_decl (VAR_DECL, gnu_entity_name, gnu_type);
578 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
579 if (global_bindings_p ())
580 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
582 addr = stack_pointer_rtx;
583 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
584 gnat_pushdecl (gnu_decl, gnat_entity);
588 /* If this is a loop variable, its type should be the base type.
589 This is because the code for processing a loop determines whether
590 a normal loop end test can be done by comparing the bounds of the
591 loop against those of the base type, which is presumed to be the
592 size used for computation. But this is not correct when the size
593 of the subtype is smaller than the type. */
594 if (kind == E_Loop_Parameter)
595 gnu_type = get_base_type (gnu_type);
597 /* Reject non-renamed objects whose types are unconstrained arrays or
598 any object whose type is a dummy type or VOID_TYPE. */
600 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
601 && No (Renamed_Object (gnat_entity)))
602 || TYPE_IS_DUMMY_P (gnu_type)
603 || TREE_CODE (gnu_type) == VOID_TYPE)
605 gcc_assert (type_annotate_only);
608 return error_mark_node;
611 /* If an alignment is specified, use it if valid. Note that
612 exceptions are objects but don't have alignments. We must do this
613 before we validate the size, since the alignment can affect the
615 if (kind != E_Exception && Known_Alignment (gnat_entity))
617 gcc_assert (Present (Alignment (gnat_entity)));
618 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
619 TYPE_ALIGN (gnu_type));
620 gnu_type = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
621 "PAD", false, definition, true);
624 /* If we are defining the object, see if it has a Size value and
625 validate it if so. If we are not defining the object and a Size
626 clause applies, simply retrieve the value. We don't want to ignore
627 the clause and it is expected to have been validated already. Then
628 get the new type, if any. */
630 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
631 gnat_entity, VAR_DECL, false,
632 Has_Size_Clause (gnat_entity));
633 else if (Has_Size_Clause (gnat_entity))
634 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
639 = make_type_from_size (gnu_type, gnu_size,
640 Has_Biased_Representation (gnat_entity));
642 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
643 gnu_size = NULL_TREE;
646 /* If this object has self-referential size, it must be a record with
647 a default value. We are supposed to allocate an object of the
648 maximum size in this case unless it is a constant with an
649 initializing expression, in which case we can get the size from
650 that. Note that the resulting size may still be a variable, so
651 this may end up with an indirect allocation. */
652 if (No (Renamed_Object (gnat_entity))
653 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
655 if (gnu_expr && kind == E_Constant)
657 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
658 if (CONTAINS_PLACEHOLDER_P (size))
660 /* If the initializing expression is itself a constant,
661 despite having a nominal type with self-referential
662 size, we can get the size directly from it. */
663 if (TREE_CODE (gnu_expr) == COMPONENT_REF
664 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
667 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
668 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
669 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
670 || DECL_READONLY_ONCE_ELAB
671 (TREE_OPERAND (gnu_expr, 0))))
672 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
675 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
680 /* We may have no GNU_EXPR because No_Initialization is
681 set even though there's an Expression. */
682 else if (kind == E_Constant
683 && (Nkind (Declaration_Node (gnat_entity))
684 == N_Object_Declaration)
685 && Present (Expression (Declaration_Node (gnat_entity))))
687 = TYPE_SIZE (gnat_to_gnu_type
689 (Expression (Declaration_Node (gnat_entity)))));
692 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
697 /* If the size is zero bytes, make it one byte since some linkers have
698 trouble with zero-sized objects. If the object will have a
699 template, that will make it nonzero so don't bother. Also avoid
700 doing that for an object renaming or an object with an address
701 clause, as we would lose useful information on the view size
702 (e.g. for null array slices) and we are not allocating the object
705 && integer_zerop (gnu_size)
706 && !TREE_OVERFLOW (gnu_size))
707 || (TYPE_SIZE (gnu_type)
708 && integer_zerop (TYPE_SIZE (gnu_type))
709 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
710 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
711 || !Is_Array_Type (Etype (gnat_entity)))
712 && No (Renamed_Object (gnat_entity))
713 && No (Address_Clause (gnat_entity)))
714 gnu_size = bitsize_unit_node;
716 /* If this is an object with no specified size and alignment, and
717 if either it is atomic or we are not optimizing alignment for
718 space and it is composite and not an exception, an Out parameter
719 or a reference to another object, and the size of its type is a
720 constant, set the alignment to the smallest one which is not
721 smaller than the size, with an appropriate cap. */
722 if (!gnu_size && align == 0
723 && (Is_Atomic (gnat_entity)
724 || (!Optimize_Alignment_Space (gnat_entity)
725 && kind != E_Exception
726 && kind != E_Out_Parameter
727 && Is_Composite_Type (Etype (gnat_entity))
728 && !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
730 && No (Renamed_Object (gnat_entity))
731 && No (Address_Clause (gnat_entity))))
732 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
734 /* No point in jumping through all the hoops needed in order
735 to support BIGGEST_ALIGNMENT if we don't really have to.
736 So we cap to the smallest alignment that corresponds to
737 a known efficient memory access pattern of the target. */
738 unsigned int align_cap = Is_Atomic (gnat_entity)
740 : get_mode_alignment (ptr_mode);
742 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
743 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
746 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
748 /* But make sure not to under-align the object. */
749 if (align <= TYPE_ALIGN (gnu_type))
752 /* And honor the minimum valid atomic alignment, if any. */
753 #ifdef MINIMUM_ATOMIC_ALIGNMENT
754 else if (align < MINIMUM_ATOMIC_ALIGNMENT)
755 align = MINIMUM_ATOMIC_ALIGNMENT;
759 /* If the object is set to have atomic components, find the component
760 type and validate it.
762 ??? Note that we ignore Has_Volatile_Components on objects; it's
763 not at all clear what to do in that case. */
765 if (Has_Atomic_Components (gnat_entity))
767 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
768 ? TREE_TYPE (gnu_type) : gnu_type);
770 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
771 && TYPE_MULTI_ARRAY_P (gnu_inner))
772 gnu_inner = TREE_TYPE (gnu_inner);
774 check_ok_for_atomic (gnu_inner, gnat_entity, true);
777 /* Now check if the type of the object allows atomic access. Note
778 that we must test the type, even if this object has size and
779 alignment to allow such access, because we will be going
780 inside the padded record to assign to the object. We could fix
781 this by always copying via an intermediate value, but it's not
782 clear it's worth the effort. */
783 if (Is_Atomic (gnat_entity))
784 check_ok_for_atomic (gnu_type, gnat_entity, false);
786 /* If this is an aliased object with an unconstrained nominal subtype,
787 make a type that includes the template. */
788 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
789 && Is_Array_Type (Etype (gnat_entity))
790 && !type_annotate_only)
793 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
796 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
797 concat_name (gnu_entity_name,
801 #ifdef MINIMUM_ATOMIC_ALIGNMENT
802 /* If the size is a constant and no alignment is specified, force
803 the alignment to be the minimum valid atomic alignment. The
804 restriction on constant size avoids problems with variable-size
805 temporaries; if the size is variable, there's no issue with
806 atomic access. Also don't do this for a constant, since it isn't
807 necessary and can interfere with constant replacement. Finally,
808 do not do it for Out parameters since that creates an
809 size inconsistency with In parameters. */
810 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
811 && !FLOAT_TYPE_P (gnu_type)
812 && !const_flag && No (Renamed_Object (gnat_entity))
813 && !imported_p && No (Address_Clause (gnat_entity))
814 && kind != E_Out_Parameter
815 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
816 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
817 align = MINIMUM_ATOMIC_ALIGNMENT;
820 /* Make a new type with the desired size and alignment, if needed.
821 But do not take into account alignment promotions to compute the
822 size of the object. */
823 gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
824 if (gnu_size || align > 0)
825 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
826 "PAD", false, definition,
827 gnu_size ? true : false);
829 /* If this is a renaming, avoid as much as possible to create a new
830 object. However, in several cases, creating it is required.
831 This processing needs to be applied to the raw expression so
832 as to make it more likely to rename the underlying object. */
833 if (Present (Renamed_Object (gnat_entity)))
835 bool create_normal_object = false;
837 /* If the renamed object had padding, strip off the reference
838 to the inner object and reset our type. */
839 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
840 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
842 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
843 /* Strip useless conversions around the object. */
844 || (TREE_CODE (gnu_expr) == NOP_EXPR
845 && gnat_types_compatible_p
846 (TREE_TYPE (gnu_expr),
847 TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
849 gnu_expr = TREE_OPERAND (gnu_expr, 0);
850 gnu_type = TREE_TYPE (gnu_expr);
853 /* Case 1: If this is a constant renaming stemming from a function
854 call, treat it as a normal object whose initial value is what
855 is being renamed. RM 3.3 says that the result of evaluating a
856 function call is a constant object. As a consequence, it can
857 be the inner object of a constant renaming. In this case, the
858 renaming must be fully instantiated, i.e. it cannot be a mere
859 reference to (part of) an existing object. */
862 tree inner_object = gnu_expr;
863 while (handled_component_p (inner_object))
864 inner_object = TREE_OPERAND (inner_object, 0);
865 if (TREE_CODE (inner_object) == CALL_EXPR)
866 create_normal_object = true;
869 /* Otherwise, see if we can proceed with a stabilized version of
870 the renamed entity or if we need to make a new object. */
871 if (!create_normal_object)
873 tree maybe_stable_expr = NULL_TREE;
876 /* Case 2: If the renaming entity need not be materialized and
877 the renamed expression is something we can stabilize, use
878 that for the renaming. At the global level, we can only do
879 this if we know no SAVE_EXPRs need be made, because the
880 expression we return might be used in arbitrary conditional
881 branches so we must force the SAVE_EXPRs evaluation
882 immediately and this requires a function context. */
883 if (!Materialize_Entity (gnat_entity)
884 && (!global_bindings_p ()
885 || (staticp (gnu_expr)
886 && !TREE_SIDE_EFFECTS (gnu_expr))))
889 = maybe_stabilize_reference (gnu_expr, true, &stable);
893 gnu_decl = maybe_stable_expr;
894 /* ??? No DECL_EXPR is created so we need to mark
895 the expression manually lest it is shared. */
896 if (global_bindings_p ())
897 mark_visited (&gnu_decl);
898 save_gnu_tree (gnat_entity, gnu_decl, true);
903 /* The stabilization failed. Keep maybe_stable_expr
904 untouched here to let the pointer case below know
905 about that failure. */
908 /* Case 3: If this is a constant renaming and creating a
909 new object is allowed and cheap, treat it as a normal
910 object whose initial value is what is being renamed. */
912 && !Is_Composite_Type
913 (Underlying_Type (Etype (gnat_entity))))
916 /* Case 4: Make this into a constant pointer to the object we
917 are to rename and attach the object to the pointer if it is
918 something we can stabilize.
920 From the proper scope, attached objects will be referenced
921 directly instead of indirectly via the pointer to avoid
922 subtle aliasing problems with non-addressable entities.
923 They have to be stable because we must not evaluate the
924 variables in the expression every time the renaming is used.
925 The pointer is called a "renaming" pointer in this case.
927 In the rare cases where we cannot stabilize the renamed
928 object, we just make a "bare" pointer, and the renamed
929 entity is always accessed indirectly through it. */
932 gnu_type = build_reference_type (gnu_type);
933 inner_const_flag = TREE_READONLY (gnu_expr);
936 /* If the previous attempt at stabilizing failed, there
937 is no point in trying again and we reuse the result
938 without attaching it to the pointer. In this case it
939 will only be used as the initializing expression of
940 the pointer and thus needs no special treatment with
941 regard to multiple evaluations. */
942 if (maybe_stable_expr)
945 /* Otherwise, try to stabilize and attach the expression
946 to the pointer if the stabilization succeeds.
948 Note that this might introduce SAVE_EXPRs and we don't
949 check whether we're at the global level or not. This
950 is fine since we are building a pointer initializer and
951 neither the pointer nor the initializing expression can
952 be accessed before the pointer elaboration has taken
953 place in a correct program.
955 These SAVE_EXPRs will be evaluated at the right place
956 by either the evaluation of the initializer for the
957 non-global case or the elaboration code for the global
958 case, and will be attached to the elaboration procedure
959 in the latter case. */
963 = maybe_stabilize_reference (gnu_expr, true, &stable);
966 renamed_obj = maybe_stable_expr;
968 /* Attaching is actually performed downstream, as soon
969 as we have a VAR_DECL for the pointer we make. */
973 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
975 gnu_size = NULL_TREE;
981 /* Make a volatile version of this object's type if we are to make
982 the object volatile. We also interpret 13.3(19) conservatively
983 and disallow any optimizations for such a non-constant object. */
984 if ((Treat_As_Volatile (gnat_entity)
986 && (Is_Exported (gnat_entity)
987 || Is_Imported (gnat_entity)
988 || Present (Address_Clause (gnat_entity)))))
989 && !TYPE_VOLATILE (gnu_type))
990 gnu_type = build_qualified_type (gnu_type,
991 (TYPE_QUALS (gnu_type)
992 | TYPE_QUAL_VOLATILE));
994 /* If we are defining an aliased object whose nominal subtype is
995 unconstrained, the object is a record that contains both the
996 template and the object. If there is an initializer, it will
997 have already been converted to the right type, but we need to
998 create the template if there is no initializer. */
1001 && TREE_CODE (gnu_type) == RECORD_TYPE
1002 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
1003 /* Beware that padding might have been introduced
1004 via maybe_pad_type above. */
1005 || (TYPE_IS_PADDING_P (gnu_type)
1006 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1008 && TYPE_CONTAINS_TEMPLATE_P
1009 (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
1012 = TYPE_IS_PADDING_P (gnu_type)
1013 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1014 : TYPE_FIELDS (gnu_type);
1017 = gnat_build_constructor
1021 build_template (TREE_TYPE (template_field),
1022 TREE_TYPE (TREE_CHAIN (template_field)),
1027 /* Convert the expression to the type of the object except in the
1028 case where the object's type is unconstrained or the object's type
1029 is a padded record whose field is of self-referential size. In
1030 the former case, converting will generate unnecessary evaluations
1031 of the CONSTRUCTOR to compute the size and in the latter case, we
1032 want to only copy the actual data. */
1034 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1035 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1036 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1037 && TYPE_IS_PADDING_P (gnu_type)
1038 && (CONTAINS_PLACEHOLDER_P
1039 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1040 gnu_expr = convert (gnu_type, gnu_expr);
1042 /* If this is a pointer and it does not have an initializing
1043 expression, initialize it to NULL, unless the object is
1046 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
1047 && !Is_Imported (gnat_entity) && !gnu_expr)
1048 gnu_expr = integer_zero_node;
1050 /* If we are defining the object and it has an Address clause, we must
1051 either get the address expression from the saved GCC tree for the
1052 object if it has a Freeze node, or elaborate the address expression
1053 here since the front-end has guaranteed that the elaboration has no
1054 effects in this case. */
1055 if (definition && Present (Address_Clause (gnat_entity)))
1058 = present_gnu_tree (gnat_entity)
1059 ? get_gnu_tree (gnat_entity)
1060 : gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
1062 save_gnu_tree (gnat_entity, NULL_TREE, false);
1064 /* Ignore the size. It's either meaningless or was handled
1066 gnu_size = NULL_TREE;
1067 /* Convert the type of the object to a reference type that can
1068 alias everything as per 13.3(19). */
1070 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1071 gnu_address = convert (gnu_type, gnu_address);
1073 const_flag = !Is_Public (gnat_entity)
1074 || compile_time_known_address_p (Expression (Address_Clause
1077 /* If this is a deferred constant, the initializer is attached to
1079 if (kind == E_Constant && Present (Full_View (gnat_entity)))
1082 (Expression (Declaration_Node (Full_View (gnat_entity))));
1084 /* If we don't have an initializing expression for the underlying
1085 variable, the initializing expression for the pointer is the
1086 specified address. Otherwise, we have to make a COMPOUND_EXPR
1087 to assign both the address and the initial value. */
1089 gnu_expr = gnu_address;
1092 = build2 (COMPOUND_EXPR, gnu_type,
1094 (MODIFY_EXPR, NULL_TREE,
1095 build_unary_op (INDIRECT_REF, NULL_TREE,
1101 /* If it has an address clause and we are not defining it, mark it
1102 as an indirect object. Likewise for Stdcall objects that are
1104 if ((!definition && Present (Address_Clause (gnat_entity)))
1105 || (Is_Imported (gnat_entity)
1106 && Has_Stdcall_Convention (gnat_entity)))
1108 /* Convert the type of the object to a reference type that can
1109 alias everything as per 13.3(19). */
1111 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1112 gnu_size = NULL_TREE;
1114 /* No point in taking the address of an initializing expression
1115 that isn't going to be used. */
1116 gnu_expr = NULL_TREE;
1118 /* If it has an address clause whose value is known at compile
1119 time, make the object a CONST_DECL. This will avoid a
1120 useless dereference. */
1121 if (Present (Address_Clause (gnat_entity)))
1123 Node_Id gnat_address
1124 = Expression (Address_Clause (gnat_entity));
1126 if (compile_time_known_address_p (gnat_address))
1128 gnu_expr = gnat_to_gnu (gnat_address);
1136 /* If we are at top level and this object is of variable size,
1137 make the actual type a hidden pointer to the real type and
1138 make the initializer be a memory allocation and initialization.
1139 Likewise for objects we aren't defining (presumed to be
1140 external references from other packages), but there we do
1141 not set up an initialization.
1143 If the object's size overflows, make an allocator too, so that
1144 Storage_Error gets raised. Note that we will never free
1145 such memory, so we presume it never will get allocated. */
1147 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1148 global_bindings_p () || !definition
1151 && ! allocatable_size_p (gnu_size,
1152 global_bindings_p () || !definition
1155 gnu_type = build_reference_type (gnu_type);
1156 gnu_size = NULL_TREE;
1160 /* In case this was a aliased object whose nominal subtype is
1161 unconstrained, the pointer above will be a thin pointer and
1162 build_allocator will automatically make the template.
1164 If we have a template initializer only (that we made above),
1165 pretend there is none and rely on what build_allocator creates
1166 again anyway. Otherwise (if we have a full initializer), get
1167 the data part and feed that to build_allocator.
1169 If we are elaborating a mutable object, tell build_allocator to
1170 ignore a possibly simpler size from the initializer, if any, as
1171 we must allocate the maximum possible size in this case. */
1175 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1177 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1178 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1181 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1183 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1184 && 1 == VEC_length (constructor_elt,
1185 CONSTRUCTOR_ELTS (gnu_expr)))
1189 = build_component_ref
1190 (gnu_expr, NULL_TREE,
1191 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1195 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1196 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1197 && !Is_Imported (gnat_entity))
1198 post_error ("?Storage_Error will be raised at run-time!",
1202 = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1203 Empty, Empty, gnat_entity, mutable_p);
1207 gnu_expr = NULL_TREE;
1212 /* If this object would go into the stack and has an alignment larger
1213 than the largest stack alignment the back-end can honor, resort to
1214 a variable of "aligning type". */
1215 if (!global_bindings_p () && !static_p && definition
1216 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1218 /* Create the new variable. No need for extra room before the
1219 aligned field as this is in automatic storage. */
1221 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1222 TYPE_SIZE_UNIT (gnu_type),
1223 BIGGEST_ALIGNMENT, 0);
1225 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1226 NULL_TREE, gnu_new_type, NULL_TREE, false,
1227 false, false, false, NULL, gnat_entity);
1229 /* Initialize the aligned field if we have an initializer. */
1232 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1234 (gnu_new_var, NULL_TREE,
1235 TYPE_FIELDS (gnu_new_type), false),
1239 /* And setup this entity as a reference to the aligned field. */
1240 gnu_type = build_reference_type (gnu_type);
1243 (ADDR_EXPR, gnu_type,
1244 build_component_ref (gnu_new_var, NULL_TREE,
1245 TYPE_FIELDS (gnu_new_type), false));
1247 gnu_size = NULL_TREE;
1253 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1254 | TYPE_QUAL_CONST));
1256 /* Convert the expression to the type of the object except in the
1257 case where the object's type is unconstrained or the object's type
1258 is a padded record whose field is of self-referential size. In
1259 the former case, converting will generate unnecessary evaluations
1260 of the CONSTRUCTOR to compute the size and in the latter case, we
1261 want to only copy the actual data. */
1263 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1264 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1265 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1266 && TYPE_IS_PADDING_P (gnu_type)
1267 && (CONTAINS_PLACEHOLDER_P
1268 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1269 gnu_expr = convert (gnu_type, gnu_expr);
1271 /* If this name is external or there was a name specified, use it,
1272 unless this is a VMS exception object since this would conflict
1273 with the symbol we need to export in addition. Don't use the
1274 Interface_Name if there is an address clause (see CD30005). */
1275 if (!Is_VMS_Exception (gnat_entity)
1276 && ((Present (Interface_Name (gnat_entity))
1277 && No (Address_Clause (gnat_entity)))
1278 || (Is_Public (gnat_entity)
1279 && (!Is_Imported (gnat_entity)
1280 || Is_Exported (gnat_entity)))))
1281 gnu_ext_name = create_concat_name (gnat_entity, NULL);
1283 /* If this is constant initialized to a static constant and the
1284 object has an aggregate type, force it to be statically
1285 allocated. This will avoid an initialization copy. */
1286 if (!static_p && const_flag
1287 && gnu_expr && TREE_CONSTANT (gnu_expr)
1288 && AGGREGATE_TYPE_P (gnu_type)
1289 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1290 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1291 && TYPE_IS_PADDING_P (gnu_type)
1292 && !host_integerp (TYPE_SIZE_UNIT
1293 (TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
1296 gnu_decl = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1297 gnu_expr, const_flag,
1298 Is_Public (gnat_entity),
1299 imported_p || !definition,
1300 static_p, attr_list, gnat_entity);
1301 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1302 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1303 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1305 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1306 if (global_bindings_p ())
1308 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1309 record_global_renaming_pointer (gnu_decl);
1313 if (definition && DECL_SIZE_UNIT (gnu_decl)
1314 && get_block_jmpbuf_decl ()
1315 && (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
1316 || (flag_stack_check == GENERIC_STACK_CHECK
1317 && compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1318 STACK_CHECK_MAX_VAR_SIZE) > 0)))
1319 add_stmt_with_node (build_call_1_expr
1320 (update_setjmp_buf_decl,
1321 build_unary_op (ADDR_EXPR, NULL_TREE,
1322 get_block_jmpbuf_decl ())),
1325 /* If we are defining an Out parameter and we're not optimizing,
1326 create a fake PARM_DECL for debugging purposes and make it
1327 point to the VAR_DECL. Suppress debug info for the latter
1328 but make sure it will still live on the stack so it can be
1329 accessed from within the debugger through the PARM_DECL. */
1330 if (kind == E_Out_Parameter && definition && !optimize)
1332 tree param = create_param_decl (gnu_entity_name, gnu_type, false);
1333 gnat_pushdecl (param, gnat_entity);
1334 SET_DECL_VALUE_EXPR (param, gnu_decl);
1335 DECL_HAS_VALUE_EXPR_P (param) = 1;
1337 debug_info_p = false;
1339 DECL_IGNORED_P (param) = 1;
1340 TREE_ADDRESSABLE (gnu_decl) = 1;
1343 /* If this is a public constant or we're not optimizing and we're not
1344 making a VAR_DECL for it, make one just for export or debugger use.
1345 Likewise if the address is taken or if either the object or type is
1346 aliased. Make an external declaration for a reference, unless this
1347 is a Standard entity since there no real symbol at the object level
1349 if (TREE_CODE (gnu_decl) == CONST_DECL
1350 && (definition || Sloc (gnat_entity) > Standard_Location)
1351 && ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
1353 || Address_Taken (gnat_entity)
1354 || Is_Aliased (gnat_entity)
1355 || Is_Aliased (Etype (gnat_entity))))
1358 = create_true_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1359 gnu_expr, true, Is_Public (gnat_entity),
1360 !definition, static_p, NULL,
1363 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1365 /* As debugging information will be generated for the variable,
1366 do not generate information for the constant. */
1367 DECL_IGNORED_P (gnu_decl) = 1;
1370 /* If this is declared in a block that contains a block with an
1371 exception handler, we must force this variable in memory to
1372 suppress an invalid optimization. */
1373 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1374 && Exception_Mechanism != Back_End_Exceptions)
1375 TREE_ADDRESSABLE (gnu_decl) = 1;
1377 gnu_type = TREE_TYPE (gnu_decl);
1379 /* Back-annotate Alignment and Esize of the object if not already
1380 known, except for when the object is actually a pointer to the
1381 real object, since alignment and size of a pointer don't have
1382 anything to do with those of the designated object. Note that
1383 we pick the values of the type, not those of the object, to
1384 shield ourselves from low-level platform-dependent adjustments
1385 like alignment promotion. This is both consistent with all the
1386 treatment above, where alignment and size are set on the type of
1387 the object and not on the object directly, and makes it possible
1388 to support confirming representation clauses in all cases. */
1390 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1391 Set_Alignment (gnat_entity,
1392 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1394 if (!used_by_ref && Unknown_Esize (gnat_entity))
1396 if (TREE_CODE (gnu_type) == RECORD_TYPE
1397 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1399 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1401 Set_Esize (gnat_entity, annotate_value (gnu_object_size));
1407 /* Return a TYPE_DECL for "void" that we previously made. */
1408 gnu_decl = TYPE_NAME (void_type_node);
1411 case E_Enumeration_Type:
1412 /* A special case: for the types Character and Wide_Character in
1413 Standard, we do not list all the literals. So if the literals
1414 are not specified, make this an unsigned type. */
1415 if (No (First_Literal (gnat_entity)))
1417 gnu_type = make_unsigned_type (esize);
1418 TYPE_NAME (gnu_type) = gnu_entity_name;
1420 /* Set TYPE_STRING_FLAG for Character and Wide_Character types.
1421 This is needed by the DWARF-2 back-end to distinguish between
1422 unsigned integer types and character types. */
1423 TYPE_STRING_FLAG (gnu_type) = 1;
1427 /* Normal case of non-character type or non-Standard character type. */
1429 /* Here we have a list of enumeral constants in First_Literal.
1430 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1431 the list to be placed into TYPE_FIELDS. Each node in the list
1432 is a TREE_LIST whose TREE_VALUE is the literal name and whose
1433 TREE_PURPOSE is the value of the literal. */
1435 Entity_Id gnat_literal;
1436 tree gnu_literal_list = NULL_TREE;
1438 if (Is_Unsigned_Type (gnat_entity))
1439 gnu_type = make_unsigned_type (esize);
1441 gnu_type = make_signed_type (esize);
1443 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1445 for (gnat_literal = First_Literal (gnat_entity);
1446 Present (gnat_literal);
1447 gnat_literal = Next_Literal (gnat_literal))
1449 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1452 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1453 gnu_type, gnu_value, true, false, false,
1454 false, NULL, gnat_literal);
1456 save_gnu_tree (gnat_literal, gnu_literal, false);
1457 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1458 gnu_value, gnu_literal_list);
1461 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1463 /* Note that the bounds are updated at the end of this function
1464 to avoid an infinite recursion since they refer to the type. */
1468 case E_Signed_Integer_Type:
1469 case E_Ordinary_Fixed_Point_Type:
1470 case E_Decimal_Fixed_Point_Type:
1471 /* For integer types, just make a signed type the appropriate number
1473 gnu_type = make_signed_type (esize);
1476 case E_Modular_Integer_Type:
1478 /* For modular types, make the unsigned type of the proper number
1479 of bits and then set up the modulus, if required. */
1480 tree gnu_modulus, gnu_high = NULL_TREE;
1482 /* Packed array types are supposed to be subtypes only. */
1483 gcc_assert (!Is_Packed_Array_Type (gnat_entity));
1485 gnu_type = make_unsigned_type (esize);
1487 /* Get the modulus in this type. If it overflows, assume it is because
1488 it is equal to 2**Esize. Note that there is no overflow checking
1489 done on unsigned type, so we detect the overflow by looking for
1490 a modulus of zero, which is otherwise invalid. */
1491 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1493 if (!integer_zerop (gnu_modulus))
1495 TYPE_MODULAR_P (gnu_type) = 1;
1496 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1497 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1498 convert (gnu_type, integer_one_node));
1501 /* If the upper bound is not maximal, make an extra subtype. */
1503 && !tree_int_cst_equal (gnu_high, TYPE_MAX_VALUE (gnu_type)))
1505 tree gnu_subtype = make_unsigned_type (esize);
1506 TYPE_MAX_VALUE (gnu_subtype) = gnu_high;
1507 TREE_TYPE (gnu_subtype) = gnu_type;
1508 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1509 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1510 gnu_type = gnu_subtype;
1515 case E_Signed_Integer_Subtype:
1516 case E_Enumeration_Subtype:
1517 case E_Modular_Integer_Subtype:
1518 case E_Ordinary_Fixed_Point_Subtype:
1519 case E_Decimal_Fixed_Point_Subtype:
1521 /* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
1522 not want to call build_range_type since we would like each subtype
1523 node to be distinct. ??? Historically this was in preparation for
1524 when memory aliasing is implemented, but that's obsolete now given
1525 the call to relate_alias_sets below.
1527 The TREE_TYPE field of the INTEGER_TYPE points to the base type;
1528 this fact is used by the arithmetic conversion functions.
1530 We elaborate the Ancestor_Subtype if it is not in the current unit
1531 and one of our bounds is non-static. We do this to ensure consistent
1532 naming in the case where several subtypes share the same bounds, by
1533 elaborating the first such subtype first, thus using its name. */
1536 && Present (Ancestor_Subtype (gnat_entity))
1537 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1538 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1539 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1540 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
1542 gnu_type = make_node (INTEGER_TYPE);
1543 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1545 /* This should be an unsigned type if the base type is unsigned or
1546 if the lower bound is constant and non-negative or if the type
1548 TYPE_UNSIGNED (gnu_type) = (Is_Unsigned_Type (Etype (gnat_entity))
1549 || Is_Unsigned_Type (gnat_entity)
1550 || Has_Biased_Representation (gnat_entity));
1552 /* Set the precision to the Esize except for bit-packed arrays and
1553 subtypes of Standard.Boolean. */
1554 if (Is_Packed_Array_Type (gnat_entity)
1555 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1556 esize = UI_To_Int (RM_Size (gnat_entity));
1557 else if (Is_Boolean_Type (gnat_entity))
1560 TYPE_PRECISION (gnu_type) = esize;
1562 TYPE_MIN_VALUE (gnu_type)
1563 = convert (TREE_TYPE (gnu_type),
1564 elaborate_expression (Type_Low_Bound (gnat_entity),
1565 gnat_entity, get_identifier ("L"),
1567 Needs_Debug_Info (gnat_entity)));
1569 TYPE_MAX_VALUE (gnu_type)
1570 = convert (TREE_TYPE (gnu_type),
1571 elaborate_expression (Type_High_Bound (gnat_entity),
1572 gnat_entity, get_identifier ("U"),
1574 Needs_Debug_Info (gnat_entity)));
1576 /* One of the above calls might have caused us to be elaborated,
1577 so don't blow up if so. */
1578 if (present_gnu_tree (gnat_entity))
1580 maybe_present = true;
1584 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1585 = Has_Biased_Representation (gnat_entity);
1587 layout_type (gnu_type);
1589 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
1590 TYPE_STUB_DECL (gnu_type)
1591 = create_type_stub_decl (gnu_entity_name, gnu_type);
1593 /* Inherit our alias set from what we're a subtype of. Subtypes
1594 are not different types and a pointer can designate any instance
1595 within a subtype hierarchy. */
1596 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1598 /* For a packed array, make the original array type a parallel type. */
1600 && Is_Packed_Array_Type (gnat_entity)
1601 && present_gnu_tree (Original_Array_Type (gnat_entity)))
1602 add_parallel_type (TYPE_STUB_DECL (gnu_type),
1604 (Original_Array_Type (gnat_entity)));
1606 /* If the type we are dealing with represents a bit-packed array,
1607 we need to have the bits left justified on big-endian targets
1608 and right justified on little-endian targets. We also need to
1609 ensure that when the value is read (e.g. for comparison of two
1610 such values), we only get the good bits, since the unused bits
1611 are uninitialized. Both goals are accomplished by wrapping up
1612 the modular type in an enclosing record type. */
1613 if (Is_Packed_Array_Type (gnat_entity)
1614 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1616 tree gnu_field_type, gnu_field;
1618 /* Set the RM size before wrapping up the type. */
1619 TYPE_RM_SIZE (gnu_type)
1620 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1621 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1622 gnu_field_type = gnu_type;
1624 gnu_type = make_node (RECORD_TYPE);
1625 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1627 /* Propagate the alignment of the modular type to the record.
1628 This means that bit-packed arrays have "ceil" alignment for
1629 their size, which may seem counter-intuitive but makes it
1630 possible to easily overlay them on modular types. */
1631 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1632 TYPE_PACKED (gnu_type) = 1;
1634 /* Create a stripped-down declaration of the original type, mainly
1636 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1637 debug_info_p, gnat_entity);
1639 /* Don't notify the field as "addressable", since we won't be taking
1640 it's address and it would prevent create_field_decl from making a
1642 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1643 gnu_field_type, gnu_type, 1, 0, 0, 0);
1645 /* Do not finalize it until after the parallel type is added. */
1646 finish_record_type (gnu_type, gnu_field, 0, true);
1647 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1649 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1651 /* Make the original array type a parallel type. */
1653 && present_gnu_tree (Original_Array_Type (gnat_entity)))
1654 add_parallel_type (TYPE_STUB_DECL (gnu_type),
1656 (Original_Array_Type (gnat_entity)));
1658 rest_of_record_type_compilation (gnu_type);
1661 /* If the type we are dealing with has got a smaller alignment than the
1662 natural one, we need to wrap it up in a record type and under-align
1663 the latter. We reuse the padding machinery for this purpose. */
1664 else if (Present (Alignment_Clause (gnat_entity))
1665 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1666 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1667 && align < TYPE_ALIGN (gnu_type))
1669 tree gnu_field_type, gnu_field;
1671 /* Set the RM size before wrapping up the type. */
1672 TYPE_RM_SIZE (gnu_type)
1673 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1674 gnu_field_type = gnu_type;
1676 gnu_type = make_node (RECORD_TYPE);
1677 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1679 TYPE_ALIGN (gnu_type) = align;
1680 TYPE_PACKED (gnu_type) = 1;
1682 /* Create a stripped-down declaration of the original type, mainly
1684 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1685 debug_info_p, gnat_entity);
1687 /* Don't notify the field as "addressable", since we won't be taking
1688 it's address and it would prevent create_field_decl from making a
1690 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1691 gnu_field_type, gnu_type, 1, 0, 0, 0);
1693 finish_record_type (gnu_type, gnu_field, 0, false);
1694 TYPE_IS_PADDING_P (gnu_type) = 1;
1696 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1699 /* Otherwise reset the alignment lest we computed it above. */
1705 case E_Floating_Point_Type:
1706 /* If this is a VAX floating-point type, use an integer of the proper
1707 size. All the operations will be handled with ASM statements. */
1708 if (Vax_Float (gnat_entity))
1710 gnu_type = make_signed_type (esize);
1711 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1712 SET_TYPE_DIGITS_VALUE (gnu_type,
1713 UI_To_gnu (Digits_Value (gnat_entity),
1718 /* The type of the Low and High bounds can be our type if this is
1719 a type from Standard, so set them at the end of the function. */
1720 gnu_type = make_node (REAL_TYPE);
1721 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1722 layout_type (gnu_type);
1725 case E_Floating_Point_Subtype:
1726 if (Vax_Float (gnat_entity))
1728 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1734 && Present (Ancestor_Subtype (gnat_entity))
1735 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1736 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1737 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1738 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1741 gnu_type = make_node (REAL_TYPE);
1742 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1743 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1745 TYPE_MIN_VALUE (gnu_type)
1746 = convert (TREE_TYPE (gnu_type),
1747 elaborate_expression (Type_Low_Bound (gnat_entity),
1748 gnat_entity, get_identifier ("L"),
1750 Needs_Debug_Info (gnat_entity)));
1752 TYPE_MAX_VALUE (gnu_type)
1753 = convert (TREE_TYPE (gnu_type),
1754 elaborate_expression (Type_High_Bound (gnat_entity),
1755 gnat_entity, get_identifier ("U"),
1757 Needs_Debug_Info (gnat_entity)));
1759 /* One of the above calls might have caused us to be elaborated,
1760 so don't blow up if so. */
1761 if (present_gnu_tree (gnat_entity))
1763 maybe_present = true;
1767 layout_type (gnu_type);
1769 /* Inherit our alias set from what we're a subtype of, as for
1770 integer subtypes. */
1771 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1775 /* Array and String Types and Subtypes
1777 Unconstrained array types are represented by E_Array_Type and
1778 constrained array types are represented by E_Array_Subtype. There
1779 are no actual objects of an unconstrained array type; all we have
1780 are pointers to that type.
1782 The following fields are defined on array types and subtypes:
1784 Component_Type Component type of the array.
1785 Number_Dimensions Number of dimensions (an int).
1786 First_Index Type of first index. */
1791 Entity_Id gnat_ind_subtype;
1792 Entity_Id gnat_ind_base_subtype;
1793 int ndim = Number_Dimensions (gnat_entity);
1795 = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
1797 = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
1799 tree gnu_template_fields = NULL_TREE;
1800 tree gnu_template_type = make_node (RECORD_TYPE);
1801 tree gnu_template_reference;
1802 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1803 tree gnu_fat_type = make_node (RECORD_TYPE);
1804 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
1805 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree));
1806 tree gnu_max_size = size_one_node, gnu_max_size_unit;
1807 tree gnu_comp_size, tem;
1809 TYPE_NAME (gnu_template_type)
1810 = create_concat_name (gnat_entity, "XUB");
1812 /* Make a node for the array. If we are not defining the array
1813 suppress expanding incomplete types. */
1814 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1817 defer_incomplete_level++, this_deferred = true;
1819 /* Build the fat pointer type. Use a "void *" object instead of
1820 a pointer to the array type since we don't have the array type
1821 yet (it will reference the fat pointer via the bounds). */
1822 tem = chainon (chainon (NULL_TREE,
1823 create_field_decl (get_identifier ("P_ARRAY"),
1825 gnu_fat_type, 0, 0, 0, 0)),
1826 create_field_decl (get_identifier ("P_BOUNDS"),
1828 gnu_fat_type, 0, 0, 0, 0));
1830 /* Make sure we can put this into a register. */
1831 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1833 /* Do not finalize this record type since the types of its fields
1834 are still incomplete at this point. */
1835 finish_record_type (gnu_fat_type, tem, 0, true);
1836 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1838 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1839 is the fat pointer. This will be used to access the individual
1840 fields once we build them. */
1841 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1842 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1843 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1844 gnu_template_reference
1845 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1846 TREE_READONLY (gnu_template_reference) = 1;
1848 /* Now create the GCC type for each index and add the fields for
1849 that index to the template. */
1850 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
1851 gnat_ind_base_subtype
1852 = First_Index (Implementation_Base_Type (gnat_entity));
1853 index < ndim && index >= 0;
1855 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
1856 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
1858 char field_name[10];
1859 tree gnu_ind_subtype
1860 = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
1861 tree gnu_base_subtype
1862 = get_unpadded_type (Etype (gnat_ind_base_subtype));
1864 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
1866 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
1867 tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
1869 /* Make the FIELD_DECLs for the minimum and maximum of this
1870 type and then make extractions of that field from the
1872 sprintf (field_name, "LB%d", index);
1873 gnu_min_field = create_field_decl (get_identifier (field_name),
1875 gnu_template_type, 0, 0, 0, 0);
1876 field_name[0] = 'U';
1877 gnu_max_field = create_field_decl (get_identifier (field_name),
1879 gnu_template_type, 0, 0, 0, 0);
1881 Sloc_to_locus (Sloc (gnat_entity),
1882 &DECL_SOURCE_LOCATION (gnu_min_field));
1883 Sloc_to_locus (Sloc (gnat_entity),
1884 &DECL_SOURCE_LOCATION (gnu_max_field));
1885 gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
1887 /* We can't use build_component_ref here since the template
1888 type isn't complete yet. */
1889 gnu_min = build3 (COMPONENT_REF, gnu_ind_subtype,
1890 gnu_template_reference, gnu_min_field,
1892 gnu_max = build3 (COMPONENT_REF, gnu_ind_subtype,
1893 gnu_template_reference, gnu_max_field,
1895 TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
1897 /* Make a range type with the new ranges, but using
1898 the Ada subtype. Then we convert to sizetype. */
1899 gnu_index_types[index]
1900 = create_index_type (convert (sizetype, gnu_min),
1901 convert (sizetype, gnu_max),
1902 build_range_type (gnu_ind_subtype,
1905 /* Update the maximum size of the array, in elements. */
1907 = size_binop (MULT_EXPR, gnu_max_size,
1908 size_binop (PLUS_EXPR, size_one_node,
1909 size_binop (MINUS_EXPR, gnu_base_max,
1912 TYPE_NAME (gnu_index_types[index])
1913 = create_concat_name (gnat_entity, field_name);
1916 for (index = 0; index < ndim; index++)
1918 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1920 /* Install all the fields into the template. */
1921 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1922 TYPE_READONLY (gnu_template_type) = 1;
1924 /* Now make the array of arrays and update the pointer to the array
1925 in the fat pointer. Note that it is the first field. */
1926 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1928 /* Try to get a smaller form of the component if needed. */
1929 if ((Is_Packed (gnat_entity)
1930 || Has_Component_Size_Clause (gnat_entity))
1931 && !Is_Bit_Packed_Array (gnat_entity)
1932 && !Has_Aliased_Components (gnat_entity)
1933 && !Strict_Alignment (Component_Type (gnat_entity))
1934 && TREE_CODE (tem) == RECORD_TYPE
1935 && !TYPE_IS_FAT_POINTER_P (tem)
1936 && host_integerp (TYPE_SIZE (tem), 1))
1937 tem = make_packable_type (tem, false);
1939 if (Has_Atomic_Components (gnat_entity))
1940 check_ok_for_atomic (tem, gnat_entity, true);
1942 /* Get and validate any specified Component_Size, but if Packed,
1943 ignore it since the front end will have taken care of it. */
1945 = validate_size (Component_Size (gnat_entity), tem,
1947 (Is_Bit_Packed_Array (gnat_entity)
1948 ? TYPE_DECL : VAR_DECL),
1949 true, Has_Component_Size_Clause (gnat_entity));
1951 /* If the component type is a RECORD_TYPE that has a self-referential
1952 size, use the maximum size. */
1954 && TREE_CODE (tem) == RECORD_TYPE
1955 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1956 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1958 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1960 tree orig_tem = tem;
1961 unsigned int max_align;
1963 /* If an alignment is specified, use it as a cap on the component
1964 type so that it can be honored for the whole type. But ignore
1965 it for the original type of packed array types. */
1966 if (No (Packed_Array_Type (gnat_entity))
1967 && Known_Alignment (gnat_entity))
1968 max_align = validate_alignment (Alignment (gnat_entity),
1973 tem = make_type_from_size (tem, gnu_comp_size, false);
1974 if (max_align > 0 && TYPE_ALIGN (tem) > max_align)
1979 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
1980 "C_PAD", false, definition, true);
1982 /* If a padding record was made, declare it now since it will
1983 never be declared otherwise. This is necessary to ensure
1984 that its subtrees are properly marked. */
1985 if (tem != orig_tem)
1986 create_type_decl (TYPE_NAME (tem), tem, NULL, true,
1987 debug_info_p, gnat_entity);
1990 if (Has_Volatile_Components (gnat_entity))
1991 tem = build_qualified_type (tem,
1992 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
1994 /* If Component_Size is not already specified, annotate it with the
1995 size of the component. */
1996 if (Unknown_Component_Size (gnat_entity))
1997 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
1999 gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
2000 size_binop (MULT_EXPR, gnu_max_size,
2001 TYPE_SIZE_UNIT (tem)));
2002 gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
2003 size_binop (MULT_EXPR,
2004 convert (bitsizetype,
2008 for (index = ndim - 1; index >= 0; index--)
2010 tem = build_array_type (tem, gnu_index_types[index]);
2011 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
2012 if (array_type_has_nonaliased_component (gnat_entity, tem))
2013 TYPE_NONALIASED_COMPONENT (tem) = 1;
2016 /* If an alignment is specified, use it if valid. But ignore it
2017 for the original type of packed array types. If the alignment
2018 was requested with an explicit alignment clause, state so. */
2019 if (No (Packed_Array_Type (gnat_entity))
2020 && Known_Alignment (gnat_entity))
2023 = validate_alignment (Alignment (gnat_entity), gnat_entity,
2025 if (Present (Alignment_Clause (gnat_entity)))
2026 TYPE_USER_ALIGN (tem) = 1;
2029 TYPE_CONVENTION_FORTRAN_P (tem)
2030 = (Convention (gnat_entity) == Convention_Fortran);
2031 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
2033 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
2034 corresponding fat pointer. */
2035 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
2036 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
2037 SET_TYPE_MODE (gnu_type, BLKmode);
2038 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
2039 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
2041 /* If the maximum size doesn't overflow, use it. */
2042 if (TREE_CODE (gnu_max_size) == INTEGER_CST
2043 && !TREE_OVERFLOW (gnu_max_size))
2045 = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
2046 if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2047 && !TREE_OVERFLOW (gnu_max_size_unit))
2048 TYPE_SIZE_UNIT (tem)
2049 = size_binop (MIN_EXPR, gnu_max_size_unit,
2050 TYPE_SIZE_UNIT (tem));
2052 create_type_decl (create_concat_name (gnat_entity, "XUA"),
2053 tem, NULL, !Comes_From_Source (gnat_entity),
2054 debug_info_p, gnat_entity);
2056 /* Give the fat pointer type a name. */
2057 create_type_decl (create_concat_name (gnat_entity, "XUP"),
2058 gnu_fat_type, NULL, true,
2059 debug_info_p, gnat_entity);
2061 /* Create the type to be used as what a thin pointer designates: an
2062 record type for the object and its template with the field offsets
2063 shifted to have the template at a negative offset. */
2064 tem = build_unc_object_type (gnu_template_type, tem,
2065 create_concat_name (gnat_entity, "XUT"));
2066 shift_unc_components_for_thin_pointers (tem);
2068 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
2069 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
2071 /* Give the thin pointer type a name. */
2072 create_type_decl (create_concat_name (gnat_entity, "XUX"),
2073 build_pointer_type (tem), NULL, true,
2074 debug_info_p, gnat_entity);
2078 case E_String_Subtype:
2079 case E_Array_Subtype:
2081 /* This is the actual data type for array variables. Multidimensional
2082 arrays are implemented in the gnu tree as arrays of arrays. Note
2083 that for the moment arrays which have sparse enumeration subtypes as
2084 index components create sparse arrays, which is obviously space
2085 inefficient but so much easier to code for now.
2087 Also note that the subtype never refers to the unconstrained
2088 array type, which is somewhat at variance with Ada semantics.
2090 First check to see if this is simply a renaming of the array
2091 type. If so, the result is the array type. */
2093 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
2094 if (!Is_Constrained (gnat_entity))
2098 Entity_Id gnat_ind_subtype;
2099 Entity_Id gnat_ind_base_subtype;
2100 int dim = Number_Dimensions (gnat_entity);
2102 = (Convention (gnat_entity) == Convention_Fortran) ? dim - 1 : 0;
2104 = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
2106 tree gnu_base_type = gnu_type;
2107 tree *gnu_index_type = (tree *) alloca (dim * sizeof (tree));
2108 tree gnu_max_size = size_one_node, gnu_max_size_unit;
2109 bool need_index_type_struct = false;
2110 bool max_overflow = false;
2112 /* First create the gnu types for each index. Create types for
2113 debugging information to point to the index types if the
2114 are not integer types, have variable bounds, or are
2115 wider than sizetype. */
2117 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
2118 gnat_ind_base_subtype
2119 = First_Index (Implementation_Base_Type (gnat_entity));
2120 index < dim && index >= 0;
2122 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
2123 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
2125 tree gnu_index_subtype
2126 = get_unpadded_type (Etype (gnat_ind_subtype));
2128 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
2130 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
2131 tree gnu_base_subtype
2132 = get_unpadded_type (Etype (gnat_ind_base_subtype));
2134 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
2136 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
2137 tree gnu_base_type = get_base_type (gnu_base_subtype);
2138 tree gnu_base_base_min
2139 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
2140 tree gnu_base_base_max
2141 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
2145 /* If the minimum and maximum values both overflow in
2146 SIZETYPE, but the difference in the original type
2147 does not overflow in SIZETYPE, ignore the overflow
2149 if ((TYPE_PRECISION (gnu_index_subtype)
2150 > TYPE_PRECISION (sizetype)
2151 || TYPE_UNSIGNED (gnu_index_subtype)
2152 != TYPE_UNSIGNED (sizetype))
2153 && TREE_CODE (gnu_min) == INTEGER_CST
2154 && TREE_CODE (gnu_max) == INTEGER_CST
2155 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2157 (fold_build2 (MINUS_EXPR, gnu_index_subtype,
2158 TYPE_MAX_VALUE (gnu_index_subtype),
2159 TYPE_MIN_VALUE (gnu_index_subtype))))
2161 TREE_OVERFLOW (gnu_min) = 0;
2162 TREE_OVERFLOW (gnu_max) = 0;
2163 if (tree_int_cst_lt (gnu_max, gnu_min))
2165 gnu_min = size_one_node;
2166 gnu_max = size_zero_node;
2171 /* Similarly, if the range is null, use bounds of 1..0 for
2172 the sizetype bounds. */
2173 else if ((TYPE_PRECISION (gnu_index_subtype)
2174 > TYPE_PRECISION (sizetype)
2175 || TYPE_UNSIGNED (gnu_index_subtype)
2176 != TYPE_UNSIGNED (sizetype))
2177 && TREE_CODE (gnu_min) == INTEGER_CST
2178 && TREE_CODE (gnu_max) == INTEGER_CST
2179 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2180 && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
2181 TYPE_MIN_VALUE (gnu_index_subtype)))
2183 gnu_min = size_one_node;
2184 gnu_max = size_zero_node;
2188 /* See if the base array type is already flat. If it is, we
2189 are probably compiling an ACATS test, but it will cause the
2190 code below to malfunction if we don't handle it specially. */
2191 else if (TREE_CODE (gnu_base_min) == INTEGER_CST
2192 && TREE_CODE (gnu_base_max) == INTEGER_CST
2193 && !TREE_OVERFLOW (gnu_base_min)
2194 && !TREE_OVERFLOW (gnu_base_max)
2195 && tree_int_cst_lt (gnu_base_max, gnu_base_min))
2197 gnu_min = size_one_node;
2198 gnu_max = size_zero_node;
2204 /* Now compute the size of this bound. We need to provide
2205 GCC with an upper bound to use but have to deal with the
2206 "superflat" case. There are three ways to do this. If
2207 we can prove that the array can never be superflat, we
2208 can just use the high bound of the index subtype. If we
2209 can prove that the low bound minus one can't overflow,
2210 we can do this as MAX (hb, lb - 1). Otherwise, we have
2211 to use the expression hb >= lb ? hb : lb - 1. */
2212 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2214 /* If gnu_high is now an integer which overflowed, the array
2215 cannot be superflat. */
2216 if (TREE_CODE (gnu_high) == INTEGER_CST
2217 && TREE_OVERFLOW (gnu_high))
2220 /* gnu_high cannot overflow if the subtype is unsigned since
2221 sizetype is signed, or if it is now a constant that hasn't
2223 else if (TYPE_UNSIGNED (gnu_base_subtype)
2224 || TREE_CODE (gnu_high) == INTEGER_CST)
2225 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2229 = build_cond_expr (sizetype,
2230 build_binary_op (GE_EXPR,
2236 gnu_index_type[index]
2237 = create_index_type (gnu_min, gnu_high, gnu_index_subtype,
2240 /* Also compute the maximum size of the array. Here we
2241 see if any constraint on the index type of the base type
2242 can be used in the case of self-referential bound on
2243 the index type of the subtype. We look for a non-"infinite"
2244 and non-self-referential bound from any type involved and
2245 handle each bound separately. */
2247 if ((TREE_CODE (gnu_min) == INTEGER_CST
2248 && !TREE_OVERFLOW (gnu_min)
2249 && !operand_equal_p (gnu_min, gnu_base_base_min, 0))
2250 || !CONTAINS_PLACEHOLDER_P (gnu_min)
2251 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2252 && !TREE_OVERFLOW (gnu_base_min)))
2253 gnu_base_min = gnu_min;
2255 if ((TREE_CODE (gnu_max) == INTEGER_CST
2256 && !TREE_OVERFLOW (gnu_max)
2257 && !operand_equal_p (gnu_max, gnu_base_base_max, 0))
2258 || !CONTAINS_PLACEHOLDER_P (gnu_max)
2259 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2260 && !TREE_OVERFLOW (gnu_base_max)))
2261 gnu_base_max = gnu_max;
2263 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2264 && TREE_OVERFLOW (gnu_base_min))
2265 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2266 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2267 && TREE_OVERFLOW (gnu_base_max))
2268 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2269 max_overflow = true;
2271 gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
2272 gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
2275 = size_binop (MAX_EXPR,
2276 size_binop (PLUS_EXPR, size_one_node,
2277 size_binop (MINUS_EXPR, gnu_base_max,
2281 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2282 && TREE_OVERFLOW (gnu_this_max))
2283 max_overflow = true;
2286 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2288 if (!integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
2289 || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
2291 || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
2292 || (TREE_TYPE (gnu_index_subtype)
2293 && (TREE_CODE (TREE_TYPE (gnu_index_subtype))
2295 || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
2296 || (TYPE_PRECISION (gnu_index_subtype)
2297 > TYPE_PRECISION (sizetype)))
2298 need_index_type_struct = true;
2301 /* Then flatten: create the array of arrays. For an array type
2302 used to implement a packed array, get the component type from
2303 the original array type since the representation clauses that
2304 can affect it are on the latter. */
2305 if (Is_Packed_Array_Type (gnat_entity)
2306 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2308 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2309 for (index = dim - 1; index >= 0; index--)
2310 gnu_type = TREE_TYPE (gnu_type);
2312 /* One of the above calls might have caused us to be elaborated,
2313 so don't blow up if so. */
2314 if (present_gnu_tree (gnat_entity))
2316 maybe_present = true;
2324 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2326 /* One of the above calls might have caused us to be elaborated,
2327 so don't blow up if so. */
2328 if (present_gnu_tree (gnat_entity))
2330 maybe_present = true;
2334 /* Try to get a smaller form of the component if needed. */
2335 if ((Is_Packed (gnat_entity)
2336 || Has_Component_Size_Clause (gnat_entity))
2337 && !Is_Bit_Packed_Array (gnat_entity)
2338 && !Has_Aliased_Components (gnat_entity)
2339 && !Strict_Alignment (Component_Type (gnat_entity))
2340 && TREE_CODE (gnu_type) == RECORD_TYPE
2341 && !TYPE_IS_FAT_POINTER_P (gnu_type)
2342 && host_integerp (TYPE_SIZE (gnu_type), 1))
2343 gnu_type = make_packable_type (gnu_type, false);
2345 /* Get and validate any specified Component_Size, but if Packed,
2346 ignore it since the front end will have taken care of it. */
2348 = validate_size (Component_Size (gnat_entity), gnu_type,
2350 (Is_Bit_Packed_Array (gnat_entity)
2351 ? TYPE_DECL : VAR_DECL), true,
2352 Has_Component_Size_Clause (gnat_entity));
2354 /* If the component type is a RECORD_TYPE that has a
2355 self-referential size, use the maximum size. */
2357 && TREE_CODE (gnu_type) == RECORD_TYPE
2358 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2359 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2361 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2363 tree orig_gnu_type = gnu_type;
2364 unsigned int max_align;
2366 /* If an alignment is specified, use it as a cap on the
2367 component type so that it can be honored for the whole
2368 type. But ignore it for the original type of packed
2370 if (No (Packed_Array_Type (gnat_entity))
2371 && Known_Alignment (gnat_entity))
2372 max_align = validate_alignment (Alignment (gnat_entity),
2378 = make_type_from_size (gnu_type, gnu_comp_size, false);
2379 if (max_align > 0 && TYPE_ALIGN (gnu_type) > max_align)
2380 gnu_type = orig_gnu_type;
2382 orig_gnu_type = gnu_type;
2384 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2385 gnat_entity, "C_PAD", false,
2388 /* If a padding record was made, declare it now since it
2389 will never be declared otherwise. This is necessary
2390 to ensure that its subtrees are properly marked. */
2391 if (gnu_type != orig_gnu_type)
2392 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2393 true, debug_info_p, gnat_entity);
2396 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2397 gnu_type = build_qualified_type (gnu_type,
2398 (TYPE_QUALS (gnu_type)
2399 | TYPE_QUAL_VOLATILE));
2402 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2403 TYPE_SIZE_UNIT (gnu_type));
2404 gnu_max_size = size_binop (MULT_EXPR,
2405 convert (bitsizetype, gnu_max_size),
2406 TYPE_SIZE (gnu_type));
2408 for (index = dim - 1; index >= 0; index --)
2410 gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
2411 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2412 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2413 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2416 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
2417 TYPE_STUB_DECL (gnu_type)
2418 = create_type_stub_decl (gnu_entity_name, gnu_type);
2420 /* If we are at file level and this is a multi-dimensional array, we
2421 need to make a variable corresponding to the stride of the
2422 inner dimensions. */
2423 if (global_bindings_p () && dim > 1)
2425 tree gnu_str_name = get_identifier ("ST");
2428 for (gnu_arr_type = TREE_TYPE (gnu_type);
2429 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2430 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2431 gnu_str_name = concat_name (gnu_str_name, "ST"))
2433 tree eltype = TREE_TYPE (gnu_arr_type);
2435 TYPE_SIZE (gnu_arr_type)
2436 = elaborate_expression_1 (TYPE_SIZE (gnu_arr_type),
2437 gnat_entity, gnu_str_name,
2440 /* ??? For now, store the size as a multiple of the
2441 alignment of the element type in bytes so that we
2442 can see the alignment from the tree. */
2443 TYPE_SIZE_UNIT (gnu_arr_type)
2445 (MULT_EXPR, sizetype,
2446 elaborate_expression_1
2447 (build_binary_op (EXACT_DIV_EXPR, sizetype,
2448 TYPE_SIZE_UNIT (gnu_arr_type),
2449 size_int (TYPE_ALIGN (eltype)
2451 gnat_entity, concat_name (gnu_str_name, "A_U"),
2453 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2455 /* ??? create_type_decl is not invoked on the inner types so
2456 the MULT_EXPR node built above will never be marked. */
2457 mark_visited (&TYPE_SIZE_UNIT (gnu_arr_type));
2461 /* If we need to write out a record type giving the names of the
2462 bounds for debugging purposes, do it now and make the record
2463 type a parallel type. This is not needed for a packed array
2464 since the bounds are conveyed by the original array type. */
2465 if (need_index_type_struct
2467 && !Is_Packed_Array_Type (gnat_entity))
2469 tree gnu_bound_rec = make_node (RECORD_TYPE);
2470 tree gnu_field_list = NULL_TREE;
2473 TYPE_NAME (gnu_bound_rec)
2474 = create_concat_name (gnat_entity, "XA");
2476 for (index = dim - 1; index >= 0; index--)
2478 tree gnu_index = TYPE_INDEX_TYPE (gnu_index_type[index]);
2479 tree gnu_index_name = TYPE_NAME (gnu_index);
2481 if (TREE_CODE (gnu_index_name) == TYPE_DECL)
2482 gnu_index_name = DECL_NAME (gnu_index_name);
2484 /* Make sure to reference the types themselves, and not just
2485 their names, as the debugger may fall back on them. */
2486 gnu_field = create_field_decl (gnu_index_name, gnu_index,
2488 0, NULL_TREE, NULL_TREE, 0);
2489 TREE_CHAIN (gnu_field) = gnu_field_list;
2490 gnu_field_list = gnu_field;
2493 finish_record_type (gnu_bound_rec, gnu_field_list, 0, false);
2494 add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
2497 /* Otherwise, for a packed array, make the original array type a
2499 else if (debug_info_p
2500 && Is_Packed_Array_Type (gnat_entity)
2501 && present_gnu_tree (Original_Array_Type (gnat_entity)))
2502 add_parallel_type (TYPE_STUB_DECL (gnu_type),
2504 (Original_Array_Type (gnat_entity)));
2506 TYPE_CONVENTION_FORTRAN_P (gnu_type)
2507 = (Convention (gnat_entity) == Convention_Fortran);
2508 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2509 = (Is_Packed_Array_Type (gnat_entity)
2510 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2512 /* If our size depends on a placeholder and the maximum size doesn't
2513 overflow, use it. */
2514 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2515 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2516 && TREE_OVERFLOW (gnu_max_size))
2517 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2518 && TREE_OVERFLOW (gnu_max_size_unit))
2521 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2522 TYPE_SIZE (gnu_type));
2523 TYPE_SIZE_UNIT (gnu_type)
2524 = size_binop (MIN_EXPR, gnu_max_size_unit,
2525 TYPE_SIZE_UNIT (gnu_type));
2528 /* Set our alias set to that of our base type. This gives all
2529 array subtypes the same alias set. */
2530 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
2533 /* If this is a packed type, make this type the same as the packed
2534 array type, but do some adjusting in the type first. */
2535 if (Present (Packed_Array_Type (gnat_entity)))
2537 Entity_Id gnat_index;
2538 tree gnu_inner_type;
2540 /* First finish the type we had been making so that we output
2541 debugging information for it. */
2543 = build_qualified_type (gnu_type,
2544 (TYPE_QUALS (gnu_type)
2545 | (TYPE_QUAL_VOLATILE
2546 * Treat_As_Volatile (gnat_entity))));
2548 /* Make it artificial only if the base type was artificial as well.
2549 That's sort of "morally" true and will make it possible for the
2550 debugger to look it up by name in DWARF, which is necessary in
2551 order to decode the packed array type. */
2553 = create_type_decl (gnu_entity_name, gnu_type, attr_list,
2554 !Comes_From_Source (gnat_entity)
2555 && !Comes_From_Source (Etype (gnat_entity)),
2556 debug_info_p, gnat_entity);
2558 /* Save it as our equivalent in case the call below elaborates
2560 save_gnu_tree (gnat_entity, gnu_decl, false);
2562 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2564 this_made_decl = true;
2565 gnu_type = TREE_TYPE (gnu_decl);
2566 save_gnu_tree (gnat_entity, NULL_TREE, false);
2568 gnu_inner_type = gnu_type;
2569 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2570 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2571 || TYPE_IS_PADDING_P (gnu_inner_type)))
2572 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2574 /* We need to attach the index type to the type we just made so
2575 that the actual bounds can later be put into a template. */
2576 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2577 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2578 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2579 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2581 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2583 /* The TYPE_ACTUAL_BOUNDS field is overloaded with the
2584 TYPE_MODULUS for modular types so we make an extra
2585 subtype if necessary. */
2586 if (TYPE_MODULAR_P (gnu_inner_type))
2588 tree gnu_subtype = make_node (INTEGER_TYPE);
2589 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2590 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2592 TYPE_UNSIGNED (gnu_subtype) = 1;
2593 TYPE_PRECISION (gnu_subtype)
2594 = TYPE_PRECISION (gnu_inner_type);
2595 TYPE_MIN_VALUE (gnu_subtype)
2596 = TYPE_MIN_VALUE (gnu_inner_type);
2597 TYPE_MAX_VALUE (gnu_subtype)
2598 = TYPE_MAX_VALUE (gnu_inner_type);
2599 layout_type (gnu_subtype);
2601 gnu_inner_type = gnu_subtype;
2604 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2606 #ifdef ENABLE_CHECKING
2607 /* Check for other cases of overloading. */
2608 gcc_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner_type));
2612 /* ??? This is necessary to make sure that the container is
2613 allocated with a null tree upfront; otherwise, it could
2614 be allocated with an uninitialized tree that is accessed
2615 before being set below. See ada-tree.h for details. */
2616 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2618 for (gnat_index = First_Index (gnat_entity);
2619 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2620 SET_TYPE_ACTUAL_BOUNDS
2622 tree_cons (NULL_TREE,
2623 get_unpadded_type (Etype (gnat_index)),
2624 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2626 if (Convention (gnat_entity) != Convention_Fortran)
2627 SET_TYPE_ACTUAL_BOUNDS
2629 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2631 if (TREE_CODE (gnu_type) == RECORD_TYPE
2632 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2633 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2637 /* Abort if packed array with no packed array type field set. */
2639 gcc_assert (!Is_Packed (gnat_entity));
2643 case E_String_Literal_Subtype:
2644 /* Create the type for a string literal. */
2646 Entity_Id gnat_full_type
2647 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2648 && Present (Full_View (Etype (gnat_entity)))
2649 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2650 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2651 tree gnu_string_array_type
2652 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2653 tree gnu_string_index_type
2654 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2655 (TYPE_DOMAIN (gnu_string_array_type))));
2656 tree gnu_lower_bound
2657 = convert (gnu_string_index_type,
2658 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2659 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2660 tree gnu_length = ssize_int (length - 1);
2661 tree gnu_upper_bound
2662 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2664 convert (gnu_string_index_type, gnu_length));
2666 = create_index_type (convert (sizetype, gnu_lower_bound),
2667 convert (sizetype, gnu_upper_bound),
2668 build_range_type (gnu_string_index_type,
2674 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2676 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2677 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2678 relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
2682 /* Record Types and Subtypes
2684 The following fields are defined on record types:
2686 Has_Discriminants True if the record has discriminants
2687 First_Discriminant Points to head of list of discriminants
2688 First_Entity Points to head of list of fields
2689 Is_Tagged_Type True if the record is tagged
2691 Implementation of Ada records and discriminated records:
2693 A record type definition is transformed into the equivalent of a C
2694 struct definition. The fields that are the discriminants which are
2695 found in the Full_Type_Declaration node and the elements of the
2696 Component_List found in the Record_Type_Definition node. The
2697 Component_List can be a recursive structure since each Variant of
2698 the Variant_Part of the Component_List has a Component_List.
2700 Processing of a record type definition comprises starting the list of
2701 field declarations here from the discriminants and the calling the
2702 function components_to_record to add the rest of the fields from the
2703 component list and return the gnu type node. The function
2704 components_to_record will call itself recursively as it traverses
2708 if (Has_Complex_Representation (gnat_entity))
2711 = build_complex_type
2713 (Etype (Defining_Entity
2714 (First (Component_Items
2717 (Declaration_Node (gnat_entity)))))))));
2723 Node_Id full_definition = Declaration_Node (gnat_entity);
2724 Node_Id record_definition = Type_Definition (full_definition);
2725 Entity_Id gnat_field;
2727 tree gnu_field_list = NULL_TREE;
2728 tree gnu_get_parent;
2729 /* Set PACKED in keeping with gnat_to_gnu_field. */
2731 = Is_Packed (gnat_entity)
2733 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2735 : (Known_Alignment (gnat_entity)
2736 || (Strict_Alignment (gnat_entity)
2737 && Known_Static_Esize (gnat_entity)))
2740 bool has_rep = Has_Specified_Layout (gnat_entity);
2741 bool all_rep = has_rep;
2743 = (Is_Tagged_Type (gnat_entity)
2744 && Nkind (record_definition) == N_Derived_Type_Definition);
2746 /* See if all fields have a rep clause. Stop when we find one
2748 for (gnat_field = First_Entity (gnat_entity);
2749 Present (gnat_field) && all_rep;
2750 gnat_field = Next_Entity (gnat_field))
2751 if ((Ekind (gnat_field) == E_Component
2752 || Ekind (gnat_field) == E_Discriminant)
2753 && No (Component_Clause (gnat_field)))
2756 /* If this is a record extension, go a level further to find the
2757 record definition. Also, verify we have a Parent_Subtype. */
2760 if (!type_annotate_only
2761 || Present (Record_Extension_Part (record_definition)))
2762 record_definition = Record_Extension_Part (record_definition);
2764 gcc_assert (type_annotate_only
2765 || Present (Parent_Subtype (gnat_entity)));
2768 /* Make a node for the record. If we are not defining the record,
2769 suppress expanding incomplete types. */
2770 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2771 TYPE_NAME (gnu_type) = gnu_entity_name;
2772 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2775 defer_incomplete_level++, this_deferred = true;
2777 /* If both a size and rep clause was specified, put the size in
2778 the record type now so that it can get the proper mode. */
2779 if (has_rep && Known_Esize (gnat_entity))
2780 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2782 /* Always set the alignment here so that it can be used to
2783 set the mode, if it is making the alignment stricter. If
2784 it is invalid, it will be checked again below. If this is to
2785 be Atomic, choose a default alignment of a word unless we know
2786 the size and it's smaller. */
2787 if (Known_Alignment (gnat_entity))
2788 TYPE_ALIGN (gnu_type)
2789 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2790 else if (Is_Atomic (gnat_entity))
2791 TYPE_ALIGN (gnu_type)
2792 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2793 /* If a type needs strict alignment, the minimum size will be the
2794 type size instead of the RM size (see validate_size). Cap the
2795 alignment, lest it causes this type size to become too large. */
2796 else if (Strict_Alignment (gnat_entity)
2797 && Known_Static_Esize (gnat_entity))
2799 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2800 unsigned int raw_align = raw_size & -raw_size;
2801 if (raw_align < BIGGEST_ALIGNMENT)
2802 TYPE_ALIGN (gnu_type) = raw_align;
2805 TYPE_ALIGN (gnu_type) = 0;
2807 /* If we have a Parent_Subtype, make a field for the parent. If
2808 this record has rep clauses, force the position to zero. */
2809 if (Present (Parent_Subtype (gnat_entity)))
2811 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2814 /* A major complexity here is that the parent subtype will
2815 reference our discriminants in its Discriminant_Constraint
2816 list. But those must reference the parent component of this
2817 record which is of the parent subtype we have not built yet!
2818 To break the circle we first build a dummy COMPONENT_REF which
2819 represents the "get to the parent" operation and initialize
2820 each of those discriminants to a COMPONENT_REF of the above
2821 dummy parent referencing the corresponding discriminant of the
2822 base type of the parent subtype. */
2823 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2824 build0 (PLACEHOLDER_EXPR, gnu_type),
2825 build_decl (FIELD_DECL, NULL_TREE,
2829 if (Has_Discriminants (gnat_entity))
2830 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2831 Present (gnat_field);
2832 gnat_field = Next_Stored_Discriminant (gnat_field))
2833 if (Present (Corresponding_Discriminant (gnat_field)))
2836 build3 (COMPONENT_REF,
2837 get_unpadded_type (Etype (gnat_field)),
2839 gnat_to_gnu_field_decl (Corresponding_Discriminant
2844 /* Then we build the parent subtype. If it has discriminants but
2845 the type itself has unknown discriminants, this means that it
2846 doesn't contain information about how the discriminants are
2847 derived from those of the ancestor type, so it cannot be used
2848 directly. Instead it is built by cloning the parent subtype
2849 of the underlying record view of the type, for which the above
2850 derivation of discriminants has been made explicit. */
2851 if (Has_Discriminants (gnat_parent)
2852 && Has_Unknown_Discriminants (gnat_entity))
2854 Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
2856 /* If we are defining the type, the underlying record
2857 view must already have been elaborated at this point.
2858 Otherwise do it now as its parent subtype cannot be
2859 technically elaborated on its own. */
2861 gcc_assert (present_gnu_tree (gnat_uview));
2863 gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
2865 gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
2867 /* Substitute the "get to the parent" of the type for that
2868 of its underlying record view in the cloned type. */
2869 for (gnat_field = First_Stored_Discriminant (gnat_uview);
2870 Present (gnat_field);
2871 gnat_field = Next_Stored_Discriminant (gnat_field))
2872 if (Present (Corresponding_Discriminant (gnat_field)))
2874 tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
2876 = build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2877 gnu_get_parent, gnu_field, NULL_TREE);
2879 = substitute_in_type (gnu_parent, gnu_field, gnu_ref);
2883 gnu_parent = gnat_to_gnu_type (gnat_parent);
2885 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2886 initially built. The discriminants must reference the fields
2887 of the parent subtype and not those of its base type for the
2888 placeholder machinery to properly work. */
2889 if (Has_Discriminants (gnat_entity))
2890 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2891 Present (gnat_field);
2892 gnat_field = Next_Stored_Discriminant (gnat_field))
2893 if (Present (Corresponding_Discriminant (gnat_field)))
2895 Entity_Id field = Empty;
2896 for (field = First_Stored_Discriminant (gnat_parent);
2898 field = Next_Stored_Discriminant (field))
2899 if (same_discriminant_p (gnat_field, field))
2901 gcc_assert (Present (field));
2902 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2903 = gnat_to_gnu_field_decl (field);
2906 /* The "get to the parent" COMPONENT_REF must be given its
2908 TREE_TYPE (gnu_get_parent) = gnu_parent;
2910 /* ...and reference the _parent field of this record. */
2912 = create_field_decl (get_identifier
2913 (Get_Name_String (Name_uParent)),
2914 gnu_parent, gnu_type, 0,
2915 has_rep ? TYPE_SIZE (gnu_parent) : 0,
2916 has_rep ? bitsize_zero_node : 0, 1);
2917 DECL_INTERNAL_P (gnu_field_list) = 1;
2918 TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
2921 /* Make the fields for the discriminants and put them into the record
2922 unless it's an Unchecked_Union. */
2923 if (Has_Discriminants (gnat_entity))
2924 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2925 Present (gnat_field);
2926 gnat_field = Next_Stored_Discriminant (gnat_field))
2928 /* If this is a record extension and this discriminant
2929 is the renaming of another discriminant, we've already
2930 handled the discriminant above. */
2931 if (Present (Parent_Subtype (gnat_entity))
2932 && Present (Corresponding_Discriminant (gnat_field)))
2936 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2938 /* Make an expression using a PLACEHOLDER_EXPR from the
2939 FIELD_DECL node just created and link that with the
2940 corresponding GNAT defining identifier. Then add to the
2942 save_gnu_tree (gnat_field,
2943 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2944 build0 (PLACEHOLDER_EXPR,
2945 DECL_CONTEXT (gnu_field)),
2946 gnu_field, NULL_TREE),
2949 if (!Is_Unchecked_Union (gnat_entity))
2951 TREE_CHAIN (gnu_field) = gnu_field_list;
2952 gnu_field_list = gnu_field;
2956 /* Put the discriminants into the record (backwards), so we can
2957 know the appropriate discriminant to use for the names of the
2959 TYPE_FIELDS (gnu_type) = gnu_field_list;
2961 /* Add the listed fields into the record and finish it up. */
2962 components_to_record (gnu_type, Component_List (record_definition),
2963 gnu_field_list, packed, definition, NULL,
2964 false, all_rep, false,
2965 Is_Unchecked_Union (gnat_entity));
2967 /* We used to remove the associations of the discriminants and
2968 _Parent for validity checking, but we may need them if there's
2969 Freeze_Node for a subtype used in this record. */
2970 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2971 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
2973 /* If it is a tagged record force the type to BLKmode to insure
2974 that these objects will always be placed in memory. Do the
2975 same thing for limited record types. */
2976 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2977 SET_TYPE_MODE (gnu_type, BLKmode);
2979 /* Fill in locations of fields. */
2980 annotate_rep (gnat_entity, gnu_type);
2982 /* If there are any entities in the chain corresponding to
2983 components that we did not elaborate, ensure we elaborate their
2984 types if they are Itypes. */
2985 for (gnat_temp = First_Entity (gnat_entity);
2986 Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
2987 if ((Ekind (gnat_temp) == E_Component
2988 || Ekind (gnat_temp) == E_Discriminant)
2989 && Is_Itype (Etype (gnat_temp))
2990 && !present_gnu_tree (gnat_temp))
2991 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
2995 case E_Class_Wide_Subtype:
2996 /* If an equivalent type is present, that is what we should use.
2997 Otherwise, fall through to handle this like a record subtype
2998 since it may have constraints. */
2999 if (gnat_equiv_type != gnat_entity)
3001 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
3002 maybe_present = true;
3006 /* ... fall through ... */
3008 case E_Record_Subtype:
3010 /* If Cloned_Subtype is Present it means this record subtype has
3011 identical layout to that type or subtype and we should use
3012 that GCC type for this one. The front end guarantees that
3013 the component list is shared. */
3014 if (Present (Cloned_Subtype (gnat_entity)))
3016 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
3018 maybe_present = true;
3021 /* Otherwise, first ensure the base type is elaborated. Then, if we are
3022 changing the type, make a new type with each field having the
3023 type of the field in the new subtype but having the position
3024 computed by transforming every discriminant reference according
3025 to the constraints. We don't see any difference between
3026 private and nonprivate type here since derivations from types should
3027 have been deferred until the completion of the private type. */
3030 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
3035 defer_incomplete_level++, this_deferred = true;
3037 /* Get the base type initially for its alignment and sizes. But
3038 if it is a padded type, we do all the other work with the
3040 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
3042 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
3043 && TYPE_IS_PADDING_P (gnu_base_type))
3044 gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
3046 gnu_type = gnu_orig_type = gnu_base_type;
3048 if (present_gnu_tree (gnat_entity))
3050 maybe_present = true;
3054 /* When the type has discriminants, and these discriminants
3055 affect the shape of what it built, factor them in.
3057 If we are making a subtype of an Unchecked_Union (must be an
3058 Itype), just return the type.
3060 We can't just use Is_Constrained because private subtypes without
3061 discriminants of full types with discriminants with default
3062 expressions are Is_Constrained but aren't constrained! */
3064 if (IN (Ekind (gnat_base_type), Record_Kind)
3065 && !Is_For_Access_Subtype (gnat_entity)
3066 && !Is_Unchecked_Union (gnat_base_type)
3067 && Is_Constrained (gnat_entity)
3068 && Stored_Constraint (gnat_entity) != No_Elist
3069 && Present (Discriminant_Constraint (gnat_entity)))
3071 Entity_Id gnat_field;
3072 tree gnu_field_list = 0;
3074 = compute_field_positions (gnu_orig_type, NULL_TREE,
3075 size_zero_node, bitsize_zero_node,
3078 = substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
3082 gnu_type = make_node (RECORD_TYPE);
3083 TYPE_NAME (gnu_type) = gnu_entity_name;
3084 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
3086 /* Set the size, alignment and alias set of the new type to
3087 match that of the old one, doing required substitutions.
3088 We do it this early because we need the size of the new
3089 type below to discard old fields if necessary. */
3090 TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
3091 TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
3092 SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
3093 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
3094 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
3096 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
3097 for (gnu_temp = gnu_subst_list;
3098 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3099 TYPE_SIZE (gnu_type)
3100 = substitute_in_expr (TYPE_SIZE (gnu_type),
3101 TREE_PURPOSE (gnu_temp),
3102 TREE_VALUE (gnu_temp));
3104 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
3105 for (gnu_temp = gnu_subst_list;
3106 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3107 TYPE_SIZE_UNIT (gnu_type)
3108 = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
3109 TREE_PURPOSE (gnu_temp),
3110 TREE_VALUE (gnu_temp));
3112 if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
3113 for (gnu_temp = gnu_subst_list;
3114 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3116 (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
3117 TREE_PURPOSE (gnu_temp),
3118 TREE_VALUE (gnu_temp)));
3120 for (gnat_field = First_Entity (gnat_entity);
3121 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3122 if ((Ekind (gnat_field) == E_Component
3123 || Ekind (gnat_field) == E_Discriminant)
3124 && (Underlying_Type (Scope (Original_Record_Component
3127 && (No (Corresponding_Discriminant (gnat_field))
3128 || !Is_Tagged_Type (gnat_base_type)))
3131 = gnat_to_gnu_field_decl (Original_Record_Component
3134 = TREE_VALUE (purpose_member (gnu_old_field,
3136 tree gnu_pos = TREE_PURPOSE (gnu_offset);
3137 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
3139 = gnat_to_gnu_type (Etype (gnat_field));
3140 tree gnu_size = TYPE_SIZE (gnu_field_type);
3141 tree gnu_new_pos = NULL_TREE;
3142 unsigned int offset_align
3143 = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)),
3147 /* If there was a component clause, the field types must be
3148 the same for the type and subtype, so copy the data from
3149 the old field to avoid recomputation here. Also if the
3150 field is justified modular and the optimization in
3151 gnat_to_gnu_field was applied. */
3152 if (Present (Component_Clause
3153 (Original_Record_Component (gnat_field)))
3154 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
3155 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
3156 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
3157 == TREE_TYPE (gnu_old_field)))
3159 gnu_size = DECL_SIZE (gnu_old_field);
3160 gnu_field_type = TREE_TYPE (gnu_old_field);
3163 /* If the old field was packed and of constant size, we
3164 have to get the old size here, as it might differ from
3165 what the Etype conveys and the latter might overlap
3166 onto the following field. Try to arrange the type for
3167 possible better packing along the way. */
3168 else if (DECL_PACKED (gnu_old_field)
3169 && TREE_CODE (DECL_SIZE (gnu_old_field))
3172 gnu_size = DECL_SIZE (gnu_old_field);
3173 if (TREE_CODE (gnu_field_type) == RECORD_TYPE
3174 && !TYPE_IS_FAT_POINTER_P (gnu_field_type)
3175 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
3177 = make_packable_type (gnu_field_type, true);
3180 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
3181 for (gnu_temp = gnu_subst_list;
3182 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3183 gnu_pos = substitute_in_expr (gnu_pos,
3184 TREE_PURPOSE (gnu_temp),
3185 TREE_VALUE (gnu_temp));
3187 /* If the position is now a constant, we can set it as the
3188 position of the field when we make it. Otherwise, we need
3189 to deal with it specially below. */
3190 if (TREE_CONSTANT (gnu_pos))
3192 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
3194 /* Discard old fields that are outside the new type.
3195 This avoids confusing code scanning it to decide
3196 how to pass it to functions on some platforms. */
3197 if (TREE_CODE (gnu_new_pos) == INTEGER_CST
3198 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST
3199 && !integer_zerop (gnu_size)
3200 && !tree_int_cst_lt (gnu_new_pos,
3201 TYPE_SIZE (gnu_type)))
3207 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
3208 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
3209 !DECL_NONADDRESSABLE_P (gnu_old_field));
3211 if (!TREE_CONSTANT (gnu_pos))
3213 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
3214 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
3215 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
3216 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
3217 DECL_SIZE (gnu_field) = gnu_size;
3218 DECL_SIZE_UNIT (gnu_field)
3219 = convert (sizetype,
3220 size_binop (CEIL_DIV_EXPR, gnu_size,
3221 bitsize_unit_node));
3222 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
3225 DECL_INTERNAL_P (gnu_field)
3226 = DECL_INTERNAL_P (gnu_old_field);
3227 SET_DECL_ORIGINAL_FIELD
3228 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
3229 ? DECL_ORIGINAL_FIELD (gnu_old_field)
3231 DECL_DISCRIMINANT_NUMBER (gnu_field)
3232 = DECL_DISCRIMINANT_NUMBER (gnu_old_field);
3233 TREE_THIS_VOLATILE (gnu_field)
3234 = TREE_THIS_VOLATILE (gnu_old_field);
3236 /* To match the layout crafted in components_to_record, if
3237 this is the _Tag field, put it before any discriminants
3238 instead of after them as for all other fields. */
3239 if (Chars (gnat_field) == Name_uTag)
3240 gnu_field_list = chainon (gnu_field_list, gnu_field);
3243 TREE_CHAIN (gnu_field) = gnu_field_list;
3244 gnu_field_list = gnu_field;
3247 save_gnu_tree (gnat_field, gnu_field, false);
3250 /* Now go through the entities again looking for Itypes that
3251 we have not elaborated but should (e.g., Etypes of fields
3252 that have Original_Components). */
3253 for (gnat_field = First_Entity (gnat_entity);
3254 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3255 if ((Ekind (gnat_field) == E_Discriminant
3256 || Ekind (gnat_field) == E_Component)
3257 && !present_gnu_tree (Etype (gnat_field)))
3258 gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, 0);
3260 /* Do not finalize it since we're going to modify it below. */
3261 gnu_field_list = nreverse (gnu_field_list);
3262 finish_record_type (gnu_type, gnu_field_list, 2, true);