X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Ftree-ssa-phiopt.c;h=72ba04a09b87ce7350923fd8f9af3f2c075f6a10;hb=8d40ea4504ee85e1a6b73103edb1776141d5d22e;hp=3c241e43fc54de713d0f7560e547ceaa3c5d2b31;hpb=cbcbd868bd5105a82cf3a9a679b073f785c170bb;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/tree-ssa-phiopt.c b/gcc/tree-ssa-phiopt.c index 3c241e43fc5..72ba04a09b8 100644 --- a/gcc/tree-ssa-phiopt.c +++ b/gcc/tree-ssa-phiopt.c @@ -1,28 +1,27 @@ /* Optimization of PHI nodes by converting them into straightline code. - Copyright (C) 2004 Free Software Foundation, Inc. + Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, + Inc. This file is part of GCC. - + GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any +Free Software Foundation; either version 3, or (at your option) any later version. - + GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. - + You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +along with GCC; see the file COPYING3. If not see +. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" -#include "errors.h" #include "ggc.h" #include "tree.h" #include "rtl.h" @@ -35,218 +34,381 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA #include "tree-pass.h" #include "tree-dump.h" #include "langhooks.h" - -static void tree_ssa_phiopt (void); -static bool conditional_replacement (basic_block, tree, tree, tree); -static bool value_replacement (basic_block, tree, tree, tree); -static bool abs_replacement (basic_block, tree, tree, tree); -static void replace_phi_with_stmt (block_stmt_iterator, basic_block, - basic_block, tree, tree); -static bool candidate_bb_for_phi_optimization (basic_block, - basic_block *, - basic_block *); - -/* This pass eliminates PHI nodes which can be trivially implemented as - an assignment from a conditional expression. i.e. if we have something - like: +#include "pointer-set.h" +#include "domwalk.h" + +static unsigned int tree_ssa_phiopt (void); +static unsigned int tree_ssa_phiopt_worker (bool); +static bool conditional_replacement (basic_block, basic_block, + edge, edge, gimple, tree, tree); +static bool value_replacement (basic_block, basic_block, + edge, edge, gimple, tree, tree); +static bool minmax_replacement (basic_block, basic_block, + edge, edge, gimple, tree, tree); +static bool abs_replacement (basic_block, basic_block, + edge, edge, gimple, tree, tree); +static bool cond_store_replacement (basic_block, basic_block, edge, edge, + struct pointer_set_t *); +static struct pointer_set_t * get_non_trapping (void); +static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree); + +/* This pass tries to replaces an if-then-else block with an + assignment. We have four kinds of transformations. Some of these + transformations are also performed by the ifcvt RTL optimizer. + + Conditional Replacement + ----------------------- + + This transformation, implemented in conditional_replacement, + replaces bb0: if (cond) goto bb2; else goto bb1; bb1: bb2: - x = PHI (0 (bb1), 1 (bb0) + x = PHI <0 (bb1), 1 (bb0), ...>; + + with + + bb0: + x' = cond; + goto bb2; + bb2: + x = PHI ; + + We remove bb1 as it becomes unreachable. This occurs often due to + gimplification of conditionals. + + Value Replacement + ----------------- + + This transformation, implemented in value_replacement, replaces - We can rewrite that as: - bb0: + if (a != b) goto bb2; else goto bb1; bb1: bb2: - x = cond; + x = PHI ; - bb1 will become unreachable and bb0 and bb2 will almost always - be merged into a single block. This occurs often due to gimplification - of conditionals. - - Also done is the following optimization: + with bb0: - if (a != b) goto bb2; else goto bb1; + bb2: + x = PHI ; + + This opportunity can sometimes occur as a result of other + optimizations. + + ABS Replacement + --------------- + + This transformation, implemented in abs_replacement, replaces + + bb0: + if (a >= 0) goto bb2; else goto bb1; bb1: + x = -a; bb2: - x = PHI (a (bb1), b (bb0)) + x = PHI ; + + with + + bb0: + x' = ABS_EXPR< a >; + bb2: + x = PHI ; + + MIN/MAX Replacement + ------------------- - We can rewrite that as: + This transformation, minmax_replacement replaces bb0: + if (a <= b) goto bb2; else goto bb1; bb1: bb2: - x = b; + x = PHI ; - This can sometimes occur as a result of other optimizations. A - similar transformation is done by the ifcvt RTL optimizer. + with - This pass also eliminates PHI nodes which are really absolute - values. i.e. if we have something like: + bb0: + x' = MIN_EXPR (a, b) + bb2: + x = PHI ; + + A similar transformation is done for MAX_EXPR. */ + +static unsigned int +tree_ssa_phiopt (void) +{ + return tree_ssa_phiopt_worker (false); +} + +/* This pass tries to transform conditional stores into unconditional + ones, enabling further simplifications with the simpler then and else + blocks. In particular it replaces this: bb0: - if (a >= 0) goto bb2; else goto bb1; + if (cond) goto bb2; else goto bb1; bb1: - x = -a; + *p = RHS bb2: - x = PHI (x (bb1), a (bb0)); - We can rewrite that as: + with bb0: + if (cond) goto bb1; else goto bb2; bb1: + condtmp' = *p; bb2: - x = ABS_EXPR< a >; + condtmp = PHI + *p = condtmp - bb1 will become unreachable and bb0 and bb2 will almost always be merged - into a single block. Similar transformations are done by the ifcvt - RTL optimizer. */ + This transformation can only be done under several constraints, + documented below. */ -static void -tree_ssa_phiopt (void) +static unsigned int +tree_ssa_cs_elim (void) +{ + return tree_ssa_phiopt_worker (true); +} + +/* For conditional store replacement we need a temporary to + put the old contents of the memory in. */ +static tree condstoretemp; + +/* The core routine of conditional store replacement and normal + phi optimizations. Both share much of the infrastructure in how + to match applicable basic block patterns. DO_STORE_ELIM is true + when we want to do conditional store replacement, false otherwise. */ +static unsigned int +tree_ssa_phiopt_worker (bool do_store_elim) { basic_block bb; - bool removed_phis = false; + basic_block *bb_order; + unsigned n, i; + bool cfgchanged = false; + struct pointer_set_t *nontrap = 0; - /* Search every basic block for PHI nodes we may be able to optimize. */ - FOR_EACH_BB (bb) + if (do_store_elim) { - tree arg0, arg1, phi; + condstoretemp = NULL_TREE; + /* Calculate the set of non-trapping memory accesses. */ + nontrap = get_non_trapping (); + } + + /* Search every basic block for COND_EXPR we may be able to optimize. + + We walk the blocks in order that guarantees that a block with + a single predecessor is processed before the predecessor. + This ensures that we collapse inner ifs before visiting the + outer ones, and also that we do not try to visit a removed + block. */ + bb_order = blocks_in_phiopt_order (); + n = n_basic_blocks - NUM_FIXED_BLOCKS; + + for (i = 0; i < n; i++) + { + gimple cond_stmt, phi; + basic_block bb1, bb2; + edge e1, e2; + tree arg0, arg1; + + bb = bb_order[i]; + + cond_stmt = last_stmt (bb); + /* Check to see if the last statement is a GIMPLE_COND. */ + if (!cond_stmt + || gimple_code (cond_stmt) != GIMPLE_COND) + continue; + + e1 = EDGE_SUCC (bb, 0); + bb1 = e1->dest; + e2 = EDGE_SUCC (bb, 1); + bb2 = e2->dest; + + /* We cannot do the optimization on abnormal edges. */ + if ((e1->flags & EDGE_ABNORMAL) != 0 + || (e2->flags & EDGE_ABNORMAL) != 0) + continue; + + /* If either bb1's succ or bb2 or bb2's succ is non NULL. */ + if (EDGE_COUNT (bb1->succs) == 0 + || bb2 == NULL + || EDGE_COUNT (bb2->succs) == 0) + continue; + + /* Find the bb which is the fall through to the other. */ + if (EDGE_SUCC (bb1, 0)->dest == bb2) + ; + else if (EDGE_SUCC (bb2, 0)->dest == bb1) + { + basic_block bb_tmp = bb1; + edge e_tmp = e1; + bb1 = bb2; + bb2 = bb_tmp; + e1 = e2; + e2 = e_tmp; + } + else + continue; - /* We're searching for blocks with one PHI node which has two - arguments. */ - phi = phi_nodes (bb); - if (phi && PHI_CHAIN (phi) == NULL - && PHI_NUM_ARGS (phi) == 2) + e1 = EDGE_SUCC (bb1, 0); + + /* Make sure that bb1 is just a fall through. */ + if (!single_succ_p (bb1) + || (e1->flags & EDGE_FALLTHRU) == 0) + continue; + + /* Also make sure that bb1 only have one predecessor and that it + is bb. */ + if (!single_pred_p (bb1) + || single_pred (bb1) != bb) + continue; + + if (do_store_elim) + { + /* bb1 is the middle block, bb2 the join block, bb the split block, + e1 the fallthrough edge from bb1 to bb2. We can't do the + optimization if the join block has more than two predecessors. */ + if (EDGE_COUNT (bb2->preds) > 2) + continue; + if (cond_store_replacement (bb1, bb2, e1, e2, nontrap)) + cfgchanged = true; + } + else { - arg0 = PHI_ARG_DEF (phi, 0); - arg1 = PHI_ARG_DEF (phi, 1); - + gimple_seq phis = phi_nodes (bb2); + + /* Check to make sure that there is only one PHI node. + TODO: we could do it with more than one iff the other PHI nodes + have the same elements for these two edges. */ + if (! gimple_seq_singleton_p (phis)) + continue; + + phi = gsi_stmt (gsi_start (phis)); + arg0 = gimple_phi_arg_def (phi, e1->dest_idx); + arg1 = gimple_phi_arg_def (phi, e2->dest_idx); + + /* Something is wrong if we cannot find the arguments in the PHI + node. */ + gcc_assert (arg0 != NULL && arg1 != NULL); + /* Do the replacement of conditional if it can be done. */ - if (conditional_replacement (bb, phi, arg0, arg1) - || value_replacement (bb, phi, arg0, arg1) - || abs_replacement (bb, phi, arg0, arg1)) - { - /* We have done the replacement so we need to rebuild the - cfg when this pass is complete. */ - removed_phis = true; - } + if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) + cfgchanged = true; + else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) + cfgchanged = true; + else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) + cfgchanged = true; + else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) + cfgchanged = true; } } + + free (bb_order); + + if (do_store_elim) + pointer_set_destroy (nontrap); + /* If the CFG has changed, we should cleanup the CFG. */ + if (cfgchanged && do_store_elim) + { + /* In cond-store replacement we have added some loads on edges + and new VOPS (as we moved the store, and created a load). */ + gsi_commit_edge_inserts (); + return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; + } + else if (cfgchanged) + return TODO_cleanup_cfg; + return 0; } -/* Return TRUE if block BB has no executable statements, otherwise return - FALSE. */ -bool -empty_block_p (basic_block bb) +/* Returns the list of basic blocks in the function in an order that guarantees + that if a block X has just a single predecessor Y, then Y is after X in the + ordering. */ + +basic_block * +blocks_in_phiopt_order (void) { - block_stmt_iterator bsi; + basic_block x, y; + basic_block *order = XNEWVEC (basic_block, n_basic_blocks); + unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS; + unsigned np, i; + sbitmap visited = sbitmap_alloc (last_basic_block); - /* BB must have no executable statements. */ - bsi = bsi_start (bb); - while (!bsi_end_p (bsi) - && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR - || IS_EMPTY_STMT (bsi_stmt (bsi)))) - bsi_next (&bsi); - - if (!bsi_end_p (bsi)) - return false; +#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) +#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) - return true; -} + sbitmap_zero (visited); -/* BB is a basic block which has only one PHI node with precisely two - arguments. + MARK_VISITED (ENTRY_BLOCK_PTR); + FOR_EACH_BB (x) + { + if (VISITED_P (x)) + continue; + + /* Walk the predecessors of x as long as they have precisely one + predecessor and add them to the list, so that they get stored + after x. */ + for (y = x, np = 1; + single_pred_p (y) && !VISITED_P (single_pred (y)); + y = single_pred (y)) + np++; + for (y = x, i = n - np; + single_pred_p (y) && !VISITED_P (single_pred (y)); + y = single_pred (y), i++) + { + order[i] = y; + MARK_VISITED (y); + } + order[i] = y; + MARK_VISITED (y); - Examine both of BB's predecessors to see if one ends with a - COND_EXPR and the other is a successor of the COND_EXPR. If so, then - we may be able to optimize PHI nodes at the start of BB. + gcc_assert (i == n - 1); + n -= np; + } - If so, mark store the block with the COND_EXPR into COND_BLOCK_P - and the other block into OTHER_BLOCK_P and return true, otherwise - return false. */ + sbitmap_free (visited); + gcc_assert (n == 0); + return order; -static bool -candidate_bb_for_phi_optimization (basic_block bb, - basic_block *cond_block_p, - basic_block *other_block_p) +#undef MARK_VISITED +#undef VISITED_P +} + + +/* Return TRUE if block BB has no executable statements, otherwise return + FALSE. */ + +bool +empty_block_p (basic_block bb) { - tree last0, last1; - basic_block cond_block, other_block; - - /* One of the alternatives must come from a block ending with - a COND_EXPR. */ - last0 = last_stmt (EDGE_PRED (bb, 0)->src); - last1 = last_stmt (EDGE_PRED (bb, 1)->src); - if (last0 && TREE_CODE (last0) == COND_EXPR) - { - cond_block = EDGE_PRED (bb, 0)->src; - other_block = EDGE_PRED (bb, 1)->src; - } - else if (last1 && TREE_CODE (last1) == COND_EXPR) - { - other_block = EDGE_PRED (bb, 0)->src; - cond_block = EDGE_PRED (bb, 1)->src; - } - else - return false; - - /* COND_BLOCK must have precisely two successors. We indirectly - verify that those successors are BB and OTHER_BLOCK. */ - if (EDGE_COUNT (cond_block->succs) != 2 - || (EDGE_SUCC (cond_block, 0)->flags & EDGE_ABNORMAL) != 0 - || (EDGE_SUCC (cond_block, 1)->flags & EDGE_ABNORMAL) != 0) - return false; - - /* OTHER_BLOCK must have a single predecessor which is COND_BLOCK, - OTHER_BLOCK must have a single successor which is BB and - OTHER_BLOCK must have no PHI nodes. */ - if (EDGE_COUNT (other_block->preds) != 1 - || EDGE_PRED (other_block, 0)->src != cond_block - || EDGE_COUNT (other_block->succs) != 1 - || EDGE_SUCC (other_block, 0)->dest != bb - || phi_nodes (other_block)) - return false; - - *cond_block_p = cond_block; - *other_block_p = other_block; - /* Everything looks OK. */ - return true; + /* BB must have no executable statements. */ + return gsi_end_p (gsi_after_labels (bb)); } -/* Replace PHI in block BB with statement NEW. NEW is inserted after - BSI. Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK +/* Replace PHI node element whose edge is E in block BB with variable NEW. + Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK is known to have two edges, one of which must reach BB). */ static void -replace_phi_with_stmt (block_stmt_iterator bsi, basic_block bb, - basic_block cond_block, tree phi, tree new) +replace_phi_edge_with_variable (basic_block cond_block, + edge e, gimple phi, tree new_tree) { + basic_block bb = gimple_bb (phi); basic_block block_to_remove; + gimple_stmt_iterator gsi; + + /* Change the PHI argument to new. */ + SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree); - /* Insert our new statement at the head of our block. */ - bsi_insert_after (&bsi, new, BSI_NEW_STMT); - - /* Register our new statement as the defining statement for - the result. */ - SSA_NAME_DEF_STMT (PHI_RESULT (phi)) = new; - - /* Remove the now useless PHI node. - - We do not want to use remove_phi_node since that releases the - SSA_NAME as well and the SSA_NAME is still being used. */ - release_phi_node (phi); - bb_ann (bb)->phi_nodes = NULL; - /* Remove the empty basic block. */ if (EDGE_SUCC (cond_block, 0)->dest == bb) { EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU; EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); + EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE; + EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count; block_to_remove = EDGE_SUCC (cond_block, 1)->dest; } @@ -255,15 +417,17 @@ replace_phi_with_stmt (block_stmt_iterator bsi, basic_block bb, EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU; EDGE_SUCC (cond_block, 1)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); + EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE; + EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count; block_to_remove = EDGE_SUCC (cond_block, 0)->dest; } delete_basic_block (block_to_remove); - + /* Eliminate the COND_EXPR at the end of COND_BLOCK. */ - bsi = bsi_last (cond_block); - bsi_remove (&bsi); - + gsi = gsi_last_bb (cond_block); + gsi_remove (&gsi, true); + if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n", @@ -278,16 +442,21 @@ replace_phi_with_stmt (block_stmt_iterator bsi, basic_block bb, is argument 0 from PHI. Likewise for ARG1. */ static bool -conditional_replacement (basic_block bb, tree phi, tree arg0, tree arg1) +conditional_replacement (basic_block cond_bb, basic_block middle_bb, + edge e0, edge e1, gimple phi, + tree arg0, tree arg1) { tree result; - tree old_result = NULL; - basic_block other_block = NULL; - basic_block cond_block = NULL; - tree new, cond; - block_stmt_iterator bsi; + gimple stmt, new_stmt; + tree cond; + gimple_stmt_iterator gsi; edge true_edge, false_edge; - tree new_var = NULL; + tree new_var, new_var2; + + /* FIXME: Gimplification of complex type is too hard for now. */ + if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE) + return false; /* The PHI arguments have the constants 0 and 1, then convert it to the conditional. */ @@ -296,109 +465,65 @@ conditional_replacement (basic_block bb, tree phi, tree arg0, tree arg1) ; else return false; - - if (!candidate_bb_for_phi_optimization (bb, &cond_block, &other_block) - || !empty_block_p (other_block)) + + if (!empty_block_p (middle_bb)) return false; - - /* If the condition is not a naked SSA_NAME and its type does not - match the type of the result, then we have to create a new - variable to optimize this case as it would likely create - non-gimple code when the condition was converted to the - result's type. */ - cond = COND_EXPR_COND (last_stmt (cond_block)); - result = PHI_RESULT (phi); - if (TREE_CODE (cond) != SSA_NAME - && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result))) - { - new_var = make_rename_temp (TREE_TYPE (cond), NULL); - old_result = cond; - cond = new_var; - } - - /* If the condition was a naked SSA_NAME and the type is not the - same as the type of the result, then convert the type of the - condition. */ - if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result))) - cond = fold_convert (TREE_TYPE (result), cond); - - /* We need to know which is the true edge and which is the false - edge so that we know when to invert the condition below. */ - extract_true_false_edges_from_block (cond_block, &true_edge, &false_edge); - - /* Insert our new statement at the head of our block. */ - bsi = bsi_after_labels (bb); - - if (old_result) - { - tree new1; - if (!COMPARISON_CLASS_P (old_result)) - return false; - - new1 = build (TREE_CODE (old_result), TREE_TYPE (old_result), - TREE_OPERAND (old_result, 0), - TREE_OPERAND (old_result, 1)); - - new1 = build (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1); - bsi_insert_after (&bsi, new1, BSI_NEW_STMT); - } - - /* At this point we know we have a COND_EXPR with two successors. + + /* At this point we know we have a GIMPLE_COND with two successors. One successor is BB, the other successor is an empty block which falls through into BB. - + There is a single PHI node at the join point (BB) and its arguments are constants (0, 1). - + So, given the condition COND, and the two PHI arguments, we can - rewrite this PHI into non-branching code: - + rewrite this PHI into non-branching code: + dest = (COND) or dest = COND' - + We use the condition as-is if the argument associated with the true edge has the value one or the argument associated with the false edge as the value zero. Note that those conditions are not - the same since only one of the outgoing edges from the COND_EXPR + the same since only one of the outgoing edges from the GIMPLE_COND will directly reach BB and thus be associated with an argument. */ - if ((PHI_ARG_EDGE (phi, 0) == true_edge && integer_onep (arg0)) - || (PHI_ARG_EDGE (phi, 0) == false_edge && integer_zerop (arg0)) - || (PHI_ARG_EDGE (phi, 1) == true_edge && integer_onep (arg1)) - || (PHI_ARG_EDGE (phi, 1) == false_edge && integer_zerop (arg1))) + + stmt = last_stmt (cond_bb); + result = PHI_RESULT (phi); + + /* To handle special cases like floating point comparison, it is easier and + less error-prone to build a tree and gimplify it on the fly though it is + less efficient. */ + cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node, + gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); + + /* We need to know which is the true edge and which is the false + edge so that we know when to invert the condition below. */ + extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); + if ((e0 == true_edge && integer_zerop (arg0)) + || (e0 == false_edge && integer_onep (arg0)) + || (e1 == true_edge && integer_zerop (arg1)) + || (e1 == false_edge && integer_onep (arg1))) + cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond); + + /* Insert our new statements at the end of conditional block before the + COND_STMT. */ + gsi = gsi_for_stmt (stmt); + new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true, + GSI_SAME_STMT); + + if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var))) { - new = build (MODIFY_EXPR, TREE_TYPE (PHI_RESULT (phi)), - PHI_RESULT (phi), cond); + new_var2 = create_tmp_var (TREE_TYPE (result), NULL); + add_referenced_var (new_var2); + new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2, + new_var, NULL); + new_var2 = make_ssa_name (new_var2, new_stmt); + gimple_assign_set_lhs (new_stmt, new_var2); + gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); + new_var = new_var2; } - else - { - tree cond1 = invert_truthvalue (cond); - - cond = cond1; - /* If what we get back is a conditional expression, there is no - way that it can be gimple. */ - if (TREE_CODE (cond) == COND_EXPR) - return false; - - /* If what we get back is not gimple try to create it as gimple by - using a temporary variable. */ - if (is_gimple_cast (cond) - && !is_gimple_val (TREE_OPERAND (cond, 0))) - { - tree temp = TREE_OPERAND (cond, 0); - tree new_var_1 = make_rename_temp (TREE_TYPE (temp), NULL); - new = build (MODIFY_EXPR, TREE_TYPE (new_var_1), new_var_1, temp); - bsi_insert_after (&bsi, new, BSI_NEW_STMT); - cond = fold_convert (TREE_TYPE (result), new_var_1); - } - - if (TREE_CODE (cond) == TRUTH_NOT_EXPR - && !is_gimple_val (TREE_OPERAND (cond, 0))) - return false; - new = build (MODIFY_EXPR, TREE_TYPE (PHI_RESULT (phi)), - PHI_RESULT (phi), cond); - } - - replace_phi_with_stmt (bsi, bb, cond_block, phi, new); + replace_phi_edge_with_variable (cond_bb, e1, phi, new_var); /* Note that we optimized this PHI. */ return true; @@ -411,33 +536,32 @@ conditional_replacement (basic_block bb, tree phi, tree arg0, tree arg1) is argument 0 from the PHI. Likewise for ARG1. */ static bool -value_replacement (basic_block bb, tree phi, tree arg0, tree arg1) +value_replacement (basic_block cond_bb, basic_block middle_bb, + edge e0, edge e1, gimple phi, + tree arg0, tree arg1) { - tree result; - basic_block other_block = NULL; - basic_block cond_block = NULL; - tree new, cond; + gimple cond; edge true_edge, false_edge; + enum tree_code code; /* If the type says honor signed zeros we cannot do this optimization. */ if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) return false; - if (!candidate_bb_for_phi_optimization (bb, &cond_block, &other_block) - || !empty_block_p (other_block)) + if (!empty_block_p (middle_bb)) return false; - cond = COND_EXPR_COND (last_stmt (cond_block)); - result = PHI_RESULT (phi); + cond = last_stmt (cond_bb); + code = gimple_cond_code (cond); /* This transformation is only valid for equality comparisons. */ - if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR) + if (code != NE_EXPR && code != EQ_EXPR) return false; /* We need to know which is the true edge and which is the false edge so that we know if have abs or negative abs. */ - extract_true_false_edges_from_block (cond_block, &true_edge, &false_edge); + extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); /* At this point we know we have a COND_EXPR with two successors. One successor is BB, the other successor is an empty block which @@ -449,11 +573,11 @@ value_replacement (basic_block bb, tree phi, tree arg0, tree arg1) We now need to verify that the two arguments in the PHI node match the two arguments to the equality comparison. */ - - if ((operand_equal_p (arg0, TREE_OPERAND (cond, 0), 0) - && operand_equal_p (arg1, TREE_OPERAND (cond, 1), 0)) - || (operand_equal_p (arg1, TREE_OPERAND (cond, 0), 0) - && operand_equal_p (arg0, TREE_OPERAND (cond, 1), 0))) + + if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond)) + && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond))) + || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond)) + && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond)))) { edge e; tree arg; @@ -461,26 +585,23 @@ value_replacement (basic_block bb, tree phi, tree arg0, tree arg1) /* For NE_EXPR, we want to build an assignment result = arg where arg is the PHI argument associated with the true edge. For EQ_EXPR we want the PHI argument associated with the false edge. */ - e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge); + e = (code == NE_EXPR ? true_edge : false_edge); /* Unfortunately, E may not reach BB (it may instead have gone to OTHER_BLOCK). If that is the case, then we want the single outgoing edge from OTHER_BLOCK which reaches BB and represents the desired path from COND_BLOCK. */ - if (e->dest == other_block) - e = EDGE_SUCC (e->dest, 0); + if (e->dest == middle_bb) + e = single_succ_edge (e->dest); /* Now we know the incoming edge to BB that has the argument for the RHS of our new assignment statement. */ - if (PHI_ARG_EDGE (phi, 0) == e) + if (e0 == e) arg = arg0; else arg = arg1; - /* Build the new assignment. */ - new = build (MODIFY_EXPR, TREE_TYPE (result), result, arg); - - replace_phi_with_stmt (bsi_after_labels (bb), bb, cond_block, phi, new); + replace_phi_edge_with_variable (cond_bb, e1, phi, arg); /* Note that we optimized this PHI. */ return true; @@ -488,111 +609,330 @@ value_replacement (basic_block bb, tree phi, tree arg0, tree arg1) return false; } -/* The function absolute_replacement does the main work of doing the absolute +/* The function minmax_replacement does the main work of doing the minmax replacement. Return true if the replacement is done. Otherwise return false. - bb is the basic block where the replacement is going to be done on. arg0 - is argument 0 from the phi. Likewise for arg1. */ + BB is the basic block where the replacement is going to be done on. ARG0 + is argument 0 from the PHI. Likewise for ARG1. */ + static bool -abs_replacement (basic_block bb, tree phi, tree arg0, tree arg1) +minmax_replacement (basic_block cond_bb, basic_block middle_bb, + edge e0, edge e1, gimple phi, + tree arg0, tree arg1) { - tree result; - basic_block other_block = NULL; - basic_block cond_block = NULL; - tree new, cond; - block_stmt_iterator bsi; + tree result, type; + gimple cond, new_stmt; edge true_edge, false_edge; - tree assign = NULL; - edge e; - tree rhs = NULL, lhs = NULL; - bool negate; - enum tree_code cond_code; + enum tree_code cmp, minmax, ass_code; + tree smaller, larger, arg_true, arg_false; + gimple_stmt_iterator gsi, gsi_from; - /* If the type says honor signed zeros we cannot do this - optimization. */ - if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) + type = TREE_TYPE (PHI_RESULT (phi)); + + /* The optimization may be unsafe due to NaNs. */ + if (HONOR_NANS (TYPE_MODE (type))) return false; - if (!candidate_bb_for_phi_optimization (bb, &cond_block, &other_block)) + cond = last_stmt (cond_bb); + cmp = gimple_cond_code (cond); + result = PHI_RESULT (phi); + + /* This transformation is only valid for order comparisons. Record which + operand is smaller/larger if the result of the comparison is true. */ + if (cmp == LT_EXPR || cmp == LE_EXPR) + { + smaller = gimple_cond_lhs (cond); + larger = gimple_cond_rhs (cond); + } + else if (cmp == GT_EXPR || cmp == GE_EXPR) + { + smaller = gimple_cond_rhs (cond); + larger = gimple_cond_lhs (cond); + } + else return false; - /* OTHER_BLOCK must have only one executable statement which must have the - form arg0 = -arg1 or arg1 = -arg0. */ - bsi = bsi_start (other_block); - while (!bsi_end_p (bsi)) + /* We need to know which is the true edge and which is the false + edge so that we know if have abs or negative abs. */ + extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); + + /* Forward the edges over the middle basic block. */ + if (true_edge->dest == middle_bb) + true_edge = EDGE_SUCC (true_edge->dest, 0); + if (false_edge->dest == middle_bb) + false_edge = EDGE_SUCC (false_edge->dest, 0); + + if (true_edge == e0) + { + gcc_assert (false_edge == e1); + arg_true = arg0; + arg_false = arg1; + } + else { - tree stmt = bsi_stmt (bsi); + gcc_assert (false_edge == e0); + gcc_assert (true_edge == e1); + arg_true = arg1; + arg_false = arg0; + } - /* Empty statements and labels are uninteresting. */ - if (TREE_CODE (stmt) == LABEL_EXPR - || IS_EMPTY_STMT (stmt)) - { - bsi_next (&bsi); - continue; - } + if (empty_block_p (middle_bb)) + { + if (operand_equal_for_phi_arg_p (arg_true, smaller) + && operand_equal_for_phi_arg_p (arg_false, larger)) + { + /* Case + + if (smaller < larger) + rslt = smaller; + else + rslt = larger; */ + minmax = MIN_EXPR; + } + else if (operand_equal_for_phi_arg_p (arg_false, smaller) + && operand_equal_for_phi_arg_p (arg_true, larger)) + minmax = MAX_EXPR; + else + return false; + } + else + { + /* Recognize the following case, assuming d <= u: + + if (a <= u) + b = MAX (a, d); + x = PHI + + This is equivalent to + + b = MAX (a, d); + x = MIN (b, u); */ + + gimple assign = last_and_only_stmt (middle_bb); + tree lhs, op0, op1, bound; - /* If we found the assignment, but it was not the only executable - statement in OTHER_BLOCK, then we can not optimize. */ - if (assign) + if (!assign + || gimple_code (assign) != GIMPLE_ASSIGN) return false; - /* If we got here, then we have found the first executable statement - in OTHER_BLOCK. If it is anything other than arg = -arg1 or - arg1 = -arg0, then we can not optimize. */ - if (TREE_CODE (stmt) == MODIFY_EXPR) - { - lhs = TREE_OPERAND (stmt, 0); - rhs = TREE_OPERAND (stmt, 1); - - if (TREE_CODE (rhs) == NEGATE_EXPR) - { - rhs = TREE_OPERAND (rhs, 0); - - /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */ - if ((lhs == arg0 && rhs == arg1) - || (lhs == arg1 && rhs == arg0)) - { - assign = stmt; - bsi_next (&bsi); - } + lhs = gimple_assign_lhs (assign); + ass_code = gimple_assign_rhs_code (assign); + if (ass_code != MAX_EXPR && ass_code != MIN_EXPR) + return false; + op0 = gimple_assign_rhs1 (assign); + op1 = gimple_assign_rhs2 (assign); + + if (true_edge->src == middle_bb) + { + /* We got here if the condition is true, i.e., SMALLER < LARGER. */ + if (!operand_equal_for_phi_arg_p (lhs, arg_true)) + return false; + + if (operand_equal_for_phi_arg_p (arg_false, larger)) + { + /* Case + + if (smaller < larger) + { + r' = MAX_EXPR (smaller, bound) + } + r = PHI --> to be turned to MIN_EXPR. */ + if (ass_code != MAX_EXPR) + return false; + + minmax = MIN_EXPR; + if (operand_equal_for_phi_arg_p (op0, smaller)) + bound = op1; + else if (operand_equal_for_phi_arg_p (op1, smaller)) + bound = op0; else return false; - } + + /* We need BOUND <= LARGER. */ + if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, + bound, larger))) + return false; + } + else if (operand_equal_for_phi_arg_p (arg_false, smaller)) + { + /* Case + + if (smaller < larger) + { + r' = MIN_EXPR (larger, bound) + } + r = PHI --> to be turned to MAX_EXPR. */ + if (ass_code != MIN_EXPR) + return false; + + minmax = MAX_EXPR; + if (operand_equal_for_phi_arg_p (op0, larger)) + bound = op1; + else if (operand_equal_for_phi_arg_p (op1, larger)) + bound = op0; + else + return false; + + /* We need BOUND >= SMALLER. */ + if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, + bound, smaller))) + return false; + } else return false; - } + } else - return false; + { + /* We got here if the condition is false, i.e., SMALLER > LARGER. */ + if (!operand_equal_for_phi_arg_p (lhs, arg_false)) + return false; + + if (operand_equal_for_phi_arg_p (arg_true, larger)) + { + /* Case + + if (smaller > larger) + { + r' = MIN_EXPR (smaller, bound) + } + r = PHI --> to be turned to MAX_EXPR. */ + if (ass_code != MIN_EXPR) + return false; + + minmax = MAX_EXPR; + if (operand_equal_for_phi_arg_p (op0, smaller)) + bound = op1; + else if (operand_equal_for_phi_arg_p (op1, smaller)) + bound = op0; + else + return false; + + /* We need BOUND >= LARGER. */ + if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, + bound, larger))) + return false; + } + else if (operand_equal_for_phi_arg_p (arg_true, smaller)) + { + /* Case + + if (smaller > larger) + { + r' = MAX_EXPR (larger, bound) + } + r = PHI --> to be turned to MIN_EXPR. */ + if (ass_code != MAX_EXPR) + return false; + + minmax = MIN_EXPR; + if (operand_equal_for_phi_arg_p (op0, larger)) + bound = op1; + else if (operand_equal_for_phi_arg_p (op1, larger)) + bound = op0; + else + return false; + + /* We need BOUND <= SMALLER. */ + if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, + bound, smaller))) + return false; + } + else + return false; + } + + /* Move the statement from the middle block. */ + gsi = gsi_last_bb (cond_bb); + gsi_from = gsi_last_bb (middle_bb); + gsi_move_before (&gsi_from, &gsi); } + /* Emit the statement to compute min/max. */ + result = duplicate_ssa_name (PHI_RESULT (phi), NULL); + new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1); + gsi = gsi_last_bb (cond_bb); + gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); + + replace_phi_edge_with_variable (cond_bb, e1, phi, result); + return true; +} + +/* The function absolute_replacement does the main work of doing the absolute + replacement. Return true if the replacement is done. Otherwise return + false. + bb is the basic block where the replacement is going to be done on. arg0 + is argument 0 from the phi. Likewise for arg1. */ + +static bool +abs_replacement (basic_block cond_bb, basic_block middle_bb, + edge e0 ATTRIBUTE_UNUSED, edge e1, + gimple phi, tree arg0, tree arg1) +{ + tree result; + gimple new_stmt, cond; + gimple_stmt_iterator gsi; + edge true_edge, false_edge; + gimple assign; + edge e; + tree rhs, lhs; + bool negate; + enum tree_code cond_code; + + /* If the type says honor signed zeros we cannot do this + optimization. */ + if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) + return false; + + /* OTHER_BLOCK must have only one executable statement which must have the + form arg0 = -arg1 or arg1 = -arg0. */ + + assign = last_and_only_stmt (middle_bb); /* If we did not find the proper negation assignment, then we can not optimize. */ if (assign == NULL) return false; + + /* If we got here, then we have found the only executable statement + in OTHER_BLOCK. If it is anything other than arg = -arg1 or + arg1 = -arg0, then we can not optimize. */ + if (gimple_code (assign) != GIMPLE_ASSIGN) + return false; + + lhs = gimple_assign_lhs (assign); + + if (gimple_assign_rhs_code (assign) != NEGATE_EXPR) + return false; + + rhs = gimple_assign_rhs1 (assign); + + /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */ + if (!(lhs == arg0 && rhs == arg1) + && !(lhs == arg1 && rhs == arg0)) + return false; - cond = COND_EXPR_COND (last_stmt (cond_block)); + cond = last_stmt (cond_bb); result = PHI_RESULT (phi); /* Only relationals comparing arg[01] against zero are interesting. */ - cond_code = TREE_CODE (cond); + cond_code = gimple_cond_code (cond); if (cond_code != GT_EXPR && cond_code != GE_EXPR && cond_code != LT_EXPR && cond_code != LE_EXPR) return false; /* Make sure the conditional is arg[01] OP y. */ - if (TREE_OPERAND (cond, 0) != rhs) + if (gimple_cond_lhs (cond) != rhs) return false; - if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1))) - ? real_zerop (TREE_OPERAND (cond, 1)) - : integer_zerop (TREE_OPERAND (cond, 1))) + if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond))) + ? real_zerop (gimple_cond_rhs (cond)) + : integer_zerop (gimple_cond_rhs (cond))) ; else return false; /* We need to know which is the true edge and which is the false edge so that we know if have abs or negative abs. */ - extract_true_false_edges_from_block (cond_block, &true_edge, &false_edge); + extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we will need to negate the result. Similarly for LT_EXPR/LE_EXPR if @@ -601,57 +941,334 @@ abs_replacement (basic_block bb, tree phi, tree arg0, tree arg1) e = true_edge; else e = false_edge; - - if (e->dest == other_block) + + if (e->dest == middle_bb) negate = true; else negate = false; - + + result = duplicate_ssa_name (result, NULL); + if (negate) - lhs = make_rename_temp (TREE_TYPE (result), NULL); + { + tree tmp = create_tmp_var (TREE_TYPE (result), NULL); + add_referenced_var (tmp); + lhs = make_ssa_name (tmp, NULL); + } else lhs = result; /* Build the modify expression with abs expression. */ - new = build (MODIFY_EXPR, TREE_TYPE (lhs), - lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs)); + new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL); - replace_phi_with_stmt (bsi_after_labels (bb), bb, cond_block, phi, new); + gsi = gsi_last_bb (cond_bb); + gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); if (negate) { - - /* Get the right BSI. We want to insert after the recently + /* Get the right GSI. We want to insert after the recently added ABS_EXPR statement (which we know is the first statement in the block. */ - bsi = bsi_start (bb); - bsi_next (&bsi); - new = build (MODIFY_EXPR, TREE_TYPE (result), - result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs)); + new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL); - bsi_insert_after (&bsi, new, BSI_NEW_STMT); - - /* Register the new statement as defining the temporary -- this is - normally done by replace_phi_with_stmt, but the link will be wrong - if we had to negate the resulting value. */ - SSA_NAME_DEF_STMT (result) = new; + gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); } + replace_phi_edge_with_variable (cond_bb, e1, phi, result); + /* Note that we optimized this PHI. */ return true; } +/* Auxiliary functions to determine the set of memory accesses which + can't trap because they are preceded by accesses to the same memory + portion. We do that for INDIRECT_REFs, so we only need to track + the SSA_NAME of the pointer indirectly referenced. The algorithm + simply is a walk over all instructions in dominator order. When + we see an INDIRECT_REF we determine if we've already seen a same + ref anywhere up to the root of the dominator tree. If we do the + current access can't trap. If we don't see any dominating access + the current access might trap, but might also make later accesses + non-trapping, so we remember it. We need to be careful with loads + or stores, for instance a load might not trap, while a store would, + so if we see a dominating read access this doesn't mean that a later + write access would not trap. Hence we also need to differentiate the + type of access(es) seen. + + ??? We currently are very conservative and assume that a load might + trap even if a store doesn't (write-only memory). This probably is + overly conservative. */ + +/* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF + through it was seen, which would constitute a no-trap region for + same accesses. */ +struct name_to_bb +{ + tree ssa_name; + basic_block bb; + unsigned store : 1; +}; + +/* The hash table for remembering what we've seen. */ +static htab_t seen_ssa_names; + +/* The set of INDIRECT_REFs which can't trap. */ +static struct pointer_set_t *nontrap_set; + +/* The hash function, based on the pointer to the pointer SSA_NAME. */ +static hashval_t +name_to_bb_hash (const void *p) +{ + const_tree n = ((const struct name_to_bb *)p)->ssa_name; + return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store; +} + +/* The equality function of *P1 and *P2. SSA_NAMEs are shared, so + it's enough to simply compare them for equality. */ +static int +name_to_bb_eq (const void *p1, const void *p2) +{ + const struct name_to_bb *n1 = (const struct name_to_bb *)p1; + const struct name_to_bb *n2 = (const struct name_to_bb *)p2; + + return n1->ssa_name == n2->ssa_name && n1->store == n2->store; +} + +/* We see the expression EXP in basic block BB. If it's an interesting + expression (an INDIRECT_REF through an SSA_NAME) possibly insert the + expression into the set NONTRAP or the hash table of seen expressions. + STORE is true if this expression is on the LHS, otherwise it's on + the RHS. */ +static void +add_or_mark_expr (basic_block bb, tree exp, + struct pointer_set_t *nontrap, bool store) +{ + if (INDIRECT_REF_P (exp) + && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME) + { + tree name = TREE_OPERAND (exp, 0); + struct name_to_bb map; + void **slot; + struct name_to_bb *n2bb; + basic_block found_bb = 0; + + /* Try to find the last seen INDIRECT_REF through the same + SSA_NAME, which can trap. */ + map.ssa_name = name; + map.bb = 0; + map.store = store; + slot = htab_find_slot (seen_ssa_names, &map, INSERT); + n2bb = (struct name_to_bb *) *slot; + if (n2bb) + found_bb = n2bb->bb; + + /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP + (it's in a basic block on the path from us to the dominator root) + then we can't trap. */ + if (found_bb && found_bb->aux == (void *)1) + { + pointer_set_insert (nontrap, exp); + } + else + { + /* EXP might trap, so insert it into the hash table. */ + if (n2bb) + { + n2bb->bb = bb; + } + else + { + n2bb = XNEW (struct name_to_bb); + n2bb->ssa_name = name; + n2bb->bb = bb; + n2bb->store = store; + *slot = n2bb; + } + } + } +} + +/* Called by walk_dominator_tree, when entering the block BB. */ +static void +nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb) +{ + gimple_stmt_iterator gsi; + /* Mark this BB as being on the path to dominator root. */ + bb->aux = (void*)1; + + /* And walk the statements in order. */ + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + + if (is_gimple_assign (stmt)) + { + add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true); + add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false); + if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1) + add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set, + false); + } + } +} + +/* Called by walk_dominator_tree, when basic block BB is exited. */ +static void +nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb) +{ + /* This BB isn't on the path to dominator root anymore. */ + bb->aux = NULL; +} + +/* This is the entry point of gathering non trapping memory accesses. + It will do a dominator walk over the whole function, and it will + make use of the bb->aux pointers. It returns a set of trees + (the INDIRECT_REFs itself) which can't trap. */ +static struct pointer_set_t * +get_non_trapping (void) +{ + struct pointer_set_t *nontrap; + struct dom_walk_data walk_data; + + nontrap = pointer_set_create (); + seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq, + free); + /* We're going to do a dominator walk, so ensure that we have + dominance information. */ + calculate_dominance_info (CDI_DOMINATORS); + + /* Setup callbacks for the generic dominator tree walker. */ + nontrap_set = nontrap; + walk_data.walk_stmts_backward = false; + walk_data.dom_direction = CDI_DOMINATORS; + walk_data.initialize_block_local_data = NULL; + walk_data.before_dom_children_before_stmts = nt_init_block; + walk_data.before_dom_children_walk_stmts = NULL; + walk_data.before_dom_children_after_stmts = NULL; + walk_data.after_dom_children_before_stmts = NULL; + walk_data.after_dom_children_walk_stmts = NULL; + walk_data.after_dom_children_after_stmts = nt_fini_block; + walk_data.global_data = NULL; + walk_data.block_local_data_size = 0; + walk_data.interesting_blocks = NULL; + + init_walk_dominator_tree (&walk_data); + walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); + fini_walk_dominator_tree (&walk_data); + htab_delete (seen_ssa_names); + + return nontrap; +} + +/* Do the main work of conditional store replacement. We already know + that the recognized pattern looks like so: + + split: + if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1) + MIDDLE_BB: + something + fallthrough (edge E0) + JOIN_BB: + some more + + We check that MIDDLE_BB contains only one store, that that store + doesn't trap (not via NOTRAP, but via checking if an access to the same + memory location dominates us) and that the store has a "simple" RHS. */ + +static bool +cond_store_replacement (basic_block middle_bb, basic_block join_bb, + edge e0, edge e1, struct pointer_set_t *nontrap) +{ + gimple assign = last_and_only_stmt (middle_bb); + tree lhs, rhs, name; + gimple newphi, new_stmt; + gimple_stmt_iterator gsi; + enum tree_code code; + + /* Check if middle_bb contains of only one store. */ + if (!assign + || gimple_code (assign) != GIMPLE_ASSIGN) + return false; + + lhs = gimple_assign_lhs (assign); + rhs = gimple_assign_rhs1 (assign); + if (!INDIRECT_REF_P (lhs)) + return false; + + /* RHS is either a single SSA_NAME or a constant. */ + code = gimple_assign_rhs_code (assign); + if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS + || (code != SSA_NAME && !is_gimple_min_invariant (rhs))) + return false; + /* Prove that we can move the store down. We could also check + TREE_THIS_NOTRAP here, but in that case we also could move stores, + whose value is not available readily, which we want to avoid. */ + if (!pointer_set_contains (nontrap, lhs)) + return false; + + /* Now we've checked the constraints, so do the transformation: + 1) Remove the single store. */ + mark_symbols_for_renaming (assign); + gsi = gsi_for_stmt (assign); + gsi_remove (&gsi, true); + + /* 2) Create a temporary where we can store the old content + of the memory touched by the store, if we need to. */ + if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp)) + { + condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore"); + get_var_ann (condstoretemp); + if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE) + DECL_GIMPLE_REG_P (condstoretemp) = 1; + } + add_referenced_var (condstoretemp); + + /* 3) Insert a load from the memory of the store to the temporary + on the edge which did not contain the store. */ + lhs = unshare_expr (lhs); + new_stmt = gimple_build_assign (condstoretemp, lhs); + name = make_ssa_name (condstoretemp, new_stmt); + gimple_assign_set_lhs (new_stmt, name); + mark_symbols_for_renaming (new_stmt); + gsi_insert_on_edge (e1, new_stmt); + + /* 4) Create a PHI node at the join block, with one argument + holding the old RHS, and the other holding the temporary + where we stored the old memory contents. */ + newphi = create_phi_node (condstoretemp, join_bb); + add_phi_arg (newphi, rhs, e0); + add_phi_arg (newphi, name, e1); + + lhs = unshare_expr (lhs); + new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi)); + mark_symbols_for_renaming (new_stmt); + + /* 5) Insert that PHI node. */ + gsi = gsi_after_labels (join_bb); + if (gsi_end_p (gsi)) + { + gsi = gsi_last_bb (join_bb); + gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); + } + else + gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); + + return true; +} /* Always do these optimizations if we have SSA - trees to work on. */ + trees to work on. */ static bool gate_phiopt (void) { return 1; } - -struct tree_opt_pass pass_phiopt = + +struct gimple_opt_pass pass_phiopt = { + { + GIMPLE_PASS, "phiopt", /* name */ gate_phiopt, /* gate */ tree_ssa_phiopt, /* execute */ @@ -663,10 +1280,39 @@ struct tree_opt_pass pass_phiopt = 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ - TODO_cleanup_cfg | TODO_dump_func | TODO_ggc_collect /* todo_flags_finish */ - | TODO_verify_ssa | TODO_rename_vars - | TODO_verify_flow, - 0 /* letter */ + TODO_dump_func + | TODO_ggc_collect + | TODO_verify_ssa + | TODO_verify_flow + | TODO_verify_stmts /* todo_flags_finish */ + } }; - +static bool +gate_cselim (void) +{ + return flag_tree_cselim; +} + +struct gimple_opt_pass pass_cselim = +{ + { + GIMPLE_PASS, + "cselim", /* name */ + gate_cselim, /* gate */ + tree_ssa_cs_elim, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_TREE_PHIOPT, /* tv_id */ + PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func + | TODO_ggc_collect + | TODO_verify_ssa + | TODO_verify_flow + | TODO_verify_stmts /* todo_flags_finish */ + } +};