X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Ftree-flow-inline.h;h=e1c19fc6dd4686310e6296890987665b1ce2f37e;hb=c9d8753c393285ea9685bcdc894e4b7588d2a577;hp=ea5e741ae124fb49e54a0604c2fc7fe0645887b0;hpb=cc8906499e23db95dadc366cfba27029b27864b5;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/tree-flow-inline.h b/gcc/tree-flow-inline.h index ea5e741ae12..e1c19fc6dd4 100644 --- a/gcc/tree-flow-inline.h +++ b/gcc/tree-flow-inline.h @@ -1,5 +1,5 @@ /* Inline functions for tree-flow.h - Copyright (C) 2001, 2003 Free Software Foundation, Inc. + Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc. Contributed by Diego Novillo This file is part of GCC. @@ -16,8 +16,8 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ +the Free Software Foundation, 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ #ifndef _TREE_FLOW_INLINE_H #define _TREE_FLOW_INLINE_H 1 @@ -25,6 +25,99 @@ Boston, MA 02111-1307, USA. */ /* Inline functions for manipulating various data structures defined in tree-flow.h. See tree-flow.h for documentation. */ +/* Initialize the hashtable iterator HTI to point to hashtable TABLE */ + +static inline void * +first_htab_element (htab_iterator *hti, htab_t table) +{ + hti->htab = table; + hti->slot = table->entries; + hti->limit = hti->slot + htab_size (table); + do + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + break; + } while (++(hti->slot) < hti->limit); + + if (hti->slot < hti->limit) + return *(hti->slot); + return NULL; +} + +/* Return current non-empty/deleted slot of the hashtable pointed to by HTI, + or NULL if we have reached the end. */ + +static inline bool +end_htab_p (htab_iterator *hti) +{ + if (hti->slot >= hti->limit) + return true; + return false; +} + +/* Advance the hashtable iterator pointed to by HTI to the next element of the + hashtable. */ + +static inline void * +next_htab_element (htab_iterator *hti) +{ + while (++(hti->slot) < hti->limit) + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + return x; + }; + return NULL; +} + +/* Initialize ITER to point to the first referenced variable in the + referenced_vars hashtable, and return that variable. */ + +static inline tree +first_referenced_var (referenced_var_iterator *iter) +{ + struct int_tree_map *itm; + itm = first_htab_element (&iter->hti, referenced_vars); + if (!itm) + return NULL; + return itm->to; +} + +/* Return true if we have hit the end of the referenced variables ITER is + iterating through. */ + +static inline bool +end_referenced_vars_p (referenced_var_iterator *iter) +{ + return end_htab_p (&iter->hti); +} + +/* Make ITER point to the next referenced_var in the referenced_var hashtable, + and return that variable. */ + +static inline tree +next_referenced_var (referenced_var_iterator *iter) +{ + struct int_tree_map *itm; + itm = next_htab_element (&iter->hti); + if (!itm) + return NULL; + return itm->to; +} + +/* Fill up VEC with the variables in the referenced vars hashtable. */ + +static inline void +fill_referenced_var_vec (VEC (tree, heap) **vec) +{ + referenced_var_iterator rvi; + tree var; + *vec = NULL; + FOR_EACH_REFERENCED_VAR (var, rvi) + VEC_safe_push (tree, heap, *vec, var); +} + /* Return the variable annotation for T, which must be a _DECL node. Return NULL if the variable annotation doesn't already exist. */ static inline var_ann_t @@ -66,7 +159,6 @@ get_stmt_ann (tree stmt) return (ann) ? ann : create_stmt_ann (stmt); } - /* Return the annotation type for annotation ANN. */ static inline enum tree_ann_type ann_type (tree_ann_t ann) @@ -131,24 +223,45 @@ get_filename (tree expr) return "???"; } +/* Return true if T is a noreturn call. */ +static inline bool +noreturn_call_p (tree t) +{ + tree call = get_call_expr_in (t); + return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0; +} + /* Mark statement T as modified. */ static inline void -modify_stmt (tree t) +mark_stmt_modified (tree t) { - stmt_ann_t ann = stmt_ann (t); + stmt_ann_t ann; + if (TREE_CODE (t) == PHI_NODE) + return; + + ann = stmt_ann (t); if (ann == NULL) ann = create_stmt_ann (t); + else if (noreturn_call_p (t)) + VEC_safe_push (tree, gc, modified_noreturn_calls, t); ann->modified = 1; } -/* Mark statement T as unmodified. */ +/* Mark statement T as modified, and update it. */ static inline void -unmodify_stmt (tree t) +update_stmt (tree t) { - stmt_ann_t ann = stmt_ann (t); - if (ann == NULL) - ann = create_stmt_ann (t); - ann->modified = 0; + if (TREE_CODE (t) == PHI_NODE) + return; + mark_stmt_modified (t); + update_stmt_operands (t); +} + +static inline void +update_stmt_if_modified (tree t) +{ + if (stmt_modified_p (t)) + update_stmt_operands (t); } /* Return true if T is marked as modified, false otherwise. */ @@ -158,215 +271,319 @@ stmt_modified_p (tree t) stmt_ann_t ann = stmt_ann (t); /* Note that if the statement doesn't yet have an annotation, we consider it - modified. This will force the next call to get_stmt_operands to scan the - statement. */ + modified. This will force the next call to update_stmt_operands to scan + the statement. */ return ann ? ann->modified : true; } -/* Return the definitions present in ANN, a statement annotation. - Return NULL if this annotation contains no definitions. */ -static inline def_optype -get_def_ops (stmt_ann_t ann) +/* Delink an immediate_uses node from its chain. */ +static inline void +delink_imm_use (ssa_use_operand_t *linknode) { - return ann ? ann->operands.def_ops : NULL; + /* Return if this node is not in a list. */ + if (linknode->prev == NULL) + return; + + linknode->prev->next = linknode->next; + linknode->next->prev = linknode->prev; + linknode->prev = NULL; + linknode->next = NULL; } -/* Return the uses present in ANN, a statement annotation. - Return NULL if this annotation contains no uses. */ -static inline use_optype -get_use_ops (stmt_ann_t ann) +/* Link ssa_imm_use node LINKNODE into the chain for LIST. */ +static inline void +link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) { - return ann ? ann->operands.use_ops : NULL; + /* Link the new node at the head of the list. If we are in the process of + traversing the list, we won't visit any new nodes added to it. */ + linknode->prev = list; + linknode->next = list->next; + list->next->prev = linknode; + list->next = linknode; } -/* Return the virtual may-defs present in ANN, a statement - annotation. - Return NULL if this annotation contains no virtual may-defs. */ -static inline v_may_def_optype -get_v_may_def_ops (stmt_ann_t ann) +/* Link ssa_imm_use node LINKNODE into the chain for DEF. */ +static inline void +link_imm_use (ssa_use_operand_t *linknode, tree def) { - return ann ? ann->operands.v_may_def_ops : NULL; + ssa_use_operand_t *root; + + if (!def || TREE_CODE (def) != SSA_NAME) + linknode->prev = NULL; + else + { + root = &(SSA_NAME_IMM_USE_NODE (def)); +#ifdef ENABLE_CHECKING + if (linknode->use) + gcc_assert (*(linknode->use) == def); +#endif + link_imm_use_to_list (linknode, root); + } } -/* Return the virtual uses present in ANN, a statement annotation. - Return NULL if this annotation contains no virtual uses. */ -static inline vuse_optype -get_vuse_ops (stmt_ann_t ann) +/* Set the value of a use pointed to by USE to VAL. */ +static inline void +set_ssa_use_from_ptr (use_operand_p use, tree val) { - return ann ? ann->operands.vuse_ops : NULL; + delink_imm_use (use); + *(use->use) = val; + link_imm_use (use, val); } -/* Return the virtual must-defs present in ANN, a statement - annotation. Return NULL if this annotation contains no must-defs.*/ -static inline v_must_def_optype -get_v_must_def_ops (stmt_ann_t ann) +/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring + in STMT. */ +static inline void +link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt) { - return ann ? ann->operands.v_must_def_ops : NULL; + if (stmt) + link_imm_use (linknode, def); + else + link_imm_use (linknode, NULL); + linknode->stmt = stmt; } -/* Return the tree pointer to by USE. */ -static inline tree -get_use_from_ptr (use_operand_p use) -{ - return *(use.use); -} - -/* Return the tree pointer to by DEF. */ -static inline tree -get_def_from_ptr (def_operand_p def) +/* Relink a new node in place of an old node in the list. */ +static inline void +relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) { - return *(def.def); + /* The node one had better be in the same list. */ + gcc_assert (*(old->use) == *(node->use)); + node->prev = old->prev; + node->next = old->next; + if (old->prev) + { + old->prev->next = node; + old->next->prev = node; + /* Remove the old node from the list. */ + old->prev = NULL; + } } -/* Return a pointer to the tree that is at INDEX in the USES array. */ -static inline use_operand_p -get_use_op_ptr (use_optype uses, unsigned int index) +/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring + in STMT. */ +static inline void +relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt) { - gcc_assert (index < uses->num_uses); - return uses->uses[index]; + if (stmt) + relink_imm_use (linknode, old); + else + link_imm_use (linknode, NULL); + linknode->stmt = stmt; } -/* Return a def_operand_p pointer for element INDEX of DEFS. */ -static inline def_operand_p -get_def_op_ptr (def_optype defs, unsigned int index) +/* Finished the traverse of an immediate use list IMM by removing it from + the list. */ +static inline void +end_safe_imm_use_traverse (imm_use_iterator *imm) { - gcc_assert (index < defs->num_defs); - return defs->defs[index]; + delink_imm_use (&(imm->iter_node)); } - -/* Return the def_operand_p that is the V_MAY_DEF_RESULT for the V_MAY_DEF - at INDEX in the V_MAY_DEFS array. */ -static inline def_operand_p -get_v_may_def_result_ptr(v_may_def_optype v_may_defs, unsigned int index) +/* Return true if IMM is at the end of the list. */ +static inline bool +end_safe_imm_use_p (imm_use_iterator *imm) { - def_operand_p op; - gcc_assert (index < v_may_defs->num_v_may_defs); - op.def = &(v_may_defs->v_may_defs[index].def); - return op; + return (imm->imm_use == imm->end_p); } -/* Return a use_operand_p that is the V_MAY_DEF_OP for the V_MAY_DEF at - INDEX in the V_MAY_DEFS array. */ +/* Initialize iterator IMM to process the list for VAR. */ static inline use_operand_p -get_v_may_def_op_ptr(v_may_def_optype v_may_defs, unsigned int index) -{ - use_operand_p op; - gcc_assert (index < v_may_defs->num_v_may_defs); - op.use = &(v_may_defs->v_may_defs[index].use); - return op; +first_safe_imm_use (imm_use_iterator *imm, tree var) +{ + /* Set up and link the iterator node into the linked list for VAR. */ + imm->iter_node.use = NULL; + imm->iter_node.stmt = NULL_TREE; + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + /* Check if there are 0 elements. */ + if (imm->end_p->next == imm->end_p) + { + imm->imm_use = imm->end_p; + return NULL_USE_OPERAND_P; + } + + link_imm_use (&(imm->iter_node), var); + imm->imm_use = imm->iter_node.next; + return imm->imm_use; } -/* Return a use_operand_p that is at INDEX in the VUSES array. */ +/* Bump IMM to the next use in the list. */ static inline use_operand_p -get_vuse_op_ptr(vuse_optype vuses, unsigned int index) +next_safe_imm_use (imm_use_iterator *imm) { - use_operand_p op; - gcc_assert (index < vuses->num_vuses); - op.use = &(vuses->vuses[index]); - return op; + ssa_use_operand_t *ptr; + use_operand_p old; + + old = imm->imm_use; + /* If the next node following the iter_node is still the one referred to by + imm_use, then the list hasn't changed, go to the next node. */ + if (imm->iter_node.next == imm->imm_use) + { + ptr = &(imm->iter_node); + /* Remove iternode from the list. */ + delink_imm_use (ptr); + imm->imm_use = imm->imm_use->next; + if (! end_safe_imm_use_p (imm)) + { + /* This isn't the end, link iternode before the next use. */ + ptr->prev = imm->imm_use->prev; + ptr->next = imm->imm_use; + imm->imm_use->prev->next = ptr; + imm->imm_use->prev = ptr; + } + else + return old; + } + else + { + /* If the 'next' value after the iterator isn't the same as it was, then + a node has been deleted, so we simply proceed to the node following + where the iterator is in the list. */ + imm->imm_use = imm->iter_node.next; + if (end_safe_imm_use_p (imm)) + { + end_safe_imm_use_traverse (imm); + return old; + } + } + + return imm->imm_use; } -/* Return a def_operand_p that is the V_MUST_DEF_RESULT for the - V_MUST_DEF at INDEX in the V_MUST_DEFS array. */ -static inline def_operand_p -get_v_must_def_result_ptr (v_must_def_optype v_must_defs, unsigned int index) +/* Return true is IMM has reached the end of the immediate use list. */ +static inline bool +end_readonly_imm_use_p (imm_use_iterator *imm) { - def_operand_p op; - gcc_assert (index < v_must_defs->num_v_must_defs); - op.def = &(v_must_defs->v_must_defs[index].def); - return op; + return (imm->imm_use == imm->end_p); } -/* Return a use_operand_p that is the V_MUST_DEF_KILL for the - V_MUST_DEF at INDEX in the V_MUST_DEFS array. */ +/* Initialize iterator IMM to process the list for VAR. */ static inline use_operand_p -get_v_must_def_kill_ptr (v_must_def_optype v_must_defs, unsigned int index) +first_readonly_imm_use (imm_use_iterator *imm, tree var) { - use_operand_p op; - gcc_assert (index < v_must_defs->num_v_must_defs); - op.use = &(v_must_defs->v_must_defs[index].use); - return op; -} + gcc_assert (TREE_CODE (var) == SSA_NAME); -/* Return a def_operand_p pointer for the result of PHI. */ -static inline def_operand_p -get_phi_result_ptr (tree phi) -{ - def_operand_p op; - op.def = &(PHI_RESULT_TREE (phi)); - return op; + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; +#ifdef ENABLE_CHECKING + imm->iter_node.next = imm->imm_use->next; +#endif + if (end_readonly_imm_use_p (imm)) + return NULL_USE_OPERAND_P; + return imm->imm_use; } -/* Return a use_operand_p pointer for argument I of phinode PHI. */ +/* Bump IMM to the next use in the list. */ static inline use_operand_p -get_phi_arg_def_ptr (tree phi, int i) +next_readonly_imm_use (imm_use_iterator *imm) { - use_operand_p op; - op.use = &(PHI_ARG_DEF_TREE (phi, i)); - return op; + use_operand_p old = imm->imm_use; + +#ifdef ENABLE_CHECKING + /* If this assertion fails, it indicates the 'next' pointer has changed + since we the last bump. This indicates that the list is being modified + via stmt changes, or SET_USE, or somesuch thing, and you need to be + using the SAFE version of the iterator. */ + gcc_assert (imm->iter_node.next == old->next); + imm->iter_node.next = old->next->next; +#endif + + imm->imm_use = old->next; + if (end_readonly_imm_use_p (imm)) + return old; + return imm->imm_use; } - -/* Return the bitmap of addresses taken by STMT, or NULL if it takes - no addresses. */ -static inline bitmap -addresses_taken (tree stmt) + +/* Return true if VAR has no uses. */ +static inline bool +has_zero_uses (tree var) { - stmt_ann_t ann = stmt_ann (stmt); - return ann ? ann->addresses_taken : NULL; + ssa_use_operand_t *ptr; + ptr = &(SSA_NAME_IMM_USE_NODE (var)); + /* A single use means there is no items in the list. */ + return (ptr == ptr->next); } -/* Return the immediate uses of STMT, or NULL if this information is - not computed. */ -static dataflow_t -get_immediate_uses (tree stmt) +/* Return true if VAR has a single use. */ +static inline bool +has_single_use (tree var) { - stmt_ann_t ann; + ssa_use_operand_t *ptr; + ptr = &(SSA_NAME_IMM_USE_NODE (var)); + /* A single use means there is one item in the list. */ + return (ptr != ptr->next && ptr == ptr->next->next); +} - if (TREE_CODE (stmt) == PHI_NODE) - return PHI_DF (stmt); +/* If VAR has only a single immediate use, return true, and set USE_P and STMT + to the use pointer and stmt of occurrence. */ +static inline bool +single_imm_use (tree var, use_operand_p *use_p, tree *stmt) +{ + ssa_use_operand_t *ptr; - ann = stmt_ann (stmt); - return ann ? ann->df : NULL; + ptr = &(SSA_NAME_IMM_USE_NODE (var)); + if (ptr != ptr->next && ptr == ptr->next->next) + { + *use_p = ptr->next; + *stmt = ptr->next->stmt; + return true; + } + *use_p = NULL_USE_OPERAND_P; + *stmt = NULL_TREE; + return false; } -/* Return the number of immediate uses present in the dataflow - information at DF. */ -static inline int -num_immediate_uses (dataflow_t df) +/* Return the number of immediate uses of VAR. */ +static inline unsigned int +num_imm_uses (tree var) { - varray_type imm; + ssa_use_operand_t *ptr, *start; + unsigned int num; - if (!df) - return 0; + start = &(SSA_NAME_IMM_USE_NODE (var)); + num = 0; + for (ptr = start->next; ptr != start; ptr = ptr->next) + num++; - imm = df->immediate_uses; - if (!imm) - return df->uses[1] ? 2 : 1; - - return VARRAY_ACTIVE_SIZE (imm) + 2; + return num; } -/* Return the tree that is at NUM in the immediate use DF array. */ + +/* Return the tree pointer to by USE. */ +static inline tree +get_use_from_ptr (use_operand_p use) +{ + return *(use->use); +} + +/* Return the tree pointer to by DEF. */ static inline tree -immediate_use (dataflow_t df, int num) +get_def_from_ptr (def_operand_p def) { - if (!df) - return NULL_TREE; + return *def; +} -#ifdef ENABLE_CHECKING - gcc_assert (num < num_immediate_uses (df)); -#endif - if (num < 2) - return df->uses[num]; - return VARRAY_TREE (df->immediate_uses, num - 2); +/* Return a def_operand_p pointer for the result of PHI. */ +static inline def_operand_p +get_phi_result_ptr (tree phi) +{ + return &(PHI_RESULT_TREE (phi)); } -/* Return the basic_block annotation for BB. */ -static inline bb_ann_t -bb_ann (basic_block bb) +/* Return a use_operand_p pointer for argument I of phinode PHI. */ +static inline use_operand_p +get_phi_arg_def_ptr (tree phi, int i) { - return (bb_ann_t)bb->tree_annotations; + return &(PHI_ARG_IMM_USE_NODE (phi,i)); +} + + +/* Return the bitmap of addresses taken by STMT, or NULL if it takes + no addresses. */ +static inline bitmap +addresses_taken (tree stmt) +{ + stmt_ann_t ann = stmt_ann (stmt); + return ann ? ann->addresses_taken : NULL; } /* Return the PHI nodes for basic block BB, or NULL if there are no @@ -374,7 +591,7 @@ bb_ann (basic_block bb) static inline tree phi_nodes (basic_block bb) { - return bb_ann (bb)->phi_nodes; + return bb->phi_nodes; } /* Set list of phi nodes of a basic block BB to L. */ @@ -384,18 +601,40 @@ set_phi_nodes (basic_block bb, tree l) { tree phi; - bb_ann (bb)->phi_nodes = l; + bb->phi_nodes = l; for (phi = l; phi; phi = PHI_CHAIN (phi)) set_bb_for_stmt (phi, bb); } -/* Return the phi index number for an edge. */ +/* Return the phi argument which contains the specified use. */ + static inline int -phi_arg_from_edge (tree phi, edge e) +phi_arg_index_from_use (use_operand_p use) { - gcc_assert (phi); + struct phi_arg_d *element, *root; + int index; + tree phi; + + /* Since the use is the first thing in a PHI argument element, we can + calculate its index based on casting it to an argument, and performing + pointer arithmetic. */ + + phi = USE_STMT (use); gcc_assert (TREE_CODE (phi) == PHI_NODE); - return e->dest_idx; + + element = (struct phi_arg_d *)use; + root = &(PHI_ARG_ELT (phi, 0)); + index = element - root; + +#ifdef ENABLE_CHECKING + /* Make sure the calculation doesn't have any leftover bytes. If it does, + then imm_use is likely not the first element in phi_arg_d. */ + gcc_assert ( + (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); + gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi)); +#endif + + return index; } /* Mark VAR as used, so that it'll be preserved during rtl expansion. */ @@ -488,7 +727,7 @@ bsi_start (basic_block bb) return bsi; } -/* Return a block statement iterator that points to the last label in +/* Return a block statement iterator that points to the first non-label block BB. */ static inline block_stmt_iterator @@ -511,13 +750,6 @@ bsi_after_labels (basic_block bb) if (tsi_end_p (bsi.tsi)) return bsi; - /* Ensure that there are some labels. The rationale is that we want - to insert after the bsi that is returned, and these insertions should - be placed at the start of the basic block. This would not work if the - first statement was not label; rather fail here than enable the user - proceed in wrong way. */ - gcc_assert (TREE_CODE (tsi_stmt (bsi.tsi)) == LABEL_EXPR); - next = bsi.tsi; tsi_next (&next); @@ -606,7 +838,7 @@ static inline bool is_call_clobbered (tree var) { return is_global_var (var) - || bitmap_bit_p (call_clobbered_vars, var_ann (var)->uid); + || bitmap_bit_p (call_clobbered_vars, DECL_UID (var)); } /* Mark variable VAR as being clobbered by function calls. */ @@ -618,17 +850,33 @@ mark_call_clobbered (tree var) variable. This is because the pointer that VAR represents has been found to point to either an arbitrary location or to a known location in global memory. */ - if (ann->mem_tag_kind != NOT_A_TAG) + if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD) DECL_EXTERNAL (var) = 1; - bitmap_set_bit (call_clobbered_vars, ann->uid); + bitmap_set_bit (call_clobbered_vars, DECL_UID (var)); + ssa_call_clobbered_cache_valid = false; + ssa_ro_call_cache_valid = false; +} + +/* Clear the call-clobbered attribute from variable VAR. */ +static inline void +clear_call_clobbered (tree var) +{ + var_ann_t ann = var_ann (var); + if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD) + DECL_EXTERNAL (var) = 0; + bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); + ssa_call_clobbered_cache_valid = false; + ssa_ro_call_cache_valid = false; } /* Mark variable VAR as being non-addressable. */ static inline void mark_non_addressable (tree var) { - bitmap_clear_bit (call_clobbered_vars, var_ann (var)->uid); + bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); TREE_ADDRESSABLE (var) = 0; + ssa_call_clobbered_cache_valid = false; + ssa_ro_call_cache_valid = false; } /* Return the common annotation for T. Return NULL if the annotation @@ -664,23 +912,37 @@ op_iter_done (ssa_op_iter *ptr) static inline use_operand_p op_iter_next_use (ssa_op_iter *ptr) { - if (ptr->use_i < ptr->num_use) + use_operand_p use_p; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_use); +#endif + if (ptr->uses) + { + use_p = USE_OP_PTR (ptr->uses); + ptr->uses = ptr->uses->next; + return use_p; + } + if (ptr->vuses) { - return USE_OP_PTR (ptr->ops->use_ops, (ptr->use_i)++); + use_p = VUSE_OP_PTR (ptr->vuses); + ptr->vuses = ptr->vuses->next; + return use_p; } - if (ptr->vuse_i < ptr->num_vuse) + if (ptr->mayuses) { - return VUSE_OP_PTR (ptr->ops->vuse_ops, (ptr->vuse_i)++); + use_p = MAYDEF_OP_PTR (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; + return use_p; } - if (ptr->v_mayu_i < ptr->num_v_mayu) + if (ptr->mustkills) { - return V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, - (ptr->v_mayu_i)++); + use_p = MUSTDEF_KILL_PTR (ptr->mustkills); + ptr->mustkills = ptr->mustkills->next; + return use_p; } - if (ptr->v_mustu_i < ptr->num_v_mustu) + if (ptr->phi_i < ptr->num_phi) { - return V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, - (ptr->v_mustu_i)++); + return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); } ptr->done = true; return NULL_USE_OPERAND_P; @@ -690,19 +952,27 @@ op_iter_next_use (ssa_op_iter *ptr) static inline def_operand_p op_iter_next_def (ssa_op_iter *ptr) { - if (ptr->def_i < ptr->num_def) + def_operand_p def_p; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_def); +#endif + if (ptr->defs) { - return DEF_OP_PTR (ptr->ops->def_ops, (ptr->def_i)++); + def_p = DEF_OP_PTR (ptr->defs); + ptr->defs = ptr->defs->next; + return def_p; } - if (ptr->v_mustd_i < ptr->num_v_mustd) + if (ptr->mustdefs) { - return V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, - (ptr->v_mustd_i)++); + def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs); + ptr->mustdefs = ptr->mustdefs->next; + return def_p; } - if (ptr->v_mayd_i < ptr->num_v_mayd) + if (ptr->maydefs) { - return V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, - (ptr->v_mayd_i)++); + def_p = MAYDEF_RESULT_PTR (ptr->maydefs); + ptr->maydefs = ptr->maydefs->next; + return def_p; } ptr->done = true; return NULL_DEF_OPERAND_P; @@ -712,68 +982,100 @@ op_iter_next_def (ssa_op_iter *ptr) static inline tree op_iter_next_tree (ssa_op_iter *ptr) { - if (ptr->use_i < ptr->num_use) + tree val; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_tree); +#endif + if (ptr->uses) { - return USE_OP (ptr->ops->use_ops, (ptr->use_i)++); + val = USE_OP (ptr->uses); + ptr->uses = ptr->uses->next; + return val; } - if (ptr->vuse_i < ptr->num_vuse) + if (ptr->vuses) { - return VUSE_OP (ptr->ops->vuse_ops, (ptr->vuse_i)++); + val = VUSE_OP (ptr->vuses); + ptr->vuses = ptr->vuses->next; + return val; } - if (ptr->v_mayu_i < ptr->num_v_mayu) + if (ptr->mayuses) { - return V_MAY_DEF_OP (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++); + val = MAYDEF_OP (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; + return val; } - if (ptr->v_mustu_i < ptr->num_v_mustu) + if (ptr->mustkills) { - return V_MUST_DEF_KILL (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++); + val = MUSTDEF_KILL (ptr->mustkills); + ptr->mustkills = ptr->mustkills->next; + return val; } - if (ptr->def_i < ptr->num_def) + if (ptr->defs) { - return DEF_OP (ptr->ops->def_ops, (ptr->def_i)++); + val = DEF_OP (ptr->defs); + ptr->defs = ptr->defs->next; + return val; } - if (ptr->v_mustd_i < ptr->num_v_mustd) + if (ptr->mustdefs) { - return V_MUST_DEF_RESULT (ptr->ops->v_must_def_ops, - (ptr->v_mustd_i)++); + val = MUSTDEF_RESULT (ptr->mustdefs); + ptr->mustdefs = ptr->mustdefs->next; + return val; } - if (ptr->v_mayd_i < ptr->num_v_mayd) + if (ptr->maydefs) { - return V_MAY_DEF_RESULT (ptr->ops->v_may_def_ops, - (ptr->v_mayd_i)++); + val = MAYDEF_RESULT (ptr->maydefs); + ptr->maydefs = ptr->maydefs->next; + return val; } + + ptr->done = true; + return NULL_TREE; + +} + + +/* This functions clears the iterator PTR, and marks it done. This is normally + used to prevent warnings in the compile about might be uninitialized + components. */ + +static inline void +clear_and_done_ssa_iter (ssa_op_iter *ptr) +{ + ptr->defs = NULL; + ptr->uses = NULL; + ptr->vuses = NULL; + ptr->maydefs = NULL; + ptr->mayuses = NULL; + ptr->mustdefs = NULL; + ptr->mustkills = NULL; + ptr->iter_type = ssa_op_iter_none; + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL_TREE; ptr->done = true; - return NULL; } /* Initialize the iterator PTR to the virtual defs in STMT. */ static inline void op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) { - stmt_operands_p ops; - stmt_ann_t ann = get_stmt_ann (stmt); +#ifdef ENABLE_CHECKING + gcc_assert (stmt_ann (stmt)); +#endif - ops = &(ann->operands); + ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL; + ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL; + ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL; + ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL; + ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL; + ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL; + ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL; ptr->done = false; - ptr->ops = ops; - ptr->num_def = (flags & SSA_OP_DEF) ? NUM_DEFS (ops->def_ops) : 0; - ptr->num_use = (flags & SSA_OP_USE) ? NUM_USES (ops->use_ops) : 0; - ptr->num_vuse = (flags & SSA_OP_VUSE) ? NUM_VUSES (ops->vuse_ops) : 0; - ptr->num_v_mayu = (flags & SSA_OP_VMAYUSE) - ? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0; - ptr->num_v_mayd = (flags & SSA_OP_VMAYDEF) - ? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0; - ptr->num_v_mustu = (flags & SSA_OP_VMUSTDEFKILL) - ? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0; - ptr->num_v_mustd = (flags & SSA_OP_VMUSTDEF) - ? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0; - ptr->def_i = 0; - ptr->use_i = 0; - ptr->vuse_i = 0; - ptr->v_mayu_i = 0; - ptr->v_mayd_i = 0; - ptr->v_mustu_i = 0; - ptr->v_mustd_i = 0; + + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL_TREE; } /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return @@ -781,7 +1083,9 @@ op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) static inline use_operand_p op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) { + gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0); op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_use; return op_iter_next_use (ptr); } @@ -790,7 +1094,9 @@ op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) static inline def_operand_p op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags) { + gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0); op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_def; return op_iter_next_def (ptr); } @@ -800,65 +1106,434 @@ static inline tree op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags) { op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_tree; return op_iter_next_tree (ptr); } /* Get the next iterator mustdef value for PTR, returning the mustdef values in KILL and DEF. */ static inline void -op_iter_next_mustdef (use_operand_p *kill, def_operand_p *def, ssa_op_iter *ptr) +op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def, + ssa_op_iter *ptr) { - if (ptr->v_mustu_i < ptr->num_v_mustu) +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef); +#endif + if (ptr->mayuses) { - *def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i); - *kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++); + *def = MAYDEF_RESULT_PTR (ptr->mayuses); + *use = MAYDEF_OP_PTR (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; return; } - else - { - *def = NULL_DEF_OPERAND_P; - *kill = NULL_USE_OPERAND_P; - } - ptr->done = true; - return; -} -/* Get the next iterator maydef value for PTR, returning the maydef values in - USE and DEF. */ -static inline void -op_iter_next_maydef (use_operand_p *use, def_operand_p *def, ssa_op_iter *ptr) -{ - if (ptr->v_mayu_i < ptr->num_v_mayu) + + if (ptr->mustkills) { - *def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i); - *use = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++); + *def = MUSTDEF_RESULT_PTR (ptr->mustkills); + *use = MUSTDEF_KILL_PTR (ptr->mustkills); + ptr->mustkills = ptr->mustkills->next; return; } - else - { - *def = NULL_DEF_OPERAND_P; - *use = NULL_USE_OPERAND_P; - } + + *def = NULL_DEF_OPERAND_P; + *use = NULL_USE_OPERAND_P; ptr->done = true; return; } + /* Initialize iterator PTR to the operands in STMT. Return the first operands in USE and DEF. */ static inline void op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, def_operand_p *def) { + gcc_assert (TREE_CODE (stmt) != PHI_NODE); + op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); - op_iter_next_maydef (use, def, ptr); + ptr->iter_type = ssa_op_iter_maymustdef; + op_iter_next_maymustdef (use, def, ptr); } + /* Initialize iterator PTR to the operands in STMT. Return the first operands in KILL and DEF. */ static inline void op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, def_operand_p *def) { - op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL); - op_iter_next_mustdef (kill, def, ptr); + gcc_assert (TREE_CODE (stmt) != PHI_NODE); + + op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL); + ptr->iter_type = ssa_op_iter_maymustdef; + op_iter_next_maymustdef (kill, def, ptr); +} + +/* Initialize iterator PTR to the operands in STMT. Return the first operands + in KILL and DEF. */ +static inline void +op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt, + use_operand_p *kill, def_operand_p *def) +{ + gcc_assert (TREE_CODE (stmt) != PHI_NODE); + + op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE); + ptr->iter_type = ssa_op_iter_maymustdef; + op_iter_next_maymustdef (kill, def, ptr); +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline tree +single_ssa_tree_operand (tree stmt, int flags) +{ + tree var; + ssa_op_iter iter; + + var = op_iter_init_tree (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_TREE; + op_iter_next_tree (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_TREE; +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline use_operand_p +single_ssa_use_operand (tree stmt, int flags) +{ + use_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_use (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_USE_OPERAND_P; + op_iter_next_use (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_USE_OPERAND_P; +} + + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline def_operand_p +single_ssa_def_operand (tree stmt, int flags) +{ + def_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_def (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_DEF_OPERAND_P; + op_iter_next_def (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_DEF_OPERAND_P; +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline bool +zero_ssa_operands (tree stmt, int flags) +{ + ssa_op_iter iter; + + op_iter_init_tree (&iter, stmt, flags); + return op_iter_done (&iter); +} + + +/* Return the number of operands matching FLAGS in STMT. */ +static inline int +num_ssa_operands (tree stmt, int flags) +{ + ssa_op_iter iter; + tree t; + int num = 0; + + FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) + num++; + return num; +} + + +/* Delink all immediate_use information for STMT. */ +static inline void +delink_stmt_imm_use (tree stmt) +{ + ssa_op_iter iter; + use_operand_p use_p; + + if (ssa_operands_active ()) + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, + (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)) + delink_imm_use (use_p); +} + + +/* This routine will compare all the operands matching FLAGS in STMT1 to those + in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */ +static inline bool +compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags) +{ + ssa_op_iter iter1, iter2; + tree op1 = NULL_TREE; + tree op2 = NULL_TREE; + bool look1, look2; + + if (stmt1 == stmt2) + return true; + + look1 = stmt1 && stmt_ann (stmt1); + look2 = stmt2 && stmt_ann (stmt2); + + if (look1) + { + op1 = op_iter_init_tree (&iter1, stmt1, flags); + if (!look2) + return op_iter_done (&iter1); + } + else + clear_and_done_ssa_iter (&iter1); + + if (look2) + { + op2 = op_iter_init_tree (&iter2, stmt2, flags); + if (!look1) + return op_iter_done (&iter2); + } + else + clear_and_done_ssa_iter (&iter2); + + while (!op_iter_done (&iter1) && !op_iter_done (&iter2)) + { + if (op1 != op2) + return false; + op1 = op_iter_next_tree (&iter1); + op2 = op_iter_next_tree (&iter2); + } + + return (op_iter_done (&iter1) && op_iter_done (&iter2)); +} + + +/* If there is a single DEF in the PHI node which matches FLAG, return it. + Otherwise return NULL_DEF_OPERAND_P. */ +static inline tree +single_phi_def (tree stmt, int flags) +{ + tree def = PHI_RESULT (stmt); + if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) + return def; + if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) + return def; + return NULL_TREE; +} + +/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should + be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */ +static inline use_operand_p +op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags) +{ + tree phi_def = PHI_RESULT (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->phi_stmt = phi; + ptr->num_phi = PHI_NUM_ARGS (phi); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + + +/* Start an iterator for a PHI definition. */ + +static inline def_operand_p +op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags) +{ + tree phi_def = PHI_RESULT (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->iter_type = ssa_op_iter_def; + /* The first call to op_iter_next_def will terminate the iterator since + all the fields are NULL. Simply return the result here as the first and + therefore only result. */ + return PHI_RESULT_PTR (phi); +} + + + +/* Return true if VAR cannot be modified by the program. */ + +static inline bool +unmodifiable_var_p (tree var) +{ + if (TREE_CODE (var) == SSA_NAME) + var = SSA_NAME_VAR (var); + return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); +} + +/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ + +static inline bool +array_ref_contains_indirect_ref (tree ref) +{ + gcc_assert (TREE_CODE (ref) == ARRAY_REF); + + do { + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return TREE_CODE (ref) == INDIRECT_REF; +} + +/* Return true if REF, a handled component reference, has an ARRAY_REF + somewhere in it. */ + +static inline bool +ref_contains_array_ref (tree ref) +{ + gcc_assert (handled_component_p (ref)); + + do { + if (TREE_CODE (ref) == ARRAY_REF) + return true; + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return false; +} + +/* Given a variable VAR, lookup and return a pointer to the list of + subvariables for it. */ + +static inline subvar_t * +lookup_subvars_for_var (tree var) +{ + var_ann_t ann = var_ann (var); + gcc_assert (ann); + return &ann->subvars; +} + +/* Given a variable VAR, return a linked list of subvariables for VAR, or + NULL, if there are no subvariables. */ + +static inline subvar_t +get_subvars_for_var (tree var) +{ + subvar_t subvars; + + gcc_assert (SSA_VAR_P (var)); + + if (TREE_CODE (var) == SSA_NAME) + subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var))); + else + subvars = *(lookup_subvars_for_var (var)); + return subvars; } + +/* Return the subvariable of VAR at offset OFFSET. */ + +static inline tree +get_subvar_at (tree var, unsigned HOST_WIDE_INT offset) +{ + subvar_t sv; + + for (sv = get_subvars_for_var (var); sv; sv = sv->next) + if (sv->offset == offset) + return sv->var; + + return NULL_TREE; +} + +/* Return true if V is a tree that we can have subvars for. + Normally, this is any aggregate type, however, due to implementation + limitations ATM, we exclude array types as well. */ + +static inline bool +var_can_have_subvars (tree v) +{ + return (AGGREGATE_TYPE_P (TREE_TYPE (v)) && + TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE); +} + + +/* Return true if OFFSET and SIZE define a range that overlaps with some + portion of the range of SV, a subvar. If there was an exact overlap, + *EXACT will be set to true upon return. */ + +static inline bool +overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, + subvar_t sv, bool *exact) +{ + /* There are three possible cases of overlap. + 1. We can have an exact overlap, like so: + |offset, offset + size | + |sv->offset, sv->offset + sv->size | + + 2. We can have offset starting after sv->offset, like so: + + |offset, offset + size | + |sv->offset, sv->offset + sv->size | + + 3. We can have offset starting before sv->offset, like so: + + |offset, offset + size | + |sv->offset, sv->offset + sv->size| + */ + + if (exact) + *exact = false; + if (offset == sv->offset && size == sv->size) + { + if (exact) + *exact = true; + return true; + } + else if (offset >= sv->offset && offset < (sv->offset + sv->size)) + { + return true; + } + else if (offset < sv->offset && (size > sv->offset - offset)) + { + return true; + } + return false; + +} + #endif /* _TREE_FLOW_INLINE_H */