1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
53 #ifndef MAX_FIXED_MODE_SIZE
54 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
57 /* Convention_Stdcall should be processed in a specific way on Windows targets
58 only. The macro below is a helper to avoid having to check for a Windows
59 specific attribute throughout this unit. */
61 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
62 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
64 #define Has_Stdcall_Convention(E) (0)
67 /* Stack realignment for functions with foreign conventions is provided on a
68 per back-end basis now, as it is handled by the prologue expanders and not
69 as part of the function's body any more. It might be requested by way of a
70 dedicated function type attribute on the targets that support it.
72 We need a way to avoid setting the attribute on the targets that don't
73 support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
75 It is defined on targets where the circuitry is available, and indicates
76 whether the realignment is needed for 'main'. We use this to decide for
77 foreign subprograms as well.
79 It is not defined on targets where the circuitry is not implemented, and
80 we just never set the attribute in these cases.
82 Whether it is defined on all targets that would need it in theory is
83 not entirely clear. We currently trust the base GCC settings for this
86 #ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
87 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
92 struct incomplete *next;
97 /* These variables are used to defer recursively expanding incomplete types
98 while we are processing an array, a record or a subprogram type. */
99 static int defer_incomplete_level = 0;
100 static struct incomplete *defer_incomplete_list;
102 /* This variable is used to delay expanding From_With_Type types until the
104 static struct incomplete *defer_limited_with;
106 /* These variables are used to defer finalizing types. The element of the
107 list is the TYPE_DECL associated with the type. */
108 static int defer_finalize_level = 0;
109 static VEC (tree,heap) *defer_finalize_list;
111 /* A hash table used to cache the result of annotate_value. */
112 static GTY ((if_marked ("tree_int_map_marked_p"),
113 param_is (struct tree_int_map))) htab_t annotate_value_cache;
122 static void relate_alias_sets (tree, tree, enum alias_set_op);
124 static tree substitution_list (Entity_Id, Entity_Id, tree, bool);
125 static bool allocatable_size_p (tree, bool);
126 static void prepend_one_attribute_to (struct attrib **,
127 enum attr_type, tree, tree, Node_Id);
128 static void prepend_attributes (Entity_Id, struct attrib **);
129 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
130 static bool is_variable_size (tree);
131 static tree elaborate_expression_1 (tree, Entity_Id, tree, bool, bool);
132 static tree make_packable_type (tree, bool);
133 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
134 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
136 static bool same_discriminant_p (Entity_Id, Entity_Id);
137 static bool array_type_has_nonaliased_component (Entity_Id, tree);
138 static bool compile_time_known_address_p (Node_Id);
139 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
140 bool, bool, bool, bool);
141 static Uint annotate_value (tree);
142 static void annotate_rep (Entity_Id, tree);
143 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
144 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
145 static void set_rm_size (Uint, tree, Entity_Id);
146 static tree make_type_from_size (tree, tree, bool);
147 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
148 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
149 static void check_ok_for_atomic (tree, Entity_Id, bool);
150 static int compatible_signatures_p (tree ftype1, tree ftype2);
151 static void rest_of_type_decl_compilation_no_defer (tree);
153 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
154 entity, return the equivalent GCC tree for that entity (a ..._DECL node)
155 and associate the ..._DECL node with the input GNAT defining identifier.
157 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
158 initial value (in GCC tree form). This is optional for a variable. For
159 a renamed entity, GNU_EXPR gives the object being renamed.
161 DEFINITION is nonzero if this call is intended for a definition. This is
162 used for separate compilation where it is necessary to know whether an
163 external declaration or a definition must be created if the GCC equivalent
164 was not created previously. The value of 1 is normally used for a nonzero
165 DEFINITION, but a value of 2 is used in special circumstances, defined in
169 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
171 /* Contains the kind of the input GNAT node. */
172 const Entity_Kind kind = Ekind (gnat_entity);
173 /* True if this is a type. */
174 const bool is_type = IN (kind, Type_Kind);
175 /* For a type, contains the equivalent GNAT node to be used in gigi. */
176 Entity_Id gnat_equiv_type = Empty;
177 /* Temporary used to walk the GNAT tree. */
179 /* Contains the GCC DECL node which is equivalent to the input GNAT node.
180 This node will be associated with the GNAT node by calling at the end
181 of the `switch' statement. */
182 tree gnu_decl = NULL_TREE;
183 /* Contains the GCC type to be used for the GCC node. */
184 tree gnu_type = NULL_TREE;
185 /* Contains the GCC size tree to be used for the GCC node. */
186 tree gnu_size = NULL_TREE;
187 /* Contains the GCC name to be used for the GCC node. */
188 tree gnu_entity_name;
189 /* True if we have already saved gnu_decl as a GNAT association. */
191 /* True if we incremented defer_incomplete_level. */
192 bool this_deferred = false;
193 /* True if we incremented force_global. */
194 bool this_global = false;
195 /* True if we should check to see if elaborated during processing. */
196 bool maybe_present = false;
197 /* True if we made GNU_DECL and its type here. */
198 bool this_made_decl = false;
199 /* True if debug info is requested for this entity. */
200 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
201 || debug_info_level == DINFO_LEVEL_VERBOSE);
202 /* True if this entity is to be considered as imported. */
203 bool imported_p = (Is_Imported (gnat_entity)
204 && No (Address_Clause (gnat_entity)));
205 /* Size and alignment of the GCC node, if meaningful. */
206 unsigned int esize = 0, align = 0;
207 /* Contains the list of attributes directly attached to the entity. */
208 struct attrib *attr_list = NULL;
210 /* Since a use of an Itype is a definition, process it as such if it
211 is not in a with'ed unit. */
214 && Is_Itype (gnat_entity)
215 && !present_gnu_tree (gnat_entity)
216 && In_Extended_Main_Code_Unit (gnat_entity))
218 /* Ensure that we are in a subprogram mentioned in the Scope chain of
219 this entity, our current scope is global, or we encountered a task
220 or entry (where we can't currently accurately check scoping). */
221 if (!current_function_decl
222 || DECL_ELABORATION_PROC_P (current_function_decl))
224 process_type (gnat_entity);
225 return get_gnu_tree (gnat_entity);
228 for (gnat_temp = Scope (gnat_entity);
230 gnat_temp = Scope (gnat_temp))
232 if (Is_Type (gnat_temp))
233 gnat_temp = Underlying_Type (gnat_temp);
235 if (Ekind (gnat_temp) == E_Subprogram_Body)
237 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
239 if (IN (Ekind (gnat_temp), Subprogram_Kind)
240 && Present (Protected_Body_Subprogram (gnat_temp)))
241 gnat_temp = Protected_Body_Subprogram (gnat_temp);
243 if (Ekind (gnat_temp) == E_Entry
244 || Ekind (gnat_temp) == E_Entry_Family
245 || Ekind (gnat_temp) == E_Task_Type
246 || (IN (Ekind (gnat_temp), Subprogram_Kind)
247 && present_gnu_tree (gnat_temp)
248 && (current_function_decl
249 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
251 process_type (gnat_entity);
252 return get_gnu_tree (gnat_entity);
256 /* This abort means the Itype has an incorrect scope, i.e. that its
257 scope does not correspond to the subprogram it is declared in. */
261 /* If we've already processed this entity, return what we got last time.
262 If we are defining the node, we should not have already processed it.
263 In that case, we will abort below when we try to save a new GCC tree
264 for this object. We also need to handle the case of getting a dummy
265 type when a Full_View exists. */
266 if ((!definition || (is_type && imported_p))
267 && present_gnu_tree (gnat_entity))
269 gnu_decl = get_gnu_tree (gnat_entity);
271 if (TREE_CODE (gnu_decl) == TYPE_DECL
272 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
273 && IN (kind, Incomplete_Or_Private_Kind)
274 && Present (Full_View (gnat_entity)))
277 = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
278 save_gnu_tree (gnat_entity, NULL_TREE, false);
279 save_gnu_tree (gnat_entity, gnu_decl, false);
285 /* If this is a numeric or enumeral type, or an access type, a nonzero
286 Esize must be specified unless it was specified by the programmer. */
287 gcc_assert (!Unknown_Esize (gnat_entity)
288 || Has_Size_Clause (gnat_entity)
289 || (!IN (kind, Numeric_Kind)
290 && !IN (kind, Enumeration_Kind)
291 && (!IN (kind, Access_Kind)
292 || kind == E_Access_Protected_Subprogram_Type
293 || kind == E_Anonymous_Access_Protected_Subprogram_Type
294 || kind == E_Access_Subtype)));
296 /* The RM size must be specified for all discrete and fixed-point types. */
297 gcc_assert (!(IN (kind, Discrete_Or_Fixed_Point_Kind)
298 && Unknown_RM_Size (gnat_entity)));
300 /* If we get here, it means we have not yet done anything with this entity.
301 If we are not defining it, it must be a type or an entity that is defined
302 elsewhere or externally, otherwise we should have defined it already. */
303 gcc_assert (definition
304 || type_annotate_only
306 || kind == E_Discriminant
307 || kind == E_Component
309 || (kind == E_Constant && Present (Full_View (gnat_entity)))
310 || Is_Public (gnat_entity));
312 /* Get the name of the entity and set up the line number and filename of
313 the original definition for use in any decl we make. */
314 gnu_entity_name = get_entity_name (gnat_entity);
315 Sloc_to_locus (Sloc (gnat_entity), &input_location);
317 /* For cases when we are not defining (i.e., we are referencing from
318 another compilation unit) public entities, show we are at global level
319 for the purpose of computing scopes. Don't do this for components or
320 discriminants since the relevant test is whether or not the record is
323 && kind != E_Component
324 && kind != E_Discriminant
325 && Is_Public (gnat_entity)
326 && !Is_Statically_Allocated (gnat_entity))
327 force_global++, this_global = true;
329 /* Handle any attributes directly attached to the entity. */
330 if (Has_Gigi_Rep_Item (gnat_entity))
331 prepend_attributes (gnat_entity, &attr_list);
333 /* Do some common processing for types. */
336 /* Compute the equivalent type to be used in gigi. */
337 gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
339 /* Machine_Attributes on types are expected to be propagated to
340 subtypes. The corresponding Gigi_Rep_Items are only attached
341 to the first subtype though, so we handle the propagation here. */
342 if (Base_Type (gnat_entity) != gnat_entity
343 && !Is_First_Subtype (gnat_entity)
344 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
345 prepend_attributes (First_Subtype (Base_Type (gnat_entity)),
348 /* Compute a default value for the size of the type. */
349 if (Known_Esize (gnat_entity)
350 && UI_Is_In_Int_Range (Esize (gnat_entity)))
352 unsigned int max_esize;
353 esize = UI_To_Int (Esize (gnat_entity));
355 if (IN (kind, Float_Kind))
356 max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
357 else if (IN (kind, Access_Kind))
358 max_esize = POINTER_SIZE * 2;
360 max_esize = LONG_LONG_TYPE_SIZE;
362 if (esize > max_esize)
366 esize = LONG_LONG_TYPE_SIZE;
372 /* If this is a use of a deferred constant without address clause,
373 get its full definition. */
375 && No (Address_Clause (gnat_entity))
376 && Present (Full_View (gnat_entity)))
379 = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
384 /* If we have an external constant that we are not defining, get the
385 expression that is was defined to represent. We may throw that
386 expression away later if it is not a constant. Do not retrieve the
387 expression if it is an aggregate or allocator, because in complex
388 instantiation contexts it may not be expanded */
390 && Present (Expression (Declaration_Node (gnat_entity)))
391 && !No_Initialization (Declaration_Node (gnat_entity))
392 && (Nkind (Expression (Declaration_Node (gnat_entity)))
394 && (Nkind (Expression (Declaration_Node (gnat_entity)))
396 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
398 /* Ignore deferred constant definitions without address clause since
399 they are processed fully in the front-end. If No_Initialization
400 is set, this is not a deferred constant but a constant whose value
401 is built manually. And constants that are renamings are handled
405 && No (Address_Clause (gnat_entity))
406 && !No_Initialization (Declaration_Node (gnat_entity))
407 && No (Renamed_Object (gnat_entity)))
409 gnu_decl = error_mark_node;
414 /* Ignore constant definitions already marked with the error node. See
415 the N_Object_Declaration case of gnat_to_gnu for the rationale. */
418 && present_gnu_tree (gnat_entity)
419 && get_gnu_tree (gnat_entity) == error_mark_node)
421 maybe_present = true;
428 /* We used to special case VMS exceptions here to directly map them to
429 their associated condition code. Since this code had to be masked
430 dynamically to strip off the severity bits, this caused trouble in
431 the GCC/ZCX case because the "type" pointers we store in the tables
432 have to be static. We now don't special case here anymore, and let
433 the regular processing take place, which leaves us with a regular
434 exception data object for VMS exceptions too. The condition code
435 mapping is taken care of by the front end and the bitmasking by the
442 /* The GNAT record where the component was defined. */
443 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
445 /* If the variable is an inherited record component (in the case of
446 extended record types), just return the inherited entity, which
447 must be a FIELD_DECL. Likewise for discriminants.
448 For discriminants of untagged records which have explicit
449 stored discriminants, return the entity for the corresponding
450 stored discriminant. Also use Original_Record_Component
451 if the record has a private extension. */
452 if (Present (Original_Record_Component (gnat_entity))
453 && Original_Record_Component (gnat_entity) != gnat_entity)
456 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
457 gnu_expr, definition);
462 /* If the enclosing record has explicit stored discriminants,
463 then it is an untagged record. If the Corresponding_Discriminant
464 is not empty then this must be a renamed discriminant and its
465 Original_Record_Component must point to the corresponding explicit
466 stored discriminant (i.e. we should have taken the previous
468 else if (Present (Corresponding_Discriminant (gnat_entity))
469 && Is_Tagged_Type (gnat_record))
471 /* A tagged record has no explicit stored discriminants. */
472 gcc_assert (First_Discriminant (gnat_record)
473 == First_Stored_Discriminant (gnat_record));
475 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
476 gnu_expr, definition);
481 else if (Present (CR_Discriminant (gnat_entity))
482 && type_annotate_only)
484 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
485 gnu_expr, definition);
490 /* If the enclosing record has explicit stored discriminants, then
491 it is an untagged record. If the Corresponding_Discriminant
492 is not empty then this must be a renamed discriminant and its
493 Original_Record_Component must point to the corresponding explicit
494 stored discriminant (i.e. we should have taken the first
496 else if (Present (Corresponding_Discriminant (gnat_entity))
497 && (First_Discriminant (gnat_record)
498 != First_Stored_Discriminant (gnat_record)))
501 /* Otherwise, if we are not defining this and we have no GCC type
502 for the containing record, make one for it. Then we should
503 have made our own equivalent. */
504 else if (!definition && !present_gnu_tree (gnat_record))
506 /* ??? If this is in a record whose scope is a protected
507 type and we have an Original_Record_Component, use it.
508 This is a workaround for major problems in protected type
510 Entity_Id Scop = Scope (Scope (gnat_entity));
511 if ((Is_Protected_Type (Scop)
512 || (Is_Private_Type (Scop)
513 && Present (Full_View (Scop))
514 && Is_Protected_Type (Full_View (Scop))))
515 && Present (Original_Record_Component (gnat_entity)))
518 = gnat_to_gnu_entity (Original_Record_Component
525 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
526 gnu_decl = get_gnu_tree (gnat_entity);
532 /* Here we have no GCC type and this is a reference rather than a
533 definition. This should never happen. Most likely the cause is
534 reference before declaration in the gnat tree for gnat_entity. */
538 case E_Loop_Parameter:
539 case E_Out_Parameter:
542 /* Simple variables, loop variables, Out parameters, and exceptions. */
545 bool used_by_ref = false;
547 = ((kind == E_Constant || kind == E_Variable)
548 && Is_True_Constant (gnat_entity)
549 && !Treat_As_Volatile (gnat_entity)
550 && (((Nkind (Declaration_Node (gnat_entity))
551 == N_Object_Declaration)
552 && Present (Expression (Declaration_Node (gnat_entity))))
553 || Present (Renamed_Object (gnat_entity))));
554 bool inner_const_flag = const_flag;
555 bool static_p = Is_Statically_Allocated (gnat_entity);
556 bool mutable_p = false;
557 tree gnu_ext_name = NULL_TREE;
558 tree renamed_obj = NULL_TREE;
559 tree gnu_object_size;
561 if (Present (Renamed_Object (gnat_entity)) && !definition)
563 if (kind == E_Exception)
564 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
567 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
570 /* Get the type after elaborating the renamed object. */
571 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
573 /* For a debug renaming declaration, build a pure debug entity. */
574 if (Present (Debug_Renaming_Link (gnat_entity)))
577 gnu_decl = build_decl (VAR_DECL, gnu_entity_name, gnu_type);
578 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
579 if (global_bindings_p ())
580 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
582 addr = stack_pointer_rtx;
583 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
584 gnat_pushdecl (gnu_decl, gnat_entity);
588 /* If this is a loop variable, its type should be the base type.
589 This is because the code for processing a loop determines whether
590 a normal loop end test can be done by comparing the bounds of the
591 loop against those of the base type, which is presumed to be the
592 size used for computation. But this is not correct when the size
593 of the subtype is smaller than the type. */
594 if (kind == E_Loop_Parameter)
595 gnu_type = get_base_type (gnu_type);
597 /* Reject non-renamed objects whose types are unconstrained arrays or
598 any object whose type is a dummy type or VOID_TYPE. */
600 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
601 && No (Renamed_Object (gnat_entity)))
602 || TYPE_IS_DUMMY_P (gnu_type)
603 || TREE_CODE (gnu_type) == VOID_TYPE)
605 gcc_assert (type_annotate_only);
608 return error_mark_node;
611 /* If an alignment is specified, use it if valid. Note that
612 exceptions are objects but don't have alignments. We must do this
613 before we validate the size, since the alignment can affect the
615 if (kind != E_Exception && Known_Alignment (gnat_entity))
617 gcc_assert (Present (Alignment (gnat_entity)));
618 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
619 TYPE_ALIGN (gnu_type));
620 gnu_type = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
621 "PAD", false, definition, true);
624 /* If we are defining the object, see if it has a Size value and
625 validate it if so. If we are not defining the object and a Size
626 clause applies, simply retrieve the value. We don't want to ignore
627 the clause and it is expected to have been validated already. Then
628 get the new type, if any. */
630 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
631 gnat_entity, VAR_DECL, false,
632 Has_Size_Clause (gnat_entity));
633 else if (Has_Size_Clause (gnat_entity))
634 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
639 = make_type_from_size (gnu_type, gnu_size,
640 Has_Biased_Representation (gnat_entity));
642 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
643 gnu_size = NULL_TREE;
646 /* If this object has self-referential size, it must be a record with
647 a default value. We are supposed to allocate an object of the
648 maximum size in this case unless it is a constant with an
649 initializing expression, in which case we can get the size from
650 that. Note that the resulting size may still be a variable, so
651 this may end up with an indirect allocation. */
652 if (No (Renamed_Object (gnat_entity))
653 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
655 if (gnu_expr && kind == E_Constant)
657 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
658 if (CONTAINS_PLACEHOLDER_P (size))
660 /* If the initializing expression is itself a constant,
661 despite having a nominal type with self-referential
662 size, we can get the size directly from it. */
663 if (TREE_CODE (gnu_expr) == COMPONENT_REF
664 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
667 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
668 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
669 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
670 || DECL_READONLY_ONCE_ELAB
671 (TREE_OPERAND (gnu_expr, 0))))
672 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
675 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
680 /* We may have no GNU_EXPR because No_Initialization is
681 set even though there's an Expression. */
682 else if (kind == E_Constant
683 && (Nkind (Declaration_Node (gnat_entity))
684 == N_Object_Declaration)
685 && Present (Expression (Declaration_Node (gnat_entity))))
687 = TYPE_SIZE (gnat_to_gnu_type
689 (Expression (Declaration_Node (gnat_entity)))));
692 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
697 /* If the size is zero bytes, make it one byte since some linkers have
698 trouble with zero-sized objects. If the object will have a
699 template, that will make it nonzero so don't bother. Also avoid
700 doing that for an object renaming or an object with an address
701 clause, as we would lose useful information on the view size
702 (e.g. for null array slices) and we are not allocating the object
705 && integer_zerop (gnu_size)
706 && !TREE_OVERFLOW (gnu_size))
707 || (TYPE_SIZE (gnu_type)
708 && integer_zerop (TYPE_SIZE (gnu_type))
709 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
710 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
711 || !Is_Array_Type (Etype (gnat_entity)))
712 && No (Renamed_Object (gnat_entity))
713 && No (Address_Clause (gnat_entity)))
714 gnu_size = bitsize_unit_node;
716 /* If this is an object with no specified size and alignment, and
717 if either it is atomic or we are not optimizing alignment for
718 space and it is composite and not an exception, an Out parameter
719 or a reference to another object, and the size of its type is a
720 constant, set the alignment to the smallest one which is not
721 smaller than the size, with an appropriate cap. */
722 if (!gnu_size && align == 0
723 && (Is_Atomic (gnat_entity)
724 || (!Optimize_Alignment_Space (gnat_entity)
725 && kind != E_Exception
726 && kind != E_Out_Parameter
727 && Is_Composite_Type (Etype (gnat_entity))
728 && !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
730 && No (Renamed_Object (gnat_entity))
731 && No (Address_Clause (gnat_entity))))
732 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
734 /* No point in jumping through all the hoops needed in order
735 to support BIGGEST_ALIGNMENT if we don't really have to.
736 So we cap to the smallest alignment that corresponds to
737 a known efficient memory access pattern of the target. */
738 unsigned int align_cap = Is_Atomic (gnat_entity)
740 : get_mode_alignment (ptr_mode);
742 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
743 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
746 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
748 /* But make sure not to under-align the object. */
749 if (align <= TYPE_ALIGN (gnu_type))
752 /* And honor the minimum valid atomic alignment, if any. */
753 #ifdef MINIMUM_ATOMIC_ALIGNMENT
754 else if (align < MINIMUM_ATOMIC_ALIGNMENT)
755 align = MINIMUM_ATOMIC_ALIGNMENT;
759 /* If the object is set to have atomic components, find the component
760 type and validate it.
762 ??? Note that we ignore Has_Volatile_Components on objects; it's
763 not at all clear what to do in that case. */
765 if (Has_Atomic_Components (gnat_entity))
767 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
768 ? TREE_TYPE (gnu_type) : gnu_type);
770 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
771 && TYPE_MULTI_ARRAY_P (gnu_inner))
772 gnu_inner = TREE_TYPE (gnu_inner);
774 check_ok_for_atomic (gnu_inner, gnat_entity, true);
777 /* Now check if the type of the object allows atomic access. Note
778 that we must test the type, even if this object has size and
779 alignment to allow such access, because we will be going
780 inside the padded record to assign to the object. We could fix
781 this by always copying via an intermediate value, but it's not
782 clear it's worth the effort. */
783 if (Is_Atomic (gnat_entity))
784 check_ok_for_atomic (gnu_type, gnat_entity, false);
786 /* If this is an aliased object with an unconstrained nominal subtype,
787 make a type that includes the template. */
788 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
789 && Is_Array_Type (Etype (gnat_entity))
790 && !type_annotate_only)
793 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
796 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
797 concat_name (gnu_entity_name,
801 #ifdef MINIMUM_ATOMIC_ALIGNMENT
802 /* If the size is a constant and no alignment is specified, force
803 the alignment to be the minimum valid atomic alignment. The
804 restriction on constant size avoids problems with variable-size
805 temporaries; if the size is variable, there's no issue with
806 atomic access. Also don't do this for a constant, since it isn't
807 necessary and can interfere with constant replacement. Finally,
808 do not do it for Out parameters since that creates an
809 size inconsistency with In parameters. */
810 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
811 && !FLOAT_TYPE_P (gnu_type)
812 && !const_flag && No (Renamed_Object (gnat_entity))
813 && !imported_p && No (Address_Clause (gnat_entity))
814 && kind != E_Out_Parameter
815 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
816 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
817 align = MINIMUM_ATOMIC_ALIGNMENT;
820 /* Make a new type with the desired size and alignment, if needed.
821 But do not take into account alignment promotions to compute the
822 size of the object. */
823 gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
824 if (gnu_size || align > 0)
825 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
826 "PAD", false, definition,
827 gnu_size ? true : false);
829 /* If this is a renaming, avoid as much as possible to create a new
830 object. However, in several cases, creating it is required.
831 This processing needs to be applied to the raw expression so
832 as to make it more likely to rename the underlying object. */
833 if (Present (Renamed_Object (gnat_entity)))
835 bool create_normal_object = false;
837 /* If the renamed object had padding, strip off the reference
838 to the inner object and reset our type. */
839 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
840 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
842 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
843 /* Strip useless conversions around the object. */
844 || (TREE_CODE (gnu_expr) == NOP_EXPR
845 && gnat_types_compatible_p
846 (TREE_TYPE (gnu_expr),
847 TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
849 gnu_expr = TREE_OPERAND (gnu_expr, 0);
850 gnu_type = TREE_TYPE (gnu_expr);
853 /* Case 1: If this is a constant renaming stemming from a function
854 call, treat it as a normal object whose initial value is what
855 is being renamed. RM 3.3 says that the result of evaluating a
856 function call is a constant object. As a consequence, it can
857 be the inner object of a constant renaming. In this case, the
858 renaming must be fully instantiated, i.e. it cannot be a mere
859 reference to (part of) an existing object. */
862 tree inner_object = gnu_expr;
863 while (handled_component_p (inner_object))
864 inner_object = TREE_OPERAND (inner_object, 0);
865 if (TREE_CODE (inner_object) == CALL_EXPR)
866 create_normal_object = true;
869 /* Otherwise, see if we can proceed with a stabilized version of
870 the renamed entity or if we need to make a new object. */
871 if (!create_normal_object)
873 tree maybe_stable_expr = NULL_TREE;
876 /* Case 2: If the renaming entity need not be materialized and
877 the renamed expression is something we can stabilize, use
878 that for the renaming. At the global level, we can only do
879 this if we know no SAVE_EXPRs need be made, because the
880 expression we return might be used in arbitrary conditional
881 branches so we must force the SAVE_EXPRs evaluation
882 immediately and this requires a function context. */
883 if (!Materialize_Entity (gnat_entity)
884 && (!global_bindings_p ()
885 || (staticp (gnu_expr)
886 && !TREE_SIDE_EFFECTS (gnu_expr))))
889 = maybe_stabilize_reference (gnu_expr, true, &stable);
893 gnu_decl = maybe_stable_expr;
894 /* ??? No DECL_EXPR is created so we need to mark
895 the expression manually lest it is shared. */
896 if (global_bindings_p ())
897 mark_visited (&gnu_decl);
898 save_gnu_tree (gnat_entity, gnu_decl, true);
903 /* The stabilization failed. Keep maybe_stable_expr
904 untouched here to let the pointer case below know
905 about that failure. */
908 /* Case 3: If this is a constant renaming and creating a
909 new object is allowed and cheap, treat it as a normal
910 object whose initial value is what is being renamed. */
912 && !Is_Composite_Type
913 (Underlying_Type (Etype (gnat_entity))))
916 /* Case 4: Make this into a constant pointer to the object we
917 are to rename and attach the object to the pointer if it is
918 something we can stabilize.
920 From the proper scope, attached objects will be referenced
921 directly instead of indirectly via the pointer to avoid
922 subtle aliasing problems with non-addressable entities.
923 They have to be stable because we must not evaluate the
924 variables in the expression every time the renaming is used.
925 The pointer is called a "renaming" pointer in this case.
927 In the rare cases where we cannot stabilize the renamed
928 object, we just make a "bare" pointer, and the renamed
929 entity is always accessed indirectly through it. */
932 gnu_type = build_reference_type (gnu_type);
933 inner_const_flag = TREE_READONLY (gnu_expr);
936 /* If the previous attempt at stabilizing failed, there
937 is no point in trying again and we reuse the result
938 without attaching it to the pointer. In this case it
939 will only be used as the initializing expression of
940 the pointer and thus needs no special treatment with
941 regard to multiple evaluations. */
942 if (maybe_stable_expr)
945 /* Otherwise, try to stabilize and attach the expression
946 to the pointer if the stabilization succeeds.
948 Note that this might introduce SAVE_EXPRs and we don't
949 check whether we're at the global level or not. This
950 is fine since we are building a pointer initializer and
951 neither the pointer nor the initializing expression can
952 be accessed before the pointer elaboration has taken
953 place in a correct program.
955 These SAVE_EXPRs will be evaluated at the right place
956 by either the evaluation of the initializer for the
957 non-global case or the elaboration code for the global
958 case, and will be attached to the elaboration procedure
959 in the latter case. */
963 = maybe_stabilize_reference (gnu_expr, true, &stable);
966 renamed_obj = maybe_stable_expr;
968 /* Attaching is actually performed downstream, as soon
969 as we have a VAR_DECL for the pointer we make. */
973 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
975 gnu_size = NULL_TREE;
981 /* Make a volatile version of this object's type if we are to make
982 the object volatile. We also interpret 13.3(19) conservatively
983 and disallow any optimizations for such a non-constant object. */
984 if ((Treat_As_Volatile (gnat_entity)
986 && (Is_Exported (gnat_entity)
987 || Is_Imported (gnat_entity)
988 || Present (Address_Clause (gnat_entity)))))
989 && !TYPE_VOLATILE (gnu_type))
990 gnu_type = build_qualified_type (gnu_type,
991 (TYPE_QUALS (gnu_type)
992 | TYPE_QUAL_VOLATILE));
994 /* If we are defining an aliased object whose nominal subtype is
995 unconstrained, the object is a record that contains both the
996 template and the object. If there is an initializer, it will
997 have already been converted to the right type, but we need to
998 create the template if there is no initializer. */
1001 && TREE_CODE (gnu_type) == RECORD_TYPE
1002 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
1003 /* Beware that padding might have been introduced
1004 via maybe_pad_type above. */
1005 || (TYPE_IS_PADDING_P (gnu_type)
1006 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1008 && TYPE_CONTAINS_TEMPLATE_P
1009 (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
1012 = TYPE_IS_PADDING_P (gnu_type)
1013 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1014 : TYPE_FIELDS (gnu_type);
1017 = gnat_build_constructor
1021 build_template (TREE_TYPE (template_field),
1022 TREE_TYPE (TREE_CHAIN (template_field)),
1027 /* Convert the expression to the type of the object except in the
1028 case where the object's type is unconstrained or the object's type
1029 is a padded record whose field is of self-referential size. In
1030 the former case, converting will generate unnecessary evaluations
1031 of the CONSTRUCTOR to compute the size and in the latter case, we
1032 want to only copy the actual data. */
1034 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1035 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1036 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1037 && TYPE_IS_PADDING_P (gnu_type)
1038 && (CONTAINS_PLACEHOLDER_P
1039 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1040 gnu_expr = convert (gnu_type, gnu_expr);
1042 /* If this is a pointer and it does not have an initializing
1043 expression, initialize it to NULL, unless the object is
1046 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
1047 && !Is_Imported (gnat_entity) && !gnu_expr)
1048 gnu_expr = integer_zero_node;
1050 /* If we are defining the object and it has an Address clause, we must
1051 either get the address expression from the saved GCC tree for the
1052 object if it has a Freeze node, or elaborate the address expression
1053 here since the front-end has guaranteed that the elaboration has no
1054 effects in this case. */
1055 if (definition && Present (Address_Clause (gnat_entity)))
1058 = present_gnu_tree (gnat_entity)
1059 ? get_gnu_tree (gnat_entity)
1060 : gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
1062 save_gnu_tree (gnat_entity, NULL_TREE, false);
1064 /* Ignore the size. It's either meaningless or was handled
1066 gnu_size = NULL_TREE;
1067 /* Convert the type of the object to a reference type that can
1068 alias everything as per 13.3(19). */
1070 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1071 gnu_address = convert (gnu_type, gnu_address);
1073 const_flag = !Is_Public (gnat_entity)
1074 || compile_time_known_address_p (Expression (Address_Clause
1077 /* If this is a deferred constant, the initializer is attached to
1079 if (kind == E_Constant && Present (Full_View (gnat_entity)))
1082 (Expression (Declaration_Node (Full_View (gnat_entity))));
1084 /* If we don't have an initializing expression for the underlying
1085 variable, the initializing expression for the pointer is the
1086 specified address. Otherwise, we have to make a COMPOUND_EXPR
1087 to assign both the address and the initial value. */
1089 gnu_expr = gnu_address;
1092 = build2 (COMPOUND_EXPR, gnu_type,
1094 (MODIFY_EXPR, NULL_TREE,
1095 build_unary_op (INDIRECT_REF, NULL_TREE,
1101 /* If it has an address clause and we are not defining it, mark it
1102 as an indirect object. Likewise for Stdcall objects that are
1104 if ((!definition && Present (Address_Clause (gnat_entity)))
1105 || (Is_Imported (gnat_entity)
1106 && Has_Stdcall_Convention (gnat_entity)))
1108 /* Convert the type of the object to a reference type that can
1109 alias everything as per 13.3(19). */
1111 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1112 gnu_size = NULL_TREE;
1114 /* No point in taking the address of an initializing expression
1115 that isn't going to be used. */
1116 gnu_expr = NULL_TREE;
1118 /* If it has an address clause whose value is known at compile
1119 time, make the object a CONST_DECL. This will avoid a
1120 useless dereference. */
1121 if (Present (Address_Clause (gnat_entity)))
1123 Node_Id gnat_address
1124 = Expression (Address_Clause (gnat_entity));
1126 if (compile_time_known_address_p (gnat_address))
1128 gnu_expr = gnat_to_gnu (gnat_address);
1136 /* If we are at top level and this object is of variable size,
1137 make the actual type a hidden pointer to the real type and
1138 make the initializer be a memory allocation and initialization.
1139 Likewise for objects we aren't defining (presumed to be
1140 external references from other packages), but there we do
1141 not set up an initialization.
1143 If the object's size overflows, make an allocator too, so that
1144 Storage_Error gets raised. Note that we will never free
1145 such memory, so we presume it never will get allocated. */
1147 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1148 global_bindings_p () || !definition
1151 && ! allocatable_size_p (gnu_size,
1152 global_bindings_p () || !definition
1155 gnu_type = build_reference_type (gnu_type);
1156 gnu_size = NULL_TREE;
1160 /* In case this was a aliased object whose nominal subtype is
1161 unconstrained, the pointer above will be a thin pointer and
1162 build_allocator will automatically make the template.
1164 If we have a template initializer only (that we made above),
1165 pretend there is none and rely on what build_allocator creates
1166 again anyway. Otherwise (if we have a full initializer), get
1167 the data part and feed that to build_allocator.
1169 If we are elaborating a mutable object, tell build_allocator to
1170 ignore a possibly simpler size from the initializer, if any, as
1171 we must allocate the maximum possible size in this case. */
1175 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1177 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1178 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1181 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1183 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1184 && 1 == VEC_length (constructor_elt,
1185 CONSTRUCTOR_ELTS (gnu_expr)))
1189 = build_component_ref
1190 (gnu_expr, NULL_TREE,
1191 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1195 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1196 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1197 && !Is_Imported (gnat_entity))
1198 post_error ("?Storage_Error will be raised at run-time!",
1202 = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1203 Empty, Empty, gnat_entity, mutable_p);
1207 gnu_expr = NULL_TREE;
1212 /* If this object would go into the stack and has an alignment larger
1213 than the largest stack alignment the back-end can honor, resort to
1214 a variable of "aligning type". */
1215 if (!global_bindings_p () && !static_p && definition
1216 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1218 /* Create the new variable. No need for extra room before the
1219 aligned field as this is in automatic storage. */
1221 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1222 TYPE_SIZE_UNIT (gnu_type),
1223 BIGGEST_ALIGNMENT, 0);
1225 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1226 NULL_TREE, gnu_new_type, NULL_TREE, false,
1227 false, false, false, NULL, gnat_entity);
1229 /* Initialize the aligned field if we have an initializer. */
1232 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1234 (gnu_new_var, NULL_TREE,
1235 TYPE_FIELDS (gnu_new_type), false),
1239 /* And setup this entity as a reference to the aligned field. */
1240 gnu_type = build_reference_type (gnu_type);
1243 (ADDR_EXPR, gnu_type,
1244 build_component_ref (gnu_new_var, NULL_TREE,
1245 TYPE_FIELDS (gnu_new_type), false));
1247 gnu_size = NULL_TREE;
1253 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1254 | TYPE_QUAL_CONST));
1256 /* Convert the expression to the type of the object except in the
1257 case where the object's type is unconstrained or the object's type
1258 is a padded record whose field is of self-referential size. In
1259 the former case, converting will generate unnecessary evaluations
1260 of the CONSTRUCTOR to compute the size and in the latter case, we
1261 want to only copy the actual data. */
1263 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1264 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1265 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1266 && TYPE_IS_PADDING_P (gnu_type)
1267 && (CONTAINS_PLACEHOLDER_P
1268 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1269 gnu_expr = convert (gnu_type, gnu_expr);
1271 /* If this name is external or there was a name specified, use it,
1272 unless this is a VMS exception object since this would conflict
1273 with the symbol we need to export in addition. Don't use the
1274 Interface_Name if there is an address clause (see CD30005). */
1275 if (!Is_VMS_Exception (gnat_entity)
1276 && ((Present (Interface_Name (gnat_entity))
1277 && No (Address_Clause (gnat_entity)))
1278 || (Is_Public (gnat_entity)
1279 && (!Is_Imported (gnat_entity)
1280 || Is_Exported (gnat_entity)))))
1281 gnu_ext_name = create_concat_name (gnat_entity, NULL);
1283 /* If this is constant initialized to a static constant and the
1284 object has an aggregate type, force it to be statically
1285 allocated. This will avoid an initialization copy. */
1286 if (!static_p && const_flag
1287 && gnu_expr && TREE_CONSTANT (gnu_expr)
1288 && AGGREGATE_TYPE_P (gnu_type)
1289 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1290 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1291 && TYPE_IS_PADDING_P (gnu_type)
1292 && !host_integerp (TYPE_SIZE_UNIT
1293 (TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
1296 gnu_decl = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1297 gnu_expr, const_flag,
1298 Is_Public (gnat_entity),
1299 imported_p || !definition,
1300 static_p, attr_list, gnat_entity);
1301 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1302 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1303 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1305 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1306 if (global_bindings_p ())
1308 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1309 record_global_renaming_pointer (gnu_decl);
1313 if (definition && DECL_SIZE_UNIT (gnu_decl)
1314 && get_block_jmpbuf_decl ()
1315 && (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
1316 || (flag_stack_check == GENERIC_STACK_CHECK
1317 && compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1318 STACK_CHECK_MAX_VAR_SIZE) > 0)))
1319 add_stmt_with_node (build_call_1_expr
1320 (update_setjmp_buf_decl,
1321 build_unary_op (ADDR_EXPR, NULL_TREE,
1322 get_block_jmpbuf_decl ())),
1325 /* If we are defining an Out parameter and we're not optimizing,
1326 create a fake PARM_DECL for debugging purposes and make it
1327 point to the VAR_DECL. Suppress debug info for the latter
1328 but make sure it will still live on the stack so it can be
1329 accessed from within the debugger through the PARM_DECL. */
1330 if (kind == E_Out_Parameter && definition && !optimize)
1332 tree param = create_param_decl (gnu_entity_name, gnu_type, false);
1333 gnat_pushdecl (param, gnat_entity);
1334 SET_DECL_VALUE_EXPR (param, gnu_decl);
1335 DECL_HAS_VALUE_EXPR_P (param) = 1;
1337 debug_info_p = false;
1339 DECL_IGNORED_P (param) = 1;
1340 TREE_ADDRESSABLE (gnu_decl) = 1;
1343 /* If this is a public constant or we're not optimizing and we're not
1344 making a VAR_DECL for it, make one just for export or debugger use.
1345 Likewise if the address is taken or if either the object or type is
1346 aliased. Make an external declaration for a reference, unless this
1347 is a Standard entity since there no real symbol at the object level
1349 if (TREE_CODE (gnu_decl) == CONST_DECL
1350 && (definition || Sloc (gnat_entity) > Standard_Location)
1351 && ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
1353 || Address_Taken (gnat_entity)
1354 || Is_Aliased (gnat_entity)
1355 || Is_Aliased (Etype (gnat_entity))))
1358 = create_true_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1359 gnu_expr, true, Is_Public (gnat_entity),
1360 !definition, static_p, NULL,
1363 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1365 /* As debugging information will be generated for the variable,
1366 do not generate information for the constant. */
1367 DECL_IGNORED_P (gnu_decl) = 1;
1370 /* If this is declared in a block that contains a block with an
1371 exception handler, we must force this variable in memory to
1372 suppress an invalid optimization. */
1373 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1374 && Exception_Mechanism != Back_End_Exceptions)
1375 TREE_ADDRESSABLE (gnu_decl) = 1;
1377 gnu_type = TREE_TYPE (gnu_decl);
1379 /* Back-annotate Alignment and Esize of the object if not already
1380 known, except for when the object is actually a pointer to the
1381 real object, since alignment and size of a pointer don't have
1382 anything to do with those of the designated object. Note that
1383 we pick the values of the type, not those of the object, to
1384 shield ourselves from low-level platform-dependent adjustments
1385 like alignment promotion. This is both consistent with all the
1386 treatment above, where alignment and size are set on the type of
1387 the object and not on the object directly, and makes it possible
1388 to support confirming representation clauses in all cases. */
1390 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1391 Set_Alignment (gnat_entity,
1392 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1394 if (!used_by_ref && Unknown_Esize (gnat_entity))
1396 if (TREE_CODE (gnu_type) == RECORD_TYPE
1397 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1399 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1401 Set_Esize (gnat_entity, annotate_value (gnu_object_size));
1407 /* Return a TYPE_DECL for "void" that we previously made. */
1408 gnu_decl = TYPE_NAME (void_type_node);
1411 case E_Enumeration_Type:
1412 /* A special case: for the types Character and Wide_Character in
1413 Standard, we do not list all the literals. So if the literals
1414 are not specified, make this an unsigned type. */
1415 if (No (First_Literal (gnat_entity)))
1417 gnu_type = make_unsigned_type (esize);
1418 TYPE_NAME (gnu_type) = gnu_entity_name;
1420 /* Set TYPE_STRING_FLAG for Character and Wide_Character types.
1421 This is needed by the DWARF-2 back-end to distinguish between
1422 unsigned integer types and character types. */
1423 TYPE_STRING_FLAG (gnu_type) = 1;
1427 /* Normal case of non-character type or non-Standard character type. */
1429 /* Here we have a list of enumeral constants in First_Literal.
1430 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1431 the list to be placed into TYPE_FIELDS. Each node in the list
1432 is a TREE_LIST whose TREE_VALUE is the literal name and whose
1433 TREE_PURPOSE is the value of the literal. */
1435 Entity_Id gnat_literal;
1436 tree gnu_literal_list = NULL_TREE;
1438 if (Is_Unsigned_Type (gnat_entity))
1439 gnu_type = make_unsigned_type (esize);
1441 gnu_type = make_signed_type (esize);
1443 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1445 for (gnat_literal = First_Literal (gnat_entity);
1446 Present (gnat_literal);
1447 gnat_literal = Next_Literal (gnat_literal))
1449 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1452 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1453 gnu_type, gnu_value, true, false, false,
1454 false, NULL, gnat_literal);
1456 save_gnu_tree (gnat_literal, gnu_literal, false);
1457 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1458 gnu_value, gnu_literal_list);
1461 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1463 /* Note that the bounds are updated at the end of this function
1464 to avoid an infinite recursion since they refer to the type. */
1468 case E_Signed_Integer_Type:
1469 case E_Ordinary_Fixed_Point_Type:
1470 case E_Decimal_Fixed_Point_Type:
1471 /* For integer types, just make a signed type the appropriate number
1473 gnu_type = make_signed_type (esize);
1476 case E_Modular_Integer_Type:
1478 /* For modular types, make the unsigned type of the proper number
1479 of bits and then set up the modulus, if required. */
1480 tree gnu_modulus, gnu_high = NULL_TREE;
1482 /* Packed array types are supposed to be subtypes only. */
1483 gcc_assert (!Is_Packed_Array_Type (gnat_entity));
1485 gnu_type = make_unsigned_type (esize);
1487 /* Get the modulus in this type. If it overflows, assume it is because
1488 it is equal to 2**Esize. Note that there is no overflow checking
1489 done on unsigned type, so we detect the overflow by looking for
1490 a modulus of zero, which is otherwise invalid. */
1491 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1493 if (!integer_zerop (gnu_modulus))
1495 TYPE_MODULAR_P (gnu_type) = 1;
1496 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1497 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1498 convert (gnu_type, integer_one_node));
1501 /* If the upper bound is not maximal, make an extra subtype. */
1503 && !tree_int_cst_equal (gnu_high, TYPE_MAX_VALUE (gnu_type)))
1505 tree gnu_subtype = make_unsigned_type (esize);
1506 SET_TYPE_RM_MAX_VALUE (gnu_subtype, gnu_high);
1507 TREE_TYPE (gnu_subtype) = gnu_type;
1508 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1509 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1510 gnu_type = gnu_subtype;
1515 case E_Signed_Integer_Subtype:
1516 case E_Enumeration_Subtype:
1517 case E_Modular_Integer_Subtype:
1518 case E_Ordinary_Fixed_Point_Subtype:
1519 case E_Decimal_Fixed_Point_Subtype:
1521 /* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
1522 not want to call create_range_type since we would like each subtype
1523 node to be distinct. ??? Historically this was in preparation for
1524 when memory aliasing is implemented, but that's obsolete now given
1525 the call to relate_alias_sets below.
1527 The TREE_TYPE field of the INTEGER_TYPE points to the base type;
1528 this fact is used by the arithmetic conversion functions.
1530 We elaborate the Ancestor_Subtype if it is not in the current unit
1531 and one of our bounds is non-static. We do this to ensure consistent
1532 naming in the case where several subtypes share the same bounds, by
1533 elaborating the first such subtype first, thus using its name. */
1536 && Present (Ancestor_Subtype (gnat_entity))
1537 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1538 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1539 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1540 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
1542 /* Set the precision to the Esize except for bit-packed arrays. */
1543 if (Is_Packed_Array_Type (gnat_entity)
1544 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1545 esize = UI_To_Int (RM_Size (gnat_entity));
1547 /* This should be an unsigned type if the base type is unsigned or
1548 if the lower bound is constant and non-negative or if the type
1550 if (Is_Unsigned_Type (Etype (gnat_entity))
1551 || Is_Unsigned_Type (gnat_entity)
1552 || Has_Biased_Representation (gnat_entity))
1553 gnu_type = make_unsigned_type (esize);
1555 gnu_type = make_signed_type (esize);
1556 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1558 SET_TYPE_RM_MIN_VALUE
1560 convert (TREE_TYPE (gnu_type),
1561 elaborate_expression (Type_Low_Bound (gnat_entity),
1562 gnat_entity, get_identifier ("L"),
1564 Needs_Debug_Info (gnat_entity))));
1566 SET_TYPE_RM_MAX_VALUE
1568 convert (TREE_TYPE (gnu_type),
1569 elaborate_expression (Type_High_Bound (gnat_entity),
1570 gnat_entity, get_identifier ("U"),
1572 Needs_Debug_Info (gnat_entity))));
1574 /* One of the above calls might have caused us to be elaborated,
1575 so don't blow up if so. */
1576 if (present_gnu_tree (gnat_entity))
1578 maybe_present = true;
1582 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1583 = Has_Biased_Representation (gnat_entity);
1585 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
1586 TYPE_STUB_DECL (gnu_type)
1587 = create_type_stub_decl (gnu_entity_name, gnu_type);
1589 /* Inherit our alias set from what we're a subtype of. Subtypes
1590 are not different types and a pointer can designate any instance
1591 within a subtype hierarchy. */
1592 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1594 /* For a packed array, make the original array type a parallel type. */
1596 && Is_Packed_Array_Type (gnat_entity)
1597 && present_gnu_tree (Original_Array_Type (gnat_entity)))
1598 add_parallel_type (TYPE_STUB_DECL (gnu_type),
1600 (Original_Array_Type (gnat_entity)));
1602 /* If the type we are dealing with represents a bit-packed array,
1603 we need to have the bits left justified on big-endian targets
1604 and right justified on little-endian targets. We also need to
1605 ensure that when the value is read (e.g. for comparison of two
1606 such values), we only get the good bits, since the unused bits
1607 are uninitialized. Both goals are accomplished by wrapping up
1608 the modular type in an enclosing record type. */
1609 if (Is_Packed_Array_Type (gnat_entity)
1610 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1612 tree gnu_field_type, gnu_field;
1614 /* Set the RM size before wrapping up the type. */
1615 SET_TYPE_RM_SIZE (gnu_type,
1616 UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
1617 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1618 gnu_field_type = gnu_type;
1620 gnu_type = make_node (RECORD_TYPE);
1621 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1623 /* Propagate the alignment of the modular type to the record.
1624 This means that bit-packed arrays have "ceil" alignment for
1625 their size, which may seem counter-intuitive but makes it
1626 possible to easily overlay them on modular types. */
1627 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1628 TYPE_PACKED (gnu_type) = 1;
1630 /* Create a stripped-down declaration of the original type, mainly
1632 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1633 debug_info_p, gnat_entity);
1635 /* Don't notify the field as "addressable", since we won't be taking
1636 it's address and it would prevent create_field_decl from making a
1638 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1639 gnu_field_type, gnu_type, 1, 0, 0, 0);
1641 /* Do not finalize it until after the parallel type is added. */
1642 finish_record_type (gnu_type, gnu_field, 0, true);
1643 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1645 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1647 /* Make the original array type a parallel type. */
1649 && present_gnu_tree (Original_Array_Type (gnat_entity)))
1650 add_parallel_type (TYPE_STUB_DECL (gnu_type),
1652 (Original_Array_Type (gnat_entity)));
1654 rest_of_record_type_compilation (gnu_type);
1657 /* If the type we are dealing with has got a smaller alignment than the
1658 natural one, we need to wrap it up in a record type and under-align
1659 the latter. We reuse the padding machinery for this purpose. */
1660 else if (Present (Alignment_Clause (gnat_entity))
1661 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1662 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1663 && align < TYPE_ALIGN (gnu_type))
1665 tree gnu_field_type, gnu_field;
1667 /* Set the RM size before wrapping up the type. */
1668 SET_TYPE_RM_SIZE (gnu_type,
1669 UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
1670 gnu_field_type = gnu_type;
1672 gnu_type = make_node (RECORD_TYPE);
1673 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1675 TYPE_ALIGN (gnu_type) = align;
1676 TYPE_PACKED (gnu_type) = 1;
1678 /* Create a stripped-down declaration of the original type, mainly
1680 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1681 debug_info_p, gnat_entity);
1683 /* Don't notify the field as "addressable", since we won't be taking
1684 it's address and it would prevent create_field_decl from making a
1686 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1687 gnu_field_type, gnu_type, 1, 0, 0, 0);
1689 finish_record_type (gnu_type, gnu_field, 0, false);
1690 TYPE_IS_PADDING_P (gnu_type) = 1;
1692 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1695 /* Otherwise reset the alignment lest we computed it above. */
1701 case E_Floating_Point_Type:
1702 /* If this is a VAX floating-point type, use an integer of the proper
1703 size. All the operations will be handled with ASM statements. */
1704 if (Vax_Float (gnat_entity))
1706 gnu_type = make_signed_type (esize);
1707 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1708 SET_TYPE_DIGITS_VALUE (gnu_type,
1709 UI_To_gnu (Digits_Value (gnat_entity),
1714 /* The type of the Low and High bounds can be our type if this is
1715 a type from Standard, so set them at the end of the function. */
1716 gnu_type = make_node (REAL_TYPE);
1717 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1718 layout_type (gnu_type);
1721 case E_Floating_Point_Subtype:
1722 if (Vax_Float (gnat_entity))
1724 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1730 && Present (Ancestor_Subtype (gnat_entity))
1731 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1732 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1733 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1734 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1737 gnu_type = make_node (REAL_TYPE);
1738 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1739 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1740 TYPE_GCC_MIN_VALUE (gnu_type)
1741 = TYPE_GCC_MIN_VALUE (TREE_TYPE (gnu_type));
1742 TYPE_GCC_MAX_VALUE (gnu_type)
1743 = TYPE_GCC_MAX_VALUE (TREE_TYPE (gnu_type));
1744 layout_type (gnu_type);
1746 SET_TYPE_RM_MIN_VALUE
1748 convert (TREE_TYPE (gnu_type),
1749 elaborate_expression (Type_Low_Bound (gnat_entity),
1750 gnat_entity, get_identifier ("L"),
1752 Needs_Debug_Info (gnat_entity))));
1754 SET_TYPE_RM_MAX_VALUE
1756 convert (TREE_TYPE (gnu_type),
1757 elaborate_expression (Type_High_Bound (gnat_entity),
1758 gnat_entity, get_identifier ("U"),
1760 Needs_Debug_Info (gnat_entity))));
1762 /* One of the above calls might have caused us to be elaborated,
1763 so don't blow up if so. */
1764 if (present_gnu_tree (gnat_entity))
1766 maybe_present = true;
1770 /* Inherit our alias set from what we're a subtype of, as for
1771 integer subtypes. */
1772 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1776 /* Array and String Types and Subtypes
1778 Unconstrained array types are represented by E_Array_Type and
1779 constrained array types are represented by E_Array_Subtype. There
1780 are no actual objects of an unconstrained array type; all we have
1781 are pointers to that type.
1783 The following fields are defined on array types and subtypes:
1785 Component_Type Component type of the array.
1786 Number_Dimensions Number of dimensions (an int).
1787 First_Index Type of first index. */
1792 Entity_Id gnat_ind_subtype;
1793 Entity_Id gnat_ind_base_subtype;
1794 int ndim = Number_Dimensions (gnat_entity);
1796 = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
1798 = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
1800 tree gnu_template_fields = NULL_TREE;
1801 tree gnu_template_type = make_node (RECORD_TYPE);
1802 tree gnu_template_reference;
1803 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1804 tree gnu_fat_type = make_node (RECORD_TYPE);
1805 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
1806 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree));
1807 tree gnu_max_size = size_one_node, gnu_max_size_unit;
1808 tree gnu_comp_size, tem;
1810 TYPE_NAME (gnu_template_type)
1811 = create_concat_name (gnat_entity, "XUB");
1813 /* Make a node for the array. If we are not defining the array
1814 suppress expanding incomplete types. */
1815 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1818 defer_incomplete_level++, this_deferred = true;
1820 /* Build the fat pointer type. Use a "void *" object instead of
1821 a pointer to the array type since we don't have the array type
1822 yet (it will reference the fat pointer via the bounds). */
1823 tem = chainon (chainon (NULL_TREE,
1824 create_field_decl (get_identifier ("P_ARRAY"),
1826 gnu_fat_type, 0, 0, 0, 0)),
1827 create_field_decl (get_identifier ("P_BOUNDS"),
1829 gnu_fat_type, 0, 0, 0, 0));
1831 /* Make sure we can put this into a register. */
1832 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1834 /* Do not finalize this record type since the types of its fields
1835 are still incomplete at this point. */
1836 finish_record_type (gnu_fat_type, tem, 0, true);
1837 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1839 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1840 is the fat pointer. This will be used to access the individual
1841 fields once we build them. */
1842 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1843 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1844 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1845 gnu_template_reference
1846 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1847 TREE_READONLY (gnu_template_reference) = 1;
1849 /* Now create the GCC type for each index and add the fields for
1850 that index to the template. */
1851 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
1852 gnat_ind_base_subtype
1853 = First_Index (Implementation_Base_Type (gnat_entity));
1854 index < ndim && index >= 0;
1856 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
1857 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
1859 char field_name[10];
1860 tree gnu_ind_subtype
1861 = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
1862 tree gnu_base_subtype
1863 = get_unpadded_type (Etype (gnat_ind_base_subtype));
1865 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
1867 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
1868 tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
1870 /* Make the FIELD_DECLs for the minimum and maximum of this
1871 type and then make extractions of that field from the
1873 sprintf (field_name, "LB%d", index);
1874 gnu_min_field = create_field_decl (get_identifier (field_name),
1876 gnu_template_type, 0, 0, 0, 0);
1877 field_name[0] = 'U';
1878 gnu_max_field = create_field_decl (get_identifier (field_name),
1880 gnu_template_type, 0, 0, 0, 0);
1882 Sloc_to_locus (Sloc (gnat_entity),
1883 &DECL_SOURCE_LOCATION (gnu_min_field));
1884 Sloc_to_locus (Sloc (gnat_entity),
1885 &DECL_SOURCE_LOCATION (gnu_max_field));
1886 gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
1888 /* We can't use build_component_ref here since the template
1889 type isn't complete yet. */
1890 gnu_min = build3 (COMPONENT_REF, gnu_ind_subtype,
1891 gnu_template_reference, gnu_min_field,
1893 gnu_max = build3 (COMPONENT_REF, gnu_ind_subtype,
1894 gnu_template_reference, gnu_max_field,
1896 TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
1898 /* Make a range type with the new ranges, but using
1899 the Ada subtype. Then we convert to sizetype. */
1900 gnu_index_types[index]
1901 = create_index_type (convert (sizetype, gnu_min),
1902 convert (sizetype, gnu_max),
1903 create_range_type (gnu_ind_subtype,
1906 /* Update the maximum size of the array, in elements. */
1908 = size_binop (MULT_EXPR, gnu_max_size,
1909 size_binop (PLUS_EXPR, size_one_node,
1910 size_binop (MINUS_EXPR, gnu_base_max,
1913 TYPE_NAME (gnu_index_types[index])
1914 = create_concat_name (gnat_entity, field_name);
1917 for (index = 0; index < ndim; index++)
1919 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1921 /* Install all the fields into the template. */
1922 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1923 TYPE_READONLY (gnu_template_type) = 1;
1925 /* Now make the array of arrays and update the pointer to the array
1926 in the fat pointer. Note that it is the first field. */
1927 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1929 /* Try to get a smaller form of the component if needed. */
1930 if ((Is_Packed (gnat_entity)
1931 || Has_Component_Size_Clause (gnat_entity))
1932 && !Is_Bit_Packed_Array (gnat_entity)
1933 && !Has_Aliased_Components (gnat_entity)
1934 && !Strict_Alignment (Component_Type (gnat_entity))
1935 && TREE_CODE (tem) == RECORD_TYPE
1936 && !TYPE_IS_FAT_POINTER_P (tem)
1937 && host_integerp (TYPE_SIZE (tem), 1))
1938 tem = make_packable_type (tem, false);
1940 if (Has_Atomic_Components (gnat_entity))
1941 check_ok_for_atomic (tem, gnat_entity, true);
1943 /* Get and validate any specified Component_Size, but if Packed,
1944 ignore it since the front end will have taken care of it. */
1946 = validate_size (Component_Size (gnat_entity), tem,
1948 (Is_Bit_Packed_Array (gnat_entity)
1949 ? TYPE_DECL : VAR_DECL),
1950 true, Has_Component_Size_Clause (gnat_entity));
1952 /* If the component type is a RECORD_TYPE that has a self-referential
1953 size, use the maximum size. */
1955 && TREE_CODE (tem) == RECORD_TYPE
1956 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1957 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1959 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1961 tree orig_tem = tem;
1962 unsigned int max_align;
1964 /* If an alignment is specified, use it as a cap on the component
1965 type so that it can be honored for the whole type. But ignore
1966 it for the original type of packed array types. */
1967 if (No (Packed_Array_Type (gnat_entity))
1968 && Known_Alignment (gnat_entity))
1969 max_align = validate_alignment (Alignment (gnat_entity),
1974 tem = make_type_from_size (tem, gnu_comp_size, false);
1975 if (max_align > 0 && TYPE_ALIGN (tem) > max_align)
1980 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
1981 "C_PAD", false, definition, true);
1983 /* If a padding record was made, declare it now since it will
1984 never be declared otherwise. This is necessary to ensure
1985 that its subtrees are properly marked. */
1986 if (tem != orig_tem)
1987 create_type_decl (TYPE_NAME (tem), tem, NULL, true,
1988 debug_info_p, gnat_entity);
1991 if (Has_Volatile_Components (gnat_entity))
1992 tem = build_qualified_type (tem,
1993 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
1995 /* If Component_Size is not already specified, annotate it with the
1996 size of the component. */
1997 if (Unknown_Component_Size (gnat_entity))
1998 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
2000 gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
2001 size_binop (MULT_EXPR, gnu_max_size,
2002 TYPE_SIZE_UNIT (tem)));
2003 gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
2004 size_binop (MULT_EXPR,
2005 convert (bitsizetype,
2009 for (index = ndim - 1; index >= 0; index--)
2011 tem = build_array_type (tem, gnu_index_types[index]);
2012 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
2013 if (array_type_has_nonaliased_component (gnat_entity, tem))
2014 TYPE_NONALIASED_COMPONENT (tem) = 1;
2017 /* If an alignment is specified, use it if valid. But ignore it
2018 for the original type of packed array types. If the alignment
2019 was requested with an explicit alignment clause, state so. */
2020 if (No (Packed_Array_Type (gnat_entity))
2021 && Known_Alignment (gnat_entity))
2024 = validate_alignment (Alignment (gnat_entity), gnat_entity,
2026 if (Present (Alignment_Clause (gnat_entity)))
2027 TYPE_USER_ALIGN (tem) = 1;
2030 TYPE_CONVENTION_FORTRAN_P (tem)
2031 = (Convention (gnat_entity) == Convention_Fortran);
2032 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
2034 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
2035 corresponding fat pointer. */
2036 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
2037 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
2038 SET_TYPE_MODE (gnu_type, BLKmode);
2039 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
2040 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
2042 /* If the maximum size doesn't overflow, use it. */
2043 if (TREE_CODE (gnu_max_size) == INTEGER_CST
2044 && !TREE_OVERFLOW (gnu_max_size))
2046 = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
2047 if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2048 && !TREE_OVERFLOW (gnu_max_size_unit))
2049 TYPE_SIZE_UNIT (tem)
2050 = size_binop (MIN_EXPR, gnu_max_size_unit,
2051 TYPE_SIZE_UNIT (tem));
2053 create_type_decl (create_concat_name (gnat_entity, "XUA"),
2054 tem, NULL, !Comes_From_Source (gnat_entity),
2055 debug_info_p, gnat_entity);
2057 /* Give the fat pointer type a name. */
2058 create_type_decl (create_concat_name (gnat_entity, "XUP"),
2059 gnu_fat_type, NULL, true,
2060 debug_info_p, gnat_entity);
2062 /* Create the type to be used as what a thin pointer designates: an
2063 record type for the object and its template with the field offsets
2064 shifted to have the template at a negative offset. */
2065 tem = build_unc_object_type (gnu_template_type, tem,
2066 create_concat_name (gnat_entity, "XUT"));
2067 shift_unc_components_for_thin_pointers (tem);
2069 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
2070 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
2072 /* Give the thin pointer type a name. */
2073 create_type_decl (create_concat_name (gnat_entity, "XUX"),
2074 build_pointer_type (tem), NULL, true,
2075 debug_info_p, gnat_entity);
2079 case E_String_Subtype:
2080 case E_Array_Subtype:
2082 /* This is the actual data type for array variables. Multidimensional
2083 arrays are implemented in the gnu tree as arrays of arrays. Note
2084 that for the moment arrays which have sparse enumeration subtypes as
2085 index components create sparse arrays, which is obviously space
2086 inefficient but so much easier to code for now.
2088 Also note that the subtype never refers to the unconstrained
2089 array type, which is somewhat at variance with Ada semantics.
2091 First check to see if this is simply a renaming of the array
2092 type. If so, the result is the array type. */
2094 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
2095 if (!Is_Constrained (gnat_entity))
2099 Entity_Id gnat_ind_subtype;
2100 Entity_Id gnat_ind_base_subtype;
2101 int dim = Number_Dimensions (gnat_entity);
2103 = (Convention (gnat_entity) == Convention_Fortran) ? dim - 1 : 0;
2105 = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
2107 tree gnu_base_type = gnu_type;
2108 tree *gnu_index_type = (tree *) alloca (dim * sizeof (tree));
2109 tree gnu_max_size = size_one_node, gnu_max_size_unit;
2110 bool need_index_type_struct = false;
2111 bool max_overflow = false;
2113 /* First create the gnu types for each index. Create types for
2114 debugging information to point to the index types if the
2115 are not integer types, have variable bounds, or are
2116 wider than sizetype. */
2118 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
2119 gnat_ind_base_subtype
2120 = First_Index (Implementation_Base_Type (gnat_entity));
2121 index < dim && index >= 0;
2123 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
2124 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
2126 tree gnu_index_subtype
2127 = get_unpadded_type (Etype (gnat_ind_subtype));
2129 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
2131 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
2132 tree gnu_base_subtype
2133 = get_unpadded_type (Etype (gnat_ind_base_subtype));
2135 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
2137 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
2138 tree gnu_base_type = get_base_type (gnu_base_subtype);
2139 tree gnu_base_base_min
2140 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
2141 tree gnu_base_base_max
2142 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
2146 /* If the minimum and maximum values both overflow in
2147 SIZETYPE, but the difference in the original type
2148 does not overflow in SIZETYPE, ignore the overflow
2150 if ((TYPE_PRECISION (gnu_index_subtype)
2151 > TYPE_PRECISION (sizetype)
2152 || TYPE_UNSIGNED (gnu_index_subtype)
2153 != TYPE_UNSIGNED (sizetype))
2154 && TREE_CODE (gnu_min) == INTEGER_CST
2155 && TREE_CODE (gnu_max) == INTEGER_CST
2156 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2158 (fold_build2 (MINUS_EXPR, gnu_index_subtype,
2159 TYPE_MAX_VALUE (gnu_index_subtype),
2160 TYPE_MIN_VALUE (gnu_index_subtype))))
2162 TREE_OVERFLOW (gnu_min) = 0;
2163 TREE_OVERFLOW (gnu_max) = 0;
2164 if (tree_int_cst_lt (gnu_max, gnu_min))
2166 gnu_min = size_one_node;
2167 gnu_max = size_zero_node;
2172 /* Similarly, if the range is null, use bounds of 1..0 for
2173 the sizetype bounds. */
2174 else if ((TYPE_PRECISION (gnu_index_subtype)
2175 > TYPE_PRECISION (sizetype)
2176 || TYPE_UNSIGNED (gnu_index_subtype)
2177 != TYPE_UNSIGNED (sizetype))
2178 && TREE_CODE (gnu_min) == INTEGER_CST
2179 && TREE_CODE (gnu_max) == INTEGER_CST
2180 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2181 && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
2182 TYPE_MIN_VALUE (gnu_index_subtype)))
2184 gnu_min = size_one_node;
2185 gnu_max = size_zero_node;
2189 /* See if the base array type is already flat. If it is, we
2190 are probably compiling an ACATS test, but it will cause the
2191 code below to malfunction if we don't handle it specially. */
2192 else if (TREE_CODE (gnu_base_min) == INTEGER_CST
2193 && TREE_CODE (gnu_base_max) == INTEGER_CST
2194 && !TREE_OVERFLOW (gnu_base_min)
2195 && !TREE_OVERFLOW (gnu_base_max)
2196 && tree_int_cst_lt (gnu_base_max, gnu_base_min))
2198 gnu_min = size_one_node;
2199 gnu_max = size_zero_node;
2205 /* Now compute the size of this bound. We need to provide
2206 GCC with an upper bound to use but have to deal with the
2207 "superflat" case. There are three ways to do this. If
2208 we can prove that the array can never be superflat, we
2209 can just use the high bound of the index subtype. If we
2210 can prove that the low bound minus one can't overflow,
2211 we can do this as MAX (hb, lb - 1). Otherwise, we have
2212 to use the expression hb >= lb ? hb : lb - 1. */
2213 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2215 /* If gnu_high is now an integer which overflowed, the array
2216 cannot be superflat. */
2217 if (TREE_CODE (gnu_high) == INTEGER_CST
2218 && TREE_OVERFLOW (gnu_high))
2221 /* gnu_high cannot overflow if the subtype is unsigned since
2222 sizetype is signed, or if it is now a constant that hasn't
2224 else if (TYPE_UNSIGNED (gnu_base_subtype)
2225 || TREE_CODE (gnu_high) == INTEGER_CST)
2226 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2230 = build_cond_expr (sizetype,
2231 build_binary_op (GE_EXPR,
2237 gnu_index_type[index]
2238 = create_index_type (gnu_min, gnu_high, gnu_index_subtype,
2241 /* Also compute the maximum size of the array. Here we
2242 see if any constraint on the index type of the base type
2243 can be used in the case of self-referential bound on
2244 the index type of the subtype. We look for a non-"infinite"
2245 and non-self-referential bound from any type involved and
2246 handle each bound separately. */
2248 if ((TREE_CODE (gnu_min) == INTEGER_CST
2249 && !TREE_OVERFLOW (gnu_min)
2250 && !operand_equal_p (gnu_min, gnu_base_base_min, 0))
2251 || !CONTAINS_PLACEHOLDER_P (gnu_min)
2252 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2253 && !TREE_OVERFLOW (gnu_base_min)))
2254 gnu_base_min = gnu_min;
2256 if ((TREE_CODE (gnu_max) == INTEGER_CST
2257 && !TREE_OVERFLOW (gnu_max)
2258 && !operand_equal_p (gnu_max, gnu_base_base_max, 0))
2259 || !CONTAINS_PLACEHOLDER_P (gnu_max)
2260 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2261 && !TREE_OVERFLOW (gnu_base_max)))
2262 gnu_base_max = gnu_max;
2264 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2265 && TREE_OVERFLOW (gnu_base_min))
2266 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2267 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2268 && TREE_OVERFLOW (gnu_base_max))
2269 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2270 max_overflow = true;
2272 gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
2273 gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
2276 = size_binop (MAX_EXPR,
2277 size_binop (PLUS_EXPR, size_one_node,
2278 size_binop (MINUS_EXPR, gnu_base_max,
2282 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2283 && TREE_OVERFLOW (gnu_this_max))
2284 max_overflow = true;
2287 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2289 if (!integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
2290 || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
2292 || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
2293 || (TREE_TYPE (gnu_index_subtype)
2294 && (TREE_CODE (TREE_TYPE (gnu_index_subtype))
2296 || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
2297 || (TYPE_PRECISION (gnu_index_subtype)
2298 > TYPE_PRECISION (sizetype)))
2299 need_index_type_struct = true;
2302 /* Then flatten: create the array of arrays. For an array type
2303 used to implement a packed array, get the component type from
2304 the original array type since the representation clauses that
2305 can affect it are on the latter. */
2306 if (Is_Packed_Array_Type (gnat_entity)
2307 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2309 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2310 for (index = dim - 1; index >= 0; index--)
2311 gnu_type = TREE_TYPE (gnu_type);
2313 /* One of the above calls might have caused us to be elaborated,
2314 so don't blow up if so. */
2315 if (present_gnu_tree (gnat_entity))
2317 maybe_present = true;
2325 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2327 /* One of the above calls might have caused us to be elaborated,
2328 so don't blow up if so. */
2329 if (present_gnu_tree (gnat_entity))
2331 maybe_present = true;
2335 /* Try to get a smaller form of the component if needed. */
2336 if ((Is_Packed (gnat_entity)
2337 || Has_Component_Size_Clause (gnat_entity))
2338 && !Is_Bit_Packed_Array (gnat_entity)
2339 && !Has_Aliased_Components (gnat_entity)
2340 && !Strict_Alignment (Component_Type (gnat_entity))
2341 && TREE_CODE (gnu_type) == RECORD_TYPE
2342 && !TYPE_IS_FAT_POINTER_P (gnu_type)
2343 && host_integerp (TYPE_SIZE (gnu_type), 1))
2344 gnu_type = make_packable_type (gnu_type, false);
2346 /* Get and validate any specified Component_Size, but if Packed,
2347 ignore it since the front end will have taken care of it. */
2349 = validate_size (Component_Size (gnat_entity), gnu_type,
2351 (Is_Bit_Packed_Array (gnat_entity)
2352 ? TYPE_DECL : VAR_DECL), true,
2353 Has_Component_Size_Clause (gnat_entity));
2355 /* If the component type is a RECORD_TYPE that has a
2356 self-referential size, use the maximum size. */
2358 && TREE_CODE (gnu_type) == RECORD_TYPE
2359 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2360 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2362 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2364 tree orig_gnu_type = gnu_type;
2365 unsigned int max_align;
2367 /* If an alignment is specified, use it as a cap on the
2368 component type so that it can be honored for the whole
2369 type. But ignore it for the original type of packed
2371 if (No (Packed_Array_Type (gnat_entity))
2372 && Known_Alignment (gnat_entity))
2373 max_align = validate_alignment (Alignment (gnat_entity),
2379 = make_type_from_size (gnu_type, gnu_comp_size, false);
2380 if (max_align > 0 && TYPE_ALIGN (gnu_type) > max_align)
2381 gnu_type = orig_gnu_type;
2383 orig_gnu_type = gnu_type;
2385 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2386 gnat_entity, "C_PAD", false,
2389 /* If a padding record was made, declare it now since it
2390 will never be declared otherwise. This is necessary
2391 to ensure that its subtrees are properly marked. */
2392 if (gnu_type != orig_gnu_type)
2393 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2394 true, debug_info_p, gnat_entity);
2397 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2398 gnu_type = build_qualified_type (gnu_type,
2399 (TYPE_QUALS (gnu_type)
2400 | TYPE_QUAL_VOLATILE));
2403 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2404 TYPE_SIZE_UNIT (gnu_type));
2405 gnu_max_size = size_binop (MULT_EXPR,
2406 convert (bitsizetype, gnu_max_size),
2407 TYPE_SIZE (gnu_type));
2409 for (index = dim - 1; index >= 0; index --)
2411 gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
2412 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2413 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2414 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2417 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
2418 TYPE_STUB_DECL (gnu_type)
2419 = create_type_stub_decl (gnu_entity_name, gnu_type);
2421 /* If we are at file level and this is a multi-dimensional array, we
2422 need to make a variable corresponding to the stride of the
2423 inner dimensions. */
2424 if (global_bindings_p () && dim > 1)
2426 tree gnu_str_name = get_identifier ("ST");
2429 for (gnu_arr_type = TREE_TYPE (gnu_type);
2430 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2431 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2432 gnu_str_name = concat_name (gnu_str_name, "ST"))
2434 tree eltype = TREE_TYPE (gnu_arr_type);
2436 TYPE_SIZE (gnu_arr_type)
2437 = elaborate_expression_1 (TYPE_SIZE (gnu_arr_type),
2438 gnat_entity, gnu_str_name,
2441 /* ??? For now, store the size as a multiple of the
2442 alignment of the element type in bytes so that we
2443 can see the alignment from the tree. */
2444 TYPE_SIZE_UNIT (gnu_arr_type)
2446 (MULT_EXPR, sizetype,
2447 elaborate_expression_1
2448 (build_binary_op (EXACT_DIV_EXPR, sizetype,
2449 TYPE_SIZE_UNIT (gnu_arr_type),
2450 size_int (TYPE_ALIGN (eltype)
2452 gnat_entity, concat_name (gnu_str_name, "A_U"),
2454 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2456 /* ??? create_type_decl is not invoked on the inner types so
2457 the MULT_EXPR node built above will never be marked. */
2458 mark_visited (&TYPE_SIZE_UNIT (gnu_arr_type));
2462 /* If we need to write out a record type giving the names of the
2463 bounds for debugging purposes, do it now and make the record
2464 type a parallel type. This is not needed for a packed array
2465 since the bounds are conveyed by the original array type. */
2466 if (need_index_type_struct
2468 && !Is_Packed_Array_Type (gnat_entity))
2470 tree gnu_bound_rec = make_node (RECORD_TYPE);
2471 tree gnu_field_list = NULL_TREE;
2474 TYPE_NAME (gnu_bound_rec)
2475 = create_concat_name (gnat_entity, "XA");
2477 for (index = dim - 1; index >= 0; index--)
2479 tree gnu_index = TYPE_INDEX_TYPE (gnu_index_type[index]);
2480 tree gnu_index_name = TYPE_NAME (gnu_index);
2482 if (TREE_CODE (gnu_index_name) == TYPE_DECL)
2483 gnu_index_name = DECL_NAME (gnu_index_name);
2485 /* Make sure to reference the types themselves, and not just
2486 their names, as the debugger may fall back on them. */
2487 gnu_field = create_field_decl (gnu_index_name, gnu_index,
2489 0, NULL_TREE, NULL_TREE, 0);
2490 TREE_CHAIN (gnu_field) = gnu_field_list;
2491 gnu_field_list = gnu_field;
2494 finish_record_type (gnu_bound_rec, gnu_field_list, 0, false);
2495 add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
2498 /* Otherwise, for a packed array, make the original array type a
2500 else if (debug_info_p
2501 && Is_Packed_Array_Type (gnat_entity)
2502 && present_gnu_tree (Original_Array_Type (gnat_entity)))
2503 add_parallel_type (TYPE_STUB_DECL (gnu_type),
2505 (Original_Array_Type (gnat_entity)));
2507 TYPE_CONVENTION_FORTRAN_P (gnu_type)
2508 = (Convention (gnat_entity) == Convention_Fortran);
2509 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2510 = (Is_Packed_Array_Type (gnat_entity)
2511 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2513 /* If our size depends on a placeholder and the maximum size doesn't
2514 overflow, use it. */
2515 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2516 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2517 && TREE_OVERFLOW (gnu_max_size))
2518 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2519 && TREE_OVERFLOW (gnu_max_size_unit))
2522 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2523 TYPE_SIZE (gnu_type));
2524 TYPE_SIZE_UNIT (gnu_type)
2525 = size_binop (MIN_EXPR, gnu_max_size_unit,
2526 TYPE_SIZE_UNIT (gnu_type));
2529 /* Set our alias set to that of our base type. This gives all
2530 array subtypes the same alias set. */
2531 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
2534 /* If this is a packed type, make this type the same as the packed
2535 array type, but do some adjusting in the type first. */
2536 if (Present (Packed_Array_Type (gnat_entity)))
2538 Entity_Id gnat_index;
2539 tree gnu_inner_type;
2541 /* First finish the type we had been making so that we output
2542 debugging information for it. */
2544 = build_qualified_type (gnu_type,
2545 (TYPE_QUALS (gnu_type)
2546 | (TYPE_QUAL_VOLATILE
2547 * Treat_As_Volatile (gnat_entity))));
2549 /* Make it artificial only if the base type was artificial as well.
2550 That's sort of "morally" true and will make it possible for the
2551 debugger to look it up by name in DWARF, which is necessary in
2552 order to decode the packed array type. */
2554 = create_type_decl (gnu_entity_name, gnu_type, attr_list,
2555 !Comes_From_Source (gnat_entity)
2556 && !Comes_From_Source (Etype (gnat_entity)),
2557 debug_info_p, gnat_entity);
2559 /* Save it as our equivalent in case the call below elaborates
2561 save_gnu_tree (gnat_entity, gnu_decl, false);
2563 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2565 this_made_decl = true;
2566 gnu_type = TREE_TYPE (gnu_decl);
2567 save_gnu_tree (gnat_entity, NULL_TREE, false);
2569 gnu_inner_type = gnu_type;
2570 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2571 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2572 || TYPE_IS_PADDING_P (gnu_inner_type)))
2573 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2575 /* We need to attach the index type to the type we just made so
2576 that the actual bounds can later be put into a template. */
2577 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2578 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2579 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2580 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2582 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2584 /* The TYPE_ACTUAL_BOUNDS field is overloaded with the
2585 TYPE_MODULUS for modular types so we make an extra
2586 subtype if necessary. */
2587 if (TYPE_MODULAR_P (gnu_inner_type))
2590 = make_unsigned_type (TYPE_PRECISION (gnu_inner_type));
2591 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2592 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2593 SET_TYPE_RM_MIN_VALUE (gnu_subtype,
2594 TYPE_MIN_VALUE (gnu_inner_type));
2595 SET_TYPE_RM_MAX_VALUE (gnu_subtype,
2596 TYPE_MAX_VALUE (gnu_inner_type));
2597 gnu_inner_type = gnu_subtype;
2600 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2602 #ifdef ENABLE_CHECKING
2603 /* Check for other cases of overloading. */
2604 gcc_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner_type));
2608 /* ??? This is necessary to make sure that the container is
2609 allocated with a null tree upfront; otherwise, it could
2610 be allocated with an uninitialized tree that is accessed
2611 before being set below. See ada-tree.h for details. */
2612 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2614 for (gnat_index = First_Index (gnat_entity);
2615 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2616 SET_TYPE_ACTUAL_BOUNDS
2618 tree_cons (NULL_TREE,
2619 get_unpadded_type (Etype (gnat_index)),
2620 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2622 if (Convention (gnat_entity) != Convention_Fortran)
2623 SET_TYPE_ACTUAL_BOUNDS
2625 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2627 if (TREE_CODE (gnu_type) == RECORD_TYPE
2628 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2629 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2633 /* Abort if packed array with no packed array type field set. */
2635 gcc_assert (!Is_Packed (gnat_entity));
2639 case E_String_Literal_Subtype:
2640 /* Create the type for a string literal. */
2642 Entity_Id gnat_full_type
2643 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2644 && Present (Full_View (Etype (gnat_entity)))
2645 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2646 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2647 tree gnu_string_array_type
2648 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2649 tree gnu_string_index_type
2650 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2651 (TYPE_DOMAIN (gnu_string_array_type))));
2652 tree gnu_lower_bound
2653 = convert (gnu_string_index_type,
2654 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2655 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2656 tree gnu_length = ssize_int (length - 1);
2657 tree gnu_upper_bound
2658 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2660 convert (gnu_string_index_type, gnu_length));
2662 = create_index_type (convert (sizetype, gnu_lower_bound),
2663 convert (sizetype, gnu_upper_bound),
2664 create_range_type (gnu_string_index_type,
2670 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2672 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2673 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2674 relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
2678 /* Record Types and Subtypes
2680 The following fields are defined on record types:
2682 Has_Discriminants True if the record has discriminants
2683 First_Discriminant Points to head of list of discriminants
2684 First_Entity Points to head of list of fields
2685 Is_Tagged_Type True if the record is tagged
2687 Implementation of Ada records and discriminated records:
2689 A record type definition is transformed into the equivalent of a C
2690 struct definition. The fields that are the discriminants which are
2691 found in the Full_Type_Declaration node and the elements of the
2692 Component_List found in the Record_Type_Definition node. The
2693 Component_List can be a recursive structure since each Variant of
2694 the Variant_Part of the Component_List has a Component_List.
2696 Processing of a record type definition comprises starting the list of
2697 field declarations here from the discriminants and the calling the
2698 function components_to_record to add the rest of the fields from the
2699 component list and return the gnu type node. The function
2700 components_to_record will call itself recursively as it traverses
2704 if (Has_Complex_Representation (gnat_entity))
2707 = build_complex_type
2709 (Etype (Defining_Entity
2710 (First (Component_Items
2713 (Declaration_Node (gnat_entity)))))))));
2719 Node_Id full_definition = Declaration_Node (gnat_entity);
2720 Node_Id record_definition = Type_Definition (full_definition);
2721 Entity_Id gnat_field;
2723 tree gnu_field_list = NULL_TREE;
2724 tree gnu_get_parent;
2725 /* Set PACKED in keeping with gnat_to_gnu_field. */
2727 = Is_Packed (gnat_entity)
2729 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2731 : (Known_Alignment (gnat_entity)
2732 || (Strict_Alignment (gnat_entity)
2733 && Known_Static_Esize (gnat_entity)))
2736 bool has_rep = Has_Specified_Layout (gnat_entity);
2737 bool all_rep = has_rep;
2739 = (Is_Tagged_Type (gnat_entity)
2740 && Nkind (record_definition) == N_Derived_Type_Definition);
2742 /* See if all fields have a rep clause. Stop when we find one
2744 for (gnat_field = First_Entity (gnat_entity);
2745 Present (gnat_field) && all_rep;
2746 gnat_field = Next_Entity (gnat_field))
2747 if ((Ekind (gnat_field) == E_Component
2748 || Ekind (gnat_field) == E_Discriminant)
2749 && No (Component_Clause (gnat_field)))
2752 /* If this is a record extension, go a level further to find the
2753 record definition. Also, verify we have a Parent_Subtype. */
2756 if (!type_annotate_only
2757 || Present (Record_Extension_Part (record_definition)))
2758 record_definition = Record_Extension_Part (record_definition);
2760 gcc_assert (type_annotate_only
2761 || Present (Parent_Subtype (gnat_entity)));
2764 /* Make a node for the record. If we are not defining the record,
2765 suppress expanding incomplete types. */
2766 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2767 TYPE_NAME (gnu_type) = gnu_entity_name;
2768 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2771 defer_incomplete_level++, this_deferred = true;
2773 /* If both a size and rep clause was specified, put the size in
2774 the record type now so that it can get the proper mode. */
2775 if (has_rep && Known_Esize (gnat_entity))
2776 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2778 /* Always set the alignment here so that it can be used to
2779 set the mode, if it is making the alignment stricter. If
2780 it is invalid, it will be checked again below. If this is to
2781 be Atomic, choose a default alignment of a word unless we know
2782 the size and it's smaller. */
2783 if (Known_Alignment (gnat_entity))
2784 TYPE_ALIGN (gnu_type)
2785 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2786 else if (Is_Atomic (gnat_entity))
2787 TYPE_ALIGN (gnu_type)
2788 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2789 /* If a type needs strict alignment, the minimum size will be the
2790 type size instead of the RM size (see validate_size). Cap the
2791 alignment, lest it causes this type size to become too large. */
2792 else if (Strict_Alignment (gnat_entity)
2793 && Known_Static_Esize (gnat_entity))
2795 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2796 unsigned int raw_align = raw_size & -raw_size;
2797 if (raw_align < BIGGEST_ALIGNMENT)
2798 TYPE_ALIGN (gnu_type) = raw_align;
2801 TYPE_ALIGN (gnu_type) = 0;
2803 /* If we have a Parent_Subtype, make a field for the parent. If
2804 this record has rep clauses, force the position to zero. */
2805 if (Present (Parent_Subtype (gnat_entity)))
2807 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2810 /* A major complexity here is that the parent subtype will
2811 reference our discriminants in its Discriminant_Constraint
2812 list. But those must reference the parent component of this
2813 record which is of the parent subtype we have not built yet!
2814 To break the circle we first build a dummy COMPONENT_REF which
2815 represents the "get to the parent" operation and initialize
2816 each of those discriminants to a COMPONENT_REF of the above
2817 dummy parent referencing the corresponding discriminant of the
2818 base type of the parent subtype. */
2819 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2820 build0 (PLACEHOLDER_EXPR, gnu_type),
2821 build_decl (FIELD_DECL, NULL_TREE,
2825 if (Has_Discriminants (gnat_entity))
2826 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2827 Present (gnat_field);
2828 gnat_field = Next_Stored_Discriminant (gnat_field))
2829 if (Present (Corresponding_Discriminant (gnat_field)))
2832 build3 (COMPONENT_REF,
2833 get_unpadded_type (Etype (gnat_field)),
2835 gnat_to_gnu_field_decl (Corresponding_Discriminant
2840 /* Then we build the parent subtype. If it has discriminants but
2841 the type itself has unknown discriminants, this means that it
2842 doesn't contain information about how the discriminants are
2843 derived from those of the ancestor type, so it cannot be used
2844 directly. Instead it is built by cloning the parent subtype
2845 of the underlying record view of the type, for which the above
2846 derivation of discriminants has been made explicit. */
2847 if (Has_Discriminants (gnat_parent)
2848 && Has_Unknown_Discriminants (gnat_entity))
2850 Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
2852 /* If we are defining the type, the underlying record
2853 view must already have been elaborated at this point.
2854 Otherwise do it now as its parent subtype cannot be
2855 technically elaborated on its own. */
2857 gcc_assert (present_gnu_tree (gnat_uview));
2859 gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
2861 gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
2863 /* Substitute the "get to the parent" of the type for that
2864 of its underlying record view in the cloned type. */
2865 for (gnat_field = First_Stored_Discriminant (gnat_uview);
2866 Present (gnat_field);
2867 gnat_field = Next_Stored_Discriminant (gnat_field))
2868 if (Present (Corresponding_Discriminant (gnat_field)))
2870 tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
2872 = build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2873 gnu_get_parent, gnu_field, NULL_TREE);
2875 = substitute_in_type (gnu_parent, gnu_field, gnu_ref);
2879 gnu_parent = gnat_to_gnu_type (gnat_parent);
2881 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2882 initially built. The discriminants must reference the fields
2883 of the parent subtype and not those of its base type for the
2884 placeholder machinery to properly work. */
2885 if (Has_Discriminants (gnat_entity))
2886 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2887 Present (gnat_field);
2888 gnat_field = Next_Stored_Discriminant (gnat_field))
2889 if (Present (Corresponding_Discriminant (gnat_field)))
2891 Entity_Id field = Empty;
2892 for (field = First_Stored_Discriminant (gnat_parent);
2894 field = Next_Stored_Discriminant (field))
2895 if (same_discriminant_p (gnat_field, field))
2897 gcc_assert (Present (field));
2898 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2899 = gnat_to_gnu_field_decl (field);
2902 /* The "get to the parent" COMPONENT_REF must be given its
2904 TREE_TYPE (gnu_get_parent) = gnu_parent;
2906 /* ...and reference the _parent field of this record. */
2908 = create_field_decl (get_identifier
2909 (Get_Name_String (Name_uParent)),
2910 gnu_parent, gnu_type, 0,
2911 has_rep ? TYPE_SIZE (gnu_parent) : 0,
2912 has_rep ? bitsize_zero_node : 0, 1);
2913 DECL_INTERNAL_P (gnu_field_list) = 1;
2914 TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
2917 /* Make the fields for the discriminants and put them into the record
2918 unless it's an Unchecked_Union. */
2919 if (Has_Discriminants (gnat_entity))
2920 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2921 Present (gnat_field);
2922 gnat_field = Next_Stored_Discriminant (gnat_field))
2924 /* If this is a record extension and this discriminant
2925 is the renaming of another discriminant, we've already
2926 handled the discriminant above. */
2927 if (Present (Parent_Subtype (gnat_entity))
2928 && Present (Corresponding_Discriminant (gnat_field)))
2932 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2934 /* Make an expression using a PLACEHOLDER_EXPR from the
2935 FIELD_DECL node just created and link that with the
2936 corresponding GNAT defining identifier. Then add to the
2938 save_gnu_tree (gnat_field,
2939 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2940 build0 (PLACEHOLDER_EXPR,
2941 DECL_CONTEXT (gnu_field)),
2942 gnu_field, NULL_TREE),
2945 if (!Is_Unchecked_Union (gnat_entity))
2947 TREE_CHAIN (gnu_field) = gnu_field_list;
2948 gnu_field_list = gnu_field;
2952 /* Put the discriminants into the record (backwards), so we can
2953 know the appropriate discriminant to use for the names of the
2955 TYPE_FIELDS (gnu_type) = gnu_field_list;
2957 /* Add the listed fields into the record and finish it up. */
2958 components_to_record (gnu_type, Component_List (record_definition),
2959 gnu_field_list, packed, definition, NULL,
2960 false, all_rep, false,
2961 Is_Unchecked_Union (gnat_entity));
2963 /* We used to remove the associations of the discriminants and
2964 _Parent for validity checking, but we may need them if there's
2965 Freeze_Node for a subtype used in this record. */
2966 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2967 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
2969 /* If it is a tagged record force the type to BLKmode to insure
2970 that these objects will always be placed in memory. Do the
2971 same thing for limited record types. */
2972 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2973 SET_TYPE_MODE (gnu_type, BLKmode);
2975 /* Fill in locations of fields. */
2976 annotate_rep (gnat_entity, gnu_type);
2978 /* If there are any entities in the chain corresponding to
2979 components that we did not elaborate, ensure we elaborate their
2980 types if they are Itypes. */
2981 for (gnat_temp = First_Entity (gnat_entity);
2982 Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
2983 if ((Ekind (gnat_temp) == E_Component
2984 || Ekind (gnat_temp) == E_Discriminant)
2985 && Is_Itype (Etype (gnat_temp))
2986 && !present_gnu_tree (gnat_temp))
2987 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
2991 case E_Class_Wide_Subtype:
2992 /* If an equivalent type is present, that is what we should use.
2993 Otherwise, fall through to handle this like a record subtype
2994 since it may have constraints. */
2995 if (gnat_equiv_type != gnat_entity)
2997 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
2998 maybe_present = true;
3002 /* ... fall through ... */
3004 case E_Record_Subtype:
3006 /* If Cloned_Subtype is Present it means this record subtype has
3007 identical layout to that type or subtype and we should use
3008 that GCC type for this one. The front end guarantees that
3009 the component list is shared. */
3010 if (Present (Cloned_Subtype (gnat_entity)))
3012 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
3014 maybe_present = true;
3017 /* Otherwise, first ensure the base type is elaborated. Then, if we are
3018 changing the type, make a new type with each field having the
3019 type of the field in the new subtype but having the position
3020 computed by transforming every discriminant reference according
3021 to the constraints. We don't see any difference between
3022 private and nonprivate type here since derivations from types should
3023 have been deferred until the completion of the private type. */
3026 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
3031 defer_incomplete_level++, this_deferred = true;
3033 /* Get the base type initially for its alignment and sizes. But
3034 if it is a padded type, we do all the other work with the
3036 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
3038 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
3039 && TYPE_IS_PADDING_P (gnu_base_type))
3040 gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
3042 gnu_type = gnu_orig_type = gnu_base_type;
3044 if (present_gnu_tree (gnat_entity))
3046 maybe_present = true;
3050 /* When the type has discriminants, and these discriminants
3051 affect the shape of what it built, factor them in.
3053 If we are making a subtype of an Unchecked_Union (must be an
3054 Itype), just return the type.
3056 We can't just use Is_Constrained because private subtypes without
3057 discriminants of full types with discriminants with default
3058 expressions are Is_Constrained but aren't constrained! */
3060 if (IN (Ekind (gnat_base_type), Record_Kind)
3061 && !Is_For_Access_Subtype (gnat_entity)
3062 && !Is_Unchecked_Union (gnat_base_type)
3063 && Is_Constrained (gnat_entity)
3064 && Stored_Constraint (gnat_entity) != No_Elist
3065 && Present (Discriminant_Constraint (gnat_entity)))
3067 Entity_Id gnat_field;
3068 tree gnu_field_list = 0;
3070 = compute_field_positions (gnu_orig_type, NULL_TREE,
3071 size_zero_node, bitsize_zero_node,
3074 = substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
3078 gnu_type = make_node (RECORD_TYPE);
3079 TYPE_NAME (gnu_type) = gnu_entity_name;
3080 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
3082 /* Set the size, alignment and alias set of the new type to
3083 match that of the old one, doing required substitutions.
3084 We do it this early because we need the size of the new
3085 type below to discard old fields if necessary. */
3086 TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
3087 TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
3088 SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
3089 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
3090 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
3092 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
3093 for (gnu_temp = gnu_subst_list;
3094 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3095 TYPE_SIZE (gnu_type)
3096 = substitute_in_expr (TYPE_SIZE (gnu_type),
3097 TREE_PURPOSE (gnu_temp),
3098 TREE_VALUE (gnu_temp));
3100 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
3101 for (gnu_temp = gnu_subst_list;
3102 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3103 TYPE_SIZE_UNIT (gnu_type)
3104 = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
3105 TREE_PURPOSE (gnu_temp),
3106 TREE_VALUE (gnu_temp));
3108 if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
3109 for (gnu_temp = gnu_subst_list;
3110 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3112 (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
3113 TREE_PURPOSE (gnu_temp),
3114 TREE_VALUE (gnu_temp)));
3116 for (gnat_field = First_Entity (gnat_entity);
3117 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3118 if ((Ekind (gnat_field) == E_Component
3119 || Ekind (gnat_field) == E_Discriminant)
3120 && (Underlying_Type (Scope (Original_Record_Component
3123 && (No (Corresponding_Discriminant (gnat_field))
3124 || !Is_Tagged_Type (gnat_base_type)))
3127 = gnat_to_gnu_field_decl
3128 (Original_Record_Component (gnat_field));
3131 (purpose_member (gnu_old_field, gnu_pos_list));
3132 tree gnu_pos = TREE_PURPOSE (gnu_offset);
3133 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
3134 tree gnu_field, gnu_field_type, gnu_size, gnu_new_pos;
3135 unsigned int offset_align
3137 (TREE_PURPOSE (TREE_VALUE (gnu_offset)), 1);
3139 /* If the type is the same, retrieve the GCC type from the
3140 old field to take into account possible adjustments. */
3141 if (Etype (gnat_field)
3142 == Etype (Original_Record_Component (gnat_field)))
3143 gnu_field_type = TREE_TYPE (gnu_old_field);
3145 gnu_field_type = gnat_to_gnu_type (Etype (gnat_field));
3147 gnu_size = TYPE_SIZE (gnu_field_type);
3149 /* If there was a component clause, the field types must be
3150 the same for the type and subtype, so copy the data from
3151 the old field to avoid recomputation here. Also if the
3152 field is justified modular and the optimization in
3153 gnat_to_gnu_field was applied. */
3154 if (Present (Component_Clause
3155 (Original_Record_Component (gnat_field)))
3156 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
3157 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
3158 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
3159 == TREE_TYPE (gnu_old_field)))
3161 gnu_size = DECL_SIZE (gnu_old_field);
3162 gnu_field_type = TREE_TYPE (gnu_old_field);
3165 /* If the old field was packed and of constant size, we
3166 have to get the old size here, as it might differ from
3167 what the Etype conveys and the latter might overlap
3168 onto the following field. Try to arrange the type for
3169 possible better packing along the way. */
3170 else if (DECL_PACKED (gnu_old_field)
3171 && TREE_CODE (DECL_SIZE (gnu_old_field))
3174 gnu_size = DECL_SIZE (gnu_old_field);
3175 if (TREE_CODE (gnu_field_type) == RECORD_TYPE
3176 && !TYPE_IS_FAT_POINTER_P (gnu_field_type)
3177 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
3179 = make_packable_type (gnu_field_type, true);
3182 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
3183 for (gnu_temp = gnu_subst_list;
3184 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3185 gnu_pos = substitute_in_expr (gnu_pos,
3186 TREE_PURPOSE (gnu_temp),
3187 TREE_VALUE (gnu_temp));
3189 /* If the position is now a constant, we can set it as the
3190 position of the field when we make it. Otherwise, we need
3191 to deal with it specially below. */
3192 if (TREE_CONSTANT (gnu_pos))
3194 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
3196 /* Discard old fields that are outside the new type.
3197 This avoids confusing code scanning it to decide
3198 how to pass it to functions on some platforms. */
3199 if (TREE_CODE (gnu_new_pos) == INTEGER_CST
3200 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST
3201 && !integer_zerop (gnu_size)
3202 && !tree_int_cst_lt (gnu_new_pos,
3203 TYPE_SIZE (gnu_type)))
3207 gnu_new_pos = NULL_TREE;
3211 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
3212 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
3213 !DECL_NONADDRESSABLE_P (gnu_old_field));
3215 if (!TREE_CONSTANT (gnu_pos))
3217 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
3218 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
3219 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
3220 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
3221 DECL_SIZE (gnu_field) = gnu_size;
3222 DECL_SIZE_UNIT (gnu_field)
3223 = convert (sizetype,
3224 size_binop (CEIL_DIV_EXPR, gnu_size,
3225 bitsize_unit_node));
3226 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
3229 DECL_INTERNAL_P (gnu_field)
3230 = DECL_INTERNAL_P (gnu_old_field);
3231 SET_DECL_ORIGINAL_FIELD
3232 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
3233 ? DECL_ORIGINAL_FIELD (gnu_old_field)
3235 DECL_DISCRIMINANT_NUMBER (gnu_field)
3236 = DECL_DISCRIMINANT_NUMBER (gnu_old_field);
3237 TREE_THIS_VOLATILE (gnu_field)
3238 = TREE_THIS_VOLATILE (gnu_old_field);
3240 /* To match the layout crafted in components_to_record, if
3241 this is the _Tag field, put it before any discriminants
3242 instead of after them as for all other fields. */
3243 if (Chars (gnat_field) == Name_uTag)
3244 gnu_field_list = chainon (gnu_field_list, gnu_field);
3247 TREE_CHAIN (gnu_field) = gnu_field_list;
3248 gnu_field_list = gnu_field;
3251 save_gnu_tree (gnat_field, gnu_field, false);
3254 /* Now go through the entities again looking for Itypes that
3255 we have not elaborated but should (e.g., Etypes of fields
3256 that have Original_Components). */
3257 for (gnat_field = First_Entity (gnat_entity);
3258 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3259 if ((Ekind (gnat_field) == E_Discriminant
3260 || Ekind (gnat_field) == E_Component)
3261 && !present_gnu_tree (Etype (gnat_field)))
3262 gnat_to_gnu_entity (Etype (gnat_field),&nb