1 /****************************************************************************
3 * GNAT COMPILER COMPONENTS *
7 * C Implementation File *
9 * Copyright (C) 1992-2008, Free Software Foundation, Inc. *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
24 ****************************************************************************/
28 #include "coretypes.h"
56 #ifndef MAX_FIXED_MODE_SIZE
57 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
60 /* Convention_Stdcall should be processed in a specific way on Windows targets
61 only. The macro below is a helper to avoid having to check for a Windows
62 specific attribute throughout this unit. */
64 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
65 #define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
67 #define Has_Stdcall_Convention(E) (0)
72 struct incomplete *next;
77 /* These variables are used to defer recursively expanding incomplete types
78 while we are processing an array, a record or a subprogram type. */
79 static int defer_incomplete_level = 0;
80 static struct incomplete *defer_incomplete_list;
82 /* This variable is used to delay expanding From_With_Type types until the
84 static struct incomplete *defer_limited_with;
86 /* These variables are used to defer finalizing types. The element of the
87 list is the TYPE_DECL associated with the type. */
88 static int defer_finalize_level = 0;
89 static VEC (tree,heap) *defer_finalize_list;
91 /* A hash table used to cache the result of annotate_value. */
92 static GTY ((if_marked ("tree_int_map_marked_p"),
93 param_is (struct tree_int_map))) htab_t annotate_value_cache;
95 static void copy_alias_set (tree, tree);
96 static tree substitution_list (Entity_Id, Entity_Id, tree, bool);
97 static bool allocatable_size_p (tree, bool);
98 static void prepend_one_attribute_to (struct attrib **,
99 enum attr_type, tree, tree, Node_Id);
100 static void prepend_attributes (Entity_Id, struct attrib **);
101 static tree elaborate_expression (Node_Id, Entity_Id, tree, bool, bool, bool);
102 static bool is_variable_size (tree);
103 static tree elaborate_expression_1 (Node_Id, Entity_Id, tree, tree,
105 static tree make_packable_type (tree, bool);
106 static tree gnat_to_gnu_field (Entity_Id, tree, int, bool);
107 static tree gnat_to_gnu_param (Entity_Id, Mechanism_Type, Entity_Id, bool,
109 static bool same_discriminant_p (Entity_Id, Entity_Id);
110 static bool array_type_has_nonaliased_component (Entity_Id, tree);
111 static void components_to_record (tree, Node_Id, tree, int, bool, tree *,
112 bool, bool, bool, bool);
113 static Uint annotate_value (tree);
114 static void annotate_rep (Entity_Id, tree);
115 static tree compute_field_positions (tree, tree, tree, tree, unsigned int);
116 static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool);
117 static void set_rm_size (Uint, tree, Entity_Id);
118 static tree make_type_from_size (tree, tree, bool);
119 static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
120 static unsigned int ceil_alignment (unsigned HOST_WIDE_INT);
121 static void check_ok_for_atomic (tree, Entity_Id, bool);
122 static int compatible_signatures_p (tree ftype1, tree ftype2);
123 static void rest_of_type_decl_compilation_no_defer (tree);
125 /* Given GNAT_ENTITY, an entity in the incoming GNAT tree, return a
126 GCC type corresponding to that entity. GNAT_ENTITY is assumed to
127 refer to an Ada type. */
130 gnat_to_gnu_type (Entity_Id gnat_entity)
134 /* The back end never attempts to annotate generic types */
135 if (Is_Generic_Type (gnat_entity) && type_annotate_only)
136 return void_type_node;
138 /* Convert the ada entity type into a GCC TYPE_DECL node. */
139 gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0);
140 gcc_assert (TREE_CODE (gnu_decl) == TYPE_DECL);
141 return TREE_TYPE (gnu_decl);
144 /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
145 entity, this routine returns the equivalent GCC tree for that entity
146 (an ..._DECL node) and associates the ..._DECL node with the input GNAT
149 If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
150 initial value (in GCC tree form). This is optional for variables.
151 For renamed entities, GNU_EXPR gives the object being renamed.
153 DEFINITION is nonzero if this call is intended for a definition. This is
154 used for separate compilation where it necessary to know whether an
155 external declaration or a definition should be created if the GCC equivalent
156 was not created previously. The value of 1 is normally used for a nonzero
157 DEFINITION, but a value of 2 is used in special circumstances, defined in
161 gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition)
163 Entity_Id gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
165 tree gnu_type = NULL_TREE;
166 /* Contains the gnu XXXX_DECL tree node which is equivalent to the input
167 GNAT tree. This node will be associated with the GNAT node by calling
168 the save_gnu_tree routine at the end of the `switch' statement. */
169 tree gnu_decl = NULL_TREE;
170 /* true if we have already saved gnu_decl as a gnat association. */
172 /* Nonzero if we incremented defer_incomplete_level. */
173 bool this_deferred = false;
174 /* Nonzero if we incremented force_global. */
175 bool this_global = false;
176 /* Nonzero if we should check to see if elaborated during processing. */
177 bool maybe_present = false;
178 /* Nonzero if we made GNU_DECL and its type here. */
179 bool this_made_decl = false;
180 struct attrib *attr_list = NULL;
181 bool debug_info_p = (Needs_Debug_Info (gnat_entity)
182 || debug_info_level == DINFO_LEVEL_VERBOSE);
183 Entity_Kind kind = Ekind (gnat_entity);
186 = ((Known_Esize (gnat_entity)
187 && UI_Is_In_Int_Range (Esize (gnat_entity)))
188 ? MIN (UI_To_Int (Esize (gnat_entity)),
189 IN (kind, Float_Kind)
190 ? fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE)
191 : IN (kind, Access_Kind) ? POINTER_SIZE * 2
192 : LONG_LONG_TYPE_SIZE)
193 : LONG_LONG_TYPE_SIZE);
196 = (Is_Imported (gnat_entity) && No (Address_Clause (gnat_entity)));
197 unsigned int align = 0;
199 /* Since a use of an Itype is a definition, process it as such if it
200 is not in a with'ed unit. */
202 if (!definition && Is_Itype (gnat_entity)
203 && !present_gnu_tree (gnat_entity)
204 && In_Extended_Main_Code_Unit (gnat_entity))
206 /* Ensure that we are in a subprogram mentioned in the Scope
207 chain of this entity, our current scope is global,
208 or that we encountered a task or entry (where we can't currently
209 accurately check scoping). */
210 if (!current_function_decl
211 || DECL_ELABORATION_PROC_P (current_function_decl))
213 process_type (gnat_entity);
214 return get_gnu_tree (gnat_entity);
217 for (gnat_temp = Scope (gnat_entity);
218 Present (gnat_temp); gnat_temp = Scope (gnat_temp))
220 if (Is_Type (gnat_temp))
221 gnat_temp = Underlying_Type (gnat_temp);
223 if (Ekind (gnat_temp) == E_Subprogram_Body)
225 = Corresponding_Spec (Parent (Declaration_Node (gnat_temp)));
227 if (IN (Ekind (gnat_temp), Subprogram_Kind)
228 && Present (Protected_Body_Subprogram (gnat_temp)))
229 gnat_temp = Protected_Body_Subprogram (gnat_temp);
231 if (Ekind (gnat_temp) == E_Entry
232 || Ekind (gnat_temp) == E_Entry_Family
233 || Ekind (gnat_temp) == E_Task_Type
234 || (IN (Ekind (gnat_temp), Subprogram_Kind)
235 && present_gnu_tree (gnat_temp)
236 && (current_function_decl
237 == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0))))
239 process_type (gnat_entity);
240 return get_gnu_tree (gnat_entity);
244 /* This abort means the entity "gnat_entity" has an incorrect scope,
245 i.e. that its scope does not correspond to the subprogram in which
250 /* If this is entity 0, something went badly wrong. */
251 gcc_assert (Present (gnat_entity));
253 /* If we've already processed this entity, return what we got last time.
254 If we are defining the node, we should not have already processed it.
255 In that case, we will abort below when we try to save a new GCC tree for
256 this object. We also need to handle the case of getting a dummy type
257 when a Full_View exists. */
259 if (present_gnu_tree (gnat_entity)
260 && (!definition || (Is_Type (gnat_entity) && imported_p)))
262 gnu_decl = get_gnu_tree (gnat_entity);
264 if (TREE_CODE (gnu_decl) == TYPE_DECL
265 && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
266 && IN (kind, Incomplete_Or_Private_Kind)
267 && Present (Full_View (gnat_entity)))
269 gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity),
272 save_gnu_tree (gnat_entity, NULL_TREE, false);
273 save_gnu_tree (gnat_entity, gnu_decl, false);
279 /* If this is a numeric or enumeral type, or an access type, a nonzero
280 Esize must be specified unless it was specified by the programmer. */
281 gcc_assert (!Unknown_Esize (gnat_entity)
282 || Has_Size_Clause (gnat_entity)
283 || (!IN (kind, Numeric_Kind) && !IN (kind, Enumeration_Kind)
284 && (!IN (kind, Access_Kind)
285 || kind == E_Access_Protected_Subprogram_Type
286 || kind == E_Anonymous_Access_Protected_Subprogram_Type
287 || kind == E_Access_Subtype)));
289 /* Likewise, RM_Size must be specified for all discrete and fixed-point
291 gcc_assert (!IN (kind, Discrete_Or_Fixed_Point_Kind)
292 || !Unknown_RM_Size (gnat_entity));
294 /* Get the name of the entity and set up the line number and filename of
295 the original definition for use in any decl we make. */
296 gnu_entity_id = get_entity_name (gnat_entity);
297 Sloc_to_locus (Sloc (gnat_entity), &input_location);
299 /* If we get here, it means we have not yet done anything with this
300 entity. If we are not defining it here, it must be external,
301 otherwise we should have defined it already. */
302 gcc_assert (definition || Is_Public (gnat_entity) || type_annotate_only
303 || kind == E_Discriminant || kind == E_Component
305 || (kind == E_Constant && Present (Full_View (gnat_entity)))
306 || IN (kind, Type_Kind));
308 /* For cases when we are not defining (i.e., we are referencing from
309 another compilation unit) Public entities, show we are at global level
310 for the purpose of computing scopes. Don't do this for components or
311 discriminants since the relevant test is whether or not the record is
312 being defined. But do this for Imported functions or procedures in
314 if ((!definition && Is_Public (gnat_entity)
315 && !Is_Statically_Allocated (gnat_entity)
316 && kind != E_Discriminant && kind != E_Component)
317 || (Is_Imported (gnat_entity)
318 && (kind == E_Function || kind == E_Procedure)))
319 force_global++, this_global = true;
321 /* Handle any attributes directly attached to the entity. */
322 if (Has_Gigi_Rep_Item (gnat_entity))
323 prepend_attributes (gnat_entity, &attr_list);
325 /* Machine_Attributes on types are expected to be propagated to subtypes.
326 The corresponding Gigi_Rep_Items are only attached to the first subtype
327 though, so we handle the propagation here. */
328 if (Is_Type (gnat_entity) && Base_Type (gnat_entity) != gnat_entity
329 && !Is_First_Subtype (gnat_entity)
330 && Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
331 prepend_attributes (First_Subtype (Base_Type (gnat_entity)), &attr_list);
336 /* If this is a use of a deferred constant, get its full
338 if (!definition && Present (Full_View (gnat_entity)))
340 gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity),
346 /* If we have an external constant that we are not defining, get the
347 expression that is was defined to represent. We may throw that
348 expression away later if it is not a constant. Do not retrieve the
349 expression if it is an aggregate or allocator, because in complex
350 instantiation contexts it may not be expanded */
352 && Present (Expression (Declaration_Node (gnat_entity)))
353 && !No_Initialization (Declaration_Node (gnat_entity))
354 && (Nkind (Expression (Declaration_Node (gnat_entity)))
356 && (Nkind (Expression (Declaration_Node (gnat_entity)))
358 gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity)));
360 /* Ignore deferred constant definitions; they are processed fully in the
361 front-end. For deferred constant references get the full definition.
362 On the other hand, constants that are renamings are handled like
363 variable renamings. If No_Initialization is set, this is not a
364 deferred constant but a constant whose value is built manually. */
365 if (definition && !gnu_expr
366 && !No_Initialization (Declaration_Node (gnat_entity))
367 && No (Renamed_Object (gnat_entity)))
369 gnu_decl = error_mark_node;
373 else if (!definition && IN (kind, Incomplete_Or_Private_Kind)
374 && Present (Full_View (gnat_entity)))
376 gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity),
385 /* We used to special case VMS exceptions here to directly map them to
386 their associated condition code. Since this code had to be masked
387 dynamically to strip off the severity bits, this caused trouble in
388 the GCC/ZCX case because the "type" pointers we store in the tables
389 have to be static. We now don't special case here anymore, and let
390 the regular processing take place, which leaves us with a regular
391 exception data object for VMS exceptions too. The condition code
392 mapping is taken care of by the front end and the bitmasking by the
399 /* The GNAT record where the component was defined. */
400 Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
402 /* If the variable is an inherited record component (in the case of
403 extended record types), just return the inherited entity, which
404 must be a FIELD_DECL. Likewise for discriminants.
405 For discriminants of untagged records which have explicit
406 stored discriminants, return the entity for the corresponding
407 stored discriminant. Also use Original_Record_Component
408 if the record has a private extension. */
410 if (Present (Original_Record_Component (gnat_entity))
411 && Original_Record_Component (gnat_entity) != gnat_entity)
414 = gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
415 gnu_expr, definition);
420 /* If the enclosing record has explicit stored discriminants,
421 then it is an untagged record. If the Corresponding_Discriminant
422 is not empty then this must be a renamed discriminant and its
423 Original_Record_Component must point to the corresponding explicit
424 stored discriminant (i.e., we should have taken the previous
427 else if (Present (Corresponding_Discriminant (gnat_entity))
428 && Is_Tagged_Type (gnat_record))
430 /* A tagged record has no explicit stored discriminants. */
432 gcc_assert (First_Discriminant (gnat_record)
433 == First_Stored_Discriminant (gnat_record));
435 = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
436 gnu_expr, definition);
441 else if (Present (CR_Discriminant (gnat_entity))
442 && type_annotate_only)
444 gnu_decl = gnat_to_gnu_entity (CR_Discriminant (gnat_entity),
445 gnu_expr, definition);
450 /* If the enclosing record has explicit stored discriminants,
451 then it is an untagged record. If the Corresponding_Discriminant
452 is not empty then this must be a renamed discriminant and its
453 Original_Record_Component must point to the corresponding explicit
454 stored discriminant (i.e., we should have taken the first
457 else if (Present (Corresponding_Discriminant (gnat_entity))
458 && (First_Discriminant (gnat_record)
459 != First_Stored_Discriminant (gnat_record)))
462 /* Otherwise, if we are not defining this and we have no GCC type
463 for the containing record, make one for it. Then we should
464 have made our own equivalent. */
465 else if (!definition && !present_gnu_tree (gnat_record))
467 /* ??? If this is in a record whose scope is a protected
468 type and we have an Original_Record_Component, use it.
469 This is a workaround for major problems in protected type
471 Entity_Id Scop = Scope (Scope (gnat_entity));
472 if ((Is_Protected_Type (Scop)
473 || (Is_Private_Type (Scop)
474 && Present (Full_View (Scop))
475 && Is_Protected_Type (Full_View (Scop))))
476 && Present (Original_Record_Component (gnat_entity)))
479 = gnat_to_gnu_entity (Original_Record_Component
486 gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0);
487 gnu_decl = get_gnu_tree (gnat_entity);
493 /* Here we have no GCC type and this is a reference rather than a
494 definition. This should never happen. Most likely the cause is a
495 reference before declaration in the gnat tree for gnat_entity. */
499 case E_Loop_Parameter:
500 case E_Out_Parameter:
503 /* Simple variables, loop variables, Out parameters, and exceptions. */
506 bool used_by_ref = false;
508 = ((kind == E_Constant || kind == E_Variable)
509 && Is_True_Constant (gnat_entity)
510 && (((Nkind (Declaration_Node (gnat_entity))
511 == N_Object_Declaration)
512 && Present (Expression (Declaration_Node (gnat_entity))))
513 || Present (Renamed_Object (gnat_entity))));
514 bool inner_const_flag = const_flag;
515 bool static_p = Is_Statically_Allocated (gnat_entity);
516 bool mutable_p = false;
517 tree gnu_ext_name = NULL_TREE;
518 tree renamed_obj = NULL_TREE;
520 if (Present (Renamed_Object (gnat_entity)) && !definition)
522 if (kind == E_Exception)
523 gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
526 gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity));
529 /* Get the type after elaborating the renamed object. */
530 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
532 /* For a debug renaming declaration, build a pure debug entity. */
533 if (Present (Debug_Renaming_Link (gnat_entity)))
536 gnu_decl = build_decl (VAR_DECL, gnu_entity_id, gnu_type);
537 /* The (MEM (CONST (0))) pattern is prescribed by STABS. */
538 if (global_bindings_p ())
539 addr = gen_rtx_CONST (VOIDmode, const0_rtx);
541 addr = stack_pointer_rtx;
542 SET_DECL_RTL (gnu_decl, gen_rtx_MEM (Pmode, addr));
543 gnat_pushdecl (gnu_decl, gnat_entity);
547 /* If this is a loop variable, its type should be the base type.
548 This is because the code for processing a loop determines whether
549 a normal loop end test can be done by comparing the bounds of the
550 loop against those of the base type, which is presumed to be the
551 size used for computation. But this is not correct when the size
552 of the subtype is smaller than the type. */
553 if (kind == E_Loop_Parameter)
554 gnu_type = get_base_type (gnu_type);
556 /* Reject non-renamed objects whose types are unconstrained arrays or
557 any object whose type is a dummy type or VOID_TYPE. */
559 if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
560 && No (Renamed_Object (gnat_entity)))
561 || TYPE_IS_DUMMY_P (gnu_type)
562 || TREE_CODE (gnu_type) == VOID_TYPE)
564 gcc_assert (type_annotate_only);
567 return error_mark_node;
570 /* If an alignment is specified, use it if valid. Note that
571 exceptions are objects but don't have alignments. We must do this
572 before we validate the size, since the alignment can affect the
574 if (kind != E_Exception && Known_Alignment (gnat_entity))
576 gcc_assert (Present (Alignment (gnat_entity)));
577 align = validate_alignment (Alignment (gnat_entity), gnat_entity,
578 TYPE_ALIGN (gnu_type));
579 gnu_type = maybe_pad_type (gnu_type, NULL_TREE, align, gnat_entity,
580 "PAD", false, definition, true);
583 /* If we are defining the object, see if it has a Size value and
584 validate it if so. If we are not defining the object and a Size
585 clause applies, simply retrieve the value. We don't want to ignore
586 the clause and it is expected to have been validated already. Then
587 get the new type, if any. */
589 gnu_size = validate_size (Esize (gnat_entity), gnu_type,
590 gnat_entity, VAR_DECL, false,
591 Has_Size_Clause (gnat_entity));
592 else if (Has_Size_Clause (gnat_entity))
593 gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype);
598 = make_type_from_size (gnu_type, gnu_size,
599 Has_Biased_Representation (gnat_entity));
601 if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
602 gnu_size = NULL_TREE;
605 /* If this object has self-referential size, it must be a record with
606 a default value. We are supposed to allocate an object of the
607 maximum size in this case unless it is a constant with an
608 initializing expression, in which case we can get the size from
609 that. Note that the resulting size may still be a variable, so
610 this may end up with an indirect allocation. */
611 if (No (Renamed_Object (gnat_entity))
612 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
614 if (gnu_expr && kind == E_Constant)
616 tree size = TYPE_SIZE (TREE_TYPE (gnu_expr));
617 if (CONTAINS_PLACEHOLDER_P (size))
619 /* If the initializing expression is itself a constant,
620 despite having a nominal type with self-referential
621 size, we can get the size directly from it. */
622 if (TREE_CODE (gnu_expr) == COMPONENT_REF
623 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
626 (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
627 && TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == VAR_DECL
628 && (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
629 || DECL_READONLY_ONCE_ELAB
630 (TREE_OPERAND (gnu_expr, 0))))
631 gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
634 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, gnu_expr);
639 /* We may have no GNU_EXPR because No_Initialization is
640 set even though there's an Expression. */
641 else if (kind == E_Constant
642 && (Nkind (Declaration_Node (gnat_entity))
643 == N_Object_Declaration)
644 && Present (Expression (Declaration_Node (gnat_entity))))
646 = TYPE_SIZE (gnat_to_gnu_type
648 (Expression (Declaration_Node (gnat_entity)))));
651 gnu_size = max_size (TYPE_SIZE (gnu_type), true);
656 /* If the size is zero bytes, make it one byte since some linkers have
657 trouble with zero-sized objects. If the object will have a
658 template, that will make it nonzero so don't bother. Also avoid
659 doing that for an object renaming or an object with an address
660 clause, as we would lose useful information on the view size
661 (e.g. for null array slices) and we are not allocating the object
664 && integer_zerop (gnu_size)
665 && !TREE_OVERFLOW (gnu_size))
666 || (TYPE_SIZE (gnu_type)
667 && integer_zerop (TYPE_SIZE (gnu_type))
668 && !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
669 && (!Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
670 || !Is_Array_Type (Etype (gnat_entity)))
671 && !Present (Renamed_Object (gnat_entity))
672 && !Present (Address_Clause (gnat_entity)))
673 gnu_size = bitsize_unit_node;
675 /* If this is an object with no specified size and alignment, and if
676 either it is atomic or we are not optimizing alignment for space
677 and it is a non-scalar variable, and the size of its type is a
678 constant, set the alignment to the smallest not less than the
679 size, or to the biggest meaningful one, whichever is smaller. */
680 if (!gnu_size && align == 0
681 && (Is_Atomic (gnat_entity)
683 && !Optimize_Alignment_Space (gnat_entity)
684 && kind == E_Variable
685 && AGGREGATE_TYPE_P (gnu_type)
686 && !const_flag && No (Renamed_Object (gnat_entity))
687 && !imported_p && No (Address_Clause (gnat_entity))))
688 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)
690 /* No point in jumping through all the hoops needed in order
691 to support BIGGEST_ALIGNMENT if we don't really have to. */
692 unsigned int align_cap = Is_Atomic (gnat_entity)
694 : MAX_FIXED_MODE_SIZE;
696 if (!host_integerp (TYPE_SIZE (gnu_type), 1)
697 || compare_tree_int (TYPE_SIZE (gnu_type), align_cap) >= 0)
700 align = ceil_alignment (tree_low_cst (TYPE_SIZE (gnu_type), 1));
702 /* But make sure not to under-align the object. */
703 if (align < TYPE_ALIGN (gnu_type))
704 align = TYPE_ALIGN (gnu_type);
706 /* And honor the minimum valid atomic alignment, if any. */
707 #ifdef MINIMUM_ATOMIC_ALIGNMENT
708 if (align < MINIMUM_ATOMIC_ALIGNMENT)
709 align = MINIMUM_ATOMIC_ALIGNMENT;
713 /* If the object is set to have atomic components, find the component
714 type and validate it.
716 ??? Note that we ignore Has_Volatile_Components on objects; it's
717 not at all clear what to do in that case. */
719 if (Has_Atomic_Components (gnat_entity))
721 tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
722 ? TREE_TYPE (gnu_type) : gnu_type);
724 while (TREE_CODE (gnu_inner) == ARRAY_TYPE
725 && TYPE_MULTI_ARRAY_P (gnu_inner))
726 gnu_inner = TREE_TYPE (gnu_inner);
728 check_ok_for_atomic (gnu_inner, gnat_entity, true);
731 /* Now check if the type of the object allows atomic access. Note
732 that we must test the type, even if this object has size and
733 alignment to allow such access, because we will be going
734 inside the padded record to assign to the object. We could fix
735 this by always copying via an intermediate value, but it's not
736 clear it's worth the effort. */
737 if (Is_Atomic (gnat_entity))
738 check_ok_for_atomic (gnu_type, gnat_entity, false);
740 /* If this is an aliased object with an unconstrained nominal subtype,
741 make a type that includes the template. */
742 if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity))
743 && Is_Array_Type (Etype (gnat_entity))
744 && !type_annotate_only)
747 = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity))));
750 = build_unc_object_type_from_ptr (gnu_fat, gnu_type,
751 concat_id_with_name (gnu_entity_id,
755 #ifdef MINIMUM_ATOMIC_ALIGNMENT
756 /* If the size is a constant and no alignment is specified, force
757 the alignment to be the minimum valid atomic alignment. The
758 restriction on constant size avoids problems with variable-size
759 temporaries; if the size is variable, there's no issue with
760 atomic access. Also don't do this for a constant, since it isn't
761 necessary and can interfere with constant replacement. Finally,
762 do not do it for Out parameters since that creates an
763 size inconsistency with In parameters. */
764 if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
765 && !FLOAT_TYPE_P (gnu_type)
766 && !const_flag && No (Renamed_Object (gnat_entity))
767 && !imported_p && No (Address_Clause (gnat_entity))
768 && kind != E_Out_Parameter
769 && (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
770 : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
771 align = MINIMUM_ATOMIC_ALIGNMENT;
774 /* Make a new type with the desired size and alignment, if needed. */
775 gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
776 "PAD", false, definition, true);
778 /* Make a volatile version of this object's type if we are to make
779 the object volatile. We also interpret 13.3(19) conservatively
780 and disallow any optimizations for an object covered by it. */
781 if ((Treat_As_Volatile (gnat_entity)
782 || (Is_Exported (gnat_entity)
783 /* Exclude exported constants created by the compiler,
784 which should boil down to static dispatch tables and
785 make it possible to put them in read-only memory. */
786 && (Comes_From_Source (gnat_entity) || !const_flag))
787 || Is_Imported (gnat_entity)
788 || Present (Address_Clause (gnat_entity)))
789 && !TYPE_VOLATILE (gnu_type))
790 gnu_type = build_qualified_type (gnu_type,
791 (TYPE_QUALS (gnu_type)
792 | TYPE_QUAL_VOLATILE));
794 /* If this is a renaming, avoid as much as possible to create a new
795 object. However, in several cases, creating it is required.
796 This processing needs to be applied to the raw expression so
797 as to make it more likely to rename the underlying object. */
798 if (Present (Renamed_Object (gnat_entity)))
800 bool create_normal_object = false;
802 /* If the renamed object had padding, strip off the reference
803 to the inner object and reset our type. */
804 if ((TREE_CODE (gnu_expr) == COMPONENT_REF
805 && TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
807 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
808 /* Strip useless conversions around the object. */
809 || TREE_CODE (gnu_expr) == NOP_EXPR)
811 gnu_expr = TREE_OPERAND (gnu_expr, 0);
812 gnu_type = TREE_TYPE (gnu_expr);
815 /* Case 1: If this is a constant renaming stemming from a function
816 call, treat it as a normal object whose initial value is what
817 is being renamed. RM 3.3 says that the result of evaluating a
818 function call is a constant object. As a consequence, it can
819 be the inner object of a constant renaming. In this case, the
820 renaming must be fully instantiated, i.e. it cannot be a mere
821 reference to (part of) an existing object. */
824 tree inner_object = gnu_expr;
825 while (handled_component_p (inner_object))
826 inner_object = TREE_OPERAND (inner_object, 0);
827 if (TREE_CODE (inner_object) == CALL_EXPR)
828 create_normal_object = true;
831 /* Otherwise, see if we can proceed with a stabilized version of
832 the renamed entity or if we need to make a new object. */
833 if (!create_normal_object)
835 tree maybe_stable_expr = NULL_TREE;
838 /* Case 2: If the renaming entity need not be materialized and
839 the renamed expression is something we can stabilize, use
840 that for the renaming. At the global level, we can only do
841 this if we know no SAVE_EXPRs need be made, because the
842 expression we return might be used in arbitrary conditional
843 branches so we must force the SAVE_EXPRs evaluation
844 immediately and this requires a function context. */
845 if (!Materialize_Entity (gnat_entity)
846 && (!global_bindings_p ()
847 || (staticp (gnu_expr)
848 && !TREE_SIDE_EFFECTS (gnu_expr))))
851 = maybe_stabilize_reference (gnu_expr, true, &stable);
855 gnu_decl = maybe_stable_expr;
856 /* ??? No DECL_EXPR is created so we need to mark
857 the expression manually lest it is shared. */
858 if (global_bindings_p ())
859 TREE_VISITED (gnu_decl) = 1;
860 save_gnu_tree (gnat_entity, gnu_decl, true);
865 /* The stabilization failed. Keep maybe_stable_expr
866 untouched here to let the pointer case below know
867 about that failure. */
870 /* Case 3: If this is a constant renaming and creating a
871 new object is allowed and cheap, treat it as a normal
872 object whose initial value is what is being renamed. */
873 if (const_flag && Is_Elementary_Type (Etype (gnat_entity)))
876 /* Case 4: Make this into a constant pointer to the object we
877 are to rename and attach the object to the pointer if it is
878 something we can stabilize.
880 From the proper scope, attached objects will be referenced
881 directly instead of indirectly via the pointer to avoid
882 subtle aliasing problems with non-addressable entities.
883 They have to be stable because we must not evaluate the
884 variables in the expression every time the renaming is used.
885 The pointer is called a "renaming" pointer in this case.
887 In the rare cases where we cannot stabilize the renamed
888 object, we just make a "bare" pointer, and the renamed
889 entity is always accessed indirectly through it. */
892 gnu_type = build_reference_type (gnu_type);
893 inner_const_flag = TREE_READONLY (gnu_expr);
896 /* If the previous attempt at stabilizing failed, there
897 is no point in trying again and we reuse the result
898 without attaching it to the pointer. In this case it
899 will only be used as the initializing expression of
900 the pointer and thus needs no special treatment with
901 regard to multiple evaluations. */
902 if (maybe_stable_expr)
905 /* Otherwise, try to stabilize and attach the expression
906 to the pointer if the stabilization succeeds.
908 Note that this might introduce SAVE_EXPRs and we don't
909 check whether we're at the global level or not. This
910 is fine since we are building a pointer initializer and
911 neither the pointer nor the initializing expression can
912 be accessed before the pointer elaboration has taken
913 place in a correct program.
915 These SAVE_EXPRs will be evaluated at the right place
916 by either the evaluation of the initializer for the
917 non-global case or the elaboration code for the global
918 case, and will be attached to the elaboration procedure
919 in the latter case. */
923 = maybe_stabilize_reference (gnu_expr, true, &stable);
926 renamed_obj = maybe_stable_expr;
928 /* Attaching is actually performed downstream, as soon
929 as we have a VAR_DECL for the pointer we make. */
933 = build_unary_op (ADDR_EXPR, gnu_type, maybe_stable_expr);
935 gnu_size = NULL_TREE;
941 /* If this is an aliased object whose nominal subtype is unconstrained,
942 the object is a record that contains both the template and
943 the object. If there is an initializer, it will have already
944 been converted to the right type, but we need to create the
945 template if there is no initializer. */
947 && TREE_CODE (gnu_type) == RECORD_TYPE
948 && (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
949 /* Beware that padding might have been introduced
950 via maybe_pad_type above. */
951 || (TYPE_IS_PADDING_P (gnu_type)
952 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
954 && TYPE_CONTAINS_TEMPLATE_P
955 (TREE_TYPE (TYPE_FIELDS (gnu_type)))))
959 = TYPE_IS_PADDING_P (gnu_type)
960 ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
961 : TYPE_FIELDS (gnu_type);
964 = gnat_build_constructor
968 build_template (TREE_TYPE (template_field),
969 TREE_TYPE (TREE_CHAIN (template_field)),
974 /* Convert the expression to the type of the object except in the
975 case where the object's type is unconstrained or the object's type
976 is a padded record whose field is of self-referential size. In
977 the former case, converting will generate unnecessary evaluations
978 of the CONSTRUCTOR to compute the size and in the latter case, we
979 want to only copy the actual data. */
981 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
982 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
983 && !(TREE_CODE (gnu_type) == RECORD_TYPE
984 && TYPE_IS_PADDING_P (gnu_type)
985 && (CONTAINS_PLACEHOLDER_P
986 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
987 gnu_expr = convert (gnu_type, gnu_expr);
989 /* If this is a pointer and it does not have an initializing
990 expression, initialize it to NULL, unless the object is
993 && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type))
994 && !Is_Imported (gnat_entity) && !gnu_expr)
995 gnu_expr = integer_zero_node;
997 /* If we are defining the object and it has an Address clause we must
998 get the address expression from the saved GCC tree for the
999 object if the object has a Freeze_Node. Otherwise, we elaborate
1000 the address expression here since the front-end has guaranteed
1001 in that case that the elaboration has no effects. Note that
1002 only the latter mechanism is currently in use. */
1003 if (definition && Present (Address_Clause (gnat_entity)))
1006 = (present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity)
1007 : gnat_to_gnu (Expression (Address_Clause (gnat_entity))));
1009 save_gnu_tree (gnat_entity, NULL_TREE, false);
1011 /* Ignore the size. It's either meaningless or was handled
1013 gnu_size = NULL_TREE;
1014 /* Convert the type of the object to a reference type that can
1015 alias everything as per 13.3(19). */
1017 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1018 gnu_address = convert (gnu_type, gnu_address);
1020 const_flag = !Is_Public (gnat_entity);
1022 /* If we don't have an initializing expression for the underlying
1023 variable, the initializing expression for the pointer is the
1024 specified address. Otherwise, we have to make a COMPOUND_EXPR
1025 to assign both the address and the initial value. */
1027 gnu_expr = gnu_address;
1030 = build2 (COMPOUND_EXPR, gnu_type,
1032 (MODIFY_EXPR, NULL_TREE,
1033 build_unary_op (INDIRECT_REF, NULL_TREE,
1039 /* If it has an address clause and we are not defining it, mark it
1040 as an indirect object. Likewise for Stdcall objects that are
1042 if ((!definition && Present (Address_Clause (gnat_entity)))
1043 || (Is_Imported (gnat_entity)
1044 && Has_Stdcall_Convention (gnat_entity)))
1046 /* Convert the type of the object to a reference type that can
1047 alias everything as per 13.3(19). */
1049 = build_reference_type_for_mode (gnu_type, ptr_mode, true);
1050 gnu_size = NULL_TREE;
1052 gnu_expr = NULL_TREE;
1053 /* No point in taking the address of an initializing expression
1054 that isn't going to be used. */
1059 /* If we are at top level and this object is of variable size,
1060 make the actual type a hidden pointer to the real type and
1061 make the initializer be a memory allocation and initialization.
1062 Likewise for objects we aren't defining (presumed to be
1063 external references from other packages), but there we do
1064 not set up an initialization.
1066 If the object's size overflows, make an allocator too, so that
1067 Storage_Error gets raised. Note that we will never free
1068 such memory, so we presume it never will get allocated. */
1070 if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
1071 global_bindings_p () || !definition
1074 && ! allocatable_size_p (gnu_size,
1075 global_bindings_p () || !definition
1078 gnu_type = build_reference_type (gnu_type);
1079 gnu_size = NULL_TREE;
1083 /* In case this was a aliased object whose nominal subtype is
1084 unconstrained, the pointer above will be a thin pointer and
1085 build_allocator will automatically make the template.
1087 If we have a template initializer only (that we made above),
1088 pretend there is none and rely on what build_allocator creates
1089 again anyway. Otherwise (if we have a full initializer), get
1090 the data part and feed that to build_allocator.
1092 If we are elaborating a mutable object, tell build_allocator to
1093 ignore a possibly simpler size from the initializer, if any, as
1094 we must allocate the maximum possible size in this case. */
1098 tree gnu_alloc_type = TREE_TYPE (gnu_type);
1100 if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
1101 && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
1104 = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
1106 if (TREE_CODE (gnu_expr) == CONSTRUCTOR
1107 && 1 == VEC_length (constructor_elt,
1108 CONSTRUCTOR_ELTS (gnu_expr)))
1112 = build_component_ref
1113 (gnu_expr, NULL_TREE,
1114 TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
1118 if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
1119 && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type))
1120 && !Is_Imported (gnat_entity))
1121 post_error ("?Storage_Error will be raised at run-time!",
1124 gnu_expr = build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
1125 0, 0, gnat_entity, mutable_p);
1129 gnu_expr = NULL_TREE;
1134 /* If this object would go into the stack and has an alignment larger
1135 than the largest stack alignment the back-end can honor, resort to
1136 a variable of "aligning type". */
1137 if (!global_bindings_p () && !static_p && definition
1138 && !imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT)
1140 /* Create the new variable. No need for extra room before the
1141 aligned field as this is in automatic storage. */
1143 = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
1144 TYPE_SIZE_UNIT (gnu_type),
1145 BIGGEST_ALIGNMENT, 0);
1147 = create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
1148 NULL_TREE, gnu_new_type, NULL_TREE, false,
1149 false, false, false, NULL, gnat_entity);
1151 /* Initialize the aligned field if we have an initializer. */
1154 (build_binary_op (MODIFY_EXPR, NULL_TREE,
1156 (gnu_new_var, NULL_TREE,
1157 TYPE_FIELDS (gnu_new_type), false),
1161 /* And setup this entity as a reference to the aligned field. */
1162 gnu_type = build_reference_type (gnu_type);
1165 (ADDR_EXPR, gnu_type,
1166 build_component_ref (gnu_new_var, NULL_TREE,
1167 TYPE_FIELDS (gnu_new_type), false));
1169 gnu_size = NULL_TREE;
1175 gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type)
1176 | TYPE_QUAL_CONST));
1178 /* Convert the expression to the type of the object except in the
1179 case where the object's type is unconstrained or the object's type
1180 is a padded record whose field is of self-referential size. In
1181 the former case, converting will generate unnecessary evaluations
1182 of the CONSTRUCTOR to compute the size and in the latter case, we
1183 want to only copy the actual data. */
1185 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE
1186 && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
1187 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1188 && TYPE_IS_PADDING_P (gnu_type)
1189 && (CONTAINS_PLACEHOLDER_P
1190 (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type)))))))
1191 gnu_expr = convert (gnu_type, gnu_expr);
1193 /* If this name is external or there was a name specified, use it,
1194 unless this is a VMS exception object since this would conflict
1195 with the symbol we need to export in addition. Don't use the
1196 Interface_Name if there is an address clause (see CD30005). */
1197 if (!Is_VMS_Exception (gnat_entity)
1198 && ((Present (Interface_Name (gnat_entity))
1199 && No (Address_Clause (gnat_entity)))
1200 || (Is_Public (gnat_entity)
1201 && (!Is_Imported (gnat_entity)
1202 || Is_Exported (gnat_entity)))))
1203 gnu_ext_name = create_concat_name (gnat_entity, 0);
1205 /* If this is constant initialized to a static constant and the
1206 object has an aggregate type, force it to be statically
1208 if (const_flag && gnu_expr && TREE_CONSTANT (gnu_expr)
1209 && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1)
1210 && (AGGREGATE_TYPE_P (gnu_type)
1211 && !(TREE_CODE (gnu_type) == RECORD_TYPE
1212 && TYPE_IS_PADDING_P (gnu_type))))
1215 gnu_decl = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type,
1216 gnu_expr, const_flag,
1217 Is_Public (gnat_entity),
1218 imported_p || !definition,
1219 static_p, attr_list, gnat_entity);
1220 DECL_BY_REF_P (gnu_decl) = used_by_ref;
1221 DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
1222 if (TREE_CODE (gnu_decl) == VAR_DECL && renamed_obj)
1224 SET_DECL_RENAMED_OBJECT (gnu_decl, renamed_obj);
1225 if (global_bindings_p ())
1227 DECL_RENAMING_GLOBAL_P (gnu_decl) = 1;
1228 record_global_renaming_pointer (gnu_decl);
1232 if (definition && DECL_SIZE (gnu_decl)
1233 && get_block_jmpbuf_decl ()
1234 && (TREE_CODE (DECL_SIZE (gnu_decl)) != INTEGER_CST
1235 || (flag_stack_check && !STACK_CHECK_BUILTIN
1236 && 0 < compare_tree_int (DECL_SIZE_UNIT (gnu_decl),
1237 STACK_CHECK_MAX_VAR_SIZE))))
1238 add_stmt_with_node (build_call_1_expr
1239 (update_setjmp_buf_decl,
1240 build_unary_op (ADDR_EXPR, NULL_TREE,
1241 get_block_jmpbuf_decl ())),
1244 /* If this is a public constant or we're not optimizing and we're not
1245 making a VAR_DECL for it, make one just for export or debugger use.
1246 Likewise if the address is taken or if either the object or type is
1247 aliased. Make an external declaration for a reference, unless this
1248 is a Standard entity since there no real symbol at the object level
1250 if (TREE_CODE (gnu_decl) == CONST_DECL
1251 && (definition || Sloc (gnat_entity) > Standard_Location)
1252 && (Is_Public (gnat_entity)
1254 || Address_Taken (gnat_entity)
1255 || Is_Aliased (gnat_entity)
1256 || Is_Aliased (Etype (gnat_entity))))
1259 = create_true_var_decl (gnu_entity_id, gnu_ext_name, gnu_type,
1260 gnu_expr, true, Is_Public (gnat_entity),
1261 !definition, static_p, NULL,
1264 SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
1267 /* If this is declared in a block that contains a block with an
1268 exception handler, we must force this variable in memory to
1269 suppress an invalid optimization. */
1270 if (Has_Nested_Block_With_Handler (Scope (gnat_entity))
1271 && Exception_Mechanism != Back_End_Exceptions)
1272 TREE_ADDRESSABLE (gnu_decl) = 1;
1274 gnu_type = TREE_TYPE (gnu_decl);
1276 /* Back-annotate Alignment and Esize of the object if not already
1277 known, except for when the object is actually a pointer to the
1278 real object, since alignment and size of a pointer don't have
1279 anything to do with those of the designated object. Note that
1280 we pick the values of the type, not those of the object, to
1281 shield ourselves from low-level platform-dependent adjustments
1282 like alignment promotion. This is both consistent with all the
1283 treatment above, where alignment and size are set on the type of
1284 the object and not on the object directly, and makes it possible
1285 to support confirming representation clauses in all cases. */
1287 if (!used_by_ref && Unknown_Alignment (gnat_entity))
1288 Set_Alignment (gnat_entity,
1289 UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
1291 if (!used_by_ref && Unknown_Esize (gnat_entity))
1295 if (TREE_CODE (gnu_type) == RECORD_TYPE
1296 && TYPE_CONTAINS_TEMPLATE_P (gnu_type))
1298 = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))));
1300 gnu_back_size = TYPE_SIZE (gnu_type);
1302 Set_Esize (gnat_entity, annotate_value (gnu_back_size));
1308 /* Return a TYPE_DECL for "void" that we previously made. */
1309 gnu_decl = void_type_decl_node;
1312 case E_Enumeration_Type:
1313 /* A special case, for the types Character and Wide_Character in
1314 Standard, we do not list all the literals. So if the literals
1315 are not specified, make this an unsigned type. */
1316 if (No (First_Literal (gnat_entity)))
1318 gnu_type = make_unsigned_type (esize);
1319 TYPE_NAME (gnu_type) = gnu_entity_id;
1321 /* Set the TYPE_STRING_FLAG for Ada Character and
1322 Wide_Character types. This is needed by the dwarf-2 debug writer to
1323 distinguish between unsigned integer types and character types. */
1324 TYPE_STRING_FLAG (gnu_type) = 1;
1328 /* Normal case of non-character type, or non-Standard character type */
1330 /* Here we have a list of enumeral constants in First_Literal.
1331 We make a CONST_DECL for each and build into GNU_LITERAL_LIST
1332 the list to be places into TYPE_FIELDS. Each node in the list
1333 is a TREE_LIST node whose TREE_VALUE is the literal name
1334 and whose TREE_PURPOSE is the value of the literal.
1336 Esize contains the number of bits needed to represent the enumeral
1337 type, Type_Low_Bound also points to the first literal and
1338 Type_High_Bound points to the last literal. */
1340 Entity_Id gnat_literal;
1341 tree gnu_literal_list = NULL_TREE;
1343 if (Is_Unsigned_Type (gnat_entity))
1344 gnu_type = make_unsigned_type (esize);
1346 gnu_type = make_signed_type (esize);
1348 TREE_SET_CODE (gnu_type, ENUMERAL_TYPE);
1350 for (gnat_literal = First_Literal (gnat_entity);
1351 Present (gnat_literal);
1352 gnat_literal = Next_Literal (gnat_literal))
1354 tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal),
1357 = create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
1358 gnu_type, gnu_value, true, false, false,
1359 false, NULL, gnat_literal);
1361 save_gnu_tree (gnat_literal, gnu_literal, false);
1362 gnu_literal_list = tree_cons (DECL_NAME (gnu_literal),
1363 gnu_value, gnu_literal_list);
1366 TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list);
1368 /* Note that the bounds are updated at the end of this function
1369 because to avoid an infinite recursion when we get the bounds of
1370 this type, since those bounds are objects of this type. */
1374 case E_Signed_Integer_Type:
1375 case E_Ordinary_Fixed_Point_Type:
1376 case E_Decimal_Fixed_Point_Type:
1377 /* For integer types, just make a signed type the appropriate number
1379 gnu_type = make_signed_type (esize);
1382 case E_Modular_Integer_Type:
1383 /* For modular types, make the unsigned type of the proper number of
1384 bits and then set up the modulus, if required. */
1386 enum machine_mode mode;
1390 if (Is_Packed_Array_Type (gnat_entity))
1391 esize = UI_To_Int (RM_Size (gnat_entity));
1393 /* Find the smallest mode at least ESIZE bits wide and make a class
1396 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1397 GET_MODE_BITSIZE (mode) < esize;
1398 mode = GET_MODE_WIDER_MODE (mode))
1401 gnu_type = make_unsigned_type (GET_MODE_BITSIZE (mode));
1402 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
1403 = (Is_Packed_Array_Type (gnat_entity)
1404 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
1406 /* Get the modulus in this type. If it overflows, assume it is because
1407 it is equal to 2**Esize. Note that there is no overflow checking
1408 done on unsigned type, so we detect the overflow by looking for
1409 a modulus of zero, which is otherwise invalid. */
1410 gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
1412 if (!integer_zerop (gnu_modulus))
1414 TYPE_MODULAR_P (gnu_type) = 1;
1415 SET_TYPE_MODULUS (gnu_type, gnu_modulus);
1416 gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
1417 convert (gnu_type, integer_one_node));
1420 /* If we have to set TYPE_PRECISION different from its natural value,
1421 make a subtype to do do. Likewise if there is a modulus and
1422 it is not one greater than TYPE_MAX_VALUE. */
1423 if (TYPE_PRECISION (gnu_type) != esize
1424 || (TYPE_MODULAR_P (gnu_type)
1425 && !tree_int_cst_equal (TYPE_MAX_VALUE (gnu_type), gnu_high)))
1427 tree gnu_subtype = make_node (INTEGER_TYPE);
1429 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
1430 TREE_TYPE (gnu_subtype) = gnu_type;
1431 TYPE_MIN_VALUE (gnu_subtype) = TYPE_MIN_VALUE (gnu_type);
1432 TYPE_MAX_VALUE (gnu_subtype)
1433 = TYPE_MODULAR_P (gnu_type)
1434 ? gnu_high : TYPE_MAX_VALUE (gnu_type);
1435 TYPE_PRECISION (gnu_subtype) = esize;
1436 TYPE_UNSIGNED (gnu_subtype) = 1;
1437 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
1438 TYPE_PACKED_ARRAY_TYPE_P (gnu_subtype)
1439 = (Is_Packed_Array_Type (gnat_entity)
1440 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
1441 layout_type (gnu_subtype);
1443 gnu_type = gnu_subtype;
1448 case E_Signed_Integer_Subtype:
1449 case E_Enumeration_Subtype:
1450 case E_Modular_Integer_Subtype:
1451 case E_Ordinary_Fixed_Point_Subtype:
1452 case E_Decimal_Fixed_Point_Subtype:
1454 /* For integral subtypes, we make a new INTEGER_TYPE. Note
1455 that we do not want to call build_range_type since we would
1456 like each subtype node to be distinct. This will be important
1457 when memory aliasing is implemented.
1459 The TREE_TYPE field of the INTEGER_TYPE we make points to the
1460 parent type; this fact is used by the arithmetic conversion
1463 We elaborate the Ancestor_Subtype if it is not in the current
1464 unit and one of our bounds is non-static. We do this to ensure
1465 consistent naming in the case where several subtypes share the same
1466 bounds by always elaborating the first such subtype first, thus
1470 && Present (Ancestor_Subtype (gnat_entity))
1471 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1472 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1473 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1474 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1477 gnu_type = make_node (INTEGER_TYPE);
1478 if (Is_Packed_Array_Type (gnat_entity)
1479 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1481 esize = UI_To_Int (RM_Size (gnat_entity));
1482 TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
1485 TYPE_PRECISION (gnu_type) = esize;
1486 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1488 TYPE_MIN_VALUE (gnu_type)
1489 = convert (TREE_TYPE (gnu_type),
1490 elaborate_expression (Type_Low_Bound (gnat_entity),
1492 get_identifier ("L"), definition, 1,
1493 Needs_Debug_Info (gnat_entity)));
1495 TYPE_MAX_VALUE (gnu_type)
1496 = convert (TREE_TYPE (gnu_type),
1497 elaborate_expression (Type_High_Bound (gnat_entity),
1499 get_identifier ("U"), definition, 1,
1500 Needs_Debug_Info (gnat_entity)));
1502 /* One of the above calls might have caused us to be elaborated,
1503 so don't blow up if so. */
1504 if (present_gnu_tree (gnat_entity))
1506 maybe_present = true;
1510 TYPE_BIASED_REPRESENTATION_P (gnu_type)
1511 = Has_Biased_Representation (gnat_entity);
1513 /* This should be an unsigned type if the lower bound is constant
1514 and non-negative or if the base type is unsigned; a signed type
1516 TYPE_UNSIGNED (gnu_type)
1517 = (TYPE_UNSIGNED (TREE_TYPE (gnu_type))
1518 || (TREE_CODE (TYPE_MIN_VALUE (gnu_type)) == INTEGER_CST
1519 && TREE_INT_CST_HIGH (TYPE_MIN_VALUE (gnu_type)) >= 0)
1520 || TYPE_BIASED_REPRESENTATION_P (gnu_type)
1521 || Is_Unsigned_Type (gnat_entity));
1523 layout_type (gnu_type);
1525 /* Inherit our alias set from what we're a subtype of. Subtypes
1526 are not different types and a pointer can designate any instance
1527 within a subtype hierarchy. */
1528 copy_alias_set (gnu_type, TREE_TYPE (gnu_type));
1530 /* If the type we are dealing with is to represent a packed array,
1531 we need to have the bits left justified on big-endian targets
1532 and right justified on little-endian targets. We also need to
1533 ensure that when the value is read (e.g. for comparison of two
1534 such values), we only get the good bits, since the unused bits
1535 are uninitialized. Both goals are accomplished by wrapping the
1536 modular value in an enclosing struct. */
1537 if (Is_Packed_Array_Type (gnat_entity)
1538 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
1540 tree gnu_field_type = gnu_type;
1543 TYPE_RM_SIZE_NUM (gnu_field_type)
1544 = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
1545 gnu_type = make_node (RECORD_TYPE);
1546 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
1548 /* Propagate the alignment of the modular type to the record.
1549 This means that bitpacked arrays have "ceil" alignment for
1550 their size, which may seem counter-intuitive but makes it
1551 possible to easily overlay them on modular types. */
1552 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type);
1553 TYPE_PACKED (gnu_type) = 1;
1555 /* Create a stripped-down declaration of the original type, mainly
1557 create_type_decl (get_entity_name (gnat_entity), gnu_field_type,
1558 NULL, true, debug_info_p, gnat_entity);
1560 /* Don't notify the field as "addressable", since we won't be taking
1561 it's address and it would prevent create_field_decl from making a
1563 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1564 gnu_field_type, gnu_type, 1, 0, 0, 0);
1566 finish_record_type (gnu_type, gnu_field, 0, false);
1567 TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
1568 SET_TYPE_ADA_SIZE (gnu_type, bitsize_int (esize));
1570 copy_alias_set (gnu_type, gnu_field_type);
1573 /* If the type we are dealing with has got a smaller alignment than the
1574 natural one, we need to wrap it up in a record type and under-align
1575 the latter. We reuse the padding machinery for this purpose. */
1576 else if (Known_Alignment (gnat_entity)
1577 && UI_Is_In_Int_Range (Alignment (gnat_entity))
1578 && (align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT)
1579 && align < TYPE_ALIGN (gnu_type))
1581 tree gnu_field_type = gnu_type;
1584 gnu_type = make_node (RECORD_TYPE);
1585 TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "PAD");
1587 TYPE_ALIGN (gnu_type) = align;
1588 TYPE_PACKED (gnu_type) = 1;
1590 /* Create a stripped-down declaration of the original type, mainly
1592 create_type_decl (get_entity_name (gnat_entity), gnu_field_type,
1593 NULL, true, debug_info_p, gnat_entity);
1595 /* Don't notify the field as "addressable", since we won't be taking
1596 it's address and it would prevent create_field_decl from making a
1598 gnu_field = create_field_decl (get_identifier ("OBJECT"),
1599 gnu_field_type, gnu_type, 1, 0, 0, 0);
1601 finish_record_type (gnu_type, gnu_field, 0, false);
1602 TYPE_IS_PADDING_P (gnu_type) = 1;
1603 SET_TYPE_ADA_SIZE (gnu_type, bitsize_int (esize));
1605 copy_alias_set (gnu_type, gnu_field_type);
1608 /* Otherwise reset the alignment lest we computed it above. */
1614 case E_Floating_Point_Type:
1615 /* If this is a VAX floating-point type, use an integer of the proper
1616 size. All the operations will be handled with ASM statements. */
1617 if (Vax_Float (gnat_entity))
1619 gnu_type = make_signed_type (esize);
1620 TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1;
1621 SET_TYPE_DIGITS_VALUE (gnu_type,
1622 UI_To_gnu (Digits_Value (gnat_entity),
1627 /* The type of the Low and High bounds can be our type if this is
1628 a type from Standard, so set them at the end of the function. */
1629 gnu_type = make_node (REAL_TYPE);
1630 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1631 layout_type (gnu_type);
1634 case E_Floating_Point_Subtype:
1635 if (Vax_Float (gnat_entity))
1637 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1643 && Present (Ancestor_Subtype (gnat_entity))
1644 && !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
1645 && (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
1646 || !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
1647 gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity),
1650 gnu_type = make_node (REAL_TYPE);
1651 TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
1652 TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
1654 TYPE_MIN_VALUE (gnu_type)
1655 = convert (TREE_TYPE (gnu_type),
1656 elaborate_expression (Type_Low_Bound (gnat_entity),
1657 gnat_entity, get_identifier ("L"),
1659 Needs_Debug_Info (gnat_entity)));
1661 TYPE_MAX_VALUE (gnu_type)
1662 = convert (TREE_TYPE (gnu_type),
1663 elaborate_expression (Type_High_Bound (gnat_entity),
1664 gnat_entity, get_identifier ("U"),
1666 Needs_Debug_Info (gnat_entity)));
1668 /* One of the above calls might have caused us to be elaborated,
1669 so don't blow up if so. */
1670 if (present_gnu_tree (gnat_entity))
1672 maybe_present = true;
1676 layout_type (gnu_type);
1678 /* Inherit our alias set from what we're a subtype of, as for
1679 integer subtypes. */
1680 copy_alias_set (gnu_type, TREE_TYPE (gnu_type));
1684 /* Array and String Types and Subtypes
1686 Unconstrained array types are represented by E_Array_Type and
1687 constrained array types are represented by E_Array_Subtype. There
1688 are no actual objects of an unconstrained array type; all we have
1689 are pointers to that type.
1691 The following fields are defined on array types and subtypes:
1693 Component_Type Component type of the array.
1694 Number_Dimensions Number of dimensions (an int).
1695 First_Index Type of first index. */
1700 tree gnu_template_fields = NULL_TREE;
1701 tree gnu_template_type = make_node (RECORD_TYPE);
1702 tree gnu_ptr_template = build_pointer_type (gnu_template_type);
1703 tree gnu_fat_type = make_node (RECORD_TYPE);
1704 int ndim = Number_Dimensions (gnat_entity);
1706 = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0;
1708 = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1;
1710 tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree *));
1711 tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree *));
1712 tree gnu_comp_size = 0;
1713 tree gnu_max_size = size_one_node;
1714 tree gnu_max_size_unit;
1715 Entity_Id gnat_ind_subtype;
1716 Entity_Id gnat_ind_base_subtype;
1717 tree gnu_template_reference;
1720 TYPE_NAME (gnu_template_type)
1721 = create_concat_name (gnat_entity, "XUB");
1723 /* Make a node for the array. If we are not defining the array
1724 suppress expanding incomplete types. */
1725 gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
1728 defer_incomplete_level++, this_deferred = true;
1730 /* Build the fat pointer type. Use a "void *" object instead of
1731 a pointer to the array type since we don't have the array type
1732 yet (it will reference the fat pointer via the bounds). */
1733 tem = chainon (chainon (NULL_TREE,
1734 create_field_decl (get_identifier ("P_ARRAY"),
1736 gnu_fat_type, 0, 0, 0, 0)),
1737 create_field_decl (get_identifier ("P_BOUNDS"),
1739 gnu_fat_type, 0, 0, 0, 0));
1741 /* Make sure we can put this into a register. */
1742 TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);
1744 /* Do not finalize this record type since the types of its fields
1745 are still incomplete at this point. */
1746 finish_record_type (gnu_fat_type, tem, 0, true);
1747 TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1;
1749 /* Build a reference to the template from a PLACEHOLDER_EXPR that
1750 is the fat pointer. This will be used to access the individual
1751 fields once we build them. */
1752 tem = build3 (COMPONENT_REF, gnu_ptr_template,
1753 build0 (PLACEHOLDER_EXPR, gnu_fat_type),
1754 TREE_CHAIN (TYPE_FIELDS (gnu_fat_type)), NULL_TREE);
1755 gnu_template_reference
1756 = build_unary_op (INDIRECT_REF, gnu_template_type, tem);
1757 TREE_READONLY (gnu_template_reference) = 1;
1759 /* Now create the GCC type for each index and add the fields for
1760 that index to the template. */
1761 for (index = firstdim, gnat_ind_subtype = First_Index (gnat_entity),
1762 gnat_ind_base_subtype
1763 = First_Index (Implementation_Base_Type (gnat_entity));
1764 index < ndim && index >= 0;
1766 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
1767 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
1769 char field_name[10];
1770 tree gnu_ind_subtype
1771 = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype)));
1772 tree gnu_base_subtype
1773 = get_unpadded_type (Etype (gnat_ind_base_subtype));
1775 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
1777 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
1778 tree gnu_min_field, gnu_max_field, gnu_min, gnu_max;
1780 /* Make the FIELD_DECLs for the minimum and maximum of this
1781 type and then make extractions of that field from the
1783 sprintf (field_name, "LB%d", index);
1784 gnu_min_field = create_field_decl (get_identifier (field_name),
1786 gnu_template_type, 0, 0, 0, 0);
1787 field_name[0] = 'U';
1788 gnu_max_field = create_field_decl (get_identifier (field_name),
1790 gnu_template_type, 0, 0, 0, 0);
1792 Sloc_to_locus (Sloc (gnat_entity),
1793 &DECL_SOURCE_LOCATION (gnu_min_field));
1794 Sloc_to_locus (Sloc (gnat_entity),
1795 &DECL_SOURCE_LOCATION (gnu_max_field));
1796 gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field);
1798 /* We can't use build_component_ref here since the template
1799 type isn't complete yet. */
1800 gnu_min = build3 (COMPONENT_REF, gnu_ind_subtype,
1801 gnu_template_reference, gnu_min_field,
1803 gnu_max = build3 (COMPONENT_REF, gnu_ind_subtype,
1804 gnu_template_reference, gnu_max_field,
1806 TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1;
1808 /* Make a range type with the new ranges, but using
1809 the Ada subtype. Then we convert to sizetype. */
1810 gnu_index_types[index]
1811 = create_index_type (convert (sizetype, gnu_min),
1812 convert (sizetype, gnu_max),
1813 build_range_type (gnu_ind_subtype,
1816 /* Update the maximum size of the array, in elements. */
1818 = size_binop (MULT_EXPR, gnu_max_size,
1819 size_binop (PLUS_EXPR, size_one_node,
1820 size_binop (MINUS_EXPR, gnu_base_max,
1823 TYPE_NAME (gnu_index_types[index])
1824 = create_concat_name (gnat_entity, field_name);
1827 for (index = 0; index < ndim; index++)
1829 = chainon (gnu_template_fields, gnu_temp_fields[index]);
1831 /* Install all the fields into the template. */
1832 finish_record_type (gnu_template_type, gnu_template_fields, 0, false);
1833 TYPE_READONLY (gnu_template_type) = 1;
1835 /* Now make the array of arrays and update the pointer to the array
1836 in the fat pointer. Note that it is the first field. */
1837 tem = gnat_to_gnu_type (Component_Type (gnat_entity));
1839 /* Try to get a smaller form of the component if needed. */
1840 if ((Is_Packed (gnat_entity)
1841 || Has_Component_Size_Clause (gnat_entity))
1842 && !Is_Bit_Packed_Array (gnat_entity)
1843 && !Has_Aliased_Components (gnat_entity)
1844 && !Strict_Alignment (Component_Type (gnat_entity))
1845 && TREE_CODE (tem) == RECORD_TYPE
1846 && host_integerp (TYPE_SIZE (tem), 1))
1847 tem = make_packable_type (tem, false);
1849 if (Has_Atomic_Components (gnat_entity))
1850 check_ok_for_atomic (tem, gnat_entity, true);
1852 /* Get and validate any specified Component_Size, but if Packed,
1853 ignore it since the front end will have taken care of it. */
1855 = validate_size (Component_Size (gnat_entity), tem,
1857 (Is_Bit_Packed_Array (gnat_entity)
1858 ? TYPE_DECL : VAR_DECL),
1859 true, Has_Component_Size_Clause (gnat_entity));
1861 /* If the component type is a RECORD_TYPE that has a self-referential
1862 size, use the maxium size. */
1863 if (!gnu_comp_size && TREE_CODE (tem) == RECORD_TYPE
1864 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem)))
1865 gnu_comp_size = max_size (TYPE_SIZE (tem), true);
1867 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
1870 tem = make_type_from_size (tem, gnu_comp_size, false);
1872 tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity,
1873 "C_PAD", false, definition, true);
1874 /* If a padding record was made, declare it now since it will
1875 never be declared otherwise. This is necessary to ensure
1876 that its subtrees are properly marked. */
1877 if (tem != orig_tem)
1878 create_type_decl (TYPE_NAME (tem), tem, NULL, true, false,
1882 if (Has_Volatile_Components (gnat_entity))
1883 tem = build_qualified_type (tem,
1884 TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE);
1886 /* If Component_Size is not already specified, annotate it with the
1887 size of the component. */
1888 if (Unknown_Component_Size (gnat_entity))
1889 Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem)));
1891 gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node,
1892 size_binop (MULT_EXPR, gnu_max_size,
1893 TYPE_SIZE_UNIT (tem)));
1894 gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node,
1895 size_binop (MULT_EXPR,
1896 convert (bitsizetype,
1900 for (index = ndim - 1; index >= 0; index--)
1902 tem = build_array_type (tem, gnu_index_types[index]);
1903 TYPE_MULTI_ARRAY_P (tem) = (index > 0);
1904 if (array_type_has_nonaliased_component (gnat_entity, tem))
1905 TYPE_NONALIASED_COMPONENT (tem) = 1;
1908 /* If an alignment is specified, use it if valid. But ignore it for
1909 types that represent the unpacked base type for packed arrays. If
1910 the alignment was requested with an explicit user alignment clause,
1912 if (No (Packed_Array_Type (gnat_entity))
1913 && Known_Alignment (gnat_entity))
1915 gcc_assert (Present (Alignment (gnat_entity)));
1917 = validate_alignment (Alignment (gnat_entity), gnat_entity,
1919 if (Present (Alignment_Clause (gnat_entity)))
1920 TYPE_USER_ALIGN (tem) = 1;
1923 TYPE_CONVENTION_FORTRAN_P (tem)
1924 = (Convention (gnat_entity) == Convention_Fortran);
1925 TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem);
1927 /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
1928 corresponding fat pointer. */
1929 TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type)
1930 = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
1931 TYPE_MODE (gnu_type) = BLKmode;
1932 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem);
1933 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
1935 /* If the maximum size doesn't overflow, use it. */
1936 if (TREE_CODE (gnu_max_size) == INTEGER_CST
1937 && !TREE_OVERFLOW (gnu_max_size))
1939 = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem));
1940 if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST
1941 && !TREE_OVERFLOW (gnu_max_size_unit))
1942 TYPE_SIZE_UNIT (tem)
1943 = size_binop (MIN_EXPR, gnu_max_size_unit,
1944 TYPE_SIZE_UNIT (tem));
1946 create_type_decl (create_concat_name (gnat_entity, "XUA"),
1947 tem, NULL, !Comes_From_Source (gnat_entity),
1948 debug_info_p, gnat_entity);
1950 /* Give the fat pointer type a name. */
1951 create_type_decl (create_concat_name (gnat_entity, "XUP"),
1952 gnu_fat_type, NULL, !Comes_From_Source (gnat_entity),
1953 debug_info_p, gnat_entity);
1955 /* Create the type to be used as what a thin pointer designates: an
1956 record type for the object and its template with the field offsets
1957 shifted to have the template at a negative offset. */
1958 tem = build_unc_object_type (gnu_template_type, tem,
1959 create_concat_name (gnat_entity, "XUT"));
1960 shift_unc_components_for_thin_pointers (tem);
1962 SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type);
1963 TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem;
1965 /* Give the thin pointer type a name. */
1966 create_type_decl (create_concat_name (gnat_entity, "XUX"),
1967 build_pointer_type (tem), NULL,
1968 !Comes_From_Source (gnat_entity), debug_info_p,
1973 case E_String_Subtype:
1974 case E_Array_Subtype:
1976 /* This is the actual data type for array variables. Multidimensional
1977 arrays are implemented in the gnu tree as arrays of arrays. Note
1978 that for the moment arrays which have sparse enumeration subtypes as
1979 index components create sparse arrays, which is obviously space
1980 inefficient but so much easier to code for now.
1982 Also note that the subtype never refers to the unconstrained
1983 array type, which is somewhat at variance with Ada semantics.
1985 First check to see if this is simply a renaming of the array
1986 type. If so, the result is the array type. */
1988 gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
1989 if (!Is_Constrained (gnat_entity))
1994 int array_dim = Number_Dimensions (gnat_entity);
1996 = ((Convention (gnat_entity) == Convention_Fortran)
1997 ? array_dim - 1 : 0);
1999 = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1;
2000 Entity_Id gnat_ind_subtype;
2001 Entity_Id gnat_ind_base_subtype;
2002 tree gnu_base_type = gnu_type;
2003 tree *gnu_index_type = (tree *) alloca (array_dim * sizeof (tree *));
2004 tree gnu_comp_size = NULL_TREE;
2005 tree gnu_max_size = size_one_node;
2006 tree gnu_max_size_unit;
2007 bool need_index_type_struct = false;
2008 bool max_overflow = false;
2010 /* First create the gnu types for each index. Create types for
2011 debugging information to point to the index types if the
2012 are not integer types, have variable bounds, or are
2013 wider than sizetype. */
2015 for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity),
2016 gnat_ind_base_subtype
2017 = First_Index (Implementation_Base_Type (gnat_entity));
2018 index < array_dim && index >= 0;
2020 gnat_ind_subtype = Next_Index (gnat_ind_subtype),
2021 gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype))
2023 tree gnu_index_subtype
2024 = get_unpadded_type (Etype (gnat_ind_subtype));
2026 = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype));
2028 = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype));
2029 tree gnu_base_subtype
2030 = get_unpadded_type (Etype (gnat_ind_base_subtype));
2032 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype));
2034 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype));
2035 tree gnu_base_type = get_base_type (gnu_base_subtype);
2036 tree gnu_base_base_min
2037 = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type));
2038 tree gnu_base_base_max
2039 = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type));
2043 /* If the minimum and maximum values both overflow in
2044 SIZETYPE, but the difference in the original type
2045 does not overflow in SIZETYPE, ignore the overflow
2047 if ((TYPE_PRECISION (gnu_index_subtype)
2048 > TYPE_PRECISION (sizetype)
2049 || TYPE_UNSIGNED (gnu_index_subtype)
2050 != TYPE_UNSIGNED (sizetype))
2051 && TREE_CODE (gnu_min) == INTEGER_CST
2052 && TREE_CODE (gnu_max) == INTEGER_CST
2053 && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
2055 (fold_build2 (MINUS_EXPR, gnu_index_subtype,
2056 TYPE_MAX_VALUE (gnu_index_subtype),
2057 TYPE_MIN_VALUE (gnu_index_subtype)))))
2059 TREE_OVERFLOW (gnu_min) = 0;
2060 TREE_OVERFLOW (gnu_max) = 0;
2063 /* Similarly, if the range is null, use bounds of 1..0 for
2064 the sizetype bounds. */
2065 else if ((TYPE_PRECISION (gnu_index_subtype)
2066 > TYPE_PRECISION (sizetype)
2067 || TYPE_UNSIGNED (gnu_index_subtype)
2068 != TYPE_UNSIGNED (sizetype))
2069 && TREE_CODE (gnu_min) == INTEGER_CST
2070 && TREE_CODE (gnu_max) == INTEGER_CST
2071 && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
2072 && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype),
2073 TYPE_MIN_VALUE (gnu_index_subtype)))
2074 gnu_min = size_one_node, gnu_max = size_zero_node;
2076 /* Now compute the size of this bound. We need to provide
2077 GCC with an upper bound to use but have to deal with the
2078 "superflat" case. There are three ways to do this. If we
2079 can prove that the array can never be superflat, we can
2080 just use the high bound of the index subtype. If we can
2081 prove that the low bound minus one can't overflow, we
2082 can do this as MAX (hb, lb - 1). Otherwise, we have to use
2083 the expression hb >= lb ? hb : lb - 1. */
2084 gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node);
2086 /* See if the base array type is already flat. If it is, we
2087 are probably compiling an ACVC test, but it will cause the
2088 code below to malfunction if we don't handle it specially. */
2089 if (TREE_CODE (gnu_base_min) == INTEGER_CST
2090 && TREE_CODE (gnu_base_max) == INTEGER_CST
2091 && !TREE_OVERFLOW (gnu_base_min)
2092 && !TREE_OVERFLOW (gnu_base_max)
2093 && tree_int_cst_lt (gnu_base_max, gnu_base_min))
2094 gnu_high = size_zero_node, gnu_min = size_one_node;
2096 /* If gnu_high is now an integer which overflowed, the array
2097 cannot be superflat. */
2098 else if (TREE_CODE (gnu_high) == INTEGER_CST
2099 && TREE_OVERFLOW (gnu_high))
2101 else if (TYPE_UNSIGNED (gnu_base_subtype)
2102 || TREE_CODE (gnu_high) == INTEGER_CST)
2103 gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high);
2107 (sizetype, build_binary_op (GE_EXPR, integer_type_node,
2111 gnu_index_type[index]
2112 = create_index_type (gnu_min, gnu_high, gnu_index_subtype,
2115 /* Also compute the maximum size of the array. Here we
2116 see if any constraint on the index type of the base type
2117 can be used in the case of self-referential bound on
2118 the index type of the subtype. We look for a non-"infinite"
2119 and non-self-referential bound from any type involved and
2120 handle each bound separately. */
2122 if ((TREE_CODE (gnu_min) == INTEGER_CST
2123 && !TREE_OVERFLOW (gnu_min)
2124 && !operand_equal_p (gnu_min, gnu_base_base_min, 0))
2125 || !CONTAINS_PLACEHOLDER_P (gnu_min)
2126 || !(TREE_CODE (gnu_base_min) == INTEGER_CST
2127 && !TREE_OVERFLOW (gnu_base_min)))
2128 gnu_base_min = gnu_min;
2130 if ((TREE_CODE (gnu_max) == INTEGER_CST
2131 && !TREE_OVERFLOW (gnu_max)
2132 && !operand_equal_p (gnu_max, gnu_base_base_max, 0))
2133 || !CONTAINS_PLACEHOLDER_P (gnu_max)
2134 || !(TREE_CODE (gnu_base_max) == INTEGER_CST
2135 && !TREE_OVERFLOW (gnu_base_max)))
2136 gnu_base_max = gnu_max;
2138 if ((TREE_CODE (gnu_base_min) == INTEGER_CST
2139 && TREE_OVERFLOW (gnu_base_min))
2140 || operand_equal_p (gnu_base_min, gnu_base_base_min, 0)
2141 || (TREE_CODE (gnu_base_max) == INTEGER_CST
2142 && TREE_OVERFLOW (gnu_base_max))
2143 || operand_equal_p (gnu_base_max, gnu_base_base_max, 0))
2144 max_overflow = true;
2146 gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min);
2147 gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max);
2150 = size_binop (MAX_EXPR,
2151 size_binop (PLUS_EXPR, size_one_node,
2152 size_binop (MINUS_EXPR, gnu_base_max,
2156 if (TREE_CODE (gnu_this_max) == INTEGER_CST
2157 && TREE_OVERFLOW (gnu_this_max))
2158 max_overflow = true;
2161 = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max);
2163 if (!integer_onep (TYPE_MIN_VALUE (gnu_index_subtype))
2164 || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype))
2166 || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE
2167 || (TREE_TYPE (gnu_index_subtype)
2168 && (TREE_CODE (TREE_TYPE (gnu_index_subtype))
2170 || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype)
2171 || (TYPE_PRECISION (gnu_index_subtype)
2172 > TYPE_PRECISION (sizetype)))
2173 need_index_type_struct = true;
2176 /* Then flatten: create the array of arrays. For an array type
2177 used to implement a packed array, get the component type from
2178 the original array type since the representation clauses that
2179 can affect it are on the latter. */
2180 if (Is_Packed_Array_Type (gnat_entity)
2181 && !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
2183 gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
2184 for (index = array_dim - 1; index >= 0; index--)
2185 gnu_type = TREE_TYPE (gnu_type);
2187 /* One of the above calls might have caused us to be elaborated,
2188 so don't blow up if so. */
2189 if (present_gnu_tree (gnat_entity))
2191 maybe_present = true;
2197 gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity));
2199 /* One of the above calls might have caused us to be elaborated,
2200 so don't blow up if so. */
2201 if (present_gnu_tree (gnat_entity))
2203 maybe_present = true;
2207 /* Try to get a smaller form of the component if needed. */
2208 if ((Is_Packed (gnat_entity)
2209 || Has_Component_Size_Clause (gnat_entity))
2210 && !Is_Bit_Packed_Array (gnat_entity)
2211 && !Has_Aliased_Components (gnat_entity)
2212 && !Strict_Alignment (Component_Type (gnat_entity))
2213 && TREE_CODE (gnu_type) == RECORD_TYPE
2214 && host_integerp (TYPE_SIZE (gnu_type), 1))
2215 gnu_type = make_packable_type (gnu_type, false);
2217 /* Get and validate any specified Component_Size, but if Packed,
2218 ignore it since the front end will have taken care of it. */
2220 = validate_size (Component_Size (gnat_entity), gnu_type,
2222 (Is_Bit_Packed_Array (gnat_entity)
2223 ? TYPE_DECL : VAR_DECL), true,
2224 Has_Component_Size_Clause (gnat_entity));
2226 /* If the component type is a RECORD_TYPE that has a
2227 self-referential size, use the maxium size. */
2229 && TREE_CODE (gnu_type) == RECORD_TYPE
2230 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
2231 gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
2233 if (gnu_comp_size && !Is_Bit_Packed_Array (gnat_entity))
2237 = make_type_from_size (gnu_type, gnu_comp_size, false);
2238 orig_gnu_type = gnu_type;
2239 gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0,
2240 gnat_entity, "C_PAD", false,
2242 /* If a padding record was made, declare it now since it
2243 will never be declared otherwise. This is necessary
2244 to ensure that its subtrees are properly marked. */
2245 if (gnu_type != orig_gnu_type)
2246 create_type_decl (TYPE_NAME (gnu_type), gnu_type, NULL,
2247 true, false, gnat_entity);
2250 if (Has_Volatile_Components (Base_Type (gnat_entity)))
2251 gnu_type = build_qualified_type (gnu_type,
2252 (TYPE_QUALS (gnu_type)
2253 | TYPE_QUAL_VOLATILE));
2256 gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size,
2257 TYPE_SIZE_UNIT (gnu_type));
2258 gnu_max_size = size_binop (MULT_EXPR,
2259 convert (bitsizetype, gnu_max_size),
2260 TYPE_SIZE (gnu_type));
2262 for (index = array_dim - 1; index >= 0; index --)
2264 gnu_type = build_array_type (gnu_type, gnu_index_type[index]);
2265 TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
2266 if (array_type_has_nonaliased_component (gnat_entity, gnu_type))
2267 TYPE_NONALIASED_COMPONENT (gnu_type) = 1;
2270 /* If we are at file level and this is a multi-dimensional array, we
2271 need to make a variable corresponding to the stride of the
2272 inner dimensions. */
2273 if (global_bindings_p () && array_dim > 1)
2275 tree gnu_str_name = get_identifier ("ST");
2278 for (gnu_arr_type = TREE_TYPE (gnu_type);
2279 TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
2280 gnu_arr_type = TREE_TYPE (gnu_arr_type),
2281 gnu_str_name = concat_id_with_name (gnu_str_name, "ST"))
2283 tree eltype = TREE_TYPE (gnu_arr_type);
2285 TYPE_SIZE (gnu_arr_type)
2286 = elaborate_expression_1 (gnat_entity, gnat_entity,
2287 TYPE_SIZE (gnu_arr_type),
2288 gnu_str_name, definition, 0);
2290 /* ??? For now, store the size as a multiple of the
2291 alignment of the element type in bytes so that we
2292 can see the alignment from the tree. */
2293 TYPE_SIZE_UNIT (gnu_arr_type)
2295 (MULT_EXPR, sizetype,
2296 elaborate_expression_1
2297 (gnat_entity, gnat_entity,
2298 build_binary_op (EXACT_DIV_EXPR, sizetype,
2299 TYPE_SIZE_UNIT (gnu_arr_type),
2300 size_int (TYPE_ALIGN (eltype)
2302 concat_id_with_name (gnu_str_name, "A_U"),
2304 size_int (TYPE_ALIGN (eltype) / BITS_PER_UNIT));
2306 /* ??? create_type_decl is not invoked on the inner types so
2307 the MULT_EXPR node built above will never be marked. */
2308 TREE_VISITED (TYPE_SIZE_UNIT (gnu_arr_type)) = 1;
2312 /* If we need to write out a record type giving the names of
2313 the bounds, do it now. */
2314 if (need_index_type_struct && debug_info_p)
2316 tree gnu_bound_rec_type = make_node (RECORD_TYPE);
2317 tree gnu_field_list = NULL_TREE;
2320 TYPE_NAME (gnu_bound_rec_type)
2321 = create_concat_name (gnat_entity, "XA");
2323 for (index = array_dim - 1; index >= 0; index--)
2326 = TYPE_NAME (TYPE_INDEX_TYPE (gnu_index_type[index]));
2328 if (TREE_CODE (gnu_type_name) == TYPE_DECL)
2329 gnu_type_name = DECL_NAME (gnu_type_name);
2331 gnu_field = create_field_decl (gnu_type_name,
2334 0, NULL_TREE, NULL_TREE, 0);
2335 TREE_CHAIN (gnu_field) = gnu_field_list;
2336 gnu_field_list = gnu_field;
2339 finish_record_type (gnu_bound_rec_type, gnu_field_list,
2343 TYPE_CONVENTION_FORTRAN_P (gnu_type)
2344 = (Convention (gnat_entity) == Convention_Fortran);
2345 TYPE_PACKED_ARRAY_TYPE_P (gnu_type)
2346 = (Is_Packed_Array_Type (gnat_entity)
2347 && Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
2349 /* If our size depends on a placeholder and the maximum size doesn't
2350 overflow, use it. */
2351 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
2352 && !(TREE_CODE (gnu_max_size) == INTEGER_CST
2353 && TREE_OVERFLOW (gnu_max_size))
2354 && !(TREE_CODE (gnu_max_size_unit) == INTEGER_CST
2355 && TREE_OVERFLOW (gnu_max_size_unit))
2358 TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size,
2359 TYPE_SIZE (gnu_type));
2360 TYPE_SIZE_UNIT (gnu_type)
2361 = size_binop (MIN_EXPR, gnu_max_size_unit,
2362 TYPE_SIZE_UNIT (gnu_type));
2365 /* Set our alias set to that of our base type. This gives all
2366 array subtypes the same alias set. */
2367 copy_alias_set (gnu_type, gnu_base_type);
2370 /* If this is a packed type, make this type the same as the packed
2371 array type, but do some adjusting in the type first. */
2373 if (Present (Packed_Array_Type (gnat_entity)))
2375 Entity_Id gnat_index;
2376 tree gnu_inner_type;
2378 /* First finish the type we had been making so that we output
2379 debugging information for it */
2381 = build_qualified_type (gnu_type,
2382 (TYPE_QUALS (gnu_type)
2383 | (TYPE_QUAL_VOLATILE
2384 * Treat_As_Volatile (gnat_entity))));
2385 gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list,
2386 !Comes_From_Source (gnat_entity),
2387 debug_info_p, gnat_entity);
2388 if (!Comes_From_Source (gnat_entity))
2389 DECL_ARTIFICIAL (gnu_decl) = 1;
2391 /* Save it as our equivalent in case the call below elaborates
2393 save_gnu_tree (gnat_entity, gnu_decl, false);
2395 gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity),
2397 this_made_decl = true;
2398 gnu_type = TREE_TYPE (gnu_decl);
2399 save_gnu_tree (gnat_entity, NULL_TREE, false);
2401 gnu_inner_type = gnu_type;
2402 while (TREE_CODE (gnu_inner_type) == RECORD_TYPE
2403 && (TYPE_JUSTIFIED_MODULAR_P (gnu_inner_type)
2404 || TYPE_IS_PADDING_P (gnu_inner_type)))
2405 gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type));
2407 /* We need to point the type we just made to our index type so
2408 the actual bounds can be put into a template. */
2410 if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE
2411 && !TYPE_ACTUAL_BOUNDS (gnu_inner_type))
2412 || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE
2413 && !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type)))
2415 if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE)
2417 /* The TYPE_ACTUAL_BOUNDS field is also used for the modulus.
2418 If it is, we need to make another type. */
2419 if (TYPE_MODULAR_P (gnu_inner_type))
2423 gnu_subtype = make_node (INTEGER_TYPE);
2425 TREE_TYPE (gnu_subtype) = gnu_inner_type;
2426 TYPE_MIN_VALUE (gnu_subtype)
2427 = TYPE_MIN_VALUE (gnu_inner_type);
2428 TYPE_MAX_VALUE (gnu_subtype)
2429 = TYPE_MAX_VALUE (gnu_inner_type);
2430 TYPE_PRECISION (gnu_subtype)
2431 = TYPE_PRECISION (gnu_inner_type);
2432 TYPE_UNSIGNED (gnu_subtype)
2433 = TYPE_UNSIGNED (gnu_inner_type);
2434 TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1;
2435 layout_type (gnu_subtype);
2437 gnu_inner_type = gnu_subtype;
2440 TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1;
2443 SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE);
2445 for (gnat_index = First_Index (gnat_entity);
2446 Present (gnat_index); gnat_index = Next_Index (gnat_index))
2447 SET_TYPE_ACTUAL_BOUNDS
2449 tree_cons (NULL_TREE,
2450 get_unpadded_type (Etype (gnat_index)),
2451 TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2453 if (Convention (gnat_entity) != Convention_Fortran)
2454 SET_TYPE_ACTUAL_BOUNDS
2456 nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type)));
2458 if (TREE_CODE (gnu_type) == RECORD_TYPE
2459 && TYPE_JUSTIFIED_MODULAR_P (gnu_type))
2460 TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type;
2464 /* Abort if packed array with no packed array type field set. */
2466 gcc_assert (!Is_Packed (gnat_entity));
2470 case E_String_Literal_Subtype:
2471 /* Create the type for a string literal. */
2473 Entity_Id gnat_full_type
2474 = (IN (Ekind (Etype (gnat_entity)), Private_Kind)
2475 && Present (Full_View (Etype (gnat_entity)))
2476 ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
2477 tree gnu_string_type = get_unpadded_type (gnat_full_type);
2478 tree gnu_string_array_type
2479 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
2480 tree gnu_string_index_type
2481 = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
2482 (TYPE_DOMAIN (gnu_string_array_type))));
2483 tree gnu_lower_bound
2484 = convert (gnu_string_index_type,
2485 gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
2486 int length = UI_To_Int (String_Literal_Length (gnat_entity));
2487 tree gnu_length = ssize_int (length - 1);
2488 tree gnu_upper_bound
2489 = build_binary_op (PLUS_EXPR, gnu_string_index_type,
2491 convert (gnu_string_index_type, gnu_length));
2493 = build_range_type (gnu_string_index_type,
2494 gnu_lower_bound, gnu_upper_bound);
2496 = create_index_type (convert (sizetype,
2497 TYPE_MIN_VALUE (gnu_range_type)),
2499 TYPE_MAX_VALUE (gnu_range_type)),
2500 gnu_range_type, gnat_entity);
2503 = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)),
2505 copy_alias_set (gnu_type, gnu_string_type);
2509 /* Record Types and Subtypes
2511 The following fields are defined on record types:
2513 Has_Discriminants True if the record has discriminants
2514 First_Discriminant Points to head of list of discriminants
2515 First_Entity Points to head of list of fields
2516 Is_Tagged_Type True if the record is tagged
2518 Implementation of Ada records and discriminated records:
2520 A record type definition is transformed into the equivalent of a C
2521 struct definition. The fields that are the discriminants which are
2522 found in the Full_Type_Declaration node and the elements of the
2523 Component_List found in the Record_Type_Definition node. The
2524 Component_List can be a recursive structure since each Variant of
2525 the Variant_Part of the Component_List has a Component_List.
2527 Processing of a record type definition comprises starting the list of
2528 field declarations here from the discriminants and the calling the
2529 function components_to_record to add the rest of the fields from the
2530 component list and return the gnu type node. The function
2531 components_to_record will call itself recursively as it traverses
2535 if (Has_Complex_Representation (gnat_entity))
2538 = build_complex_type
2540 (Etype (Defining_Entity
2541 (First (Component_Items
2544 (Declaration_Node (gnat_entity)))))))));
2550 Node_Id full_definition = Declaration_Node (gnat_entity);
2551 Node_Id record_definition = Type_Definition (full_definition);
2552 Entity_Id gnat_field;
2554 tree gnu_field_list = NULL_TREE;
2555 tree gnu_get_parent;
2556 /* Set PACKED in keeping with gnat_to_gnu_field. */
2558 = Is_Packed (gnat_entity)
2560 : Component_Alignment (gnat_entity) == Calign_Storage_Unit
2562 : (Known_Alignment (gnat_entity)
2563 || (Strict_Alignment (gnat_entity)
2564 && Known_Static_Esize (gnat_entity)))
2567 bool has_rep = Has_Specified_Layout (gnat_entity);
2568 bool all_rep = has_rep;
2570 = (Is_Tagged_Type (gnat_entity)
2571 && Nkind (record_definition) == N_Derived_Type_Definition);
2573 /* See if all fields have a rep clause. Stop when we find one
2575 for (gnat_field = First_Entity (gnat_entity);
2576 Present (gnat_field) && all_rep;
2577 gnat_field = Next_Entity (gnat_field))
2578 if ((Ekind (gnat_field) == E_Component
2579 || Ekind (gnat_field) == E_Discriminant)
2580 && No (Component_Clause (gnat_field)))
2583 /* If this is a record extension, go a level further to find the
2584 record definition. Also, verify we have a Parent_Subtype. */
2587 if (!type_annotate_only
2588 || Present (Record_Extension_Part (record_definition)))
2589 record_definition = Record_Extension_Part (record_definition);
2591 gcc_assert (type_annotate_only
2592 || Present (Parent_Subtype (gnat_entity)));
2595 /* Make a node for the record. If we are not defining the record,
2596 suppress expanding incomplete types. */
2597 gnu_type = make_node (tree_code_for_record_type (gnat_entity));
2598 TYPE_NAME (gnu_type) = gnu_entity_id;
2599 TYPE_PACKED (gnu_type) = (packed != 0) || has_rep;
2602 defer_incomplete_level++, this_deferred = true;
2604 /* If both a size and rep clause was specified, put the size in
2605 the record type now so that it can get the proper mode. */
2606 if (has_rep && Known_Esize (gnat_entity))
2607 TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype);
2609 /* Always set the alignment here so that it can be used to
2610 set the mode, if it is making the alignment stricter. If
2611 it is invalid, it will be checked again below. If this is to
2612 be Atomic, choose a default alignment of a word unless we know
2613 the size and it's smaller. */
2614 if (Known_Alignment (gnat_entity))
2615 TYPE_ALIGN (gnu_type)
2616 = validate_alignment (Alignment (gnat_entity), gnat_entity, 0);
2617 else if (Is_Atomic (gnat_entity))
2618 TYPE_ALIGN (gnu_type)
2619 = esize >= BITS_PER_WORD ? BITS_PER_WORD : ceil_alignment (esize);
2620 /* If a type needs strict alignment, the minimum size will be the
2621 type size instead of the RM size (see validate_size). Cap the
2622 alignment, lest it causes this type size to become too large. */
2623 else if (Strict_Alignment (gnat_entity)
2624 && Known_Static_Esize (gnat_entity))
2626 unsigned int raw_size = UI_To_Int (Esize (gnat_entity));
2627 unsigned int raw_align = raw_size & -raw_size;
2628 if (raw_align < BIGGEST_ALIGNMENT)
2629 TYPE_ALIGN (gnu_type) = raw_align;
2632 TYPE_ALIGN (gnu_type) = 0;
2634 /* If we have a Parent_Subtype, make a field for the parent. If
2635 this record has rep clauses, force the position to zero. */
2636 if (Present (Parent_Subtype (gnat_entity)))
2638 Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
2641 /* A major complexity here is that the parent subtype will
2642 reference our discriminants in its Discriminant_Constraint
2643 list. But those must reference the parent component of this
2644 record which is of the parent subtype we have not built yet!
2645 To break the circle we first build a dummy COMPONENT_REF which
2646 represents the "get to the parent" operation and initialize
2647 each of those discriminants to a COMPONENT_REF of the above
2648 dummy parent referencing the corresponding discriminant of the
2649 base type of the parent subtype. */
2650 gnu_get_parent = build3 (COMPONENT_REF, void_type_node,
2651 build0 (PLACEHOLDER_EXPR, gnu_type),
2652 build_decl (FIELD_DECL, NULL_TREE,
2656 if (Has_Discriminants (gnat_entity))
2657 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2658 Present (gnat_field);
2659 gnat_field = Next_Stored_Discriminant (gnat_field))
2660 if (Present (Corresponding_Discriminant (gnat_field)))
2663 build3 (COMPONENT_REF,
2664 get_unpadded_type (Etype (gnat_field)),
2666 gnat_to_gnu_field_decl (Corresponding_Discriminant
2671 /* Then we build the parent subtype. */
2672 gnu_parent = gnat_to_gnu_type (gnat_parent);
2674 /* Finally we fix up both kinds of twisted COMPONENT_REF we have
2675 initially built. The discriminants must reference the fields
2676 of the parent subtype and not those of its base type for the
2677 placeholder machinery to properly work. */
2678 if (Has_Discriminants (gnat_entity))
2679 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2680 Present (gnat_field);
2681 gnat_field = Next_Stored_Discriminant (gnat_field))
2682 if (Present (Corresponding_Discriminant (gnat_field)))
2684 Entity_Id field = Empty;
2685 for (field = First_Stored_Discriminant (gnat_parent);
2687 field = Next_Stored_Discriminant (field))
2688 if (same_discriminant_p (gnat_field, field))
2690 gcc_assert (Present (field));
2691 TREE_OPERAND (get_gnu_tree (gnat_field), 1)
2692 = gnat_to_gnu_field_decl (field);
2695 /* The "get to the parent" COMPONENT_REF must be given its
2697 TREE_TYPE (gnu_get_parent) = gnu_parent;
2699 /* ...and reference the _parent field of this record. */
2701 = create_field_decl (get_identifier
2702 (Get_Name_String (Name_uParent)),
2703 gnu_parent, gnu_type, 0,
2704 has_rep ? TYPE_SIZE (gnu_parent) : 0,
2705 has_rep ? bitsize_zero_node : 0, 1);
2706 DECL_INTERNAL_P (gnu_field_list) = 1;
2707 TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list;
2710 /* Make the fields for the discriminants and put them into the record
2711 unless it's an Unchecked_Union. */
2712 if (Has_Discriminants (gnat_entity))
2713 for (gnat_field = First_Stored_Discriminant (gnat_entity);
2714 Present (gnat_field);
2715 gnat_field = Next_Stored_Discriminant (gnat_field))
2717 /* If this is a record extension and this discriminant
2718 is the renaming of another discriminant, we've already
2719 handled the discriminant above. */
2720 if (Present (Parent_Subtype (gnat_entity))
2721 && Present (Corresponding_Discriminant (gnat_field)))
2725 = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition);
2727 /* Make an expression using a PLACEHOLDER_EXPR from the
2728 FIELD_DECL node just created and link that with the
2729 corresponding GNAT defining identifier. Then add to the
2731 save_gnu_tree (gnat_field,
2732 build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
2733 build0 (PLACEHOLDER_EXPR,
2734 DECL_CONTEXT (gnu_field)),
2735 gnu_field, NULL_TREE),
2738 if (!Is_Unchecked_Union (gnat_entity))
2740 TREE_CHAIN (gnu_field) = gnu_field_list;
2741 gnu_field_list = gnu_field;
2745 /* Put the discriminants into the record (backwards), so we can
2746 know the appropriate discriminant to use for the names of the
2748 TYPE_FIELDS (gnu_type) = gnu_field_list;
2750 /* Add the listed fields into the record and finish it up. */
2751 components_to_record (gnu_type, Component_List (record_definition),
2752 gnu_field_list, packed, definition, NULL,
2753 false, all_rep, false,
2754 Is_Unchecked_Union (gnat_entity));
2756 /* We used to remove the associations of the discriminants and
2757 _Parent for validity checking, but we may need them if there's
2758 Freeze_Node for a subtype used in this record. */
2759 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2760 TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity);
2762 /* If it is a tagged record force the type to BLKmode to insure
2763 that these objects will always be placed in memory. Do the
2764 same thing for limited record types. */
2765 if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity))
2766 TYPE_MODE (gnu_type) = BLKmode;
2768 /* If this is a derived type, we must make the alias set of this type
2769 the same as that of the type we are derived from. We assume here
2770 that the other type is already frozen. */
2771 if (Etype (gnat_entity) != gnat_entity
2772 && !(Is_Private_Type (Etype (gnat_entity))
2773 && Full_View (Etype (gnat_entity)) == gnat_entity))
2774 copy_alias_set (gnu_type, gnat_to_gnu_type (Etype (gnat_entity)));
2776 /* Fill in locations of fields. */
2777 annotate_rep (gnat_entity, gnu_type);
2779 /* If there are any entities in the chain corresponding to
2780 components that we did not elaborate, ensure we elaborate their
2781 types if they are Itypes. */
2782 for (gnat_temp = First_Entity (gnat_entity);
2783 Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp))
2784 if ((Ekind (gnat_temp) == E_Component
2785 || Ekind (gnat_temp) == E_Discriminant)
2786 && Is_Itype (Etype (gnat_temp))
2787 && !present_gnu_tree (gnat_temp))
2788 gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0);
2792 case E_Class_Wide_Subtype:
2793 /* If an equivalent type is present, that is what we should use.
2794 Otherwise, fall through to handle this like a record subtype
2795 since it may have constraints. */
2796 if (gnat_equiv_type != gnat_entity)
2798 gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, 0);
2799 maybe_present = true;
2803 /* ... fall through ... */
2805 case E_Record_Subtype:
2807 /* If Cloned_Subtype is Present it means this record subtype has
2808 identical layout to that type or subtype and we should use
2809 that GCC type for this one. The front end guarantees that
2810 the component list is shared. */
2811 if (Present (Cloned_Subtype (gnat_entity)))
2813 gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity),
2815 maybe_present = true;
2818 /* Otherwise, first ensure the base type is elaborated. Then, if we are
2819 changing the type, make a new type with each field having the
2820 type of the field in the new subtype but having the position
2821 computed by transforming every discriminant reference according
2822 to the constraints. We don't see any difference between
2823 private and nonprivate type here since derivations from types should
2824 have been deferred until the completion of the private type. */
2827 Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
2832 defer_incomplete_level++, this_deferred = true;
2834 /* Get the base type initially for its alignment and sizes. But
2835 if it is a padded type, we do all the other work with the
2837 gnu_base_type = gnat_to_gnu_type (gnat_base_type);
2839 if (TREE_CODE (gnu_base_type) == RECORD_TYPE
2840 && TYPE_IS_PADDING_P (gnu_base_type))
2841 gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
2843 gnu_type = gnu_orig_type = gnu_base_type;
2845 if (present_gnu_tree (gnat_entity))
2847 maybe_present = true;
2851 /* When the type has discriminants, and these discriminants
2852 affect the shape of what it built, factor them in.
2854 If we are making a subtype of an Unchecked_Union (must be an
2855 Itype), just return the type.
2857 We can't just use Is_Constrained because private subtypes without
2858 discriminants of full types with discriminants with default
2859 expressions are Is_Constrained but aren't constrained! */
2861 if (IN (Ekind (gnat_base_type), Record_Kind)
2862 && !Is_For_Access_Subtype (gnat_entity)
2863 && !Is_Unchecked_Union (gnat_base_type)
2864 && Is_Constrained (gnat_entity)
2865 && Stored_Constraint (gnat_entity) != No_Elist
2866 && Present (Discriminant_Constraint (gnat_entity)))
2868 Entity_Id gnat_field;
2869 tree gnu_field_list = 0;
2871 = compute_field_positions (gnu_orig_type, NULL_TREE,
2872 size_zero_node, bitsize_zero_node,
2875 = substitution_list (gnat_entity, gnat_base_type, NULL_TREE,
2879 gnu_type = make_node (RECORD_TYPE);
2880 TYPE_NAME (gnu_type) = gnu_entity_id;
2881 TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type);
2882 TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity);
2884 for (gnat_field = First_Entity (gnat_entity);
2885 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
2886 if ((Ekind (gnat_field) == E_Component
2887 || Ekind (gnat_field) == E_Discriminant)
2888 && (Underlying_Type (Scope (Original_Record_Component
2891 && (No (Corresponding_Discriminant (gnat_field))
2892 || !Is_Tagged_Type (gnat_base_type)))
2895 = gnat_to_gnu_field_decl (Original_Record_Component
2898 = TREE_VALUE (purpose_member (gnu_old_field,
2900 tree gnu_pos = TREE_PURPOSE (gnu_offset);
2901 tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset));
2903 = gnat_to_gnu_type (Etype (gnat_field));
2904 tree gnu_size = TYPE_SIZE (gnu_field_type);
2905 tree gnu_new_pos = 0;
2906 unsigned int offset_align
2907 = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)),
2911 /* If there was a component clause, the field types must be
2912 the same for the type and subtype, so copy the data from
2913 the old field to avoid recomputation here. Also if the
2914 field is justified modular and the optimization in
2915 gnat_to_gnu_field was applied. */
2916 if (Present (Component_Clause
2917 (Original_Record_Component (gnat_field)))
2918 || (TREE_CODE (gnu_field_type) == RECORD_TYPE
2919 && TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
2920 && TREE_TYPE (TYPE_FIELDS (gnu_field_type))
2921 == TREE_TYPE (gnu_old_field)))
2923 gnu_size = DECL_SIZE (gnu_old_field);
2924 gnu_field_type = TREE_TYPE (gnu_old_field);
2927 /* If the old field was packed and of constant size, we
2928 have to get the old size here, as it might differ from
2929 what the Etype conveys and the latter might overlap
2930 onto the following field. Try to arrange the type for
2931 possible better packing along the way. */
2932 else if (DECL_PACKED (gnu_old_field)
2933 && TREE_CODE (DECL_SIZE (gnu_old_field))
2936 gnu_size = DECL_SIZE (gnu_old_field);
2937 if (TYPE_MODE (gnu_field_type) == BLKmode
2938 && TREE_CODE (gnu_field_type) == RECORD_TYPE
2939 && host_integerp (TYPE_SIZE (gnu_field_type), 1))
2941 = make_packable_type (gnu_field_type, true);
2944 if (CONTAINS_PLACEHOLDER_P (gnu_pos))
2945 for (gnu_temp = gnu_subst_list;
2946 gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp))
2947 gnu_pos = substitute_in_expr (gnu_pos,
2948 TREE_PURPOSE (gnu_temp),
2949 TREE_VALUE (gnu_temp));
2951 /* If the size is now a constant, we can set it as the
2952 size of the field when we make it. Otherwise, we need
2953 to deal with it specially. */
2954 if (TREE_CONSTANT (gnu_pos))
2955 gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos);
2959 (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type,
2960 DECL_PACKED (gnu_old_field), gnu_size, gnu_new_pos,
2961 !DECL_NONADDRESSABLE_P (gnu_old_field));
2963 if (!TREE_CONSTANT (gnu_pos))
2965 normalize_offset (&gnu_pos, &gnu_bitpos, offset_align);
2966 DECL_FIELD_OFFSET (gnu_field) = gnu_pos;
2967 DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos;
2968 SET_DECL_OFFSET_ALIGN (gnu_field, offset_align);
2969 DECL_SIZE (gnu_field) = gnu_size;
2970 DECL_SIZE_UNIT (gnu_field)
2971 = convert (sizetype,
2972 size_binop (CEIL_DIV_EXPR, gnu_size,
2973 bitsize_unit_node));
2974 layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field));
2977 DECL_INTERNAL_P (gnu_field)
2978 = DECL_INTERNAL_P (gnu_old_field);
2979 SET_DECL_ORIGINAL_FIELD
2980 (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field)
2981 ? DECL_ORIGINAL_FIELD (gnu_old_field)
2983 DECL_DISCRIMINANT_NUMBER (gnu_field)
2984 = DECL_DISCRIMINANT_NUMBER (gnu_old_field);
2985 TREE_THIS_VOLATILE (gnu_field)
2986 = TREE_THIS_VOLATILE (gnu_old_field);
2987 TREE_CHAIN (gnu_field) = gnu_field_list;
2988 gnu_field_list = gnu_field;
2989 save_gnu_tree (gnat_field, gnu_field, false);
2992 /* Now go through the entities again looking for Itypes that
2993 we have not elaborated but should (e.g., Etypes of fields
2994 that have Original_Components). */
2995 for (gnat_field = First_Entity (gnat_entity);
2996 Present (gnat_field); gnat_field = Next_Entity (gnat_field))
2997 if ((Ekind (gnat_field) == E_Discriminant
2998 || Ekind (gnat_field) == E_Component)
2999 && !present_gnu_tree (Etype (gnat_field)))
3000 gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, 0);
3002 /* Do not finalize it since we're going to modify it below. */
3003 finish_record_type (gnu_type, nreverse (gnu_field_list),
3006 /* Now set the size, alignment and alias set of the new type to