1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
53 #ifndef MAX_FIXED_MODE_SIZE
54 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
57 /* Convention_Stdcall should be processed in a specific way on Windows targets
58 only. The macro below is a helper to avoid having to check for a Windows
59 specific attribute throughout this unit. */
61 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
62 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
64 #define Has_Stdcall_Convention(E) (0)
67 /* Stack realignment for functions with foreign conventions is provided on a
68 per back-end basis now, as it is handled by the prologue expanders and not
69 as part of the function's body any more. It might be requested by way of a
70 dedicated function type attribute on the targets that support it.
72 We need a way to avoid setting the attribute on the targets that don't
73 support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
75 It is defined on targets where the circuitry is available, and indicates
76 whether the realignment is needed for 'main'. We use this to decide for
77 foreign subprograms as well.
79 It is not defined on targets where the circuitry is not implemented, and
80 we just never set the attribute in these cases.
82 Whether it is defined on all targets that would need it in theory is
83 not entirely clear. We currently trust the base GCC settings for this
86 #ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
87 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
92 struct incomplete *next;
97 /* These variables are used to defer recursively expanding incomplete types
98 while we are processing an array, a record or a subprogram type. */
99 static int defer_incomplete_level = 0;
100 static struct incomplete *defer_incomplete_list;
102 /* This variable is used to delay expanding From_With_Type types until the
104 static struct incomplete *defer_limited_with;
106 /* These variables are used to defer finalizing types. The element of the
107 list is the TYPE_DECL associated with the type. */
108 static int defer_finalize_level = 0;
109 static VEC (tree,heap) *defer_finalize_list;
111 /* A hash table used to cache the result of annotate_value. */
112 static GTY ((if_marked ("tree_int_map_marked_p"),
113 param_is (struct tree_int_map))) htab_t annotate_value_cache;
122 static void relate_alias_sets (tree, tree, enum alias_set_op);
124 static tree build_subst_list (Entity_Id, Entity_Id, bool);
125 static bool allocatable_size_p (tree, bool);
126 static void prepend_one_attribute_to (struct attrib **,
127 enum attr_type, tree, tree, Node_Id);
128 static void prepend_attributes (Entity_Id, struct attrib **);
129 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
130 static bool is_variable_size (tree);
131 static tree elaborate_expression_1 (tree, Entity_Id, tree, bool, bool);
132 static tree make_packable_type (tree, bool);
133 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
134 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
136 static bool same_discriminant_p (Entity_Id, Entity_Id);
137 static bool array_type_has_nonaliased_component (Entity_Id, tree);
138 static bool compile_time_known_address_p (Node_Id);
139 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
140 bool, bool, bool, bool);
141 static Uint annotate_value (tree);
142 static void annotate_rep (Entity_Id, tree);
143 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
144 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
145 static void set_rm_size (Uint, tree, Entity_Id);
146 static tree make_type_from_size (tree, tree, bool);
147 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
148 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
149 static void check_ok_for_atomic (tree, Entity_Id, bool);
150 static int compatible_signatures_p (tree ftype1, tree ftype2);
151 static void rest_of_type_decl_compilation_no_defer (tree);
153 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
154 entity, return the equivalent GCC tree for that entity (a ..._DECL node)
155 and associate the ..._DECL node with the input GNAT defining identifier.
157 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
158 initial value (in GCC tree form). This is optional for a variable. For
159 a renamed entity, GNU_EXPR gives the object being renamed.
161 DEFINITION is nonzero if this call is intended for a definition. This is
162 used for separate compilation where it is necessary to know whether an
163 external declaration or a definition must be created if the GCC equivalent
164 was not created previously. The value of 1 is normally used for a nonzero
165 DEFINITION, but a value of 2 is used in special circumstances, defined in
169 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
171 /* Contains the kind of the input GNAT node. */
172 const Entity_Kind kind = Ekind (gnat_entity);
173 /* True if this is a type. */
174 const bool is_type = IN (kind, Type_Kind);
175 /* For a type, contains the equivalent GNAT node to be used in gigi. */
176 Entity_Id gnat_equiv_type = Empty;
177 /* Temporary used to walk the GNAT tree. */
179 /* Contains the GCC DECL node which is equivalent to the input GNAT node.
180 This node will be associated with the GNAT node by calling at the end
181 of the `switch' statement. */
182 tree gnu_decl = NULL_TREE;
183 /* Contains the GCC type to be used for the GCC node. */
184 tree gnu_type = NULL_TREE;
185 /* Contains the GCC size tree to be used for the GCC node. */
186 tree gnu_size = NULL_TREE;
187 /* Contains the GCC name to be used for the GCC node. */
188 tree gnu_entity_name;
189 /* True if we have already saved gnu_decl as a GNAT association. */
191 /* True if we incremented defer_incomplete_level. */
192 bool this_deferred = false;
193 /* True if we incremented force_global. */
194 bool this_global = false;
195 /* True if we should check to see if elaborated during processing. */
196 bool maybe_present = false;
197 /* True if we made GNU_DECL and its type here. */
198 bool this_made_decl = false;
199 /* True if debug info is requested for this entity. */
200 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
201 || debug_info_level == DINFO_LEVEL_VERBOSE);
202 /* True if this entity is to be considered as imported. */
203 bool imported_p = (Is_Imported (gnat_entity)
204 && No (Address_Clause (gnat_entity)));
205 /* Size and alignment of the GCC node, if meaningful. */
206 unsigned int esize = 0, align = 0;
207 /* Contains the list of attributes directly attached to the entity. */
208 struct attrib *attr_list = NULL;
210 /* Since a use of an Itype is a definition, process it as such if it
211 is not in a with'ed unit. */
214 && Is_Itype (gnat_entity)
215 && !present_gnu_tree (gnat_entity)
216 && In_Extended_Main_Code_Unit (gnat_entity))
218 /* Ensure that we are in a subprogram mentioned in the Scope chain of
219 this entity, our current scope is global, or we encountered a task
220 or entry (where we can't currently accurately check scoping). */
221 if (!current_function_decl
222 || DECL_ELABORATION_PROC_P (current_function_decl))
224 process_type (gnat_entity);
225 return get_gnu_tree (gnat_entity);
228 for (gnat_temp = Scope (gnat_entity);
230 gnat_temp = Scope (gnat_temp))
232 if (Is_Type (gnat_temp))
233 gnat_temp = Underlying_Type (gnat_temp);
235 if (Ekind (gnat_temp) == E_Subprogram_Body)
237 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
239 if (IN (Ekind (gnat_temp), Subprogram_Kind)
240 && Present (Protected_Body_Subprogram (gnat_temp)))
241 gnat_temp = Protected_Body_Subprogram (gnat_temp);
243 if (Ekind (gnat_temp) == E_Entry
244 || Ekind (gnat_temp) == E_Entry_Family
245 || Ekind (gnat_temp) == E_Task_Type
246 || (IN (Ekind (gnat_temp), Subprogram_Kind)
247 && present_gnu_tree (gnat_temp)
248 && (current_function_decl
249 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
251 process_type (gnat_entity);
252 return get_gnu_tree (gnat_entity);
256 /* This abort means the Itype has an incorrect scope, i.e. that its
257 scope does not correspond to the subprogram it is declared in. */
261 /* If we've already processed this entity, return what we got last time.
262 If we are defining the node, we should not have already processed it.
263 In that case, we will abort below when we try to save a new GCC tree
264 for this object. We also need to handle the case of getting a dummy
265 type when a Full_View exists. */
266 if ((!definition || (is_type && imported_p))
267 && present_gnu_tree (gnat_entity))
269 gnu_decl = get_gnu_tree (gnat_entity);
271 if (TREE_CODE (gnu_decl) == TYPE_DECL
272 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
273 && IN (kind, Incomplete_Or_Private_Kind)
274 && Present (Full_View (gnat_entity)))
277 = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
278 save_gnu_tree (gnat_entity, NULL_TREE, false);
279 save_gnu_tree (gnat_entity, gnu_decl, false);
285 /* If this is a numeric or enumeral type, or an access type, a nonzero
286 Esize must be specified unless it was specified by the programmer. */
287 gcc_assert (!Unknown_Esize (gnat_entity)
288 || Has_Size_Clause (gnat_entity)
289 || (!IN (kind, Numeric_Kind)
290 && !IN (kind, Enumeration_Kind)
291 && (!IN (kind, Access_Kind)
292 || kind == E_Access_Protected_Subprogram_Type
293 || kind == E_Anonymous_Access_Protected_Subprogram_Type
294 || kind == E_Access_Subtype)));
296 /* The RM size must be specified for all discrete and fixed-point types. */
297 gcc_assert (!(IN (kind, Discrete_Or_Fixed_Point_Kind)
298 && Unknown_RM_Size (gnat_entity)));
300 /* If we get here, it means we have not yet done anything with this entity.
301 If we are not defining it, it must be a type or an entity that is defined
302 elsewhere or externally, otherwise we should have defined it already. */
303 gcc_assert (definition
304 || type_annotate_only
306 || kind == E_Discriminant
307 || kind == E_Component
309 || (kind == E_Constant && Present (Full_View (gnat_entity)))
310 || Is_Public (gnat_entity));
312 /* Get the name of the entity and set up the line number and filename of
313 the original definition for use in any decl we make. */
314 gnu_entity_name = get_entity_name (gnat_entity);
315 Sloc_to_locus (Sloc (gnat_entity), &input_location);
317 /* For cases when we are not defining (i.e., we are referencing from
318 another compilation unit) public entities, show we are at global level
319 for the purpose of computing scopes. Don't do this for components or
320 discriminants since the relevant test is whether or not the record is
323 && kind != E_Component
324 && kind != E_Discriminant
325 && Is_Public (gnat_entity)
326 && !Is_Statically_Allocated (gnat_entity))
327 force_global++, this_global = true;
329 /* Handle any attributes directly attached to the entity. */
330 if (Has_Gigi_Rep_Item (gnat_entity))
331 prepend_attributes (gnat_entity, &attr_list);
333 /* Do some common processing for types. */
336 /* Compute the equivalent type to be used in gigi. */
337 gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
339 /* Machine_Attributes on types are expected to be propagated to
340 subtypes. The corresponding Gigi_Rep_Items are only attached
341 to the first subtype though, so we handle the propagation here. */
342 if (Base_Type (gnat_entity) != gnat_entity
343 && !Is_First_Subtype (gnat_entity)
344 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
345 prepend_attributes (First_Subtype (Base_Type (gnat_entity)),
348 /* Compute a default value for the size of the type. */
349 if (Known_Esize (gnat_entity)
350 && UI_Is_In_Int_Range (Esize (gnat_entity)))
352 unsigned int max_esize;
353 esize = UI_To_Int (Esize (gnat_entity));
355 if (IN (kind, Float_Kind))
356 max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
357 else if (IN (kind, Access_Kind))
358 max_esize = POINTER_SIZE * 2;
360 max_esize = LONG_LONG_TYPE_SIZE;
362 if (esize > max_esize)
366 esize = LONG_LONG_TYPE_SIZE;
372 /* If this is a use of a deferred constant without address clause,
373 get its full definition. */
375 && No (Address_Clause (gnat_entity))
376 && Present (Full_View (gnat_entity)))
379 = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
384 /* If we have an external constant that we are not defining, get the
385 expression that is was defined to represent. We may throw that
386 expression away later if it is not a constant. Do not retrieve the
387 expression if it is an aggregate or allocator, because in complex
388 instantiation contexts it may not be expanded */
390 && Present (Expression (Declaration_Node (gnat_entity)))
391 && !No_Initialization (Declaration_Node (gnat_entity))
392 && (Nkind (Expression (Declaration_Node (gnat_entity)))
394 && (Nkind (Expression (Declaration_Node (gnat_entity)))
396 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
398 /* Ignore deferred constant definitions without address clause since
399 they are processed fully in the front-end. If No_Initialization
400 is set, this is not a deferred constant but a constant whose value
401 is built manually. And constants that are renamings are handled
405 && No (Address_Clause (gnat_entity))
406 && !No_Initialization (Declaration_Node (gnat_entity))
407 && No (Renamed_Object (gnat_entity)))
409 gnu_decl = error_mark_node;
414 /* Ignore constant definitions already marked with the error node. See
415 the N_Object_Declaration case of gnat_to_gnu for the rationale. */
418 && present_gnu_tree (gnat_entity)
419 && get_gnu_tree (gnat_entity) == error_mark_node)
421 maybe_present = true;
428 /* We used to special case VMS exceptions here to directly map them to
429 their associated condition code. Since this code had to be masked
430 dynamically to strip off the severity bits, this caused trouble in
431 the GCC/ZCX case because the "type" pointers we store in the tables
432 have to be static. We now don't special case here anymore, and let
433 the regular processing take place, which leaves us with a regular
434 exception data object for VMS exceptions too. The condition code
435 mapping is taken care of by the front end and the bitmasking by the
442 /* The GNAT record where the component was defined. */
443 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
445 /* If the variable is an inherited record component (in the case of
446 extended record types), just return the inherited entity, which
447 must be a FIELD_DECL. Likewise for discriminants.
448 For discriminants of untagged records which have explicit
449 stored discriminants, return the entity for the corresponding
450 stored discriminant. Also use Original_Record_Component
451 if the record has a private extension. */
452 if (Present (Original_Record_Component (gnat_entity))
453 && Original_Record_Component (gnat_entity) != gnat_entity)
456 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
457 gnu_expr, definition);
462 /* If the enclosing record has explicit stored discriminants,
463 then it is an untagged record. If the Corresponding_Discriminant
464 is not empty then this must be a renamed discriminant and its
465 Original_Record_Component must point to the corresponding explicit
466 stored discriminant (i.e. we should have taken the previous
468 else if (Present (Corresponding_Discriminant (gnat_entity))
469 && Is_Tagged_Type (gnat_record))
471 /* A tagged record has no explicit stored discriminants. */
472 gcc_assert (First_Discriminant (gnat_record)
473 == First_Stored_Discriminant (gnat_record));
475 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
476 gnu_expr, definition);
481 else if (Present (CR_Discriminant (gnat_entity))
482 && type_annotate_only)
484 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
485 gnu_expr, definition);
490 /* If the enclosing record has explicit stored discriminants, then
491 it is an untagged record. If the Corresponding_Discriminant
492 is not empty then this must be a renamed discriminant and its
493 Original_Record_Component must point to the corresponding explicit
494 stored discriminant (i.e. we should have taken the first
496 else if (Present (Corresponding_Discriminant (gnat_entity))
497 && (First_Discriminant (gnat_record)
498 != First_Stored_Discriminant (gnat_record)))
501 /* Otherwise, if we are not defining this and we have no GCC type
502 for the containing record, make one for it. Then we should
503 have made our own equivalent. */
504 else if (!definition && !present_gnu_tree (gnat_record))
506 /* ??? If this is in a record whose scope is a protected
507 type and we have an Original_Record_Component, use it.
508 This is a workaround for major problems in protected type
510 Entity_Id Scop = Scope (Scope (gnat_entity));
511 if ((Is_Protected_Type (Scop)
512 || (Is_Private_Type (Scop)
513 && Present (Full_View (Scop))
514 && Is_Protected_Type (Full_View (Scop))))
515 && Present (Original_Record_Component (gnat_entity)))
518 = gnat_to_gnu_entity (Original_Record_Component
525 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
526 gnu_decl = get_gnu_tree (gnat_entity);
532 /* Here we have no GCC type and this is a reference rather than a
533 definition. This should never happen. Most likely the cause is
534 reference before declaration in the gnat tree for gnat_entity. */
538 case E_Loop_Parameter:
539 case E_Out_Parameter:
542 /* Simple variables, loop variables, Out parameters, and exceptions. */
545 bool used_by_ref = false;
547 = ((kind == E_Constant || kind == E_Variable)
548 && Is_True_Constant (gnat_entity)
549 && !Treat_As_Volatile (gnat_entity)
550 && (((Nkind (Declaration_Node (gnat_entity))
551 == N_Object_Declaration)
552 && Present (Expression (Declaration_Node (gnat_entity))))
553 || Present (Renamed_Object (gnat_entity))));
554 bool inner_const_flag = const_flag;
555 bool static_p = Is_Statically_Allocated (gnat_entity);
556 bool mutable_p = false;
557 tree gnu_ext_name = NULL_TREE;
558 tree renamed_obj = NULL_TREE;
559 tree gnu_object_size;
561 if (Present (Renamed_Object (gnat_entity)) && !definition)
563 if (kind == E_Exception)
564 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
567 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
570 /* Get the type after elaborating the renamed object. */
571 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
573 /* For a debug renaming declaration, build a pure debug entity. */
574 if (Present (Debug_Renaming_Link (gnat_entity)))
577 gnu_decl = build_decl (input_location,
578 VAR_DECL, gnu_entity_name, gnu_type);
579 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
580 if (global_bindings_p ())
581 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
583 addr = stack_pointer_rtx;
584 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
585 gnat_pushdecl (gnu_decl, gnat_entity);
589 /* If this is a loop variable, its type should be the base type.
590 This is because the code for processing a loop determines whether
591 a normal loop end test can be done by comparing the bounds of the
592 loop against those of the base type, which is presumed to be the
593 size used for computation. But this is not correct when the size
594 of the subtype is smaller than the type. */
595 if (kind == E_Loop_Parameter)
596 gnu_type = get_base_type (gnu_type);
598 /* Reject non-renamed objects whose types are unconstrained arrays or
599 any object whose type is a dummy type or VOID_TYPE. */
601 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
602 && No (Renamed_Object (gnat_entity)))
603 || TYPE_IS_DUMMY_P (gnu_type)
604 || TREE_CODE (gnu_type) == VOID_TYPE)
606 gcc_assert (type_annotate_only);
609 return error_mark_node;
612 /* If an alignment is specified, use it if valid. Note that exceptions
613 are objects but don't have an alignment. We must do this before we
614 validate the size, since the alignment can affect the size. */
615 if (kind != E_Exception && Known_Alignment (gnat_entity))
617 gcc_assert (Present (Alignment (gnat_entity)));
618 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
619 TYPE_ALIGN (gnu_type));
620 /* No point in changing the type if there is an address clause
621 as the final type of the object will be a reference type. */
622 if (Present (Address_Clause (gnat_entity)))
626 = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
627 "PAD", false, definition, true);
630 /* If we are defining the object, see if it has a Size value and
631 validate it if so. If we are not defining the object and a Size
632 clause applies, simply retrieve the value. We don't want to ignore
633 the clause and it is expected to have been validated already. Then
634 get the new type, if any. */
636 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
637 gnat_entity, VAR_DECL, false,
638 Has_Size_Clause (gnat_entity));
639 else if (Has_Size_Clause (gnat_entity))
640 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
645 = make_type_from_size (gnu_type, gnu_size,
646 Has_Biased_Representation (gnat_entity));
648 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
649 gnu_size = NULL_TREE;
652 /* If this object has self-referential size, it must be a record with
653 a default value. We are supposed to allocate an object of the
654 maximum size in this case unless it is a constant with an
655 initializing expression, in which case we can get the size from
656 that. Note that the resulting size may still be a variable, so
657 this may end up with an indirect allocation. */
658 if (No (Renamed_Object (gnat_entity))
659 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
661 if (gnu_expr && kind == E_Constant)
663 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
664 if (CONTAINS_PLACEHOLDER_P (size))
666 /* If the initializing expression is itself a constant,
667 despite having a nominal type with self-referential
668 size, we can get the size directly from it. */
669 if (TREE_CODE (gnu_expr) == COMPONENT_REF
670 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
673 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
674 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
675 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
676 || DECL_READONLY_ONCE_ELAB
677 (TREE_OPERAND (gnu_expr, 0))))
678 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
681 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
686 /* We may have no GNU_EXPR because No_Initialization is
687 set even though there's an Expression. */
688 else if (kind == E_Constant
689 && (Nkind (Declaration_Node (gnat_entity))
690 == N_Object_Declaration)
691 && Present (Expression (Declaration_Node (gnat_entity))))
693 = TYPE_SIZE (gnat_to_gnu_type
695 (Expression (Declaration_Node (gnat_entity)))));
698 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
703 /* If the size is zero bytes, make it one byte since some linkers have
704 trouble with zero-sized objects. If the object will have a
705 template, that will make it nonzero so don't bother. Also avoid
706 doing that for an object renaming or an object with an address
707 clause, as we would lose useful information on the view size
708 (e.g. for null array slices) and we are not allocating the object
711 && integer_zerop (gnu_size)
712 && !TREE_OVERFLOW (gnu_size))
713 || (TYPE_SIZE (gnu_type)
714 && integer_zerop (TYPE_SIZE (gnu_type))
715 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
716 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
717 || !Is_Array_Type (Etype (gnat_entity)))
718 && No (Renamed_Object (gnat_entity))
719 && No (Address_Clause (gnat_entity)))
720 gnu_size = bitsize_unit_node;
722 /* If this is an object with no specified size and alignment, and
723 if either it is atomic or we are not optimizing alignment for
724 space and it is composite and not an exception, an Out parameter
725 or a reference to another object, and the size of its type is a
726 constant, set the alignment to the smallest one which is not
727 smaller than the size, with an appropriate cap. */
728 if (!gnu_size && align == 0
729 && (Is_Atomic (gnat_entity)
730 || (!Optimize_Alignment_Space (gnat_entity)
731 && kind != E_Exception
732 && kind != E_Out_Parameter
733 && Is_Composite_Type (Etype (gnat_entity))
734 && !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
736 && No (Renamed_Object (gnat_entity))
737 && No (Address_Clause (gnat_entity))))
738 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
740 /* No point in jumping through all the hoops needed in order
741 to support BIGGEST_ALIGNMENT if we don't really have to.
742 So we cap to the smallest alignment that corresponds to
743 a known efficient memory access pattern of the target. */
744 unsigned int align_cap = Is_Atomic (gnat_entity)
746 : get_mode_alignment (ptr_mode);
748 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
749 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
752 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
754 /* But make sure not to under-align the object. */
755 if (align <= TYPE_ALIGN (gnu_type))
758 /* And honor the minimum valid atomic alignment, if any. */
759 #ifdef MINIMUM_ATOMIC_ALIGNMENT
760 else if (align < MINIMUM_ATOMIC_ALIGNMENT)
761 align = MINIMUM_ATOMIC_ALIGNMENT;
765 /* If the object is set to have atomic components, find the component
766 type and validate it.
768 ??? Note that we ignore Has_Volatile_Components on objects; it's
769 not at all clear what to do in that case. */
771 if (Has_Atomic_Components (gnat_entity))
773 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
774 ? TREE_TYPE (gnu_type) : gnu_type);
776 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
777 && TYPE_MULTI_ARRAY_P (gnu_inner))
778 gnu_inner = TREE_TYPE (gnu_inner);
780 check_ok_for_atomic (gnu_inner, gnat_entity, true);
783 /* Now check if the type of the object allows atomic access. Note
784 that we must test the type, even if this object has size and
785 alignment to allow such access, because we will be going
786 inside the padded record to assign to the object. We could fix
787 this by always copying via an intermediate value, but it's not
788 clear it's worth the effort. */
789 if (Is_Atomic (gnat_entity))
790 check_ok_for_atomic (gnu_type, gnat_entity, false);
792 /* If this is an aliased object with an unconstrained nominal subtype,
793 make a type that includes the template. */
794 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
795 && Is_Array_Type (Etype (gnat_entity))
796 && !type_annotate_only)
799 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
802 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
803 concat_name (gnu_entity_name,
807 #ifdef MINIMUM_ATOMIC_ALIGNMENT
808 /* If the size is a constant and no alignment is specified, force
809 the alignment to be the minimum valid atomic alignment. The
810 restriction on constant size avoids problems with variable-size
811 temporaries; if the size is variable, there's no issue with
812 atomic access. Also don't do this for a constant, since it isn't
813 necessary and can interfere with constant replacement. Finally,
814 do not do it for Out parameters since that creates an
815 size inconsistency with In parameters. */
816 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
817 && !FLOAT_TYPE_P (gnu_type)
818 && !const_flag && No (Renamed_Object (gnat_entity))
819 && !imported_p && No (Address_Clause (gnat_entity))
820 && kind != E_Out_Parameter
821 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
822 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
823 align = MINIMUM_ATOMIC_ALIGNMENT;
826 /* Make a new type with the desired size and alignment, if needed.
827 But do not take into account alignment promotions to compute the
828 size of the object. */
829 gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
830 if (gnu_size || align > 0)
831 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
832 "PAD", false, definition,
833 gnu_size ? true : false);
835 /* If this is a renaming, avoid as much as possible to create a new
836 object. However, in several cases, creating it is required.
837 This processing needs to be applied to the raw expression so
838 as to make it more likely to rename the underlying object. */
839 if (Present (Renamed_Object (gnat_entity)))
841 bool create_normal_object = false;
843 /* If the renamed object had padding, strip off the reference
844 to the inner object and reset our type. */
845 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
846 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
848 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
849 /* Strip useless conversions around the object. */
850 || (TREE_CODE (gnu_expr) == NOP_EXPR
851 && gnat_types_compatible_p
852 (TREE_TYPE (gnu_expr),
853 TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
855 gnu_expr = TREE_OPERAND (gnu_expr, 0);
856 gnu_type = TREE_TYPE (gnu_expr);
859 /* Case 1: If this is a constant renaming stemming from a function
860 call, treat it as a normal object whose initial value is what
861 is being renamed. RM 3.3 says that the result of evaluating a
862 function call is a constant object. As a consequence, it can
863 be the inner object of a constant renaming. In this case, the
864 renaming must be fully instantiated, i.e. it cannot be a mere
865 reference to (part of) an existing object. */
868 tree inner_object = gnu_expr;
869 while (handled_component_p (inner_object))
870 inner_object = TREE_OPERAND (inner_object, 0);
871 if (TREE_CODE (inner_object) == CALL_EXPR)
872 create_normal_object = true;
875 /* Otherwise, see if we can proceed with a stabilized version of
876 the renamed entity or if we need to make a new object. */
877 if (!create_normal_object)
879 tree maybe_stable_expr = NULL_TREE;
882 /* Case 2: If the renaming entity need not be materialized and
883 the renamed expression is something we can stabilize, use
884 that for the renaming. At the global level, we can only do
885 this if we know no SAVE_EXPRs need be made, because the
886 expression we return might be used in arbitrary conditional
887 branches so we must force the SAVE_EXPRs evaluation
888 immediately and this requires a function context. */
889 if (!Materialize_Entity (gnat_entity)
890 && (!global_bindings_p ()
891 || (staticp (gnu_expr)
892 && !TREE_SIDE_EFFECTS (gnu_expr))))
895 = maybe_stabilize_reference (gnu_expr, true, &stable);
899 gnu_decl = maybe_stable_expr;
900 /* ??? No DECL_EXPR is created so we need to mark
901 the expression manually lest it is shared. */
902 if (global_bindings_p ())
903 mark_visited (&gnu_decl);
904 save_gnu_tree (gnat_entity, gnu_decl, true);
909 /* The stabilization failed. Keep maybe_stable_expr
910 untouched here to let the pointer case below know
911 about that failure. */
914 /* Case 3: If this is a constant renaming and creating a
915 new object is allowed and cheap, treat it as a normal
916 object whose initial value is what is being renamed. */
918 && !Is_Composite_Type
919 (Underlying_Type (Etype (gnat_entity))))
922 /* Case 4: Make this into a constant pointer to the object we
923 are to rename and attach the object to the pointer if it is
924 something we can stabilize.
926 From the proper scope, attached objects will be referenced
927 directly instead of indirectly via the pointer to avoid
928 subtle aliasing problems with non-addressable entities.
929 They have to be stable because we must not evaluate the
930 variables in the expression every time the renaming is used.
931 The pointer is called a "renaming" pointer in this case.
933 In the rare cases where we cannot stabilize the renamed
934 object, we just make a "bare" pointer, and the renamed
935 entity is always accessed indirectly through it. */
938 gnu_type = build_reference_type (gnu_type);
939 inner_const_flag = TREE_READONLY (gnu_expr);
942 /* If the previous attempt at stabilizing failed, there
943 is no point in trying again and we reuse the result
944 without attaching it to the pointer. In this case it
945 will only be used as the initializing expression of
946 the pointer and thus needs no special treatment with
947 regard to multiple evaluations. */
948 if (maybe_stable_expr)
951 /* Otherwise, try to stabilize and attach the expression
952 to the pointer if the stabilization succeeds.
954 Note that this might introduce SAVE_EXPRs and we don't
955 check whether we're at the global level or not. This
956 is fine since we are building a pointer initializer and
957 neither the pointer nor the initializing expression can
958 be accessed before the pointer elaboration has taken
959 place in a correct program.
961 These SAVE_EXPRs will be evaluated at the right place
962 by either the evaluation of the initializer for the
963 non-global case or the elaboration code for the global
964 case, and will be attached to the elaboration procedure
965 in the latter case. */
969 = maybe_stabilize_reference (gnu_expr, true, &stable);
972 renamed_obj = maybe_stable_expr;
974 /* Attaching is actually performed downstream, as soon
975 as we have a VAR_DECL for the pointer we make. */
979 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
981 gnu_size = NULL_TREE;
987 /* Make a volatile version of this object's type if we are to make
988 the object volatile. We also interpret 13.3(19) conservatively
989 and disallow any optimizations for such a non-constant object. */
990 if ((Treat_As_Volatile (gnat_entity)
992 && (Is_Exported (gnat_entity)
993 || Is_Imported (gnat_entity)
994 || Present (Address_Clause (gnat_entity)))))
995 && !TYPE_VOLATILE (gnu_type))
996 gnu_type = build_qualified_type (gnu_type,
997 (TYPE_QUALS (gnu_type)
998 | TYPE_QUAL_VOLATILE));
1000 /* If we are defining an aliased object whose nominal subtype is
1001 unconstrained, the object is a record that contains both the
1002 template and the object. If there is an initializer, it will
1003 have already been converted to the right type, but we need to
1004 create the template if there is no initializer. */
1007 && TREE_CODE (gnu_type) == RECORD_TYPE
1008 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
1009 /* Beware that padding might have been introduced
1010 via maybe_pad_type above. */
1011 || (TYPE_IS_PADDING_P (gnu_type)
1012 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1014 && TYPE_CONTAINS_TEMPLATE_P
1015 (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
1018 = TYPE_IS_PADDING_P (gnu_type)
1019 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1020 : TYPE_FIELDS (gnu_type);
1023 = gnat_build_constructor
1027 build_template (TREE_TYPE (template_field),
1028 TREE_TYPE (TREE_CHAIN (template_field)),
1033 /* Convert the expression to the type of the object except in the
1034 case where the object's type is unconstrained or the object's type
1035 is a padded record whose field is of self-referential size. In
1036 the former case, converting will generate unnecessary evaluations
1037 of the CONSTRUCTOR to compute the size and in the latter case, we
1038 want to only copy the actual data. */
1040 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1041 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1042 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1043 && TYPE_IS_PADDING_P (gnu_type)
1044 && (CONTAINS_PLACEHOLDER_P
1045 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1046 gnu_expr = convert (gnu_type, gnu_expr);
1048 /* If this is a pointer and it does not have an initializing
1049 expression, initialize it to NULL, unless the object is
1052 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
1053 && !Is_Imported (gnat_entity) && !gnu_expr)
1054 gnu_expr = integer_zero_node;
1056 /* If we are defining the object and it has an Address clause, we must
1057 either get the address expression from the saved GCC tree for the
1058 object if it has a Freeze node, or elaborate the address expression
1059 here since the front-end has guaranteed that the elaboration has no
1060 effects in this case. */
1061 if (definition && Present (Address_Clause (gnat_entity)))
1064 = present_gnu_tree (gnat_entity)
1065 ? get_gnu_tree (gnat_entity)
1066 : gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
1068 save_gnu_tree (gnat_entity, NULL_TREE, false);
1070 /* Ignore the size. It's either meaningless or was handled
1072 gnu_size = NULL_TREE;
1073 /* Convert the type of the object to a reference type that can
1074 alias everything as per 13.3(19). */
1076 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1077 gnu_address = convert (gnu_type, gnu_address);
1079 const_flag = !Is_Public (gnat_entity)
1080 || compile_time_known_address_p (Expression (Address_Clause
1083 /* If this is a deferred constant, the initializer is attached to
1085 if (kind == E_Constant && Present (Full_View (gnat_entity)))
1088 (Expression (Declaration_Node (Full_View (gnat_entity))));
1090 /* If we don't have an initializing expression for the underlying
1091 variable, the initializing expression for the pointer is the
1092 specified address. Otherwise, we have to make a COMPOUND_EXPR
1093 to assign both the address and the initial value. */
1095 gnu_expr = gnu_address;
1098 = build2 (COMPOUND_EXPR, gnu_type,
1100 (MODIFY_EXPR, NULL_TREE,
1101 build_unary_op (INDIRECT_REF, NULL_TREE,
1107 /* If it has an address clause and we are not defining it, mark it
1108 as an indirect object. Likewise for Stdcall objects that are
1110 if ((!definition && Present (Address_Clause (gnat_entity)))
1111 || (Is_Imported (gnat_entity)
1112 && Has_Stdcall_Convention (gnat_entity)))
1114 /* Convert the type of the object to a reference type that can
1115 alias everything as per 13.3(19). */
1117 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1118 gnu_size = NULL_TREE;
1120 /* No point in taking the address of an initializing expression
1121 that isn't going to be used. */
1122 gnu_expr = NULL_TREE;
1124 /* If it has an address clause whose value is known at compile
1125 time, make the object a CONST_DECL. This will avoid a
1126 useless dereference. */
1127 if (Present (Address_Clause (gnat_entity)))
1129 Node_Id gnat_address
1130 = Expression (Address_Clause (gnat_entity));
1132 if (compile_time_known_address_p (gnat_address))
1134 gnu_expr = gnat_to_gnu (gnat_address);
1142 /* If we are at top level and this object is of variable size,
1143 make the actual type a hidden pointer to the real type and
1144 make the initializer be a memory allocation and initialization.
1145 Likewise for objects we aren't defining (presumed to be
1146 external references from other packages), but there we do
1147 not set up an initialization.
1149 If the object's size overflows, make an allocator too, so that
1150 Storage_Error gets raised. Note that we will never free
1151 such memory, so we presume it never will get allocated. */
1153 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1154 global_bindings_p () || !definition
1157 && ! allocatable_size_p (gnu_size,
1158 global_bindings_p () || !definition
1161 gnu_type = build_reference_type (gnu_type);
1162 gnu_size = NULL_TREE;
1166 /* In case this was a aliased object whose nominal subtype is
1167 unconstrained, the pointer above will be a thin pointer and
1168 build_allocator will automatically make the template.
1170 If we have a template initializer only (that we made above),
1171 pretend there is none and rely on what build_allocator creates
1172 again anyway. Otherwise (if we have a full initializer), get
1173 the data part and feed that to build_allocator.
1175 If we are elaborating a mutable object, tell build_allocator to
1176 ignore a possibly simpler size from the initializer, if any, as
1177 we must allocate the maximum possible size in this case. */
1181 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1183 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1184 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1187 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1189 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1190 && 1 == VEC_length (constructor_elt,
1191 CONSTRUCTOR_ELTS (gnu_expr)))
1195 = build_component_ref
1196 (gnu_expr, NULL_TREE,
1197 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1201 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1202 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1203 && !Is_Imported (gnat_entity))
1204 post_error ("?Storage_Error will be raised at run-time!",
1208 = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1209 Empty, Empty, gnat_entity, mutable_p);
1213 gnu_expr = NULL_TREE;
1218 /* If this object would go into the stack and has an alignment larger
1219 than the largest stack alignment the back-end can honor, resort to
1220 a variable of "aligning type". */
1221 if (!global_bindings_p () && !static_p && definition
1222 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1224 /* Create the new variable. No need for extra room before the
1225 aligned field as this is in automatic storage. */
1227 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1228 TYPE_SIZE_UNIT (gnu_type),
1229 BIGGEST_ALIGNMENT, 0);
1231 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1232 NULL_TREE, gnu_new_type, NULL_TREE, false,
1233 false, false, false, NULL, gnat_entity);
1235 /* Initialize the aligned field if we have an initializer. */
1238 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1240 (gnu_new_var, NULL_TREE,
1241 TYPE_FIELDS (gnu_new_type), false),
1245 /* And setup this entity as a reference to the aligned field. */
1246 gnu_type = build_reference_type (gnu_type);
1249 (ADDR_EXPR, gnu_type,
1250 build_component_ref (gnu_new_var, NULL_TREE,
1251 TYPE_FIELDS (gnu_new_type), false));
1253 gnu_size = NULL_TREE;
1259 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1260 | TYPE_QUAL_CONST));
1262 /* Convert the expression to the type of the object except in the
1263 case where the object's type is unconstrained or the object's type
1264 is a padded record whose field is of self-referential size. In
1265 the former case, converting will generate unnecessary evaluations
1266 of the CONSTRUCTOR to compute the size and in the latter case, we
1267 want to only copy the actual data. */
1269 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1270 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1271 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1272 && TYPE_IS_PADDING_P (gnu_type)
1273 && (CONTAINS_PLACEHOLDER_P
1274 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1275 gnu_expr = convert (gnu_type, gnu_expr);
1277 /* If this name is external or there was a name specified, use it,
1278 unless this is a VMS exception object since this would conflict
1279 with the symbol we need to export in addition. Don't use the
1280 Interface_Name if there is an address clause (see CD30005). */
1281 if (!Is_VMS_Exception (gnat_entity)
1282 && ((Present (Interface_Name (gnat_entity))
1283 && No (Address_Clause (gnat_entity)))
1284 || (Is_Public (gnat_entity)
1285 && (!Is_Imported (gnat_entity)
1286 || Is_Exported (gnat_entity)))))
1287 gnu_ext_name = create_concat_name (gnat_entity, NULL);
1289 /* If this is constant initialized to a static constant and the
1290 object has an aggregate type, force it to be statically
1291 allocated. This will avoid an initialization copy. */
1292 if (!static_p && const_flag
1293 && gnu_expr && TREE_CONSTANT (gnu_expr)
1294 && AGGREGATE_TYPE_P (gnu_type)
1295 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1296 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1297 && TYPE_IS_PADDING_P (gnu_type)
1298 && !host_integerp (TYPE_SIZE_UNIT
1299 (TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
1302 gnu_decl = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1303 gnu_expr, const_flag,
1304 Is_Public (gnat_entity),
1305 imported_p || !definition,
1306 static_p, attr_list, gnat_entity);
1307 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1308 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1309 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1311 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1312 if (global_bindings_p ())
1314 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1315 record_global_renaming_pointer (gnu_decl);
1319 if (definition && DECL_SIZE_UNIT (gnu_decl)
1320 && get_block_jmpbuf_decl ()
1321 && (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
1322 || (flag_stack_check == GENERIC_STACK_CHECK
1323 && compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1324 STACK_CHECK_MAX_VAR_SIZE) > 0)))
1325 add_stmt_with_node (build_call_1_expr
1326 (update_setjmp_buf_decl,
1327 build_unary_op (ADDR_EXPR, NULL_TREE,
1328 get_block_jmpbuf_decl ())),
1331 /* If we are defining an Out parameter and we're not optimizing,
1332 create a fake PARM_DECL for debugging purposes and make it
1333 point to the VAR_DECL. Suppress debug info for the latter
1334 but make sure it will still live on the stack so it can be
1335 accessed from within the debugger through the PARM_DECL. */
1336 if (kind == E_Out_Parameter && definition && !optimize)
1338 tree param = create_param_decl (gnu_entity_name, gnu_type, false);
1339 gnat_pushdecl (param, gnat_entity);
1340 SET_DECL_VALUE_EXPR (param, gnu_decl);
1341 DECL_HAS_VALUE_EXPR_P (param) = 1;
1343 debug_info_p = false;
1345 DECL_IGNORED_P (param) = 1;
1346 TREE_ADDRESSABLE (gnu_decl) = 1;
1349 /* If this is a public constant or we're not optimizing and we're not
1350 making a VAR_DECL for it, make one just for export or debugger use.
1351 Likewise if the address is taken or if either the object or type is
1352 aliased. Make an external declaration for a reference, unless this
1353 is a Standard entity since there no real symbol at the object level
1355 if (TREE_CODE (gnu_decl) == CONST_DECL
1356 && (definition || Sloc (gnat_entity) > Standard_Location)
1357 && ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
1359 || Address_Taken (gnat_entity)
1360 || Is_Aliased (gnat_entity)
1361 || Is_Aliased (Etype (gnat_entity))))
1364 = create_true_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1365 gnu_expr, true, Is_Public (gnat_entity),
1366 !definition, static_p, NULL,
1369 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1371 /* As debugging information will be generated for the variable,
1372 do not generate information for the constant. */
1373 DECL_IGNORED_P (gnu_decl) = 1;
1376 /* If this is declared in a block that contains a block with an
1377 exception handler, we must force this variable in memory to
1378 suppress an invalid optimization. */
1379 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1380 && Exception_Mechanism != Back_End_Exceptions)
1381 TREE_ADDRESSABLE (gnu_decl) = 1;
1383 gnu_type = TREE_TYPE (gnu_decl);
1385 /* Back-annotate Alignment and Esize of the object if not already
1386 known, except for when the object is actually a pointer to the
1387 real object, since alignment and size of a pointer don't have
1388 anything to do with those of the designated object. Note that
1389 we pick the values of the type, not those of the object, to
1390 shield ourselves from low-level platform-dependent adjustments
1391 like alignment promotion. This is both consistent with all the
1392 treatment above, where alignment and size are set on the type of
1393 the object and not on the object directly, and makes it possible
1394 to support confirming representation clauses in all cases. */
1396 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1397 Set_Alignment (gnat_entity,
1398 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1400 if (!used_by_ref && Unknown_Esize (gnat_entity))
1402 if (TREE_CODE (gnu_type) == RECORD_TYPE
1403 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1405 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1407 Set_Esize (gnat_entity, annotate_value (gnu_object_size));
1413 /* Return a TYPE_DECL for "void" that we previously made. */
1414 gnu_decl = TYPE_NAME (void_type_node);
1417 case E_Enumeration_Type:
1418 /* A special case: for the types Character and Wide_Character in
1419 Standard, we do not list all the literals. So if the literals
1420 are not specified, make this an unsigned type. */
1421 if (No (First_Literal (gnat_entity)))
1423 gnu_type = make_unsigned_type (esize);
1424 TYPE_NAME (gnu_type) = gnu_entity_name;
1426 /* Set TYPE_STRING_FLAG for Character and Wide_Character types.
1427 This is needed by the DWARF-2 back-end to distinguish between
1428 unsigned integer types and character types. */
1429 TYPE_STRING_FLAG (gnu_type) = 1;
1433 /* Normal case of non-character type or non-Standard character type. */
1435 /* Here we have a list of enumeral constants in First_Literal.
1436 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1437 the list to be placed into TYPE_FIELDS. Each node in the list
1438 is a TREE_LIST whose TREE_VALUE is the literal name and whose
1439 TREE_PURPOSE is the value of the literal. */
1441 Entity_Id gnat_literal;
1442 tree gnu_literal_list = NULL_TREE;
1444 if (Is_Unsigned_Type (gnat_entity))
1445 gnu_type = make_unsigned_type (esize);
1447 gnu_type = make_signed_type (esize);
1449 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1451 for (gnat_literal = First_Literal (gnat_entity);
1452 Present (gnat_literal);
1453 gnat_literal = Next_Literal (gnat_literal))
1455 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1458 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1459 gnu_type, gnu_value, true, false, false,
1460 false, NULL, gnat_literal);
1462 save_gnu_tree (gnat_literal, gnu_literal, false);
1463 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1464 gnu_value, gnu_literal_list);
1467 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1469 /* Note that the bounds are updated at the end of this function
1470 to avoid an infinite recursion since they refer to the type. */
1474 case E_Signed_Integer_Type:
1475 case E_Ordinary_Fixed_Point_Type:
1476 case E_Decimal_Fixed_Point_Type:
1477 /* For integer types, just make a signed type the appropriate number
1479 gnu_type = make_signed_type (esize);
1482 case E_Modular_Integer_Type:
1484 /* For modular types, make the unsigned type of the proper number
1485 of bits and then set up the modulus, if required. */
1486 tree gnu_modulus, gnu_high = NULL_TREE;
1488 /* Packed array types are supposed to be subtypes only. */
1489 gcc_assert (!Is_Packed_Array_Type (gnat_entity));
1491 gnu_type = make_unsigned_type (esize);
1493 /* Get the modulus in this type. If it overflows, assume it is because
1494 it is equal to 2**Esize. Note that there is no overflow checking
1495 done on unsigned type, so we detect the overflow by looking for
1496 a modulus of zero, which is otherwise invalid. */
1497 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1499 if (!integer_zerop (gnu_modulus))
1501 TYPE_MODULAR_P (gnu_type) = 1;
1502 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1503 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1504 convert (gnu_type, integer_one_node));
1507 /* If the upper bound is not maximal, make an extra subtype. */
1509 && !tree_int_cst_equal (gnu_high, TYPE_MAX_VALUE (gnu_type)))
1511 tree gnu_subtype = make_unsigned_type (esize);
1512 SET_TYPE_RM_MAX_VALUE (gnu_subtype, gnu_high);
1513 TREE_TYPE (gnu_subtype) = gnu_type;
1514 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1515 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1516 gnu_type = gnu_subtype;
1521 case E_Signed_Integer_Subtype:
1522 case E_Enumeration_Subtype:
1523 case E_Modular_Integer_Subtype:
1524 case E_Ordinary_Fixed_Point_Subtype:
1525 case E_Decimal_Fixed_Point_Subtype:
1527 /* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
1528 not want to call create_range_type since we would like each subtype
1529 node to be distinct. ??? Historically this was in preparation for
1530 when memory aliasing is implemented, but that's obsolete now given
1531 the call to relate_alias_sets below.
1533 The TREE_TYPE field of the INTEGER_TYPE points to the base type;
1534 this fact is used by the arithmetic conversion functions.
1536 We elaborate the Ancestor_Subtype if it is not in the current unit
1537 and one of our bounds is non-static. We do this to ensure consistent
1538 naming in the case where several subtypes share the same bounds, by
1539 elaborating the first such subtype first, thus using its name. */
1542 && Present (Ancestor_Subtype (gnat_entity))
1543 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1544 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1545 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1546 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
1548 /* Set the precision to the Esize except for bit-packed arrays. */
1549 if (Is_Packed_Array_Type (gnat_entity)
1550 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1551 esize = UI_To_Int (RM_Size (gnat_entity));
1553 /* This should be an unsigned type if the base type is unsigned or
1554 if the lower bound is constant and non-negative or if the type
1556 if (Is_Unsigned_Type (Etype (gnat_entity))
1557 || Is_Unsigned_Type (gnat_entity)
1558 || Has_Biased_Representation (gnat_entity))
1559 gnu_type = make_unsigned_type (esize);
1561 gnu_type = make_signed_type (esize);
1562 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1564 SET_TYPE_RM_MIN_VALUE
1566 convert (TREE_TYPE (gnu_type),
1567 elaborate_expression (Type_Low_Bound (gnat_entity),
1568 gnat_entity, get_identifier ("L"),
1570 Needs_Debug_Info (gnat_entity))));
1572 SET_TYPE_RM_MAX_VALUE
1574 convert (TREE_TYPE (gnu_type),
1575 elaborate_expression (Type_High_Bound (gnat_entity),
1576 gnat_entity, get_identifier ("U"),
1578 Needs_Debug_Info (gnat_entity))));
1580 /* One of the above calls might have caused us to be elaborated,
1581 so don't blow up if so. */
1582 if (present_gnu_tree (gnat_entity))
1584 maybe_present = true;
1588 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1589 = Has_Biased_Representation (gnat_entity);
1591 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
1592 TYPE_STUB_DECL (gnu_type)
1593 = create_type_stub_decl (gnu_entity_name, gnu_type);
1595 /* Inherit our alias set from what we're a subtype of. Subtypes
1596 are not different types and a pointer can designate any instance
1597 within a subtype hierarchy. */
1598 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1600 /* For a packed array, make the original array type a parallel type. */
1602 && Is_Packed_Array_Type (gnat_entity)
1603 && present_gnu_tree (Original_Array_Type (gnat_entity)))
1604 add_parallel_type (TYPE_STUB_DECL (gnu_type),
1606 (Original_Array_Type (gnat_entity)));
1608 /* If the type we are dealing with represents a bit-packed array,
1609 we need to have the bits left justified on big-endian targets
1610 and right justified on little-endian targets. We also need to
1611 ensure that when the value is read (e.g. for comparison of two
1612 such values), we only get the good bits, since the unused bits
1613 are uninitialized. Both goals are accomplished by wrapping up
1614 the modular type in an enclosing record type. */
1615 if (Is_Packed_Array_Type (gnat_entity)
1616 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1618 tree gnu_field_type, gnu_field;
1620 /* Set the RM size before wrapping up the type. */
1621 SET_TYPE_RM_SIZE (gnu_type,
1622 UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
1623 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1624 gnu_field_type = gnu_type;
1626 gnu_type = make_node (RECORD_TYPE);
1627 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1629 /* Propagate the alignment of the modular type to the record.
1630 This means that bit-packed arrays have "ceil" alignment for
1631 their size, which may seem counter-intuitive but makes it
1632 possible to easily overlay them on modular types. */
1633 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1634 TYPE_PACKED (gnu_type) = 1;
1636 /* Create a stripped-down declaration of the original type, mainly
1638 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1639 debug_info_p, gnat_entity);
1641 /* Don't notify the field as "addressable", since we won't be taking
1642 it's address and it would prevent create_field_decl from making a
1644 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1645 gnu_field_type, gnu_type, 1, 0, 0, 0);
1647 /* Do not finalize it until after the parallel type is added. */
1648 finish_record_type (gnu_type, gnu_field, 0, true);
1649 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1651 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1653 /* Make the original array type a parallel type. */
1655 && present_gnu_tree (Original_Array_Type (gnat_entity)))
1656 add_parallel_type (TYPE_STUB_DECL (gnu_type),
1658 (Original_Array_Type (gnat_entity)));
1660 rest_of_record_type_compilation (gnu_type);
1663 /* If the type we are dealing with has got a smaller alignment than the
1664 natural one, we need to wrap it up in a record type and under-align
1665 the latter. We reuse the padding machinery for this purpose. */
1666 else if (Present (Alignment_Clause (gnat_entity))
1667 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1668 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1669 && align < TYPE_ALIGN (gnu_type))
1671 tree gnu_field_type, gnu_field;
1673 /* Set the RM size before wrapping up the type. */
1674 SET_TYPE_RM_SIZE (gnu_type,
1675 UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
1676 gnu_field_type = gnu_type;
1678 gnu_type = make_node (RECORD_TYPE);
1679 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1681 TYPE_ALIGN (gnu_type) = align;
1682 TYPE_PACKED (gnu_type) = 1;
1684 /* Create a stripped-down declaration of the original type, mainly
1686 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1687 debug_info_p, gnat_entity);
1689 /* Don't notify the field as "addressable", since we won't be taking
1690 it's address and it would prevent create_field_decl from making a
1692 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1693 gnu_field_type, gnu_type, 1, 0, 0, 0);
1695 finish_record_type (gnu_type, gnu_field, 0, false);
1696 TYPE_IS_PADDING_P (gnu_type) = 1;
1698 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1701 /* Otherwise reset the alignment lest we computed it above. */
1707 case E_Floating_Point_Type:
1708 /* If this is a VAX floating-point type, use an integer of the proper
1709 size. All the operations will be handled with ASM statements. */
1710 if (Vax_Float (gnat_entity))
1712 gnu_type = make_signed_type (esize);
1713 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1714 SET_TYPE_DIGITS_VALUE (gnu_type,
1715 UI_To_gnu (Digits_Value (gnat_entity),
1720 /* The type of the Low and High bounds can be our type if this is
1721 a type from Standard, so set them at the end of the function. */
1722 gnu_type = make_node (REAL_TYPE);
1723 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1724 layout_type (gnu_type);
1727 case E_Floating_Point_Subtype:
1728 if (Vax_Float (gnat_entity))
1730 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1736 && Present (Ancestor_Subtype (gnat_entity))
1737 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1738 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1739 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1740 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1743 gnu_type = make_node (REAL_TYPE);
1744 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1745 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1746 TYPE_GCC_MIN_VALUE (gnu_type)
1747 = TYPE_GCC_MIN_VALUE (TREE_TYPE (gnu_type));
1748 TYPE_GCC_MAX_VALUE (gnu_type)
1749 = TYPE_GCC_MAX_VALUE (TREE_TYPE (gnu_type));
1750 layout_type (gnu_type);
1752 SET_TYPE_RM_MIN_VALUE
1754 convert (TREE_TYPE (gnu_type),
1755 elaborate_expression (Type_Low_Bound (gnat_entity),
1756 gnat_entity, get_identifier ("L"),
1758 Needs_Debug_Info (gnat_entity))));
1760 SET_TYPE_RM_MAX_VALUE
1762 convert (TREE_TYPE (gnu_type),
1763 elaborate_expression (Type_High_Bound (gnat_entity),
1764 gnat_entity, get_identifier ("U"),
1766 Needs_Debug_Info (gnat_entity))));
1768 /* One of the above calls might have caused us to be elaborated,
1769 so don't blow up if so. */
1770 if (present_gnu_tree (gnat_entity))
1772 maybe_present = true;
1776 /* Inherit our alias set from what we're a subtype of, as for
1777 integer subtypes. */
1778 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1782 /* Array and String Types and Subtypes
1784 Unconstrained array types are represented by E_Array_Type and
1785 constrained array types are represented by E_Array_Subtype. There
1786 are no actual objects of an unconstrained array type; all we have
1787 are pointers to that type.
1789 The following fields are defined on array types and subtypes:
1791 Component_Type Component type of the array.
1792 Number_Dimensions Number of dimensions (an int).
1793 First_Index Type of first index. */
1798 Entity_Id gnat_index;
1799 const bool convention_fortran_p
1800 = (Convention (gnat_entity) == Convention_Fortran);
1801 const int ndim = Number_Dimensions (gnat_entity);
1802 tree gnu_template_fields = NULL_TREE;
1803 tree gnu_template_type = make_node (RECORD_TYPE);
1804 tree gnu_template_reference;
1805 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1806 tree gnu_fat_type = make_node (RECORD_TYPE);
1807 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
1808 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree));
1809 tree gnu_max_size = size_one_node, gnu_max_size_unit;
1810 tree gnu_comp_size, tem;
1813 TYPE_NAME (gnu_template_type)
1814 = create_concat_name (gnat_entity, "XUB");
1816 /* Make a node for the array. If we are not defining the array
1817 suppress expanding incomplete types. */
1818 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1822 defer_incomplete_level++;
1823 this_deferred = true;
1826 /* Build the fat pointer type. Use a "void *" object instead of
1827 a pointer to the array type since we don't have the array type
1828 yet (it will reference the fat pointer via the bounds). */
1829 tem = chainon (chainon (NULL_TREE,
1830 create_field_decl (get_identifier ("P_ARRAY"),
1833 NULL_TREE, NULL_TREE, 0)),
1834 create_field_decl (get_identifier ("P_BOUNDS"),
1837 NULL_TREE, NULL_TREE, 0));
1839 /* Make sure we can put this into a register. */
1840 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1842 /* Do not finalize this record type since the types of its fields
1843 are still incomplete at this point. */
1844 finish_record_type (gnu_fat_type, tem, 0, true);
1845 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1847 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1848 is the fat pointer. This will be used to access the individual
1849 fields once we build them. */
1850 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1851 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1852 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1853 gnu_template_reference
1854 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1855 TREE_READONLY (gnu_template_reference) = 1;
1857 /* Now create the GCC type for each index and add the fields for that
1858 index to the template. */
1859 for (index = (convention_fortran_p ? ndim - 1 : 0),
1860 gnat_index = First_Index (gnat_entity);
1861 0 <= index && index < ndim;
1862 index += (convention_fortran_p ? - 1 : 1),
1863 gnat_index = Next_Index (gnat_index))
1865 char field_name[16];
1866 tree gnu_index_base_type
1867 = get_unpadded_type (Base_Type (Etype (gnat_index)));
1868 tree gnu_low_field, gnu_high_field, gnu_low, gnu_high;
1870 /* Make the FIELD_DECLs for the low and high bounds of this
1871 type and then make extractions of these fields from the
1873 sprintf (field_name, "LB%d", index);
1874 gnu_low_field = create_field_decl (get_identifier (field_name),
1875 gnu_index_base_type,
1876 gnu_template_type, 0,
1877 NULL_TREE, NULL_TREE, 0);
1878 Sloc_to_locus (Sloc (gnat_entity),
1879 &DECL_SOURCE_LOCATION (gnu_low_field));
1881 field_name[0] = 'U';
1882 gnu_high_field = create_field_decl (get_identifier (field_name),
1883 gnu_index_base_type,
1884 gnu_template_type, 0,
1885 NULL_TREE, NULL_TREE, 0);
1886 Sloc_to_locus (Sloc (gnat_entity),
1887 &DECL_SOURCE_LOCATION (gnu_high_field));
1889 gnu_temp_fields[index] = chainon (gnu_low_field, gnu_high_field);
1891 /* We can't use build_component_ref here since the template type
1892 isn't complete yet. */
1893 gnu_low = build3 (COMPONENT_REF, gnu_index_base_type,
1894 gnu_template_reference, gnu_low_field,
1896 gnu_high = build3 (COMPONENT_REF, gnu_index_base_type,
1897 gnu_template_reference, gnu_high_field,
1899 TREE_READONLY (gnu_low) = TREE_READONLY (gnu_high) = 1;
1901 /* Make a range type with the new range in the Ada base type.
1902 Then make an index type with the new range in sizetype. */
1903 gnu_index_types[index]
1904 = create_index_type (convert (sizetype, gnu_low),
1905 convert (sizetype, gnu_high),
1906 create_range_type (gnu_index_base_type,
1910 /* Update the maximum size of the array in elements. */
1913 tree gnu_index_type = get_unpadded_type (Etype (gnat_index));
1915 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_type));
1917 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_type));
1919 = size_binop (MAX_EXPR,
1920 size_binop (PLUS_EXPR, size_one_node,
1921 size_binop (MINUS_EXPR,
1925 if (TREE_CODE (gnu_this_max) == INTEGER_CST
1926 && TREE_OVERFLOW (gnu_this_max))
1927 gnu_max_size = NULL_TREE;
1930 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
1933 TYPE_NAME (gnu_index_types[index])
1934 = create_concat_name (gnat_entity, field_name);
1937 for (index = 0; index < ndim; index++)
1939 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1941 /* Install all the fields into the template. */
1942 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1943 TYPE_READONLY (gnu_template_type) = 1;
1945 /* Now make the array of arrays and update the pointer to the array
1946 in the fat pointer. Note that it is the first field. */
1947 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1949 /* Try to get a smaller form of the component if needed. */
1950 if ((Is_Packed (gnat_entity)
1951 || Has_Component_Size_Clause (gnat_entity))
1952 && !Is_Bit_Packed_Array (gnat_entity)
1953 && !Has_Aliased_Components (gnat_entity)
1954 && !Strict_Alignment (Component_Type (gnat_entity))
1955 && TREE_CODE (tem) == RECORD_TYPE
1956 && !TYPE_IS_FAT_POINTER_P (tem)
1957 && host_integerp (TYPE_SIZE (tem), 1))
1958 tem = make_packable_type (tem, false);
1960 if (Has_Atomic_Components (gnat_entity))
1961 check_ok_for_atomic (tem, gnat_entity, true);
1963 /* Get and validate any specified Component_Size, but if Packed,
1964 ignore it since the front end will have taken care of it. */
1966 = validate_size (Component_Size (gnat_entity), tem,
1968 (Is_Bit_Packed_Array (gnat_entity)
1969 ? TYPE_DECL : VAR_DECL),
1970 true, Has_Component_Size_Clause (gnat_entity));
1972 /* If the component type is a RECORD_TYPE that has a self-referential
1973 size, use the maximum size. */
1975 && TREE_CODE (tem) == RECORD_TYPE
1976 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1977 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1979 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1981 tree orig_tem = tem;
1982 unsigned int max_align;
1984 /* If an alignment is specified, use it as a cap on the component
1985 type so that it can be honored for the whole type. But ignore
1986 it for the original type of packed array types. */
1987 if (No (Packed_Array_Type (gnat_entity))
1988 && Known_Alignment (gnat_entity))
1989 max_align = validate_alignment (Alignment (gnat_entity),
1994 tem = make_type_from_size (tem, gnu_comp_size, false);
1995 if (max_align > 0 && TYPE_ALIGN (tem) > max_align)
2000 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
2001 "C_PAD", false, definition, true);
2003 /* If a padding record was made, declare it now since it will
2004 never be declared otherwise. This is necessary to ensure
2005 that its subtrees are properly marked. */
2006 if (tem != orig_tem)
2007 create_type_decl (TYPE_NAME (tem), tem, NULL, true,
2008 debug_info_p, gnat_entity);
2011 if (Has_Volatile_Components (gnat_entity))
2012 tem = build_qualified_type (tem,
2013 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
2015 /* If Component_Size is not already specified, annotate it with the
2016 size of the component. */
2017 if (Unknown_Component_Size (gnat_entity))
2018 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
2020 /* Compute the maximum size of the array in units and bits. */
2023 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2024 TYPE_SIZE_UNIT (tem));
2025 gnu_max_size = size_binop (MULT_EXPR,
2026 convert (bitsizetype, gnu_max_size),
2030 gnu_max_size_unit = NULL_TREE;
2032 /* Now build the array type. */
2033 for (index = ndim - 1; index >= 0; index--)
2035 tem = build_array_type (tem, gnu_index_types[index]);
2036 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
2037 if (array_type_has_nonaliased_component (gnat_entity, tem))
2038 TYPE_NONALIASED_COMPONENT (tem) = 1;
2041 /* If an alignment is specified, use it if valid. But ignore it
2042 for the original type of packed array types. If the alignment
2043 was requested with an explicit alignment clause, state so. */
2044 if (No (Packed_Array_Type (gnat_entity))
2045 && Known_Alignment (gnat_entity))
2048 = validate_alignment (Alignment (gnat_entity), gnat_entity,
2050 if (Present (Alignment_Clause (gnat_entity)))
2051 TYPE_USER_ALIGN (tem) = 1;
2054 TYPE_CONVENTION_FORTRAN_P (tem) = convention_fortran_p;
2055 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
2057 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
2058 corresponding fat pointer. */
2059 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
2060 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
2061 SET_TYPE_MODE (gnu_type, BLKmode);
2062 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
2063 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
2065 /* If the maximum size doesn't overflow, use it. */
2067 && TREE_CODE (gnu_max_size) == INTEGER_CST
2068 && !TREE_OVERFLOW (gnu_max_size)
2069 && TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2070 && !TREE_OVERFLOW (gnu_max_size_unit))
2072 TYPE_SIZE (tem) = size_binop (MIN_EXPR, gnu_max_size,
2074 TYPE_SIZE_UNIT (tem) = size_binop (MIN_EXPR, gnu_max_size_unit,
2075 TYPE_SIZE_UNIT (tem));
2078 create_type_decl (create_concat_name (gnat_entity, "XUA"),
2079 tem, NULL, !Comes_From_Source (gnat_entity),
2080 debug_info_p, gnat_entity);
2082 /* Give the fat pointer type a name. */
2083 create_type_decl (create_concat_name (gnat_entity, "XUP"),
2084 gnu_fat_type, NULL, true,
2085 debug_info_p, gnat_entity);
2087 /* Create the type to be used as what a thin pointer designates: an
2088 record type for the object and its template with the field offsets
2089 shifted to have the template at a negative offset. */
2090 tem = build_unc_object_type (gnu_template_type, tem,
2091 create_concat_name (gnat_entity, "XUT"));
2092 shift_unc_components_for_thin_pointers (tem);
2094 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
2095 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
2097 /* Give the thin pointer type a name. */
2098 create_type_decl (create_concat_name (gnat_entity, "XUX"),
2099 build_pointer_type (tem), NULL, true,
2100 debug_info_p, gnat_entity);
2104 case E_String_Subtype:
2105 case E_Array_Subtype:
2107 /* This is the actual data type for array variables. Multidimensional
2108 arrays are implemented as arrays of arrays. Note that arrays which
2109 have sparse enumeration subtypes as index components create sparse
2110 arrays, which is obviously space inefficient but so much easier to
2113 Also note that the subtype never refers to the unconstrained array
2114 type, which is somewhat at variance with Ada semantics.
2116 First check to see if this is simply a renaming of the array type.
2117 If so, the result is the array type. */
2119 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
2120 if (!Is_Constrained (gnat_entity))
2124 Entity_Id gnat_index, gnat_base_index;
2125 const bool convention_fortran_p
2126 = (Convention (gnat_entity) == Convention_Fortran);
2127 const int ndim = Number_Dimensions (gnat_entity);
2128 tree gnu_base_type = gnu_type;
2129 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
2130 tree gnu_max_size = size_one_node, gnu_max_size_unit;
2131 bool need_index_type_struct = false;
2134 /* First create the GCC type for each index and find out whether
2135 special types are needed for debugging information. */
2136 for (index = (convention_fortran_p ? ndim - 1 : 0),
2137 gnat_index = First_Index (gnat_entity),
2139 = First_Index (Implementation_Base_Type (gnat_entity));
2140 0 <= index && index < ndim;
2141 index += (convention_fortran_p ? - 1 : 1),
2142 gnat_index = Next_Index (gnat_index),
2143 gnat_base_index = Next_Index (gnat_base_index))
2145 tree gnu_index_type = get_unpadded_type (Etype (gnat_index));
2146 tree prec = TYPE_RM_SIZE (gnu_index_type);
2148 = (compare_tree_int (prec, TYPE_PRECISION (sizetype)) > 0
2149 || (compare_tree_int (prec, TYPE_PRECISION (sizetype)) == 0
2150 && TYPE_UNSIGNED (gnu_index_type)
2151 != TYPE_UNSIGNED (sizetype)));
2152 tree gnu_orig_min = TYPE_MIN_VALUE (gnu_index_type);
2153 tree gnu_orig_max = TYPE_MAX_VALUE (gnu_index_type);
2154 tree gnu_min = convert (sizetype, gnu_orig_min);
2155 tree gnu_max = convert (sizetype, gnu_orig_max);
2156 tree gnu_base_index_type
2157 = get_unpadded_type (Etype (gnat_base_index));
2158 tree gnu_base_orig_min = TYPE_MIN_VALUE (gnu_base_index_type);
2159 tree gnu_base_orig_max = TYPE_MAX_VALUE (gnu_base_index_type);
2162 /* See if the base array type is already flat. If it is, we
2163 are probably compiling an ACATS test but it will cause the
2164 code below to malfunction if we don't handle it specially. */
2165 if (TREE_CODE (gnu_base_orig_min) == INTEGER_CST
2166 && TREE_CODE (gnu_base_orig_max) == INTEGER_CST
2167 && tree_int_cst_lt (gnu_base_orig_max, gnu_base_orig_min))
2169 gnu_min = size_one_node;
2170 gnu_max = size_zero_node;
2174 /* Similarly, if one of the values overflows in sizetype and the
2175 range is null, use 1..0 for the sizetype bounds. */
2177 && TREE_CODE (gnu_min) == INTEGER_CST
2178 && TREE_CODE (gnu_max) == INTEGER_CST
2179 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2180 && tree_int_cst_lt (gnu_orig_max, gnu_orig_min))
2182 gnu_min = size_one_node;
2183 gnu_max = size_zero_node;
2187 /* If the minimum and maximum values both overflow in sizetype,
2188 but the difference in the original type does not overflow in
2189 sizetype, ignore the overflow indication. */
2191 && TREE_CODE (gnu_min) == INTEGER_CST
2192 && TREE_CODE (gnu_max) == INTEGER_CST
2193 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2196 fold_build2 (MINUS_EXPR, gnu_index_type,
2200 TREE_OVERFLOW (gnu_min) = 0;
2201 TREE_OVERFLOW (gnu_max) = 0;
2207 /* Now compute the size of this bound. We need to provide
2208 GCC with an upper bound to use but have to deal with the
2209 "superflat" case. There are three ways to do this. If
2210 we can prove that the array can never be superflat, we
2211 can just use the high bound of the index subtype. If we
2212 can prove that the low bound minus one and the high bound
2213 can't overflow, we can do this as MAX (hb, lb - 1). But,
2214 otherwise, we have to use (hb >= lb) ? hb : lb - 1. Note
2215 that the comparison must be done in the original index
2216 type, to avoid any overflow during the conversion. */
2217 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2219 /* If gnu_high is a constant that has overflowed, the array
2220 cannot be superflat. */
2221 if (TREE_CODE (gnu_high) == INTEGER_CST
2222 && TREE_OVERFLOW (gnu_high))
2225 /* If the index type is not wider and gnu_high is a constant
2226 that hasn't overflowed, we can use the maximum. */
2227 else if (!wider_p && TREE_CODE (gnu_high) == INTEGER_CST)
2228 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2232 = build_cond_expr (sizetype,
2233 build_binary_op (GE_EXPR,
2240 gnu_index_types[index]
2241 = create_index_type (gnu_min, gnu_high, gnu_index_type,
2244 /* Update the maximum size of the array in elements. Here we
2245 see if any constraint on the index type of the base type
2246 can be used in the case of self-referential bound on the
2247 index type of the subtype. We look for a non-"infinite"
2248 and non-self-referential bound from any type involved and
2249 handle each bound separately. */
2252 tree gnu_base_min = convert (sizetype, gnu_base_orig_min);
2253 tree gnu_base_max = convert (sizetype, gnu_base_orig_max);
2254 tree gnu_base_index_base_type
2255 = get_base_type (gnu_base_index_type);
2256 tree gnu_base_base_min
2257 = convert (sizetype,
2258 TYPE_MIN_VALUE (gnu_base_index_base_type));
2259 tree gnu_base_base_max
2260 = convert (sizetype,
2261 TYPE_MAX_VALUE (gnu_base_index_base_type));
2263 if (!CONTAINS_PLACEHOLDER_P (gnu_min)
2264 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2265 && !TREE_OVERFLOW (gnu_base_min)))
2266 gnu_base_min = gnu_min;
2268 if (!CONTAINS_PLACEHOLDER_P (gnu_max)
2269 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2270 && !TREE_OVERFLOW (gnu_base_max)))
2271 gnu_base_max = gnu_max;
2273 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2274 && TREE_OVERFLOW (gnu_base_min))
2275 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2276 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2277 && TREE_OVERFLOW (gnu_base_max))
2278 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2279 gnu_max_size = NULL_TREE;
2283 = size_binop (MAX_EXPR,
2284 size_binop (PLUS_EXPR, size_one_node,
2285 size_binop (MINUS_EXPR,
2290 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2291 && TREE_OVERFLOW (gnu_this_max))
2292 gnu_max_size = NULL_TREE;
2295 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2299 /* We need special types for debugging information to point to
2300 the index types if they have variable bounds, are not integer
2301 types, are biased or are wider than sizetype. */
2302 if (!integer_onep (gnu_orig_min)
2303 || TREE_CODE (gnu_orig_max) != INTEGER_CST
2304 || TREE_CODE (gnu_index_type) != INTEGER_TYPE
2305 || (TREE_TYPE (gnu_index_type)
2306 && TREE_CODE (TREE_TYPE (gnu_index_type))
2308 || TYPE_BIASED_REPRESENTATION_P (gnu_index_type)
2309 || compare_tree_int (prec, TYPE_PRECISION (sizetype)) > 0)
2310 need_index_type_struct = true;
2313 /* Then flatten: create the array of arrays. For an array type
2314 used to implement a packed array, get the component type from
2315 the original array type since the representation clauses that
2316 can affect it are on the latter. */
2317 if (Is_Packed_Array_Type (gnat_entity)
2318 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2320 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2321 for (index = ndim - 1; index >= 0; index--)
2322 gnu_type = TREE_TYPE (gnu_type);
2324 /* One of the above calls might have caused us to be elaborated,
2325 so don't blow up if so. */
2326 if (present_gnu_tree (gnat_entity))
2328 maybe_present = true;
2336 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2338 /* One of the above calls might have caused us to be elaborated,
2339 so don't blow up if so. */
2340 if (present_gnu_tree (gnat_entity))
2342 maybe_present = true;
2346 /* Try to get a smaller form of the component if needed. */
2347 if ((Is_Packed (gnat_entity)
2348 || Has_Component_Size_Clause (gnat_entity))
2349 && !Is_Bit_Packed_Array (gnat_entity)
2350 && !Has_Aliased_Components (gnat_entity)
2351 && !Strict_Alignment (Component_Type (gnat_entity))
2352 && TREE_CODE (gnu_type) == RECORD_TYPE
2353 && !TYPE_IS_FAT_POINTER_P (gnu_type)
2354 && host_integerp (TYPE_SIZE (gnu_type), 1))
2355 gnu_type = make_packable_type (gnu_type, false);
2357 /* Get and validate any specified Component_Size, but if Packed,
2358 ignore it since the front end will have taken care of it. */
2360 = validate_size (Component_Size (gnat_entity), gnu_type,
2362 (Is_Bit_Packed_Array (gnat_entity)
2363 ? TYPE_DECL : VAR_DECL), true,
2364 Has_Component_Size_Clause (gnat_entity));
2366 /* If the component type is a RECORD_TYPE that has a
2367 self-referential size, use the maximum size. */
2369 && TREE_CODE (gnu_type) == RECORD_TYPE
2370 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2371 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2373 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2375 tree orig_gnu_type = gnu_type;
2376 unsigned int max_align;
2378 /* If an alignment is specified, use it as a cap on the
2379 component type so that it can be honored for the whole
2380 type. But ignore it for the original type of packed
2382 if (No (Packed_Array_Type (gnat_entity))
2383 && Known_Alignment (gnat_entity))
2384 max_align = validate_alignment (Alignment (gnat_entity),
2390 = make_type_from_size (gnu_type, gnu_comp_size, false);
2391 if (max_align > 0 && TYPE_ALIGN (gnu_type) > max_align)
2392 gnu_type = orig_gnu_type;
2394 orig_gnu_type = gnu_type;
2396 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2397 gnat_entity, "C_PAD", false,
2400 /* If a padding record was made, declare it now since it
2401 will never be declared otherwise. This is necessary
2402 to ensure that its subtrees are properly marked. */
2403 if (gnu_type != orig_gnu_type)
2404 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2405 true, debug_info_p, gnat_entity);
2408 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2409 gnu_type = build_qualified_type (gnu_type,
2410 (TYPE_QUALS (gnu_type)
2411 | TYPE_QUAL_VOLATILE));
2414 /* Compute the maximum size of the array in units and bits. */
2417 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2418 TYPE_SIZE_UNIT (gnu_type));
2419 gnu_max_size = size_binop (MULT_EXPR,
2420 convert (bitsizetype, gnu_max_size),
2421 TYPE_SIZE (gnu_type));
2424 gnu_max_size_unit = NULL_TREE;
2426 /* Now build the array type. */
2427 for (index = ndim - 1; index >= 0; index --)
2429 gnu_type = build_array_type (gnu_type, gnu_index_types[index]);
2430 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2431 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2432 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2435 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
2436 TYPE_STUB_DECL (gnu_type)
2437 = create_type_stub_decl (gnu_entity_name, gnu_type);
2439 /* If we are at file level and this is a multi-dimensional array,
2440 we need to make a variable corresponding to the stride of the
2441 inner dimensions. */
2442 if (global_bindings_p () && ndim > 1)
2444 tree gnu_str_name = get_identifier ("ST");
2447 for (gnu_arr_type = TREE_TYPE (gnu_type);
2448 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2449 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2450 gnu_str_name = concat_name (gnu_str_name, "ST"))
2452 tree eltype = TREE_TYPE (gnu_arr_type);
2454 TYPE_SIZE (gnu_arr_type)
2455 = elaborate_expression_1 (TYPE_SIZE (gnu_arr_type),
2456 gnat_entity, gnu_str_name,
2459 /* ??? For now, store the size as a multiple of the
2460 alignment of the element type in bytes so that we
2461 can see the alignment from the tree. */
2462 TYPE_SIZE_UNIT (gnu_arr_type)
2464 (MULT_EXPR, sizetype,
2465 elaborate_expression_1
2466 (build_binary_op (EXACT_DIV_EXPR, sizetype,
2467 TYPE_SIZE_UNIT (gnu_arr_type),
2468 size_int (TYPE_ALIGN (eltype)
2470 gnat_entity, concat_name (gnu_str_name, "A_U"),
2472 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2474 /* ??? create_type_decl is not invoked on the inner types so
2475 the MULT_EXPR node built above will never be marked. */
2476 mark_visited (&TYPE_SIZE_UNIT (gnu_arr_type));
2480 /* If we need to write out a record type giving the names of the
2481 bounds for debugging purposes, do it now and make the record
2482 type a parallel type. This is not needed for a packed array
2483 since the bounds are conveyed by the original array type. */
2484 if (need_index_type_struct
2486 && !Is_Packed_Array_Type (gnat_entity))
2488 tree gnu_bound_rec = make_node (RECORD_TYPE);
2489 tree gnu_field_list = NULL_TREE;
2492 TYPE_NAME (gnu_bound_rec)
2493 = create_concat_name (gnat_entity, "XA");
2495 for (index = ndim - 1; index >= 0; index--)
2497 tree gnu_index = TYPE_INDEX_TYPE (gnu_index_types[index]);
2498 tree gnu_index_name = TYPE_NAME (gnu_index);
2500 if (TREE_CODE (gnu_index_name) == TYPE_DECL)
2501 gnu_index_name = DECL_NAME (gnu_index_name);
2503 /* Make sure to reference the types themselves, and not just
2504 their names, as the debugger may fall back on them. */
2505 gnu_field = create_field_decl (gnu_index_name, gnu_index,
2507 0, NULL_TREE, NULL_TREE, 0);
2508 TREE_CHAIN (gnu_field) = gnu_field_list;
2509 gnu_field_list = gnu_field;
2512 finish_record_type (gnu_bound_rec, gnu_field_list, 0, false);
2513 add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
2516 /* Otherwise, for a packed array, make the original array type a
2518 else if (debug_info_p
2519 && Is_Packed_Array_Type (gnat_entity)
2520 && present_gnu_tree (Original_Array_Type (gnat_entity)))
2521 add_parallel_type (TYPE_STUB_DECL (gnu_type),
2523 (Original_Array_Type (gnat_entity)));
2525 TYPE_CONVENTION_FORTRAN_P (gnu_type) = convention_fortran_p;
2526 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2527 = (Is_Packed_Array_Type (gnat_entity)
2528 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2530 /* If the size is self-referential and the maximum size doesn't
2531 overflow, use it. */
2532 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2534 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2535 && TREE_OVERFLOW (gnu_max_size))
2536 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2537 && TREE_OVERFLOW (gnu_max_size_unit)))
2539 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2540 TYPE_SIZE (gnu_type));
2541 TYPE_SIZE_UNIT (gnu_type)
2542 = size_binop (MIN_EXPR, gnu_max_size_unit,
2543 TYPE_SIZE_UNIT (gnu_type));
2546 /* Set our alias set to that of our base type. This gives all
2547 array subtypes the same alias set. */
2548 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
2551 /* If this is a packed type, make this type the same as the packed
2552 array type, but do some adjusting in the type first. */
2553 if (Present (Packed_Array_Type (gnat_entity)))
2555 Entity_Id gnat_index;
2556 tree gnu_inner_type;
2558 /* First finish the type we had been making so that we output
2559 debugging information for it. */
2561 = build_qualified_type (gnu_type,
2562 (TYPE_QUALS (gnu_type)
2563 | (TYPE_QUAL_VOLATILE
2564 * Treat_As_Volatile (gnat_entity))));
2566 /* Make it artificial only if the base type was artificial as well.
2567 That's sort of "morally" true and will make it possible for the
2568 debugger to look it up by name in DWARF, which is necessary in
2569 order to decode the packed array type. */
2571 = create_type_decl (gnu_entity_name, gnu_type, attr_list,
2572 !Comes_From_Source (gnat_entity)
2573 && !Comes_From_Source (Etype (gnat_entity)),
2574 debug_info_p, gnat_entity);
2576 /* Save it as our equivalent in case the call below elaborates
2578 save_gnu_tree (gnat_entity, gnu_decl, false);
2580 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2582 this_made_decl = true;
2583 gnu_type = TREE_TYPE (gnu_decl);
2584 save_gnu_tree (gnat_entity, NULL_TREE, false);
2586 gnu_inner_type = gnu_type;
2587 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2588 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2589 || TYPE_IS_PADDING_P (gnu_inner_type)))
2590 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2592 /* We need to attach the index type to the type we just made so
2593 that the actual bounds can later be put into a template. */
2594 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2595 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2596 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2597 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2599 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2601 /* The TYPE_ACTUAL_BOUNDS field is overloaded with the
2602 TYPE_MODULUS for modular types so we make an extra
2603 subtype if necessary. */
2604 if (TYPE_MODULAR_P (gnu_inner_type))
2607 = make_unsigned_type (TYPE_PRECISION (gnu_inner_type));
2608 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2609 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2610 SET_TYPE_RM_MIN_VALUE (gnu_subtype,
2611 TYPE_MIN_VALUE (gnu_inner_type));
2612 SET_TYPE_RM_MAX_VALUE (gnu_subtype,
2613 TYPE_MAX_VALUE (gnu_inner_type));
2614 gnu_inner_type = gnu_subtype;
2617 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2619 #ifdef ENABLE_CHECKING
2620 /* Check for other cases of overloading. */
2621 gcc_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner_type));
2625 /* ??? This is necessary to make sure that the container is
2626 allocated with a null tree upfront; otherwise, it could
2627 be allocated with an uninitialized tree that is accessed
2628 before being set below. See ada-tree.h for details. */
2629 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2631 for (gnat_index = First_Index (gnat_entity);
2632 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2633 SET_TYPE_ACTUAL_BOUNDS
2635 tree_cons (NULL_TREE,
2636 get_unpadded_type (Etype (gnat_index)),
2637 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2639 if (Convention (gnat_entity) != Convention_Fortran)
2640 SET_TYPE_ACTUAL_BOUNDS
2642 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2644 if (TREE_CODE (gnu_type) == RECORD_TYPE
2645 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2646 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2650 /* Abort if packed array with no packed array type field set. */
2652 gcc_assert (!Is_Packed (gnat_entity));
2656 case E_String_Literal_Subtype:
2657 /* Create the type for a string literal. */
2659 Entity_Id gnat_full_type
2660 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2661 && Present (Full_View (Etype (gnat_entity)))
2662 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2663 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2664 tree gnu_string_array_type
2665 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2666 tree gnu_string_index_type
2667 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2668 (TYPE_DOMAIN (gnu_string_array_type))));
2669 tree gnu_lower_bound
2670 = convert (gnu_string_index_type,
2671 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2672 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2673 tree gnu_length = ssize_int (length - 1);
2674 tree gnu_upper_bound
2675 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2677 convert (gnu_string_index_type, gnu_length));
2679 = create_index_type (convert (sizetype, gnu_lower_bound),
2680 convert (sizetype, gnu_upper_bound),
2681 create_range_type (gnu_string_index_type,
2687 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2689 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2690 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2691 relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
2695 /* Record Types and Subtypes
2697 The following fields are defined on record types:
2699 Has_Discriminants True if the record has discriminants
2700 First_Discriminant Points to head of list of discriminants
2701 First_Entity Points to head of list of fields
2702 Is_Tagged_Type True if the record is tagged
2704 Implementation of Ada records and discriminated records:
2706 A record type definition is transformed into the equivalent of a C
2707 struct definition. The fields that are the discriminants which are
2708 found in the Full_Type_Declaration node and the elements of the
2709 Component_List found in the Record_Type_Definition node. The
2710 Component_List can be a recursive structure since each Variant of
2711 the Variant_Part of the Component_List has a Component_List.
2713 Processing of a record type definition comprises starting the list of
2714 field declarations here from the discriminants and the calling the
2715 function components_to_record to add the rest of the fields from the
2716 component list and return the gnu type node. The function
2717 components_to_record will call itself recursively as it traverses
2721 if (Has_Complex_Representation (gnat_entity))
2724 = build_complex_type
2726 (Etype (Defining_Entity
2727 (First (Component_Items
2730 (Declaration_Node (gnat_entity)))))))));
2736 Node_Id full_definition = Declaration_Node (gnat_entity);
2737 Node_Id record_definition = Type_Definition (full_definition);
2738 Entity_Id gnat_field;
2739 tree gnu_field, gnu_field_list = NULL_TREE, gnu_get_parent;
2740 /* Set PACKED in keeping with gnat_to_gnu_field. */
2742 = Is_Packed (gnat_entity)
2744 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2746 : (Known_Alignment (gnat_entity)
2747 || (Strict_Alignment (gnat_entity)
2748 && Known_Static_Esize (gnat_entity)))
2751 bool has_discr = Has_Discriminants (gnat_entity);
2752 bool has_rep = Has_Specified_Layout (gnat_entity);
2753 bool all_rep = has_rep;
2755 = (Is_Tagged_Type (gnat_entity)
2756 && Nkind (record_definition) == N_Derived_Type_Definition);
2757 bool is_unchecked_union = Is_Unchecked_Union (gnat_entity);
2759 /* See if all fields have a rep clause. Stop when we find one
2762 for (gnat_field = First_Entity (gnat_entity);
2763 Present (gnat_field);
2764 gnat_field = Next_Entity (gnat_field))
2765 if ((Ekind (gnat_field) == E_Component
2766 || Ekind (gnat_field) == E_Discriminant)
2767 && No (Component_Clause (gnat_field)))
2773 /* If this is a record extension, go a level further to find the
2774 record definition. Also, verify we have a Parent_Subtype. */
2777 if (!type_annotate_only
2778 || Present (Record_Extension_Part (record_definition)))
2779 record_definition = Record_Extension_Part (record_definition);
2781 gcc_assert (type_annotate_only
2782 || Present (Parent_Subtype (gnat_entity)));
2785 /* Make a node for the record. If we are not defining the record,
2786 suppress expanding incomplete types. */
2787 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2788 TYPE_NAME (gnu_type) = gnu_entity_name;
2789 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2793 defer_incomplete_level++;
2794 this_deferred = true;
2797 /* If both a size and rep clause was specified, put the size in
2798 the record type now so that it can get the proper mode. */
2799 if (has_rep && Known_Esize (gnat_entity))
2800 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2802 /* Always set the alignment here so that it can be used to
2803 set the mode, if it is making the alignment stricter. If
2804 it is invalid, it will be checked again below. If this is to
2805 be Atomic, choose a default alignment of a word unless we know
2806 the size and it's smaller. */
2807 if (Known_Alignment (gnat_entity))
2808 TYPE_ALIGN (gnu_type)
2809 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2810 else if (Is_Atomic (gnat_entity))
2811 TYPE_ALIGN (gnu_type)
2812 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2813 /* If a type needs strict alignment, the minimum size will be the
2814 type size instead of the RM size (see validate_size). Cap the
2815 alignment, lest it causes this type size to become too large. */
2816 else if (Strict_Alignment (gnat_entity)
2817 && Known_Static_Esize (gnat_entity))
2819 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2820 unsigned int raw_align = raw_size & -raw_size;
2821 if (raw_align < BIGGEST_ALIGNMENT)
2822 TYPE_ALIGN (gnu_type) = raw_align;
2825 TYPE_ALIGN (gnu_type) = 0;
2827 /* If we have a Parent_Subtype, make a field for the parent. If
2828 this record has rep clauses, force the position to zero. */
2829 if (Present (Parent_Subtype (gnat_entity)))
2831 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2834 /* A major complexity here is that the parent subtype will
2835 reference our discriminants in its Discriminant_Constraint
2836 list. But those must reference the parent component of this
2837 record which is of the parent subtype we have not built yet!
2838 To break the circle we first build a dummy COMPONENT_REF which
2839 represents the "get to the parent" operation and initialize
2840 each of those discriminants to a COMPONENT_REF of the above
2841 dummy parent referencing the corresponding discriminant of the
2842 base type of the parent subtype. */
2843 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2844 build0 (PLACEHOLDER_EXPR, gnu_type),
2845 build_decl (input_location,
2846 FIELD_DECL, NULL_TREE,
2851 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2852 Present (gnat_field);
2853 gnat_field = Next_Stored_Discriminant (gnat_field))
2854 if (Present (Corresponding_Discriminant (gnat_field)))
2857 build3 (COMPONENT_REF,
2858 get_unpadded_type (Etype (gnat_field)),
2860 gnat_to_gnu_field_decl (Corresponding_Discriminant
2865 /* Then we build the parent subtype. If it has discriminants but
2866 the type itself has unknown discriminants, this means that it
2867 doesn't contain information about how the discriminants are
2868 derived from those of the ancestor type, so it cannot be used
2869 directly. Instead it is built by cloning the parent subtype
2870 of the underlying record view of the type, for which the above
2871 derivation of discriminants has been made explicit. */
2872 if (Has_Discriminants (gnat_parent)
2873 && Has_Unknown_Discriminants (gnat_entity))
2875 Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
2877 /* If we are defining the type, the underlying record
2878 view must already have been elaborated at this point.
2879 Otherwise do it now as its parent subtype cannot be
2880 technically elaborated on its own. */
2882 gcc_assert (present_gnu_tree (gnat_uview));
2884 gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
2886 gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
2888 /* Substitute the "get to the parent" of the type for that
2889 of its underlying record view in the cloned type. */
2890 for (gnat_field = First_Stored_Discriminant (gnat_uview);
2891 Present (gnat_field);
2892 gnat_field = Next_Stored_Discriminant (gnat_field))
2893 if (Present (Corresponding_Discriminant (gnat_field)))
2895 gnu_field = gnat_to_gnu_field_decl (gnat_field);
2897 = build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2898 gnu_get_parent, gnu_field, NULL_TREE);
2900 = substitute_in_type (gnu_parent, gnu_field, gnu_ref);
2904 gnu_parent = gnat_to_gnu_type (gnat_parent);
2906 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2907 initially built. The discriminants must reference the fields
2908 of the parent subtype and not those of its base type for the
2909 placeholder machinery to properly work. */
2912 /* The actual parent subtype is the full view. */
2913 if (IN (Ekind (gnat_parent), Private_Kind))
2915 if (Present (Full_View (gnat_parent)))
2916 gnat_parent = Full_View (gnat_parent);
2918 gnat_parent = Underlying_Full_View (gnat_parent);
2921 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2922 Present (gnat_field);
2923 gnat_field = Next_Stored_Discriminant (gnat_field))
2924 if (Present (Corresponding_Discriminant (gnat_field)))
2926 Entity_Id field = Empty;
2927 for (field = First_Stored_Discriminant (gnat_parent);
2929 field = Next_Stored_Discriminant (field))
2930 if (same_discriminant_p (gnat_field, field))
2932 gcc_assert (Present (field));
2933 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2934 = gnat_to_gnu_field_decl (field);
2938 /* The "get to the parent" COMPONENT_REF must be given its
2940 TREE_TYPE (gnu_get_parent) = gnu_parent;
2942 /* ...and reference the _Parent field of this record. */
2944 = create_field_decl (get_identifier
2945 (Get_Name_String (Name_uParent)),
2946 gnu_parent, gnu_type, 0,
2948 ? TYPE_SIZE (gnu_parent) : NULL_TREE,
2950 ? bitsize_zero_node : NULL_TREE, 1);
2951 DECL_INTERNAL_P (gnu_field) = 1;
2952 TREE_OPERAND (gnu_get_parent, 1) = gnu_field;
2953 TYPE_FIELDS (gnu_type) = gnu_field;
2956 /* Make the fields for the discriminants and put them into the record
2957 unless it's an Unchecked_Union. */
2959 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2960 Present (gnat_field);
2961 gnat_field = Next_Stored_Discriminant (gnat_field))
2963 /* If this is a record extension and this discriminant is the
2964 renaming of another discriminant, we've handled it above. */
2965 if (Present (Parent_Subtype (gnat_entity))
2966 && Present (Corresponding_Discriminant (gnat_field)))
2970 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2972 /* Make an expression using a PLACEHOLDER_EXPR from the
2973 FIELD_DECL node just created and link that with the
2974 corresponding GNAT defining identifier. */
2975 save_gnu_tree (gnat_field,
2976 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2977 build0 (PLACEHOLDER_EXPR, gnu_type),
2978 gnu_field, NULL_TREE),
2981 if (!is_unchecked_union)
2983 TREE_CHAIN (gnu_field) = gnu_field_list;
2984 gnu_field_list = gnu_field;
2988 /* Add the fields into the record type and finish it up. */
2989 components_to_record (gnu_type, Component_List (record_definition),
2990 gnu_field_list, packed, definition, NULL,
2991 false, all_rep, false, is_unchecked_union);
2993 /* If it is a tagged record force the type to BLKmode to insure that
2994 these objects will always be put in memory. Likewise for limited
2996 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2997 SET_TYPE_MODE (gnu_type, BLKmode);
2999 /* We used to remove the associations of the discriminants and _Parent
3000 for validity checking but we may need them if there's a Freeze_Node
3001 for a subtype used in this record. */
3002 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
3004 /* Fill in locations of fields. */
3005 annotate_rep (gnat_entity, gnu_type);
3007 /* If there are any entities in the chain corresponding to components
3008 that we did not elaborate, ensure we elaborate their types if they
3010 for (gnat_temp = First_Entity (gnat_entity);
3011 Present (gnat_temp);
3012 gnat_temp = Next_Entity (gnat_temp))
3013 if ((Ekind (gnat_temp) == E_Component
3014 || Ekind (gnat_temp) == E_Discriminant)
3015 && Is_Itype (Etype (gnat_temp))
3016 && !present_gnu_tree (gnat_temp))
3017 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
3021 case E_Class_Wide_Subtype:
3022 /* If an equivalent type is present, that is what we should use.
3023 Otherwise, fall through to handle this like a record subtype
3024 since it may have constraints. */
3025 if (gnat_equiv_type != gnat_entity)
3027 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
3028 maybe_present = true;
3032 /* ... fall through ... */
3034 case E_Record_Subtype:
3035 /* If Cloned_Subtype is Present it means this record subtype has
3036 identical layout to that type or subtype and we should use
3037 that GCC type for this one. The front end guarantees that
3038 the component list is shared. */
3039 if (Present (Cloned_Subtype (gnat_entity)))
3041 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
3043 maybe_present = true;
3047 /* Otherwise, first ensure the base type is elaborated. Then, if we are
3048 changing the type, make a new type with each field having the type of
3049 the field in the new subtype but the position computed by transforming
3050 every discriminant reference according to the constraints. We don't
3051 see any difference between private and non-private type here since
3052 derivations from types should have been deferred until the completion
3053 of the private type. */
3056 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
3061 defer_incomplete_level++;
3062 this_deferred = true;
3065 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
3067 if (present_gnu_tree (gnat_entity))
3069 maybe_present = true;
3073 /* When the subtype has discriminants and these discriminants affect
3074 the initial shape it has inherited, factor them in. But for the
3075 of an Unchecked_Union (it must be an Itype), just return the type.
3077 We can't just test Is_Constrained because private subtypes without
3078 discriminants of types with discriminants with default expressions
3079 are Is_Constrained but aren't constrained! */
3080 if (IN (Ekind (gnat_base_type), Record_Kind)
3081 && !Is_Unchecked_Union (gnat_base_type)
3082 && !Is_For_Access_Subtype (gnat_entity)
3083 && Is_Constrained (gnat_entity)
3084 && Has_Discriminants (gnat_entity)
3085 && Present (Discriminant_Constraint (gnat_entity))
3086 && Stored_Constraint (gnat_entity) != No_Elist)
3089 = build_subst_list (gnat_entity, gnat_base_type, definition);
3090 tree gnu_pos_list, gnu_field_list = NULL_TREE;
3091 tree gnu_unpad_base_type, t;
3092 Entity_Id gnat_field;
3094 gnu_type = make_node (RECORD_TYPE);
3095 TYPE_NAME (gnu_type) = gnu_entity_name;
3097 /* Set the size, alignment and alias set of the new type to
3098 match that of the old one, doing required substitutions.
3099 We do it this early because we need the size of the new
3100 type below to discard old fields if necessary. */
3101 TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
3102 TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
3103 SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
3104 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
3105 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
3107 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
3108 for (t = gnu_subst_list; t; t = TREE_CHAIN (t))
3109 TYPE_SIZE (gnu_type)
3110 = substitute_in_expr (TYPE_SIZE (gnu_type),
3114 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
3115 for (t = gnu_subst_list; t; t = TREE_CHAIN (t))
3116 TYPE_SIZE_UNIT (gnu_type)
3117 = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
3121 if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
3122 for (t = gnu_subst_list; t; t = TREE_CHAIN (t))
3124 (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
3128 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
3129 && TYPE_IS_PADDING_P (gnu_base_type))
3130 gnu_unpad_base_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
3132 gnu_unpad_base_type = gnu_base_type;
3135 = compute_field_positions (gnu_unpad_base_type, NULL_TREE,
3136 size_zero_node, bitsize_zero_node,
3139 for (gnat_field = First_Entity (gnat_entity);
3140 Present (gnat_field);
3141 gnat_field = Next_Entity (gnat_field))
3142 if ((Ekind (gnat_field) == E_Component
3143 || Ekind (gnat_field) == E_Discriminant)
3144 && !(Present (Corresponding_Discriminant (gnat_field))
3145 && Is_Tagged_Type (gnat_base_type))
3146 && Underlying_Type (Scope (Original_Record_Component
3150 Name_Id gnat_name = Chars (gnat_field);
3151 Entity_Id gnat_old_field
3152 = Original_Record_Component (gnat_field);
3154 = gnat_to_gnu_field_decl (gnat_old_field);
3157 (purpose_member (gnu_old_field, gnu_pos_list));
3158 tree gnu_pos = TREE_PURPOSE (gnu_offset);
3159 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
3160 tree gnu_field, gnu_field_type, gnu_size, gnu_new_pos;
3161 tree gnu_last = NULL_TREE;
3162 unsigned int offset_align
3164 (TREE_PURPOSE (TREE_VALUE (gnu_offset)), 1);
3166 /* If the type is the same, retrieve the GCC type from the
3167 old field to take into account possible adjustments. */
3168 if (Etype (gnat_field) == Etype (gnat_old_field))
3169 gnu_field_type = TREE_TYPE (gnu_old_field);
3171 gnu_field_type = gnat_to_gnu_type (Etype (gnat_field));
3173 /* If there was a component clause, the field types must be
3174 the same for the type and subtype, so copy the data from
3175 the old field to avoid recomputation here. Also if the
3176 field is justified modular and the optimization in
3177 gnat_to_gnu_field was applied. */
3178 if (Present (Component_Clause (gnat_old_field))
3179 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
3180 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
3181 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
3182 == TREE_TYPE (gnu_old_field)))
3184 gnu_size = DECL_SIZE (gnu_old_field);
3185 gnu_field_type = TREE_TYPE (gnu_old_field);
3188 /* If the old field was packed and of constant size, we
3189 have to get the old size here, as it might differ from
3190 what the Etype conveys and the latter might overlap
3191 onto the following field. Try to arrange the type for
3192 possible better packing along the way. */
3193 else if (DECL_PACKED (gnu_old_field)
3194 && TREE_CODE (DECL_SIZE (gnu_old_field))
3197 gnu_size = DECL_SIZE (gnu_old_field);
3198 if (TREE_CODE (gnu_field_type) == RECORD_TYPE
3199 && !TYPE_IS_FAT_POINTER_P (gnu_field_type)
3200 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
3202 = make_packable_type (gnu_field_type, true);
3206 gnu_size = TYPE_SIZE (gnu_field_type);
3208 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
3209 for (t = gnu_subst_list; t; t = TREE_CHAIN (t))
3210 gnu_pos = substitute_in_expr (gnu_pos,
3214 /* If the position is now a constant, we can set it as the
3215 position of the field when we make it. Otherwise, we
3216 need to deal with it specially below. */
3217 if (TREE_CONSTANT (gnu_pos))
3219 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
3221 /* Discard old fields that are outside the new type.
3222 This avoids confusing code scanning it to decide
3223 how to pass it to functions on some platforms. */
3224 if (TREE_CODE (gnu_new_pos) == INTEGER_CST
3225 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST
3226 && !integer_zerop (gnu_size)
3227 && !tree_int_cst_lt (gnu_new_pos,
3228 TYPE_SIZE (gnu_type)))
3232 gnu_new_pos = NULL_TREE;
3236 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
3237 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
3238 !DECL_NONADDRESSABLE_P (gnu_old_field));
3240 if (!TREE_CONSTANT (gnu_pos))
3242 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
3243 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
3244 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
3245 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
3246 DECL_SIZE (gnu_field) = gnu_size;
3247 DECL_SIZE_UNIT (gnu_field)
3248 = convert (sizetype,
3249 size_binop (CEIL_DIV_EXPR, gnu_size,
3250 bitsize_unit_node));
3251 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
3254 DECL_INTERNAL_P (gnu_field)
3255 = DECL_INTERNAL_P (gnu_old_field);
3256 SET_DECL_ORIGINAL_FIELD
3257 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
3258 ? DECL_ORIGINAL_FIELD (gnu_old_field)