1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2009, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
56 #ifndef MAX_FIXED_MODE_SIZE
57 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
60 /* Convention_Stdcall should be processed in a specific way on Windows targets
61 only. The macro below is a helper to avoid having to check for a Windows
62 specific attribute throughout this unit. */
64 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
65 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
67 #define Has_Stdcall_Convention(E) (0)
70 /* Stack realignment for functions with foreign conventions is provided on a
71 per back-end basis now, as it is handled by the prologue expanders and not
72 as part of the function's body any more. It might be requested by way of a
73 dedicated function type attribute on the targets that support it.
75 We need a way to avoid setting the attribute on the targets that don't
76 support it and use FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN for this purpose.
78 It is defined on targets where the circuitry is available, and indicates
79 whether the realignment is needed for 'main'. We use this to decide for
80 foreign subprograms as well.
82 It is not defined on targets where the circuitry is not implemented, and
83 we just never set the attribute in these cases.
85 Whether it is defined on all targets that would need it in theory is
86 not entirely clear. We currently trust the base GCC settings for this
89 #ifndef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
90 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN 0
95 struct incomplete *next;
100 /* These variables are used to defer recursively expanding incomplete types
101 while we are processing an array, a record or a subprogram type. */
102 static int defer_incomplete_level = 0;
103 static struct incomplete *defer_incomplete_list;
105 /* This variable is used to delay expanding From_With_Type types until the
107 static struct incomplete *defer_limited_with;
109 /* These variables are used to defer finalizing types. The element of the
110 list is the TYPE_DECL associated with the type. */
111 static int defer_finalize_level = 0;
112 static VEC (tree,heap) *defer_finalize_list;
114 /* A hash table used to cache the result of annotate_value. */
115 static GTY ((if_marked ("tree_int_map_marked_p"),
116 param_is (struct tree_int_map))) htab_t annotate_value_cache;
125 static void relate_alias_sets (tree, tree, enum alias_set_op);
127 static tree substitution_list (Entity_Id, Entity_Id, tree, bool);
128 static bool allocatable_size_p (tree, bool);
129 static void prepend_one_attribute_to (struct attrib **,
130 enum attr_type, tree, tree, Node_Id);
131 static void prepend_attributes (Entity_Id, struct attrib **);
132 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
133 static bool is_variable_size (tree);
134 static tree elaborate_expression_1 (Node_Id, Entity_Id, tree, tree,
136 static tree make_packable_type (tree, bool);
137 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
138 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
140 static bool same_discriminant_p (Entity_Id, Entity_Id);
141 static bool array_type_has_nonaliased_component (Entity_Id, tree);
142 static bool compile_time_known_address_p (Node_Id);
143 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
144 bool, bool, bool, bool);
145 static Uint annotate_value (tree);
146 static void annotate_rep (Entity_Id, tree);
147 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
148 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
149 static void set_rm_size (Uint, tree, Entity_Id);
150 static tree make_type_from_size (tree, tree, bool);
151 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
152 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
153 static void check_ok_for_atomic (tree, Entity_Id, bool);
154 static int compatible_signatures_p (tree ftype1, tree ftype2);
155 static void rest_of_type_decl_compilation_no_defer (tree);
157 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
158 entity, return the equivalent GCC tree for that entity (a ..._DECL node)
159 and associate the ..._DECL node with the input GNAT defining identifier.
161 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
162 initial value (in GCC tree form). This is optional for a variable. For
163 a renamed entity, GNU_EXPR gives the object being renamed.
165 DEFINITION is nonzero if this call is intended for a definition. This is
166 used for separate compilation where it is necessary to know whether an
167 external declaration or a definition must be created if the GCC equivalent
168 was not created previously. The value of 1 is normally used for a nonzero
169 DEFINITION, but a value of 2 is used in special circumstances, defined in
173 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
175 /* Contains the kind of the input GNAT node. */
176 const Entity_Kind kind = Ekind (gnat_entity);
177 /* True if this is a type. */
178 const bool is_type = IN (kind, Type_Kind);
179 /* For a type, contains the equivalent GNAT node to be used in gigi. */
180 Entity_Id gnat_equiv_type = Empty;
181 /* Temporary used to walk the GNAT tree. */
183 /* Contains the GCC DECL node which is equivalent to the input GNAT node.
184 This node will be associated with the GNAT node by calling at the end
185 of the `switch' statement. */
186 tree gnu_decl = NULL_TREE;
187 /* Contains the GCC type to be used for the GCC node. */
188 tree gnu_type = NULL_TREE;
189 /* Contains the GCC size tree to be used for the GCC node. */
190 tree gnu_size = NULL_TREE;
191 /* Contains the GCC name to be used for the GCC node. */
192 tree gnu_entity_name;
193 /* True if we have already saved gnu_decl as a GNAT association. */
195 /* True if we incremented defer_incomplete_level. */
196 bool this_deferred = false;
197 /* True if we incremented force_global. */
198 bool this_global = false;
199 /* True if we should check to see if elaborated during processing. */
200 bool maybe_present = false;
201 /* True if we made GNU_DECL and its type here. */
202 bool this_made_decl = false;
203 /* True if debug info is requested for this entity. */
204 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
205 || debug_info_level == DINFO_LEVEL_VERBOSE);
206 /* True if this entity is to be considered as imported. */
207 bool imported_p = (Is_Imported (gnat_entity)
208 && No (Address_Clause (gnat_entity)));
209 /* Size and alignment of the GCC node, if meaningful. */
210 unsigned int esize = 0, align = 0;
211 /* Contains the list of attributes directly attached to the entity. */
212 struct attrib *attr_list = NULL;
214 /* Since a use of an Itype is a definition, process it as such if it
215 is not in a with'ed unit. */
218 && Is_Itype (gnat_entity)
219 && !present_gnu_tree (gnat_entity)
220 && In_Extended_Main_Code_Unit (gnat_entity))
222 /* Ensure that we are in a subprogram mentioned in the Scope chain of
223 this entity, our current scope is global, or we encountered a task
224 or entry (where we can't currently accurately check scoping). */
225 if (!current_function_decl
226 || DECL_ELABORATION_PROC_P (current_function_decl))
228 process_type (gnat_entity);
229 return get_gnu_tree (gnat_entity);
232 for (gnat_temp = Scope (gnat_entity);
234 gnat_temp = Scope (gnat_temp))
236 if (Is_Type (gnat_temp))
237 gnat_temp = Underlying_Type (gnat_temp);
239 if (Ekind (gnat_temp) == E_Subprogram_Body)
241 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
243 if (IN (Ekind (gnat_temp), Subprogram_Kind)
244 && Present (Protected_Body_Subprogram (gnat_temp)))
245 gnat_temp = Protected_Body_Subprogram (gnat_temp);
247 if (Ekind (gnat_temp) == E_Entry
248 || Ekind (gnat_temp) == E_Entry_Family
249 || Ekind (gnat_temp) == E_Task_Type
250 || (IN (Ekind (gnat_temp), Subprogram_Kind)
251 && present_gnu_tree (gnat_temp)
252 && (current_function_decl
253 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
255 process_type (gnat_entity);
256 return get_gnu_tree (gnat_entity);
260 /* This abort means the Itype has an incorrect scope, i.e. that its
261 scope does not correspond to the subprogram it is declared in. */
265 /* If we've already processed this entity, return what we got last time.
266 If we are defining the node, we should not have already processed it.
267 In that case, we will abort below when we try to save a new GCC tree
268 for this object. We also need to handle the case of getting a dummy
269 type when a Full_View exists. */
270 if ((!definition || (is_type && imported_p))
271 && present_gnu_tree (gnat_entity))
273 gnu_decl = get_gnu_tree (gnat_entity);
275 if (TREE_CODE (gnu_decl) == TYPE_DECL
276 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
277 && IN (kind, Incomplete_Or_Private_Kind)
278 && Present (Full_View (gnat_entity)))
281 = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0);
282 save_gnu_tree (gnat_entity, NULL_TREE, false);
283 save_gnu_tree (gnat_entity, gnu_decl, false);
289 /* If this is a numeric or enumeral type, or an access type, a nonzero
290 Esize must be specified unless it was specified by the programmer. */
291 gcc_assert (!Unknown_Esize (gnat_entity)
292 || Has_Size_Clause (gnat_entity)
293 || (!IN (kind, Numeric_Kind)
294 && !IN (kind, Enumeration_Kind)
295 && (!IN (kind, Access_Kind)
296 || kind == E_Access_Protected_Subprogram_Type
297 || kind == E_Anonymous_Access_Protected_Subprogram_Type
298 || kind == E_Access_Subtype)));
300 /* The RM size must be specified for all discrete and fixed-point types. */
301 gcc_assert (!(IN (kind, Discrete_Or_Fixed_Point_Kind)
302 && Unknown_RM_Size (gnat_entity)));
304 /* If we get here, it means we have not yet done anything with this entity.
305 If we are not defining it, it must be a type or an entity that is defined
306 elsewhere or externally, otherwise we should have defined it already. */
307 gcc_assert (definition
308 || type_annotate_only
310 || kind == E_Discriminant
311 || kind == E_Component
313 || (kind == E_Constant && Present (Full_View (gnat_entity)))
314 || Is_Public (gnat_entity));
316 /* Get the name of the entity and set up the line number and filename of
317 the original definition for use in any decl we make. */
318 gnu_entity_name = get_entity_name (gnat_entity);
319 Sloc_to_locus (Sloc (gnat_entity), &input_location);
321 /* For cases when we are not defining (i.e., we are referencing from
322 another compilation unit) public entities, show we are at global level
323 for the purpose of computing scopes. Don't do this for components or
324 discriminants since the relevant test is whether or not the record is
327 && kind != E_Component
328 && kind != E_Discriminant
329 && Is_Public (gnat_entity)
330 && !Is_Statically_Allocated (gnat_entity))
331 force_global++, this_global = true;
333 /* Handle any attributes directly attached to the entity. */
334 if (Has_Gigi_Rep_Item (gnat_entity))
335 prepend_attributes (gnat_entity, &attr_list);
337 /* Do some common processing for types. */
340 /* Compute the equivalent type to be used in gigi. */
341 gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
343 /* Machine_Attributes on types are expected to be propagated to
344 subtypes. The corresponding Gigi_Rep_Items are only attached
345 to the first subtype though, so we handle the propagation here. */
346 if (Base_Type (gnat_entity) != gnat_entity
347 && !Is_First_Subtype (gnat_entity)
348 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
349 prepend_attributes (First_Subtype (Base_Type (gnat_entity)),
352 /* Compute a default value for the size of the type. */
353 if (Known_Esize (gnat_entity)
354 && UI_Is_In_Int_Range (Esize (gnat_entity)))
356 unsigned int max_esize;
357 esize = UI_To_Int (Esize (gnat_entity));
359 if (IN (kind, Float_Kind))
360 max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
361 else if (IN (kind, Access_Kind))
362 max_esize = POINTER_SIZE * 2;
364 max_esize = LONG_LONG_TYPE_SIZE;
366 if (esize > max_esize)
370 esize = LONG_LONG_TYPE_SIZE;
376 /* If this is a use of a deferred constant without address clause,
377 get its full definition. */
379 && No (Address_Clause (gnat_entity))
380 && Present (Full_View (gnat_entity)))
383 = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, 0);
388 /* If we have an external constant that we are not defining, get the
389 expression that is was defined to represent. We may throw that
390 expression away later if it is not a constant. Do not retrieve the
391 expression if it is an aggregate or allocator, because in complex
392 instantiation contexts it may not be expanded */
394 && Present (Expression (Declaration_Node (gnat_entity)))
395 && !No_Initialization (Declaration_Node (gnat_entity))
396 && (Nkind (Expression (Declaration_Node (gnat_entity)))
398 && (Nkind (Expression (Declaration_Node (gnat_entity)))
400 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
402 /* Ignore deferred constant definitions without address clause since
403 they are processed fully in the front-end. If No_Initialization
404 is set, this is not a deferred constant but a constant whose value
405 is built manually. And constants that are renamings are handled
409 && No (Address_Clause (gnat_entity))
410 && !No_Initialization (Declaration_Node (gnat_entity))
411 && No (Renamed_Object (gnat_entity)))
413 gnu_decl = error_mark_node;
418 /* Ignore constant definitions already marked with the error node. See
419 the N_Object_Declaration case of gnat_to_gnu for the rationale. */
422 && present_gnu_tree (gnat_entity)
423 && get_gnu_tree (gnat_entity) == error_mark_node)
425 maybe_present = true;
432 /* We used to special case VMS exceptions here to directly map them to
433 their associated condition code. Since this code had to be masked
434 dynamically to strip off the severity bits, this caused trouble in
435 the GCC/ZCX case because the "type" pointers we store in the tables
436 have to be static. We now don't special case here anymore, and let
437 the regular processing take place, which leaves us with a regular
438 exception data object for VMS exceptions too. The condition code
439 mapping is taken care of by the front end and the bitmasking by the
446 /* The GNAT record where the component was defined. */
447 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
449 /* If the variable is an inherited record component (in the case of
450 extended record types), just return the inherited entity, which
451 must be a FIELD_DECL. Likewise for discriminants.
452 For discriminants of untagged records which have explicit
453 stored discriminants, return the entity for the corresponding
454 stored discriminant. Also use Original_Record_Component
455 if the record has a private extension. */
456 if (Present (Original_Record_Component (gnat_entity))
457 && Original_Record_Component (gnat_entity) != gnat_entity)
460 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
461 gnu_expr, definition);
466 /* If the enclosing record has explicit stored discriminants,
467 then it is an untagged record. If the Corresponding_Discriminant
468 is not empty then this must be a renamed discriminant and its
469 Original_Record_Component must point to the corresponding explicit
470 stored discriminant (i.e. we should have taken the previous
472 else if (Present (Corresponding_Discriminant (gnat_entity))
473 && Is_Tagged_Type (gnat_record))
475 /* A tagged record has no explicit stored discriminants. */
476 gcc_assert (First_Discriminant (gnat_record)
477 == First_Stored_Discriminant (gnat_record));
479 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
480 gnu_expr, definition);
485 else if (Present (CR_Discriminant (gnat_entity))
486 && type_annotate_only)
488 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
489 gnu_expr, definition);
494 /* If the enclosing record has explicit stored discriminants, then
495 it is an untagged record. If the Corresponding_Discriminant
496 is not empty then this must be a renamed discriminant and its
497 Original_Record_Component must point to the corresponding explicit
498 stored discriminant (i.e. we should have taken the first
500 else if (Present (Corresponding_Discriminant (gnat_entity))
501 && (First_Discriminant (gnat_record)
502 != First_Stored_Discriminant (gnat_record)))
505 /* Otherwise, if we are not defining this and we have no GCC type
506 for the containing record, make one for it. Then we should
507 have made our own equivalent. */
508 else if (!definition && !present_gnu_tree (gnat_record))
510 /* ??? If this is in a record whose scope is a protected
511 type and we have an Original_Record_Component, use it.
512 This is a workaround for major problems in protected type
514 Entity_Id Scop = Scope (Scope (gnat_entity));
515 if ((Is_Protected_Type (Scop)
516 || (Is_Private_Type (Scop)
517 && Present (Full_View (Scop))
518 && Is_Protected_Type (Full_View (Scop))))
519 && Present (Original_Record_Component (gnat_entity)))
522 = gnat_to_gnu_entity (Original_Record_Component
529 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
530 gnu_decl = get_gnu_tree (gnat_entity);
536 /* Here we have no GCC type and this is a reference rather than a
537 definition. This should never happen. Most likely the cause is
538 reference before declaration in the gnat tree for gnat_entity. */
542 case E_Loop_Parameter:
543 case E_Out_Parameter:
546 /* Simple variables, loop variables, Out parameters, and exceptions. */
549 bool used_by_ref = false;
551 = ((kind == E_Constant || kind == E_Variable)
552 && Is_True_Constant (gnat_entity)
553 && !Treat_As_Volatile (gnat_entity)
554 && (((Nkind (Declaration_Node (gnat_entity))
555 == N_Object_Declaration)
556 && Present (Expression (Declaration_Node (gnat_entity))))
557 || Present (Renamed_Object (gnat_entity))));
558 bool inner_const_flag = const_flag;
559 bool static_p = Is_Statically_Allocated (gnat_entity);
560 bool mutable_p = false;
561 tree gnu_ext_name = NULL_TREE;
562 tree renamed_obj = NULL_TREE;
563 tree gnu_object_size;
565 if (Present (Renamed_Object (gnat_entity)) && !definition)
567 if (kind == E_Exception)
568 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
571 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
574 /* Get the type after elaborating the renamed object. */
575 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
577 /* For a debug renaming declaration, build a pure debug entity. */
578 if (Present (Debug_Renaming_Link (gnat_entity)))
581 gnu_decl = build_decl (VAR_DECL, gnu_entity_name, gnu_type);
582 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
583 if (global_bindings_p ())
584 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
586 addr = stack_pointer_rtx;
587 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
588 gnat_pushdecl (gnu_decl, gnat_entity);
592 /* If this is a loop variable, its type should be the base type.
593 This is because the code for processing a loop determines whether
594 a normal loop end test can be done by comparing the bounds of the
595 loop against those of the base type, which is presumed to be the
596 size used for computation. But this is not correct when the size
597 of the subtype is smaller than the type. */
598 if (kind == E_Loop_Parameter)
599 gnu_type = get_base_type (gnu_type);
601 /* Reject non-renamed objects whose types are unconstrained arrays or
602 any object whose type is a dummy type or VOID_TYPE. */
604 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
605 && No (Renamed_Object (gnat_entity)))
606 || TYPE_IS_DUMMY_P (gnu_type)
607 || TREE_CODE (gnu_type) == VOID_TYPE)
609 gcc_assert (type_annotate_only);
612 return error_mark_node;
615 /* If an alignment is specified, use it if valid. Note that
616 exceptions are objects but don't have alignments. We must do this
617 before we validate the size, since the alignment can affect the
619 if (kind != E_Exception && Known_Alignment (gnat_entity))
621 gcc_assert (Present (Alignment (gnat_entity)));
622 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
623 TYPE_ALIGN (gnu_type));
624 gnu_type = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
625 "PAD", false, definition, true);
628 /* If we are defining the object, see if it has a Size value and
629 validate it if so. If we are not defining the object and a Size
630 clause applies, simply retrieve the value. We don't want to ignore
631 the clause and it is expected to have been validated already. Then
632 get the new type, if any. */
634 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
635 gnat_entity, VAR_DECL, false,
636 Has_Size_Clause (gnat_entity));
637 else if (Has_Size_Clause (gnat_entity))
638 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
643 = make_type_from_size (gnu_type, gnu_size,
644 Has_Biased_Representation (gnat_entity));
646 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
647 gnu_size = NULL_TREE;
650 /* If this object has self-referential size, it must be a record with
651 a default value. We are supposed to allocate an object of the
652 maximum size in this case unless it is a constant with an
653 initializing expression, in which case we can get the size from
654 that. Note that the resulting size may still be a variable, so
655 this may end up with an indirect allocation. */
656 if (No (Renamed_Object (gnat_entity))
657 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
659 if (gnu_expr && kind == E_Constant)
661 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
662 if (CONTAINS_PLACEHOLDER_P (size))
664 /* If the initializing expression is itself a constant,
665 despite having a nominal type with self-referential
666 size, we can get the size directly from it. */
667 if (TREE_CODE (gnu_expr) == COMPONENT_REF
668 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
671 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
672 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
673 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
674 || DECL_READONLY_ONCE_ELAB
675 (TREE_OPERAND (gnu_expr, 0))))
676 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
679 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
684 /* We may have no GNU_EXPR because No_Initialization is
685 set even though there's an Expression. */
686 else if (kind == E_Constant
687 && (Nkind (Declaration_Node (gnat_entity))
688 == N_Object_Declaration)
689 && Present (Expression (Declaration_Node (gnat_entity))))
691 = TYPE_SIZE (gnat_to_gnu_type
693 (Expression (Declaration_Node (gnat_entity)))));
696 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
701 /* If the size is zero bytes, make it one byte since some linkers have
702 trouble with zero-sized objects. If the object will have a
703 template, that will make it nonzero so don't bother. Also avoid
704 doing that for an object renaming or an object with an address
705 clause, as we would lose useful information on the view size
706 (e.g. for null array slices) and we are not allocating the object
709 && integer_zerop (gnu_size)
710 && !TREE_OVERFLOW (gnu_size))
711 || (TYPE_SIZE (gnu_type)
712 && integer_zerop (TYPE_SIZE (gnu_type))
713 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
714 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
715 || !Is_Array_Type (Etype (gnat_entity)))
716 && No (Renamed_Object (gnat_entity))
717 && No (Address_Clause (gnat_entity)))
718 gnu_size = bitsize_unit_node;
720 /* If this is an object with no specified size and alignment, and
721 if either it is atomic or we are not optimizing alignment for
722 space and it is composite and not an exception, an Out parameter
723 or a reference to another object, and the size of its type is a
724 constant, set the alignment to the smallest one which is not
725 smaller than the size, with an appropriate cap. */
726 if (!gnu_size && align == 0
727 && (Is_Atomic (gnat_entity)
728 || (!Optimize_Alignment_Space (gnat_entity)
729 && kind != E_Exception
730 && kind != E_Out_Parameter
731 && Is_Composite_Type (Etype (gnat_entity))
732 && !Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
734 && No (Renamed_Object (gnat_entity))
735 && No (Address_Clause (gnat_entity))))
736 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
738 /* No point in jumping through all the hoops needed in order
739 to support BIGGEST_ALIGNMENT if we don't really have to.
740 So we cap to the smallest alignment that corresponds to
741 a known efficient memory access pattern of the target. */
742 unsigned int align_cap = Is_Atomic (gnat_entity)
744 : get_mode_alignment (ptr_mode);
746 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
747 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
750 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
752 /* But make sure not to under-align the object. */
753 if (align <= TYPE_ALIGN (gnu_type))
756 /* And honor the minimum valid atomic alignment, if any. */
757 #ifdef MINIMUM_ATOMIC_ALIGNMENT
758 else if (align < MINIMUM_ATOMIC_ALIGNMENT)
759 align = MINIMUM_ATOMIC_ALIGNMENT;
763 /* If the object is set to have atomic components, find the component
764 type and validate it.
766 ??? Note that we ignore Has_Volatile_Components on objects; it's
767 not at all clear what to do in that case. */
769 if (Has_Atomic_Components (gnat_entity))
771 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
772 ? TREE_TYPE (gnu_type) : gnu_type);
774 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
775 && TYPE_MULTI_ARRAY_P (gnu_inner))
776 gnu_inner = TREE_TYPE (gnu_inner);
778 check_ok_for_atomic (gnu_inner, gnat_entity, true);
781 /* Now check if the type of the object allows atomic access. Note
782 that we must test the type, even if this object has size and
783 alignment to allow such access, because we will be going
784 inside the padded record to assign to the object. We could fix
785 this by always copying via an intermediate value, but it's not
786 clear it's worth the effort. */
787 if (Is_Atomic (gnat_entity))
788 check_ok_for_atomic (gnu_type, gnat_entity, false);
790 /* If this is an aliased object with an unconstrained nominal subtype,
791 make a type that includes the template. */
792 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
793 && Is_Array_Type (Etype (gnat_entity))
794 && !type_annotate_only)
797 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
800 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
801 concat_name (gnu_entity_name,
805 #ifdef MINIMUM_ATOMIC_ALIGNMENT
806 /* If the size is a constant and no alignment is specified, force
807 the alignment to be the minimum valid atomic alignment. The
808 restriction on constant size avoids problems with variable-size
809 temporaries; if the size is variable, there's no issue with
810 atomic access. Also don't do this for a constant, since it isn't
811 necessary and can interfere with constant replacement. Finally,
812 do not do it for Out parameters since that creates an
813 size inconsistency with In parameters. */
814 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
815 && !FLOAT_TYPE_P (gnu_type)
816 && !const_flag && No (Renamed_Object (gnat_entity))
817 && !imported_p && No (Address_Clause (gnat_entity))
818 && kind != E_Out_Parameter
819 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
820 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
821 align = MINIMUM_ATOMIC_ALIGNMENT;
824 /* Make a new type with the desired size and alignment, if needed.
825 But do not take into account alignment promotions to compute the
826 size of the object. */
827 gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
828 if (gnu_size || align > 0)
829 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
830 "PAD", false, definition,
831 gnu_size ? true : false);
833 /* If this is a renaming, avoid as much as possible to create a new
834 object. However, in several cases, creating it is required.
835 This processing needs to be applied to the raw expression so
836 as to make it more likely to rename the underlying object. */
837 if (Present (Renamed_Object (gnat_entity)))
839 bool create_normal_object = false;
841 /* If the renamed object had padding, strip off the reference
842 to the inner object and reset our type. */
843 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
844 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
846 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
847 /* Strip useless conversions around the object. */
848 || (TREE_CODE (gnu_expr) == NOP_EXPR
849 && gnat_types_compatible_p
850 (TREE_TYPE (gnu_expr),
851 TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))))
853 gnu_expr = TREE_OPERAND (gnu_expr, 0);
854 gnu_type = TREE_TYPE (gnu_expr);
857 /* Case 1: If this is a constant renaming stemming from a function
858 call, treat it as a normal object whose initial value is what
859 is being renamed. RM 3.3 says that the result of evaluating a
860 function call is a constant object. As a consequence, it can
861 be the inner object of a constant renaming. In this case, the
862 renaming must be fully instantiated, i.e. it cannot be a mere
863 reference to (part of) an existing object. */
866 tree inner_object = gnu_expr;
867 while (handled_component_p (inner_object))
868 inner_object = TREE_OPERAND (inner_object, 0);
869 if (TREE_CODE (inner_object) == CALL_EXPR)
870 create_normal_object = true;
873 /* Otherwise, see if we can proceed with a stabilized version of
874 the renamed entity or if we need to make a new object. */
875 if (!create_normal_object)
877 tree maybe_stable_expr = NULL_TREE;
880 /* Case 2: If the renaming entity need not be materialized and
881 the renamed expression is something we can stabilize, use
882 that for the renaming. At the global level, we can only do
883 this if we know no SAVE_EXPRs need be made, because the
884 expression we return might be used in arbitrary conditional
885 branches so we must force the SAVE_EXPRs evaluation
886 immediately and this requires a function context. */
887 if (!Materialize_Entity (gnat_entity)
888 && (!global_bindings_p ()
889 || (staticp (gnu_expr)
890 && !TREE_SIDE_EFFECTS (gnu_expr))))
893 = maybe_stabilize_reference (gnu_expr, true, &stable);
897 gnu_decl = maybe_stable_expr;
898 /* ??? No DECL_EXPR is created so we need to mark
899 the expression manually lest it is shared. */
900 if (global_bindings_p ())
901 mark_visited (&gnu_decl);
902 save_gnu_tree (gnat_entity, gnu_decl, true);
907 /* The stabilization failed. Keep maybe_stable_expr
908 untouched here to let the pointer case below know
909 about that failure. */
912 /* Case 3: If this is a constant renaming and creating a
913 new object is allowed and cheap, treat it as a normal
914 object whose initial value is what is being renamed. */
916 && !Is_Composite_Type
917 (Underlying_Type (Etype (gnat_entity))))
920 /* Case 4: Make this into a constant pointer to the object we
921 are to rename and attach the object to the pointer if it is
922 something we can stabilize.
924 From the proper scope, attached objects will be referenced
925 directly instead of indirectly via the pointer to avoid
926 subtle aliasing problems with non-addressable entities.
927 They have to be stable because we must not evaluate the
928 variables in the expression every time the renaming is used.
929 The pointer is called a "renaming" pointer in this case.
931 In the rare cases where we cannot stabilize the renamed
932 object, we just make a "bare" pointer, and the renamed
933 entity is always accessed indirectly through it. */
936 gnu_type = build_reference_type (gnu_type);
937 inner_const_flag = TREE_READONLY (gnu_expr);
940 /* If the previous attempt at stabilizing failed, there
941 is no point in trying again and we reuse the result
942 without attaching it to the pointer. In this case it
943 will only be used as the initializing expression of
944 the pointer and thus needs no special treatment with
945 regard to multiple evaluations. */
946 if (maybe_stable_expr)
949 /* Otherwise, try to stabilize and attach the expression
950 to the pointer if the stabilization succeeds.
952 Note that this might introduce SAVE_EXPRs and we don't
953 check whether we're at the global level or not. This
954 is fine since we are building a pointer initializer and
955 neither the pointer nor the initializing expression can
956 be accessed before the pointer elaboration has taken
957 place in a correct program.
959 These SAVE_EXPRs will be evaluated at the right place
960 by either the evaluation of the initializer for the
961 non-global case or the elaboration code for the global
962 case, and will be attached to the elaboration procedure
963 in the latter case. */
967 = maybe_stabilize_reference (gnu_expr, true, &stable);
970 renamed_obj = maybe_stable_expr;
972 /* Attaching is actually performed downstream, as soon
973 as we have a VAR_DECL for the pointer we make. */
977 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
979 gnu_size = NULL_TREE;
985 /* Make a volatile version of this object's type if we are to make
986 the object volatile. We also interpret 13.3(19) conservatively
987 and disallow any optimizations for such a non-constant object. */
988 if ((Treat_As_Volatile (gnat_entity)
990 && (Is_Exported (gnat_entity)
991 || Is_Imported (gnat_entity)
992 || Present (Address_Clause (gnat_entity)))))
993 && !TYPE_VOLATILE (gnu_type))
994 gnu_type = build_qualified_type (gnu_type,
995 (TYPE_QUALS (gnu_type)
996 | TYPE_QUAL_VOLATILE));
998 /* If we are defining an aliased object whose nominal subtype is
999 unconstrained, the object is a record that contains both the
1000 template and the object. If there is an initializer, it will
1001 have already been converted to the right type, but we need to
1002 create the template if there is no initializer. */
1005 && TREE_CODE (gnu_type) == RECORD_TYPE
1006 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
1007 /* Beware that padding might have been introduced
1008 via maybe_pad_type above. */
1009 || (TYPE_IS_PADDING_P (gnu_type)
1010 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1012 && TYPE_CONTAINS_TEMPLATE_P
1013 (TREE_TYPE (TYPE_FIELDS (gnu_type))))))
1016 = TYPE_IS_PADDING_P (gnu_type)
1017 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
1018 : TYPE_FIELDS (gnu_type);
1021 = gnat_build_constructor
1025 build_template (TREE_TYPE (template_field),
1026 TREE_TYPE (TREE_CHAIN (template_field)),
1031 /* Convert the expression to the type of the object except in the
1032 case where the object's type is unconstrained or the object's type
1033 is a padded record whose field is of self-referential size. In
1034 the former case, converting will generate unnecessary evaluations
1035 of the CONSTRUCTOR to compute the size and in the latter case, we
1036 want to only copy the actual data. */
1038 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1039 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1040 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1041 && TYPE_IS_PADDING_P (gnu_type)
1042 && (CONTAINS_PLACEHOLDER_P
1043 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1044 gnu_expr = convert (gnu_type, gnu_expr);
1046 /* If this is a pointer and it does not have an initializing
1047 expression, initialize it to NULL, unless the object is
1050 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
1051 && !Is_Imported (gnat_entity) && !gnu_expr)
1052 gnu_expr = integer_zero_node;
1054 /* If we are defining the object and it has an Address clause, we must
1055 either get the address expression from the saved GCC tree for the
1056 object if it has a Freeze node, or elaborate the address expression
1057 here since the front-end has guaranteed that the elaboration has no
1058 effects in this case. */
1059 if (definition && Present (Address_Clause (gnat_entity)))
1062 = present_gnu_tree (gnat_entity)
1063 ? get_gnu_tree (gnat_entity)
1064 : gnat_to_gnu (Expression (Address_Clause (gnat_entity)));
1066 save_gnu_tree (gnat_entity, NULL_TREE, false);
1068 /* Ignore the size. It's either meaningless or was handled
1070 gnu_size = NULL_TREE;
1071 /* Convert the type of the object to a reference type that can
1072 alias everything as per 13.3(19). */
1074 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1075 gnu_address = convert (gnu_type, gnu_address);
1077 const_flag = !Is_Public (gnat_entity)
1078 || compile_time_known_address_p (Expression (Address_Clause
1081 /* If this is a deferred constant, the initializer is attached to
1083 if (kind == E_Constant && Present (Full_View (gnat_entity)))
1086 (Expression (Declaration_Node (Full_View (gnat_entity))));
1088 /* If we don't have an initializing expression for the underlying
1089 variable, the initializing expression for the pointer is the
1090 specified address. Otherwise, we have to make a COMPOUND_EXPR
1091 to assign both the address and the initial value. */
1093 gnu_expr = gnu_address;
1096 = build2 (COMPOUND_EXPR, gnu_type,
1098 (MODIFY_EXPR, NULL_TREE,
1099 build_unary_op (INDIRECT_REF, NULL_TREE,
1105 /* If it has an address clause and we are not defining it, mark it
1106 as an indirect object. Likewise for Stdcall objects that are
1108 if ((!definition && Present (Address_Clause (gnat_entity)))
1109 || (Is_Imported (gnat_entity)
1110 && Has_Stdcall_Convention (gnat_entity)))
1112 /* Convert the type of the object to a reference type that can
1113 alias everything as per 13.3(19). */
1115 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1116 gnu_size = NULL_TREE;
1118 /* No point in taking the address of an initializing expression
1119 that isn't going to be used. */
1120 gnu_expr = NULL_TREE;
1122 /* If it has an address clause whose value is known at compile
1123 time, make the object a CONST_DECL. This will avoid a
1124 useless dereference. */
1125 if (Present (Address_Clause (gnat_entity)))
1127 Node_Id gnat_address
1128 = Expression (Address_Clause (gnat_entity));
1130 if (compile_time_known_address_p (gnat_address))
1132 gnu_expr = gnat_to_gnu (gnat_address);
1140 /* If we are at top level and this object is of variable size,
1141 make the actual type a hidden pointer to the real type and
1142 make the initializer be a memory allocation and initialization.
1143 Likewise for objects we aren't defining (presumed to be
1144 external references from other packages), but there we do
1145 not set up an initialization.
1147 If the object's size overflows, make an allocator too, so that
1148 Storage_Error gets raised. Note that we will never free
1149 such memory, so we presume it never will get allocated. */
1151 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1152 global_bindings_p () || !definition
1155 && ! allocatable_size_p (gnu_size,
1156 global_bindings_p () || !definition
1159 gnu_type = build_reference_type (gnu_type);
1160 gnu_size = NULL_TREE;
1164 /* In case this was a aliased object whose nominal subtype is
1165 unconstrained, the pointer above will be a thin pointer and
1166 build_allocator will automatically make the template.
1168 If we have a template initializer only (that we made above),
1169 pretend there is none and rely on what build_allocator creates
1170 again anyway. Otherwise (if we have a full initializer), get
1171 the data part and feed that to build_allocator.
1173 If we are elaborating a mutable object, tell build_allocator to
1174 ignore a possibly simpler size from the initializer, if any, as
1175 we must allocate the maximum possible size in this case. */
1179 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1181 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1182 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1185 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1187 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1188 && 1 == VEC_length (constructor_elt,
1189 CONSTRUCTOR_ELTS (gnu_expr)))
1193 = build_component_ref
1194 (gnu_expr, NULL_TREE,
1195 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1199 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1200 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1201 && !Is_Imported (gnat_entity))
1202 post_error ("?Storage_Error will be raised at run-time!",
1205 gnu_expr = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1206 0, 0, gnat_entity, mutable_p);
1210 gnu_expr = NULL_TREE;
1215 /* If this object would go into the stack and has an alignment larger
1216 than the largest stack alignment the back-end can honor, resort to
1217 a variable of "aligning type". */
1218 if (!global_bindings_p () && !static_p && definition
1219 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1221 /* Create the new variable. No need for extra room before the
1222 aligned field as this is in automatic storage. */
1224 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1225 TYPE_SIZE_UNIT (gnu_type),
1226 BIGGEST_ALIGNMENT, 0);
1228 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1229 NULL_TREE, gnu_new_type, NULL_TREE, false,
1230 false, false, false, NULL, gnat_entity);
1232 /* Initialize the aligned field if we have an initializer. */
1235 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1237 (gnu_new_var, NULL_TREE,
1238 TYPE_FIELDS (gnu_new_type), false),
1242 /* And setup this entity as a reference to the aligned field. */
1243 gnu_type = build_reference_type (gnu_type);
1246 (ADDR_EXPR, gnu_type,
1247 build_component_ref (gnu_new_var, NULL_TREE,
1248 TYPE_FIELDS (gnu_new_type), false));
1250 gnu_size = NULL_TREE;
1256 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1257 | TYPE_QUAL_CONST));
1259 /* Convert the expression to the type of the object except in the
1260 case where the object's type is unconstrained or the object's type
1261 is a padded record whose field is of self-referential size. In
1262 the former case, converting will generate unnecessary evaluations
1263 of the CONSTRUCTOR to compute the size and in the latter case, we
1264 want to only copy the actual data. */
1266 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1267 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1268 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1269 && TYPE_IS_PADDING_P (gnu_type)
1270 && (CONTAINS_PLACEHOLDER_P
1271 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1272 gnu_expr = convert (gnu_type, gnu_expr);
1274 /* If this name is external or there was a name specified, use it,
1275 unless this is a VMS exception object since this would conflict
1276 with the symbol we need to export in addition. Don't use the
1277 Interface_Name if there is an address clause (see CD30005). */
1278 if (!Is_VMS_Exception (gnat_entity)
1279 && ((Present (Interface_Name (gnat_entity))
1280 && No (Address_Clause (gnat_entity)))
1281 || (Is_Public (gnat_entity)
1282 && (!Is_Imported (gnat_entity)
1283 || Is_Exported (gnat_entity)))))
1284 gnu_ext_name = create_concat_name (gnat_entity, NULL);
1286 /* If this is constant initialized to a static constant and the
1287 object has an aggregate type, force it to be statically
1288 allocated. This will avoid an initialization copy. */
1289 if (!static_p && const_flag
1290 && gnu_expr && TREE_CONSTANT (gnu_expr)
1291 && AGGREGATE_TYPE_P (gnu_type)
1292 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1293 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1294 && TYPE_IS_PADDING_P (gnu_type)
1295 && !host_integerp (TYPE_SIZE_UNIT
1296 (TREE_TYPE (TYPE_FIELDS (gnu_type))), 1)))
1299 gnu_decl = create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1300 gnu_expr, const_flag,
1301 Is_Public (gnat_entity),
1302 imported_p || !definition,
1303 static_p, attr_list, gnat_entity);
1304 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1305 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1306 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1308 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1309 if (global_bindings_p ())
1311 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1312 record_global_renaming_pointer (gnu_decl);
1316 if (definition && DECL_SIZE_UNIT (gnu_decl)
1317 && get_block_jmpbuf_decl ()
1318 && (TREE_CODE (DECL_SIZE_UNIT (gnu_decl)) != INTEGER_CST
1319 || (flag_stack_check == GENERIC_STACK_CHECK
1320 && compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1321 STACK_CHECK_MAX_VAR_SIZE) > 0)))
1322 add_stmt_with_node (build_call_1_expr
1323 (update_setjmp_buf_decl,
1324 build_unary_op (ADDR_EXPR, NULL_TREE,
1325 get_block_jmpbuf_decl ())),
1328 /* If we are defining an Out parameter and we're not optimizing,
1329 create a fake PARM_DECL for debugging purposes and make it
1330 point to the VAR_DECL. Suppress debug info for the latter
1331 but make sure it will still live on the stack so it can be
1332 accessed from within the debugger through the PARM_DECL. */
1333 if (kind == E_Out_Parameter && definition && !optimize)
1335 tree param = create_param_decl (gnu_entity_name, gnu_type, false);
1336 gnat_pushdecl (param, gnat_entity);
1337 SET_DECL_VALUE_EXPR (param, gnu_decl);
1338 DECL_HAS_VALUE_EXPR_P (param) = 1;
1340 debug_info_p = false;
1342 DECL_IGNORED_P (param) = 1;
1343 TREE_ADDRESSABLE (gnu_decl) = 1;
1346 /* If this is a public constant or we're not optimizing and we're not
1347 making a VAR_DECL for it, make one just for export or debugger use.
1348 Likewise if the address is taken or if either the object or type is
1349 aliased. Make an external declaration for a reference, unless this
1350 is a Standard entity since there no real symbol at the object level
1352 if (TREE_CODE (gnu_decl) == CONST_DECL
1353 && (definition || Sloc (gnat_entity) > Standard_Location)
1354 && ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
1356 || Address_Taken (gnat_entity)
1357 || Is_Aliased (gnat_entity)
1358 || Is_Aliased (Etype (gnat_entity))))
1361 = create_true_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
1362 gnu_expr, true, Is_Public (gnat_entity),
1363 !definition, static_p, NULL,
1366 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1368 /* As debugging information will be generated for the variable,
1369 do not generate information for the constant. */
1370 DECL_IGNORED_P (gnu_decl) = 1;
1373 /* If this is declared in a block that contains a block with an
1374 exception handler, we must force this variable in memory to
1375 suppress an invalid optimization. */
1376 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1377 && Exception_Mechanism != Back_End_Exceptions)
1378 TREE_ADDRESSABLE (gnu_decl) = 1;
1380 gnu_type = TREE_TYPE (gnu_decl);
1382 /* Back-annotate Alignment and Esize of the object if not already
1383 known, except for when the object is actually a pointer to the
1384 real object, since alignment and size of a pointer don't have
1385 anything to do with those of the designated object. Note that
1386 we pick the values of the type, not those of the object, to
1387 shield ourselves from low-level platform-dependent adjustments
1388 like alignment promotion. This is both consistent with all the
1389 treatment above, where alignment and size are set on the type of
1390 the object and not on the object directly, and makes it possible
1391 to support confirming representation clauses in all cases. */
1393 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1394 Set_Alignment (gnat_entity,
1395 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1397 if (!used_by_ref && Unknown_Esize (gnat_entity))
1399 if (TREE_CODE (gnu_type) == RECORD_TYPE
1400 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1402 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1404 Set_Esize (gnat_entity, annotate_value (gnu_object_size));
1410 /* Return a TYPE_DECL for "void" that we previously made. */
1411 gnu_decl = TYPE_NAME (void_type_node);
1414 case E_Enumeration_Type:
1415 /* A special case: for the types Character and Wide_Character in
1416 Standard, we do not list all the literals. So if the literals
1417 are not specified, make this an unsigned type. */
1418 if (No (First_Literal (gnat_entity)))
1420 gnu_type = make_unsigned_type (esize);
1421 TYPE_NAME (gnu_type) = gnu_entity_name;
1423 /* Set TYPE_STRING_FLAG for Character and Wide_Character types.
1424 This is needed by the DWARF-2 back-end to distinguish between
1425 unsigned integer types and character types. */
1426 TYPE_STRING_FLAG (gnu_type) = 1;
1430 /* Normal case of non-character type or non-Standard character type. */
1432 /* Here we have a list of enumeral constants in First_Literal.
1433 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1434 the list to be placed into TYPE_FIELDS. Each node in the list
1435 is a TREE_LIST whose TREE_VALUE is the literal name and whose
1436 TREE_PURPOSE is the value of the literal. */
1438 Entity_Id gnat_literal;
1439 tree gnu_literal_list = NULL_TREE;
1441 if (Is_Unsigned_Type (gnat_entity))
1442 gnu_type = make_unsigned_type (esize);
1444 gnu_type = make_signed_type (esize);
1446 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1448 for (gnat_literal = First_Literal (gnat_entity);
1449 Present (gnat_literal);
1450 gnat_literal = Next_Literal (gnat_literal))
1452 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1455 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1456 gnu_type, gnu_value, true, false, false,
1457 false, NULL, gnat_literal);
1459 save_gnu_tree (gnat_literal, gnu_literal, false);
1460 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1461 gnu_value, gnu_literal_list);
1464 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1466 /* Note that the bounds are updated at the end of this function
1467 to avoid an infinite recursion since they refer to the type. */
1471 case E_Signed_Integer_Type:
1472 case E_Ordinary_Fixed_Point_Type:
1473 case E_Decimal_Fixed_Point_Type:
1474 /* For integer types, just make a signed type the appropriate number
1476 gnu_type = make_signed_type (esize);
1479 case E_Modular_Integer_Type:
1481 /* For modular types, make the unsigned type of the proper number
1482 of bits and then set up the modulus, if required. */
1483 tree gnu_modulus, gnu_high = NULL_TREE;
1485 /* Packed array types are supposed to be subtypes only. */
1486 gcc_assert (!Is_Packed_Array_Type (gnat_entity));
1488 gnu_type = make_unsigned_type (esize);
1490 /* Get the modulus in this type. If it overflows, assume it is because
1491 it is equal to 2**Esize. Note that there is no overflow checking
1492 done on unsigned type, so we detect the overflow by looking for
1493 a modulus of zero, which is otherwise invalid. */
1494 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1496 if (!integer_zerop (gnu_modulus))
1498 TYPE_MODULAR_P (gnu_type) = 1;
1499 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1500 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1501 convert (gnu_type, integer_one_node));
1504 /* If the upper bound is not maximal, make an extra subtype. */
1506 && !tree_int_cst_equal (gnu_high, TYPE_MAX_VALUE (gnu_type)))
1508 tree gnu_subtype = make_unsigned_type (esize);
1509 TYPE_MAX_VALUE (gnu_subtype) = gnu_high;
1510 TREE_TYPE (gnu_subtype) = gnu_type;
1511 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1512 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1513 gnu_type = gnu_subtype;
1518 case E_Signed_Integer_Subtype:
1519 case E_Enumeration_Subtype:
1520 case E_Modular_Integer_Subtype:
1521 case E_Ordinary_Fixed_Point_Subtype:
1522 case E_Decimal_Fixed_Point_Subtype:
1524 /* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
1525 not want to call build_range_type since we would like each subtype
1526 node to be distinct. ??? Historically this was in preparation for
1527 when memory aliasing is implemented. But that's obsolete now given
1528 the call to relate_alias_sets below.
1530 The TREE_TYPE field of the INTEGER_TYPE points to the base type;
1531 this fact is used by the arithmetic conversion functions.
1533 We elaborate the Ancestor_Subtype if it is not in the current unit
1534 and one of our bounds is non-static. We do this to ensure consistent
1535 naming in the case where several subtypes share the same bounds, by
1536 elaborating the first such subtype first, thus using its name. */
1539 && Present (Ancestor_Subtype (gnat_entity))
1540 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1541 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1542 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1543 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, 0);
1545 gnu_type = make_node (INTEGER_TYPE);
1546 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1548 /* Set the precision to the Esize except for bit-packed arrays and
1549 subtypes of Standard.Boolean. */
1550 if (Is_Packed_Array_Type (gnat_entity)
1551 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1552 esize = UI_To_Int (RM_Size (gnat_entity));
1553 else if (TREE_CODE (TREE_TYPE (gnu_type)) == BOOLEAN_TYPE)
1556 TYPE_PRECISION (gnu_type) = esize;
1558 TYPE_MIN_VALUE (gnu_type)
1559 = convert (TREE_TYPE (gnu_type),
1560 elaborate_expression (Type_Low_Bound (gnat_entity),
1562 get_identifier ("L"), definition, 1,
1563 Needs_Debug_Info (gnat_entity)));
1565 TYPE_MAX_VALUE (gnu_type)
1566 = convert (TREE_TYPE (gnu_type),
1567 elaborate_expression (Type_High_Bound (gnat_entity),
1569 get_identifier ("U"), definition, 1,
1570 Needs_Debug_Info (gnat_entity)));
1572 /* One of the above calls might have caused us to be elaborated,
1573 so don't blow up if so. */
1574 if (present_gnu_tree (gnat_entity))
1576 maybe_present = true;
1580 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1581 = Has_Biased_Representation (gnat_entity);
1583 /* This should be an unsigned type if the base type is unsigned or
1584 if the lower bound is constant and non-negative (as computed by
1585 layout_type) or if the type is biased. */
1586 TYPE_UNSIGNED (gnu_type) = (TYPE_UNSIGNED (TREE_TYPE (gnu_type))
1587 || TYPE_BIASED_REPRESENTATION_P (gnu_type)
1588 || Is_Unsigned_Type (gnat_entity));
1590 layout_type (gnu_type);
1592 /* Inherit our alias set from what we're a subtype of. Subtypes
1593 are not different types and a pointer can designate any instance
1594 within a subtype hierarchy. */
1595 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1597 /* If the type we are dealing with represents a bit-packed array,
1598 we need to have the bits left justified on big-endian targets
1599 and right justified on little-endian targets. We also need to
1600 ensure that when the value is read (e.g. for comparison of two
1601 such values), we only get the good bits, since the unused bits
1602 are uninitialized. Both goals are accomplished by wrapping up
1603 the modular type in an enclosing record type. */
1604 if (Is_Packed_Array_Type (gnat_entity)
1605 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1607 tree gnu_field_type, gnu_field;
1609 /* Set the RM size before wrapping up the type. */
1610 TYPE_RM_SIZE (gnu_type)
1611 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1612 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1613 gnu_field_type = gnu_type;
1615 gnu_type = make_node (RECORD_TYPE);
1616 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1618 /* Propagate the alignment of the modular type to the record.
1619 This means that bit-packed arrays have "ceil" alignment for
1620 their size, which may seem counter-intuitive but makes it
1621 possible to easily overlay them on modular types. */
1622 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1623 TYPE_PACKED (gnu_type) = 1;
1625 /* Create a stripped-down declaration of the original type, mainly
1627 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1628 debug_info_p, gnat_entity);
1630 /* Don't notify the field as "addressable", since we won't be taking
1631 it's address and it would prevent create_field_decl from making a
1633 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1634 gnu_field_type, gnu_type, 1, 0, 0, 0);
1636 finish_record_type (gnu_type, gnu_field, 0, false);
1637 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1639 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1642 /* If the type we are dealing with has got a smaller alignment than the
1643 natural one, we need to wrap it up in a record type and under-align
1644 the latter. We reuse the padding machinery for this purpose. */
1645 else if (Known_Alignment (gnat_entity)
1646 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1647 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1648 && align < TYPE_ALIGN (gnu_type))
1650 tree gnu_field_type, gnu_field;
1652 /* Set the RM size before wrapping up the type. */
1653 TYPE_RM_SIZE (gnu_type)
1654 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1655 gnu_field_type = gnu_type;
1657 gnu_type = make_node (RECORD_TYPE);
1658 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1660 TYPE_ALIGN (gnu_type) = align;
1661 TYPE_PACKED (gnu_type) = 1;
1663 /* Create a stripped-down declaration of the original type, mainly
1665 create_type_decl (gnu_entity_name, gnu_field_type, NULL, true,
1666 debug_info_p, gnat_entity);
1668 /* Don't notify the field as "addressable", since we won't be taking
1669 it's address and it would prevent create_field_decl from making a
1671 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1672 gnu_field_type, gnu_type, 1, 0, 0, 0);
1674 finish_record_type (gnu_type, gnu_field, 0, false);
1675 TYPE_IS_PADDING_P (gnu_type) = 1;
1677 relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
1680 /* Otherwise reset the alignment lest we computed it above. */
1686 case E_Floating_Point_Type:
1687 /* If this is a VAX floating-point type, use an integer of the proper
1688 size. All the operations will be handled with ASM statements. */
1689 if (Vax_Float (gnat_entity))
1691 gnu_type = make_signed_type (esize);
1692 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1693 SET_TYPE_DIGITS_VALUE (gnu_type,
1694 UI_To_gnu (Digits_Value (gnat_entity),
1699 /* The type of the Low and High bounds can be our type if this is
1700 a type from Standard, so set them at the end of the function. */
1701 gnu_type = make_node (REAL_TYPE);
1702 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1703 layout_type (gnu_type);
1706 case E_Floating_Point_Subtype:
1707 if (Vax_Float (gnat_entity))
1709 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1715 && Present (Ancestor_Subtype (gnat_entity))
1716 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1717 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1718 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1719 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1722 gnu_type = make_node (REAL_TYPE);
1723 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1724 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1726 TYPE_MIN_VALUE (gnu_type)
1727 = convert (TREE_TYPE (gnu_type),
1728 elaborate_expression (Type_Low_Bound (gnat_entity),
1729 gnat_entity, get_identifier ("L"),
1731 Needs_Debug_Info (gnat_entity)));
1733 TYPE_MAX_VALUE (gnu_type)
1734 = convert (TREE_TYPE (gnu_type),
1735 elaborate_expression (Type_High_Bound (gnat_entity),
1736 gnat_entity, get_identifier ("U"),
1738 Needs_Debug_Info (gnat_entity)));
1740 /* One of the above calls might have caused us to be elaborated,
1741 so don't blow up if so. */
1742 if (present_gnu_tree (gnat_entity))
1744 maybe_present = true;
1748 layout_type (gnu_type);
1750 /* Inherit our alias set from what we're a subtype of, as for
1751 integer subtypes. */
1752 relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
1756 /* Array and String Types and Subtypes
1758 Unconstrained array types are represented by E_Array_Type and
1759 constrained array types are represented by E_Array_Subtype. There
1760 are no actual objects of an unconstrained array type; all we have
1761 are pointers to that type.
1763 The following fields are defined on array types and subtypes:
1765 Component_Type Component type of the array.
1766 Number_Dimensions Number of dimensions (an int).
1767 First_Index Type of first index. */
1772 Entity_Id gnat_ind_subtype;
1773 Entity_Id gnat_ind_base_subtype;
1774 int ndim = Number_Dimensions (gnat_entity);
1776 = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
1778 = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
1780 tree gnu_template_fields = NULL_TREE;
1781 tree gnu_template_type = make_node (RECORD_TYPE);
1782 tree gnu_template_reference;
1783 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1784 tree gnu_fat_type = make_node (RECORD_TYPE);
1785 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree));
1786 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree));
1787 tree gnu_max_size = size_one_node, gnu_max_size_unit;
1788 tree gnu_comp_size, tem;
1790 TYPE_NAME (gnu_template_type)
1791 = create_concat_name (gnat_entity, "XUB");
1793 /* Make a node for the array. If we are not defining the array
1794 suppress expanding incomplete types. */
1795 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1798 defer_incomplete_level++, this_deferred = true;
1800 /* Build the fat pointer type. Use a "void *" object instead of
1801 a pointer to the array type since we don't have the array type
1802 yet (it will reference the fat pointer via the bounds). */
1803 tem = chainon (chainon (NULL_TREE,
1804 create_field_decl (get_identifier ("P_ARRAY"),
1806 gnu_fat_type, 0, 0, 0, 0)),
1807 create_field_decl (get_identifier ("P_BOUNDS"),
1809 gnu_fat_type, 0, 0, 0, 0));
1811 /* Make sure we can put this into a register. */
1812 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1814 /* Do not finalize this record type since the types of its fields
1815 are still incomplete at this point. */
1816 finish_record_type (gnu_fat_type, tem, 0, true);
1817 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1819 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1820 is the fat pointer. This will be used to access the individual
1821 fields once we build them. */
1822 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1823 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1824 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1825 gnu_template_reference
1826 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1827 TREE_READONLY (gnu_template_reference) = 1;
1829 /* Now create the GCC type for each index and add the fields for
1830 that index to the template. */
1831 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
1832 gnat_ind_base_subtype
1833 = First_Index (Implementation_Base_Type (gnat_entity));
1834 index < ndim && index >= 0;
1836 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
1837 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
1839 char field_name[10];
1840 tree gnu_ind_subtype
1841 = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
1842 tree gnu_base_subtype
1843 = get_unpadded_type (Etype (gnat_ind_base_subtype));
1845 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
1847 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
1848 tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
1850 /* Make the FIELD_DECLs for the minimum and maximum of this
1851 type and then make extractions of that field from the
1853 sprintf (field_name, "LB%d", index);
1854 gnu_min_field = create_field_decl (get_identifier (field_name),
1856 gnu_template_type, 0, 0, 0, 0);
1857 field_name[0] = 'U';
1858 gnu_max_field = create_field_decl (get_identifier (field_name),
1860 gnu_template_type, 0, 0, 0, 0);
1862 Sloc_to_locus (Sloc (gnat_entity),
1863 &DECL_SOURCE_LOCATION (gnu_min_field));
1864 Sloc_to_locus (Sloc (gnat_entity),
1865 &DECL_SOURCE_LOCATION (gnu_max_field));
1866 gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
1868 /* We can't use build_component_ref here since the template
1869 type isn't complete yet. */
1870 gnu_min = build3 (COMPONENT_REF, gnu_ind_subtype,
1871 gnu_template_reference, gnu_min_field,
1873 gnu_max = build3 (COMPONENT_REF, gnu_ind_subtype,
1874 gnu_template_reference, gnu_max_field,
1876 TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
1878 /* Make a range type with the new ranges, but using
1879 the Ada subtype. Then we convert to sizetype. */
1880 gnu_index_types[index]
1881 = create_index_type (convert (sizetype, gnu_min),
1882 convert (sizetype, gnu_max),
1883 build_range_type (gnu_ind_subtype,
1886 /* Update the maximum size of the array, in elements. */
1888 = size_binop (MULT_EXPR, gnu_max_size,
1889 size_binop (PLUS_EXPR, size_one_node,
1890 size_binop (MINUS_EXPR, gnu_base_max,
1893 TYPE_NAME (gnu_index_types[index])
1894 = create_concat_name (gnat_entity, field_name);
1897 for (index = 0; index < ndim; index++)
1899 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1901 /* Install all the fields into the template. */
1902 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1903 TYPE_READONLY (gnu_template_type) = 1;
1905 /* Now make the array of arrays and update the pointer to the array
1906 in the fat pointer. Note that it is the first field. */
1907 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1909 /* Try to get a smaller form of the component if needed. */
1910 if ((Is_Packed (gnat_entity)
1911 || Has_Component_Size_Clause (gnat_entity))
1912 && !Is_Bit_Packed_Array (gnat_entity)
1913 && !Has_Aliased_Components (gnat_entity)
1914 && !Strict_Alignment (Component_Type (gnat_entity))
1915 && TREE_CODE (tem) == RECORD_TYPE
1916 && !TYPE_IS_FAT_POINTER_P (tem)
1917 && host_integerp (TYPE_SIZE (tem), 1))
1918 tem = make_packable_type (tem, false);
1920 if (Has_Atomic_Components (gnat_entity))
1921 check_ok_for_atomic (tem, gnat_entity, true);
1923 /* Get and validate any specified Component_Size, but if Packed,
1924 ignore it since the front end will have taken care of it. */
1926 = validate_size (Component_Size (gnat_entity), tem,
1928 (Is_Bit_Packed_Array (gnat_entity)
1929 ? TYPE_DECL : VAR_DECL),
1930 true, Has_Component_Size_Clause (gnat_entity));
1932 /* If the component type is a RECORD_TYPE that has a self-referential
1933 size, use the maximum size. */
1935 && TREE_CODE (tem) == RECORD_TYPE
1936 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1937 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1939 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1942 tem = make_type_from_size (tem, gnu_comp_size, false);
1944 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
1945 "C_PAD", false, definition, true);
1946 /* If a padding record was made, declare it now since it will
1947 never be declared otherwise. This is necessary to ensure
1948 that its subtrees are properly marked. */
1949 if (tem != orig_tem)
1950 create_type_decl (TYPE_NAME (tem), tem, NULL, true,
1951 debug_info_p, gnat_entity);
1954 if (Has_Volatile_Components (gnat_entity))
1955 tem = build_qualified_type (tem,
1956 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
1958 /* If Component_Size is not already specified, annotate it with the
1959 size of the component. */
1960 if (Unknown_Component_Size (gnat_entity))
1961 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
1963 gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
1964 size_binop (MULT_EXPR, gnu_max_size,
1965 TYPE_SIZE_UNIT (tem)));
1966 gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
1967 size_binop (MULT_EXPR,
1968 convert (bitsizetype,
1972 for (index = ndim - 1; index >= 0; index--)
1974 tem = build_array_type (tem, gnu_index_types[index]);
1975 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
1976 if (array_type_has_nonaliased_component (gnat_entity, tem))
1977 TYPE_NONALIASED_COMPONENT (tem) = 1;
1980 /* If an alignment is specified, use it if valid. But ignore it
1981 for the original type of packed array types. If the alignment
1982 was requested with an explicit alignment clause, state so. */
1983 if (No (Packed_Array_Type (gnat_entity))
1984 && Known_Alignment (gnat_entity))
1987 = validate_alignment (Alignment (gnat_entity), gnat_entity,
1989 if (Present (Alignment_Clause (gnat_entity)))
1990 TYPE_USER_ALIGN (tem) = 1;
1993 TYPE_CONVENTION_FORTRAN_P (tem)
1994 = (Convention (gnat_entity) == Convention_Fortran);
1995 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
1997 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
1998 corresponding fat pointer. */
1999 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
2000 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
2001 SET_TYPE_MODE (gnu_type, BLKmode);
2002 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
2003 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
2005 /* If the maximum size doesn't overflow, use it. */
2006 if (TREE_CODE (gnu_max_size) == INTEGER_CST
2007 && !TREE_OVERFLOW (gnu_max_size))
2009 = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
2010 if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2011 && !TREE_OVERFLOW (gnu_max_size_unit))
2012 TYPE_SIZE_UNIT (tem)
2013 = size_binop (MIN_EXPR, gnu_max_size_unit,
2014 TYPE_SIZE_UNIT (tem));
2016 create_type_decl (create_concat_name (gnat_entity, "XUA"),
2017 tem, NULL, !Comes_From_Source (gnat_entity),
2018 debug_info_p, gnat_entity);
2020 /* Give the fat pointer type a name. */
2021 create_type_decl (create_concat_name (gnat_entity, "XUP"),
2022 gnu_fat_type, NULL, true,
2023 debug_info_p, gnat_entity);
2025 /* Create the type to be used as what a thin pointer designates: an
2026 record type for the object and its template with the field offsets
2027 shifted to have the template at a negative offset. */
2028 tem = build_unc_object_type (gnu_template_type, tem,
2029 create_concat_name (gnat_entity, "XUT"));
2030 shift_unc_components_for_thin_pointers (tem);
2032 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
2033 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
2035 /* Give the thin pointer type a name. */
2036 create_type_decl (create_concat_name (gnat_entity, "XUX"),
2037 build_pointer_type (tem), NULL, true,
2038 debug_info_p, gnat_entity);
2042 case E_String_Subtype:
2043 case E_Array_Subtype:
2045 /* This is the actual data type for array variables. Multidimensional
2046 arrays are implemented in the gnu tree as arrays of arrays. Note
2047 that for the moment arrays which have sparse enumeration subtypes as
2048 index components create sparse arrays, which is obviously space
2049 inefficient but so much easier to code for now.
2051 Also note that the subtype never refers to the unconstrained
2052 array type, which is somewhat at variance with Ada semantics.
2054 First check to see if this is simply a renaming of the array
2055 type. If so, the result is the array type. */
2057 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
2058 if (!Is_Constrained (gnat_entity))
2062 Entity_Id gnat_ind_subtype;
2063 Entity_Id gnat_ind_base_subtype;
2064 int dim = Number_Dimensions (gnat_entity);
2066 = (Convention (gnat_entity) == Convention_Fortran) ? dim - 1 : 0;
2068 = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
2070 tree gnu_base_type = gnu_type;
2071 tree *gnu_index_type = (tree *) alloca (dim * sizeof (tree));
2072 tree gnu_max_size = size_one_node, gnu_max_size_unit;
2073 bool need_index_type_struct = false;
2074 bool max_overflow = false;
2076 /* First create the gnu types for each index. Create types for
2077 debugging information to point to the index types if the
2078 are not integer types, have variable bounds, or are
2079 wider than sizetype. */
2081 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
2082 gnat_ind_base_subtype
2083 = First_Index (Implementation_Base_Type (gnat_entity));
2084 index < dim && index >= 0;
2086 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
2087 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
2089 tree gnu_index_subtype
2090 = get_unpadded_type (Etype (gnat_ind_subtype));
2092 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
2094 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
2095 tree gnu_base_subtype
2096 = get_unpadded_type (Etype (gnat_ind_base_subtype));
2098 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
2100 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
2101 tree gnu_base_type = get_base_type (gnu_base_subtype);
2102 tree gnu_base_base_min
2103 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
2104 tree gnu_base_base_max
2105 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
2109 /* If the minimum and maximum values both overflow in
2110 SIZETYPE, but the difference in the original type
2111 does not overflow in SIZETYPE, ignore the overflow
2113 if ((TYPE_PRECISION (gnu_index_subtype)
2114 > TYPE_PRECISION (sizetype)
2115 || TYPE_UNSIGNED (gnu_index_subtype)
2116 != TYPE_UNSIGNED (sizetype))
2117 && TREE_CODE (gnu_min) == INTEGER_CST
2118 && TREE_CODE (gnu_max) == INTEGER_CST
2119 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2121 (fold_build2 (MINUS_EXPR, gnu_index_subtype,
2122 TYPE_MAX_VALUE (gnu_index_subtype),
2123 TYPE_MIN_VALUE (gnu_index_subtype))))
2125 TREE_OVERFLOW (gnu_min) = 0;
2126 TREE_OVERFLOW (gnu_max) = 0;
2127 if (tree_int_cst_lt (gnu_max, gnu_min))
2129 gnu_min = size_one_node;
2130 gnu_max = size_zero_node;
2135 /* Similarly, if the range is null, use bounds of 1..0 for
2136 the sizetype bounds. */
2137 else if ((TYPE_PRECISION (gnu_index_subtype)
2138 > TYPE_PRECISION (sizetype)
2139 || TYPE_UNSIGNED (gnu_index_subtype)
2140 != TYPE_UNSIGNED (sizetype))
2141 && TREE_CODE (gnu_min) == INTEGER_CST
2142 && TREE_CODE (gnu_max) == INTEGER_CST
2143 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2144 && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
2145 TYPE_MIN_VALUE (gnu_index_subtype)))
2147 gnu_min = size_one_node;
2148 gnu_max = size_zero_node;
2152 /* See if the base array type is already flat. If it is, we
2153 are probably compiling an ACATS test, but it will cause the
2154 code below to malfunction if we don't handle it specially. */
2155 else if (TREE_CODE (gnu_base_min) == INTEGER_CST
2156 && TREE_CODE (gnu_base_max) == INTEGER_CST
2157 && !TREE_OVERFLOW (gnu_base_min)
2158 && !TREE_OVERFLOW (gnu_base_max)
2159 && tree_int_cst_lt (gnu_base_max, gnu_base_min))
2161 gnu_min = size_one_node;
2162 gnu_max = size_zero_node;
2168 /* Now compute the size of this bound. We need to provide
2169 GCC with an upper bound to use but have to deal with the
2170 "superflat" case. There are three ways to do this. If
2171 we can prove that the array can never be superflat, we
2172 can just use the high bound of the index subtype. If we
2173 can prove that the low bound minus one can't overflow,
2174 we can do this as MAX (hb, lb - 1). Otherwise, we have
2175 to use the expression hb >= lb ? hb : lb - 1. */
2176 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2178 /* If gnu_high is now an integer which overflowed, the array
2179 cannot be superflat. */
2180 if (TREE_CODE (gnu_high) == INTEGER_CST
2181 && TREE_OVERFLOW (gnu_high))
2184 /* gnu_high cannot overflow if the subtype is unsigned since
2185 sizetype is signed, or if it is now a constant that hasn't
2187 else if (TYPE_UNSIGNED (gnu_base_subtype)
2188 || TREE_CODE (gnu_high) == INTEGER_CST)
2189 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2193 = build_cond_expr (sizetype,
2194 build_binary_op (GE_EXPR,
2200 gnu_index_type[index]
2201 = create_index_type (gnu_min, gnu_high, gnu_index_subtype,
2204 /* Also compute the maximum size of the array. Here we
2205 see if any constraint on the index type of the base type
2206 can be used in the case of self-referential bound on
2207 the index type of the subtype. We look for a non-"infinite"
2208 and non-self-referential bound from any type involved and
2209 handle each bound separately. */
2211 if ((TREE_CODE (gnu_min) == INTEGER_CST
2212 && !TREE_OVERFLOW (gnu_min)
2213 && !operand_equal_p (gnu_min, gnu_base_base_min, 0))
2214 || !CONTAINS_PLACEHOLDER_P (gnu_min)
2215 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2216 && !TREE_OVERFLOW (gnu_base_min)))
2217 gnu_base_min = gnu_min;
2219 if ((TREE_CODE (gnu_max) == INTEGER_CST
2220 && !TREE_OVERFLOW (gnu_max)
2221 && !operand_equal_p (gnu_max, gnu_base_base_max, 0))
2222 || !CONTAINS_PLACEHOLDER_P (gnu_max)
2223 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2224 && !TREE_OVERFLOW (gnu_base_max)))
2225 gnu_base_max = gnu_max;
2227 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2228 && TREE_OVERFLOW (gnu_base_min))
2229 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2230 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2231 && TREE_OVERFLOW (gnu_base_max))
2232 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2233 max_overflow = true;
2235 gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
2236 gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
2239 = size_binop (MAX_EXPR,
2240 size_binop (PLUS_EXPR, size_one_node,
2241 size_binop (MINUS_EXPR, gnu_base_max,
2245 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2246 && TREE_OVERFLOW (gnu_this_max))
2247 max_overflow = true;
2250 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2252 if (!integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
2253 || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
2255 || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
2256 || (TREE_TYPE (gnu_index_subtype)
2257 && (TREE_CODE (TREE_TYPE (gnu_index_subtype))
2259 || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
2260 || (TYPE_PRECISION (gnu_index_subtype)
2261 > TYPE_PRECISION (sizetype)))
2262 need_index_type_struct = true;
2265 /* Then flatten: create the array of arrays. For an array type
2266 used to implement a packed array, get the component type from
2267 the original array type since the representation clauses that
2268 can affect it are on the latter. */
2269 if (Is_Packed_Array_Type (gnat_entity)
2270 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2272 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2273 for (index = dim - 1; index >= 0; index--)
2274 gnu_type = TREE_TYPE (gnu_type);
2276 /* One of the above calls might have caused us to be elaborated,
2277 so don't blow up if so. */
2278 if (present_gnu_tree (gnat_entity))
2280 maybe_present = true;
2288 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2290 /* One of the above calls might have caused us to be elaborated,
2291 so don't blow up if so. */
2292 if (present_gnu_tree (gnat_entity))
2294 maybe_present = true;
2298 /* Try to get a smaller form of the component if needed. */
2299 if ((Is_Packed (gnat_entity)
2300 || Has_Component_Size_Clause (gnat_entity))
2301 && !Is_Bit_Packed_Array (gnat_entity)
2302 && !Has_Aliased_Components (gnat_entity)
2303 && !Strict_Alignment (Component_Type (gnat_entity))
2304 && TREE_CODE (gnu_type) == RECORD_TYPE
2305 && !TYPE_IS_FAT_POINTER_P (gnu_type)
2306 && host_integerp (TYPE_SIZE (gnu_type), 1))
2307 gnu_type = make_packable_type (gnu_type, false);
2309 /* Get and validate any specified Component_Size, but if Packed,
2310 ignore it since the front end will have taken care of it. */
2312 = validate_size (Component_Size (gnat_entity), gnu_type,
2314 (Is_Bit_Packed_Array (gnat_entity)
2315 ? TYPE_DECL : VAR_DECL), true,
2316 Has_Component_Size_Clause (gnat_entity));
2318 /* If the component type is a RECORD_TYPE that has a
2319 self-referential size, use the maximum size. */
2321 && TREE_CODE (gnu_type) == RECORD_TYPE
2322 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2323 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2325 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2329 = make_type_from_size (gnu_type, gnu_comp_size, false);
2330 orig_gnu_type = gnu_type;
2331 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2332 gnat_entity, "C_PAD", false,
2334 /* If a padding record was made, declare it now since it
2335 will never be declared otherwise. This is necessary
2336 to ensure that its subtrees are properly marked. */
2337 if (gnu_type != orig_gnu_type)
2338 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2339 true, debug_info_p, gnat_entity);
2342 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2343 gnu_type = build_qualified_type (gnu_type,
2344 (TYPE_QUALS (gnu_type)
2345 | TYPE_QUAL_VOLATILE));
2348 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2349 TYPE_SIZE_UNIT (gnu_type));
2350 gnu_max_size = size_binop (MULT_EXPR,
2351 convert (bitsizetype, gnu_max_size),
2352 TYPE_SIZE (gnu_type));
2354 for (index = dim - 1; index >= 0; index --)
2356 gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
2357 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2358 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2359 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2362 /* Attach the TYPE_STUB_DECL in case we have a parallel type. */
2363 if (need_index_type_struct)
2364 TYPE_STUB_DECL (gnu_type)
2365 = create_type_stub_decl (gnu_entity_name, gnu_type);
2367 /* If we are at file level and this is a multi-dimensional array, we
2368 need to make a variable corresponding to the stride of the
2369 inner dimensions. */
2370 if (global_bindings_p () && dim > 1)
2372 tree gnu_str_name = get_identifier ("ST");
2375 for (gnu_arr_type = TREE_TYPE (gnu_type);
2376 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2377 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2378 gnu_str_name = concat_name (gnu_str_name, "ST"))
2380 tree eltype = TREE_TYPE (gnu_arr_type);
2382 TYPE_SIZE (gnu_arr_type)
2383 = elaborate_expression_1 (gnat_entity, gnat_entity,
2384 TYPE_SIZE (gnu_arr_type),
2385 gnu_str_name, definition, 0);
2387 /* ??? For now, store the size as a multiple of the
2388 alignment of the element type in bytes so that we
2389 can see the alignment from the tree. */
2390 TYPE_SIZE_UNIT (gnu_arr_type)
2392 (MULT_EXPR, sizetype,
2393 elaborate_expression_1
2394 (gnat_entity, gnat_entity,
2395 build_binary_op (EXACT_DIV_EXPR, sizetype,
2396 TYPE_SIZE_UNIT (gnu_arr_type),
2397 size_int (TYPE_ALIGN (eltype)
2399 concat_name (gnu_str_name, "A_U"), definition, 0),
2400 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2402 /* ??? create_type_decl is not invoked on the inner types so
2403 the MULT_EXPR node built above will never be marked. */
2404 mark_visited (&TYPE_SIZE_UNIT (gnu_arr_type));
2408 /* If we need to write out a record type giving the names of
2409 the bounds, do it now. Make sure to reference the index
2410 types themselves, not just their names, as the debugger
2411 may fall back on them in some cases. */
2412 if (need_index_type_struct && debug_info_p)
2414 tree gnu_bound_rec = make_node (RECORD_TYPE);
2415 tree gnu_field_list = NULL_TREE;
2418 TYPE_NAME (gnu_bound_rec)
2419 = create_concat_name (gnat_entity, "XA");
2421 for (index = dim - 1; index >= 0; index--)
2423 tree gnu_index = TYPE_INDEX_TYPE (gnu_index_type[index]);
2424 tree gnu_index_name = TYPE_NAME (gnu_index);
2426 if (TREE_CODE (gnu_index_name) == TYPE_DECL)
2427 gnu_index_name = DECL_NAME (gnu_index_name);
2429 gnu_field = create_field_decl (gnu_index_name, gnu_index,
2431 0, NULL_TREE, NULL_TREE, 0);
2432 TREE_CHAIN (gnu_field) = gnu_field_list;
2433 gnu_field_list = gnu_field;
2436 finish_record_type (gnu_bound_rec, gnu_field_list, 0, false);
2437 add_parallel_type (TYPE_STUB_DECL (gnu_type), gnu_bound_rec);
2440 TYPE_CONVENTION_FORTRAN_P (gnu_type)
2441 = (Convention (gnat_entity) == Convention_Fortran);
2442 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2443 = (Is_Packed_Array_Type (gnat_entity)
2444 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2446 /* If our size depends on a placeholder and the maximum size doesn't
2447 overflow, use it. */
2448 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2449 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2450 && TREE_OVERFLOW (gnu_max_size))
2451 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2452 && TREE_OVERFLOW (gnu_max_size_unit))
2455 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2456 TYPE_SIZE (gnu_type));
2457 TYPE_SIZE_UNIT (gnu_type)
2458 = size_binop (MIN_EXPR, gnu_max_size_unit,
2459 TYPE_SIZE_UNIT (gnu_type));
2462 /* Set our alias set to that of our base type. This gives all
2463 array subtypes the same alias set. */
2464 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
2467 /* If this is a packed type, make this type the same as the packed
2468 array type, but do some adjusting in the type first. */
2469 if (Present (Packed_Array_Type (gnat_entity)))
2471 Entity_Id gnat_index;
2472 tree gnu_inner_type;
2474 /* First finish the type we had been making so that we output
2475 debugging information for it. */
2477 = build_qualified_type (gnu_type,
2478 (TYPE_QUALS (gnu_type)
2479 | (TYPE_QUAL_VOLATILE
2480 * Treat_As_Volatile (gnat_entity))));
2482 /* Make it artificial only if the base type was artificial as well.
2483 That's sort of "morally" true and will make it possible for the
2484 debugger to look it up by name in DWARF more easily. */
2486 = create_type_decl (gnu_entity_name, gnu_type, attr_list,
2487 !Comes_From_Source (gnat_entity)
2488 && !Comes_From_Source (Etype (gnat_entity)),
2489 debug_info_p, gnat_entity);
2491 /* Save it as our equivalent in case the call below elaborates
2493 save_gnu_tree (gnat_entity, gnu_decl, false);
2495 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2497 this_made_decl = true;
2498 gnu_type = TREE_TYPE (gnu_decl);
2499 save_gnu_tree (gnat_entity, NULL_TREE, false);
2501 gnu_inner_type = gnu_type;
2502 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2503 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2504 || TYPE_IS_PADDING_P (gnu_inner_type)))
2505 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2507 /* We need to attach the index type to the type we just made so
2508 that the actual bounds can later be put into a template. */
2509 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2510 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2511 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2512 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2514 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2516 /* The TYPE_ACTUAL_BOUNDS field is overloaded with the
2517 TYPE_MODULUS for modular types so we make an extra
2518 subtype if necessary. */
2519 if (TYPE_MODULAR_P (gnu_inner_type))
2521 tree gnu_subtype = make_node (INTEGER_TYPE);
2522 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2523 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2525 TYPE_UNSIGNED (gnu_subtype) = 1;
2526 TYPE_PRECISION (gnu_subtype)
2527 = TYPE_PRECISION (gnu_inner_type);
2528 TYPE_MIN_VALUE (gnu_subtype)
2529 = TYPE_MIN_VALUE (gnu_inner_type);
2530 TYPE_MAX_VALUE (gnu_subtype)
2531 = TYPE_MAX_VALUE (gnu_inner_type);
2532 layout_type (gnu_subtype);
2534 gnu_inner_type = gnu_subtype;
2537 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2539 #ifdef ENABLE_CHECKING
2540 /* Check for other cases of overloading. */
2541 gcc_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner_type));
2545 /* ??? This is necessary to make sure that the container is
2546 allocated with a null tree upfront; otherwise, it could
2547 be allocated with an uninitialized tree that is accessed
2548 before being set below. See ada-tree.h for details. */
2549 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2551 for (gnat_index = First_Index (gnat_entity);
2552 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2553 SET_TYPE_ACTUAL_BOUNDS
2555 tree_cons (NULL_TREE,
2556 get_unpadded_type (Etype (gnat_index)),
2557 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2559 if (Convention (gnat_entity) != Convention_Fortran)
2560 SET_TYPE_ACTUAL_BOUNDS
2562 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2564 if (TREE_CODE (gnu_type) == RECORD_TYPE
2565 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2566 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2570 /* Abort if packed array with no packed array type field set. */
2572 gcc_assert (!Is_Packed (gnat_entity));
2576 case E_String_Literal_Subtype:
2577 /* Create the type for a string literal. */
2579 Entity_Id gnat_full_type
2580 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2581 && Present (Full_View (Etype (gnat_entity)))
2582 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2583 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2584 tree gnu_string_array_type
2585 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2586 tree gnu_string_index_type
2587 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2588 (TYPE_DOMAIN (gnu_string_array_type))));
2589 tree gnu_lower_bound
2590 = convert (gnu_string_index_type,
2591 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2592 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2593 tree gnu_length = ssize_int (length - 1);
2594 tree gnu_upper_bound
2595 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2597 convert (gnu_string_index_type, gnu_length));
2599 = build_range_type (gnu_string_index_type,
2600 gnu_lower_bound, gnu_upper_bound);
2602 = create_index_type (convert (sizetype,
2603 TYPE_MIN_VALUE (gnu_range_type)),
2605 TYPE_MAX_VALUE (gnu_range_type)),
2606 gnu_range_type, gnat_entity);
2609 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2611 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2612 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2613 relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
2617 /* Record Types and Subtypes
2619 The following fields are defined on record types:
2621 Has_Discriminants True if the record has discriminants
2622 First_Discriminant Points to head of list of discriminants
2623 First_Entity Points to head of list of fields
2624 Is_Tagged_Type True if the record is tagged
2626 Implementation of Ada records and discriminated records:
2628 A record type definition is transformed into the equivalent of a C
2629 struct definition. The fields that are the discriminants which are
2630 found in the Full_Type_Declaration node and the elements of the
2631 Component_List found in the Record_Type_Definition node. The
2632 Component_List can be a recursive structure since each Variant of
2633 the Variant_Part of the Component_List has a Component_List.
2635 Processing of a record type definition comprises starting the list of
2636 field declarations here from the discriminants and the calling the
2637 function components_to_record to add the rest of the fields from the
2638 component list and return the gnu type node. The function
2639 components_to_record will call itself recursively as it traverses
2643 if (Has_Complex_Representation (gnat_entity))
2646 = build_complex_type
2648 (Etype (Defining_Entity
2649 (First (Component_Items
2652 (Declaration_Node (gnat_entity)))))))));
2658 Node_Id full_definition = Declaration_Node (gnat_entity);
2659 Node_Id record_definition = Type_Definition (full_definition);
2660 Entity_Id gnat_field;
2662 tree gnu_field_list = NULL_TREE;
2663 tree gnu_get_parent;
2664 /* Set PACKED in keeping with gnat_to_gnu_field. */
2666 = Is_Packed (gnat_entity)
2668 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2670 : (Known_Alignment (gnat_entity)
2671 || (Strict_Alignment (gnat_entity)
2672 && Known_Static_Esize (gnat_entity)))
2675 bool has_rep = Has_Specified_Layout (gnat_entity);
2676 bool all_rep = has_rep;
2678 = (Is_Tagged_Type (gnat_entity)
2679 && Nkind (record_definition) == N_Derived_Type_Definition);
2681 /* See if all fields have a rep clause. Stop when we find one
2683 for (gnat_field = First_Entity (gnat_entity);
2684 Present (gnat_field) && all_rep;
2685 gnat_field = Next_Entity (gnat_field))
2686 if ((Ekind (gnat_field) == E_Component
2687 || Ekind (gnat_field) == E_Discriminant)
2688 && No (Component_Clause (gnat_field)))
2691 /* If this is a record extension, go a level further to find the
2692 record definition. Also, verify we have a Parent_Subtype. */
2695 if (!type_annotate_only
2696 || Present (Record_Extension_Part (record_definition)))
2697 record_definition = Record_Extension_Part (record_definition);
2699 gcc_assert (type_annotate_only
2700 || Present (Parent_Subtype (gnat_entity)));
2703 /* Make a node for the record. If we are not defining the record,
2704 suppress expanding incomplete types. */
2705 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2706 TYPE_NAME (gnu_type) = gnu_entity_name;
2707 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2710 defer_incomplete_level++, this_deferred = true;
2712 /* If both a size and rep clause was specified, put the size in
2713 the record type now so that it can get the proper mode. */
2714 if (has_rep && Known_Esize (gnat_entity))
2715 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2717 /* Always set the alignment here so that it can be used to
2718 set the mode, if it is making the alignment stricter. If
2719 it is invalid, it will be checked again below. If this is to
2720 be Atomic, choose a default alignment of a word unless we know
2721 the size and it's smaller. */
2722 if (Known_Alignment (gnat_entity))
2723 TYPE_ALIGN (gnu_type)
2724 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2725 else if (Is_Atomic (gnat_entity))
2726 TYPE_ALIGN (gnu_type)
2727 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2728 /* If a type needs strict alignment, the minimum size will be the
2729 type size instead of the RM size (see validate_size). Cap the
2730 alignment, lest it causes this type size to become too large. */
2731 else if (Strict_Alignment (gnat_entity)
2732 && Known_Static_Esize (gnat_entity))
2734 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2735 unsigned int raw_align = raw_size & -raw_size;
2736 if (raw_align < BIGGEST_ALIGNMENT)
2737 TYPE_ALIGN (gnu_type) = raw_align;
2740 TYPE_ALIGN (gnu_type) = 0;
2742 /* If we have a Parent_Subtype, make a field for the parent. If
2743 this record has rep clauses, force the position to zero. */
2744 if (Present (Parent_Subtype (gnat_entity)))
2746 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2749 /* A major complexity here is that the parent subtype will
2750 reference our discriminants in its Discriminant_Constraint
2751 list. But those must reference the parent component of this
2752 record which is of the parent subtype we have not built yet!
2753 To break the circle we first build a dummy COMPONENT_REF which
2754 represents the "get to the parent" operation and initialize
2755 each of those discriminants to a COMPONENT_REF of the above
2756 dummy parent referencing the corresponding discriminant of the
2757 base type of the parent subtype. */
2758 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2759 build0 (PLACEHOLDER_EXPR, gnu_type),
2760 build_decl (FIELD_DECL, NULL_TREE,
2764 if (Has_Discriminants (gnat_entity))
2765 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2766 Present (gnat_field);
2767 gnat_field = Next_Stored_Discriminant (gnat_field))
2768 if (Present (Corresponding_Discriminant (gnat_field)))
2771 build3 (COMPONENT_REF,
2772 get_unpadded_type (Etype (gnat_field)),
2774 gnat_to_gnu_field_decl (Corresponding_Discriminant
2779 /* Then we build the parent subtype. If it has discriminants but
2780 the type itself has unknown discriminants, this means that it
2781 doesn't contain information about how the discriminants are
2782 derived from those of the ancestor type, so it cannot be used
2783 directly. Instead it is built by cloning the parent subtype
2784 of the underlying record view of the type, for which the above
2785 derivation of discriminants has been made explicit. */
2786 if (Has_Discriminants (gnat_parent)
2787 && Has_Unknown_Discriminants (gnat_entity))
2789 Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
2791 /* If we are defining the type, the underlying record
2792 view must already have been elaborated at this point.
2793 Otherwise do it now as its parent subtype cannot be
2794 technically elaborated on its own. */
2796 gcc_assert (present_gnu_tree (gnat_uview));
2798 gnat_to_gnu_entity (gnat_uview, NULL_TREE, 0);
2800 gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
2802 /* Substitute the "get to the parent" of the type for that
2803 of its underlying record view in the cloned type. */
2804 for (gnat_field = First_Stored_Discriminant (gnat_uview);
2805 Present (gnat_field);
2806 gnat_field = Next_Stored_Discriminant (gnat_field))
2807 if (Present (Corresponding_Discriminant (gnat_field)))
2809 tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
2811 = build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2812 gnu_get_parent, gnu_field, NULL_TREE);
2814 = substitute_in_type (gnu_parent, gnu_field, gnu_ref);
2818 gnu_parent = gnat_to_gnu_type (gnat_parent);
2820 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2821 initially built. The discriminants must reference the fields
2822 of the parent subtype and not those of its base type for the
2823 placeholder machinery to properly work. */
2824 if (Has_Discriminants (gnat_entity))
2825 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2826 Present (gnat_field);
2827 gnat_field = Next_Stored_Discriminant (gnat_field))
2828 if (Present (Corresponding_Discriminant (gnat_field)))
2830 Entity_Id field = Empty;
2831 for (field = First_Stored_Discriminant (gnat_parent);
2833 field = Next_Stored_Discriminant (field))
2834 if (same_discriminant_p (gnat_field, field))
2836 gcc_assert (Present (field));
2837 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2838 = gnat_to_gnu_field_decl (field);
2841 /* The "get to the parent" COMPONENT_REF must be given its
2843 TREE_TYPE (gnu_get_parent) = gnu_parent;
2845 /* ...and reference the _parent field of this record. */
2847 = create_field_decl (get_identifier
2848 (Get_Name_String (Name_uParent)),
2849 gnu_parent, gnu_type, 0,
2850 has_rep ? TYPE_SIZE (gnu_parent) : 0,
2851 has_rep ? bitsize_zero_node : 0, 1);
2852 DECL_INTERNAL_P (gnu_field_list) = 1;
2853 TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
2856 /* Make the fields for the discriminants and put them into the record
2857 unless it's an Unchecked_Union. */
2858 if (Has_Discriminants (gnat_entity))
2859 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2860 Present (gnat_field);
2861 gnat_field = Next_Stored_Discriminant (gnat_field))
2863 /* If this is a record extension and this discriminant
2864 is the renaming of another discriminant, we've already
2865 handled the discriminant above. */
2866 if (Present (Parent_Subtype (gnat_entity))
2867 && Present (Corresponding_Discriminant (gnat_field)))
2871 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2873 /* Make an expression using a PLACEHOLDER_EXPR from the
2874 FIELD_DECL node just created and link that with the
2875 corresponding GNAT defining identifier. Then add to the
2877 save_gnu_tree (gnat_field,
2878 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2879 build0 (PLACEHOLDER_EXPR,
2880 DECL_CONTEXT (gnu_field)),
2881 gnu_field, NULL_TREE),
2884 if (!Is_Unchecked_Union (gnat_entity))
2886 TREE_CHAIN (gnu_field) = gnu_field_list;
2887 gnu_field_list = gnu_field;
2891 /* Put the discriminants into the record (backwards), so we can
2892 know the appropriate discriminant to use for the names of the
2894 TYPE_FIELDS (gnu_type) = gnu_field_list;
2896 /* Add the listed fields into the record and finish it up. */
2897 components_to_record (gnu_type, Component_List (record_definition),
2898 gnu_field_list, packed, definition, NULL,
2899 false, all_rep, false,
2900 Is_Unchecked_Union (gnat_entity));
2902 /* We used to remove the associations of the discriminants and
2903 _Parent for validity checking, but we may need them if there's
2904 Freeze_Node for a subtype used in this record. */
2905 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2906 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
2908 /* If it is a tagged record force the type to BLKmode to insure
2909 that these objects will always be placed in memory. Do the
2910 same thing for limited record types. */
2911 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2912 SET_TYPE_MODE (gnu_type, BLKmode);
2914 /* Fill in locations of fields. */
2915 annotate_rep (gnat_entity, gnu_type);
2917 /* If there are any entities in the chain corresponding to
2918 components that we did not elaborate, ensure we elaborate their
2919 types if they are Itypes. */
2920 for (gnat_temp = First_Entity (gnat_entity);
2921 Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
2922 if ((Ekind (gnat_temp) == E_Component
2923 || Ekind (gnat_temp) == E_Discriminant)
2924 && Is_Itype (Etype (gnat_temp))
2925 && !present_gnu_tree (gnat_temp))
2926 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
2930 case E_Class_Wide_Subtype:
2931 /* If an equivalent type is present, that is what we should use.
2932 Otherwise, fall through to handle this like a record subtype
2933 since it may have constraints. */
2934 if (gnat_equiv_type != gnat_entity)
2936 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
2937 maybe_present = true;
2941 /* ... fall through ... */
2943 case E_Record_Subtype:
2945 /* If Cloned_Subtype is Present it means this record subtype has
2946 identical layout to that type or subtype and we should use
2947 that GCC type for this one. The front end guarantees that
2948 the component list is shared. */
2949 if (Present (Cloned_Subtype (gnat_entity)))
2951 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
2953 maybe_present = true;
2956 /* Otherwise, first ensure the base type is elaborated. Then, if we are
2957 changing the type, make a new type with each field having the
2958 type of the field in the new subtype but having the position
2959 computed by transforming every discriminant reference according
2960 to the constraints. We don't see any difference between
2961 private and nonprivate type here since derivations from types should
2962 have been deferred until the completion of the private type. */
2965 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
2970 defer_incomplete_level++, this_deferred = true;
2972 /* Get the base type initially for its alignment and sizes. But
2973 if it is a padded type, we do all the other work with the
2975 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
2977 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
2978 && TYPE_IS_PADDING_P (gnu_base_type))
2979 gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
2981 gnu_type = gnu_orig_type = gnu_base_type;
2983 if (present_gnu_tree (gnat_entity))
2985 maybe_present = true;
2989 /* When the type has discriminants, and these discriminants
2990 affect the shape of what it built, factor them in.
2992 If we are making a subtype of an Unchecked_Union (must be an
2993 Itype), just return the type.
2995 We can't just use Is_Constrained because private subtypes without
2996 discriminants of full types with discriminants with default
2997 expressions are Is_Constrained but aren't constrained! */
2999 if (IN (Ekind (gnat_base_type), Record_Kind)
3000 && !Is_For_Access_Subtype (gnat_entity)
3001 && !Is_Unchecked_Union (gnat_base_type)
3002 && Is_Constrained (gnat_entity)
3003 && Stored_Constraint (gnat_entity) != No_Elist
3004 && Present (Discriminant_Constraint (gnat_entity)))
3006 Entity_Id gnat_field;
3007 tree gnu_field_list = 0;
3009 = compute_field_positions (gnu_orig_type, NULL_TREE,
3010 size_zero_node, bitsize_zero_node,
3013 = substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
3017 gnu_type = make_node (RECORD_TYPE);
3018 TYPE_NAME (gnu_type) = gnu_entity_name;
3019 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
3021 /* Set the size, alignment and alias set of the new type to
3022 match that of the old one, doing required substitutions.
3023 We do it this early because we need the size of the new
3024 type below to discard old fields if necessary. */
3025 TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type);
3026 TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type);
3027 SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type));
3028 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
3029 relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
3031 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
3032 for (gnu_temp = gnu_subst_list;
3033 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3034 TYPE_SIZE (gnu_type)
3035 = substitute_in_expr (TYPE_SIZE (gnu_type),
3036 TREE_PURPOSE (gnu_temp),
3037 TREE_VALUE (gnu_temp));
3039 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type)))
3040 for (gnu_temp = gnu_subst_list;
3041 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3042 TYPE_SIZE_UNIT (gnu_type)
3043 = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type),
3044 TREE_PURPOSE (gnu_temp),
3045 TREE_VALUE (gnu_temp));
3047 if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type)))
3048 for (gnu_temp = gnu_subst_list;
3049 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3051 (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type),
3052 TREE_PURPOSE (gnu_temp),
3053 TREE_VALUE (gnu_temp)));
3055 for (gnat_field = First_Entity (gnat_entity);
3056 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3057 if ((Ekind (gnat_field) == E_Component
3058 || Ekind (gnat_field) == E_Discriminant)
3059 && (Underlying_Type (Scope (Original_Record_Component
3062 && (No (Corresponding_Discriminant (gnat_field))
3063 || !Is_Tagged_Type (gnat_base_type)))
3066 = gnat_to_gnu_field_decl (Original_Record_Component
3069 = TREE_VALUE (purpose_member (gnu_old_field,
3071 tree gnu_pos = TREE_PURPOSE (gnu_offset);
3072 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
3074 = gnat_to_gnu_type (Etype (gnat_field));
3075 tree gnu_size = TYPE_SIZE (gnu_field_type);
3076 tree gnu_new_pos = NULL_TREE;
3077 unsigned int offset_align
3078 = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)),
3082 /* If there was a component clause, the field types must be
3083 the same for the type and subtype, so copy the data from
3084 the old field to avoid recomputation here. Also if the
3085 field is justified modular and the optimization in
3086 gnat_to_gnu_field was applied. */
3087 if (Present (Component_Clause
3088 (Original_Record_Component (gnat_field)))
3089 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
3090 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
3091 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
3092 == TREE_TYPE (gnu_old_field)))
3094 gnu_size = DECL_SIZE (gnu_old_field);
3095 gnu_field_type = TREE_TYPE (gnu_old_field);
3098 /* If the old field was packed and of constant size, we
3099 have to get the old size here, as it might differ from
3100 what the Etype conveys and the latter might overlap
3101 onto the following field. Try to arrange the type for
3102 possible better packing along the way. */
3103 else if (DECL_PACKED (gnu_old_field)
3104 && TREE_CODE (DECL_SIZE (gnu_old_field))
3107 gnu_size = DECL_SIZE (gnu_old_field);
3108 if (TREE_CODE (gnu_field_type) == RECORD_TYPE
3109 && !TYPE_IS_FAT_POINTER_P (gnu_field_type)
3110 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
3112 = make_packable_type (gnu_field_type, true);
3115 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
3116 for (gnu_temp = gnu_subst_list;
3117 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
3118 gnu_pos = substitute_in_expr (gnu_pos,
3119 TREE_PURPOSE (gnu_temp),
3120 TREE_VALUE (gnu_temp));
3122 /* If the position is now a constant, we can set it as the
3123 position of the field when we make it. Otherwise, we need
3124 to deal with it specially below. */
3125 if (TREE_CONSTANT (gnu_pos))
3127 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
3129 /* Discard old fields that are outside the new type.
3130 This avoids confusing code scanning it to decide
3131 how to pass it to functions on some platforms. */
3132 if (TREE_CODE (gnu_new_pos) == INTEGER_CST
3133 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST
3134 && !integer_zerop (gnu_size)
3135 && !tree_int_cst_lt (gnu_new_pos,
3136 TYPE_SIZE (gnu_type)))
3142 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
3143 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
3144 !DECL_NONADDRESSABLE_P (gnu_old_field));
3146 if (!TREE_CONSTANT (gnu_pos))
3148 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
3149 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
3150 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
3151 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
3152 DECL_SIZE (gnu_field) = gnu_size;
3153 DECL_SIZE_UNIT (gnu_field)
3154 = convert (sizetype,
3155 size_binop (CEIL_DIV_EXPR, gnu_size,
3156 bitsize_unit_node));
3157 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
3160 DECL_INTERNAL_P (gnu_field)
3161 = DECL_INTERNAL_P (gnu_old_field);
3162 SET_DECL_ORIGINAL_FIELD
3163 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
3164 ? DECL_ORIGINAL_FIELD (gnu_old_field)
3166 DECL_DISCRIMINANT_NUMBER (gnu_field)
3167 = DECL_DISCRIMINANT_NUMBER (gnu_old_field);
3168 TREE_THIS_VOLATILE (gnu_field)
3169 = TREE_THIS_VOLATILE (gnu_old_field);
3171 /* To match the layout crafted in components_to_record, if
3172 this is the _Tag field, put it before any discriminants
3173 instead of after them as for all other fields. */
3174 if (Chars (gnat_field) == Name_uTag)
3175 gnu_field_list = chainon (gnu_field_list, gnu_field);
3178 TREE_CHAIN (gnu_field) = gnu_field_list;
3179 gnu_field_list = gnu_field;
3182 save_gnu_tree (gnat_field, gnu_field, false);
3185 /* Now go through the entities again looking for Itypes that
3186 we have not elaborated but should (e.g., Etypes of fields
3187 that have Original_Components). */
3188 for (gnat_field = First_Entity (gnat_entity);
3189 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
3190 if ((Ekind (gnat_field) == E_Discriminant
3191 || Ekind (gnat_field) == E_Component)
3192 && !present_gnu_tree (Etype (gnat_field)))
3193 gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, 0);
3195 /* Do not finalize it since we're going to modify it below. */
3196 gnu_field_list = nreverse (gnu_field_list);
3197 finish_record_type (gnu_type, gnu_field_list, 2, true);
3199 /* Finalize size and mode. */
3200 TYPE_SIZE (gnu_type) = variable_size (TYPE_SIZE (gnu_type));
3201 TYPE_SIZE_UNIT (gnu_type)
3202 = variable_size (TYPE_SIZE_UNIT (gnu_type));
3204 compute_record_mode (gnu_type);
3206 /* Fill in locations of fields. */
3207 annotate_rep (gnat_entity, gnu_type);
3209 /* We've built a new type, make an XVS type to show what this
3210 is a subtype of. Some debuggers require the XVS type to be
3211 output first, so do it in that order. */
3214 tree gnu_subtype_marker = make_node (RECORD_TYPE);
3215 tree gnu_orig_name = TYPE_NAME (gnu_orig_type);
3217 if (TREE_CODE (gnu_orig_name) == TYPE_DECL)
3218 gnu_orig_name = DECL_NAME (gnu_orig_name);
3220 TYPE_NAME (gnu_subtype_marker)
3221 = create_concat_name (gnat_entity, "XVS");
3222 finish_record_type (gnu_subtype_marker,
3223 create_field_decl (gnu_orig_name,
3230 add_parallel_type (TYPE_STUB_DECL (gnu_type),
3231 gnu_subtype_marker);
3234 /* Now we can finalize it. */
3235 rest_of_record_type_compilation (gnu_type);
3238 /* Otherwise, go down all the components in the new type and
3239 make them equivalent to those in the base type. */
3241 for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
3242 gnat_temp = Next_Entity (gnat_temp))
3243 if ((Ekind (gnat_temp) == E_Discriminant
3244 && !Is_Unchecked_Union (gnat_base_type))
3245 || Ekind (gnat_temp) == E_Component)
3246 save_gnu_tree (gnat_temp,
3247 gnat_to_gnu_field_decl
3248 (Original_Record_Component (gnat_temp)), false);
3252 case E_Access_Subprogram_Type:
3253 /* Use the special descriptor type for dispatch tables if needed,
3254 that is to say for the Prim_Ptr of a-tags.ads and its clones.
3255 Note that we are only required to do so for static tables in
3256 order to be compatible with the C++ ABI, but Ada 2005 allows
3257 to extend library level tagged types at the local level so
3258 we do it in the non-static case as well. */
3259 if (TARGET_VTABLE_USES_DESCRIPTORS
3260 && Is_Dispatch_Table_Entity (gnat_entity))