1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
53 #ifndef MAX_FIXED_MODE_SIZE
54 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
57 /* Convention_Stdcall should be processed in a specific way on Windows targets
58 only. The macro below is a helper to avoid having to check for a Windows
59 specific attribute throughout this unit. */
61 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
62 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
64 #define Has_Stdcall_Convention(E) (0)
67 /* Stack realignment for functions with foreign conventions is provided on a
68 per back-end basis now, as it is handled by the prologue expanders and not
69 as part of the function's body any more. It might be requested by way of a
70 dedicated function type attribute on the targets that support it.
72 We need a way to avoid setting the attribute on the targets that don't
73 support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
75 It is defined on targets where the circuitry is available, and indicates
76 whether the realignment is needed for 'main'. We use this to decide for
77 foreign subprograms as well.
79 It is not defined on targets where the circuitry is not implemented, and
80 we just never set the attribute in these cases.
82 Whether it is defined on all targets that would need it in theory is
83 not entirely clear. We currently trust the base GCC settings for this
86 #ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
87 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
92 struct incomplete *next;
97 /* These variables are used to defer recursively expanding incomplete types
98 while we are processing an array, a record or a subprogram type. */
99 static int defer_incomplete_level = 0;
100 static struct incomplete *defer_incomplete_list;
102 /* This variable is used to delay expanding From_With_Type types until the
104 static struct incomplete *defer_limited_with;
106 /* These variables are used to defer finalizing types. The element of the
107 list is the TYPE_DECL associated with the type. */
108 static int defer_finalize_level = 0;
109 static VEC (tree,heap) *defer_finalize_list;
111 /* A hash table used to cache the result of annotate_value. */
112 static GTY ((if_marked ("tree_int_map_marked_p"),
113 param_is (struct tree_int_map))) htab_t annotate_value_cache;
122 static void relate_alias_sets (tree, tree, enum alias_set_op);
124 static tree substitution_list (Entity_Id, Entity_Id, tree, bool);
125 static bool allocatable_size_p (tree, bool);
126 static void prepend_one_attribute_to (struct attrib **,
127 enum attr_type, tree, tree, Node_Id);
128 static void prepend_attributes (Entity_Id, struct attrib **);
129 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
130 static bool is_variable_size (tree);
131 static tree elaborate_expression_1 (Node_Id, Entity_Id, tree, tree,
133 static tree make_packable_type (tree, bool);
134 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
135 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
137 static bool same_discriminant_p (Entity_Id, Entity_Id);
138 static bool array_type_has_nonaliased_component (Entity_Id, tree);
139 static bool compile_time_known_address_p (Node_Id);
140 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
141 bool, bool, bool, bool);
142 static Uint annotate_value (tree);
143 static void annotate_rep (Entity_Id, tree);
144 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
145 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
146 static void set_rm_size (Uint, tree, Entity_Id);
147 static tree make_type_from_size (tree, tree, bool);
148 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
149 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
150 static void check_ok_for_atomic (tree, Entity_Id, bool);
151 static int compatible_signatures_p (tree ftype1, tree ftype2);
152 static void rest_of_type_decl_compilation_no_defer (tree);
154 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
155 entity, return the equivalent GCC tree for that entity (a ..._DECL node)
156 and associate the ..._DECL node with the input GNAT defining identifier.
158 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
159 initial value (in GCC tree form). This is optional for a variable. For
160 a renamed entity, GNU_EXPR gives the object being renamed.
162 DEFINITION is nonzero if this call is intended for a definition. This is
163 used for separate compilation where it is necessary to know whether an
164 external declaration or a definition must be created if the GCC equivalent
165 was not created previously. The value of 1 is normally used for a nonzero
166 DEFINITION, but a value of 2 is used in special circumstances, defined in
170 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
172 /* Contains the kind of the input GNAT node. */
173 const Entity_Kind kind = Ekind (gnat_entity);
174 /* True if this is a type. */
175 const bool is_type = IN (kind, Type_Kind);
176 /* For a type, contains the equivalent GNAT node to be used in gigi. */
177 Entity_Id gnat_equiv_type = Empty;
178 /* Temporary used to walk the GNAT tree. */
180 /* Contains the GCC DECL node which is equivalent to the input GNAT node.
181 This node will be associated with the GNAT node by calling at the end
182 of the `switch' statement. */
183 tree gnu_decl = NULL_TREE;
184 /* Contains the GCC type to be used for the GCC node. */
185 tree gnu_type = NULL_TREE;
186 /* Contains the GCC size tree to be used for the GCC node. */
187 tree gnu_size = NULL_TREE;
188 /* Contains the GCC name to be used for the GCC node. */
189 tree gnu_entity_name;
190 /* True if we have already saved gnu_decl as a GNAT association. */
192 /* True if we incremented defer_incomplete_level. */
193 bool this_deferred = false;
194 /* True if we incremented force_global. */
195 bool this_global = false;
196 /* True if we should check to see if elaborated during processing. */
197 bool maybe_present = false;
198 /* True if we made GNU_DECL and its type here. */
199 bool this_made_decl = false;
200 /* True if debug info is requested for this entity. */
201 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
202 || debug_info_level == DINFO_LEVEL_VERBOSE);
203 /* True if this entity is to be considered as imported. */
204 bool imported_p = (Is_Imported (gnat_entity)
205 && No (Address_Clause (gnat_entity)));
206 /* Size and alignment of the GCC node, if meaningful. */
207 unsigned int esize = 0, align = 0;
208 /* Contains the list of attributes directly attached to the entity. */
209 struct attrib *attr_list = NULL;
211 /* Since a use of an Itype is a definition, process it as such if it
212 is not in a with'ed unit. */
215 && Is_Itype (gnat_entity)
216 && !present_gnu_tree (gnat_entity)
217 && In_Extended_Main_Code_Unit (gnat_entity))
219 /* Ensure that we are in a subprogram mentioned in the Scope chain of
220 this entity, our current scope is global, or we encountered a task
221 or entry (where we can't currently accurately check scoping). */
222 if (!current_function_decl
223 || DECL_ELABORATION_PROC_P (current_function_decl))
225 process_type (gnat_entity);
226 return get_gnu_tree (gnat_entity);
229 for (gnat_temp = Scope (gnat_entity);
231 gnat_temp = Scope (gnat_temp))
233 if (Is_Type (gnat_temp))
234 gnat_temp = Underlying_Type (gnat_temp);
236 if (Ekind (gnat_temp) == E_Subprogram_Body)
238 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
240 if (IN (Ekind (gnat_temp), Subprogram_Kind)
241 && Present (Protected_Body_Subprogram (gnat_temp)))
242 gnat_temp = Protected_Body_Subprogram (gnat_temp);
244 if (Ekind (gnat_temp) == E_Entry
245 || Ekind (gnat_temp) == E_Entry_Family
246 || Ekind (gnat_temp) == E_Task_Type
247 || (IN (Ekind (gnat_temp), Subprogram_Kind)
248 && present_gnu_tree (gnat_temp)
249 && (current_function_decl
250 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
252 process_type (gnat_entity);
253 return get_gnu_tree (gnat_entity);
257 /* This abort means the Itype has an incorrect scope, i.e. that its
258 scope does not correspond to the subprogram it is declared in. */
262 /* If we've already processed this entity, return what we got last time.
263 If we are defining the node, we should not have already processed it.
264 In that case, we will abort below when we try to save a new GCC tree
265 for this object. We also need to handle the case of getting a dummy
266 type when a Full_View exists. */
267 if ((!definition || (is_type && imported_p))
268 && present_gnu_tree (gnat_entity))
270 gnu_decl = get_gnu_tree (gnat_entity);
272 if (TREE_CODE (gnu_decl) == TYPE_DECL
273 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
274 && IN (kind, Incomplete_Or_Private_Kind)
275 && Present (Full_View (gnat_entity)))
278 = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
279 save_gnu_tree (gnat_entity, NULL_TREE, false);
280 save_gnu_tree (gnat_entity, gnu_decl, false);
286 /* If this is a numeric or enumeral type, or an access type, a nonzero
287 Esize must be specified unless it was specified by the programmer. */
288 gcc_assert (!Unknown_Esize (gnat_entity)
289 || Has_Size_Clause (gnat_entity)
290 || (!IN (kind, Numeric_Kind)
291 && !IN (kind, Enumeration_Kind)
292 && (!IN (kind, Access_Kind)
293 || kind == E_Access_Protected_Subprogram_Type
294 || kind == E_Anonymous_Access_Protected_Subprogram_Type
295 || kind == E_Access_Subtype)));
297 /* The RM size must be specified for all discrete and fixed-point types. */
298 gcc_assert (!(IN (kind, Discrete_Or_Fixed_Point_Kind)
299 && Unknown_RM_Size (gnat_entity)));
301 /* If we get here, it means we have not yet done anything with this entity.
302 If we are not defining it, it must be a type or an entity that is defined
303 elsewhere or externally, otherwise we should have defined it already. */
304 gcc_assert (definition
305 || type_annotate_only
307 || kind == E_Discriminant
308 || kind == E_Component
310 || (kind == E_Constant && Present (Full_View (gnat_entity)))
311 || Is_Public (gnat_entity));
313 /* Get the name of the entity and set up the line number and filename of
314 the original definition for use in any decl we make. */
315 gnu_entity_name = get_entity_name (gnat_entity);
316 Sloc_to_locus (Sloc (gnat_entity), &input_location);
318 /* For cases when we are not defining (i.e., we are referencing from
319 another compilation unit) public entities, show we are at global level
320 for the purpose of computing scopes. Don't do this for components or
321 discriminants since the relevant test is whether or not the record is
324 && kind != E_Component
325 && kind != E_Discriminant
326 && Is_Public (gnat_entity)
327 && !Is_Statically_Allocated (gnat_entity))
328 force_global++, this_global = true;
330 /* Handle any attributes directly attached to the entity. */
331 if (Has_Gigi_Rep_Item (gnat_entity))
332 prepend_attributes (gnat_entity, &attr_list);
334 /* Do some common processing for types. */
337 /* Compute the equivalent type to be used in gigi. */
338 gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
340 /* Machine_Attributes on types are expected to be propagated to
341 subtypes. The corresponding Gigi_Rep_Items are only attached
342 to the first subtype though, so we handle the propagation here. */
343 if (Base_Type (gnat_entity) != gnat_entity
344 && !Is_First_Subtype (gnat_entity)
345 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
346 prepend_attributes (First_Subtype (Base_Type (gnat_entity)),
349 /* Compute a default value for the size of the type. */
350 if (Known_Esize (gnat_entity)
351 && UI_Is_In_Int_Range (Esize (gnat_entity)))
353 unsigned int max_esize;
354 esize = UI_To_Int (Esize (gnat_entity));
356 if (IN (kind, Float_Kind))
357 max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
358 else if (IN (kind, Access_Kind))
359 max_esize = POINTER_SIZE * 2;
361 max_esize = LONG_LONG_TYPE_SIZE;
363 if (esize > max_esize)
367 esize = LONG_LONG_TYPE_SIZE;
373 /* If this is a use of a deferred constant without address clause,
374 get its full definition. */
376 && No (Address_Clause (gnat_entity))
377 && Present (Full_View (gnat_entity)))
380 = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
385 /* If we have an external constant that we are not defining, get the
386 expression that is was defined to represent. We may throw that
387 expression away later if it is not a constant. Do not retrieve the
388 expression if it is an aggregate or allocator, because in complex
389 instantiation contexts it may not be expanded */
391 && Present (Expression (Declaration_Node (gnat_entity)))
392 && !No_Initialization (Declaration_Node (gnat_entity))
393 && (Nkind (Expression (Declaration_Node (gnat_entity)))
395 && (Nkind (Expression (Declaration_Node (gnat_entity)))
397 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
399 /* Ignore deferred constant definitions without address clause since
400 they are processed fully in the front-end. If No_Initialization
401 is set, this is not a deferred constant but a constant whose value
402 is built manually. And constants that are renamings are handled
406 && No (Address_Clause (gnat_entity))
407 && !No_Initialization (Declaration_Node (gnat_entity))
408 && No (Renamed_Object (gnat_entity)))
410 gnu_decl = error_mark_node;
415 /* Ignore constant definitions already marked with the error node. See
416 the N_Object_Declaration case of gnat_to_gnu for the rationale. */
419 && present_gnu_tree (gnat_entity)
420 && get_gnu_tree (gnat_entity) == error_mark_node)
422 maybe_present = true;
429 /* We used to special case VMS exceptions here to directly map them to
430 their associated condition code. Since this code had to be masked
431 dynamically to strip off the severity bits, this caused trouble in
432 the GCC/ZCX case because the "type" pointers we store in the tables
433 have to be static. We now don't special case here anymore, and let
434 the regular processing take place, which leaves us with a regular
435 exception data object for VMS exceptions too. The condition code
436 mapping is taken care of by the front end and the bitmasking by the
443 /* The GNAT record where the component was defined. */
444 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
446 /* If the variable is an inherited record component (in the case of
447 extended record types), just return the inherited entity, which
448 must be a FIELD_DECL. Likewise for discriminants.
449 For discriminants of untagged records which have explicit
450 stored discriminants, return the entity for the corresponding
451 stored discriminant. Also use Original_Record_Component
452 if the record has a private extension. */
453 if (Present (Original_Record_Component (gnat_entity))
454 && Original_Record_Component (gnat_entity) != gnat_entity)
457 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
458 gnu_expr, definition);
463 /* If the enclosing record has explicit stored discriminants,
464 then it is an untagged record. If the Corresponding_Discriminant
465 is not empty then this must be a renamed discriminant and its
466 Original_Record_Component must point to the corresponding explicit
467 stored discriminant (i.e. we should have taken the previous
469 else if (Present (Corresponding_Discriminant (gnat_entity))
470 && Is_Tagged_Type (gnat_record))
472 /* A tagged record has no explicit stored discriminants. */
473 gcc_assert (First_Discriminant (gnat_record)
474 == First_Stored_Discriminant (gnat_record));
476 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
477 gnu_expr, definition);
482 else if (Present (CR_Discriminant (gnat_entity))
483 && type_annotate_only)
485 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
486 gnu_expr, definition);
491 /* If the enclosing record has explicit stored discriminants, then
492 it is an untagged record. If the Corresponding_Discriminant
493 is not empty then this must be a renamed discriminant and its
494 Original_Record_Component must point to the corresponding explicit
495 stored discriminant (i.e. we should have taken the first
497 else if (Present (Corresponding_Discriminant (gnat_entity))
498 && (First_Discriminant (gnat_record)
499 != First_Stored_Discriminant (gnat_record)))
502 /* Otherwise, if we are not defining this and we have no GCC type
503 for the containing record, make one for it. Then we should
504 have made our own equivalent. */
505 else if (!definition && !present_gnu_tree (gnat_record))
507 /* ??? If this is in a record whose scope is a protected
508 type and we have an Original_Record_Component, use it.
509 This is a workaround for major problems in protected type
511 Entity_Id Scop = Scope (Scope (gnat_entity));
512 if ((Is_Protected_Type (Scop)
513 || (Is_Private_Type (Scop)
514 && Present (Full_View (Scop))
515 && Is_Protected_Type (Full_View (Scop))))
516 && Present (Original_Record_Component (gnat_entity)))
519 = gnat_to_gnu_entity (Original_Record_Component
526 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
527 gnu_decl = get_gnu_tree (gnat_entity);
533 /* Here we have no GCC type and this is a reference rather than a
534 definition. This should never happen. Most likely the cause is
535 reference before declaration in the gnat tree for gnat_entity. */
539 case E_Loop_Parameter:
540 case E_Out_Parameter:
543 /* Simple variables, loop variables, Out parameters, and exceptions. */
546 bool used_by_ref = false;
548 = ((kind == E_Constant || kind == E_Variable)
549 && Is_True_Constant (gnat_entity)
550 && !Treat_As_Volatile (gnat_entity)
551 && (((Nkind (Declaration_Node (gnat_entity))
552 == N_Object_Declaration)
553 && Present (Expression (Declaration_Node (gnat_entity))))
554 || Present (Renamed_Object (gnat_entity))));
555 bool inner_const_flag = const_flag;
556 bool static_p = Is_Statically_Allocated (gnat_entity);
557 bool mutable_p = false;
558 tree gnu_ext_name = NULL_TREE;
559 tree renamed_obj = NULL_TREE;
560 tree gnu_object_size;
562 if (Present (Renamed_Object (gnat_entity)) && !definition)
564 if (kind == E_Exception)
565 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
568 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
571 /* Get the type after elaborating the renamed object. */
572 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
574 /* For a debug renaming declaration, build a pure debug entity. */
575 if (Present (Debug_Renaming_Link (gnat_entity)))
578 gnu_decl = build_decl (VAR_DECL, gnu_entity_name, gnu_type);
579 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
580 if (global_bindings_p ())
581 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
583 addr = stack_pointer_rtx;
584 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
585 gnat_pushdecl (gnu_decl, gnat_entity);
589 /* If this is a loop variable, its type should be the base type.
590 This is because the code for processing a loop determines whether
591 a normal loop end test can be done by comparing the bounds of the
592 loop against those of the base type, which is presumed to be the
593 size used for computation. But this is not correct when the size
594 of the subtype is smaller than the type. */
595 if (kind == E_Loop_Parameter)
596 gnu_type = get_base_type (gnu_type);
598 /* Reject non-renamed objects whose types are unconstrained arrays or
599 any object whose type is a dummy type or VOID_TYPE. */
601 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
602 && No (Renamed_Object (gnat_entity)))
603 || TYPE_IS_DUMMY_P (gnu_type)
604 || TREE_CODE (gnu_type) == VOID_TYPE)
606 gcc_assert (type_annotate_only);
609 return error_mark_node;
612 /* If an alignment is specified, use it if valid. Note that
613 exceptions are objects but don't have alignments. We must do this
614 before we validate the size, since the alignment can affect the
616 if (kind != E_Exception && Known_Alignment (gnat_entity))
618 gcc_assert (Present (Alignment (gnat_entity)));
619 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
620 TYPE_ALIGN (gnu_type));
621 gnu_type = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
622 "PAD", false, definition, true);
625 /* If we are defining the object, see if it has a Size value and
626 validate it if so. If we are not defining the object and a Size
627 clause applies, simply retrieve the value. We don't want to ignore
628 the clause and it is expected to have been validated already. Then
629 get the new type, if any. */
631 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
632 gnat_entity, VAR_DECL, false,
633 Has_Size_Clause (gnat_entity));
634 else if (Has_Size_Clause (gnat_entity))
635 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
640 = make_type_from_size (gnu_type, gnu_size,
641 Has_Biased_Representation (gnat_entity));
643 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
644 gnu_size = NULL_TREE;
647 /* If this object has self-referential size, it must be a record with
648 a default value. We are supposed to allocate an object of the
649 maximum size in this case unless it is a constant with an
650 initializing expression, in which case we can get the size from
651 that. Note that the resulting size may still be a variable, so
652 this may end up with an indirect allocation. */
653 if (No (Renamed_Object (gnat_entity))
654 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
656 if (gnu_expr && kind == E_Constant)
658 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
659 if (CONTAINS_PLACEHOLDER_P (size))
661 /* If the initializing expression is itself a constant,
662 despite having a nominal type with self-referential
663 size, we can get the size directly from it. */
664 if (TREE_CODE (gnu_expr) == COMPONENT_REF
665 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
668 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
669 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
670 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
671 || DECL_READONLY_ONCE_ELAB
672 (TREE_OPERAND (gnu_expr, 0))))
673 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
676 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
681 /* We may have no GNU_EXPR because No_Initialization is
682 set even though there's an Expression. */
683 else if (kind == E_Constant
684 && (Nkind (Declaration_Node (gnat_entity))
685 == N_Object_Declaration)
686 && Present (Expression (Declaration_Node (gnat_entity))))
688 = TYPE_SIZE (gnat_to_gnu_type
690 (Expression (Declaration_Node (gnat_entity)))));
693 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
698 /* If the size is zero bytes, make it one byte since some linkers have
699 trouble with zero-sized objects. If the object will have a
700 template, that will make it nonzero so don't bother. Also avoid
701 doing that for an object renaming or an object with an address
702 clause, as we would lose useful information on the view size
703 (e.g. for null array slices) and we are not allocating the object
706 && integer_zerop (gnu_size)
707 && !TREE_OVERFLOW (gnu_size))
708 || (TYPE_SIZE (gnu_type)
709 && integer_zerop (TYPE_SIZE (gnu_type))
710 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
711 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
712 || !Is_Array_Type (Etype (gnat_entity)))
713 && No (Renamed_Object (gnat_entity))
714 && No (Address_Clause (gnat_entity)))
715 gnu_size = bitsize_unit_node;
717 /* If this is an object with no specified size and alignment, and
718 if either it is atomic or we are not optimizing alignment for
719 space and it is composite and not an exception, an Out parameter
720 or a reference to another object, and the size of its type is a
721 constant, set the alignment to the smallest one which is not
722 smaller than the size, with an appropriate cap. */
723 if (!gnu_size && align == 0
724 && (Is_Atomic (gnat_entity)
725 || (!Optimize_Alignment_Space (gnat_entity)
726 && kind != E_Exception
727 && kind != E_Out_Parameter
728 && Is_Composite_Type (Etype (gnat_entity))
729 && !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
731 && No (Renamed_Object (gnat_entity))
732 && No (Address_Clause (gnat_entity))))
733 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
735 /* No point in jumping through all the hoops needed in order
736 to support BIGGEST_ALIGNMENT if we don't really have to.
737 So we cap to the smallest alignment that corresponds to
738 a known efficient memory access pattern of the target. */
739 unsigned int align_cap = Is_Atomic (gnat_entity)
741 : get_mode_alignment (ptr_mode);
743 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
744 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
747 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
749 /* But make sure not to under-align the object. */
750 if (align <= TYPE_ALIGN (gnu_type))
753 /* And honor the minimum valid atomic alignment, if any. */
754 #ifdef MINIMUM_ATOMIC_ALIGNMENT
755 else if (align < MINIMUM_ATOMIC_ALIGNMENT)
756 align = MINIMUM_ATOMIC_ALIGNMENT;
760 /* If the object is set to have atomic components, find the component
761 type and validate it.
763 ??? Note that we ignore Has_Volatile_Components on objects; it's
764 not at all clear what to do in that case. */
766 if (Has_Atomic_Components (gnat_entity))
768 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
769 ? TREE_TYPE (gnu_type) : gnu_type);
771 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
772 && TYPE_MULTI_ARRAY_P (gnu_inner))
773 gnu_inner = TREE_TYPE (gnu_inner);
775 check_ok_for_atomic (gnu_inner, gnat_entity, true);
778 /* Now check if the type of the object allows atomic access. Note
779 that we must test the type, even if this object has size and
780 alignment to allow such access, because we will be going
781 inside the padded record to assign to the object. We could fix
782 this by always copying via an intermediate value, but it's not
783 clear it's worth the effort. */
784 if (Is_Atomic (gnat_entity))
785 check_ok_for_atomic (gnu_type, gnat_entity, false);
787 /* If this is an aliased object with an unconstrained nominal subtype,
788 make a type that includes the template. */
789 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
790 && Is_Array_Type (Etype (gnat_entity))
791 && !type_annotate_only)
794 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
797 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
798 concat_name (gnu_entity_name,
802 #ifdef MINIMUM_ATOMIC_ALIGNMENT
803 /* If the size is a constant and no alignment is specified, force
804 the alignment to be the minimum valid atomic alignment. The
805 restriction on constant size avoids problems with variable-size
806 temporaries; if the size is variable, there's no issue with
807 atomic access. Also don't do this for a constant, since it isn't
808 necessary and can interfere with constant replacement. Finally,
809 do not do it for Out parameters since that creates an
810 size inconsistency with In parameters. */
811 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
812 && !FLOAT_TYPE_P (gnu_type)
813 && !const_flag && No (Renamed_Object (gnat_entity))
814 && !imported_p && No (Address_Clause (gnat_entity))
815 && kind != E_Out_Parameter
816 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
817 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
818 align = MINIMUM_ATOMIC_ALIGNMENT;
821 /* Make a new type with the desired size and alignment, if needed.
822 But do not take into account alignment promotions to compute the
823 size of the object. */
824 gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
825 if (gnu_size || align > 0)
826 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
827 "PAD", false, definition,
828 gnu_size ? true : false);
830 /* If this is a renaming, avoid as much as possible to create a new
831 object. However, in several cases, creating it is required.
832 This processing needs to be applied to the raw expression so
833 as to make it more likely to rename the underlying object. */
834 if (Present (Renamed_Object (gnat_entity)))
836 bool create_normal_object = false;
838 /* If the renamed object had padding, strip off the reference
839 to the inner object and reset our type. */
840 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
841 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
843 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
844 /* Strip useless conversions around the object. */
845 || (TREE_CODE (gnu_expr) == NOP_EXPR
846 && gnat_types_compatible_p
847 (TREE_TYPE (gnu_expr),
848 TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
850 gnu_expr = TREE_OPERAND (gnu_expr, 0);
851 gnu_type = TREE_TYPE (gnu_expr);
854 /* Case 1: If this is a constant renaming stemming from a function
855 call, treat it as a normal object whose initial value is what
856 is being renamed. RM 3.3 says that the result of evaluating a
857 function call is a constant object. As a consequence, it can
858 be the inner object of a constant renaming. In this case, the
859 renaming must be fully instantiated, i.e. it cannot be a mere
860 reference to (part of) an existing object. */
863 tree inner_object = gnu_expr;
864 while (handled_component_p (inner_object))
865 inner_object = TREE_OPERAND (inner_object, 0);
866 if (TREE_CODE (inner_object) == CALL_EXPR)
867 create_normal_object = true;
870 /* Otherwise, see if we can proceed with a stabilized version of
871 the renamed entity or if we need to make a new object. */
872 if (!create_normal_object)
874 tree maybe_stable_expr = NULL_TREE;
877 /* Case 2: If the renaming entity need not be materialized and
878 the renamed expression is something we can stabilize, use
879 that for the renaming. At the global level, we can only do
880 this if we know no SAVE_EXPRs need be made, because the
881 expression we return might be used in arbitrary conditional
882 branches so we must force the SAVE_EXPRs evaluation
883 immediately and this requires a function context. */
884 if (!Materialize_Entity (gnat_entity)
885 && (!global_bindings_p ()
886 || (staticp (gnu_expr)
887 && !TREE_SIDE_EFFECTS (gnu_expr))))
890 = maybe_stabilize_reference (gnu_expr, true, &stable);
894 gnu_decl = maybe_stable_expr;
895 /* ??? No DECL_EXPR is created so we need to mark
896 the expression manually lest it is shared. */
897 if (global_bindings_p ())
898 mark_visited (&gnu_decl);
899 save_gnu_tree (gnat_entity, gnu_decl, true);
904 /* The stabilization failed. Keep maybe_stable_expr
905 untouched here to let the pointer case below know
906 about that failure. */
909 /* Case 3: If this is a constant renaming and creating a
910 new object is allowed and cheap, treat it as a normal
911 object whose initial value is what is being renamed. */
913 && !Is_Composite_Type
914 (Underlying_Type (Etype (gnat_entity))))
917 /* Case 4: Make this into a constant pointer to the object we
918 are to rename and attach the object to the pointer if it is
919 something we can stabilize.
921 From the proper scope, attached objects will be referenced
922 directly instead of indirectly via the pointer to avoid
923 subtle aliasing problems with non-addressable entities.
924 They have to be stable because we must not evaluate the
925 variables in the expression every time the renaming is used.
926 The pointer is called a "renaming" pointer in this case.
928 In the rare cases where we cannot stabilize the renamed
929 object, we just make a "bare" pointer, and the renamed
930 entity is always accessed indirectly through it. */
933 gnu_type = build_reference_type (gnu_type);
934 inner_const_flag = TREE_READONLY (gnu_expr);
937 /* If the previous attempt at stabilizing failed, there
938 is no point in trying again and we reuse the result
939 without attaching it to the pointer. In this case it
940 will only be used as the initializing expression of
941 the pointer and thus needs no special treatment with
942 regard to multiple evaluations. */
943 if (maybe_stable_expr)
946 /* Otherwise, try to stabilize and attach the expression
947 to the pointer if the stabilization succeeds.
949 Note that this might introduce SAVE_EXPRs and we don't
950 check whether we're at the global level or not. This
951 is fine since we are building a pointer initializer and
952 neither the pointer nor the initializing expression can
953 be accessed before the pointer elaboration has taken
954 place in a correct program.
956 These SAVE_EXPRs will be evaluated at the right place
957 by either the evaluation of the initializer for the
958 non-global case or the elaboration code for the global
959 case, and will be attached to the elaboration procedure
960 in the latter case. */
964 = maybe_stabilize_reference (gnu_expr, true, &stable);
967 renamed_obj = maybe_stable_expr;
969 /* Attaching is actually performed downstream, as soon
970 as we have a VAR_DECL for the pointer we make. */
974 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
976 gnu_size = NULL_TREE;
982 /* Make a volatile version of this object's type if we are to make
983 the object volatile. We also interpret 13.3(19) conservatively
984 and disallow any optimizations for such a non-constant object. */
985 if ((Treat_As_Volatile (gnat_entity)
987 && (Is_Exported (gnat_entity)
988 || Is_Imported (gnat_entity)
989 || Present (Address_Clause (gnat_entity)))))
990 && !TYPE_VOLATILE (gnu_type))
991 gnu_type = build_qualified_type (gnu_type,
992 (TYPE_QUALS (gnu_type)
993 | TYPE_QUAL_VOLATILE));
995 /* If we are defining an aliased object whose nominal subtype is
996 unconstrained, the object is a record that contains both the
997 template and the object. If there is an initializer, it will
998 have already been converted to the right type, but we need to
999 create the template if there is no initializer. */
1002 && TREE_CODE (gnu_type) == RECORD_TYPE
1003 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
1004 /* Beware that padding might have been introduced
1005 via maybe_pad_type above. */
1006 || (TYPE_IS_PADDING_P (gnu_type)
1007 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1009 && TYPE_CONTAINS_TEMPLATE_P
1010 (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
1013 = TYPE_IS_PADDING_P (gnu_type)
1014 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1015 : TYPE_FIELDS (gnu_type);
1018 = gnat_build_constructor
1022 build_template (TREE_TYPE (template_field),
1023 TREE_TYPE (TREE_CHAIN (template_field)),
1028 /* Convert the expression to the type of the object except in the
1029 case where the object's type is unconstrained or the object's type
1030 is a padded record whose field is of self-referential size. In
1031 the former case, converting will generate unnecessary evaluations
1032 of the CONSTRUCTOR to compute the size and in the latter case, we
1033 want to only copy the actual data. */
1035 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1036 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1037 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1038 && TYPE_IS_PADDING_P (gnu_type)
1039 && (CONTAINS_PLACEHOLDER_P
1040 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1041 gnu_expr = convert (gnu_type, gnu_expr);
1043 /* If this is a pointer and it does not have an initializing
1044 expression, initialize it to NULL, unless the object is
1047 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
1048 && !Is_Imported (gnat_entity) && !gnu_expr)
1049 gnu_expr = integer_zero_node;
1051 /* If we are defining the object and it has an Address clause, we must
1052 either get the address expression from the saved GCC tree for the
1053 object if it has a Freeze node, or elaborate the address expression
1054 here since the front-end has guaranteed that the elaboration has no
1055 effects in this case. */
1056 if (definition && Present (Address_Clause (gnat_entity)))
1059 = present_gnu_tree (gnat_entity)
1060 ? get_gnu_tree (gnat_entity)
1061 : gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
1063 save_gnu_tree (gnat_entity, NULL_TREE, false);
1065 /* Ignore the size. It's either meaningless or was handled
1067 gnu_size = NULL_TREE;
1068 /* Convert the type of the object to a reference type that can
1069 alias everything as per 13.3(19). */
1071 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1072 gnu_address = convert (gnu_type, gnu_address);
1074 const_flag = !Is_Public (gnat_entity)
1075 || compile_time_known_address_p (Expression (Address_Clause
1078 /* If this is a deferred constant, the initializer is attached to
1080 if (kind == E_Constant && Present (Full_View (gnat_entity)))
1083 (Expression (Declaration_Node (Full_View (gnat_entity))));
1085 /* If we don't have an initializing expression for the underlying
1086 variable, the initializing expression for the pointer is the
1087 specified address. Otherwise, we have to make a COMPOUND_EXPR
1088 to assign both the address and the initial value. */
1090 gnu_expr = gnu_address;
1093 = build2 (COMPOUND_EXPR, gnu_type,
1095 (MODIFY_EXPR, NULL_TREE,
1096 build_unary_op (INDIRECT_REF, NULL_TREE,
1102 /* If it has an address clause and we are not defining it, mark it
1103 as an indirect object. Likewise for Stdcall objects that are
1105 if ((!definition && Present (Address_Clause (gnat_entity)))
1106 || (Is_Imported (gnat_entity)
1107 && Has_Stdcall_Convention (gnat_entity)))
1109 /* Convert the type of the object to a reference type that can
1110 alias everything as per 13.3(19). */
1112 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1113 gnu_size = NULL_TREE;
1115 /* No point in taking the address of an initializing expression
1116 that isn't going to be used. */
1117 gnu_expr = NULL_TREE;
1119 /* If it has an address clause whose value is known at compile
1120 time, make the object a CONST_DECL. This will avoid a
1121 useless dereference. */
1122 if (Present (Address_Clause (gnat_entity)))
1124 Node_Id gnat_address
1125 = Expression (Address_Clause (gnat_entity));
1127 if (compile_time_known_address_p (gnat_address))
1129 gnu_expr = gnat_to_gnu (gnat_address);
1137 /* If we are at top level and this object is of variable size,
1138 make the actual type a hidden pointer to the real type and
1139 make the initializer be a memory allocation and initialization.
1140 Likewise for objects we aren't defining (presumed to be
1141 external references from other packages), but there we do
1142 not set up an initialization.
1144 If the object's size overflows, make an allocator too, so that
1145 Storage_Error gets raised. Note that we will never free
1146 such memory, so we presume it never will get allocated. */
1148 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1149 global_bindings_p () || !definition
1152 && ! allocatable_size_p (gnu_size,
1153 global_bindings_p () || !definition
1156 gnu_type = build_reference_type (gnu_type);
1157 gnu_size = NULL_TREE;
1161 /* In case this was a aliased object whose nominal subtype is
1162 unconstrained, the pointer above will be a thin pointer and
1163 build_allocator will automatically make the template.
1165 If we have a template initializer only (that we made above),
1166 pretend there is none and rely on what build_allocator creates
1167 again anyway. Otherwise (if we have a full initializer), get
1168 the data part and feed that to build_allocator.
1170 If we are elaborating a mutable object, tell build_allocator to
1171 ignore a possibly simpler size from the initializer, if any, as
1172 we must allocate the maximum possible size in this case. */
1176 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1178 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1179 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1182 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1184 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1185 && 1 == VEC_length (constructor_elt,
1186 CONSTRUCTOR_ELTS (gnu_expr)))
1190 = build_component_ref
1191 (gnu_expr, NULL_TREE,
1192 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1196 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1197 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1198 && !Is_Imported (gnat_entity))
1199 post_error ("?Storage_Error will be raised at run-time!",
1202 gnu_expr = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1203 0, 0, gnat_entity, mutable_p);
1207 gnu_expr = NULL_TREE;
1212 /* If this object would go into the stack and has an alignment larger
1213 than the largest stack alignment the back-end can honor, resort to
1214 a variable of "aligning type". */
1215 if (!global_bindings_p () && !static_p && definition
1216 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1218 /* Create the new variable. No need for extra room before the
1219 aligned field as this is in automatic storage. */
1221 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1222 TYPE_SIZE_UNIT (gnu_type),
1223 BIGGEST_ALIGNMENT, 0);
1225 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1226 NULL_TREE, gnu_new_type, NULL_TREE, false,
1227 false, false, false, NULL, gnat_entity);
1229 /* Initialize the aligned field if we have an initializer. */
1232 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1234 (gnu_new_var, NULL_TREE,
1235 TYPE_FIELDS (gnu_new_type), false),
1239 /* And setup this entity as a reference to the aligned field. */
1240 gnu_type = build_reference_type (gnu_type);
1243 (ADDR_EXPR, gnu_type,
1244 build_component_ref (gnu_new_var, NULL_TREE,
1245 TYPE_FIELDS (gnu_new_type), false));
1247 gnu_size = NULL_TREE;
1253 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1254 | TYPE_QUAL_CONST));
1256 /* Convert the expression to the type of the object except in the
1257 case where the object's type is unconstrained or the object's type
1258 is a padded record whose field is of self-referential size. In
1259 the former case, converting will generate unnecessary evaluations
1260 of the CONSTRUCTOR to compute the size and in the latter case, we
1261 want to only copy the actual data. */
1263 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1264 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1265 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1266 && TYPE_IS_PADDING_P (gnu_type)
1267 && (CONTAINS_PLACEHOLDER_P
1268 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1269 gnu_expr = convert (gnu_type, gnu_expr);
1271 /* If this name is external or there was a name specified, use it,
1272 unless this is a VMS exception object since this would conflict
1273 with the symbol we need to export in addition. Don't use the
1274 Interface_Name if there is an address clause (see CD30005). */
1275 if (!Is_VMS_Exception (gnat_entity)
1276 && ((Present (Interface_Name (gnat_entity))
1277 && No (Address_Clause (gnat_entity)))
1278 || (Is_Public (gnat_entity)
1279 && (!Is_Imported (gnat_entity)
1280 || Is_Exported (gnat_entity)))))
1281 gnu_ext_name = create_concat_name (gnat_entity, NULL);
1283 /* If this is constant initialized to a static constant and the
1284 object has an aggregate type, force it to be statically
1285 allocated. This will avoid an initialization copy. */
1286 if (!static_p && const_flag
1287 && gnu_expr && TREE_CONSTANT (gnu_expr)
1288 && AGGREGATE_TYPE_P (gnu_type)
1289 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1290 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1291 && TYPE_IS_PADDING_P (gnu_type)
1292 && !host_integerp (TYPE_SIZE_UNIT
1293 (TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
1296 gnu_decl = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1297 gnu_expr, const_flag,
1298 Is_Public (gnat_entity),
1299 imported_p || !definition,
1300 static_p, attr_list, gnat_entity);
1301 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1302 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1303 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1305 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1306 if (global_bindings_p ())
1308 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1309 record_global_renaming_pointer (gnu_decl);
1313 if (definition && DECL_SIZE_UNIT (gnu_decl)
1314 && get_block_jmpbuf_decl ()
1315 && (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
1316 || (flag_stack_check == GENERIC_STACK_CHECK
1317 && compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1318 STACK_CHECK_MAX_VAR_SIZE) > 0)))
1319 add_stmt_with_node (build_call_1_expr
1320 (update_setjmp_buf_decl,
1321 build_unary_op (ADDR_EXPR, NULL_TREE,
1322 get_block_jmpbuf_decl ())),
1325 /* If we are defining an Out parameter and we're not optimizing,
1326 create a fake PARM_DECL for debugging purposes and make it
1327 point to the VAR_DECL. Suppress debug info for the latter
1328 but make sure it will still live on the stack so it can be
1329 accessed from within the debugger through the PARM_DECL. */
1330 if (kind == E_Out_Parameter && definition && !optimize)
1332 tree param = create_param_decl (gnu_entity_name, gnu_type, false);
1333 gnat_pushdecl (param, gnat_entity);
1334 SET_DECL_VALUE_EXPR (param, gnu_decl);
1335 DECL_HAS_VALUE_EXPR_P (param) = 1;
1337 debug_info_p = false;
1339 DECL_IGNORED_P (param) = 1;
1340 TREE_ADDRESSABLE (gnu_decl) = 1;
1343 /* If this is a public constant or we're not optimizing and we're not
1344 making a VAR_DECL for it, make one just for export or debugger use.
1345 Likewise if the address is taken or if either the object or type is
1346 aliased. Make an external declaration for a reference, unless this
1347 is a Standard entity since there no real symbol at the object level
1349 if (TREE_CODE (gnu_decl) == CONST_DECL
1350 && (definition || Sloc (gnat_entity) > Standard_Location)
1351 && ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
1353 || Address_Taken (gnat_entity)
1354 || Is_Aliased (gnat_entity)
1355 || Is_Aliased (Etype (gnat_entity))))
1358 = create_true_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1359 gnu_expr, true, Is_Public (gnat_entity),
1360 !definition, static_p, NULL,
1363 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1365 /* As debugging information will be generated for the variable,
1366 do not generate information for the constant. */
1367 DECL_IGNORED_P (gnu_decl) = 1;
1370 /* If this is declared in a block that contains a block with an
1371 exception handler, we must force this variable in memory to
1372 suppress an invalid optimization. */
1373 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1374 && Exception_Mechanism != Back_End_Exceptions)
1375 TREE_ADDRESSABLE (gnu_decl) = 1;
1377 gnu_type = TREE_TYPE (gnu_decl);
1379 /* Back-annotate Alignment and Esize of the object if not already
1380 known, except for when the object is actually a pointer to the
1381 real object, since alignment and size of a pointer don't have
1382 anything to do with those of the designated object. Note that
1383 we pick the values of the type, not those of the object, to
1384 shield ourselves from low-level platform-dependent adjustments
1385 like alignment promotion. This is both consistent with all the
1386 treatment above, where alignment and size are set on the type of
1387 the object and not on the object directly, and makes it possible
1388 to support confirming representation clauses in all cases. */
1390 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1391 Set_Alignment (gnat_entity,
1392 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1394 if (!used_by_ref && Unknown_Esize (gnat_entity))
1396 if (TREE_CODE (gnu_type) == RECORD_TYPE
1397 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1399 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1401 Set_Esize (gnat_entity, annotate_value (gnu_object_size));
1407 /* Return a TYPE_DECL for "void" that we previously made. */
1408 gnu_decl = TYPE_NAME (void_type_node);
1411 case E_Enumeration_Type:
1412 /* A special case: for the types Character and Wide_Character in
1413 Standard, we do not list all the literals. So if the literals
1414 are not specified, make this an unsigned type. */
1415 if (No (First_Literal (gnat_entity)))
1417 gnu_type = make_unsigned_type (esize);
1418 TYPE_NAME (gnu_type) = gnu_entity_name;
1420 /* Set TYPE_STRING_FLAG for Character and Wide_Character types.
1421 This is needed by the DWARF-2 back-end to distinguish between
1422 unsigned integer types and character types. */
1423 TYPE_STRING_FLAG (gnu_type) = 1;
1427 /* Normal case of non-character type or non-Standard character type. */
1429 /* Here we have a list of enumeral constants in First_Literal.
1430 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1431 the list to be placed into TYPE_FIELDS. Each node in the list
1432 is a TREE_LIST whose TREE_VALUE is the literal name and whose
1433 TREE_PURPOSE is the value of the literal. */
1435 Entity_Id gnat_literal;
1436 tree gnu_literal_list = NULL_TREE;
1438 if (Is_Unsigned_Type (gnat_entity))
1439 gnu_type = make_unsigned_type (esize);
1441 gnu_type = make_signed_type (esize);
1443 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1445 for (gnat_literal = First_Literal (gnat_entity);
1446 Present (gnat_literal);
1447 gnat_literal = Next_Literal (gnat_literal))
1449 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1452 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1453 gnu_type, gnu_value, true, false, false,
1454 false, NULL, gnat_literal);
1456 save_gnu_tree (gnat_literal, gnu_literal, false);
1457 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1458 gnu_value, gnu_literal_list);
1461 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1463 /* Note that the bounds are updated at the end of this function
1464 to avoid an infinite recursion since they refer to the type. */
1468 case E_Signed_Integer_Type:
1469 case E_Ordinary_Fixed_Point_Type:
1470 case E_Decimal_Fixed_Point_Type:
1471 /* For integer types, just make a signed type the appropriate number
1473 gnu_type = make_signed_type (esize);
1476 case E_Modular_Integer_Type:
1478 /* For modular types, make the unsigned type of the proper number
1479 of bits and then set up the modulus, if required. */
1480 tree gnu_modulus, gnu_high = NULL_TREE;
1482 /* Packed array types are supposed to be subtypes only. */
1483 gcc_assert (!Is_Packed_Array_Type (gnat_entity));
1485 gnu_type = make_unsigned_type (esize);
1487 /* Get the modulus in this type. If it overflows, assume it is because
1488 it is equal to 2**Esize. Note that there is no overflow checking
1489 done on unsigned type, so we detect the overflow by looking for
1490 a modulus of zero, which is otherwise invalid. */
1491 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1493 if (!integer_zerop (gnu_modulus))
1495 TYPE_MODULAR_P (gnu_type) = 1;
1496 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1497 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1498 convert (gnu_type, integer_one_node));
1501 /* If the upper bound is not maximal, make an extra subtype. */
1503 && !tree_int_cst_equal (gnu_high, TYPE_MAX_VALUE (gnu_type)))
1505 tree gnu_subtype = make_unsigned_type (esize);
1506 TYPE_MAX_VALUE (gnu_subtype) = gnu_high;
1507 TREE_TYPE (gnu_subtype) = gnu_type;
1508 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1509 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1510 gnu_type = gnu_subtype;
1515 case E_Signed_Integer_Subtype:
1516 case E_Enumeration_Subtype:
1517 case E_Modular_Integer_Subtype:
1518 case E_Ordinary_Fixed_Point_Subtype:
1519 case E_Decimal_Fixed_Point_Subtype:
1521 /* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
1522 not want to call build_range_type since we would like each subtype
1523 node to be distinct. ??? Historically this was in preparation for
1524 when memory aliasing is implemented. But that's obsolete now given
1525 the call to relate_alias_sets below.
1527 The TREE_TYPE field of the INTEGER_TYPE points to the base type;
1528 this fact is used by the arithmetic conversion functions.
1530 We elaborate the Ancestor_Subtype if it is not in the current unit
1531 and one of our bounds is non-static. We do this to ensure consistent
1532 naming in the case where several subtypes share the same bounds, by
1533 elaborating the first such subtype first, thus using its name. */
1536 && Present (Ancestor_Subtype (gnat_entity))
1537 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1538 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1539 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1540 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
1542 gnu_type = make_node (INTEGER_TYPE);
1543 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1545 /* Set the precision to the Esize except for bit-packed arrays and
1546 subtypes of Standard.Boolean. */
1547 if (Is_Packed_Array_Type (gnat_entity)
1548 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1549 esize = UI_To_Int (RM_Size (gnat_entity));
1550 else if (TREE_CODE (TREE_TYPE (gnu_type)) == BOOLEAN_TYPE)
1553 TYPE_PRECISION (gnu_type) = esize;
1555 TYPE_MIN_VALUE (gnu_type)
1556 = convert (TREE_TYPE (gnu_type),
1557 elaborate_expression (Type_Low_Bound (gnat_entity),
1559 get_identifier ("L"), definition, 1,
1560 Needs_Debug_Info (gnat_entity)));
1562 TYPE_MAX_VALUE (gnu_type)
1563 = convert (TREE_TYPE (gnu_type),
1564 elaborate_expression (Type_High_Bound (gnat_entity),
1566 get_identifier ("U"), definition, 1,
1567 Needs_Debug_Info (gnat_entity)));
1569 /* One of the above calls might have caused us to be elaborated,
1570 so don't blow up if so. */
1571 if (present_gnu_tree (gnat_entity))
1573 maybe_present = true;
1577 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1578 = Has_Biased_Representation (gnat_entity);
1580 /* This should be an unsigned type if the base type is unsigned or
1581 if the lower bound is constant and non-negative (as computed by
1582 layout_type) or if the type is biased. */
1583 TYPE_UNSIGNED (gnu_type) = (TYPE_UNSIGNED (TREE_TYPE (gnu_type))
1584 || TYPE_BIASED_REPRESENTATION_P (gnu_type)
1585 || Is_Unsigned_Type (gnat_entity));
1587 layout_type (gnu_type);
1589 /* Inherit our alias set from what we're a subtype of. Subtypes
1590 are not different types and a pointer can designate any instance
1591 within a subtype hierarchy. */
1592 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1594 /* If the type we are dealing with represents a bit-packed array,
1595 we need to have the bits left justified on big-endian targets
1596 and right justified on little-endian targets. We also need to
1597 ensure that when the value is read (e.g. for comparison of two
1598 such values), we only get the good bits, since the unused bits
1599 are uninitialized. Both goals are accomplished by wrapping up
1600 the modular type in an enclosing record type. */
1601 if (Is_Packed_Array_Type (gnat_entity)
1602 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1604 tree gnu_field_type, gnu_field;
1606 /* Set the RM size before wrapping up the type. */
1607 TYPE_RM_SIZE (gnu_type)
1608 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1609 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1610 gnu_field_type = gnu_type;
1612 gnu_type = make_node (RECORD_TYPE);
1613 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1615 /* Propagate the alignment of the modular type to the record.
1616 This means that bit-packed arrays have "ceil" alignment for
1617 their size, which may seem counter-intuitive but makes it
1618 possible to easily overlay them on modular types. */
1619 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1620 TYPE_PACKED (gnu_type) = 1;
1622 /* Create a stripped-down declaration of the original type, mainly
1624 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1625 debug_info_p, gnat_entity);
1627 /* Don't notify the field as "addressable", since we won't be taking
1628 it's address and it would prevent create_field_decl from making a
1630 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1631 gnu_field_type, gnu_type, 1, 0, 0, 0);
1633 finish_record_type (gnu_type, gnu_field, 0, false);
1634 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1636 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1639 /* If the type we are dealing with has got a smaller alignment than the
1640 natural one, we need to wrap it up in a record type and under-align
1641 the latter. We reuse the padding machinery for this purpose. */
1642 else if (Known_Alignment (gnat_entity)
1643 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1644 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1645 && align < TYPE_ALIGN (gnu_type))
1647 tree gnu_field_type, gnu_field;
1649 /* Set the RM size before wrapping up the type. */
1650 TYPE_RM_SIZE (gnu_type)
1651 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1652 gnu_field_type = gnu_type;
1654 gnu_type = make_node (RECORD_TYPE);
1655 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1657 TYPE_ALIGN (gnu_type) = align;
1658 TYPE_PACKED (gnu_type) = 1;
1660 /* Create a stripped-down declaration of the original type, mainly
1662 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1663 debug_info_p, gnat_entity);
1665 /* Don't notify the field as "addressable", since we won't be taking
1666 it's address and it would prevent create_field_decl from making a
1668 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1669 gnu_field_type, gnu_type, 1, 0, 0, 0);
1671 finish_record_type (gnu_type, gnu_field, 0, false);
1672 TYPE_IS_PADDING_P (gnu_type) = 1;
1674 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1677 /* Otherwise reset the alignment lest we computed it above. */
1683 case E_Floating_Point_Type:
1684 /* If this is a VAX floating-point type, use an integer of the proper
1685 size. All the operations will be handled with ASM statements. */
1686 if (Vax_Float (gnat_entity))
1688 gnu_type = make_signed_type (esize);
1689 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1690 SET_TYPE_DIGITS_VALUE (gnu_type,
1691 UI_To_gnu (Digits_Value (gnat_entity),
1696 /* The type of the Low and High bounds can be our type if this is
1697 a type from Standard, so set them at the end of the function. */
1698 gnu_type = make_node (REAL_TYPE);
1699 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1700 layout_type (gnu_type);
1703 case E_Floating_Point_Subtype:
1704 if (Vax_Float (gnat_entity))
1706 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1712 && Present (Ancestor_Subtype (gnat_entity))
1713 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1714 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1715 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1716 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1719 gnu_type = make_node (REAL_TYPE);
1720 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1721 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1723 TYPE_MIN_VALUE (gnu_type)
1724 = convert (TREE_TYPE (gnu_type),
1725 elaborate_expression (Type_Low_Bound (gnat_entity),
1726 gnat_entity, get_identifier ("L"),
1728 Needs_Debug_Info (gnat_entity)));
1730 TYPE_MAX_VALUE (gnu_type)
1731 = convert (TREE_TYPE (gnu_type),
1732 elaborate_expression (Type_High_Bound (gnat_entity),
1733 gnat_entity, get_identifier ("U"),
1735 Needs_Debug_Info (gnat_entity)));
1737 /* One of the above calls might have caused us to be elaborated,
1738 so don't blow up if so. */
1739 if (present_gnu_tree (gnat_entity))
1741 maybe_present = true;
1745 layout_type (gnu_type);
1747 /* Inherit our alias set from what we're a subtype of, as for
1748 integer subtypes. */
1749 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1753 /* Array and String Types and Subtypes
1755 Unconstrained array types are represented by E_Array_Type and
1756 constrained array types are represented by E_Array_Subtype. There
1757 are no actual objects of an unconstrained array type; all we have
1758 are pointers to that type.
1760 The following fields are defined on array types and subtypes:
1762 Component_Type Component type of the array.
1763 Number_Dimensions Number of dimensions (an int).
1764 First_Index Type of first index. */
1769 Entity_Id gnat_ind_subtype;
1770 Entity_Id gnat_ind_base_subtype;
1771 int ndim = Number_Dimensions (gnat_entity);
1773 = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
1775 = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
1777 tree gnu_template_fields = NULL_TREE;
1778 tree gnu_template_type = make_node (RECORD_TYPE);
1779 tree gnu_template_reference;
1780 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1781 tree gnu_fat_type = make_node (RECORD_TYPE);
1782 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
1783 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree));
1784 tree gnu_max_size = size_one_node, gnu_max_size_unit;
1785 tree gnu_comp_size, tem;
1787 TYPE_NAME (gnu_template_type)
1788 = create_concat_name (gnat_entity, "XUB");
1790 /* Make a node for the array. If we are not defining the array
1791 suppress expanding incomplete types. */
1792 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1795 defer_incomplete_level++, this_deferred = true;
1797 /* Build the fat pointer type. Use a "void *" object instead of
1798 a pointer to the array type since we don't have the array type
1799 yet (it will reference the fat pointer via the bounds). */
1800 tem = chainon (chainon (NULL_TREE,
1801 create_field_decl (get_identifier ("P_ARRAY"),
1803 gnu_fat_type, 0, 0, 0, 0)),
1804 create_field_decl (get_identifier ("P_BOUNDS"),
1806 gnu_fat_type, 0, 0, 0, 0));
1808 /* Make sure we can put this into a register. */
1809 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1811 /* Do not finalize this record type since the types of its fields
1812 are still incomplete at this point. */
1813 finish_record_type (gnu_fat_type, tem, 0, true);
1814 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1816 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1817 is the fat pointer. This will be used to access the individual
1818 fields once we build them. */
1819 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1820 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1821 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1822 gnu_template_reference
1823 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1824 TREE_READONLY (gnu_template_reference) = 1;
1826 /* Now create the GCC type for each index and add the fields for
1827 that index to the template. */
1828 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
1829 gnat_ind_base_subtype
1830 = First_Index (Implementation_Base_Type (gnat_entity));
1831 index < ndim && index >= 0;
1833 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
1834 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
1836 char field_name[10];
1837 tree gnu_ind_subtype
1838 = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
1839 tree gnu_base_subtype
1840 = get_unpadded_type (Etype (gnat_ind_base_subtype));
1842 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
1844 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
1845 tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
1847 /* Make the FIELD_DECLs for the minimum and maximum of this
1848 type and then make extractions of that field from the
1850 sprintf (field_name, "LB%d", index);
1851 gnu_min_field = create_field_decl (get_identifier (field_name),
1853 gnu_template_type, 0, 0, 0, 0);
1854 field_name[0] = 'U';
1855 gnu_max_field = create_field_decl (get_identifier (field_name),
1857 gnu_template_type, 0, 0, 0, 0);
1859 Sloc_to_locus (Sloc (gnat_entity),
1860 &DECL_SOURCE_LOCATION (gnu_min_field));
1861 Sloc_to_locus (Sloc (gnat_entity),
1862 &DECL_SOURCE_LOCATION (gnu_max_field));
1863 gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
1865 /* We can't use build_component_ref here since the template
1866 type isn't complete yet. */
1867 gnu_min = build3 (COMPONENT_REF, gnu_ind_subtype,
1868 gnu_template_reference, gnu_min_field,
1870 gnu_max = build3 (COMPONENT_REF, gnu_ind_subtype,
1871 gnu_template_reference, gnu_max_field,
1873 TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
1875 /* Make a range type with the new ranges, but using
1876 the Ada subtype. Then we convert to sizetype. */
1877 gnu_index_types[index]
1878 = create_index_type (convert (sizetype, gnu_min),
1879 convert (sizetype, gnu_max),
1880 build_range_type (gnu_ind_subtype,
1883 /* Update the maximum size of the array, in elements. */
1885 = size_binop (MULT_EXPR, gnu_max_size,
1886 size_binop (PLUS_EXPR, size_one_node,
1887 size_binop (MINUS_EXPR, gnu_base_max,
1890 TYPE_NAME (gnu_index_types[index])
1891 = create_concat_name (gnat_entity, field_name);
1894 for (index = 0; index < ndim; index++)
1896 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1898 /* Install all the fields into the template. */
1899 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1900 TYPE_READONLY (gnu_template_type) = 1;
1902 /* Now make the array of arrays and update the pointer to the array
1903 in the fat pointer. Note that it is the first field. */
1904 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1906 /* Try to get a smaller form of the component if needed. */
1907 if ((Is_Packed (gnat_entity)
1908 || Has_Component_Size_Clause (gnat_entity))
1909 && !Is_Bit_Packed_Array (gnat_entity)
1910 && !Has_Aliased_Components (gnat_entity)
1911 && !Strict_Alignment (Component_Type (gnat_entity))
1912 && TREE_CODE (tem) == RECORD_TYPE
1913 && !TYPE_IS_FAT_POINTER_P (tem)
1914 && host_integerp (TYPE_SIZE (tem), 1))
1915 tem = make_packable_type (tem, false);
1917 if (Has_Atomic_Components (gnat_entity))
1918 check_ok_for_atomic (tem, gnat_entity, true);
1920 /* Get and validate any specified Component_Size, but if Packed,
1921 ignore it since the front end will have taken care of it. */
1923 = validate_size (Component_Size (gnat_entity), tem,
1925 (Is_Bit_Packed_Array (gnat_entity)
1926 ? TYPE_DECL : VAR_DECL),
1927 true, Has_Component_Size_Clause (gnat_entity));
1929 /* If the component type is a RECORD_TYPE that has a self-referential
1930 size, use the maximum size. */
1932 && TREE_CODE (tem) == RECORD_TYPE
1933 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1934 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1936 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1939 tem = make_type_from_size (tem, gnu_comp_size, false);
1941 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
1942 "C_PAD", false, definition, true);
1943 /* If a padding record was made, declare it now since it will
1944 never be declared otherwise. This is necessary to ensure
1945 that its subtrees are properly marked. */
1946 if (tem != orig_tem)
1947 create_type_decl (TYPE_NAME (tem), tem, NULL, true,
1948 debug_info_p, gnat_entity);
1951 if (Has_Volatile_Components (gnat_entity))
1952 tem = build_qualified_type (tem,
1953 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
1955 /* If Component_Size is not already specified, annotate it with the
1956 size of the component. */
1957 if (Unknown_Component_Size (gnat_entity))
1958 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
1960 gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
1961 size_binop (MULT_EXPR, gnu_max_size,
1962 TYPE_SIZE_UNIT (tem)));
1963 gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
1964 size_binop (MULT_EXPR,
1965 convert (bitsizetype,
1969 for (index = ndim - 1; index >= 0; index--)
1971 tem = build_array_type (tem, gnu_index_types[index]);
1972 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
1973 if (array_type_has_nonaliased_component (gnat_entity, tem))
1974 TYPE_NONALIASED_COMPONENT (tem) = 1;
1977 /* If an alignment is specified, use it if valid. But ignore it
1978 for the original type of packed array types. If the alignment
1979 was requested with an explicit alignment clause, state so. */
1980 if (No (Packed_Array_Type (gnat_entity))
1981 && Known_Alignment (gnat_entity))
1984 = validate_alignment (Alignment (gnat_entity), gnat_entity,
1986 if (Present (Alignment_Clause (gnat_entity)))
1987 TYPE_USER_ALIGN (tem) = 1;
1990 TYPE_CONVENTION_FORTRAN_P (tem)
1991 = (Convention (gnat_entity) == Convention_Fortran);
1992 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
1994 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
1995 corresponding fat pointer. */
1996 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
1997 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
1998 SET_TYPE_MODE (gnu_type, BLKmode);
1999 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
2000 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
2002 /* If the maximum size doesn't overflow, use it. */
2003 if (TREE_CODE (gnu_max_size) == INTEGER_CST
2004 && !TREE_OVERFLOW (gnu_max_size))
2006 = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
2007 if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2008 && !TREE_OVERFLOW (gnu_max_size_unit))
2009 TYPE_SIZE_UNIT (tem)
2010 = size_binop (MIN_EXPR, gnu_max_size_unit,
2011 TYPE_SIZE_UNIT (tem));
2013 create_type_decl (create_concat_name (gnat_entity, "XUA"),
2014 tem, NULL, !Comes_From_Source (gnat_entity),
2015 debug_info_p, gnat_entity);
2017 /* Give the fat pointer type a name. */
2018 create_type_decl (create_concat_name (gnat_entity, "XUP"),
2019 gnu_fat_type, NULL, true,
2020 debug_info_p, gnat_entity);
2022 /* Create the type to be used as what a thin pointer designates: an
2023 record type for the object and its template with the field offsets
2024 shifted to have the template at a negative offset. */
2025 tem = build_unc_object_type (gnu_template_type, tem,
2026 create_concat_name (gnat_entity, "XUT"));
2027 shift_unc_components_for_thin_pointers (tem);
2029 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
2030 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
2032 /* Give the thin pointer type a name. */
2033 create_type_decl (create_concat_name (gnat_entity, "XUX"),
2034 build_pointer_type (tem), NULL, true,
2035 debug_info_p, gnat_entity);
2039 case E_String_Subtype:
2040 case E_Array_Subtype:
2042 /* This is the actual data type for array variables. Multidimensional
2043 arrays are implemented in the gnu tree as arrays of arrays. Note
2044 that for the moment arrays which have sparse enumeration subtypes as
2045 index components create sparse arrays, which is obviously space
2046 inefficient but so much easier to code for now.
2048 Also note that the subtype never refers to the unconstrained
2049 array type, which is somewhat at variance with Ada semantics.
2051 First check to see if this is simply a renaming of the array
2052 type. If so, the result is the array type. */
2054 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
2055 if (!Is_Constrained (gnat_entity))
2059 Entity_Id gnat_ind_subtype;
2060 Entity_Id gnat_ind_base_subtype;
2061 int dim = Number_Dimensions (gnat_entity);
2063 = (Convention (gnat_entity) == Convention_Fortran) ? dim - 1 : 0;
2065 = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
2067 tree gnu_base_type = gnu_type;
2068 tree *gnu_index_type = (tree *) alloca (dim * sizeof (tree));
2069 tree gnu_max_size = size_one_node, gnu_max_size_unit;
2070 bool need_index_type_struct = false;
2071 bool max_overflow = false;
2073 /* First create the gnu types for each index. Create types for
2074 debugging information to point to the index types if the
2075 are not integer types, have variable bounds, or are
2076 wider than sizetype. */
2078 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
2079 gnat_ind_base_subtype
2080 = First_Index (Implementation_Base_Type (gnat_entity));
2081 index < dim && index >= 0;
2083 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
2084 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
2086 tree gnu_index_subtype
2087 = get_unpadded_type (Etype (gnat_ind_subtype));
2089 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
2091 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
2092 tree gnu_base_subtype
2093 = get_unpadded_type (Etype (gnat_ind_base_subtype));
2095 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
2097 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
2098 tree gnu_base_type = get_base_type (gnu_base_subtype);
2099 tree gnu_base_base_min
2100 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
2101 tree gnu_base_base_max
2102 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
2106 /* If the minimum and maximum values both overflow in
2107 SIZETYPE, but the difference in the original type
2108 does not overflow in SIZETYPE, ignore the overflow
2110 if ((TYPE_PRECISION (gnu_index_subtype)
2111 > TYPE_PRECISION (sizetype)
2112 || TYPE_UNSIGNED (gnu_index_subtype)
2113 != TYPE_UNSIGNED (sizetype))
2114 && TREE_CODE (gnu_min) == INTEGER_CST
2115 && TREE_CODE (gnu_max) == INTEGER_CST
2116 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2118 (fold_build2 (MINUS_EXPR, gnu_index_subtype,
2119 TYPE_MAX_VALUE (gnu_index_subtype),
2120 TYPE_MIN_VALUE (gnu_index_subtype))))
2122 TREE_OVERFLOW (gnu_min) = 0;
2123 TREE_OVERFLOW (gnu_max) = 0;
2124 if (tree_int_cst_lt (gnu_max, gnu_min))
2126 gnu_min = size_one_node;
2127 gnu_max = size_zero_node;
2132 /* Similarly, if the range is null, use bounds of 1..0 for
2133 the sizetype bounds. */
2134 else if ((TYPE_PRECISION (gnu_index_subtype)
2135 > TYPE_PRECISION (sizetype)
2136 || TYPE_UNSIGNED (gnu_index_subtype)
2137 != TYPE_UNSIGNED (sizetype))
2138 && TREE_CODE (gnu_min) == INTEGER_CST
2139 && TREE_CODE (gnu_max) == INTEGER_CST
2140 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2141 && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
2142 TYPE_MIN_VALUE (gnu_index_subtype)))
2144 gnu_min = size_one_node;
2145 gnu_max = size_zero_node;
2149 /* See if the base array type is already flat. If it is, we
2150 are probably compiling an ACATS test, but it will cause the
2151 code below to malfunction if we don't handle it specially. */
2152 else if (TREE_CODE (gnu_base_min) == INTEGER_CST
2153 && TREE_CODE (gnu_base_max) == INTEGER_CST
2154 && !TREE_OVERFLOW (gnu_base_min)
2155 && !TREE_OVERFLOW (gnu_base_max)
2156 && tree_int_cst_lt (gnu_base_max, gnu_base_min))
2158 gnu_min = size_one_node;
2159 gnu_max = size_zero_node;
2165 /* Now compute the size of this bound. We need to provide
2166 GCC with an upper bound to use but have to deal with the
2167 "superflat" case. There are three ways to do this. If
2168 we can prove that the array can never be superflat, we
2169 can just use the high bound of the index subtype. If we
2170 can prove that the low bound minus one can't overflow,
2171 we can do this as MAX (hb, lb - 1). Otherwise, we have
2172 to use the expression hb >= lb ? hb : lb - 1. */
2173 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2175 /* If gnu_high is now an integer which overflowed, the array
2176 cannot be superflat. */
2177 if (TREE_CODE (gnu_high) == INTEGER_CST
2178 && TREE_OVERFLOW (gnu_high))
2181 /* gnu_high cannot overflow if the subtype is unsigned since
2182 sizetype is signed, or if it is now a constant that hasn't
2184 else if (TYPE_UNSIGNED (gnu_base_subtype)
2185 || TREE_CODE (gnu_high) == INTEGER_CST)
2186 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2190 = build_cond_expr (sizetype,
2191 build_binary_op (GE_EXPR,
2197 gnu_index_type[index]
2198 = create_index_type (gnu_min, gnu_high, gnu_index_subtype,
2201 /* Also compute the maximum size of the array. Here we
2202 see if any constraint on the index type of the base type
2203 can be used in the case of self-referential bound on
2204 the index type of the subtype. We look for a non-"infinite"
2205 and non-self-referential bound from any type involved and
2206 handle each bound separately. */
2208 if ((TREE_CODE (gnu_min) == INTEGER_CST
2209 && !TREE_OVERFLOW (gnu_min)
2210 && !operand_equal_p (gnu_min, gnu_base_base_min, 0))
2211 || !CONTAINS_PLACEHOLDER_P (gnu_min)
2212 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2213 && !TREE_OVERFLOW (gnu_base_min)))
2214 gnu_base_min = gnu_min;
2216 if ((TREE_CODE (gnu_max) == INTEGER_CST
2217 && !TREE_OVERFLOW (gnu_max)
2218 && !operand_equal_p (gnu_max, gnu_base_base_max, 0))
2219 || !CONTAINS_PLACEHOLDER_P (gnu_max)
2220 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2221 && !TREE_OVERFLOW (gnu_base_max)))
2222 gnu_base_max = gnu_max;
2224 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2225 && TREE_OVERFLOW (gnu_base_min))
2226 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2227 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2228 && TREE_OVERFLOW (gnu_base_max))
2229 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2230 max_overflow = true;
2232 gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
2233 gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
2236 = size_binop (MAX_EXPR,
2237 size_binop (PLUS_EXPR, size_one_node,
2238 size_binop (MINUS_EXPR, gnu_base_max,
2242 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2243 && TREE_OVERFLOW (gnu_this_max))
2244 max_overflow = true;
2247 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2249 if (!integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
2250 || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
2252 || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
2253 || (TREE_TYPE (gnu_index_subtype)
2254 && (TREE_CODE (TREE_TYPE (gnu_index_subtype))
2256 || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
2257 || (TYPE_PRECISION (gnu_index_subtype)
2258 > TYPE_PRECISION (sizetype)))
2259 need_index_type_struct = true;
2262 /* Then flatten: create the array of arrays. For an array type
2263 used to implement a packed array, get the component type from
2264 the original array type since the representation clauses that
2265 can affect it are on the latter. */
2266 if (Is_Packed_Array_Type (gnat_entity)
2267 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2269 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2270 for (index = dim - 1; index >= 0; index--)
2271 gnu_type = TREE_TYPE (gnu_type);
2273 /* One of the above calls might have caused us to be elaborated,
2274 so don't blow up if so. */
2275 if (present_gnu_tree (gnat_entity))
2277 maybe_present = true;
2285 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2287 /* One of the above calls might have caused us to be elaborated,
2288 so don't blow up if so. */
2289 if (present_gnu_tree (gnat_entity))
2291 maybe_present = true;
2295 /* Try to get a smaller form of the component if needed. */
2296 if ((Is_Packed (gnat_entity)
2297 || Has_Component_Size_Clause (gnat_entity))
2298 && !Is_Bit_Packed_Array (gnat_entity)
2299 && !Has_Aliased_Components (gnat_entity)
2300 && !Strict_Alignment (Component_Type (gnat_entity))
2301 && TREE_CODE (gnu_type) == RECORD_TYPE
2302 && !TYPE_IS_FAT_POINTER_P (gnu_type)
2303 && host_integerp (TYPE_SIZE (gnu_type), 1))
2304 gnu_type = make_packable_type (gnu_type, false);
2306 /* Get and validate any specified Component_Size, but if Packed,
2307 ignore it since the front end will have taken care of it. */
2309 = validate_size (Component_Size (gnat_entity), gnu_type,
2311 (Is_Bit_Packed_Array (gnat_entity)
2312 ? TYPE_DECL : VAR_DECL), true,
2313 Has_Component_Size_Clause (gnat_entity));
2315 /* If the component type is a RECORD_TYPE that has a
2316 self-referential size, use the maximum size. */
2318 && TREE_CODE (gnu_type) == RECORD_TYPE
2319 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2320 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2322 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2326 = make_type_from_size (gnu_type, gnu_comp_size, false);
2327 orig_gnu_type = gnu_type;
2328 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2329 gnat_entity, "C_PAD", false,
2331 /* If a padding record was made, declare it now since it
2332 will never be declared otherwise. This is necessary
2333 to ensure that its subtrees are properly marked. */
2334 if (gnu_type != orig_gnu_type)
2335 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2336 true, debug_info_p, gnat_entity);
2339 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2340 gnu_type = build_qualified_type (gnu_type,
2341 (TYPE_QUALS (gnu_type)
2342 | TYPE_QUAL_VOLATILE));
2345 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2346 TYPE_SIZE_UNIT (gnu_type));
2347 gnu_max_size = size_binop (MULT_EXPR,
2348 convert (bitsizetype, gnu_max_size),
2349 TYPE_SIZE (gnu_type));
2351 for (index = dim - 1; index >= 0; index --)
2353 gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
2354 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2355 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2356 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2359 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
2360 if (need_index_type_struct)
2361 TYPE_STUB_DECL (gnu_type)
2362 = create_type_stub_decl (gnu_entity_name, gnu_type);
2364 /* If we are at file level and this is a multi-dimensional array, we
2365 need to make a variable corresponding to the stride of the
2366 inner dimensions. */
2367 if (global_bindings_p () && dim > 1)
2369 tree gnu_str_name = get_identifier ("ST");
2372 for (gnu_arr_type = TREE_TYPE (gnu_type);
2373 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2374 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2375 gnu_str_name = concat_name (gnu_str_name, "ST"))
2377 tree eltype = TREE_TYPE (gnu_arr_type);
2379 TYPE_SIZE (gnu_arr_type)
2380 = elaborate_expression_1 (gnat_entity, gnat_entity,
2381 TYPE_SIZE (gnu_arr_type),
2382 gnu_str_name, definition, 0);
2384 /* ??? For now, store the size as a multiple of the
2385 alignment of the element type in bytes so that we
2386 can see the alignment from the tree. */
2387 TYPE_SIZE_UNIT (gnu_arr_type)
2389 (MULT_EXPR, sizetype,
2390 elaborate_expression_1
2391 (gnat_entity, gnat_entity,
2392 build_binary_op (EXACT_DIV_EXPR, sizetype,
2393 TYPE_SIZE_UNIT (gnu_arr_type),
2394 size_int (TYPE_ALIGN (eltype)
2396 concat_name (gnu_str_name, "A_U"), definition, 0),
2397 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2399 /* ??? create_type_decl is not invoked on the inner types so
2400 the MULT_EXPR node built above will never be marked. */
2401 mark_visited (&TYPE_SIZE_UNIT (gnu_arr_type));
2405 /* If we need to write out a record type giving the names of
2406 the bounds, do it now. Make sure to reference the index
2407 types themselves, not just their names, as the debugger
2408 may fall back on them in some cases. */
2409 if (need_index_type_struct && debug_info_p)
2411 tree gnu_bound_rec = make_node (RECORD_TYPE);
2412 tree gnu_field_list = NULL_TREE;
2415 TYPE_NAME (gnu_bound_rec)
2416 = create_concat_name (gnat_entity, "XA");
2418 for (index = dim - 1; index >= 0; index--)
2420 tree gnu_index = TYPE_INDEX_TYPE (gnu_index_type[index]);
2421 tree gnu_index_name = TYPE_NAME (gnu_index);
2423 if (TREE_CODE (gnu_index_name) == TYPE_DECL)
2424 gnu_index_name = DECL_NAME (gnu_index_name);
2426 gnu_field = create_field_decl (gnu_index_name, gnu_index,
2428 0, NULL_TREE, NULL_TREE, 0);
2429 TREE_CHAIN (gnu_field) = gnu_field_list;
2430 gnu_field_list = gnu_field;
2433 finish_record_type (gnu_bound_rec, gnu_field_list, 0, false);
2434 add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
2437 TYPE_CONVENTION_FORTRAN_P (gnu_type)
2438 = (Convention (gnat_entity) == Convention_Fortran);
2439 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2440 = (Is_Packed_Array_Type (gnat_entity)
2441 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2443 /* If our size depends on a placeholder and the maximum size doesn't
2444 overflow, use it. */
2445 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2446 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2447 && TREE_OVERFLOW (gnu_max_size))
2448 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2449 && TREE_OVERFLOW (gnu_max_size_unit))
2452 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2453 TYPE_SIZE (gnu_type));
2454 TYPE_SIZE_UNIT (gnu_type)
2455 = size_binop (MIN_EXPR, gnu_max_size_unit,
2456 TYPE_SIZE_UNIT (gnu_type));
2459 /* Set our alias set to that of our base type. This gives all
2460 array subtypes the same alias set. */
2461 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
2464 /* If this is a packed type, make this type the same as the packed
2465 array type, but do some adjusting in the type first. */
2466 if (Present (Packed_Array_Type (gnat_entity)))
2468 Entity_Id gnat_index;
2469 tree gnu_inner_type;
2471 /* First finish the type we had been making so that we output
2472 debugging information for it. */
2474 = build_qualified_type (gnu_type,
2475 (TYPE_QUALS (gnu_type)
2476 | (TYPE_QUAL_VOLATILE
2477 * Treat_As_Volatile (gnat_entity))));
2479 /* Make it artificial only if the base type was artificial as well.
2480 That's sort of "morally" true and will make it possible for the
2481 debugger to look it up by name in DWARF more easily. */
2483 = create_type_decl (gnu_entity_name, gnu_type, attr_list,
2484 !Comes_From_Source (gnat_entity)
2485 && !Comes_From_Source (Etype (gnat_entity)),
2486 debug_info_p, gnat_entity);
2488 /* Save it as our equivalent in case the call below elaborates
2490 save_gnu_tree (gnat_entity, gnu_decl, false);
2492 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2494 this_made_decl = true;
2495 gnu_type = TREE_TYPE (gnu_decl);
2496 save_gnu_tree (gnat_entity, NULL_TREE, false);
2498 gnu_inner_type = gnu_type;
2499 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2500 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2501 || TYPE_IS_PADDING_P (gnu_inner_type)))
2502 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2504 /* We need to attach the index type to the type we just made so
2505 that the actual bounds can later be put into a template. */
2506 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2507 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2508 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2509 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2511 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2513 /* The TYPE_ACTUAL_BOUNDS field is overloaded with the
2514 TYPE_MODULUS for modular types so we make an extra
2515 subtype if necessary. */
2516 if (TYPE_MODULAR_P (gnu_inner_type))
2518 tree gnu_subtype = make_node (INTEGER_TYPE);
2519 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2520 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2522 TYPE_UNSIGNED (gnu_subtype) = 1;
2523 TYPE_PRECISION (gnu_subtype)
2524 = TYPE_PRECISION (gnu_inner_type);
2525 TYPE_MIN_VALUE (gnu_subtype)
2526 = TYPE_MIN_VALUE (gnu_inner_type);
2527 TYPE_MAX_VALUE (gnu_subtype)
2528 = TYPE_MAX_VALUE (gnu_inner_type);
2529 layout_type (gnu_subtype);
2531 gnu_inner_type = gnu_subtype;
2534 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2536 #ifdef ENABLE_CHECKING
2537 /* Check for other cases of overloading. */
2538 gcc_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner_type));
2542 /* ??? This is necessary to make sure that the container is
2543 allocated with a null tree upfront; otherwise, it could
2544 be allocated with an uninitialized tree that is accessed
2545 before being set below. See ada-tree.h for details. */
2546 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2548 for (gnat_index = First_Index (gnat_entity);
2549 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2550 SET_TYPE_ACTUAL_BOUNDS
2552 tree_cons (NULL_TREE,
2553 get_unpadded_type (Etype (gnat_index)),
2554 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2556 if (Convention (gnat_entity) != Convention_Fortran)
2557 SET_TYPE_ACTUAL_BOUNDS
2559 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2561 if (TREE_CODE (gnu_type) == RECORD_TYPE
2562 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2563 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2567 /* Abort if packed array with no packed array type field set. */
2569 gcc_assert (!Is_Packed (gnat_entity));
2573 case E_String_Literal_Subtype:
2574 /* Create the type for a string literal. */
2576 Entity_Id gnat_full_type
2577 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2578 && Present (Full_View (Etype (gnat_entity)))
2579 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2580 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2581 tree gnu_string_array_type
2582 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2583 tree gnu_string_index_type
2584 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2585 (TYPE_DOMAIN (gnu_string_array_type))));
2586 tree gnu_lower_bound
2587 = convert (gnu_string_index_type,
2588 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2589 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2590 tree gnu_length = ssize_int (length - 1);
2591 tree gnu_upper_bound
2592 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2594 convert (gnu_string_index_type, gnu_length));
2596 = build_range_type (gnu_string_index_type,
2597 gnu_lower_bound, gnu_upper_bound);
2599 = create_index_type (convert (sizetype,
2600 TYPE_MIN_VALUE (gnu_range_type)),
2602 TYPE_MAX_VALUE (gnu_range_type)),
2603 gnu_range_type, gnat_entity);
2606 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2608 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2609 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2610 relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
2614 /* Record Types and Subtypes
2616 The following fields are defined on record types:
2618 Has_Discriminants True if the record has discriminants
2619 First_Discriminant Points to head of list of discriminants
2620 First_Entity Points to head of list of fields
2621 Is_Tagged_Type True if the record is tagged
2623 Implementation of Ada records and discriminated records:
2625 A record type definition is transformed into the equivalent of a C
2626 struct definition. The fields that are the discriminants which are
2627 found in the Full_Type_Declaration node and the elements of the
2628 Component_List found in the Record_Type_Definition node. The
2629 Component_List can be a recursive structure since each Variant of
2630 the Variant_Part of the Component_List has a Component_List.
2632 Processing of a record type definition comprises starting the list of
2633 field declarations here from the discriminants and the calling the
2634 function components_to_record to add the rest of the fields from the
2635 component list and return the gnu type node. The function
2636 components_to_record will call itself recursively as it traverses
2640 if (Has_Complex_Representation (gnat_entity))
2643 = build_complex_type
2645 (Etype (Defining_Entity
2646 (First (Component_Items
2649 (Declaration_Node (gnat_entity)))))))));
2655 Node_Id full_definition = Declaration_Node (gnat_entity);
2656 Node_Id record_definition = Type_Definition (full_definition);
2657 Entity_Id gnat_field;
2659 tree gnu_field_list = NULL_TREE;
2660 tree gnu_get_parent;
2661 /* Set PACKED in keeping with gnat_to_gnu_field. */
2663 = Is_Packed (gnat_entity)
2665 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2667 : (Known_Alignment (gnat_entity)
2668 || (Strict_Alignment (gnat_entity)
2669 && Known_Static_Esize (gnat_entity)))
2672 bool has_rep = Has_Specified_Layout (gnat_entity);
2673 bool all_rep = has_rep;
2675 = (Is_Tagged_Type (gnat_entity)
2676 && Nkind (record_definition) == N_Derived_Type_Definition);
2678 /* See if all fields have a rep clause. Stop when we find one
2680 for (gnat_field = First_Entity (gnat_entity);
2681 Present (gnat_field) && all_rep;
2682 gnat_field = Next_Entity (gnat_field))
2683 if ((Ekind (gnat_field) == E_Component
2684 || Ekind (gnat_field) == E_Discriminant)
2685 && No (Component_Clause (gnat_field)))
2688 /* If this is a record extension, go a level further to find the
2689 record definition. Also, verify we have a Parent_Subtype. */
2692 if (!type_annotate_only
2693 || Present (Record_Extension_Part (record_definition)))
2694 record_definition = Record_Extension_Part (record_definition);
2696 gcc_assert (type_annotate_only
2697 || Present (Parent_Subtype (gnat_entity)));
2700 /* Make a node for the record. If we are not defining the record,
2701 suppress expanding incomplete types. */
2702 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2703 TYPE_NAME (gnu_type) = gnu_entity_name;
2704 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2707 defer_incomplete_level++, this_deferred = true;
2709 /* If both a size and rep clause was specified, put the size in
2710 the record type now so that it can get the proper mode. */
2711 if (has_rep && Known_Esize (gnat_entity))
2712 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2714 /* Always set the alignment here so that it can be used to
2715 set the mode, if it is making the alignment stricter. If
2716 it is invalid, it will be checked again below. If this is to
2717 be Atomic, choose a default alignment of a word unless we know
2718 the size and it's smaller. */
2719 if (Known_Alignment (gnat_entity))
2720 TYPE_ALIGN (gnu_type)
2721 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2722 else if (Is_Atomic (gnat_entity))
2723 TYPE_ALIGN (gnu_type)
2724 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2725 /* If a type needs strict alignment, the minimum size will be the
2726 type size instead of the RM size (see validate_size). Cap the
2727 alignment, lest it causes this type size to become too large. */
2728 else if (Strict_Alignment (gnat_entity)
2729 && Known_Static_Esize (gnat_entity))
2731 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2732 unsigned int raw_align = raw_size & -raw_size;
2733 if (raw_align < BIGGEST_ALIGNMENT)
2734 TYPE_ALIGN (gnu_type) = raw_align;
2737 TYPE_ALIGN (gnu_type) = 0;
2739 /* If we have a Parent_Subtype, make a field for the parent. If
2740 this record has rep clauses, force the position to zero. */
2741 if (Present (Parent_Subtype (gnat_entity)))
2743 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2746 /* A major complexity here is that the parent subtype will
2747 reference our discriminants in its Discriminant_Constraint
2748 list. But those must reference the parent component of this
2749 record which is of the parent subtype we have not built yet!
2750 To break the circle we first build a dummy COMPONENT_REF which
2751 represents the "get to the parent" operation and initialize
2752 each of those discriminants to a COMPONENT_REF of the above
2753 dummy parent referencing the corresponding discriminant of the
2754 base type of the parent subtype. */
2755 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2756 build0 (PLACEHOLDER_EXPR, gnu_type),
2757 build_decl (FIELD_DECL, NULL_TREE,
2761 if (Has_Discriminants (gnat_entity))
2762 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2763 Present (gnat_field);
2764 gnat_field = Next_Stored_Discriminant (gnat_field))
2765 if (Present (Corresponding_Discriminant (gnat_field)))
2768 build3 (COMPONENT_REF,
2769 get_unpadded_type (Etype (gnat_field)),
2771 gnat_to_gnu_field_decl (Corresponding_Discriminant
2776 /* Then we build the parent subtype. If it has discriminants but
2777 the type itself has unknown discriminants, this means that it
2778 doesn't contain information about how the discriminants are
2779 derived from those of the ancestor type, so it cannot be used
2780 directly. Instead it is built by cloning the parent subtype
2781 of the underlying record view of the type, for which the above
2782 derivation of discriminants has been made explicit. */
2783 if (Has_Discriminants (gnat_parent)
2784 && Has_Unknown_Discriminants (gnat_entity))
2786 Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
2788 /* If we are defining the type, the underlying record
2789 view must already have been elaborated at this point.
2790 Otherwise do it now as its parent subtype cannot be
2791 technically elaborated on its own. */
2793 gcc_assert (present_gnu_tree (gnat_uview));
2795 gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
2797 gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
2799 /* Substitute the "get to the parent" of the type for that
2800 of its underlying record view in the cloned type. */
2801 for (gnat_field = First_Stored_Discriminant (gnat_uview);
2802 Present (gnat_field);
2803 gnat_field = Next_Stored_Discriminant (gnat_field))
2804 if (Present (Corresponding_Discriminant (gnat_field)))
2806 tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
2808 = build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2809 gnu_get_parent, gnu_field, NULL_TREE);
2811 = substitute_in_type (gnu_parent, gnu_field, gnu_ref);
2815 gnu_parent = gnat_to_gnu_type (gnat_parent);
2817 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2818 initially built. The discriminants must reference the fields
2819 of the parent subtype and not those of its base type for the
2820 placeholder machinery to properly work. */
2821 if (Has_Discriminants (gnat_entity))
2822 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2823 Present (gnat_field);
2824 gnat_field = Next_Stored_Discriminant (gnat_field))
2825 if (Present (Corresponding_Discriminant (gnat_field)))
2827 Entity_Id field = Empty;
2828 for (field = First_Stored_Discriminant (gnat_parent);
2830 field = Next_Stored_Discriminant (field))
2831 if (same_discriminant_p (gnat_field, field))
2833 gcc_assert (Present (field));
2834 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2835 = gnat_to_gnu_field_decl (field);
2838 /* The "get to the parent" COMPONENT_REF must be given its
2840 TREE_TYPE (gnu_get_parent) = gnu_parent;
2842 /* ...and reference the _parent field of this record. */
2844 = create_field_decl (get_identifier
2845 (Get_Name_String (Name_uParent)),
2846 gnu_parent, gnu_type, 0,
2847 has_rep ? TYPE_SIZE (gnu_parent) : 0,
2848 has_rep ? bitsize_zero_node : 0, 1);
2849 DECL_INTERNAL_P (gnu_field_list) = 1;
2850 TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
2853 /* Make the fields for the discriminants and put them into the record
2854 unless it's an Unchecked_Union. */
2855 if (Has_Discriminants (gnat_entity))
2856 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2857 Present (gnat_field);
2858 gnat_field = Next_Stored_Discriminant (gnat_field))
2860 /* If this is a record extension and this discriminant
2861 is the renaming of another discriminant, we've already
2862 handled the discriminant above. */
2863 if (Present (Parent_Subtype (gnat_entity))
2864 && Present (Corresponding_Discriminant (gnat_field)))
2868 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2870 /* Make an expression using a PLACEHOLDER_EXPR from the
2871 FIELD_DECL node just created and link that with the
2872 corresponding GNAT defining identifier. Then add to the
2874 save_gnu_tree (gnat_field,
2875 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2876 build0 (PLACEHOLDER_EXPR,
2877 DECL_CONTEXT (gnu_field)),
2878 gnu_field, NULL_TREE),
2881 if (!Is_Unchecked_Union (gnat_entity))
2883 TREE_CHAIN (gnu_field) = gnu_field_list;
2884 gnu_field_list = gnu_field;
2888 /* Put the discriminants into the record (backwards), so we can
2889 know the appropriate discriminant to use for the names of the
2891 TYPE_FIELDS (gnu_type) = gnu_field_list;
2893 /* Add the listed fields into the record and finish it up. */
2894 components_to_record (gnu_type, Component_List (record_definition),
2895 gnu_field_list, packed, definition, NULL,
2896 false, all_rep, false,
2897 Is_Unchecked_Union (gnat_entity));
2899 /* We used to remove the associations of the discriminants and
2900 _Parent for validity checking, but we may need them if there's
2901 Freeze_Node for a subtype used in this record. */
2902 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2903 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
2905 /* If it is a tagged record force the type to BLKmode to insure
2906 that these objects will always be placed in memory. Do the
2907 same thing for limited record types. */
2908 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2909 SET_TYPE_MODE (gnu_type, BLKmode);
2911 /* Fill in locations of fields. */
2912 annotate_rep (gnat_entity, gnu_type);
2914 /* If there are any entities in the chain corresponding to
2915 components that we did not elaborate, ensure we elaborate their
2916 types if they are Itypes. */
2917 for (gnat_temp = First_Entity (gnat_entity);
2918 Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
2919 if ((Ekind (gnat_temp) == E_Component
2920 || Ekind (gnat_temp) == E_Discriminant)
2921 && Is_Itype (Etype (gnat_temp))
2922 && !present_gnu_tree (gnat_temp))
2923 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
2927 case E_Class_Wide_Subtype:
2928 /* If an equivalent type is present, that is what we should use.
2929 Otherwise, fall through to handle this like a record subtype
2930 since it may have constraints. */
2931 if (gnat_equiv_type != gnat_entity)
2933 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
2934 maybe_present = true;
2938 /* ... fall through ... */
2940 case E_Record_Subtype:
2942 /* If Cloned_Subtype is Present it means this record subtype has
2943 identical layout to that type or subtype and we should use
2944 that GCC type for this one. The front end guarantees that
2945 the component list is shared. */
2946 if (Present (Cloned_Subtype (gnat_entity)))
2948 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
2950 maybe_present = true;
2953 /* Otherwise, first ensure the base type is elaborated. Then, if we are
2954 changing the type, make a new type with each field having the
2955 type of the field in the new subtype but having the position
2956 computed by transforming every discriminant reference according
2957 to the constraints. We don't see any difference between
2958 private and nonprivate type here since derivations from types should
2959 have been deferred until the completion of the private type. */
2962 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
2967 defer_incomplete_level++, this_deferred = true;
2969 /* Get the base type initially for its alignment and sizes. But
2970 if it is a padded type, we do all the other work with the
2972 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
2974 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
2975 && TYPE_IS_PADDING_P (gnu_base_type))
2976 gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
2978 gnu_type = gnu_orig_type = gnu_base_type;
2980 if (present_gnu_tree (gnat_entity))
2982 maybe_present = true;
2986 /* When the type has discriminants, and these discriminants
2987 affect the shape of what it built, factor them in.
2989 If we are making a subtype of an Unchecked_Union (must be an
2990 Itype), just return the type.
2992 We can't just use Is_Constrained because private subtypes without
2993 discriminants of full types with discriminants with default
2994 expressions are Is_Constrained but aren't constrained! */
2996 if (IN (Ekind (gnat_base_type), Record_Kind)
2997 && !Is_For_Access_Subtype (gnat_entity)
2998 && !Is_Unchecked_Union (gnat_base_type)
2999 && Is_Constrained (gnat_entity)
3000 && Stored_Constraint (gnat_entity) != No_Elist
3001 && Present (Discriminant_Constraint (gnat_entity)))
3003 Entity_Id gnat_field;
3004 tree gnu_field_list = 0;
3006 = compute_field_positions (gnu_orig_type, NULL_TREE,
3007 size_zero_node, bitsize_zero_node,
3010 = substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
3014 gnu_type = make_node (RECORD_TYPE);
3015 TYPE_NAME (gnu_type) = gnu_entity_name;
3016 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
3018 /* Set the size, alignment and alias set of the new type to
3019 match that of the old one, doing required substitutions.
3020 We do it this early because we need the size of the new
3021 type below to discard old fields if necessary. */
3022 TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
3023 TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
3024 SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
3025 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
3026 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
3028 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
3029 for (gnu_temp = gnu_subst_list;
3030 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3031 TYPE_SIZE (gnu_type)
3032 = substitute_in_expr (TYPE_SIZE (gnu_type),
3033 TREE_PURPOSE (gnu_temp),
3034 TREE_VALUE (gnu_temp));
3036 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
3037 for (gnu_temp = gnu_subst_list;
3038 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3039 TYPE_SIZE_UNIT (gnu_type)
3040 = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
3041 TREE_PURPOSE (gnu_temp),
3042 TREE_VALUE (gnu_temp));
3044 if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
3045 for (gnu_temp = gnu_subst_list;
3046 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3048 (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
3049 TREE_PURPOSE (gnu_temp),
3050 TREE_VALUE (gnu_temp)));
3052 for (gnat_field = First_Entity (gnat_entity);
3053 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3054 if ((Ekind (gnat_field) == E_Component
3055 || Ekind (gnat_field) == E_Discriminant)
3056 && (Underlying_Type (Scope (Original_Record_Component
3059 && (No (Corresponding_Discriminant (gnat_field))
3060 || !Is_Tagged_Type (gnat_base_type)))
3063 = gnat_to_gnu_field_decl (Original_Record_Component
3066 = TREE_VALUE (purpose_member (gnu_old_field,
3068 tree gnu_pos = TREE_PURPOSE (gnu_offset);
3069 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
3071 = gnat_to_gnu_type (Etype (gnat_field));
3072 tree gnu_size = TYPE_SIZE (gnu_field_type);
3073 tree gnu_new_pos = NULL_TREE;
3074 unsigned int offset_align
3075 = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)),
3079 /* If there was a component clause, the field types must be
3080 the same for the type and subtype, so copy the data from
3081 the old field to avoid recomputation here. Also if the
3082 field is justified modular and the optimization in
3083 gnat_to_gnu_field was applied. */
3084 if (Present (Component_Clause
3085 (Original_Record_Component (gnat_field)))
3086 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
3087 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
3088 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
3089 == TREE_TYPE (gnu_old_field)))
3091 gnu_size = DECL_SIZE (gnu_old_field);
3092 gnu_field_type = TREE_TYPE (gnu_old_field);
3095 /* If the old field was packed and of constant size, we
3096 have to get the old size here, as it might differ from
3097 what the Etype conveys and the latter might overlap
3098 onto the following field. Try to arrange the type for
3099 possible better packing along the way. */
3100 else if (DECL_PACKED (gnu_old_field)
3101 && TREE_CODE (DECL_SIZE (gnu_old_field))
3104 gnu_size = DECL_SIZE (gnu_old_field);
3105 if (TREE_CODE (gnu_field_type) == RECORD_TYPE
3106 && !TYPE_IS_FAT_POINTER_P (gnu_field_type)
3107 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
3109 = make_packable_type (gnu_field_type, true);
3112 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
3113 for (gnu_temp = gnu_subst_list;
3114 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3115 gnu_pos = substitute_in_expr (gnu_pos,
3116 TREE_PURPOSE (gnu_temp),
3117 TREE_VALUE (gnu_temp));
3119 /* If the position is now a constant, we can set it as the
3120 position of the field when we make it. Otherwise, we need
3121 to deal with it specially below. */
3122 if (TREE_CONSTANT (gnu_pos))
3124 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
3126 /* Discard old fields that are outside the new type.
3127 This avoids confusing code scanning it to decide
3128 how to pass it to functions on some platforms. */
3129 if (TREE_CODE (gnu_new_pos) == INTEGER_CST
3130 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST
3131 && !integer_zerop (gnu_size)
3132 && !tree_int_cst_lt (gnu_new_pos,
3133 TYPE_SIZE (gnu_type)))
3139 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
3140 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
3141 !DECL_NONADDRESSABLE_P (gnu_old_field));
3143 if (!TREE_CONSTANT (gnu_pos))
3145 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
3146 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
3147 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
3148 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
3149 DECL_SIZE (gnu_field) = gnu_size;
3150 DECL_SIZE_UNIT (gnu_field)
3151 = convert (sizetype,
3152 size_binop (CEIL_DIV_EXPR, gnu_size,
3153 bitsize_unit_node));
3154 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
3157 DECL_INTERNAL_P (gnu_field)
3158 = DECL_INTERNAL_P (gnu_old_field);
3159 SET_DECL_ORIGINAL_FIELD
3160 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
3161 ? DECL_ORIGINAL_FIELD (gnu_old_field)
3163 DECL_DISCRIMINANT_NUMBER (gnu_field)
3164 = DECL_DISCRIMINANT_NUMBER (gnu_old_field);
3165 TREE_THIS_VOLATILE (gnu_field)
3166 = TREE_THIS_VOLATILE (gnu_old_field);
3168 /* To match the layout crafted in components_to_record, if
3169 this is the _Tag field, put it before any discriminants
3170 instead of after them as for all other fields. */
3171 if (Chars (gnat_field) == Name_uTag)
3172 gnu_field_list = chainon (gnu_field_list, gnu_field);
3175 TREE_CHAIN (gnu_field) = gnu_field_list;
3176 gnu_field_list = gnu_field;
3179 save_gnu_tree (gnat_field, gnu_field, false);
3182 /* Now go through the entities again looking for Itypes that
3183 we have not elaborated but should (e.g., Etypes of fields
3184 that have Original_Components). */
3185 for (gnat_field = First_Entity (gnat_entity);
3186 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3187 if ((Ekind (gnat_field) == E_Discriminant
3188 || Ekind (gnat_field) == E_Component)
3189 && !present_gnu_tree (Etype (gnat_field)))
3190 gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, 0);
3192 /* Do not finalize it since we're going to modify it below. */
3193 gnu_field_list = nreverse (gnu_field_list);
3194 finish_record_type (gnu_type, gnu_field_list, 2, true);
3196 /* Finalize size and mode. */
3197 TYPE_SIZE (gnu_type) = variable_size (TYPE_SIZE (gnu_type));
3198 TYPE_SIZE_UNIT (gnu_type)
3199 = variable_size (TYPE_SIZE_UNIT (gnu_type));
3201 compute_record_mode (gnu_type);
3203 /* Fill in locations of fields. */
3204 annotate_rep (gnat_entity, gnu_type);
3206 /* We've built a new type, make an XVS type to show what this
3207 is a subtype of. Some debuggers require the XVS type to be
3208 output first, so do it in that order. */
3211 tree gnu_subtype_marker = make_node (RECORD_TYPE);
3212 tree gnu_orig_name = TYPE_NAME (gnu_orig_type);
3214 if (TREE_CODE (gnu_orig_name) == TYPE_DECL)
3215 gnu_orig_name = DECL_NAME (gnu_orig_name);
3217 TYPE_NAME (gnu_subtype_marker)
3218 = create_concat_name (gnat_entity, "XVS");
3219 finish_record_type (gnu_subtype_marker,
3220 create_field_decl (gnu_orig_name,
3227 add_parallel_type (TYPE_STUB_DECL (gnu_type),
3228 gnu_subtype_marker);
3231 /* Now we can finalize it. */
3232 rest_of_record_type_compilation (gnu_type);
3235 /* Otherwise, go down all the components in the new type and
3236 make them equivalent to those in the base type. */
3238 for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
3239 gnat_temp = Next_Entity (gnat_temp))
3240 if ((Ekind (gnat_temp) == E_Discriminant
3241 && !Is_Unchecked_Union (gnat_base_type))
3242 || Ekind (gnat_temp) == E_Component)
3243 save_gnu_tree (gnat_temp,
3244 gnat_to_gnu_field_decl
3245 (Original_Record_Component (gnat_temp)), false);
3249 case E_Access_Subprogram_Type:
3250 /* Use the special descriptor type for dispatch tables if needed,
3251 that is to say for the Prim_Ptr of a-tags.ads and its clones.
3252 Note that we are only required to do so for static tables in
3253 order to be compatible with the C++ ABI, but Ada 2005 allows
3254 to extend library level tagged types at the local level so
3255 we do it in the non-static case as well. */
3256 if (TARGET_VTABLE_USES_DESCRIPTORS
3257 && Is_Dispatch_Table_Entity (gnat_entity))
3259 gnu_type = fdesc_type_node;
3260 gnu_size = TYPE_SIZE (gnu_type);