1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
56 #ifndef MAX_FIXED_MODE_SIZE
57 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
60 /* Convention_Stdcall should be processed in a specific way on Windows targets
61 only. The macro below is a helper to avoid having to check for a Windows
62 specific attribute throughout this unit. */
64 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
65 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
67 #define Has_Stdcall_Convention(E) (0)
70 /* Stack realignment for functions with foreign conventions is provided on a
71 per back-end basis now, as it is handled by the prologue expanders and not
72 as part of the function's body any more. It might be requested by way of a
73 dedicated function type attribute on the targets that support it.
75 We need a way to avoid setting the attribute on the targets that don't
76 support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
78 It is defined on targets where the circuitry is available, and indicates
79 whether the realignment is needed for 'main'. We use this to decide for
80 foreign subprograms as well.
82 It is not defined on targets where the circuitry is not implemented, and
83 we just never set the attribute in these cases.
85 Whether it is defined on all targets that would need it in theory is
86 not entirely clear. We currently trust the base GCC settings for this
89 #ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
90 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
95 struct incomplete *next;
100 /* These variables are used to defer recursively expanding incomplete types
101 while we are processing an array, a record or a subprogram type. */
102 static int defer_incomplete_level = 0;
103 static struct incomplete *defer_incomplete_list;
105 /* This variable is used to delay expanding From_With_Type types until the
107 static struct incomplete *defer_limited_with;
109 /* These variables are used to defer finalizing types. The element of the
110 list is the TYPE_DECL associated with the type. */
111 static int defer_finalize_level = 0;
112 static VEC (tree,heap) *defer_finalize_list;
114 /* A hash table used to cache the result of annotate_value. */
115 static GTY ((if_marked ("tree_int_map_marked_p"),
116 param_is (struct tree_int_map))) htab_t annotate_value_cache;
125 static void relate_alias_sets (tree, tree, enum alias_set_op);
127 static tree substitution_list (Entity_Id, Entity_Id, tree, bool);
128 static bool allocatable_size_p (tree, bool);
129 static void prepend_one_attribute_to (struct attrib **,
130 enum attr_type, tree, tree, Node_Id);
131 static void prepend_attributes (Entity_Id, struct attrib **);
132 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
133 static bool is_variable_size (tree);
134 static tree elaborate_expression_1 (Node_Id, Entity_Id, tree, tree,
136 static tree make_packable_type (tree, bool);
137 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
138 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
140 static bool same_discriminant_p (Entity_Id, Entity_Id);
141 static bool array_type_has_nonaliased_component (Entity_Id, tree);
142 static bool compile_time_known_address_p (Node_Id);
143 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
144 bool, bool, bool, bool);
145 static Uint annotate_value (tree);
146 static void annotate_rep (Entity_Id, tree);
147 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
148 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
149 static void set_rm_size (Uint, tree, Entity_Id);
150 static tree make_type_from_size (tree, tree, bool);
151 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
152 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
153 static void check_ok_for_atomic (tree, Entity_Id, bool);
154 static int compatible_signatures_p (tree ftype1, tree ftype2);
155 static void rest_of_type_decl_compilation_no_defer (tree);
157 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
158 entity, return the equivalent GCC tree for that entity (a ..._DECL node)
159 and associate the ..._DECL node with the input GNAT defining identifier.
161 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
162 initial value (in GCC tree form). This is optional for a variable. For
163 a renamed entity, GNU_EXPR gives the object being renamed.
165 DEFINITION is nonzero if this call is intended for a definition. This is
166 used for separate compilation where it is necessary to know whether an
167 external declaration or a definition must be created if the GCC equivalent
168 was not created previously. The value of 1 is normally used for a nonzero
169 DEFINITION, but a value of 2 is used in special circumstances, defined in
173 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
175 Entity_Id gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
177 Entity_Kind kind = Ekind (gnat_entity);
178 /* Contains the GCC DECL node which is equivalent to the input GNAT node.
179 This node will be associated with the GNAT node by calling at the end
180 of the `switch' statement. */
181 tree gnu_decl = NULL_TREE;
182 /* Contains the GCC type to be used for the GCC node. */
183 tree gnu_type = NULL_TREE;
184 /* Contains the GCC size tree to be used for the GCC node. */
185 tree gnu_size = NULL_TREE;
186 /* Contains the GCC name to be used for the GCC node. */
188 /* True if we have already saved gnu_decl as a GNAT association. */
190 /* True if we incremented defer_incomplete_level. */
191 bool this_deferred = false;
192 /* True if we incremented force_global. */
193 bool this_global = false;
194 /* True if we should check to see if elaborated during processing. */
195 bool maybe_present = false;
196 /* True if we made GNU_DECL and its type here. */
197 bool this_made_decl = false;
198 /* True if debug info is requested for this entity. */
199 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
200 || debug_info_level == DINFO_LEVEL_VERBOSE);
201 /* True if this entity is to be considered as imported. */
202 bool imported_p = (Is_Imported (gnat_entity)
203 && No (Address_Clause (gnat_entity)));
204 unsigned int esize, align = 0;
205 struct attrib *attr_list = NULL;
207 /* First compute a default value for the size of the entity. */
208 if (Known_Esize (gnat_entity) && UI_Is_In_Int_Range (Esize (gnat_entity)))
210 unsigned int max_esize;
211 esize = UI_To_Int (Esize (gnat_entity));
213 if (IN (kind, Float_Kind))
214 max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
215 else if (IN (kind, Access_Kind))
216 max_esize = POINTER_SIZE * 2;
218 max_esize = LONG_LONG_TYPE_SIZE;
220 esize = MIN (esize, max_esize);
223 esize = LONG_LONG_TYPE_SIZE;
225 /* Since a use of an Itype is a definition, process it as such if it
226 is not in a with'ed unit. */
228 && Is_Itype (gnat_entity)
229 && !present_gnu_tree (gnat_entity)
230 && In_Extended_Main_Code_Unit (gnat_entity))
232 /* Ensure that we are in a subprogram mentioned in the Scope chain of
233 this entity, our current scope is global, or we encountered a task
234 or entry (where we can't currently accurately check scoping). */
235 if (!current_function_decl
236 || DECL_ELABORATION_PROC_P (current_function_decl))
238 process_type (gnat_entity);
239 return get_gnu_tree (gnat_entity);
242 for (gnat_temp = Scope (gnat_entity);
244 gnat_temp = Scope (gnat_temp))
246 if (Is_Type (gnat_temp))
247 gnat_temp = Underlying_Type (gnat_temp);
249 if (Ekind (gnat_temp) == E_Subprogram_Body)
251 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
253 if (IN (Ekind (gnat_temp), Subprogram_Kind)
254 && Present (Protected_Body_Subprogram (gnat_temp)))
255 gnat_temp = Protected_Body_Subprogram (gnat_temp);
257 if (Ekind (gnat_temp) == E_Entry
258 || Ekind (gnat_temp) == E_Entry_Family
259 || Ekind (gnat_temp) == E_Task_Type
260 || (IN (Ekind (gnat_temp), Subprogram_Kind)
261 && present_gnu_tree (gnat_temp)
262 && (current_function_decl
263 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
265 process_type (gnat_entity);
266 return get_gnu_tree (gnat_entity);
270 /* This abort means the entity has an incorrect scope, i.e. that its
271 scope does not correspond to the subprogram it is declared in. */
275 /* If the entiy is not present, something went badly wrong. */
276 gcc_assert (Present (gnat_entity));
278 /* If we've already processed this entity, return what we got last time.
279 If we are defining the node, we should not have already processed it.
280 In that case, we will abort below when we try to save a new GCC tree
281 for this object. We also need to handle the case of getting a dummy
282 type when a Full_View exists. */
283 if (present_gnu_tree (gnat_entity)
284 && (!definition || (Is_Type (gnat_entity) && imported_p)))
286 gnu_decl = get_gnu_tree (gnat_entity);
288 if (TREE_CODE (gnu_decl) == TYPE_DECL
289 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
290 && IN (kind, Incomplete_Or_Private_Kind)
291 && Present (Full_View (gnat_entity)))
294 = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
295 save_gnu_tree (gnat_entity, NULL_TREE, false);
296 save_gnu_tree (gnat_entity, gnu_decl, false);
302 /* If this is a numeric or enumeral type, or an access type, a nonzero
303 Esize must be specified unless it was specified by the programmer. */
304 gcc_assert (!Unknown_Esize (gnat_entity)
305 || Has_Size_Clause (gnat_entity)
306 || (!IN (kind, Numeric_Kind)
307 && !IN (kind, Enumeration_Kind)
308 && (!IN (kind, Access_Kind)
309 || kind == E_Access_Protected_Subprogram_Type
310 || kind == E_Anonymous_Access_Protected_Subprogram_Type
311 || kind == E_Access_Subtype)));
313 /* The RM size must be specified for all discrete and fixed-point types. */
314 gcc_assert (!IN (kind, Discrete_Or_Fixed_Point_Kind)
315 || !Unknown_RM_Size (gnat_entity));
317 /* Get the name of the entity and set up the line number and filename of
318 the original definition for use in any decl we make. */
319 gnu_entity_id = get_entity_name (gnat_entity);
320 Sloc_to_locus (Sloc (gnat_entity), &input_location);
322 /* If we get here, it means we have not yet done anything with this
323 entity. If we are not defining it here, it must be external,
324 otherwise we should have defined it already. */
325 gcc_assert (definition || Is_Public (gnat_entity) || type_annotate_only
326 || kind == E_Discriminant || kind == E_Component
328 || (kind == E_Constant && Present (Full_View (gnat_entity)))
329 || IN (kind, Type_Kind));
331 /* For cases when we are not defining (i.e., we are referencing from
332 another compilation unit) public entities, show we are at global level
333 for the purpose of computing scopes. Don't do this for components or
334 discriminants since the relevant test is whether or not the record is
337 && Is_Public (gnat_entity)
338 && !Is_Statically_Allocated (gnat_entity)
339 && kind != E_Component
340 && kind != E_Discriminant)
341 force_global++, this_global = true;
343 /* Handle any attributes directly attached to the entity. */
344 if (Has_Gigi_Rep_Item (gnat_entity))
345 prepend_attributes (gnat_entity, &attr_list);
347 /* Machine_Attributes on types are expected to be propagated to subtypes.
348 The corresponding Gigi_Rep_Items are only attached to the first subtype
349 though, so we handle the propagation here. */
350 if (Is_Type (gnat_entity) && Base_Type (gnat_entity) != gnat_entity
351 && !Is_First_Subtype (gnat_entity)
352 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
353 prepend_attributes (First_Subtype (Base_Type (gnat_entity)), &attr_list);
358 /* If this is a use of a deferred constant without address clause,
359 get its full definition. */
361 && No (Address_Clause (gnat_entity))
362 && Present (Full_View (gnat_entity)))
365 = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
370 /* If we have an external constant that we are not defining, get the
371 expression that is was defined to represent. We may throw that
372 expression away later if it is not a constant. Do not retrieve the
373 expression if it is an aggregate or allocator, because in complex
374 instantiation contexts it may not be expanded */
376 && Present (Expression (Declaration_Node (gnat_entity)))
377 && !No_Initialization (Declaration_Node (gnat_entity))
378 && (Nkind (Expression (Declaration_Node (gnat_entity)))
380 && (Nkind (Expression (Declaration_Node (gnat_entity)))
382 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
384 /* Ignore deferred constant definitions without address clause since
385 they are processed fully in the front-end. If No_Initialization
386 is set, this is not a deferred constant but a constant whose value
387 is built manually. And constants that are renamings are handled
391 && No (Address_Clause (gnat_entity))
392 && !No_Initialization (Declaration_Node (gnat_entity))
393 && No (Renamed_Object (gnat_entity)))
395 gnu_decl = error_mark_node;
400 /* Ignore constant definitions already marked with the error node. See
401 the N_Object_Declaration case of gnat_to_gnu for the rationale. */
404 && present_gnu_tree (gnat_entity)
405 && get_gnu_tree (gnat_entity) == error_mark_node)
407 maybe_present = true;
414 /* We used to special case VMS exceptions here to directly map them to
415 their associated condition code. Since this code had to be masked
416 dynamically to strip off the severity bits, this caused trouble in
417 the GCC/ZCX case because the "type" pointers we store in the tables
418 have to be static. We now don't special case here anymore, and let
419 the regular processing take place, which leaves us with a regular
420 exception data object for VMS exceptions too. The condition code
421 mapping is taken care of by the front end and the bitmasking by the
428 /* The GNAT record where the component was defined. */
429 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
431 /* If the variable is an inherited record component (in the case of
432 extended record types), just return the inherited entity, which
433 must be a FIELD_DECL. Likewise for discriminants.
434 For discriminants of untagged records which have explicit
435 stored discriminants, return the entity for the corresponding
436 stored discriminant. Also use Original_Record_Component
437 if the record has a private extension. */
438 if (Present (Original_Record_Component (gnat_entity))
439 && Original_Record_Component (gnat_entity) != gnat_entity)
442 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
443 gnu_expr, definition);
448 /* If the enclosing record has explicit stored discriminants,
449 then it is an untagged record. If the Corresponding_Discriminant
450 is not empty then this must be a renamed discriminant and its
451 Original_Record_Component must point to the corresponding explicit
452 stored discriminant (i.e. we should have taken the previous
454 else if (Present (Corresponding_Discriminant (gnat_entity))
455 && Is_Tagged_Type (gnat_record))
457 /* A tagged record has no explicit stored discriminants. */
458 gcc_assert (First_Discriminant (gnat_record)
459 == First_Stored_Discriminant (gnat_record));
461 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
462 gnu_expr, definition);
467 else if (Present (CR_Discriminant (gnat_entity))
468 && type_annotate_only)
470 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
471 gnu_expr, definition);
476 /* If the enclosing record has explicit stored discriminants, then
477 it is an untagged record. If the Corresponding_Discriminant
478 is not empty then this must be a renamed discriminant and its
479 Original_Record_Component must point to the corresponding explicit
480 stored discriminant (i.e. we should have taken the first
482 else if (Present (Corresponding_Discriminant (gnat_entity))
483 && (First_Discriminant (gnat_record)
484 != First_Stored_Discriminant (gnat_record)))
487 /* Otherwise, if we are not defining this and we have no GCC type
488 for the containing record, make one for it. Then we should
489 have made our own equivalent. */
490 else if (!definition && !present_gnu_tree (gnat_record))
492 /* ??? If this is in a record whose scope is a protected
493 type and we have an Original_Record_Component, use it.
494 This is a workaround for major problems in protected type
496 Entity_Id Scop = Scope (Scope (gnat_entity));
497 if ((Is_Protected_Type (Scop)
498 || (Is_Private_Type (Scop)
499 && Present (Full_View (Scop))
500 && Is_Protected_Type (Full_View (Scop))))
501 && Present (Original_Record_Component (gnat_entity)))
504 = gnat_to_gnu_entity (Original_Record_Component
511 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
512 gnu_decl = get_gnu_tree (gnat_entity);
518 /* Here we have no GCC type and this is a reference rather than a
519 definition. This should never happen. Most likely the cause is
520 reference before declaration in the gnat tree for gnat_entity. */
524 case E_Loop_Parameter:
525 case E_Out_Parameter:
528 /* Simple variables, loop variables, Out parameters, and exceptions. */
531 bool used_by_ref = false;
533 = ((kind == E_Constant || kind == E_Variable)
534 && Is_True_Constant (gnat_entity)
535 && !Treat_As_Volatile (gnat_entity)
536 && (((Nkind (Declaration_Node (gnat_entity))
537 == N_Object_Declaration)
538 && Present (Expression (Declaration_Node (gnat_entity))))
539 || Present (Renamed_Object (gnat_entity))));
540 bool inner_const_flag = const_flag;
541 bool static_p = Is_Statically_Allocated (gnat_entity);
542 bool mutable_p = false;
543 tree gnu_ext_name = NULL_TREE;
544 tree renamed_obj = NULL_TREE;
545 tree gnu_object_size;
547 if (Present (Renamed_Object (gnat_entity)) && !definition)
549 if (kind == E_Exception)
550 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
553 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
556 /* Get the type after elaborating the renamed object. */
557 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
559 /* For a debug renaming declaration, build a pure debug entity. */
560 if (Present (Debug_Renaming_Link (gnat_entity)))
563 gnu_decl = build_decl (VAR_DECL, gnu_entity_id, gnu_type);
564 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
565 if (global_bindings_p ())
566 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
568 addr = stack_pointer_rtx;
569 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
570 gnat_pushdecl (gnu_decl, gnat_entity);
574 /* If this is a loop variable, its type should be the base type.
575 This is because the code for processing a loop determines whether
576 a normal loop end test can be done by comparing the bounds of the
577 loop against those of the base type, which is presumed to be the
578 size used for computation. But this is not correct when the size
579 of the subtype is smaller than the type. */
580 if (kind == E_Loop_Parameter)
581 gnu_type = get_base_type (gnu_type);
583 /* Reject non-renamed objects whose types are unconstrained arrays or
584 any object whose type is a dummy type or VOID_TYPE. */
586 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
587 && No (Renamed_Object (gnat_entity)))
588 || TYPE_IS_DUMMY_P (gnu_type)
589 || TREE_CODE (gnu_type) == VOID_TYPE)
591 gcc_assert (type_annotate_only);
594 return error_mark_node;
597 /* If an alignment is specified, use it if valid. Note that
598 exceptions are objects but don't have alignments. We must do this
599 before we validate the size, since the alignment can affect the
601 if (kind != E_Exception && Known_Alignment (gnat_entity))
603 gcc_assert (Present (Alignment (gnat_entity)));
604 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
605 TYPE_ALIGN (gnu_type));
606 gnu_type = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
607 "PAD", false, definition, true);
610 /* If we are defining the object, see if it has a Size value and
611 validate it if so. If we are not defining the object and a Size
612 clause applies, simply retrieve the value. We don't want to ignore
613 the clause and it is expected to have been validated already. Then
614 get the new type, if any. */
616 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
617 gnat_entity, VAR_DECL, false,
618 Has_Size_Clause (gnat_entity));
619 else if (Has_Size_Clause (gnat_entity))
620 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
625 = make_type_from_size (gnu_type, gnu_size,
626 Has_Biased_Representation (gnat_entity));
628 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
629 gnu_size = NULL_TREE;
632 /* If this object has self-referential size, it must be a record with
633 a default value. We are supposed to allocate an object of the
634 maximum size in this case unless it is a constant with an
635 initializing expression, in which case we can get the size from
636 that. Note that the resulting size may still be a variable, so
637 this may end up with an indirect allocation. */
638 if (No (Renamed_Object (gnat_entity))
639 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
641 if (gnu_expr && kind == E_Constant)
643 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
644 if (CONTAINS_PLACEHOLDER_P (size))
646 /* If the initializing expression is itself a constant,
647 despite having a nominal type with self-referential
648 size, we can get the size directly from it. */
649 if (TREE_CODE (gnu_expr) == COMPONENT_REF
650 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
653 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
654 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
655 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
656 || DECL_READONLY_ONCE_ELAB
657 (TREE_OPERAND (gnu_expr, 0))))
658 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
661 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
666 /* We may have no GNU_EXPR because No_Initialization is
667 set even though there's an Expression. */
668 else if (kind == E_Constant
669 && (Nkind (Declaration_Node (gnat_entity))
670 == N_Object_Declaration)
671 && Present (Expression (Declaration_Node (gnat_entity))))
673 = TYPE_SIZE (gnat_to_gnu_type
675 (Expression (Declaration_Node (gnat_entity)))));
678 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
683 /* If the size is zero bytes, make it one byte since some linkers have
684 trouble with zero-sized objects. If the object will have a
685 template, that will make it nonzero so don't bother. Also avoid
686 doing that for an object renaming or an object with an address
687 clause, as we would lose useful information on the view size
688 (e.g. for null array slices) and we are not allocating the object
691 && integer_zerop (gnu_size)
692 && !TREE_OVERFLOW (gnu_size))
693 || (TYPE_SIZE (gnu_type)
694 && integer_zerop (TYPE_SIZE (gnu_type))
695 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
696 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
697 || !Is_Array_Type (Etype (gnat_entity)))
698 && !Present (Renamed_Object (gnat_entity))
699 && !Present (Address_Clause (gnat_entity)))
700 gnu_size = bitsize_unit_node;
702 /* If this is an object with no specified size and alignment, and
703 if either it is atomic or we are not optimizing alignment for
704 space and it is composite and not an exception, an Out parameter
705 or a reference to another object, and the size of its type is a
706 constant, set the alignment to the smallest one which is not
707 smaller than the size, with an appropriate cap. */
708 if (!gnu_size && align == 0
709 && (Is_Atomic (gnat_entity)
710 || (!Optimize_Alignment_Space (gnat_entity)
711 && kind != E_Exception
712 && kind != E_Out_Parameter
713 && Is_Composite_Type (Etype (gnat_entity))
714 && !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
716 && No (Renamed_Object (gnat_entity))
717 && No (Address_Clause (gnat_entity))))
718 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
720 /* No point in jumping through all the hoops needed in order
721 to support BIGGEST_ALIGNMENT if we don't really have to.
722 So we cap to the smallest alignment that corresponds to
723 a known efficient memory access pattern of the target. */
724 unsigned int align_cap = Is_Atomic (gnat_entity)
726 : get_mode_alignment (ptr_mode);
728 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
729 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
732 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
734 /* But make sure not to under-align the object. */
735 if (align <= TYPE_ALIGN (gnu_type))
738 /* And honor the minimum valid atomic alignment, if any. */
739 #ifdef MINIMUM_ATOMIC_ALIGNMENT
740 else if (align < MINIMUM_ATOMIC_ALIGNMENT)
741 align = MINIMUM_ATOMIC_ALIGNMENT;
745 /* If the object is set to have atomic components, find the component
746 type and validate it.
748 ??? Note that we ignore Has_Volatile_Components on objects; it's
749 not at all clear what to do in that case. */
751 if (Has_Atomic_Components (gnat_entity))
753 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
754 ? TREE_TYPE (gnu_type) : gnu_type);
756 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
757 && TYPE_MULTI_ARRAY_P (gnu_inner))
758 gnu_inner = TREE_TYPE (gnu_inner);
760 check_ok_for_atomic (gnu_inner, gnat_entity, true);
763 /* Now check if the type of the object allows atomic access. Note
764 that we must test the type, even if this object has size and
765 alignment to allow such access, because we will be going
766 inside the padded record to assign to the object. We could fix
767 this by always copying via an intermediate value, but it's not
768 clear it's worth the effort. */
769 if (Is_Atomic (gnat_entity))
770 check_ok_for_atomic (gnu_type, gnat_entity, false);
772 /* If this is an aliased object with an unconstrained nominal subtype,
773 make a type that includes the template. */
774 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
775 && Is_Array_Type (Etype (gnat_entity))
776 && !type_annotate_only)
779 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
782 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
783 concat_id_with_name (gnu_entity_id,
787 #ifdef MINIMUM_ATOMIC_ALIGNMENT
788 /* If the size is a constant and no alignment is specified, force
789 the alignment to be the minimum valid atomic alignment. The
790 restriction on constant size avoids problems with variable-size
791 temporaries; if the size is variable, there's no issue with
792 atomic access. Also don't do this for a constant, since it isn't
793 necessary and can interfere with constant replacement. Finally,
794 do not do it for Out parameters since that creates an
795 size inconsistency with In parameters. */
796 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
797 && !FLOAT_TYPE_P (gnu_type)
798 && !const_flag && No (Renamed_Object (gnat_entity))
799 && !imported_p && No (Address_Clause (gnat_entity))
800 && kind != E_Out_Parameter
801 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
802 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
803 align = MINIMUM_ATOMIC_ALIGNMENT;
806 /* Make a new type with the desired size and alignment, if needed.
807 But do not take into account alignment promotions to compute the
808 size of the object. */
809 gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
810 if (gnu_size || align > 0)
811 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
812 "PAD", false, definition,
813 gnu_size ? true : false);
815 /* If this is a renaming, avoid as much as possible to create a new
816 object. However, in several cases, creating it is required.
817 This processing needs to be applied to the raw expression so
818 as to make it more likely to rename the underlying object. */
819 if (Present (Renamed_Object (gnat_entity)))
821 bool create_normal_object = false;
823 /* If the renamed object had padding, strip off the reference
824 to the inner object and reset our type. */
825 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
826 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
828 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
829 /* Strip useless conversions around the object. */
830 || (TREE_CODE (gnu_expr) == NOP_EXPR
831 && gnat_types_compatible_p
832 (TREE_TYPE (gnu_expr),
833 TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
835 gnu_expr = TREE_OPERAND (gnu_expr, 0);
836 gnu_type = TREE_TYPE (gnu_expr);
839 /* Case 1: If this is a constant renaming stemming from a function
840 call, treat it as a normal object whose initial value is what
841 is being renamed. RM 3.3 says that the result of evaluating a
842 function call is a constant object. As a consequence, it can
843 be the inner object of a constant renaming. In this case, the
844 renaming must be fully instantiated, i.e. it cannot be a mere
845 reference to (part of) an existing object. */
848 tree inner_object = gnu_expr;
849 while (handled_component_p (inner_object))
850 inner_object = TREE_OPERAND (inner_object, 0);
851 if (TREE_CODE (inner_object) == CALL_EXPR)
852 create_normal_object = true;
855 /* Otherwise, see if we can proceed with a stabilized version of
856 the renamed entity or if we need to make a new object. */
857 if (!create_normal_object)
859 tree maybe_stable_expr = NULL_TREE;
862 /* Case 2: If the renaming entity need not be materialized and
863 the renamed expression is something we can stabilize, use
864 that for the renaming. At the global level, we can only do
865 this if we know no SAVE_EXPRs need be made, because the
866 expression we return might be used in arbitrary conditional
867 branches so we must force the SAVE_EXPRs evaluation
868 immediately and this requires a function context. */
869 if (!Materialize_Entity (gnat_entity)
870 && (!global_bindings_p ()
871 || (staticp (gnu_expr)
872 && !TREE_SIDE_EFFECTS (gnu_expr))))
875 = maybe_stabilize_reference (gnu_expr, true, &stable);
879 gnu_decl = maybe_stable_expr;
880 /* ??? No DECL_EXPR is created so we need to mark
881 the expression manually lest it is shared. */
882 if (global_bindings_p ())
883 mark_visited (&gnu_decl);
884 save_gnu_tree (gnat_entity, gnu_decl, true);
889 /* The stabilization failed. Keep maybe_stable_expr
890 untouched here to let the pointer case below know
891 about that failure. */
894 /* Case 3: If this is a constant renaming and creating a
895 new object is allowed and cheap, treat it as a normal
896 object whose initial value is what is being renamed. */
898 && !Is_Composite_Type
899 (Underlying_Type (Etype (gnat_entity))))
902 /* Case 4: Make this into a constant pointer to the object we
903 are to rename and attach the object to the pointer if it is
904 something we can stabilize.
906 From the proper scope, attached objects will be referenced
907 directly instead of indirectly via the pointer to avoid
908 subtle aliasing problems with non-addressable entities.
909 They have to be stable because we must not evaluate the
910 variables in the expression every time the renaming is used.
911 The pointer is called a "renaming" pointer in this case.
913 In the rare cases where we cannot stabilize the renamed
914 object, we just make a "bare" pointer, and the renamed
915 entity is always accessed indirectly through it. */
918 gnu_type = build_reference_type (gnu_type);
919 inner_const_flag = TREE_READONLY (gnu_expr);
922 /* If the previous attempt at stabilizing failed, there
923 is no point in trying again and we reuse the result
924 without attaching it to the pointer. In this case it
925 will only be used as the initializing expression of
926 the pointer and thus needs no special treatment with
927 regard to multiple evaluations. */
928 if (maybe_stable_expr)
931 /* Otherwise, try to stabilize and attach the expression
932 to the pointer if the stabilization succeeds.
934 Note that this might introduce SAVE_EXPRs and we don't
935 check whether we're at the global level or not. This
936 is fine since we are building a pointer initializer and
937 neither the pointer nor the initializing expression can
938 be accessed before the pointer elaboration has taken
939 place in a correct program.
941 These SAVE_EXPRs will be evaluated at the right place
942 by either the evaluation of the initializer for the
943 non-global case or the elaboration code for the global
944 case, and will be attached to the elaboration procedure
945 in the latter case. */
949 = maybe_stabilize_reference (gnu_expr, true, &stable);
952 renamed_obj = maybe_stable_expr;
954 /* Attaching is actually performed downstream, as soon
955 as we have a VAR_DECL for the pointer we make. */
959 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
961 gnu_size = NULL_TREE;
967 /* Make a volatile version of this object's type if we are to make
968 the object volatile. We also interpret 13.3(19) conservatively
969 and disallow any optimizations for such a non-constant object. */
970 if ((Treat_As_Volatile (gnat_entity)
972 && (Is_Exported (gnat_entity)
973 || Is_Imported (gnat_entity)
974 || Present (Address_Clause (gnat_entity)))))
975 && !TYPE_VOLATILE (gnu_type))
976 gnu_type = build_qualified_type (gnu_type,
977 (TYPE_QUALS (gnu_type)
978 | TYPE_QUAL_VOLATILE));
980 /* If we are defining an aliased object whose nominal subtype is
981 unconstrained, the object is a record that contains both the
982 template and the object. If there is an initializer, it will
983 have already been converted to the right type, but we need to
984 create the template if there is no initializer. */
987 && TREE_CODE (gnu_type) == RECORD_TYPE
988 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
989 /* Beware that padding might have been introduced
990 via maybe_pad_type above. */
991 || (TYPE_IS_PADDING_P (gnu_type)
992 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
994 && TYPE_CONTAINS_TEMPLATE_P
995 (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
998 = TYPE_IS_PADDING_P (gnu_type)
999 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1000 : TYPE_FIELDS (gnu_type);
1003 = gnat_build_constructor
1007 build_template (TREE_TYPE (template_field),
1008 TREE_TYPE (TREE_CHAIN (template_field)),
1013 /* Convert the expression to the type of the object except in the
1014 case where the object's type is unconstrained or the object's type
1015 is a padded record whose field is of self-referential size. In
1016 the former case, converting will generate unnecessary evaluations
1017 of the CONSTRUCTOR to compute the size and in the latter case, we
1018 want to only copy the actual data. */
1020 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1021 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1022 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1023 && TYPE_IS_PADDING_P (gnu_type)
1024 && (CONTAINS_PLACEHOLDER_P
1025 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1026 gnu_expr = convert (gnu_type, gnu_expr);
1028 /* If this is a pointer and it does not have an initializing
1029 expression, initialize it to NULL, unless the object is
1032 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
1033 && !Is_Imported (gnat_entity) && !gnu_expr)
1034 gnu_expr = integer_zero_node;
1036 /* If we are defining the object and it has an Address clause, we must
1037 either get the address expression from the saved GCC tree for the
1038 object if it has a Freeze node, or elaborate the address expression
1039 here since the front-end has guaranteed that the elaboration has no
1040 effects in this case. */
1041 if (definition && Present (Address_Clause (gnat_entity)))
1044 = present_gnu_tree (gnat_entity)
1045 ? get_gnu_tree (gnat_entity)
1046 : gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
1048 save_gnu_tree (gnat_entity, NULL_TREE, false);
1050 /* Ignore the size. It's either meaningless or was handled
1052 gnu_size = NULL_TREE;
1053 /* Convert the type of the object to a reference type that can
1054 alias everything as per 13.3(19). */
1056 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1057 gnu_address = convert (gnu_type, gnu_address);
1059 const_flag = !Is_Public (gnat_entity)
1060 || compile_time_known_address_p (Expression (Address_Clause
1063 /* If this is a deferred constant, the initializer is attached to
1065 if (kind == E_Constant && Present (Full_View (gnat_entity)))
1068 (Expression (Declaration_Node (Full_View (gnat_entity))));
1070 /* If we don't have an initializing expression for the underlying
1071 variable, the initializing expression for the pointer is the
1072 specified address. Otherwise, we have to make a COMPOUND_EXPR
1073 to assign both the address and the initial value. */
1075 gnu_expr = gnu_address;
1078 = build2 (COMPOUND_EXPR, gnu_type,
1080 (MODIFY_EXPR, NULL_TREE,
1081 build_unary_op (INDIRECT_REF, NULL_TREE,
1087 /* If it has an address clause and we are not defining it, mark it
1088 as an indirect object. Likewise for Stdcall objects that are
1090 if ((!definition && Present (Address_Clause (gnat_entity)))
1091 || (Is_Imported (gnat_entity)
1092 && Has_Stdcall_Convention (gnat_entity)))
1094 /* Convert the type of the object to a reference type that can
1095 alias everything as per 13.3(19). */
1097 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1098 gnu_size = NULL_TREE;
1100 /* No point in taking the address of an initializing expression
1101 that isn't going to be used. */
1102 gnu_expr = NULL_TREE;
1104 /* If it has an address clause whose value is known at compile
1105 time, make the object a CONST_DECL. This will avoid a
1106 useless dereference. */
1107 if (Present (Address_Clause (gnat_entity)))
1109 Node_Id gnat_address
1110 = Expression (Address_Clause (gnat_entity));
1112 if (compile_time_known_address_p (gnat_address))
1114 gnu_expr = gnat_to_gnu (gnat_address);
1122 /* If we are at top level and this object is of variable size,
1123 make the actual type a hidden pointer to the real type and
1124 make the initializer be a memory allocation and initialization.
1125 Likewise for objects we aren't defining (presumed to be
1126 external references from other packages), but there we do
1127 not set up an initialization.
1129 If the object's size overflows, make an allocator too, so that
1130 Storage_Error gets raised. Note that we will never free
1131 such memory, so we presume it never will get allocated. */
1133 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1134 global_bindings_p () || !definition
1137 && ! allocatable_size_p (gnu_size,
1138 global_bindings_p () || !definition
1141 gnu_type = build_reference_type (gnu_type);
1142 gnu_size = NULL_TREE;
1146 /* In case this was a aliased object whose nominal subtype is
1147 unconstrained, the pointer above will be a thin pointer and
1148 build_allocator will automatically make the template.
1150 If we have a template initializer only (that we made above),
1151 pretend there is none and rely on what build_allocator creates
1152 again anyway. Otherwise (if we have a full initializer), get
1153 the data part and feed that to build_allocator.
1155 If we are elaborating a mutable object, tell build_allocator to
1156 ignore a possibly simpler size from the initializer, if any, as
1157 we must allocate the maximum possible size in this case. */
1161 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1163 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1164 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1167 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1169 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1170 && 1 == VEC_length (constructor_elt,
1171 CONSTRUCTOR_ELTS (gnu_expr)))
1175 = build_component_ref
1176 (gnu_expr, NULL_TREE,
1177 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1181 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1182 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1183 && !Is_Imported (gnat_entity))
1184 post_error ("?Storage_Error will be raised at run-time!",
1187 gnu_expr = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1188 0, 0, gnat_entity, mutable_p);
1192 gnu_expr = NULL_TREE;
1197 /* If this object would go into the stack and has an alignment larger
1198 than the largest stack alignment the back-end can honor, resort to
1199 a variable of "aligning type". */
1200 if (!global_bindings_p () && !static_p && definition
1201 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1203 /* Create the new variable. No need for extra room before the
1204 aligned field as this is in automatic storage. */
1206 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1207 TYPE_SIZE_UNIT (gnu_type),
1208 BIGGEST_ALIGNMENT, 0);
1210 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1211 NULL_TREE, gnu_new_type, NULL_TREE, false,
1212 false, false, false, NULL, gnat_entity);
1214 /* Initialize the aligned field if we have an initializer. */
1217 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1219 (gnu_new_var, NULL_TREE,
1220 TYPE_FIELDS (gnu_new_type), false),
1224 /* And setup this entity as a reference to the aligned field. */
1225 gnu_type = build_reference_type (gnu_type);
1228 (ADDR_EXPR, gnu_type,
1229 build_component_ref (gnu_new_var, NULL_TREE,
1230 TYPE_FIELDS (gnu_new_type), false));
1232 gnu_size = NULL_TREE;
1238 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1239 | TYPE_QUAL_CONST));
1241 /* Convert the expression to the type of the object except in the
1242 case where the object's type is unconstrained or the object's type
1243 is a padded record whose field is of self-referential size. In
1244 the former case, converting will generate unnecessary evaluations
1245 of the CONSTRUCTOR to compute the size and in the latter case, we
1246 want to only copy the actual data. */
1248 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1249 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1250 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1251 && TYPE_IS_PADDING_P (gnu_type)
1252 && (CONTAINS_PLACEHOLDER_P
1253 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1254 gnu_expr = convert (gnu_type, gnu_expr);
1256 /* If this name is external or there was a name specified, use it,
1257 unless this is a VMS exception object since this would conflict
1258 with the symbol we need to export in addition. Don't use the
1259 Interface_Name if there is an address clause (see CD30005). */
1260 if (!Is_VMS_Exception (gnat_entity)
1261 && ((Present (Interface_Name (gnat_entity))
1262 && No (Address_Clause (gnat_entity)))
1263 || (Is_Public (gnat_entity)
1264 && (!Is_Imported (gnat_entity)
1265 || Is_Exported (gnat_entity)))))
1266 gnu_ext_name = create_concat_name (gnat_entity, 0);
1268 /* If this is constant initialized to a static constant and the
1269 object has an aggregate type, force it to be statically
1270 allocated. This will avoid an initialization copy. */
1271 if (!static_p && const_flag
1272 && gnu_expr && TREE_CONSTANT (gnu_expr)
1273 && AGGREGATE_TYPE_P (gnu_type)
1274 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1275 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1276 && TYPE_IS_PADDING_P (gnu_type)
1277 && !host_integerp (TYPE_SIZE_UNIT
1278 (TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
1281 gnu_decl = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type,
1282 gnu_expr, const_flag,
1283 Is_Public (gnat_entity),
1284 imported_p || !definition,
1285 static_p, attr_list, gnat_entity);
1286 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1287 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1288 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1290 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1291 if (global_bindings_p ())
1293 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1294 record_global_renaming_pointer (gnu_decl);
1298 if (definition && DECL_SIZE_UNIT (gnu_decl)
1299 && get_block_jmpbuf_decl ()
1300 && (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
1301 || (flag_stack_check == GENERIC_STACK_CHECK
1302 && compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1303 STACK_CHECK_MAX_VAR_SIZE) > 0)))
1304 add_stmt_with_node (build_call_1_expr
1305 (update_setjmp_buf_decl,
1306 build_unary_op (ADDR_EXPR, NULL_TREE,
1307 get_block_jmpbuf_decl ())),
1310 /* If we are defining an Out parameter and we're not optimizing,
1311 create a fake PARM_DECL for debugging purposes and make it
1312 point to the VAR_DECL. Suppress debug info for the latter
1313 but make sure it will still live on the stack so it can be
1314 accessed from within the debugger through the PARM_DECL. */
1315 if (kind == E_Out_Parameter && definition && !optimize)
1317 tree param = create_param_decl (gnu_entity_id, gnu_type, false);
1318 gnat_pushdecl (param, gnat_entity);
1319 SET_DECL_VALUE_EXPR (param, gnu_decl);
1320 DECL_HAS_VALUE_EXPR_P (param) = 1;
1322 debug_info_p = false;
1324 DECL_IGNORED_P (param) = 1;
1325 TREE_ADDRESSABLE (gnu_decl) = 1;
1328 /* If this is a public constant or we're not optimizing and we're not
1329 making a VAR_DECL for it, make one just for export or debugger use.
1330 Likewise if the address is taken or if either the object or type is
1331 aliased. Make an external declaration for a reference, unless this
1332 is a Standard entity since there no real symbol at the object level
1334 if (TREE_CODE (gnu_decl) == CONST_DECL
1335 && (definition || Sloc (gnat_entity) > Standard_Location)
1336 && ((Is_Public (gnat_entity)
1337 && !Present (Address_Clause (gnat_entity)))
1339 || Address_Taken (gnat_entity)
1340 || Is_Aliased (gnat_entity)
1341 || Is_Aliased (Etype (gnat_entity))))
1344 = create_true_var_decl (gnu_entity_id, gnu_ext_name, gnu_type,
1345 gnu_expr, true, Is_Public (gnat_entity),
1346 !definition, static_p, NULL,
1349 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1351 /* As debugging information will be generated for the variable,
1352 do not generate information for the constant. */
1353 DECL_IGNORED_P (gnu_decl) = 1;
1356 /* If this is declared in a block that contains a block with an
1357 exception handler, we must force this variable in memory to
1358 suppress an invalid optimization. */
1359 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1360 && Exception_Mechanism != Back_End_Exceptions)
1361 TREE_ADDRESSABLE (gnu_decl) = 1;
1363 gnu_type = TREE_TYPE (gnu_decl);
1365 /* Back-annotate Alignment and Esize of the object if not already
1366 known, except for when the object is actually a pointer to the
1367 real object, since alignment and size of a pointer don't have
1368 anything to do with those of the designated object. Note that
1369 we pick the values of the type, not those of the object, to
1370 shield ourselves from low-level platform-dependent adjustments
1371 like alignment promotion. This is both consistent with all the
1372 treatment above, where alignment and size are set on the type of
1373 the object and not on the object directly, and makes it possible
1374 to support confirming representation clauses in all cases. */
1376 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1377 Set_Alignment (gnat_entity,
1378 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1380 if (!used_by_ref && Unknown_Esize (gnat_entity))
1382 if (TREE_CODE (gnu_type) == RECORD_TYPE
1383 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1385 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1387 Set_Esize (gnat_entity, annotate_value (gnu_object_size));
1393 /* Return a TYPE_DECL for "void" that we previously made. */
1394 gnu_decl = TYPE_NAME (void_type_node);
1397 case E_Enumeration_Type:
1398 /* A special case, for the types Character and Wide_Character in
1399 Standard, we do not list all the literals. So if the literals
1400 are not specified, make this an unsigned type. */
1401 if (No (First_Literal (gnat_entity)))
1403 gnu_type = make_unsigned_type (esize);
1404 TYPE_NAME (gnu_type) = gnu_entity_id;
1406 /* Set TYPE_STRING_FLAG for Ada Character and Wide_Character types.
1407 This is needed by the DWARF-2 back-end to distinguish between
1408 unsigned integer types and character types. */
1409 TYPE_STRING_FLAG (gnu_type) = 1;
1413 /* Normal case of non-character type, or non-Standard character type */
1415 /* Here we have a list of enumeral constants in First_Literal.
1416 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1417 the list to be places into TYPE_FIELDS. Each node in the list
1418 is a TREE_LIST node whose TREE_VALUE is the literal name
1419 and whose TREE_PURPOSE is the value of the literal.
1421 Esize contains the number of bits needed to represent the enumeral
1422 type, Type_Low_Bound also points to the first literal and
1423 Type_High_Bound points to the last literal. */
1425 Entity_Id gnat_literal;
1426 tree gnu_literal_list = NULL_TREE;
1428 if (Is_Unsigned_Type (gnat_entity))
1429 gnu_type = make_unsigned_type (esize);
1431 gnu_type = make_signed_type (esize);
1433 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1435 for (gnat_literal = First_Literal (gnat_entity);
1436 Present (gnat_literal);
1437 gnat_literal = Next_Literal (gnat_literal))
1439 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1442 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1443 gnu_type, gnu_value, true, false, false,
1444 false, NULL, gnat_literal);
1446 save_gnu_tree (gnat_literal, gnu_literal, false);
1447 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1448 gnu_value, gnu_literal_list);
1451 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1453 /* Note that the bounds are updated at the end of this function
1454 because to avoid an infinite recursion when we get the bounds of
1455 this type, since those bounds are objects of this type. */
1459 case E_Signed_Integer_Type:
1460 case E_Ordinary_Fixed_Point_Type:
1461 case E_Decimal_Fixed_Point_Type:
1462 /* For integer types, just make a signed type the appropriate number
1464 gnu_type = make_signed_type (esize);
1467 case E_Modular_Integer_Type:
1469 /* For modular types, make the unsigned type of the proper number
1470 of bits and then set up the modulus, if required. */
1471 tree gnu_modulus, gnu_high = NULL_TREE;
1472 enum machine_mode mode;
1474 /* Packed array types are supposed to be subtypes only. */
1475 gcc_assert (!Is_Packed_Array_Type (gnat_entity));
1477 /* Find the smallest mode at least ESIZE bits wide and make a class
1479 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1480 GET_MODE_BITSIZE (mode) < esize;
1481 mode = GET_MODE_WIDER_MODE (mode))
1484 gnu_type = make_unsigned_type (GET_MODE_BITSIZE (mode));
1486 /* Get the modulus in this type. If it overflows, assume it is because
1487 it is equal to 2**Esize. Note that there is no overflow checking
1488 done on unsigned type, so we detect the overflow by looking for
1489 a modulus of zero, which is otherwise invalid. */
1490 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1492 if (!integer_zerop (gnu_modulus))
1494 TYPE_MODULAR_P (gnu_type) = 1;
1495 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1496 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1497 convert (gnu_type, integer_one_node));
1500 /* If we have to set TYPE_PRECISION different from its natural value,
1501 make a subtype to do do. Likewise if there is a modulus and
1502 it is not one greater than TYPE_MAX_VALUE. */
1503 if (TYPE_PRECISION (gnu_type) != esize
1504 || (TYPE_MODULAR_P (gnu_type)
1505 && !tree_int_cst_equal (TYPE_MAX_VALUE (gnu_type), gnu_high)))
1507 tree gnu_subtype = make_node (INTEGER_TYPE);
1508 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1509 TREE_TYPE (gnu_subtype) = gnu_type;
1510 TYPE_MIN_VALUE (gnu_subtype) = TYPE_MIN_VALUE (gnu_type);
1511 TYPE_MAX_VALUE (gnu_subtype)
1512 = TYPE_MODULAR_P (gnu_type)
1513 ? gnu_high : TYPE_MAX_VALUE (gnu_type);
1514 TYPE_PRECISION (gnu_subtype) = esize;
1515 TYPE_UNSIGNED (gnu_subtype) = 1;
1516 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1517 layout_type (gnu_subtype);
1518 gnu_type = gnu_subtype;
1523 case E_Signed_Integer_Subtype:
1524 case E_Enumeration_Subtype:
1525 case E_Modular_Integer_Subtype:
1526 case E_Ordinary_Fixed_Point_Subtype:
1527 case E_Decimal_Fixed_Point_Subtype:
1529 /* For integral subtypes, we make a new INTEGER_TYPE. Note
1530 that we do not want to call build_range_type since we would
1531 like each subtype node to be distinct. This will be important
1532 when memory aliasing is implemented.
1534 The TREE_TYPE field of the INTEGER_TYPE we make points to the
1535 parent type; this fact is used by the arithmetic conversion
1538 We elaborate the Ancestor_Subtype if it is not in the current
1539 unit and one of our bounds is non-static. We do this to ensure
1540 consistent naming in the case where several subtypes share the same
1541 bounds by always elaborating the first such subtype first, thus
1545 && Present (Ancestor_Subtype (gnat_entity))
1546 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1547 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1548 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1549 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
1551 gnu_type = make_node (INTEGER_TYPE);
1552 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1554 /* Set the precision to the Esize except for bit-packed arrays and
1555 subtypes of Standard.Boolean. */
1556 if (Is_Packed_Array_Type (gnat_entity)
1557 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1558 esize = UI_To_Int (RM_Size (gnat_entity));
1559 else if (TREE_CODE (TREE_TYPE (gnu_type)) == BOOLEAN_TYPE)
1562 TYPE_PRECISION (gnu_type) = esize;
1564 TYPE_MIN_VALUE (gnu_type)
1565 = convert (TREE_TYPE (gnu_type),
1566 elaborate_expression (Type_Low_Bound (gnat_entity),
1568 get_identifier ("L"), definition, 1,
1569 Needs_Debug_Info (gnat_entity)));
1571 TYPE_MAX_VALUE (gnu_type)
1572 = convert (TREE_TYPE (gnu_type),
1573 elaborate_expression (Type_High_Bound (gnat_entity),
1575 get_identifier ("U"), definition, 1,
1576 Needs_Debug_Info (gnat_entity)));
1578 /* One of the above calls might have caused us to be elaborated,
1579 so don't blow up if so. */
1580 if (present_gnu_tree (gnat_entity))
1582 maybe_present = true;
1586 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1587 = Has_Biased_Representation (gnat_entity);
1589 /* This should be an unsigned type if the lower bound is constant
1590 and non-negative or if the base type is unsigned; a signed type
1592 TYPE_UNSIGNED (gnu_type)
1593 = (TYPE_UNSIGNED (TREE_TYPE (gnu_type))
1594 || (TREE_CODE (TYPE_MIN_VALUE (gnu_type)) == INTEGER_CST
1595 && TREE_INT_CST_HIGH (TYPE_MIN_VALUE (gnu_type)) >= 0)
1596 || TYPE_BIASED_REPRESENTATION_P (gnu_type)
1597 || Is_Unsigned_Type (gnat_entity));
1599 layout_type (gnu_type);
1601 /* Inherit our alias set from what we're a subtype of. Subtypes
1602 are not different types and a pointer can designate any instance
1603 within a subtype hierarchy. */
1604 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1606 /* If the type we are dealing with represents a bit-packed array,
1607 we need to have the bits left justified on big-endian targets
1608 and right justified on little-endian targets. We also need to
1609 ensure that when the value is read (e.g. for comparison of two
1610 such values), we only get the good bits, since the unused bits
1611 are uninitialized. Both goals are accomplished by wrapping up
1612 the modular type in an enclosing record type. */
1613 if (Is_Packed_Array_Type (gnat_entity)
1614 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1616 tree gnu_field_type, gnu_field;
1618 /* Set the RM size before wrapping up the type. */
1619 TYPE_RM_SIZE (gnu_type)
1620 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1621 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1622 gnu_field_type = gnu_type;
1624 gnu_type = make_node (RECORD_TYPE);
1625 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1627 /* Propagate the alignment of the modular type to the record.
1628 This means that bit-packed arrays have "ceil" alignment for
1629 their size, which may seem counter-intuitive but makes it
1630 possible to easily overlay them on modular types. */
1631 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1632 TYPE_PACKED (gnu_type) = 1;
1634 /* Create a stripped-down declaration of the original type, mainly
1636 create_type_decl (gnu_entity_id, gnu_field_type, NULL, true,
1637 debug_info_p, gnat_entity);
1639 /* Don't notify the field as "addressable", since we won't be taking
1640 it's address and it would prevent create_field_decl from making a
1642 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1643 gnu_field_type, gnu_type, 1, 0, 0, 0);
1645 finish_record_type (gnu_type, gnu_field, 0, false);
1646 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1648 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1651 /* If the type we are dealing with has got a smaller alignment than the
1652 natural one, we need to wrap it up in a record type and under-align
1653 the latter. We reuse the padding machinery for this purpose. */
1654 else if (Known_Alignment (gnat_entity)
1655 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1656 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1657 && align < TYPE_ALIGN (gnu_type))
1659 tree gnu_field_type, gnu_field;
1661 /* Set the RM size before wrapping up the type. */
1662 TYPE_RM_SIZE (gnu_type)
1663 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1664 gnu_field_type = gnu_type;
1666 gnu_type = make_node (RECORD_TYPE);
1667 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1669 TYPE_ALIGN (gnu_type) = align;
1670 TYPE_PACKED (gnu_type) = 1;
1672 /* Create a stripped-down declaration of the original type, mainly
1674 create_type_decl (gnu_entity_id, gnu_field_type, NULL, true,
1675 debug_info_p, gnat_entity);
1677 /* Don't notify the field as "addressable", since we won't be taking
1678 it's address and it would prevent create_field_decl from making a
1680 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1681 gnu_field_type, gnu_type, 1, 0, 0, 0);
1683 finish_record_type (gnu_type, gnu_field, 0, false);
1684 TYPE_IS_PADDING_P (gnu_type) = 1;
1686 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1689 /* Otherwise reset the alignment lest we computed it above. */
1695 case E_Floating_Point_Type:
1696 /* If this is a VAX floating-point type, use an integer of the proper
1697 size. All the operations will be handled with ASM statements. */
1698 if (Vax_Float (gnat_entity))
1700 gnu_type = make_signed_type (esize);
1701 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1702 SET_TYPE_DIGITS_VALUE (gnu_type,
1703 UI_To_gnu (Digits_Value (gnat_entity),
1708 /* The type of the Low and High bounds can be our type if this is
1709 a type from Standard, so set them at the end of the function. */
1710 gnu_type = make_node (REAL_TYPE);
1711 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1712 layout_type (gnu_type);
1715 case E_Floating_Point_Subtype:
1716 if (Vax_Float (gnat_entity))
1718 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1724 && Present (Ancestor_Subtype (gnat_entity))
1725 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1726 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1727 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1728 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1731 gnu_type = make_node (REAL_TYPE);
1732 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1733 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1735 TYPE_MIN_VALUE (gnu_type)
1736 = convert (TREE_TYPE (gnu_type),
1737 elaborate_expression (Type_Low_Bound (gnat_entity),
1738 gnat_entity, get_identifier ("L"),
1740 Needs_Debug_Info (gnat_entity)));
1742 TYPE_MAX_VALUE (gnu_type)
1743 = convert (TREE_TYPE (gnu_type),
1744 elaborate_expression (Type_High_Bound (gnat_entity),
1745 gnat_entity, get_identifier ("U"),
1747 Needs_Debug_Info (gnat_entity)));
1749 /* One of the above calls might have caused us to be elaborated,
1750 so don't blow up if so. */
1751 if (present_gnu_tree (gnat_entity))
1753 maybe_present = true;
1757 layout_type (gnu_type);
1759 /* Inherit our alias set from what we're a subtype of, as for
1760 integer subtypes. */
1761 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1765 /* Array and String Types and Subtypes
1767 Unconstrained array types are represented by E_Array_Type and
1768 constrained array types are represented by E_Array_Subtype. There
1769 are no actual objects of an unconstrained array type; all we have
1770 are pointers to that type.
1772 The following fields are defined on array types and subtypes:
1774 Component_Type Component type of the array.
1775 Number_Dimensions Number of dimensions (an int).
1776 First_Index Type of first index. */
1781 tree gnu_template_fields = NULL_TREE;
1782 tree gnu_template_type = make_node (RECORD_TYPE);
1783 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1784 tree gnu_fat_type = make_node (RECORD_TYPE);
1785 int ndim = Number_Dimensions (gnat_entity);
1787 = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
1789 = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
1791 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree *));
1792 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree *));
1793 tree gnu_comp_size = 0;
1794 tree gnu_max_size = size_one_node;
1795 tree gnu_max_size_unit;
1796 Entity_Id gnat_ind_subtype;
1797 Entity_Id gnat_ind_base_subtype;
1798 tree gnu_template_reference;
1801 TYPE_NAME (gnu_template_type)
1802 = create_concat_name (gnat_entity, "XUB");
1804 /* Make a node for the array. If we are not defining the array
1805 suppress expanding incomplete types. */
1806 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1809 defer_incomplete_level++, this_deferred = true;
1811 /* Build the fat pointer type. Use a "void *" object instead of
1812 a pointer to the array type since we don't have the array type
1813 yet (it will reference the fat pointer via the bounds). */
1814 tem = chainon (chainon (NULL_TREE,
1815 create_field_decl (get_identifier ("P_ARRAY"),
1817 gnu_fat_type, 0, 0, 0, 0)),
1818 create_field_decl (get_identifier ("P_BOUNDS"),
1820 gnu_fat_type, 0, 0, 0, 0));
1822 /* Make sure we can put this into a register. */
1823 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1825 /* Do not finalize this record type since the types of its fields
1826 are still incomplete at this point. */
1827 finish_record_type (gnu_fat_type, tem, 0, true);
1828 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1830 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1831 is the fat pointer. This will be used to access the individual
1832 fields once we build them. */
1833 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1834 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1835 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1836 gnu_template_reference
1837 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1838 TREE_READONLY (gnu_template_reference) = 1;
1840 /* Now create the GCC type for each index and add the fields for
1841 that index to the template. */
1842 for (index = firstdim, gnat_ind_subtype = First_Index (gnat_entity),
1843 gnat_ind_base_subtype
1844 = First_Index (Implementation_Base_Type (gnat_entity));
1845 index < ndim && index >= 0;
1847 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
1848 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
1850 char field_name[10];
1851 tree gnu_ind_subtype
1852 = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
1853 tree gnu_base_subtype
1854 = get_unpadded_type (Etype (gnat_ind_base_subtype));
1856 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
1858 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
1859 tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
1861 /* Make the FIELD_DECLs for the minimum and maximum of this
1862 type and then make extractions of that field from the
1864 sprintf (field_name, "LB%d", index);
1865 gnu_min_field = create_field_decl (get_identifier (field_name),
1867 gnu_template_type, 0, 0, 0, 0);
1868 field_name[0] = 'U';
1869 gnu_max_field = create_field_decl (get_identifier (field_name),
1871 gnu_template_type, 0, 0, 0, 0);
1873 Sloc_to_locus (Sloc (gnat_entity),
1874 &DECL_SOURCE_LOCATION (gnu_min_field));
1875 Sloc_to_locus (Sloc (gnat_entity),
1876 &DECL_SOURCE_LOCATION (gnu_max_field));
1877 gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
1879 /* We can't use build_component_ref here since the template
1880 type isn't complete yet. */
1881 gnu_min = build3 (COMPONENT_REF, gnu_ind_subtype,
1882 gnu_template_reference, gnu_min_field,
1884 gnu_max = build3 (COMPONENT_REF, gnu_ind_subtype,
1885 gnu_template_reference, gnu_max_field,
1887 TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
1889 /* Make a range type with the new ranges, but using
1890 the Ada subtype. Then we convert to sizetype. */
1891 gnu_index_types[index]
1892 = create_index_type (convert (sizetype, gnu_min),
1893 convert (sizetype, gnu_max),
1894 build_range_type (gnu_ind_subtype,
1897 /* Update the maximum size of the array, in elements. */
1899 = size_binop (MULT_EXPR, gnu_max_size,
1900 size_binop (PLUS_EXPR, size_one_node,
1901 size_binop (MINUS_EXPR, gnu_base_max,
1904 TYPE_NAME (gnu_index_types[index])
1905 = create_concat_name (gnat_entity, field_name);
1908 for (index = 0; index < ndim; index++)
1910 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1912 /* Install all the fields into the template. */
1913 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1914 TYPE_READONLY (gnu_template_type) = 1;
1916 /* Now make the array of arrays and update the pointer to the array
1917 in the fat pointer. Note that it is the first field. */
1918 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1920 /* Try to get a smaller form of the component if needed. */
1921 if ((Is_Packed (gnat_entity)
1922 || Has_Component_Size_Clause (gnat_entity))
1923 && !Is_Bit_Packed_Array (gnat_entity)
1924 && !Has_Aliased_Components (gnat_entity)
1925 && !Strict_Alignment (Component_Type (gnat_entity))
1926 && TREE_CODE (tem) == RECORD_TYPE
1927 && !TYPE_IS_FAT_POINTER_P (tem)
1928 && host_integerp (TYPE_SIZE (tem), 1))
1929 tem = make_packable_type (tem, false);
1931 if (Has_Atomic_Components (gnat_entity))
1932 check_ok_for_atomic (tem, gnat_entity, true);
1934 /* Get and validate any specified Component_Size, but if Packed,
1935 ignore it since the front end will have taken care of it. */
1937 = validate_size (Component_Size (gnat_entity), tem,
1939 (Is_Bit_Packed_Array (gnat_entity)
1940 ? TYPE_DECL : VAR_DECL),
1941 true, Has_Component_Size_Clause (gnat_entity));
1943 /* If the component type is a RECORD_TYPE that has a self-referential
1944 size, use the maximum size. */
1945 if (!gnu_comp_size && TREE_CODE (tem) == RECORD_TYPE
1946 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1947 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1949 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1952 tem = make_type_from_size (tem, gnu_comp_size, false);
1954 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
1955 "C_PAD", false, definition, true);
1956 /* If a padding record was made, declare it now since it will
1957 never be declared otherwise. This is necessary to ensure
1958 that its subtrees are properly marked. */
1959 if (tem != orig_tem)
1960 create_type_decl (TYPE_NAME (tem), tem, NULL, true,
1961 debug_info_p, gnat_entity);
1964 if (Has_Volatile_Components (gnat_entity))
1965 tem = build_qualified_type (tem,
1966 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
1968 /* If Component_Size is not already specified, annotate it with the
1969 size of the component. */
1970 if (Unknown_Component_Size (gnat_entity))
1971 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
1973 gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
1974 size_binop (MULT_EXPR, gnu_max_size,
1975 TYPE_SIZE_UNIT (tem)));
1976 gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
1977 size_binop (MULT_EXPR,
1978 convert (bitsizetype,
1982 for (index = ndim - 1; index >= 0; index--)
1984 tem = build_array_type (tem, gnu_index_types[index]);
1985 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
1986 if (array_type_has_nonaliased_component (gnat_entity, tem))
1987 TYPE_NONALIASED_COMPONENT (tem) = 1;
1990 /* If an alignment is specified, use it if valid. But ignore it for
1991 types that represent the unpacked base type for packed arrays. If
1992 the alignment was requested with an explicit user alignment clause,
1994 if (No (Packed_Array_Type (gnat_entity))
1995 && Known_Alignment (gnat_entity))
1997 gcc_assert (Present (Alignment (gnat_entity)));
1999 = validate_alignment (Alignment (gnat_entity), gnat_entity,
2001 if (Present (Alignment_Clause (gnat_entity)))
2002 TYPE_USER_ALIGN (tem) = 1;
2005 TYPE_CONVENTION_FORTRAN_P (tem)
2006 = (Convention (gnat_entity) == Convention_Fortran);
2007 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
2009 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
2010 corresponding fat pointer. */
2011 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
2012 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
2013 SET_TYPE_MODE (gnu_type, BLKmode);
2014 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
2015 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
2017 /* If the maximum size doesn't overflow, use it. */
2018 if (TREE_CODE (gnu_max_size) == INTEGER_CST
2019 && !TREE_OVERFLOW (gnu_max_size))
2021 = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
2022 if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2023 && !TREE_OVERFLOW (gnu_max_size_unit))
2024 TYPE_SIZE_UNIT (tem)
2025 = size_binop (MIN_EXPR, gnu_max_size_unit,
2026 TYPE_SIZE_UNIT (tem));
2028 create_type_decl (create_concat_name (gnat_entity, "XUA"),
2029 tem, NULL, !Comes_From_Source (gnat_entity),
2030 debug_info_p, gnat_entity);
2032 /* Give the fat pointer type a name. */
2033 create_type_decl (create_concat_name (gnat_entity, "XUP"),
2034 gnu_fat_type, NULL, true,
2035 debug_info_p, gnat_entity);
2037 /* Create the type to be used as what a thin pointer designates: an
2038 record type for the object and its template with the field offsets
2039 shifted to have the template at a negative offset. */
2040 tem = build_unc_object_type (gnu_template_type, tem,
2041 create_concat_name (gnat_entity, "XUT"));
2042 shift_unc_components_for_thin_pointers (tem);
2044 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
2045 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
2047 /* Give the thin pointer type a name. */
2048 create_type_decl (create_concat_name (gnat_entity, "XUX"),
2049 build_pointer_type (tem), NULL, true,
2050 debug_info_p, gnat_entity);
2054 case E_String_Subtype:
2055 case E_Array_Subtype:
2057 /* This is the actual data type for array variables. Multidimensional
2058 arrays are implemented in the gnu tree as arrays of arrays. Note
2059 that for the moment arrays which have sparse enumeration subtypes as
2060 index components create sparse arrays, which is obviously space
2061 inefficient but so much easier to code for now.
2063 Also note that the subtype never refers to the unconstrained
2064 array type, which is somewhat at variance with Ada semantics.
2066 First check to see if this is simply a renaming of the array
2067 type. If so, the result is the array type. */
2069 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
2070 if (!Is_Constrained (gnat_entity))
2075 int array_dim = Number_Dimensions (gnat_entity);
2077 = ((Convention (gnat_entity) == Convention_Fortran)
2078 ? array_dim - 1 : 0);
2080 = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
2081 Entity_Id gnat_ind_subtype;
2082 Entity_Id gnat_ind_base_subtype;
2083 tree gnu_base_type = gnu_type;
2084 tree *gnu_index_type = (tree *) alloca (array_dim * sizeof (tree *));
2085 tree gnu_comp_size = NULL_TREE;
2086 tree gnu_max_size = size_one_node;
2087 tree gnu_max_size_unit;
2088 bool need_index_type_struct = false;
2089 bool max_overflow = false;
2091 /* First create the gnu types for each index. Create types for
2092 debugging information to point to the index types if the
2093 are not integer types, have variable bounds, or are
2094 wider than sizetype. */
2096 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
2097 gnat_ind_base_subtype
2098 = First_Index (Implementation_Base_Type (gnat_entity));
2099 index < array_dim && index >= 0;
2101 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
2102 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
2104 tree gnu_index_subtype
2105 = get_unpadded_type (Etype (gnat_ind_subtype));
2107 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
2109 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
2110 tree gnu_base_subtype
2111 = get_unpadded_type (Etype (gnat_ind_base_subtype));
2113 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
2115 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
2116 tree gnu_base_type = get_base_type (gnu_base_subtype);
2117 tree gnu_base_base_min
2118 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
2119 tree gnu_base_base_max
2120 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
2124 /* If the minimum and maximum values both overflow in
2125 SIZETYPE, but the difference in the original type
2126 does not overflow in SIZETYPE, ignore the overflow
2128 if ((TYPE_PRECISION (gnu_index_subtype)
2129 > TYPE_PRECISION (sizetype)
2130 || TYPE_UNSIGNED (gnu_index_subtype)
2131 != TYPE_UNSIGNED (sizetype))
2132 && TREE_CODE (gnu_min) == INTEGER_CST
2133 && TREE_CODE (gnu_max) == INTEGER_CST
2134 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2136 (fold_build2 (MINUS_EXPR, gnu_index_subtype,
2137 TYPE_MAX_VALUE (gnu_index_subtype),
2138 TYPE_MIN_VALUE (gnu_index_subtype)))))
2140 TREE_OVERFLOW (gnu_min) = 0;
2141 TREE_OVERFLOW (gnu_max) = 0;
2144 /* Similarly, if the range is null, use bounds of 1..0 for
2145 the sizetype bounds. */
2146 else if ((TYPE_PRECISION (gnu_index_subtype)
2147 > TYPE_PRECISION (sizetype)
2148 || TYPE_UNSIGNED (gnu_index_subtype)
2149 != TYPE_UNSIGNED (sizetype))
2150 && TREE_CODE (gnu_min) == INTEGER_CST
2151 && TREE_CODE (gnu_max) == INTEGER_CST
2152 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2153 && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
2154 TYPE_MIN_VALUE (gnu_index_subtype)))
2155 gnu_min = size_one_node, gnu_max = size_zero_node;
2157 /* Now compute the size of this bound. We need to provide
2158 GCC with an upper bound to use but have to deal with the
2159 "superflat" case. There are three ways to do this. If we
2160 can prove that the array can never be superflat, we can
2161 just use the high bound of the index subtype. If we can
2162 prove that the low bound minus one can't overflow, we
2163 can do this as MAX (hb, lb - 1). Otherwise, we have to use
2164 the expression hb >= lb ? hb : lb - 1. */
2165 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2167 /* See if the base array type is already flat. If it is, we
2168 are probably compiling an ACVC test, but it will cause the
2169 code below to malfunction if we don't handle it specially. */
2170 if (TREE_CODE (gnu_base_min) == INTEGER_CST
2171 && TREE_CODE (gnu_base_max) == INTEGER_CST
2172 && !TREE_OVERFLOW (gnu_base_min)
2173 && !TREE_OVERFLOW (gnu_base_max)
2174 && tree_int_cst_lt (gnu_base_max, gnu_base_min))
2175 gnu_high = size_zero_node, gnu_min = size_one_node;
2177 /* If gnu_high is now an integer which overflowed, the array
2178 cannot be superflat. */
2179 else if (TREE_CODE (gnu_high) == INTEGER_CST
2180 && TREE_OVERFLOW (gnu_high))
2182 else if (TYPE_UNSIGNED (gnu_base_subtype)
2183 || TREE_CODE (gnu_high) == INTEGER_CST)
2184 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2188 (sizetype, build_binary_op (GE_EXPR, integer_type_node,
2192 gnu_index_type[index]
2193 = create_index_type (gnu_min, gnu_high, gnu_index_subtype,
2196 /* Also compute the maximum size of the array. Here we
2197 see if any constraint on the index type of the base type
2198 can be used in the case of self-referential bound on
2199 the index type of the subtype. We look for a non-"infinite"
2200 and non-self-referential bound from any type involved and
2201 handle each bound separately. */
2203 if ((TREE_CODE (gnu_min) == INTEGER_CST
2204 && !TREE_OVERFLOW (gnu_min)
2205 && !operand_equal_p (gnu_min, gnu_base_base_min, 0))
2206 || !CONTAINS_PLACEHOLDER_P (gnu_min)
2207 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2208 && !TREE_OVERFLOW (gnu_base_min)))
2209 gnu_base_min = gnu_min;
2211 if ((TREE_CODE (gnu_max) == INTEGER_CST
2212 && !TREE_OVERFLOW (gnu_max)
2213 && !operand_equal_p (gnu_max, gnu_base_base_max, 0))
2214 || !CONTAINS_PLACEHOLDER_P (gnu_max)
2215 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2216 && !TREE_OVERFLOW (gnu_base_max)))
2217 gnu_base_max = gnu_max;
2219 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2220 && TREE_OVERFLOW (gnu_base_min))
2221 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2222 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2223 && TREE_OVERFLOW (gnu_base_max))
2224 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2225 max_overflow = true;
2227 gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
2228 gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
2231 = size_binop (MAX_EXPR,
2232 size_binop (PLUS_EXPR, size_one_node,
2233 size_binop (MINUS_EXPR, gnu_base_max,
2237 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2238 && TREE_OVERFLOW (gnu_this_max))
2239 max_overflow = true;
2242 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2244 if (!integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
2245 || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
2247 || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
2248 || (TREE_TYPE (gnu_index_subtype)
2249 && (TREE_CODE (TREE_TYPE (gnu_index_subtype))
2251 || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
2252 || (TYPE_PRECISION (gnu_index_subtype)
2253 > TYPE_PRECISION (sizetype)))
2254 need_index_type_struct = true;
2257 /* Then flatten: create the array of arrays. For an array type
2258 used to implement a packed array, get the component type from
2259 the original array type since the representation clauses that
2260 can affect it are on the latter. */
2261 if (Is_Packed_Array_Type (gnat_entity)
2262 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2264 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2265 for (index = array_dim - 1; index >= 0; index--)
2266 gnu_type = TREE_TYPE (gnu_type);
2268 /* One of the above calls might have caused us to be elaborated,
2269 so don't blow up if so. */
2270 if (present_gnu_tree (gnat_entity))
2272 maybe_present = true;
2278 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2280 /* One of the above calls might have caused us to be elaborated,
2281 so don't blow up if so. */
2282 if (present_gnu_tree (gnat_entity))
2284 maybe_present = true;
2288 /* Try to get a smaller form of the component if needed. */
2289 if ((Is_Packed (gnat_entity)
2290 || Has_Component_Size_Clause (gnat_entity))
2291 && !Is_Bit_Packed_Array (gnat_entity)
2292 && !Has_Aliased_Components (gnat_entity)
2293 && !Strict_Alignment (Component_Type (gnat_entity))
2294 && TREE_CODE (gnu_type) == RECORD_TYPE
2295 && !TYPE_IS_FAT_POINTER_P (gnu_type)
2296 && host_integerp (TYPE_SIZE (gnu_type), 1))
2297 gnu_type = make_packable_type (gnu_type, false);
2299 /* Get and validate any specified Component_Size, but if Packed,
2300 ignore it since the front end will have taken care of it. */
2302 = validate_size (Component_Size (gnat_entity), gnu_type,
2304 (Is_Bit_Packed_Array (gnat_entity)
2305 ? TYPE_DECL : VAR_DECL), true,
2306 Has_Component_Size_Clause (gnat_entity));
2308 /* If the component type is a RECORD_TYPE that has a
2309 self-referential size, use the maximum size. */
2311 && TREE_CODE (gnu_type) == RECORD_TYPE
2312 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2313 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2315 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2319 = make_type_from_size (gnu_type, gnu_comp_size, false);
2320 orig_gnu_type = gnu_type;
2321 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2322 gnat_entity, "C_PAD", false,
2324 /* If a padding record was made, declare it now since it
2325 will never be declared otherwise. This is necessary
2326 to ensure that its subtrees are properly marked. */
2327 if (gnu_type != orig_gnu_type)
2328 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2329 true, debug_info_p, gnat_entity);
2332 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2333 gnu_type = build_qualified_type (gnu_type,
2334 (TYPE_QUALS (gnu_type)
2335 | TYPE_QUAL_VOLATILE));
2338 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2339 TYPE_SIZE_UNIT (gnu_type));
2340 gnu_max_size = size_binop (MULT_EXPR,
2341 convert (bitsizetype, gnu_max_size),
2342 TYPE_SIZE (gnu_type));
2344 for (index = array_dim - 1; index >= 0; index --)
2346 gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
2347 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2348 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2349 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2352 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
2353 if (need_index_type_struct)
2354 TYPE_STUB_DECL (gnu_type)
2355 = create_type_stub_decl (gnu_entity_id, gnu_type);
2357 /* If we are at file level and this is a multi-dimensional array, we
2358 need to make a variable corresponding to the stride of the
2359 inner dimensions. */
2360 if (global_bindings_p () && array_dim > 1)
2362 tree gnu_str_name = get_identifier ("ST");
2365 for (gnu_arr_type = TREE_TYPE (gnu_type);
2366 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2367 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2368 gnu_str_name = concat_id_with_name (gnu_str_name, "ST"))
2370 tree eltype = TREE_TYPE (gnu_arr_type);
2372 TYPE_SIZE (gnu_arr_type)
2373 = elaborate_expression_1 (gnat_entity, gnat_entity,
2374 TYPE_SIZE (gnu_arr_type),
2375 gnu_str_name, definition, 0);
2377 /* ??? For now, store the size as a multiple of the
2378 alignment of the element type in bytes so that we
2379 can see the alignment from the tree. */
2380 TYPE_SIZE_UNIT (gnu_arr_type)
2382 (MULT_EXPR, sizetype,
2383 elaborate_expression_1
2384 (gnat_entity, gnat_entity,
2385 build_binary_op (EXACT_DIV_EXPR, sizetype,
2386 TYPE_SIZE_UNIT (gnu_arr_type),
2387 size_int (TYPE_ALIGN (eltype)
2389 concat_id_with_name (gnu_str_name, "A_U"),
2391 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2393 /* ??? create_type_decl is not invoked on the inner types so
2394 the MULT_EXPR node built above will never be marked. */
2395 mark_visited (&TYPE_SIZE_UNIT (gnu_arr_type));
2399 /* If we need to write out a record type giving the names of
2400 the bounds, do it now. Make sure to reference the index
2401 types themselves, not just their names, as the debugger
2402 may fall back on them in some cases. */
2403 if (need_index_type_struct && debug_info_p)
2405 tree gnu_bound_rec = make_node (RECORD_TYPE);
2406 tree gnu_field_list = NULL_TREE;
2409 TYPE_NAME (gnu_bound_rec)
2410 = create_concat_name (gnat_entity, "XA");
2412 for (index = array_dim - 1; index >= 0; index--)
2414 tree gnu_index = TYPE_INDEX_TYPE (gnu_index_type[index]);
2415 tree gnu_index_name = TYPE_NAME (gnu_index);
2417 if (TREE_CODE (gnu_index_name) == TYPE_DECL)
2418 gnu_index_name = DECL_NAME (gnu_index_name);
2420 gnu_field = create_field_decl (gnu_index_name, gnu_index,
2422 0, NULL_TREE, NULL_TREE, 0);
2423 TREE_CHAIN (gnu_field) = gnu_field_list;
2424 gnu_field_list = gnu_field;
2427 finish_record_type (gnu_bound_rec, gnu_field_list, 0, false);
2428 add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
2431 TYPE_CONVENTION_FORTRAN_P (gnu_type)
2432 = (Convention (gnat_entity) == Convention_Fortran);
2433 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2434 = (Is_Packed_Array_Type (gnat_entity)
2435 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2437 /* If our size depends on a placeholder and the maximum size doesn't
2438 overflow, use it. */
2439 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2440 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2441 && TREE_OVERFLOW (gnu_max_size))
2442 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2443 && TREE_OVERFLOW (gnu_max_size_unit))
2446 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2447 TYPE_SIZE (gnu_type));
2448 TYPE_SIZE_UNIT (gnu_type)
2449 = size_binop (MIN_EXPR, gnu_max_size_unit,
2450 TYPE_SIZE_UNIT (gnu_type));
2453 /* Set our alias set to that of our base type. This gives all
2454 array subtypes the same alias set. */
2455 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
2458 /* If this is a packed type, make this type the same as the packed
2459 array type, but do some adjusting in the type first. */
2460 if (Present (Packed_Array_Type (gnat_entity)))
2462 Entity_Id gnat_index;
2463 tree gnu_inner_type;
2465 /* First finish the type we had been making so that we output
2466 debugging information for it. */
2468 = build_qualified_type (gnu_type,
2469 (TYPE_QUALS (gnu_type)
2470 | (TYPE_QUAL_VOLATILE
2471 * Treat_As_Volatile (gnat_entity))));
2473 /* Make it artificial only if the base type was artificial as well.
2474 That's sort of "morally" true and will make it possible for the
2475 debugger to look it up by name in DWARF more easily. */
2477 = create_type_decl (gnu_entity_id, gnu_type, attr_list,
2478 !Comes_From_Source (gnat_entity)
2479 && !Comes_From_Source (Etype (gnat_entity)),
2480 debug_info_p, gnat_entity);
2482 /* Save it as our equivalent in case the call below elaborates
2484 save_gnu_tree (gnat_entity, gnu_decl, false);
2486 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2488 this_made_decl = true;
2489 gnu_type = TREE_TYPE (gnu_decl);
2490 save_gnu_tree (gnat_entity, NULL_TREE, false);
2492 gnu_inner_type = gnu_type;
2493 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2494 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2495 || TYPE_IS_PADDING_P (gnu_inner_type)))
2496 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2498 /* We need to point the type we just made to our index type so
2499 the actual bounds can be put into a template. */
2501 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2502 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2503 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2504 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2506 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2508 /* The TYPE_ACTUAL_BOUNDS field is also used for the modulus.
2509 If it is, we need to make another type. */
2510 if (TYPE_MODULAR_P (gnu_inner_type))
2514 gnu_subtype = make_node (INTEGER_TYPE);
2516 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2517 TYPE_MIN_VALUE (gnu_subtype)
2518 = TYPE_MIN_VALUE (gnu_inner_type);
2519 TYPE_MAX_VALUE (gnu_subtype)
2520 = TYPE_MAX_VALUE (gnu_inner_type);
2521 TYPE_PRECISION (gnu_subtype)
2522 = TYPE_PRECISION (gnu_inner_type);
2523 TYPE_UNSIGNED (gnu_subtype)
2524 = TYPE_UNSIGNED (gnu_inner_type);
2525 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2526 layout_type (gnu_subtype);
2528 gnu_inner_type = gnu_subtype;
2531 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2534 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2536 for (gnat_index = First_Index (gnat_entity);
2537 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2538 SET_TYPE_ACTUAL_BOUNDS
2540 tree_cons (NULL_TREE,
2541 get_unpadded_type (Etype (gnat_index)),
2542 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2544 if (Convention (gnat_entity) != Convention_Fortran)
2545 SET_TYPE_ACTUAL_BOUNDS
2547 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2549 if (TREE_CODE (gnu_type) == RECORD_TYPE
2550 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2551 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2555 /* Abort if packed array with no packed array type field set. */
2557 gcc_assert (!Is_Packed (gnat_entity));
2561 case E_String_Literal_Subtype:
2562 /* Create the type for a string literal. */
2564 Entity_Id gnat_full_type
2565 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2566 && Present (Full_View (Etype (gnat_entity)))
2567 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2568 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2569 tree gnu_string_array_type
2570 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2571 tree gnu_string_index_type
2572 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2573 (TYPE_DOMAIN (gnu_string_array_type))));
2574 tree gnu_lower_bound
2575 = convert (gnu_string_index_type,
2576 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2577 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2578 tree gnu_length = ssize_int (length - 1);
2579 tree gnu_upper_bound
2580 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2582 convert (gnu_string_index_type, gnu_length));
2584 = build_range_type (gnu_string_index_type,
2585 gnu_lower_bound, gnu_upper_bound);
2587 = create_index_type (convert (sizetype,
2588 TYPE_MIN_VALUE (gnu_range_type)),
2590 TYPE_MAX_VALUE (gnu_range_type)),
2591 gnu_range_type, gnat_entity);
2594 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2596 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2597 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2598 relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
2602 /* Record Types and Subtypes
2604 The following fields are defined on record types:
2606 Has_Discriminants True if the record has discriminants
2607 First_Discriminant Points to head of list of discriminants
2608 First_Entity Points to head of list of fields
2609 Is_Tagged_Type True if the record is tagged
2611 Implementation of Ada records and discriminated records:
2613 A record type definition is transformed into the equivalent of a C
2614 struct definition. The fields that are the discriminants which are
2615 found in the Full_Type_Declaration node and the elements of the
2616 Component_List found in the Record_Type_Definition node. The
2617 Component_List can be a recursive structure since each Variant of
2618 the Variant_Part of the Component_List has a Component_List.
2620 Processing of a record type definition comprises starting the list of
2621 field declarations here from the discriminants and the calling the
2622 function components_to_record to add the rest of the fields from the
2623 component list and return the gnu type node. The function
2624 components_to_record will call itself recursively as it traverses
2628 if (Has_Complex_Representation (gnat_entity))
2631 = build_complex_type
2633 (Etype (Defining_Entity
2634 (First (Component_Items
2637 (Declaration_Node (gnat_entity)))))))));
2643 Node_Id full_definition = Declaration_Node (gnat_entity);
2644 Node_Id record_definition = Type_Definition (full_definition);
2645 Entity_Id gnat_field;
2647 tree gnu_field_list = NULL_TREE;
2648 tree gnu_get_parent;
2649 /* Set PACKED in keeping with gnat_to_gnu_field. */
2651 = Is_Packed (gnat_entity)
2653 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2655 : (Known_Alignment (gnat_entity)
2656 || (Strict_Alignment (gnat_entity)
2657 && Known_Static_Esize (gnat_entity)))
2660 bool has_rep = Has_Specified_Layout (gnat_entity);
2661 bool all_rep = has_rep;
2663 = (Is_Tagged_Type (gnat_entity)
2664 && Nkind (record_definition) == N_Derived_Type_Definition);
2666 /* See if all fields have a rep clause. Stop when we find one
2668 for (gnat_field = First_Entity (gnat_entity);
2669 Present (gnat_field) && all_rep;
2670 gnat_field = Next_Entity (gnat_field))
2671 if ((Ekind (gnat_field) == E_Component
2672 || Ekind (gnat_field) == E_Discriminant)
2673 && No (Component_Clause (gnat_field)))
2676 /* If this is a record extension, go a level further to find the
2677 record definition. Also, verify we have a Parent_Subtype. */
2680 if (!type_annotate_only
2681 || Present (Record_Extension_Part (record_definition)))
2682 record_definition = Record_Extension_Part (record_definition);
2684 gcc_assert (type_annotate_only
2685 || Present (Parent_Subtype (gnat_entity)));
2688 /* Make a node for the record. If we are not defining the record,
2689 suppress expanding incomplete types. */
2690 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2691 TYPE_NAME (gnu_type) = gnu_entity_id;
2692 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2695 defer_incomplete_level++, this_deferred = true;
2697 /* If both a size and rep clause was specified, put the size in
2698 the record type now so that it can get the proper mode. */
2699 if (has_rep && Known_Esize (gnat_entity))
2700 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2702 /* Always set the alignment here so that it can be used to
2703 set the mode, if it is making the alignment stricter. If
2704 it is invalid, it will be checked again below. If this is to
2705 be Atomic, choose a default alignment of a word unless we know
2706 the size and it's smaller. */
2707 if (Known_Alignment (gnat_entity))
2708 TYPE_ALIGN (gnu_type)
2709 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2710 else if (Is_Atomic (gnat_entity))
2711 TYPE_ALIGN (gnu_type)
2712 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2713 /* If a type needs strict alignment, the minimum size will be the
2714 type size instead of the RM size (see validate_size). Cap the
2715 alignment, lest it causes this type size to become too large. */
2716 else if (Strict_Alignment (gnat_entity)
2717 && Known_Static_Esize (gnat_entity))
2719 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2720 unsigned int raw_align = raw_size & -raw_size;
2721 if (raw_align < BIGGEST_ALIGNMENT)
2722 TYPE_ALIGN (gnu_type) = raw_align;
2725 TYPE_ALIGN (gnu_type) = 0;
2727 /* If we have a Parent_Subtype, make a field for the parent. If
2728 this record has rep clauses, force the position to zero. */
2729 if (Present (Parent_Subtype (gnat_entity)))
2731 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2734 /* A major complexity here is that the parent subtype will
2735 reference our discriminants in its Discriminant_Constraint
2736 list. But those must reference the parent component of this
2737 record which is of the parent subtype we have not built yet!
2738 To break the circle we first build a dummy COMPONENT_REF which
2739 represents the "get to the parent" operation and initialize
2740 each of those discriminants to a COMPONENT_REF of the above
2741 dummy parent referencing the corresponding discriminant of the
2742 base type of the parent subtype. */
2743 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2744 build0 (PLACEHOLDER_EXPR, gnu_type),
2745 build_decl (FIELD_DECL, NULL_TREE,
2749 if (Has_Discriminants (gnat_entity))
2750 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2751 Present (gnat_field);
2752 gnat_field = Next_Stored_Discriminant (gnat_field))
2753 if (Present (Corresponding_Discriminant (gnat_field)))
2756 build3 (COMPONENT_REF,
2757 get_unpadded_type (Etype (gnat_field)),
2759 gnat_to_gnu_field_decl (Corresponding_Discriminant
2764 /* Then we build the parent subtype. If it has discriminants but
2765 the type itself has unknown discriminants, this means that it
2766 doesn't contain information about how the discriminants are
2767 derived from those of the ancestor type, so it cannot be used
2768 directly. Instead it is built by cloning the parent subtype
2769 of the underlying record view of the type, for which the above
2770 derivation of discriminants has been made explicit. */
2771 if (Has_Discriminants (gnat_parent)
2772 && Has_Unknown_Discriminants (gnat_entity))
2774 Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
2776 /* If we are defining the type, the underlying record
2777 view must already have been elaborated at this point.
2778 Otherwise do it now as its parent subtype cannot be
2779 technically elaborated on its own. */
2781 gcc_assert (present_gnu_tree (gnat_uview));
2783 gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
2785 gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
2787 /* Substitute the "get to the parent" of the type for that
2788 of its underlying record view in the cloned type. */
2789 for (gnat_field = First_Stored_Discriminant (gnat_uview);
2790 Present (gnat_field);
2791 gnat_field = Next_Stored_Discriminant (gnat_field))
2792 if (Present (Corresponding_Discriminant (gnat_field)))
2794 tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
2796 = build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2797 gnu_get_parent, gnu_field, NULL_TREE);
2799 = substitute_in_type (gnu_parent, gnu_field, gnu_ref);
2803 gnu_parent = gnat_to_gnu_type (gnat_parent);
2805 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2806 initially built. The discriminants must reference the fields
2807 of the parent subtype and not those of its base type for the
2808 placeholder machinery to properly work. */
2809 if (Has_Discriminants (gnat_entity))
2810 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2811 Present (gnat_field);
2812 gnat_field = Next_Stored_Discriminant (gnat_field))
2813 if (Present (Corresponding_Discriminant (gnat_field)))
2815 Entity_Id field = Empty;
2816 for (field = First_Stored_Discriminant (gnat_parent);
2818 field = Next_Stored_Discriminant (field))
2819 if (same_discriminant_p (gnat_field, field))
2821 gcc_assert (Present (field));
2822 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2823 = gnat_to_gnu_field_decl (field);
2826 /* The "get to the parent" COMPONENT_REF must be given its
2828 TREE_TYPE (gnu_get_parent) = gnu_parent;
2830 /* ...and reference the _parent field of this record. */
2832 = create_field_decl (get_identifier
2833 (Get_Name_String (Name_uParent)),
2834 gnu_parent, gnu_type, 0,
2835 has_rep ? TYPE_SIZE (gnu_parent) : 0,
2836 has_rep ? bitsize_zero_node : 0, 1);
2837 DECL_INTERNAL_P (gnu_field_list) = 1;
2838 TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
2841 /* Make the fields for the discriminants and put them into the record
2842 unless it's an Unchecked_Union. */
2843 if (Has_Discriminants (gnat_entity))
2844 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2845 Present (gnat_field);
2846 gnat_field = Next_Stored_Discriminant (gnat_field))
2848 /* If this is a record extension and this discriminant
2849 is the renaming of another discriminant, we've already
2850 handled the discriminant above. */
2851 if (Present (Parent_Subtype (gnat_entity))
2852 && Present (Corresponding_Discriminant (gnat_field)))
2856 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2858 /* Make an expression using a PLACEHOLDER_EXPR from the
2859 FIELD_DECL node just created and link that with the
2860 corresponding GNAT defining identifier. Then add to the
2862 save_gnu_tree (gnat_field,
2863 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2864 build0 (PLACEHOLDER_EXPR,
2865 DECL_CONTEXT (gnu_field)),
2866 gnu_field, NULL_TREE),
2869 if (!Is_Unchecked_Union (gnat_entity))
2871 TREE_CHAIN (gnu_field) = gnu_field_list;
2872 gnu_field_list = gnu_field;
2876 /* Put the discriminants into the record (backwards), so we can
2877 know the appropriate discriminant to use for the names of the
2879 TYPE_FIELDS (gnu_type) = gnu_field_list;
2881 /* Add the listed fields into the record and finish it up. */
2882 components_to_record (gnu_type, Component_List (record_definition),
2883 gnu_field_list, packed, definition, NULL,
2884 false, all_rep, false,
2885 Is_Unchecked_Union (gnat_entity));
2887 /* We used to remove the associations of the discriminants and
2888 _Parent for validity checking, but we may need them if there's
2889 Freeze_Node for a subtype used in this record. */
2890 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2891 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
2893 /* If it is a tagged record force the type to BLKmode to insure
2894 that these objects will always be placed in memory. Do the
2895 same thing for limited record types. */
2896 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2897 SET_TYPE_MODE (gnu_type, BLKmode);
2899 /* Fill in locations of fields. */
2900 annotate_rep (gnat_entity, gnu_type);
2902 /* If there are any entities in the chain corresponding to
2903 components that we did not elaborate, ensure we elaborate their
2904 types if they are Itypes. */
2905 for (gnat_temp = First_Entity (gnat_entity);
2906 Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
2907 if ((Ekind (gnat_temp) == E_Component
2908 || Ekind (gnat_temp) == E_Discriminant)
2909 && Is_Itype (Etype (gnat_temp))
2910 && !present_gnu_tree (gnat_temp))
2911 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
2915 case E_Class_Wide_Subtype:
2916 /* If an equivalent type is present, that is what we should use.
2917 Otherwise, fall through to handle this like a record subtype
2918 since it may have constraints. */
2919 if (gnat_equiv_type != gnat_entity)
2921 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
2922 maybe_present = true;
2926 /* ... fall through ... */
2928 case E_Record_Subtype:
2930 /* If Cloned_Subtype is Present it means this record subtype has
2931 identical layout to that type or subtype and we should use
2932 that GCC type for this one. The front end guarantees that
2933 the component list is shared. */
2934 if (Present (Cloned_Subtype (gnat_entity)))
2936 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
2938 maybe_present = true;
2941 /* Otherwise, first ensure the base type is elaborated. Then, if we are
2942 changing the type, make a new type with each field having the
2943 type of the field in the new subtype but having the position
2944 computed by transforming every discriminant reference according
2945 to the constraints. We don't see any difference between
2946 private and nonprivate type here since derivations from types should
2947 have been deferred until the completion of the private type. */
2950 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
2955 defer_incomplete_level++, this_deferred = true;
2957 /* Get the base type initially for its alignment and sizes. But
2958 if it is a padded type, we do all the other work with the
2960 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
2962 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
2963 && TYPE_IS_PADDING_P (gnu_base_type))
2964 gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
2966 gnu_type = gnu_orig_type = gnu_base_type;
2968 if (present_gnu_tree (gnat_entity))
2970 maybe_present = true;
2974 /* When the type has discriminants, and these discriminants
2975 affect the shape of what it built, factor them in.
2977 If we are making a subtype of an Unchecked_Union (must be an
2978 Itype), just return the type.
2980 We can't just use Is_Constrained because private subtypes without
2981 discriminants of full types with discriminants with default
2982 expressions are Is_Constrained but aren't constrained! */
2984 if (IN (Ekind (gnat_base_type), Record_Kind)
2985 && !Is_For_Access_Subtype (gnat_entity)
2986 && !Is_Unchecked_Union (gnat_base_type)
2987 && Is_Constrained (gnat_entity)
2988 && Stored_Constraint (gnat_entity) != No_Elist
2989 && Present (Discriminant_Constraint (gnat_entity)))
2991 Entity_Id gnat_field;
2992 tree gnu_field_list = 0;
2994 = compute_field_positions (gnu_orig_type, NULL_TREE,
2995 size_zero_node, bitsize_zero_node,
2998 = substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
3002 gnu_type = make_node (RECORD_TYPE);
3003 TYPE_NAME (gnu_type) = gnu_entity_id;
3004 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
3006 /* Set the size, alignment and alias set of the new type to
3007 match that of the old one, doing required substitutions.
3008 We do it this early because we need the size of the new
3009 type below to discard old fields if necessary. */
3010 TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
3011 TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
3012 SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
3013 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
3014 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
3016 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
3017 for (gnu_temp = gnu_subst_list;
3018 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3019 TYPE_SIZE (gnu_type)
3020 = substitute_in_expr (TYPE_SIZE (gnu_type),
3021 TREE_PURPOSE (gnu_temp),
3022 TREE_VALUE (gnu_temp));
3024 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
3025 for (gnu_temp = gnu_subst_list;
3026 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3027 TYPE_SIZE_UNIT (gnu_type)
3028 = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
3029 TREE_PURPOSE (gnu_temp),
3030 TREE_VALUE (gnu_temp));
3032 if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
3033 for (gnu_temp = gnu_subst_list;
3034 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3036 (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
3037 TREE_PURPOSE (gnu_temp),
3038 TREE_VALUE (gnu_temp)));
3040 for (gnat_field = First_Entity (gnat_entity);
3041 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3042 if ((Ekind (gnat_field) == E_Component
3043 || Ekind (gnat_field) == E_Discriminant)
3044 && (Underlying_Type (Scope (Original_Record_Component
3047 && (No (Corresponding_Discriminant (gnat_field))
3048 || !Is_Tagged_Type (gnat_base_type)))
3051 = gnat_to_gnu_field_decl (Original_Record_Component
3054 = TREE_VALUE (purpose_member (gnu_old_field,
3056 tree gnu_pos = TREE_PURPOSE (gnu_offset);
3057 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
3059 = gnat_to_gnu_type (Etype (gnat_field));
3060 tree gnu_size = TYPE_SIZE (gnu_field_type);
3061 tree gnu_new_pos = NULL_TREE;
3062 unsigned int offset_align
3063 = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)),
3067 /* If there was a component clause, the field types must be
3068 the same for the type and subtype, so copy the data from
3069 the old field to avoid recomputation here. Also if the
3070 field is justified modular and the optimization in
3071 gnat_to_gnu_field was applied. */
3072 if (Present (Component_Clause
3073 (Original_Record_Component (gnat_field)))
3074 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
3075 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
3076 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
3077 == TREE_TYPE (gnu_old_field)))
3079 gnu_size = DECL_SIZE (gnu_old_field);
3080 gnu_field_type = TREE_TYPE (gnu_old_field);
3083 /* If the old field was packed and of constant size, we
3084 have to get the old size here, as it might differ from
3085 what the Etype conveys and the latter might overlap
3086 onto the following field. Try to arrange the type for
3087 possible better packing along the way. */
3088 else if (DECL_PACKED (gnu_old_field)
3089 && TREE_CODE (DECL_SIZE (gnu_old_field))
3092 gnu_size = DECL_SIZE (gnu_old_field);
3093 if (TREE_CODE (gnu_field_type) == RECORD_TYPE
3094 && !TYPE_IS_FAT_POINTER_P (gnu_field_type)
3095 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
3097 = make_packable_type (gnu_field_type, true);
3100 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
3101 for (gnu_temp = gnu_subst_list;
3102 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3103 gnu_pos = substitute_in_expr (gnu_pos,
3104 TREE_PURPOSE (gnu_temp),
3105 TREE_VALUE (gnu_temp));
3107 /* If the position is now a constant, we can set it as the
3108 position of the field when we make it. Otherwise, we need
3109 to deal with it specially below. */
3110 if (TREE_CONSTANT (gnu_pos))
3112 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
3114 /* Discard old fields that are outside the new type.
3115 This avoids confusing code scanning it to decide
3116 how to pass it to functions on some platforms. */
3117 if (TREE_CODE (gnu_new_pos) == INTEGER_CST
3118 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST
3119 && !integer_zerop (gnu_size)
3120 && !tree_int_cst_lt (gnu_new_pos,
3121 TYPE_SIZE (gnu_type)))
3127 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
3128 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
3129 !DECL_NONADDRESSABLE_P (gnu_old_field));
3131 if (!TREE_CONSTANT (gnu_pos))
3133 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
3134 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
3135 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
3136 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
3137 DECL_SIZE (gnu_field) = gnu_size;
3138 DECL_SIZE_UNIT (gnu_field)
3139 = convert (sizetype,
3140 size_binop (CEIL_DIV_EXPR, gnu_size,
3141 bitsize_unit_node));
3142 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
3145 DECL_INTERNAL_P (gnu_field)
3146 = DECL_INTERNAL_P (gnu_old_field);
3147 SET_DECL_ORIGINAL_FIELD
3148 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
3149 ? DECL_ORIGINAL_FIELD (gnu_old_field)
3151 DECL_DISCRIMINANT_NUMBER (gnu_field)
3152 = DECL_DISCRIMINANT_NUMBER (gnu_old_field);
3153 TREE_THIS_VOLATILE (gnu_field)
3154 = TREE_THIS_VOLATILE (gnu_old_field);
3156 /* To match the layout crafted in components_to_record, if
3157 this is the _Tag field, put it before any discriminants
3158 instead of after them as for all other fields. */
3159 if (Chars (gnat_field) == Name_uTag)
3160 gnu_field_list = chainon (gnu_field_list, gnu_field);
3163 TREE_CHAIN (gnu_field) = gnu_field_list;
3164 gnu_field_list = gnu_field;
3167 save_gnu_tree (gnat_field, gnu_field, false);
3170 /* Now go through the entities again looking for Itypes that
3171 we have not elaborated but should (e.g., Etypes of fields
3172 that have Original_Components). */
3173 for (gnat_field = First_Entity (gnat_entity);
3174 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3175 if ((Ekind (gnat_field) == E_Discriminant
3176 || Ekind (gnat_field) == E_Component)
3177 && !present_gnu_tree (Etype (gnat_field)))
3178 gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, 0);
3180 /* Do not finalize it since we're going to modify it below. */
3181 gnu_field_list = nreverse (gnu_field_list);
3182 finish_record_type (gnu_type, gnu_field_list, 2, true);
3184 /* Finalize size and mode. */
3185 TYPE_SIZE (gnu_type) = variable_size (TYPE_SIZE (gnu_type));
3186 TYPE_SIZE_UNIT (gnu_type)
3187 = variable_size (TYPE_SIZE_UNIT (gnu_type));
3189 compute_record_mode (gnu_type);
3191 /* Fill in locations of fields. */
3192 annotate_rep (gnat_entity, gnu_type);
3194 /* We've built a new type, make an XVS type to show what this
3195 is a subtype of. Some debuggers require the XVS type to be
3196 output first, so do it in that order. */
3199 tree gnu_subtype_marker = make_node (RECORD_TYPE);
3200 tree gnu_orig_name = TYPE_NAME (gnu_orig_type);
3202 if (TREE_CODE (gnu_orig_name) == TYPE_DECL)
3203 gnu_orig_name = DECL_NAME (gnu_orig_name);
3205 TYPE_NAME (gnu_subtype_marker)
3206 = create_concat_name (gnat_entity, "XVS");
3207 finish_record_type (gnu_subtype_marker,
3208 create_field_decl (gnu_orig_name,
3215 add_parallel_type (TYPE_STUB_DECL (gnu_type),
3216 gnu_subtype_marker);
3219 /* Now we can finalize it. */
3220 rest_of_record_type_compilation (gnu_type);
3223 /* Otherwise, go down all the components in the new type and
3224 make them equivalent to those in the base type. */
3226 for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
3227 gnat_temp = Next_Entity (gnat_temp))
3228 if ((Ekind (gnat_temp) == E_Discriminant
3229 && !Is_Unchecked_Union (gnat_base_type))
3230 || Ekind (gnat_temp) == E_Component)
3231 save_gnu_tree (gnat_temp,
3232 gnat_to_gnu_field_decl
3233 (Original_Record_Component (gnat_temp)), false);
3237 case E_Access_Subprogram_Type:
3238 /* Use the special descriptor type for dispatch tables if needed,
3239 that is to say for the Prim_Ptr of a-tags.ads and its clones.
3240 Note that we are only required to do so for static tables in
3241 order to be compatible with the C++ ABI, but Ada 2005 allows
3242 to extend library level tagged types at the local level so
3243 we do it in the non-static case as well. */
3244 if (TARGET_VTABLE_USES_DESCRIPTORS
3245 && Is_Dispatch_Table_Entity (gnat_entity))
3247 gnu_type = fdesc_type_node;
3248 gnu_size = TYPE_SIZE (gnu_type);
3252 /* ... fall through ... */
3254 case E_Anonymous_Access_Subprogram_Type:
3255 /* If we are not defining this entity, and we have incomplete
3256 entities being processed above us, make a dummy type and
3257 fill it in later. */
3258 if (!definition && defer_incomplete_level != 0)
3260 struct incomplete *p
3261 = (struct incomplete *) xmalloc (sizeof (struct incomplete));
3264 = build_pointer_type
3265 (make_dummy_type (Directly_Designated_Type (gnat_entity)));
3266 gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
3267 !Comes_From_Source (gnat_entity),
3268 debug_info_p, gnat_entity);